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ΠΕΡΙΛΗΨΗ  

Η Τεχνητή Νοημοσύνη artificial intelligence (AI) είναι ένα σημαντικό μέρος της τέταρτης 
βιομηχανικής επανάστασης και υπόσχεται να αλλάξει δραματικά τη ζωή μας, 
αναλαμβάνοντας κουραστικές ή επικίνδυνες εργασίες για εμάς. Ωστόσο, πρέπει να γίνει 
ακόμα πολλή δουλειά. Μια αποτελεσματική οντότητα τεχνητής νοημοσύνης που θα 
εκτελέσει δύσκολες εργασίες, που μόνο ένας άνθρωπος μπορεί, είναι ακόμα μακριά. 
Έτσι, καταβάλλονται συνεχείς προσπάθειες για τη δημιουργία επιτυχημένων οντοτήτων 
AI. Σε αυτή τη διαδικασία τα βιντεοπαιχνίδια είναι ένα σημαντικό πεδίο δοκιμών, είναι 
εργασίες που περιλαμβάνουν εκμάθηση και συλλογισμό για έννοιες σε πολλαπλά 
επίπεδα αφαίρεσης, έναν τομέα στον οποίο η τεχνητή νοημοσύνη υστερεί σε σχέση με 
την ανθρώπινη. Για το λόγο αυτό, οι αλγόριθμοι τεχνητής νοημοσύνης που καταφέρνουν 
να παίξουν ένα παιχνίδι σε ανθρώπινο επίπεδο θεωρούνται επιτυχία και ένα βήμα 
μπροστά για τον κλάδο. 

Μεταξύ των τομέων της τεχνητής νοημοσύνης, η Ενισχυτική Μάθηση Reinforcement 
Learning (RL) χρησιμοποιείται συχνότερα για την εκπαίδευση ενός υπολογιστή, που 
συνήθως ονομάζεται πράκτορας (agent), στο πώς να παίζει βιντεοπαιχνίδια. Αυτή η 
κατηγορία AI είναι πιο στοχευμένη από τις άλλες, συγκεκριμένα η RL βασίζεται στην 
αλληλεπίδραση με ένα αβέβαιο περιβάλλον για την επίτευξη ενός τελικού στόχου, μια 
συμπεριφορά που ταιριάζει με αυτή ενός ανθρώπου που προσπαθεί να παίξει ένα 
παιχνίδι. Τα τελευταία χρόνια, ένας πράκτορας που εκπαιδεύτηκε με αλγόριθμους RL 
χρησιμοποιώντας βαθιά νευρωνικά δίκτυα, deep neural networks (DNN), για την 
προσέγγιση των συναρτήσεων που χρησιμοποιεί, μπόρεσε να παίξει σε ικανοποιητικό 
βαθμό σχετικά απλά παιχνίδια της κονσόλας ATARI2600 [1], ανοίγοντας το δρόμο για 
τους πράκτορες AI έτσι ώστε να καταφέρουν να παίξουν ακόμα πιο περίπλοκα παιχνίδια. 

Στην παρούσα εργασία, ένα rogue-like παιχνίδι δημιουργείται για να χρησιμεύσει ως βάση 
δοκιμών για έναν αλγόριθμο RL που συνδυάζει πρόσφατες προηγμένες τεχνικές, όπως 
η ασύγχρονη εκπαίδευση με χρήση πολυεπεξεργαστή, συνελικτικά νευρωνικά δίκτυα, 
convolutional neural networks (CNN), και δίκτυα μακράς βραχύχρονης μνήμης long short-
term Memory (LSTM). Επίσης έγινε χρήση και κάποιον μοναδικών τεχνικών. Οι τεχνικές 
αφορούν στην χρήση των γραπτών μνημάτων του παιχνιδιού και της καταγραφής της 
κατάστασης του ήρωα του παιχνιδιού ως εισόδους στα DNNs. Οι τεχνικές αυτές 
επιλέχθηκαν λόγο της σημασίας που έχουν αυτές οι πληροφορίες για έναν άνθρωπο που 
προσπαθεί να παίξει το παιχνίδι της διπλωματικής. O τύπος παιχνιδιού rogue-like 
επιλέγεται λόγω της δυσκολίας του, που οφείλεται στην έλλειψη ντετερμινισμού (κάθε σετ 
παιχνιδιού δημιουργείται τυχαία), στην ανάγκη χρήσης χρονικά εκτεταμένων στρατηγικών 
και στην μερική αναπαράσταση της κατάστασης του στον παίκτη. 

Στο πρώτο κεφάλαιο της διπλωματικής εργασίας, θα γίνει μια σύντομη αναφορά στα 
rogue-like παιχνίδια και συγκεκριμένα σε αυτό που χρησιμοποιείται στην εργασία, ενώ 
ακολουθεί μια εισαγωγή στο RL και μια σύντομη περιγραφή των DNNs, δίνοντας έμφαση 
στα δίκτυα που χρησιμοποιούνται στη διπλωματική. Στο δεύτερο κεφάλαιο, θα 
παρουσιαστεί η υλοποίηση του αλγορίθμου RL που χρησιμοποιείται, 
συμπεριλαμβανομένης της αρχιτεκτονικής του δικτύου. Θα δοθεί περαιτέρω μια 
συλλογιστική ως προς το ποιες τεχνικές χρησιμοποιούνται για την αντιμετώπιση των 
προκλήσεων ενός rogue-like παιχνιδιού. Στο τρίτο κεφάλαιο, θα παρουσιαστούν και θα 
αξιολογηθούν τα αποτελέσματα της εκπαίδευσης ενός πράκτορα χρησιμοποιώντας τις 
τεχνικές που περιγράφονται στο δεύτερο κεφάλαιο. Το τελευταίο κεφάλαιο περιλαμβάνει 
τα συμπεράσματα που προκύπτουν από τη διπλωματική εργασία και μερικές νεότερες 
τεχνικές που φαίνονται πολλά υποσχόμενες και μπορούν να βοηθήσουν στη βελτίωση 
της απόδοσης των μελλοντικών πρακτόρων RL στο παιχνίδι της διπλωματικής. 

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Ενισχυτική Μάθηση 



ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: ενισχυτική μάθηση πολιτικής, ασύγχρονη ενισχυτική μάθηση, 

βελτιστοποίηση, συνελικτικά νευρωνικά δίκτυα, δίκτυα μακράς 

βραχύχρονης μνήμης  



ABSTRACT 

Artificial Intelligence (AI) is an important part of the fourth industrial revolution, and it 
promises to dramatically change our lives by taking over tedious or dangerous tasks for 
us. Although, a lot of work still needs to be done. An effective artificial intelligence entity 
that will perform difficult tasks, which only a human can, is still far away. Thus, continuous 
efforts are being made to create successful AI entities. In this process, video games are 
an important testing ground, since they are tasks that involve learning and reasoning 
about concepts over multiple levels of abstraction, an area in which artificial intelligence 
lags behind human intelligence. For this reason, AI algorithms that manage to play a 
game at a human level are considered a success and a step forward in the industry. 

Among the fields of artificial intelligence, Reinforcement Learning (RL) is most often used 
to train a computer, usually called an agent, how to play video games. This category of 
AI is more goal directed than the others, specifically, the RL is based on interacting with 
an uncertain environment and achieving a final goal, a behavior that matches a human 
trying to play a game. In recent years, an agent trained with RL algorithms using deep 
neural networks (DNN) to approximate functions, was able to play relatively simple 
ATARI2600 games at a human level [1] paving the way for AI agents to master more 
complex games. 

In this thesis, a Rogue-like game is created to serve as a testbed for an RL algorithm that 
combines recent advanced techniques such as, asynchronous training using 
multiprocessors, convolutional neural networks (CNNs), and long-short-term memory 
(LSTM) networks. Also, some unique techniques were used. The techniques are the use 
of the game hero status information and the game text messages as inputs to the DNNs. 
This choice was made because of the importance of this information to a human playing 
the game. The Rogue-like type of game is chosen because of its difficulty stemming from 
their lack of determinism (each game set is randomly generated), the need for time-
extended strategies, and the partial representation of their state to the player. 

The first chapter of the thesis will introduce the rogue-like games and specifically the one 
used in the thesis, followed by an introduction to RL and a brief description of DNNs, 
emphasizing the networks used in the thesis. The second chapter will present the 
implementation of the RL algorithm used including the network architecture. A reasoning 
will be further given as to what techniques are used to address the challenges of a rogue-
like game. In the third chapter, the results of the training of an agent using the techniques, 
described in chapter two, will be presented and evaluated. The final chapter will include 
the conclusions drawn from the thesis and some newer techniques that look promising 
and can help improve the performance of future RL agents in the thesis game. 
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1. INTRODUCTION 

1.1 Description of Rogue-like games 

Even though the name of the genre came from the game Rogue, which was developed 
during the 1980 by Michael Toy and Glenn Wichman with the contribution of Ken Arnold, 
the first game of this kind is considered the Beneath Apple Manor developed by Don 
Worth for the Apple II and published by the Software Factory in 1978.  

The rogue like games is a subgenre of the Role-Playing Games (RPG). Main 
characteristic of the RPG is that the player assumes the role of a character in a fictional 
setting. The rogue-like game narrative is inspired from tabletop role playing games such 
as Dungeons & Dragons. The main features that characterize a game as rogue-like are: 

Dungeon Crawl: The hero of the game navigates thru a labyrinth environment (the 
environment can be caves, castles, forests etc.) confronting monsters, avoiding traps, 
solving puzzles, and looting treasures. The game ends with the hero finding a precious 
item (like the Amulet of Yendor in Rogue) or kill a specific enemy. 

Procedural Generated Levels: The levels are created randomly through procedural 
generation. 

Permanent Death: If the hero dies any progress in the game is lost. There isn’t any save 
function. 

Turn based action: The hero actions work as the game clock. The environment waits 
the hero to move and only then the world moves forward. 

The Classic rogue-like games were based on text/console interfaces, where players, 
opponents, objects, walls, etc. are represented by letters/ASCII characters (graphics 
were introduced much later and at the beginning it was simply a direct "translation" of 
ASCII characters into sprites). 

1.1.1 Description of the game used in the thesis 

The game’s name is “The ring of the Wizard Werdna”. The game is written in python, and 
it is used as the game environment that the agent, on this thesis, tries to learn to play. 

1.1.1.1 Scope of the game 

Main goal of the game is the hero to find the ring of the Wizard Werdna. To achieve this 

the hero searches a cave complex. Each cave is inhabited by hostile creatures ready to 
attack our hero. The ring is located at the tenth and final cave. 

1.1.1.2 Environment of the Game 

The environment of the game consists of caves, each cave is a 2d space of tiles. The 

tiles occupy 12x12 pixels on the screen and can be floor type (where the hero and the 
enemies can walk), wall type or stair type. The stair type tile is the entrance for the next 
cave. The color for each tile is red for the floor, black for the wall and pink for the stair. 
Each cave is randomly created every time the hero enters in it. The procedure used is a 
simple (in implementation) algorithm for creating dungeons of a rogue-like game. The 
algorithm name is “random-walk”, and it has been used in many rogue-like games. The 
way it works is the following, let assume that the cave consists of an N × M grid of tiles 
and all the tiles are characterized as walls. Then a percentage of tiles that will be the floor 
is set, the algorithm starts from a random point and performs a random walk 
characterizing each grid it “steps” as floor until, the desired percentage is reached. An 
example of a cave depiction can be seen in Figure 1: A cave consist of 80×60 tiles with 
46% Floor percentage. 
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Figure 1: A cave consist of 80×60 tiles with 46% Floor percentage. 

1.1.1.3 Hero of the game 

For the hero of the game the player can choose between two types of characters warrior 

and wizard. The hero character is chosen at the first screen of the game by pressing 1 
for the warrior type and 2 for the wizard. A screenshot of the introduction screen is given 
in Figure 2.  

 

Figure 2: The ring of the Wizard Werdna, introduction screen 

The player can choose their hero's name by typing the desired name on the second 

screen of the game and pressing enter. Figure 3 shows the second screen of the game. 

 



Reinforcement Learning for Rogue-like Games  

I. Simakos   14 

 

Figure 3: The ring of the Wizard Werdna, name selection screen. 

1.1.1.3.1 Hero Representation 

The hero in the game is shown as a blue square, as can be, for example, seen in Figure 
4. 

 

Figure 4:Hero Depiction 

1.1.1.3.2 Hero Visibility 

The hero can see all tiles, tile types, items and enemies that are within distance of 6 map 
tiles. For the tiles that are outside this range there are two visibility categories, the 
“UNKNOWN” which means that the hero has not visited the region yet and doesn’t know 
anything for this tile and the “FOGGY” which means the hero has visited the tile and 
knows if it is a wall, stair or floor and if the tile has any item (the enemies are invisible in 
this case). Figure 5 depicts a typical game screen after the hero has explored part of the 
map. 
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Figure 5: A depiction of the game after some movements of the hero is given above. The bright 
red for the tiles means that are inside the hero's visibility and the les opaque red means that the 

tiles visibility type is fogged. 

1.1.1.3.3 Hero Actions (Gameplay) 

The type of actions the hero can perform are presented below. Keep in mind that only 
after the action of the hero the environment of the game reacts, in simple words first the 
hero performs an action and in response the environment moves. 

Hero basic movements: The player can move the hero in the four directions using the 
keys w to move up, a to move left, s to move down and d to move right. For each 
movement the hero moves for one tile in the map/cave. Every time the hero moves there 
is a possibility that an enemy will be placed on the map. The probability comes from the 

formula  𝑝0 𝑒max_ℎ𝑒𝑟𝑜_ℎ𝑝 ℎ𝑒𝑟𝑜_ℎ𝑝⁄⁄  where 𝑝0 is between 0.1 and 0.25 

Attack: Attack is performed by pressing the SPACE button. Each type of hero performs 
different type of attack. The Warrior uses sword as weapon and only attacks if the enemy 
is on the next tile, if there is more than one enemy nearby, the hero attacks the one with 
the least hp. The wizard uses the staff as weapon and use spells to attack. Because of 
this, the wizard attacks any visible enemy and if there is more than one enemy, attack 
priority is range, then enemy hp. Each time the wizard attacks 5 mana points is consumed. 
The damage done by the hero depends on his/her level and the weapon the hero 
possesses. The attribute that characterizes the damage the hero can do is strength for 
the warrior and intelligence for the wizard. 

Rest: When the r key is pressed both hero types gain 4 HP. The wizard type hero also 
gains 4MP. When the hero is resting, there is a 25% chance that an enemy will be placed 
on the map. To increase the game difficulty, when the hero has seen the stair and the 
distance to the stairs is less than 35 tiles the rest function cannot be used. 

Health Potion Consumption: The player can press the h button and the hero will 
consume one Health Potion and gain up to 20 HP.  

Mana potion Consumption: The player can press the m button and the hero will 
consume one Mana Potion and gain up to 20 MP. The Mana potion can only be acquired 
by the wizard hero type. 
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Changing weapons: When the player moves to a tile that has a weapon, the hero can 
select that weapon by pressing the p key. The sword weapon that the warrior can acquire 
adds two boosts, one to the maximum HP the hero can have and one to the hero's 
strength. The staff is the weapon the wizard can acquire and adds three boosts, one each 
to max HP, max MP, and intelligence. 

1.1.1.3.4 Hero Level 

The hero starts at level 1 and may reach up to level 5 (if he/her survives long enough). 
Each level determines the maximum HP for both hero types, maximum MP and 
intelligence for the wizard type, and strength for the warrior type. To level up, the hero 
collects XP by killing enemies The following tables show the level of the hero and the 
corresponding XP required for each level and the attributes that the hero has at each 
level. Level also determines the enemies the hero will encounter and weapon bonuses. 

Table 1: Warrior level and corresponding attributes 

Level XP HP Strength 

1 0-299 30 10 

2 300-899 60 20 

3 900-2699 80 25 

4 2700 - 6499 90 30 

5 6500 - 13999 100 35 

 

Table 2: Wizard level and corresponding attributes 

Level XP HP MP Intelligence 

1 0-299 20 30 10 

2 300-899 40 50 20 

3 900-2699 50 70 30 

4 2700 - 6499 55 90 40 

5 6500 - 13999 60 110 50 

1.1.1.4 Enemies of the game 

Enemies in the game spawn during the hero's movement and when he/she is resting. The 
type of enemy depends on the level of the hero. Enemies have specific visibility, HP, 
strength, and XP. When killed they give their XP to the hero. They stand still until the hero 
is in their line of sight, then move towards the hero trying to close the distance and finally 
attack and reduce the hero's hit points by the amount of power they have. A table with 
the name of the enemy, the corresponding level the hero must have for that enemy to 
spawn, how it is shown in-game, and its characteristics are given below. Figure 6 gives 
an example of how enemies are depicted in the game. 
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Table 3: Enemies of the Game 

Hero 
Level  

Enemy 
name  

HP  Strength  XP  Visibility  Depiction 

1-2  Giant Rat 5  2  30  4  Gray 
Square  

1-3  Goblin 15  5  50  7  Yellow 
Circle  

3-4  Gray Slime 30  8  80  2  White 
Square 

4-5  Orc Grunt  40  10  100  6  Green 
Square  

3-5  Orc Warlord  50  12  120  7  Dark 

Green 
Square 

4-5  Ettin  60  20  150  9  Dark Grey 
Circle 

3-5  Skeleton  20  30  100  4  White 
Rectangle 

5  Wyrm  80  20  200  5  Magenta 
Square 

5  Vampire  50  30  400  10  Black 
Circle 

 

 

Figure 6: Enemy rendering example (a giant rat and a Goblin) 
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1.1.1.5 Items of the game 

In the game, tiles can have items stored on them, the two main item categories are potions 
and weapons. There is also a special item the ring of the Wizard Werdna, which will be 
detailed below. 

1.1.1.5.1 Potions 

Potions are used to restore the hero's HP and MP. The health potion restores the hero's 
HP up to 20 HP. The mana potion is only used by a wizard type hero and restores the 
hero's MP up to 20 MP. Potions are acquired by the hero automatically when he/she 
passes a tile on which they are stored. The maximum number of potions a hero can have 
is 30 potions. 

1.1.1.5.2 Weapons 

There are two types of weapons in the game, the sword and the staff. The sword can be 
wielded by a warrior and the staff by a wizard type of hero. Each weapon enhances 
specific characteristics of the Hero. The weapon and the total boost it provides depends 
on the hero's level when the weapon is created. The total boost is split between the 
attributes of the weapon randomly. The table below gives the hero level and the 
corresponding total boost.  

Table 4: Weapon total boost per Hero level 

Hero Level Total Boost 

1 10 

2 20 

3 30 

4 40 

5 60 

1.1.1.5.2.1  Sword 

The sword provides a boost to the maximum HP a warrior can have and boosts the hero's 
strength and thus the damage he/she can deal. 

1.1.1.5.2.2  Staff 

The staff boosts the maximum HP and MP a wizard can have and boosts the hero's 
intelligence and thus the damage she/he can deal. 

1.1.1.5.2.3  The ring of the Wizard Werdna 

This is a special item. It is the item for which our hero begins his adventure. When the 
item is found and picked by the hero the game ends. The depiction of the ring is the same 
with the stairs (a pink tile). 
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1.1.1.5.3 Depiction of objects 

Items are shown as a small square at the corner of the tile they are stored on. The potion 
types are shown in the upper right corner of the tile and the color is blue for the health 
potion and yellow for the mana potion. Weapons are depicted in the upper left corner with 
one color (yellow) for both. An illustration of the game items is given in Figure 7. 

 

Figure 7: Health potion illustration (left), Mana potion illustration (center) weapon illustration 

(right) 

1.1.1.6 Hero Status 

Hero status is displayed in the upper right corner of the game screen outside of the map 
display. The information presented is the hero's type, name, HP, MP, his/her weapon 
name, warrior strength or wizard intelligence, damage the hero can deal (hero's strength 
or intelligence plus the boost from the weapon held), the potions the hero has, the hero's 
level and finally his/her current experience. Figure 8 illustrates an example of the hero 
status. 

 

Figure 8: Hero Status  

1.1.1.7 Game log 

The game log is displayed in the lower left corner of the screen below the map screen 

and prints the last 5 game messages. The messages are related to various aspects of 
the game, such as the spawn location of an enemy relative to the hero's location, HP/MP 
restored after using a potion, the name of the weapon and its boosts, etc. Figure 9 
illustrates an example of the game log.  
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Figure 9: An example of the game log 

1.2 Introduction to Artificial Intelligence with focus on Reinforcement Learning. 

The term AI refers to the ability of a computer or computer-controlled robot to perform 
tasks that usually are done by humans or other intelligent beings. The field through which 
a computer learns how to perform tasks that require intelligence without human 
assistance is called Machine Learning (ML). There are many examples of ML algorithms 
that are very successful in performing competitive tasks (and sometimes surpassing 
human performance), such text classification, word prediction, voice and face recognition, 
play Atari games at human-level [1] and even beat human champions at the game of Go 
[2]. 

1.2.1 Machine Learning categories 

ML is categorized in four main categories Supervised Learning, Unsupervised learning, 
Semi-Supervised learning, and Reinforcement Learning [3].  

1.2.1.1 Supervised Learning 

Supervised Learning is used mostly on classification problems like text classification, 
voice and face recognition etc. A simple example will be used for the understanding of 
this category. Suppose our goal is to build a model that will take a record of three values, 
petal length, petal width, and color, and classify that record into a flower class. The model 
training will be based on records that have already been labeled as a specific flower. The 
records will be divided on training and test data. The training data will then be used to 
train the model. The training process starts with the model taking as input the values of a 
record and making a prediction about the flower class, if the prediction is different from 
the label the record has, the model will be modified, and the process repeated until the 
model predicts the classes of the training data records with high accuracy. At the end the 
test data will be used to evaluate the model. Using data that has already been labeled by 
humans is why this class of ML gets the name supervised. 

1.2.1.2 Unsupervised Learning 

In Unsupervised Learning the data is unlabeled. The goal of this category of algorithm is 
to train a model to take, as input, a record with x number of values and output either a 
record with a different number of values or a single value that can be used to solve a 
specific problem. For example, in clustering the model takes as input the values of a 

record and returns the identity of the cluster to which the records belong, the cluster 
categories are created during the training based on the similarities of the records and 
not by human intervention. One application of clustering is in sampling, where it can 
help the researcher have a smaller and more efficient sample. We can use 
unsupervised learning to automatically divide the data into different groups and 
intelligently sample from these groups, avoiding large sample from the general 
population and thus entries with similar values and biased sample. 

Another area where unsupervised learning can be used is dimensionality reduction of 
the features of elements, this technique can be used to make data easier to present, 
specifically if the researcher has data with records of more than three values, in which 
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case the values cannot be graphically presented, unsupervised learning can be used 
to reduce dimensionality and make graphs feasible. 

Outlier detection is another area where unsupervised learning can be used. This 
technique can be applied to network intrusion problem, helping to detect abnormal 
packets, and the discovery of unique records, like the discovery of a document that is 
different from a collection of documents. The way Unsupervised Learning helps in 
these fields is by building models that can output a value that says how different a 
record is from the set of data. 

1.2.1.3 Reinforcement Learning 

This category of algorithms is based on an interaction between an agent and an 
environment. Usually, and as is in our case, the agent is software running on a computer, 
observes the state of the environment, and takes actions, the actions cause changes in 
the environment and bring rewards for the agent. The scope of the algorithm is to develop 
an optimal policy, a function that will take the environmental states and output actions 
that will yield the maximum reward in the long run. 

This class of algorithms is the one that will be used for this thesis, so further analysis will 
be presented in the next paragraphs. 

1.2.1.4 Semi-Supervised learning 

This category of algorithms is based on a training of a model with the usage of a small 

set of labeled data and a much larger set of unlabeled data. The objective of the technique 
remains the same as supervised learning, but unlabeled data is used to improve model 
performance.  

1.2.2 Reinforcement Learning 

A key difference of RL with the other ML techniques is that RL is more goal directed than 
them. The other techniques are most often used to solve subproblems without 
considering how these efforts will help and fit into the solution of a larger problem. RL is 
based on interacting with an uncertain environment and achieving a final goal. 

1.2.2.1 RL Characteristics 

The key characteristics of the RL are an agent, an environment, a policy, a reward, a 

value function, and a model of the environment (the latter is optional). Definition of these 
characteristics is given below: 

The agent as already mentioned is the AI model we are trying to train. 

Environment is the space in which the agent moves. In general, as environment we 
characterize everything outside the agent. The agent cannot control the environment, 
although the agent interacts with it and cause changes to it, in simple words the agent 
observes the environment state and takes actions that cause changes in the environment 
and yield rewards for the agent. The mathematical framework of this interaction is based 
on the Markov Decision Process (MDP).  

Policy is the function that will map the state of the environment detected by the agent to 
the appropriate action to maximize rewards in the long run. 

Reward is the only value on which training is based. The agent's goal is to maximize the 
reward in the long run. Thus, the reward drives the training of the agent. For example, if 
an agent observes a state and takes an action that yields a poor reward it may cause the 
agent to choose differently the next time it faces the same state. 
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The value function determines the value of a state. By this we mean the rewards that 
the agent will yield starting from this state and follow a specific policy. Taking this into 
account, the value function affects the agent's long-term effort more than the reward, and 
for this reason we are more interested in the value function.  

The environment model is used in some cases of RL. This characteristic is used when 
we have complete knowledge of the environment or when we want to simulate the 
environment. For the first case, an example of a task with a known environment is the 
game of chess, all states and actions are known, and a model of the environment can be 
used to plan the agent's next actions. For the second case the model is used to simulate 
the environment behavior, usually this is very helpful when the trial-and-error approach 
can have disastrous results or is economical inefficient, consider the training of an agent 
learning to land a spacecraft on the moon. On the other hand, there are cases where the 
agent simply learns through actual experience with the environment. Thus, we end up 
with two main categories of RL algorithms, model-based and model-free. 

There are two more basic characteristics the exploration and the exploitation which will 
be understood easier after the following paragraph. Definition of the exploration and 
exploitation will be given in paragraph 1.2.2.3.1.  

1.2.2.2 Basic Mathematical formulation of RL 

As we already know the RL concept is based on finite MDPs. The basic mathematical 

formulation as described here applies to model-based RL algorithms, although with some 
changes the same framework is used when the exact model of the environment is not 
known, details for these cases will be discussed in the following paragraphs. A well-known 
algorithm class which is model-based RL is Dynamic Programming DP and is the class 
that will be used for the explanation of how a policy is evaluated and improved. These 
types of algorithms assume a perfect model of the environment and are computationally 
expensive.  

Figure 10 depicts the agent-environment interaction in a Markov decision process.  

 

Figure 10: The agent–environment interaction in a Markov decision process. [4] 

The agent and the environment interact at discrete time steps. Specifically, the agent 
observes at each time step a state of the environment denoted by 𝑆𝑡, then performs an 

action 𝐴𝑡 and a 𝑅𝑡+1 reward is returned. Due to the agent's action the environment 
transitions to a new state  𝑆𝑡+1 and the process continues creating a sequence of states, 
actions and rewards.  

In the case of the finite MDP the transition to the 𝑅𝑡+1 and the new state 𝑆𝑡+1 is decided 
by a well-defined discrete probability distribution, which is affected only by the preceding 

state 𝑆𝑡 and action 𝐴𝑡. The probability is a four-value function 

𝑝: (𝑆𝑡+1𝑅𝑡+1| 𝑆𝑡 𝐴𝑡) = [0,1] (1.1)  

which for each 𝑆𝑡 and 𝐴𝑡 couple holds 



Reinforcement Learning for Rogue-like Games  

I. Simakos   23 

 
∑ ∑ 𝑝(𝑆𝑡+1𝑅𝑡+1| 𝑆𝑡 𝐴𝑡) = 1𝑅𝑡+1𝑆𝑡+1

(1.2) 

1.2.2.2.1 Expected return 

Note that the agent each time performs the action 𝐴𝑡 seeking to maximize the sequence 
of rewards. The term is called expected return and the simplest form is defined as 

𝐺𝑡 = 𝑅𝑡+1 + 𝑅𝑡+2 + 𝑅𝑡+3 + 𝑅𝑡+4 … 𝑅𝑇  (1.3) 

Where T is the last time step. As a final time step, we can define the end of an episode if 
the task the agent is trying to solve can be separated into discrete episodes, or infinity if 
the task continues for ever. An example of a task that has episodes is a video game, the 
episode ends when the player loses or wins the game, and an example of a task that 
never ends is operating a robot. 

For tasks that continue for many steps or take forever, it is obvious that the expected 
return will deviate to large or infinite values for each state of the environment, making it 
impossible for the agent to choose the action that will yield the most rewards in the long 
run. For this reason, the concept of discounted return is introduced. Discounted return is 
defined as 

𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 + 𝛾3𝑅𝑡+4 … 𝛾𝑇−1𝑅𝑇 =  ∑ 𝛾𝑘𝑅𝑡+𝑘+1
∞
𝑘=0 (1.4)  

and parameter 𝛾 is a value between 0 and 1 and is called discount rate. The discounted 
reward converges, even for infinite T, to a finite value if the reward sequence is bounded.  

The relationship between successive discounted rewards is used very often in RL 
algorithms, so a definition will be given: 

𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 + 𝛾3𝑅𝑡+4 … 𝛾𝑇−1𝑅𝑇  

𝐺𝑡 = 𝑅𝑡+1 + 𝛾(𝑅𝑡+2 + 𝛾𝑅𝑡+3 + 𝛾2𝑅𝑡+4 … 𝛾𝑇−2𝑅𝑇) 

𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝐺𝑡+1 (1.5) 

1.2.2.2.2 Bellman Equation (value and action-value function) 

The scope of RL algorithms is to define a policy that will derive the maximum rewards in 
the long run. A policy is the function that maps the states of an environment into 
probabilities for the agent to choose each possible action. For example, if an agent follows 
the policy 𝜋 at specific time 𝑡 the probability of observing the state 𝑠 and take the action 

𝑎 is define as 𝜋(𝑎|𝑠).  

For a state 𝑠 the value function under policy 𝜋 is the expected return if the agent starts 

from state 𝑠 and follows 𝜋 thereafter. The value function for policy 𝜋 is denoted as 𝑢𝜋 and 
for MDPs is defined as 

𝑢𝜋(𝑠) = 𝐸𝜋[𝐺𝑡|𝑆𝑡 = 𝑠] = 𝐸𝜋[∑ 𝛾𝑘𝑅𝑡+𝑘+1
∞
𝑘=0 |𝑆𝑡 = 𝑠] for all s (1.6) 

The 𝐸𝜋[. ]  denotes the expected value of random variable, given that the agent follows a 

policy 𝜋, and 𝑡 denotes any time step. 𝑢𝜋(𝑠) is called the value function for policy 𝜋. 

In the same way the action-value function is the expected return if the agent starts from 

state 𝑠 performs the action 𝑎 and then follows the policy 𝜋 . It is denoted as 𝑞𝜋(𝑠, 𝑎) and 
defined as 

𝑞𝜋(𝑠, 𝑎) = 𝐸𝜋[𝐺𝑡|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] = 𝐸𝜋[∑ 𝛾𝑘𝑅𝑡+𝑘+1
∞
𝑘=0 |𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] (1.7) 

 𝑞𝜋(𝑠, 𝑎) is called the action-value function for policy 𝜋. 
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𝑢𝜋 or the 𝑞𝜋 for a particular policy can be estimated using experience or a model of the 
environment.  

Like the case of the discounted rewards the relationship of successive states and states 
action pairs on 𝑢𝜋 and 𝑞𝜋 are very important. The equation which expresses this 

relationship for the 𝑢𝜋  and the 𝑞𝜋  is called Bellman and is named after Richard E. 

Bellman [5]. The expression of the equation for the 𝑢𝜋 is: 

𝑢𝜋(𝑠) =  𝐸𝜋[𝐺𝑡|𝑆𝑡 = 𝑠] 

            =  𝐸𝜋[𝑅𝑡+1 + 𝛾𝐺𝑡+1|𝑆𝑡 = 𝑠] 

            =  ∑ 𝜋(𝑎|𝑠)

𝑎

∑ ∑ 𝑝(𝑠′, 𝑟|𝑠, 𝑎)

𝑟

[𝑟 + 𝛾𝛦𝜋[𝑅𝑡+1 + 𝛾𝐺𝑡+1|𝑆𝑡 = 𝑠′]]

𝑠′

 

           =   ∑ 𝜋(𝑎|𝑠)

𝑎

∑ 𝑝(𝑠′, 𝑟|𝑠, 𝑎)

𝑠′,𝑟

[𝑟 + 𝛾𝑢𝜋(𝑠′)], 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠                                                   (1.8)  

The 𝑠′ is the state that follows after the agent observes state s and takes the action 𝑎. 

Similarly, the bellman equation for the action-value function 𝑞𝜋  is  

𝑞𝜋(𝑠, 𝑎) =  ∑ 𝑝(𝑠′, 𝑟|𝑠, 𝑎)

𝑠′,𝑟

[𝑟 + 𝛾 ∑ 𝜋(𝑎′, 𝑠′)

𝑎′

𝑞𝜋(𝑠′, 𝑎′)] (1.9) 

In this case 𝑠′ again is the state that follows the agent observes state s and takes the 

action 𝑎 and 𝑎′ is the action the agent takes for state 𝑠′.   

1.2.2.2.3 Optimization and policy value functions 

Finding the policy that yields the maximum rewards in the long run remains the main 
application area of an RL algorithm. This policy is called optimal. There may be more than 
one optimal policy. All policies have the same state value function, which is denoted as 
𝑢∗ and expressed in the following form 𝑢∗(𝑠) = max

𝜋
𝑢𝜋(𝑠) for all s. The optimal policies 

also share the same action-value function which is denoted as 𝑞∗ and is expressed in the 
form 𝑞∗(𝑠, 𝑎) = max

𝜋
𝑞𝜋(𝑠, 𝑎) for all 𝑠 and 𝑎. Notice that the 𝑞∗ can be written in terms of 

the 𝑢∗ as follows 

𝑞∗(𝑠, 𝑎) = 𝐸[𝑅𝑡+1 + 𝛾𝑢∗(𝑆𝑡+1)|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] (1.10) 

Again, it is very useful to define the equation defining the relationship between successive 
states or state-action pairs and for the optimal policies. The equation which expresses 
this relationship is called the Bellman optimality equation and, for the 𝑢∗, is defined as  

𝑢∗(𝑠) = max
𝑎

∑ 𝑝(𝑠′, 𝑟|𝑠, 𝑎)[𝑟 + 𝛾𝑢∗(𝑠′)]

𝑠′,𝑟

(1.11) 

For the 𝑞∗ the Bellman optimality equation is 

𝑞∗(𝑠, 𝑎) = 𝐸 [𝑅𝑡+1 + 𝛾 max
𝛼′

𝑞∗(𝑆𝑡+1, 𝑎′|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎)] =

∑ 𝑝(𝑠′, 𝑟|𝑠, 𝑎) [𝑟 + 𝛾 max
𝑎′

𝑞∗(𝑠′. 𝑎′)]

𝑠′,𝑟

 (1.12)
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1.2.2.2.4 Policy improvement through iteration 

In this subparagraph DP will be the referred class of algorithms. The main object will be 
to understand how the Bellman equation (see paragraph 1.2.2.2.2) and the Bellman 
optimality equation (see paragraph 1.2.2.2.3) are used in evaluating and improving the 
policy 𝜋 followed by the agent. 

1.2.2.2.4.1  Policy Evaluation  

Firstly, the evaluation of a policy 𝜋 is considered. The value function will be used as 
example. The procedure starts by setting an arbitrary value for the value function for all 

states 𝑠, which is denoted as 𝑢0(𝑠). Then the 𝑢1(𝑠) is updated with the following 
equation  𝑢1(𝑠) =   ∑ 𝜋(𝑎|𝑠)𝑎 ∑ 𝑝(𝑠′, 𝑟|𝑠, 𝑎)𝑠′,𝑟 [𝑟 + 𝛾𝑢0(𝑠′)] for all 𝑠 where 𝜋(𝑎|𝑠) come 

from the policy 𝜋 under evaluation, the procedure is repeated 𝑘 times and if the 𝑘 ⇾ ∞ 
then the 𝑢𝑘 =  𝑢𝜋 applies. The algorithm is described above is called iterative policy 
evaluation and the formulation is  

  𝑢𝑘+1(𝑠) =   ∑ 𝜋(𝑎|𝑠)

𝑎

∑ 𝑝(𝑠′, 𝑟|𝑠, 𝑎)

𝑠′,𝑟

[𝑟 + 𝛾𝑢𝑘(𝑠′)], 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠 (1.13) 

Similarly, the formulation of the iterative policy evaluation algorithm for the action-value 
function is 

𝑞𝑘+1(𝑠, 𝑎) =  ∑ 𝑝(𝑠′, 𝑟|𝑠, 𝑎)𝑠′,𝑟 [𝑟 + 𝛾 ∑ 𝜋(𝑎′, 𝑠′)𝑎′ 𝑞𝑘(𝑠′, 𝑎′)] (1.14)  

1.2.2.2.4.2  Policy Improvement 

Evaluation of a policy is usually used to improve that policy. For example, consider a 

deterministic policy 𝜋 for which the value function  𝑢𝜋(s)  has been evaluated and we want 
to test whether there is a better policy. For this reason, we choose for a state 𝑠 an action 

𝑎 outside this policy 𝑎 ≠ 𝜋(𝑠),then calculate the 𝑞𝜋(𝑠, 𝑎), which is the expected return 
starting from state 𝑠 ,choosing the action 𝑎 ≠ 𝜋(𝑠) and then following the policy 𝜋. If the 

𝑞𝜋(𝑠, 𝑎) is greater than the  𝑢𝜋(𝑠) then we can conclude that we have a new policy 𝜋΄ 
which is better than the old one 𝜋. This is considered a case of the policy improvement 

theorem [4], which states that for two deterministic policies 𝜋 and 𝜋′, if 𝑞𝜋(𝑠, 𝜋′(𝑠)) ≥

𝑢𝜋(𝑠) holds for all states 𝑠 then 𝜋′ is assumed to be at least equal with 𝜋 and for the 

expected return holds 𝑢𝜋′(𝑠) ≥ 𝑢𝜋(𝑠) for all s.  

Generalizing for all the states 𝑠 and performing the same behavior as described above 

we have the greedy policy, 𝜋′, which select for each state the action which seems better 

according to 𝑞𝜋(𝑠, 𝑎). The definition of the greedy policy is 

𝜋′(𝑠) =  a𝑟𝑔max
𝑎

𝑞𝜋(𝑠, 𝑎) = a𝑟𝑔max
𝑎

∑ 𝑝(𝑠′ , 𝑟|𝑠, 𝑎)[𝑟 + 𝛾𝑢𝜋(𝑠′)]

𝑠′,𝑟

(1.15) 

 𝐴𝑟𝑔𝑚𝑎𝑥𝑎 denotes the action 𝑎 which maximize the expression that follows. This 
procedure of creating a new improved policy based on greedy selection with respect of 
the original value function is called policy improvement. 

If the policy, 𝜋′, is not better than the original one then 𝑢𝜋′ = 𝑢𝜋 and for all 𝑠 holds 𝑢𝜋′(𝑠) =
max

𝑎
∑ 𝑝(𝑠′, 𝑟|𝑠, 𝑎)[𝑟 + 𝛾𝑢𝜋′(𝑠′)]𝑠′,𝑟 , which is the bellman optimality equation (see 

paragraph 1.2.2.2.3) and we can tell that both policies are optimal, concluding that policy 
improvement must give us a better policy except when the original policy is already 
optimal.  
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Our analysis, so far, presupposes that deterministic policies are followed, although the 
same holds and for stochastic policies. If, for example, there is more than one action that 
yields the maximum expected return, we do not choose one action, but we assign the 
probability to each of these actions to be selected in the new greedy policy. We distribute 
the probability in any way with the condition that non-optimal actions are given zero 
probability.  

1.2.2.2.4.3  Policy Iteration 

The combination of the policy evaluation and policy improvement is called policy iteration. 
The procedure is simple, firstly we evaluate a policy, 𝜋0, using the value function 𝑢𝜋0

and 

based on that value function we create the new improved policy 𝜋1. This procedure 

continues until we reach the optimal policy 𝜋∗, in the case of finite MDP where the number 
of policies is finite the procedure always converges to the optimal policy and optimal value 
function in a finite number of iterations.  

1.2.2.2.4.4  Policy Iteration restriction and Value Iteration.  

The main limitation of policy iteration as described above is the computation required to 
evaluate the policy. Each policy evaluation requires many iterations over all environments 
states to converge to the value function of the policy being evaluated. This requirement 
raises the question of whether it is necessary to wait until the policy evaluation converges 
to achieve the policy improvement or is it sufficient to do a policy evaluation to some 
extent and do the policy improvement after this truncated policy evaluation.  

The answer on the previous question is that in many cases the optimal policy can be 
found with the truncated policy evaluation. For this reason, several methods of truncating 
the policy evaluation have been developed, one method worth mention is the value 
iteration, which truncates the policy evaluation right after one sweep of the environment 
states. It is easy to write it as a combination of policy improvement and truncated policy 
evaluation steps 

𝑢𝑘+1(𝑠) = max
𝑎

∑ 𝑝(𝑠′, 𝑟|𝑠, 𝑎)[𝑟 + 𝛾𝑢𝑘(𝑠′)]

𝑠′,𝑟

for all s (1.16) 

1.2.2.2.4.5  Generalized Policy Iteration 

The interaction of policy evaluation and policy improvement is described by the term 
Generalized Policy Iteration (GPI). Most of the RL algorithms are labeled as GPI. This 
means they have policies and value functions that interact, i.e., the policy improves based 
on the value function and the value function changes trying to approximate the policy 
value function. When the process stops producing changes in the policy and value 
function, optimization has been achieved. In this case the policy is greedy in its value 
function, so the Bellman optimality equation (𝑢∗(𝑠) = max

𝑎
∑ 𝑝(𝑠′, 𝑟|𝑠, 𝑎)[𝑟 + 𝛾𝑢∗(𝑠′)]𝑠′,𝑟  for 

all s) holds, and policy and value functions are optimal. Figure 11 shows a visualization 
of the process. 
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Figure 11: GPI procedure [4] 

The two processes compete and cooperate simultaneously. They compete during the 
procedure, policy improvement makes the value function imprecise for the changed 
policy, and policy evaluation makes the policy non-greedy anymore, and they cooperate 
in the long run when the interaction leads to a common solution, which is the optimal 
value function and the optimal policy. Figure 12 shows how the two processes although 
have different goals, one is to evaluate the policy and the other is to improve the policy, 
in the end they achieve the main goal of optimizing the value function and the policy 
function.  

 

Figure 12: Optimization of the value and policy function through iteration of policy evaluation and 
policy improvement.[4] 

1.2.2.3 Basic categories of RL Algorithms 

In this paragraph we will present a brief description of the main classes of RL algorithms, 
including some basic examples. The main difference with the procedures presented in 
the previous paragraph, the DP algorithms, is that for the RL algorithms presented here, 
either we do not have a complete knowledge of the environment and cannot evaluate and 
improve the policy by sweeping through all the states, or even and if we have full 
knowledge of the environment, it is computationally expensive to implement the DP 
algorithms. Instead, we rely on the experience accumulated by the agent's interaction 
with the environment. Because of the way the RL algorithms presented here work; we 
need to introduce two new characteristics which are added to the characteristics 
presented in paragraph 1.2.2.1. The characteristics are the exploration and the 
exploitation of a policy. The way each RL algorithm tries to solve the problem further 
categorize them as on-policy and off-policy. In the following paragraphs, 1.2.2.3.1 and 
1.2.2.3.2, a definition of the two characteristics and the two categories of algorithms will 
be given. 

1.2.2.3.1 Exploration and Exploitation  

As already described, RL algorithms without complete knowledge of the environment are 
trained by the experience they accumulate from interacting with the environment. This 
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behavior can cause serious problems on the training procedure. Imagine an agent 
following a policy 𝜋, and for a given state 𝑠 the policy gives zero probability of choosing 

an action 𝑎, the agent will never choose this action and will never discover the rewards 
that this action brings, for this reason the agent should try as many actions as possible in 
as many situations as possible. Taking random action outside the policy the agent follows 
is called exploration. On the other hand, when the currently considered best policy is used 
to select the action to be evaluated, the process is called exploitation. Balancing these 
two processes is very important. Too much exploitation could lead to the wrong policy, 
which is equivalent to quickly reaching a local optimum, and in the other hand too much 
exploration could lead to slow learning.  

There are many ways to balance exploration and exploitation for a given policy, the two 
most common being the ε-greedy method and using policy gradient RL algorithms. 

1.2.2.3.1.1  ε-greedy method 

In this method the algorithm performs random actions on a certain percentage of the 
actions performed. The way it works is simple, first a number less than 1 is defined and 
takes the role of the number 𝜀, then the agent chooses action based on the current policy 
with probability 1 − 𝜀 and random action with probability 𝜀. After that the action is 

evaluated and the policy is changed. It is very common to use a variable 𝜀, which starts 
with a value close to 1, when the agent starts training and the knowledge of the 
environment is insufficient, and gradually decreases to a minimum value. 

1.2.2.3.1.2  Policy Gradient Algorithms 

In this case the exploration of the environment comes from the way the agent chooses 
the action to perform. So far, we saw that the agent observes the environment and 
depending on the state of the environment chooses the action that will yield the best 
rewards in the long run, with the policy gradient the agent chooses actions based on the 
preference for those actions. More specifically, the agent observes the state and then 
calculates the probability for each action, the agent chooses the action to perform based 
on these probabilities. The action yields the reward, then the reward is used to change 
the probability-preference for each action, in simple words the agent's policy, for the next 
time the agent encounters the same situation. Exploration takes place because each time 
all actions have some probability of being selected. 

1.2.2.3.2 On-policy and Off-policy algorithms 

The scope of RL algorithms is to define an optimal policy, see paragraph 1.2.2.2.3, if the 
same policy, which the agent tries to optimize, is used to gather experience from the 
environment, then the algorithm belongs to the category of on-policy algorithms. In this 
case, the policy must maintain some degree of exploration during the agent training. If 
the algorithm uses one policy to gather experience and tries to optimize a different one, 
then the algorithm is marked as off-policy. In this case, exploration should only be 
performed by the policy that collects experience.  

1.2.2.3.3 Monte Carlo algorithms 

In this class of RL algorithms, policy evaluation and improvement are based on 
experience gathered during an episode. The concept of GPI, as described in paragraph 
1.2.2.2.4.5, is used by Monte Carlo (MC) algorithms. The evaluation process is, however, 
different: instead of using a model to calculate the value of a state, we use an average of 
many returns, collected starting from that state. Because the state value is the expected 
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return, this average can approximate the value of the state successfully. All that is 
required for correct convergence is that all states are visited infinite times. For the policy 
improvement we focus on the approximation of the action-value function, the reason for 
doing so is that this function can be used for policy improvement without having a model 
of the dynamic transition of the environment. MC algorithms perform the GPI on an 
episode-by-episode basis.  

There are many differences between DP and MC algorithms. Firstly, MC algorithms learn 
with interaction with the environment, simulated or not, and they do not require precise 
model of the environment’s dynamics. Because of this, MC algorithms can focus on a 
small subset of states that are most likely to be encountered and do not need to evaluate 
all states. Another important difference, which is a unique feature of the MC algorithm, is 
that they do not bootstrap, meaning that they update the value estimate of a state based 
on the actual returns that follow rather than the value estimate of a successive state.  

Balancing exploration and exploitation, see par 1.2.2.3.1, is very important for any RL 
algorithm, in the case of MC a commonly used concept is the exploring start. Exploring 
presupposes that the algorithm starts from state–action pairs that are randomly selected 
to cover all possibilities. It is worth to mention that exploring starts works in simulated 
environment, where the initial state of the episode can be controlled. 

1.2.2.3.4 Temporal Difference (TD) 

This class of RL algorithms combines features from MC and DP algorithms, gaining 
advantages from both. Like MC, TD relies on interacting with the environment to gather 
experience, so no model of the environment's dynamics is required. In the other hand TD 
bootstraps like the DP, it updates its estimates using estimates of successive states and 
does not need to wait for a final result. Like the other two methods TD relies on the 
concept of GPI, see paragraph 1.2.2.2.4.5, to obtain an optimal policy. Again, the way in 
which experience is collected gives rise to the problem of balancing exploration and 
exploitation, see paragraph 1.2.2.3.1, and how each algorithm deals with this problem 
further categorizes the algorithm as on-policy or off-policy, see paragraph 1.2.2.3.2. 

The simplest implementation of a TD algorithm for estimating the value function will be 
used to better understand how TD algorithms work, followed by a description of basic TD 
algorithms. 

1.2.2.3.4.1  Estimation of the value function 𝒖𝝅 using one-step TD algorithm 

Suppose we collect experience following a policy 𝜋 and want to update the estimate 𝑉 of 

the value function 𝑢𝜋 for an arbitrary state 𝑆𝑡, to do this we use the equation 

 𝑉(𝑆𝑡) =  𝑉(𝑆𝑡) + 𝛼[𝑅𝑡+1 + 𝛾𝑉(𝑆𝑡+1) − 𝑉(𝑆𝑡)] (1.17)  

where the 𝑆𝑡+1 is the next sate and 𝑅𝑡+1 is the received reward. The target for the update 
is the term 𝑅𝑡+1 + 𝑉(𝑆𝑡+1) , the difference between the target and the initial estimate 𝑉(𝑆𝑡) 
gives the name TD. The 𝛼 is the step size parameter which defines the percentage of TD 

to be used to update the initial estimate 𝑉(𝑆𝑡). A pseudocode for the procedure described 
above is following: 

 

One-step TD algorithm for estimating 𝒖𝝅[4] 

Input: the policy 𝜋 to be evaluated 

Algorithm parameter: step size 𝑎 ∈ (0,1] 

Initialize 𝑉(𝑠), for all 𝑠 ∈ 𝑆+, arbitrarily except that 𝑉(𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙) = 0 
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1.2.2.3.4.2  Basic TD algorithms 

The main TD algorithms classes are SARSA, Q-learning, Expected SARSA, Double Q-
learning and Actor-Critic. In the following paragraphs a brief description of the algorithms 
is given. 

1.2.2.3.4.3  SARSA  

SARSA is an on-policy, see paragraph 1.2.2.3.2, TD algorithm. This algorithm uses the 
concept of the GPI, see paragraph 1.2.2.2.4.5, to reach to an optimal policy. The 
difference from the methods presented already (MC and DP), is that the evaluation of the 
prediction is performed by the TD method.  

In the case of the SARSA algorithm we use TD for the action-value function in the same 
way as we use it for the value function, see paragraph 1.2.2.3.4.1, the main equation is 

𝑄(𝑆𝑡 , 𝐴𝑡) ← 𝑄(𝑆𝑡 , 𝐴𝑡) + 𝛼[𝑅𝑡+1 + 𝛾𝑄(𝑆𝑡+1, 𝐴𝑡+1) − 𝑄(𝑆𝑡, 𝐴𝑡)] (1.18)  

The use of the quintuple of state, action, reward, next state, and next action gives the 
name SARSA to the algorithm. 

A SARSA pseudocode algorithm, which uses ε-greedy (see paragraph 1.2.2.3.1.1) policy 
to balance exploration and exploitation, is given below. 

  

Loop for each episode: 

 Initialize 𝑆 

 Loop for each step of episode: 

  𝐴 ←action given by 𝜋 for 𝑆 

  Take actin 𝐴, observe 𝑅, 𝑆′ 

  𝑉(𝑆) ← 𝑉(𝑆) + 𝛼[𝑅 + 𝛾𝑉(𝑆′) − 𝑉(𝑆)] 

  𝑆 ← 𝑆′ 

 Until 𝑆 is terminal 

SARSA (on-policy TD control) for estimating 𝑸 ≈ 𝒒∗ [4] 

Algorithm parameter: step size 𝑎 ∈ (0,1] , small ε > 0 

Initialize 𝑄(𝑠,𝑎), for all 𝑠 ∈ 𝑆+, 𝑎 ∈ 𝐴(𝑠), arbitrarily except that 𝑄(𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙,∙) = 0 

Loop for each episode: 

 Initialize 𝑆 

 Choose 𝐴 from 𝑆 using policy derived from 𝑄 (e.g., ε-greedy) 

 Loop for each step of episode: 

  Take action 𝐴, observe 𝑅, 𝑆′ 

  Choose 𝐴′ from 𝑆′ using policy derived from 𝑄 (e.g., ε-greedy) 

  𝑄(𝑆, 𝐴) ← 𝑄(𝑆, 𝐴) + 𝛼[𝑅 + 𝛾𝑄(𝑆′, 𝐴′) − 𝑄(𝑆, 𝛢)] 

  𝑆 ← 𝑆′; 𝐴 ← 𝐴′; 

 Until 𝑆 is terminal 
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1.2.2.3.4.3.1 Q-Learning 

Q-learning is an off-policy, see paragraph 1.2.2.3.2, TD algorithm. The algorithm was 
introduced by Watkins [6] and the equation which defines is 

𝑄(𝑆𝑡 , 𝐴𝑡) ← 𝑄(𝑆𝑡, 𝐴𝑡) + 𝛼 [𝑅𝑡+1 + 𝛾 max
𝑎

𝑄(𝑆𝑡+1, 𝑎) − 𝑄(𝑆𝑡 , 𝐴𝑡)] (1.19)  

The main difference is that this algorithm directly approximates the optimal action-value 
function 𝑞∗, the term max

𝑎
𝑄(𝑆𝑡+1, 𝑎) instead the 𝑄(𝑆𝑡+1, 𝐴𝑡+1), regardless of the policy 

followed. This approach is simpler and converge faster. Like all other algorithms based 
on real experience with the environment, all that is required for proper convergence is 
that all pairs of actions states keep updating.  

A Q-Learning pseudocode algorithm, which uses ε-greedy (see paragraph 1.2.2.3.1.1) 
policy to balance exploration and exploitation, is given below.  

1.2.2.3.4.3.2 Expected SARSA 

This algorithm results if we change the maximum over next state–action pairs used in Q-
learning with the expected value, and the main equation is 

𝑄(𝑆𝑡 , 𝐴𝑡) ← 𝑄(𝑆𝑡, 𝐴𝑡) + 𝛼 [𝑅𝑡+1 + 𝛾 ∑ 𝜋(𝛼, |𝑆𝑡+1)

𝑎

𝑄(𝑆𝑡+1, 𝑎) − 𝑄(𝑆𝑡 , 𝐴𝑡)] (1.20) 

Expected SARSA is more computationally complex than SARSA, although it eliminates 
the variance due to the random choice of 𝐴𝑡+1. In general, it performs better than SARSA 
and can be used as on-policy or off-policy algorithm.  

1.2.2.3.4.3.3 Maximization bias and double Q-Learning 

The Q-Learning algorithm is prone to the maximization bias. A simple example to 

understand the maximization bias is the following case, for a single state 𝑠 there are many 

actions 𝑎 with true values 𝑞(𝑠, 𝑎) equal to zero but their estimated values 𝑄(𝑠, 𝑎) are 
distributed around zero. The maximum of the estimated values is a positive number 
although the true maximum is zero. This error is called maximization bias.  

One algorithm which effectively deal with the maximization bias is the off-policy Double 
Q-Learning. In this algorithm two independent estimations for the true action-value 𝑞(𝑎) 

function is used, let’s say 𝑄1(𝑎) and 𝑄2(𝑎). The one estimate, assume 𝑄1, is used to 

Q-Learning (off-policy TD control) for estimating 𝝅 ≈ 𝝅∗ [4] 

Algorithm parameter: step size 𝑎 ∈ (0,1], small ε > 0 

Initialize 𝑄(𝑠,𝑎), for all 𝑠 ∈ 𝑆+, 𝑎 ∈ 𝐴(𝑠), arbitrarily except that 𝑄(𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙,∙) = 0 

Loop for each episode: 

 Initialize 𝑆 

 Loop for each step of episode: 

  Choose 𝐴 from 𝑆 using policy derived from 𝑄 (e.g., ε-greedy) 

  Take action 𝐴, observe 𝑅, 𝑆′ 

  𝑄(𝑆, 𝐴) ← 𝑄(𝑆, 𝐴) + 𝛼 [𝑅 + 𝛾 max
𝑎

𝑄(𝑆′, 𝑎) − 𝑄(𝑆, 𝛢)] 

  𝑆 ← 𝑆′ 

 Until 𝑆 is terminal 
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determine the 𝐴 =  𝑎𝑟𝑔𝑚𝑎𝑥
𝑎

𝑄1(𝑎) and the other, 𝑄2, to provide the estimation for its value 

𝑄2(𝐴) = 𝑄2 (𝑎𝑟𝑔𝑚𝑎𝑥
𝑎

𝑄1(𝑎) ). Due to the equality 𝐸[𝑄2(𝐴)] = 𝑞(𝐴) the estimation will be 

unbiased. To make the two estimates independent, in Double Q-Learning the time steps, 
during training, are split in half, for example with probability 0.5 for each step. Half steps 
are using the equation 

 𝑄1(𝑆𝑡, 𝐴𝑡) ← 𝑄1(𝑆𝑡 , 𝐴𝑡) + 𝛼[𝑅𝑡+1 + 𝛾𝑄2 (𝑆𝑡+1, 𝑎𝑟𝑔𝑚𝑎𝑥
𝑎

𝑄1(𝑆𝑡+1, 𝑎)) − 𝑄1(𝑆𝑡 , 𝐴𝑡)]      (1.21) 

and the other half the equation 

 𝑄2(𝑆𝑡, 𝐴𝑡) ← 𝑄2(𝑆𝑡 , 𝐴𝑡) + 𝛼[𝑅𝑡+1 + 𝛾𝑄1 (𝑆𝑡+1, 𝑎𝑟𝑔𝑚𝑎𝑥
𝑎

𝑄2(𝑆𝑡+1, 𝑎)) − 𝑄2(𝑆𝑡, 𝐴𝑡)]      (1.22) 

 

  

1.2.2.3.4.3.4 Actor-critic. 

This algorithm belongs to the family of policy gradient algorithms and is an on-policy 
method, see paragraph 1.2.2.3.2. Some general information about policy gradient 
methods and how they perform exploration of the environment is included in paragraph 
1.2.2.3.1.2. The main characteristic of the actor-critic algorithm and the policy gradient 
method in general is that the agent chooses an action using an equation that does not 
consider the value function or the action-value function and is simply used to generate 
the agent's policy. This part of the algorithm is called actor. In the case of actor-critic 
algorithms the value function is used to critique the action the actor takes. The TD error 
of the value function, see paragraph 1.2.2.3.4.1, is used to critique the actor's actions and 
the agent policy in general. The part of the algorithm that estimates the value function is 
called the critic. The TD error is used for the training of both algorithm parts, the actor and 
the critic. 

In its simplest form, the actor-critic algorithm works as follows. The critic part is the state 
value function. After the action 𝑎𝑡 is chosen a new state 𝑠𝑡+1 is observed, then the critic 

Double Q-Learning, for estimating 𝑸𝟏 ≈ 𝑸𝟐 ≈ 𝒒∗[4] 

Algorithm parameter: step size 𝑎 ∈ (0,1], small ε > 0 

Initialize 𝑄1(𝑠,𝑎)
, and 𝑄2(𝑠,𝑎)

, for all 𝑠 ∈ 𝑆+, 𝑎 ∈ 𝐴(𝑠), such that 𝑄(𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙,∙) = 0 

Loop for each episode: 

 Initialize 𝑆 

 Loop for each step of episode: 

  Choose 𝐴 from 𝑆 using the policy 𝜀-greedy in 𝑄1 + 𝑄2 

  Take action 𝐴, observe 𝑅, 𝑆′ 

  With 0.5 probability: 

   𝑄1(𝑆, 𝐴) ← 𝑄1(𝑆, 𝐴) + 𝛼[𝑅 + 𝛾𝑄2(𝑆′, 𝑎𝑟𝑔𝑚𝑎𝑥
𝑎

𝑄1(𝑆′, 𝑎)) − 𝑄1(𝑆, 𝐴)] 

  else: 

   𝑄2(𝑆, 𝐴) ← 𝑄2(𝑆, 𝐴) + 𝛼[𝑅 + 𝛾𝑄1(𝑆′, 𝑎𝑟𝑔𝑚𝑎𝑥
𝑎

𝑄2(𝑆′, 𝑎)) − 𝑄2(𝑆, 𝐴)] 

  𝑆 ← 𝑆′ 

 Until 𝑆 is terminal 
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checks whether the estimation of the value function for the initial state 𝑠𝑡 is accurate using 
the equation 

𝑇𝐷𝑒𝑟𝑟𝑜𝑟 = 𝑅𝑡+1 + 𝛾𝑉(𝑆𝑡+1) − 𝑉(𝑆𝑡) (1.23) 

This error is then used to evaluation the action 𝑎𝑡 just selected. If the error is positive then 
the preference for the action 𝑎𝑡 is strengthened, if it is negative it is weakened. Assume 
that we use Gibbs softmax method to generate the action, the equation, which produce 

the probability for the action selection, is πt(a|s) =
ep(s,a)

Σbep(s,b) , where p(s, a) denotes the 

actor's preference for action 𝑎 when in state 𝑠. Changing the preference for each action, 
described above, can be done using a simple equation of the form 

𝑝(𝑠𝑡, 𝑎𝑡) ← 𝑝(𝑠𝑡, 𝑎𝑡) + 𝛽𝑇𝐷𝑒𝑟𝑟𝑜𝑟 (1.24)  

where β is a positive step-size parameter. 

The policy gradient methods have many advantages over action-value methods. Some 
of them are: 

Use in stochastic policies: They use probabilities to take actions, making them suitable 
for tasks that require stochastic policy such as card games. 

Environment exploration: They can explore the environment because of the way they 
operate (generating probabilities for they action) and can arrive at a deterministic policy. 
In contrast, ε-greedy policies will always have some randomness in their decision.  

Continues actions spaces: They can handle continues actions spaces.   

Since this is the main algorithm that we will use in this thesis, the following chapter 
explains it further. 

1.2.2.3.5 n-step TD algorithms. 

Both algorithms TD, see paragraph 1.2.2.3.4, and MC, see paragraph 1.2.2.3.3 have 
advantages and disadvantages.  

MC methods have low variance and are less biased as they are not based on an estimate 
of expected rewards but on an average of actual returns. Although they must wait for the 
episode to end and then update the value function or the action-value function. This 
behavior creates problems when the episode is too long, resulting in slow learning, and 
when the task is not episodic. 

In contrast TD methods are implemented in an online, fully incremental manner, 
overcoming the MC problems described above, specifically they do not have to wait the 
episode to end to begin training. On the other hand, they have more variance and are 
more biased, they calculate the future expected rewards bootstrapping from their 
estimation of value function or action-value function for the next state, see paragraph 
1.2.2.3.4.1. 

For this reason, methods have been developed that combine features from MC and TD 
algorithms. These methods tend to perform better than the MC and TD methods. The 
methods are called n-step TD algorithms. They work in a similar way to TD algorithms. 
The difference is that in the case of the n-step algorithm more real rewards are used when 
updating the value function 𝑉(𝑠𝑡) of an arbitrary state st or the action-value function 
𝑄(𝑠𝑡 , 𝑎𝑡) of an arbitrary pair of state 𝑠𝑡 and action 𝑎𝑡. Specifically n-1 rewards are used 
(discounted as described in paragraph 1.2.2.2), and the remaining expected returns are 

calculated from the algorithm’s estimate of the value function 𝑉(𝑠𝑡+𝑛) for the environment 
state 𝑠𝑡+𝑛 or the action-value function 𝑄(𝑠𝑡+𝑛 , 𝑎𝑡+𝑛) for the pair of environment state 
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𝑠𝑡+𝑛and action 𝑎𝑡+𝑛, encountered n-step after the state or state action pair for which the 
update is performed. 

We must keep in mind that for n-step TD algorithms with 𝑛 ≥ 1 the estimation of the 
discounted expected returns involves rewards and states that are not known at the time 
of transition from t to t +  1. For this reason, no feasible algorithm can use n-step return 

until it has seen 𝑅𝑡+𝑛 and estimate 𝑉𝑡+𝑛−1 or 𝑄𝑡+𝑛−1. This condition is satisfied at 𝑡 + 𝑛, 
and the equation used by the n-step TD algorithm to learn the value function takes the 
form 

𝑉𝑡+𝑛(𝑠𝑡) = 𝑉𝑡+𝑛−1(𝑠𝑡) + 𝛼[𝐺𝑡:𝑡+𝑛 − 𝑉𝑡+𝑛−1(𝑠𝑡)], 0 ≤ 𝑡 ≥ 𝑇 (1.25) 

while the values of all other states remain unchanged, and the 𝐺𝑡:𝑡+𝑛 denotes the 
discounted expected rewards and is equal with 

𝑅𝑡+1 + 𝛾𝑅𝑡+2 + · · ·  + 𝛾𝑛−1𝑅𝑡+𝑛  +  𝛾𝑛𝑉𝑡+𝑛−1(𝑠𝑡+𝑛) (1.26) 

Similarly, the equation used by the n-step TD algorithm to learn the action-value function 
is equal to 

𝑄𝑡+𝑛(𝑠𝑡, 𝑎𝑡) = 𝑄𝑡+𝑛−1(𝑠𝑡, 𝑎𝑡) + 𝛼[𝐺𝑡:𝑡+𝑛 − 𝑄𝑡+𝑛−1(𝑠𝑡, 𝑎𝑡)], 0 ≤ 𝑡 ≥ 𝑇 (1.27)  

while the values of all other pairs of states and actions remain unchanged, and the 𝐺𝑡:𝑡+𝑛 
symbolize the discounted expected rewards and is equal to 

𝑅𝑡+1 + 𝛾𝑅𝑡+2 + · · ·  + 𝛾𝑛−1𝑅𝑡+𝑛  +  𝛾𝑛𝑄𝑡+𝑛−1(𝑠𝑡+𝑛 , 𝑎𝑡+𝑛) (1.28) 

All the algorithms presented in paragraph 1.2.2.3.4.2 can now be implemented with the 
n-step TD method. For better understanding a pseudocode for the n-step SARSA 
algorithm will be given. 

 

n-step SARSA for estimating 𝑸 ≈ 𝒒∗ [4] 

Initialize 𝑄(𝑠,𝑎) arbitrarily, for all 𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴 

Initialize 𝜋 to be ε-greedy with respect to 𝑄, or to a fixed given policy 

Algorithm parameters: step size 𝛼 ∈ (0.1], small 𝜀 > 0, a positive integer 𝑛 

All store and access operations (for 𝑆𝑡, 𝐴𝑡 𝑎𝑛𝑑 𝑅𝑡) can take their index mod 𝑛 + 1 

Loop for each episode: 

 Initialize and store 𝑆0 ≠ 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 

 Select and store an action 𝐴0 ∼ 𝜋(∙ |𝑆0) 

 𝑇 ← ∞ 

 Loop for 𝑡 = 0,1,2, …: 

  If 𝑡 < 𝑇, then: 

   Take action 𝐴𝑡 

   Observe and store the next reward as 𝑅𝑡+1 and the next state as 𝑆𝑡+1 
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1.3 Function approximation and Neural-Networks. 

So far, we studied algorithms that try to find the optimal policy for a problem based on a 
value function, an action-value function, or a policy function. The value and the action-
value functions are represented as tables that map each state or state-action pair to 
specific rewards expected to be earned if a policy 𝜋 is followed after that state or state-
action pair, in the case of policy function states are mapped to action probabilities. This 
way of finding an exact mapping of state or state action pair to expected rewards or to 
action probabilities is very effective for cases with limited state and action spaces. 
Although, it is impractical, in terms of memory and time, to do it for problems with big state 
and action spaces. One such case is the game of this thesis, see paragraph 1.1.1. There 
can be almost infinite number of states, such as different maps, different enemies and 
items placed on the map and different cases of hero status. One solution to problems like 
the game mentioned earlier is to create functions that can generalize. By generalization 
we mean the ability to make a reasonable estimate of the value function, the action-value 
or the policy function for states that appear for the first time based on training done for 
similar situations.  

In our case the generalization needed is often called function approximation because it 
takes examples from a desired function (e.g., a value function) and tries to generalize 
from them to create an approximation of the entire function.  

Henceforth, the three functions used in the algorithms that described in paragraph 1.2.2.3 
will be not represented as tables, instead they will be represented as parametrized 

functions and the parameters will be in the form of a weight vector 𝒘 ∈ ℝ𝑑. So, for the 

approximate value of the state 𝑠 given the weight vector 𝒘 we will write 𝑢̂(𝑠, 𝒘) ≈ 𝑢𝜋(𝑠), 

for the approximate action-value of the state 𝑠 and action 𝑎, given the weight vector 𝒘, 
we will write 𝑞̂(𝑠, 𝑎, 𝒘) ≈ 𝑞𝜋(𝑠, 𝑎) and for the approximate policy function of the state 𝑠, 

given the weight vector 𝒘, we will write 𝜋(𝑠|𝑎, 𝒘) ≈ 𝜋(𝑠|𝑎).  

In recent years most of the RL algorithms, including some of the most successful 
implementations [1],[2], use Neural Networks, see paragraph 1.3.2, to approximate the 
functions. In that case, which is also used in this thesis, 𝒘 denotes the connection weights 
in all the layers of the Neural Networks. Typically, the number of weights (the 
dimensionality of 𝒘) is much less than the number of states (𝑑 ≪ |𝑆|) and changing one 
weight changes the estimated results of many states or state action pairs. Consequently, 
when a single state is updated, the change generalizes from that state or state action pair 

   If 𝑆𝑡+1 is terminal, then:  

    𝑇 ← 𝑡 + 1 

   else: 

    Select and store an action 𝐴𝑡+1~𝜋(∙ |𝑆𝑡+1) 

 𝜏 ← 𝑡 − 𝑛 + 1 (𝜏 is the time whose estimate is being updated) 

 If 𝜏 ≥ 0: 

  𝐺 ← ∑ 𝛾𝑖−𝜏−1min (𝜏+𝑛,𝛵)
𝑖=𝜏+1 𝑅𝑖 

   If 𝜏 + 𝑛 < 𝛵, then 𝐺 ← 𝐺 + 𝛾𝑛𝑄(𝑆𝜏+𝑛 , 𝐴𝜏+𝑛)                                  (𝐺𝜏:𝜏+𝑛) 

   𝑄(𝑆𝜏 , 𝐴𝜏) ← 𝑄(𝑆𝜏 , 𝐴𝜏) + 𝛼[𝐺 − 𝑄(𝑆𝜏 , 𝛢𝜏)] 

   If 𝜋 is being learned, then ensure that 𝜋(∙ |𝑆𝜏) is ε-greedy wrt 𝑄 

 Until 𝜏 = 𝛵 − 1 
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to affect the values, action-values, or action selection probabilities of many other states 
or state action pairs. Such generalization makes the learning potentially more powerful 
but also potentially more difficult to manage and understand.  

Given the introduction of the weight parameters 𝒘 and how they determine the results 
the algorithms produce, we need to define how these parameters will be updated after 
the agent interacts with the environment. For this reason, we need to introduce the 
concept of optimization and especially gradient descent methods. 

1.3.1 RL optimization and gradient descent methods  

The introduction of the approximation brings the error to the system. In the previous 
chapter we tried to find the exact values of the following functions 𝑢𝜋(𝑠) and 𝑞𝜋(𝑠, 𝑎), now 
by parameterizing functions we come to terms with the idea that approximate functions 
𝑢̂(𝑠, 𝒘) and 𝑞̂(𝑠, 𝑎, 𝒘) will differ from the actual values by an amount. Our goal is to reduce 
this amount to a minimum. One class of methods used to do this are gradient descent 
methods. 

1.3.1.1 Stochastic gradient descent. 

In general gradient descent methods are used when the parameters of a parameterized 
function must be changed to achieve the minimum output for that function for given inputs. 
A simple gradient descent pseudocode algorithm for a parametrized real-valued function 
𝑬: ℝ𝑁 × ℝ𝑝 → ℝ  is given below. 

To update the parameter vector 𝒘𝒕, the derivatives of function 𝑬 with respect to the 
elements of that vector, calculated for the input 𝑥, are used. Because these updates are 
following the negative gradient the output of the function becomes smaller. Gradient 
descent methods are called “stochastic” when the update is done on only a single 
example, which might have been selected randomly, like the algorithm presented 
previously. We should mention that, since the gradient only describes the local shape of 
the function, this algorithm may end up in a local minimum.  

To achieve the convergence to a local minimum a careful choice of the step size 
parameter 𝑎 must be made. The parameter must be small enough. Remember that we 
neither seek nor expect to find a value function that has zero error for all states, but only 
an approximation that balances the errors in different states. If we were to fully correct 
each example in one step, then we would not find such a balance. In fact, the 

convergence results for SGD methods assume that α decreases over time. 

Stochastic gradient descent method [7] 

Input: differentiable function 𝑬: ℝ𝑁 × ℝ𝑝 → ℝ  to be minimized 

Step size sequence 𝑎𝑡 ∈ [0,1], initial parameters 𝒘𝟎 ∈ ℝ𝑝 

Output: a parameter vector 𝒘 such that 𝑬 is small 

For all 𝑡 ∈ {1,2, … } do 

 Observe 𝑥𝑡, 𝑬(𝑥𝑡, 𝒘𝒕) 

 Calculate gradient: 

  ∇w𝑬(𝑥𝑡, 𝒘𝒕) = (
𝜕

𝜕𝒘𝒕[1]
𝑬(𝑥𝑡, 𝒘𝒕), … . ,

𝜕

𝜕𝒘𝒕[𝑃]
𝑬(𝑥𝑡, 𝒘𝒕)𝑇 

 Update parameters: 

     𝒘𝒕+𝟏 = 𝒘𝒕 − 𝛼𝑡∇w𝑬(𝑥𝑡, 𝒘𝒕) 
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In RL a common example of a function we are trying to minimize is the TD function, and 
very often the mean squared error of the TD. 

1.3.1.2 RL optimization algorithms in conjunction with SGD and semi-gradient 
descent 

In this paragraph we will present a RL algorithm that tries to find an optimal policy for a 

problem and like the cases presented in the previous paragraphs, follow the concept of 
GPI, see paragraph 1.2.2.2.4.5. What is new about this algorithm is that it uses 
parameterized functions and gradient descent methods. The example that will be 
presented is on-policy, see paragraph 1.2.2.3.2, semi-gradient n-step SARSA. A pseudo 
code for the algorithm is following. 

 

Notice the term semi-gradient in the name of this algorithm. The term is introduced 
because of the bootstrapping we use to create the target for our update 

𝐺 ← ∑ 𝛾𝑖−𝜏−1𝑅𝑖

min(𝜏+𝑛𝑇)

𝑖=𝜏+1

+ 𝛾𝑛𝑞̂(𝑆𝜏+𝑛 , 𝐴𝜏+𝑛 , 𝒘𝝉) (1.29) 

semi-gradient n-step SARSA for estimating 𝒒̂ ≈ 𝒒∗ 𝒐𝒓 𝒒𝝅[4] 

Input: a differentiable action-value function parameterization  𝑞̂: 𝑆 × 𝐴 × ℝ𝑑 → ℝ 

Input: a policy 𝜋 (if estimating 𝑞𝜋) 

Algorithm parameters: step size 𝛼 > 0, small 𝜀 > 0, a positive integer n 

Initialize value-function weights 𝒘 ∈ ℝ𝑑 arbitrarily (e.g., 𝒘 =  0) 

All store and access operations (𝑆𝑡 , 𝐴𝑡, and 𝑅𝑡) can take their index mod 𝑛 +  1 

Loop for each episode: 

Initialize and store 𝑆0  ≠  𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 

Select and store an action 𝐴0 ∼  𝜋(· |𝑆0) or 𝜀-greedy wrt 𝑞̂(𝑆0, . , 𝒘)  

𝑇 ← ∞ 

Loop for 𝑡 =  0, 1, 2, . . . ∶ 

If 𝑡 <  𝑇 , then: 

Take action 𝐴𝑡 

Observe and store the next reward as 𝑅𝑡+1 and the next state as 𝑆𝑡+1 

If 𝑆𝑡+1 is terminal, then: 

𝑇  ←  𝑡 +  1 

else: 

Select and store 𝐴t+1  ∼  𝜋(· |𝑆𝑡+1) or 𝜀-greedy wrt 𝑞̂(𝑆𝑡+1,∙, 𝒘) 

𝜏  ←  𝑡 −  𝑛 +  1 (𝜏 is the time whose estimate is being updated) 

If 𝜏 ≥ 0: 

 𝐺 ← ∑ 𝛾𝑖−𝜏−1𝑅𝑖
min (𝜏+𝑛,𝑇)
𝑖=𝜏+1  

   If 𝜏 + 𝑛 < 𝑇, then 𝐺 ← 𝐺 + 𝛾𝑛𝑞̂(𝑆𝜏+𝑛 , 𝐴𝜏+𝑛 , 𝒘)                (𝐺𝜏:𝜏+𝑛) 

   𝒘 ← 𝒘 + 𝛼[𝐺 − 𝑞̂(𝑆𝜏 , 𝐴𝜏 , 𝒘)]∇𝑞̂(𝑆𝜏 , 𝐴𝜏 , 𝒘) 

 Until 𝜏 = 𝑇 − 1 
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The bootstrapping part of the algorithm, in this case the 𝑞̂(𝑆𝜏+𝑛 , 𝐴𝜏+𝑛 , 𝒘𝜏) depends on the 
current value of the weight vector 𝒘𝜏, which means that it will be biased and that it will 
not produce a true gradient-descent method. Therefore, we only take the gradient for the 

part of the algorithm that contains the state we update 𝑞̂(𝑆𝜏 , 𝐴𝜏 , 𝒘𝜏) and not for the target 
one, concluding that bootstrap methods are not in actually cases of true gradient descent 
[8] and as result we call them semi-gradient methods.  

Although semi-gradient methods converge less strongly than SGD, we prefer to use them 
because of the same advantages that bootstrap methods offer, they learn faster and 
perform online updates, without waiting for the end of an episode. 

1.3.2 Artificial Neural Networks 

ANNs artificial neural networks try to simulate the behavior of the mammalian nervous 
system and are very often used to approximate nonlinear function. A simple 
representation of a feedforward ANN is given in Figure 13. 

 

Figure 13: Basic feedforward ANN representation [4] 

As we can see the network consists of different layers, the first layer is the input layer, 
the other two are the hidden layers and the last one is the output layer. Each connection 
between network units is characterized by a value called weight. Each unit takes the 
weighted output of the previous units sums it up and then applies to the results a non-
linear function, called an activation function, the product of this function is the output of 
the module, this output can be the input for the others level units or the output of the ANN. 
Some examples of activation function are given in Figure 14. 

 

Figure 14:Examples of activation function[9] 
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The non-linearity of the activation function gives the ability to the ANNs to approximate 
any non-linear function. Specifically, an ANN with a single hidden layer containing a large 
enough finite number of sigmoid units can approximate any continuous function on a 
compact region of the network’s input space to any degree of accuracy [10]. 

Although, a single hidden layer is not enough, especially for the AI tasks, the 
approximation of the complex function of the AI requires abstractions that are hierarchical 
compositions of many layers of lower-level abstractions like the ones produced by ANNs 
with many hidden layers. Each layer computes a more abstract representation of the 
network input with each unit providing a feature that contributes to the hierarchical 
representation of the network input-output function. These types of ANNs are called deep 
neural networks (DNN).  

For this reason, training ANN hidden layers can generate features capable of 
hierarchically representing a given problem without relying solely on hand-crafted 
features. In the case of RL, the weights between units are the values used to approximate 
a function such as TD. Considering this, it is important to train the weights and the 
algorithm we use is similar with SGD, see paragraph 1.3.1.1. The most common way to 
implement SGD is through backpropagation. This method uses the chain rule and the 
layer structure of networks to efficiently calculate the derivatives of the network's output 
on its parameters. More specifically, the ANN alternates between forward and backward 
passes through the network. In the forward pass the activation of each unit is calculated, 
for a given network input. Then in the backward pass we take the results we want to 
minimize, for example the TD function, and then we calculate a partial derivative of the 
results with respect to each weight, finally we use these derivatives to update the weights. 

There are many types of neural networks. In the following paragraphs we will describe 
the categories used in this thesis. The categories are Convolutional Neural Networks 
CNN and the Long Short-Term Memory LSTM. 

1.3.2.1 Convolutional Neural Networks 

CNN is built to process high-dimensional data arranged in spatial arrays, such as images. 
The CNN was inspired by how early visual processing works in the brain, and one of its 
first application was the LeNet-5 network, which created for hand-written characters 
recognition [11]. The architecture of the LeNet-5 network is shown in Figure 15. 

 

Figure 15: Architecture of LeNet-5. Each plane is a feature map, i.e., a set of units whose weights 
are constrained to be identical.[11] 

The composition of the LeNet-5 network is created by combining convolutional and 
subsampling layers, followed by several fully connected final layers. Several feature maps 
are produced by each convolutional layer. The map represents a pattern of activity over 
an array of units. Each unit operates the same way on the data it “sees” from the previous 
layer (or from the input for the first convolutional layer). So, the units of each feature map 
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are the same and therefore share the same weights and are trained to recognize a 
particular feature from the data, the difference comes from the part of the data that each 
unit processes, the part of the data that each unit sees is shifted by a constant. For 
example, in the LeNet-5, figure 15, the first convolutional layer produces 6 features maps 
each consist of 28 × 28 units. Each unit sees a 5 × 5 region of the original data, and these 
regions overlap for four columns and four rows. As result, each feature map is 
characterized by just 25 adjustable weights. 

Subsampling layers are used to reduce the spatial resolution of the feature maps and 
make the network responses spatially invariant. These layers produce the same number 
of feature maps as the previous convolutional layer. Although this time the units of the 
new feature maps average over a portion of the units from the previous convolutional 
layer feature maps. For example, each unit of the 6 feature maps in the first subsampling 
layer of the LeNet-5 calculates the average for the units of a 2 × 2 non-overlapping part 
of the feature maps produced by the first convolutional layer, having as results a six 14 × 
14 feature maps. 

This is the ANN class that we will use in the image processing part of this thesis. 

1.3.2.2 Recurrent Neural Networks and Long Short-Term Memory. 

The ANN description at the outset considers a network that processes its inputs 
separately, consequently each network output is not affected from previous states. This 
behavior is effective for tasks where no prior data is needed, such as image recognition, 
but is less effective for tasks that require a sequence of data such as text prediction. For 
this reason, recurrent neural networks (RNNs) were introduced [12].  

Actually, what we are aiming for by using RNN is to give memory capability to our network. 
The way this is done is simple, the RNN is a neural network that has a loop, see Figure 
16. 

 

Figure 16: A recurrent network: a network with a loop [13] 

If we unfold a simple RNN over time, we get the sequence of Figure 17. As we can see, 
the network output ℎ𝑡 each time depends on the previous output ℎ𝑡−1 and the current 
observed state 𝑠𝑡 a behavior that allows our network to produce an output considering an 
arbitrary number of previous states. 

Although RNNs appear to be powerful in theory, they suffer from an inability to capture 
large dependencies due to two problems. Both are associated with error signals which as 
they flow backwards in time tend to either blow up or vanish. The first cases can cause 
weights to oscillate and for the second learning to bridge long time delays takes 
prohibitive time or doesn't work at all [14]. 
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One solution which counter the two problems defined above is the Long Short-Term 
Memory (LSTM) [14], a special RNN architecture capable of capturing long term time 
dependencies.  

 

Figure 17: A simple RNN, unrolled over time. 

The LSTM networks consist of several memory cells. The concept that enables the LSTM 
to address the problem of capturing long term time dependencies is that these memory 
cells have an internal recurrence (a self-loop), in addition to the outer recurrence of the 
RNN, and also use gates that learn to open or close depending on the observed state, 
the previous internal state (self-loop) and the output from the previous cell.  

A block diagram of an LSTM cell is given in Figure 18. Each of these cells connect 
recurrently to each other in a similar manner like figure 17. A description of the 
feedforward flow of the block diagram is given below. 

A regular artificial neuron unit computes the input feature, then its value is accumulated 
into the state provided that the sigmoidal input gate allows it. Then the state unit has a 
linear self-loop whose weight is controlled by the forget gate and the final output of the 
cell is controlled by the output gate. The gating units use a sigmoid nonlinear function like 
that in Figure 14 and the input unit can have any squashing nonlinearity.  

The equations describing the LSTM behavior are given below. For these equations we 

will use the notation from [15] where the input state is represented as 𝑥𝑖
(𝑡)

 ,the internal 

state as 𝑠𝑖
(𝑡)

 and the cell output as ℎ𝑖
(𝑡)

 (𝑡 represents the time step and 𝑖 the cell). 

The forget gate:  

𝑓𝑖
(𝑡)

= 𝜎 (𝑏𝑖
𝑓

+ ∑ 𝑈𝑖,𝑗
𝑓

 𝑥𝑗
(𝑡)

+

𝑗

∑ 𝑊𝑖,𝑗
𝑓

 ℎ𝑗
(𝑡−1)

𝑗

) (1.30) 

Where 𝑥𝑖
(𝑡)

 and ℎ𝑖
(𝑡)

 are the current input and the input from the previous cell respectively 

and the terms 𝑏𝑖
𝑓
, 𝑈𝑖

𝑓
 and 𝑊𝑖

𝑓
 are the biases and weights of the forget gate. 

The internal state update equation: 

𝑠𝑖
(𝑡)

= 𝑓𝑖
(𝑡)

𝑠𝑖
(𝑡−1)

+ 𝑔𝑖
(𝑡) (𝑏𝑖 + ∑ 𝑈𝑖,𝑗𝑥𝑗

(𝑡)

𝑗

+ ∑ 𝑊𝑖,𝑗ℎ𝑗
(𝑡−1)

𝑗

) (1.31) 
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Where 𝑏, 𝑈 and 𝑊 respectively denote the biases and weights in the LSTM cell. The 
external input gate is computed like the forget gate 

 

𝑔𝑖
(𝑡)

= 𝜎(𝑏𝑖
𝑔

+ ∑ 𝑈𝑖,𝑗
𝑔

 𝑥𝑗
(𝑡)

+𝑗 ∑ 𝑊𝑖,𝑗
𝑔

 ℎ𝑗
(𝑡−1)

𝑗 ) (1.32) 

The output gate equation: 

 

𝑞𝑖
(𝑡)

= 𝜎(𝑏𝑖
𝑜 + ∑ 𝑈𝑖,𝑗

𝑜  𝑥𝑗
(𝑡)

+𝑗 ∑ 𝑊𝑖,𝑗
𝑜  ℎ𝑗

(𝑡−1)
𝑗 ) (1.33) 

Where terms 𝑏𝑖
𝑜, 𝑈𝑖

𝑜 and 𝑊𝑖
𝑜 are the biases and weights of the output gate. 

The output equation of the LSTM: 

ℎ𝑖
(𝑡)

= tanh(𝑠𝑖
(𝑡)

) 𝑞𝑖
(𝑡) (1.34) 

we must keep in mind that if the internal state 𝑠𝑡 is used as an extra input for the gates of 
the LSTM, three additional parameters would be required.  

 

Figure 18: Block diagram of the LSTM memory cell. The inputs for the input, input gate, forget 

gate and the output gate are the output of the previous cell 𝒉𝒊
(𝒕)

 and the observed state 𝒙𝒊
(𝒕)

. The 

black square indicates a delay of a single time step [15] 

The error backpropagates through the same mechanism and the gates control the error 
flow in each cell.  

This network class is used to introduce the memory element in the ANN of this thesis. 
Memory is necessary when the state of the environment is not full observable by the 
agent. Further details will be given in the next paragraph. 

1.3.2.2.1 Partial observability and LSTM networks 

Until now we suppose that the state of the environment is fully observable from the agent 
we try to train, unfortunately this is not the case for most of the problems the RL algorithms 
try to solve, and this holds for the game of the thesis too. The ability to deal with such 
problems, came from the function approximation, this may seem odd although consider 
that the parameterized form of a function does not allow its output to depend on certain 
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aspects of the state, then it is just as if those aspects are not observed. In fact, all the 
theoretical results for methods using function approximation presented so far hold equally 
well in cases of partial observability [4]. Although, the problem is that approximation does 
not augment the state representation with memories of past observations. 

RNN and especially LSTM helps to deal with the problem of partial observability and past 
observations [16]. To explain how this is done, we need to introduce a different 
mathematical framework than the one we have been using so far. The framework is the 
Partially Observable Markov Decision Process (POMDP), POMDP recognizes that the 
observation the agent receives is a glimpse of the state, for this reason POMDP is 
described as a 6-tuple (𝑆, 𝐴, 𝑃, 𝑅, 𝛺, 𝑂) where the first four are the states, actions, 
transitions probability distributions, and rewards values already discussed, see paragraph 
1.2.2.2, and the other two refer to the observation that the agent sees 𝜊 ∈ 𝛺. A probability 

distribution generates the observation based on the environment state 𝑜 ∼ 𝑂(𝑠). A non-

recurrent ANN can produce good results only when the observation reflects the 
environment state, otherwise the approximate function, for example the value function 

may be inaccurate since 𝑢̂(𝑜, 𝑤) ≠ 𝑢̂(𝑠, 𝑤). The introduction of recurrency adds the 
memory element and helps narrowing the gap between 𝑜 and 𝑠 by expansion to 𝑢̂(𝑜, 𝑤) 
and 𝑢̂(𝑠, 𝑤), resulting in a better approximation of the functions we are interested in and 
better training algorithms in general. 

1.4 Challenges that Rogue-like games have 

Challenges refer to the difficulty an AI agent faces in learning how to play a Rogue-like 
game.  

The main challenge of the game is that it requires more time-extended planning 
strategies. How difficult this is for an AI agent can be seen through the poor performance 
of the deep Q-network (DQN) [1] algorithm in games such as Montezuma Revenge. The 
general problem that drives such behavior is the sparse rewards. The term means that 
the agent only receives reward signals after completing specific series of actions over 
extended periods of time. An example of extended time planning strategies a player 
should use for the thesis game, is the use of health potions, these items must be collected 
and then used after several time steps when the player's HP is low. The same applies to 
weapon items, each weapon must be evaluated, collected and after some step the 
benefits it offers can be visible to the player.  

Other challenge is the randomness of the game. Each game map is randomly generated, 
as is the generation of items and enemies. This results in a very large state space which 
means that an agent that generalizes and explores effectively is required. 

The graphics of this game are poor. This makes game entities less observable compared 
to the Atari 2600 games where the DQN algorithm [1] was tested.  

In addition to the screen where the map, items, enemies and the player are displayed, 
the game provides information to the player through game log, see paragraph 1.1.1.7 and 
the hero status 1.1.1.6. In order for the agent to observe the game as a human player, all 
of the above information must be entered into the agent network. 

Map and game entities are not fully visible to our hero, see paragraph 1.1.1.3.2. The same 
screen is given to the agent, so the game state used as input to the network is partially 
observable. 

All the above challenges make the rogue-like game a competitive task for RL algorithms. 
In this thesis we try to address these challenges using different techniques. The analysis 
of the approach to the problem will be given in the next chapter.
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2. Implementation 

2.1  Publications and related works that influenced the thesis 

Three publications were the main influence for the thesis, a brief presentation of the 
innovations they introduce are given below: 

“Human-level control through deep reinforcement learning” [1] is considered a 
pioneering work in the field of game-playing AI agents and has introduced a new RL deep 

Q-network (DQN) agent that can combine reinforcement learning with a class of artificial 
neural networks known as deep neural networks and manage to play classic Atari 2600 
games in human level.  

“Asynchronous Methods for Deep Reinforcement Learning” [17] the authors try to 
solve the same problem, although the innovation of this publication is the use of different 
instances of the RL algorithm, which train the same (global) network asynchronously, 
running on a multi-core central processing unit CPU. 

“Playing FPS Games with Deep Reinforcement Learning” [18] describes an RL 
algorithm built to play the game Doom a first-person shooter (FPS), a class of games 
more complex than Atari games due to the partial observability of the state and the 3D 
environment. The RL algorithm to handle this task, trains a model that performs two tasks 
simultaneously, recognizes the features the agent sees and takes actions based on a 
DQN, and also introduces the recurrence to the DQN using LSTM memory cells. 

Elements from the three publications are used in the model of this thesis, how this was 
done will be explained in the next paragraph. 

2.2 Algorithm used 

The RL algorithm used is a model-free asynchronous multi-threaded variant of an actor-
critic method, see paragraph 1.2.2.3.4.3.4. To be able to describe the algorithm we use, 
we need to define the following: 

The actor-critic method with parameterized functions: Specifically, the functions used 
and how the gradients of these function are calculated are described in paragraph 2.2.1.  

Optimizer: The optimization algorithm used for the weights-parameters update, see 
paragraph 2.2.2.  

Data correlation treatment: The method used to deal with the correlation of observed 
data when using on-policy RL algorithms, see paragraph 2.2.3. 

In the last subsection, a pseudocode for the algorithm used will be given along with a brief 
explanation of how it works. 

2.2.1 Parameterized functions and gradient calculation  

The parametrization of the algorithm is performed thru ANN, see paragraph 1.3.2. The 

parametrized functions used by the algorithm are the value function 𝑢̂(𝑠, 𝒘𝒄𝒓𝒊𝒕𝒊𝒄), the 

preference p(s, a, 𝐰𝐚𝐜𝐭𝐨𝐫) and policy function π(a|s, 𝐰𝐚𝐜𝐭𝐨𝐫) =
ep(s,a,𝐰𝐚𝐜𝐭𝐨𝐫)

Σbep(s,b,𝐰𝐚𝐜𝐭𝐨𝐫).  

The algorithm uses the n-step TD of the value function, see paragraph 1.2.2.3.5, to 
update the actor and the critic.  

For the critic part of the algorithm, which computes the state value function, we seek to 
minimize the mean squared error of the n-step TD value function, so a gradient descent 
method is used for the weights update and the equation for the gradient calculation is 
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𝑑𝒘𝒄𝒓𝒊𝒕𝒊𝒄 = −[(𝑅𝑡 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 … 𝛾𝑛𝑢̂(𝑠𝑡+𝑛 , 𝒘𝒄𝒓𝒊𝒕𝒊𝒄) −
𝑢̂(𝑠𝑡, 𝒘𝒄𝒓𝒊𝒕𝒊𝒄)]∇𝐰𝐜𝐫𝐢𝐭𝐢𝐜

𝑢̂(𝑠𝑡, 𝒘𝒄𝒓𝒊𝒕𝒊𝒄)                                                                                                        (2.1) 

Keep in mind that you calculate the semi-gradient, see paragraph 1.3.1.2.   

For the actor part of the algorithm, we use a gradient ascent method. Recall that we seek 
to increase the preference of the action that moves the agent to high-valued states. The 
equation used for the gradient of the actor part was derived from the REINFORCE family 
of algorithm [19] and especially the REINFORCE with a baseline [19]. The REINFORCE 
algorithm updates the weights with the equation ∇𝐰𝐚𝐜𝐭𝐨𝐫

ln 𝜋(𝑎𝑡|𝑠𝑡, 𝒘𝒂𝒄𝒕𝒐𝒓) 𝐺𝑡 ,with 𝐺𝑡 being 

the discounted rewards for an episode, like Monte Carlo methods 1.2.2.3.3. To reduce 
variance, the REINFORCE with a baseline subtracts the discounted rewards 𝐺𝑡 by an 

amount 𝑏𝑡(𝑠𝑡) which is called baseline. The actor-critic algorithm uses as a baseline the 

estimation for the value function 𝑢̂(𝑠𝑡+𝑛 , 𝒘𝒄𝒓𝒊𝒕𝒊𝒄) and the discounted reward 𝐺𝑡 of the n-

step TD algorithms, which is equal with 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 … 𝛾𝑛𝑢̂(𝑠𝑡+𝑛 , 𝒘𝒄𝒓𝒊𝒕𝒊𝒄) [4]. So, 
the equation for the gradient calculation of the actor part of the algorithm is 

𝑑𝒘𝒂𝒄𝒕𝒐𝒓 = [(𝑅𝑡 + 𝛾𝑅𝑡+1 + 𝛾2𝑅𝑡+2 … 𝛾𝑛𝑢̂(𝑠𝑡+𝑛 , 𝒘𝒄𝒓𝒊𝒕𝒊𝒄)

− 𝑢̂(𝑠𝑡 , 𝒘𝒄𝒓𝒊𝒕𝒊𝒄)]∇𝐰𝐚𝐜𝐭𝐨𝐫
𝑙𝑛𝜋̂(𝑠𝑡|𝑎𝑡, 𝒘𝒂𝒄𝒕𝒐𝒓))                                                            (2.2) 

We should mention that like [17] the entropy of the policy π is added to the above 
equation, in order to improve exploration and discourage premature convergence to 
suboptimal deterministic policies [20]. The equation for the entropy is 

𝐻(𝜋(∙ |𝑠𝑡; 𝒘𝒄𝒓𝒊𝒕𝒊𝒄)) =  − ∑ 𝜋(𝛼|𝑠𝑡, 𝒘𝒄𝒓𝒊𝒕𝒊𝒄)𝛼∈𝛢 ln 𝜋(𝛼|𝑠𝑡, 𝒘𝒄𝒓𝒊𝒕𝒊𝒄) (2.3)  

and the concluding equation for the gradient calculation of the actor part is 

 𝑑𝒘𝒂𝒄𝒕𝒐𝒓 = [(𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 … 𝛾𝑛𝑢̂(𝑠𝑡+𝑛 , 𝒘𝒄𝒓𝒊𝒕𝒊𝒄) −

𝑢̂(𝑠𝑡, 𝒘𝒄𝒓𝒊𝒕𝒊𝒄))]∇𝐰𝐚𝐜𝐭𝐨𝐫
𝑙𝑛𝜋(𝑠𝑡|𝑎𝑡 , 𝒘𝒂𝒄𝒕𝒐𝒓) + 𝛽∇𝐰𝐚𝐜𝐭𝐨𝐫

𝐻(𝜋(|𝑠𝑡; 𝒘𝒂𝒄𝒕𝒐𝒓)))                                    (2.4)  

The hyperparameter 𝛽 controls the strength of the entropy regularization term and for our 
case was set to 0.0001. 

Knowing the gradient of the functions we seek to optimize, it is the time to find the best 
method to apply those gradients to our model weights. We use the Adam optimization 
algorithm [21]. A brief introduction to the Adam algorithm is given in the next paragraph. 

2.2.2 Adam optimizer [21] 

The Adam optimizer is an efficient stochastic optimization method that requires only first-
order gradients. The name came from the term adaptive momentum estimation, which 
refers to the way the optimizer works. Specifically, the optimizer calculates individual 
adaptive learning rates for different parameters from estimates of the first and second 
moments of the gradients. The Adam optimizer was inspired from the AdaGrad [22] and 
RMSpro [23] combining benefits from both. From the first the ability to perform well with 
sparse gradients and from the second one the ability to work well in online and non-
stationary settings. A pseudocode of the Adam algorithm is given below. 

 

Implementation of Adam algorithm for a stochastic objective function 𝒇(𝒘)[21]  

Require: 𝛼: 𝑆𝑡𝑒𝑝𝑠𝑖𝑧𝑒 

Require: 𝛽1, 𝛽2 ∈ [0,1): Exponential decay rates for the moments estimates 

Require: 𝑓(𝑤): Stochastic objective function with parameters 𝑤 
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In our case the hyperparameters was set at 𝑎 = 0.00001, 𝛽1 = 0.9, 𝛽2 = 0.999 𝑎𝑛𝑑 𝜀 =
10−8. 

Many of the benefits offered by the Adam method are that the magnitudes of parameter 
updates are invariant to rescaling of the gradient, its step-sizes are approximately 
bounded by the step-size hyperparameter, it does not require a stationary objective, it 
works with sparse gradients, and it naturally performs a form of step size annealing [21]. 

We can apply the Adam optimization combined with the actor-critic algorithm to train our 
agent to play the thesis game. Although first we must consider a problem that arises for 
RL algorithms, which is the correlation of the data (states) observed by the agent. An 
explanation of the strategy introduced, in this thesis, to deal with the correlation problem 
will be given below. 

2.2.3 Data correlation and asynchronous methods for deep reinforcement 
learning 

The problem with correlating observed data is overfitting and instability. Instability can be 

caused also due to the reason that small updates to policy function 𝜋(𝑎𝑡|𝑠𝑡, 𝒘𝒂𝒄𝒕𝒐𝒓) may 
significantly change the policy and therefore change the data distribution. In order to 
address these problems, the work in [1] introduces experience replay memory. The idea 
is simple, the observed states are stored in a buffer, and then random batches from that 
buffer are used to train the network, resulting in decorrelated updates. Although this 
method is restricted to the off-policy RL algorithms, our current parameters are different 
to those used to generate the sample, like the Q-learning method, see paragraph 
1.2.2.3.4.3.1.  

For this reason, in order to use on-policy RL method like the policy gradient algorithm and 
especially the actor-critic and benefit from the advantage they offer, see paragraph 
1.2.2.3.4.3.4, a different approach must be taken.  

The approach taken for this thesis is similar with [17]. Where instead of the experience 
replay memory method, multiple agents run different instances of the game in parallel, 

Require: 𝑤0: initial parameter vector 

 𝑚0 ← 0(Initialize 1st moment vector) 

 𝑢0 ← 0 (Initialize 2nd moment vector) 

 𝑡 ← 0 (Initialize timestep) 

 While 𝑤𝑡not converged do 

  𝑡 ← 𝑡 + 1 

  𝑔𝑡 ← ∇𝑤𝑓𝑡(𝑤𝑡−1) (Get gradients w.r.t. stochastic objective at timestep t) 

  𝑚𝑡 ← 𝛽1 ∙ 𝑚𝑡−1 + (1 − 𝛽1) ∙ 𝑔𝑡 (Update biased first moment estimate) 

  𝑢𝑡 ← 𝛽2 ∙ 𝑢𝑡−1 + (1 − 𝛽2) ∙ 𝑔𝑡
2 (Update biased second raw moment estimate) 

𝑚̂𝑡 ← mt/(1 − 𝛽1
𝑡) (Compute bias-corrected first moment estimate, 𝛽1

𝑡 
denotes 𝛽1 to the power 𝑡) 

  𝑢̂𝑡 ← ut/(1 − 𝛽2
𝑡) (Compute bias-corrected second raw moment 

estimate, 𝛽2
𝑡 denotes 𝛽2 to the power 𝑡) 

  𝑤𝑡 ← 𝑤𝑡−1 − 𝛼 ∙ 𝑚̂𝑡/(√𝑢̂𝑡 + 𝜀)(Update parameters) 

 end while 

 return 𝑤𝑡(Resulting parameters) 
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resulting in uncorrelated observed data. Agents running on the same machine make it 
possible to perform updates like Hogwild! [24], where updates are performed 
asynchronously and without locks. Although this seems wrong, different agents can 
overwrite each other's updates, in practice, due to the sparsity of updates relative to the 
number of parameters of an ANN, correct updating of ANN parameters is possible. We 
should mention that a form of periodic update is used, like the case of [17] for better 
results, the way it is performed will be explained in the next subparagraph. 

We must mention that the Adam optimizer, see paragraph 2.2.2, is used with shared 
statistics like the RMSpro optimizer used in [17]. Vectors 𝑚𝑡 and 𝑢𝑡 are shared among 
threads and are updated asynchronously and without locking. The shared version of 
optimizer was chosen because of its robustness [17]. Also, sharing statistics among 
threads reduces memory requirements by using one fewer copy of the parameter vector 
per thread.  

Except the benefit of uncorrelation of the observed data the actor-critic of this thesis runs 
on a general-purpose CPU instead of a specialized hardware like GPU.  

In the next subparagraph, an explanation of how the algorithm is implemented will be 
given, and a pseudocode of the algorithm will be included.  

2.2.4 Algorithm explanation and its pseudocode  

The algorithm is similar to the asynchronous advantage actor-critic (A3C) [17] and works 
in the forward view. Specifically, the agent selects actions using a policy π(a|s, 𝐰𝐚𝐜𝐭𝐨𝐫) for 

𝑡𝑚𝑎𝑥 steps or until the end of an episode. At the same time calculates the value for each 
state observed 𝑢̂(𝑠, 𝒘𝒄𝒓𝒊𝒕𝒊𝒄) and collect the rewards 𝑅𝑡. Then uses the rewards and the 

value of the states to calculate the n-step discounted reward for each state 𝐺𝑡 = 𝑅𝑡+1 +
𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 … 𝛾𝑛𝑢̂(𝑠𝑡+𝑛 , 𝒘𝒄𝒓𝒊𝒕𝒊𝒄). Keep in mind that, for the last steps in the sequence 

where the n-step discounted rewards cannot be calculated the discounted rewards 𝐺𝑡 for 
the largest available number of steps is used. Then the gradients for the actor part and 
the gradients for the critic part for each state are calculated using the equations of the 
subparagraph 2.2.1. The accumulated gradients are applied in a single step.  

The updates the agents perform have a kind of periodicity. To achieve this a local and a 
global model are used. Each agent has its local model. The local model is synchronized 
with the global model, which is unique and is the one we actually seek to train, at the start 
of training, after 𝑡𝑚𝑎𝑥 or at the end of an episode. During training each agent uses its local 
model, which is an asynchronous copy of the global model, and computes gradients 
based on the outputs of the local model. The gradients are accumulated and then used 
to update the global model. 

A pseudocode of the algorithm for each agent is given below. 

  

Asynchronous advantage actor-critic - pseudocode for each actor-learner 

thread 

// Assume global shared parameter vectors 𝑤𝑎𝑐𝑡𝑜𝑟  and 𝑤𝑐𝑟𝑖𝑡𝑖𝑐  and global shared 

counter 𝑇 =  0 

// Assume thread-specific parameter vectors 𝑤𝑎𝑐𝑡𝑜𝑟
′ and 𝑤𝑐𝑟𝑖𝑡𝑖𝑐

′     

Initialize thread step counter 𝑡 ←  1    

Set 𝑛 number of steps to calculate the n-step discounted reward  
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Repeat 

 Reset gradients: 𝑑𝑤𝑎𝑐𝑡𝑜𝑟 ← 0 and 𝑑𝑤𝑐𝑟𝑖𝑡𝑖𝑐 ← 0 

 Synchronize thread-specific parameters 𝑤𝑎𝑐𝑡𝑜𝑟
′ =  𝑤𝑎𝑐𝑡𝑜𝑟 and 𝑤𝑐𝑟𝑖𝑡𝑖𝑐

′ =  𝑤𝑐𝑟𝑖𝑡𝑖𝑐  

 𝑡𝑠𝑡𝑎𝑟𝑡 = 𝑡 

 Get state 𝑠𝑡 

 Repeat  

  Perform 𝑎𝑡 according to policy 𝜋(𝑎𝑡|𝑠𝑡 , 𝑤𝑎𝑐𝑡𝑜𝑟
′ ) 

  Estimate the value function 𝑢̂(𝑠𝑡 , 𝑤𝑐𝑟𝑖𝑡𝑖𝑐
′ )   

  Receive reward 𝑟𝑡 and new state 𝑠𝑡+1 

  𝑡 ← 𝑡 + 1 

  𝑇 ← 𝑇 + 1 

 Until terminal 𝑠𝑡 or 𝑡 − 𝑡𝑠𝑡𝑎𝑟𝑡 == 𝑡𝑚𝑎𝑥 

 If 𝑠𝑡 is terminal: 

  𝑢̂(𝑠𝑡, 𝒘𝒄𝒓𝒊𝒕𝒊𝒄) = 0 

 For 𝑖 ∈ {𝑡𝑠𝑡𝑎𝑟𝑡 , … . , 𝑡 − 1} do  

  If 𝑖 + 𝑛 < 𝑡𝑠𝑡𝑎𝑟𝑡 + 𝑡𝑚𝑎𝑥 do 

   𝑝𝑜𝑤𝑒𝑟 = 0 

   𝐺𝑖 = 0 

   For 𝑧 ∈ {𝑖 … 𝑖 + 𝑛}do 

    𝐺𝑖 ← 𝐺𝑖 +  𝛾𝑝𝑜𝑤𝑒𝑟𝑟𝑧 

    𝑝𝑜𝑤𝑒𝑟 ← 𝑝𝑜𝑤𝑒𝑟 + 1 

   End for 

   𝐺𝑖 ← 𝐺𝑖 + 𝛾𝑛𝑢̂(𝑠𝑖+𝑛 , 𝑤𝑐𝑟𝑖𝑡𝑖𝑐) 

  If 𝑖 + 𝑛 ≥ 𝑡𝑠𝑡𝑎𝑟𝑡 + 𝑡𝑚𝑎𝑥 do 

   𝑝𝑜𝑤𝑒𝑟 = 0 

   𝐺𝑖 = 0 

For 𝑧 ∈ {𝑖 … 𝑡 − 1}do 

    𝐺𝑖 ← 𝐺𝑖 +  𝛾𝑝𝑜𝑤𝑒𝑟𝑟𝑧 

    𝑝𝑜𝑤𝑒𝑟 ← 𝑝𝑜𝑤𝑒𝑟 + 1 

   End for 

   𝐺𝑖 ← 𝐺𝑖 + 𝛾𝑝𝑜𝑤𝑒𝑟 𝑢̂(𝑠𝑡, 𝑤𝑐𝑟𝑖𝑡𝑖𝑐) 

 End for 

 For 𝑖 ∈ {𝑡𝑠𝑡𝑎𝑟𝑡 , … . , 𝑡 − 1} do  
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In our case, the algorithm uses a 𝑛 equal with four and a 𝑡𝑚𝑎𝑥 equal with eight. Thus, 
agents perform eight actions and then perform seven updates, four of which are four-
step, one three-step, one two-step, and one one-step. 

The parameters that define the way the algorithm perform the update, like 𝑛 and 𝑡𝑚𝑎𝑥 are 
called hyperparameters. All the hyperparameters used in the thesis algorithm can be 
found on “APPENDIX I: Hyperparameters I: Hyperparameters”. 

We are using two separate model for the actor and the critic. The architecture of the 
network is given in the next paragraph.  

2.3 Network architecture and inputs 

For the parametrization of the functions, see paragraph 1.3 and 2.2.1, we will use ANNs, 
par 1.3.2. The type of the ANNs we will use depends on the inputs we want our agent to 

see. These inputs are the state of the environment 𝑠𝑡 used on the algorithm described in 
the previous paragraph.  

As we mention in the first chapter the game of the thesis provides to the player three type 
of information, the screen which depicts the environment of the game (see paragraph 
1.1.1.2), the hero status (see paragraph 1.1.1.6) and the game log (see paragraph 
1.1.1.7). Because of the importance of all this information for a human to play the game, 
it was decided to use all of them as input to our network. Although the different nature of 
the information and its size, especially the image size, requires the preprocessing of the 
inputs. 

2.3.1 Input preprocessing 

The screen of the game has been rescaled by a factor of three. So, for a 444x444 screen 
the input will be a 148x148 screen. The same applies to the display of tiles, items, 
enemies and the player, for example an item that on the initial screen is displayed as a 
3×3 square will now be a 1×1 square. An RGB channel is used to color each pixel. RGB 
channel values are in the range [0, 255]. This is not ideal for a neural network. we 
generally seek to keep input values small. For this reason, we rescale the values to be 
between zero and one dividing the channel values with the maximum value (255). The 
resulting screen used as an input to our network is an array with dimension of 148×148×3 
and values between zero and one.  

The status of the hero, see paragraph 1.1.1.6 is represented by a vector of eight values. 
The values give information regarding the hero including the weapon, the HPs, the 
maxHPs, the strength, the damage, the potions e.t.c. All the values are rescaled between 
zero and one dividing each value with its maximum. For example, the hero's current level 
is divided by five which is the maximum level the player can reach.  

  Accumulate gradients wrt 𝑤𝑎𝑐𝑡𝑜𝑟
′ : 𝑑𝑤𝑎𝑐𝑡𝑜𝑟 ←  𝑑𝑤𝑎𝑐𝑡𝑜𝑟 +

𝐺𝑖∇wactor
𝑙𝑛𝜋(𝑎𝑖|𝑠𝑖, 𝑤𝑎𝑐𝑡𝑜𝑟

′ ) + 𝛽∇wactor
𝐻(𝜋(𝑎𝑖|𝑠𝑖 , 𝑤𝑎𝑐𝑡𝑜𝑟

′ )))   

  Accumulate gradient wrt 𝑤𝑐𝑟𝑖𝑡𝑖𝑐
′ : 𝑑𝑤𝑐𝑟𝑖𝑡𝑖𝑐 ← 𝑑𝑤𝑐𝑟𝑖𝑡𝑖𝑐 − [𝐺𝑖 −

𝑢̂(𝑠𝑖 , 𝑤𝑐𝑟𝑖𝑡𝑖𝑐
′ )]∇𝐰𝐜𝐫𝐢𝐭𝐢𝐜

′ 𝑢̂(𝑠𝑖, 𝑤𝑐𝑟𝑖𝑡𝑖𝑐
′ ) 

 End for 

 Perform asynchronous update of 𝑤𝑎𝑐𝑡𝑜𝑟  using 𝑑𝑤𝑎𝑐𝑡𝑜𝑟  and of 𝑤𝑐𝑟𝑖𝑡𝑖𝑐  using 

𝑑𝑤𝑐𝑟𝑖𝑡𝑖𝑐  

Until 𝑇 > 𝑇𝑚𝑎𝑥  
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The game log contains the text messages of the game, see paragraph 1.1.1.7. To be able 
to use the information, the words were coded into numbers. The coding was very simple, 
each word in the game was mapped to an integer. The numbers are then entered into a 
5×25 table. Where the first dimension represents the rows of the game log and the second 
dimension the maximum words a message can have. When the words of a message are 
less than 25, the remaining values are set to zero. Values are rescaled again by dividing 
the integer representing a word by the maximum integer value used during encoding. 
Finally, the array reshaped into a vector of 125 values which is the input to our network. 
This coding was chosen to keep the ANN dimensionality low, reducing at the same time 
the textual input sensitivity, since using, for example, a one hot encoding for each word 
would result in more complex networks. 

2.3.2 Network architecture 

Two independent networks are used, one for the actor and one for the critic. The networks 
differ only on their output part. For this reason, we will present the common part and then 
the output part for each network. 

Common part: Each input, see paragraph 2.3.1, is processed separately. First, we will 
describe the network used for the image processing. It is a CNN and has a similar 
structure to the network presented in paragraph. 1.3.2.1. Although our network does not 
have the subsampling layers, remember that subsampling is used to reduce spatial 
sensitivity of a CNN, which we do not want for an agent playing our game, for example 
the position of an enemy is an essential information for the agent. So, the concluding 
CNN is composed of three convolutional hidden layers, the first takes as input the 
preprocessed image of shape 148×148×3 and convolves it using 32 filters of 4×4 with 
stride 1 and applies a rectifier nonlinearity ReLU (Figure 14). The second hidden layer 
convolves 16 filters of 5×5 with stride 2, again followed by a ReLU. This is followed by a 
third convolutional layer that convolves 8 filters of 11×11 with stride 2 followed by a ReLU. 
The output is flattened and then is fed to a LSTM network, see paragraph 1.3.2.2. The 
output of the LSTM is a vector of 256 values.  

The hero status input, an eight-value vector, is fed directly to an LSTM network which 
output a vector of 64 values.  

The part of the network for the game log input, a vector of 125 values, works similar with 
the hero status network part and consists of a LSTM network with an output vector of 128 
values.  

The three LSTM networks outputs are combined to create a vector of 448 values, which 
in turn is fully connected to a linear network. This is the point where the actor and the 
critic networks differ.  

Actor linear network output: The network has 9 units (neurons) one for each game 

action. The output of these units is used in a softmax equation (𝑥𝑖) =
exp (𝑥𝑖)

∑ exp (𝑥𝑖)𝑗
 and the 

action probability distribution is generated from the result.  

Critic linear network output: The network has a unit (neuron) that takes the 448 input 
values and generates a single value, which is the output of the value function we are 
trying to approximate. 

A block diagram of the two networks is given in “APPENDIX II: Networks Block Diagram”. 
The Netron application https://github.com/lutzroeder/netron was used for the 
visualization.  

https://github.com/lutzroeder/netron
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2.4 Reward Signal 

Rewards are the only input to our network that drives training. For this reason, careful 
planning is needed. In our case the goal of the agent is to find the stairs leading to the 
next cave and successively to the ring of the wizard werdna. During this process the agent 
must learn to explore a randomly generated environment, collect and use items and face 
enemies. For this reason, a subgoal reward system was used. For example, a positive 
reward is given when a new area is explored and a negative one when the agent moves 
towards a wall. This behavior, although not directly related to entering the new cave, we 
don't wait for the agent to find the stair tile and then give them a reward, it intends to lead 
the agent to explore the environment and consequently find the cave entrance. The 
reward system used is given in the following table.  

Table 5:The reward system used to train the agent  

Reward Condition Reward 

New area is discovered 20 

The agent moves to already explored area 1 

The agent moves towards a wall area -1 

The stair tile is visible when the agent moves  20 

The agent enters a new cave or finds Werdna's 

ring. 
500 

A potion item is collected 100 

The agent uses a potion and gain 20 HP 100 

The agent has no potion and is trying to use one. -0.1 

A weapon is picked by the agent 100 

The agent tries to pick a weapon when none is 
stored on the tile. 

-0.1 

The agent rests and gains 4 HP 10 

The agent rests and gains 0 HP -0.1 

The agent attacks an enemy. 10 

An enemy is killed by the agent 100 

An enemy attacks the hero -1 

The agent attacks when no enemy is near him -0.1 

The HP of the hero increased 10 
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All rewards are added after each agent action. For example, if the agent moves and 

explores new territory and at the same time is attacked by an enemy, then the two rewards 
are added, and the resulting reward is equal to 19. 

2.5 Trying to deal with the challenges of a Roguelike game 

Rogue-like games have many challenges for an RL agent, a discussion of these 
challenges, and especially those of the thesis game, can be found in paragraph 1.4. In 
this paragraph we will present the methods used to address these challenges. 

Sparse rewards and time-extended planning strategies: We attempt to address this 
problem by rewarding the agent for achieving subgoals that, if the agent completes, will 
lead to the fulfillment of the overall goal. 

Randomness of the game and huge state space: The game, unlike many other games, 
is not deterministic. The map, items and enemies are randomly generated. For this 
reason, the state space is huge. To deal with this problem we set a relatively small 
learning rate (0.00001) to avoid converging to a false local optimum and in addition we 
use three methods. First, policy entropy is added to actor losses, see paragraph 2.2.1, 
aiding exploration, and second, we use multiple asynchronous agents , see paragraph 
2.2.3, to prevent data correlation and hence overfitting. Finally, again the reward signal is 
shaped into a form capable of aiding exploration of the environment. These choices help 
the agent to visit the state space of the game as much as possible. 

Low level graphics: Because of this problem we use CNN layers differently from DQN 
[1]. We use a first layer with a 4×4 filter shape, we do this because the game tiles where 
all game entities are located are the same size and our goal is to map all different game 
entities as features of the first convolutional layer. We then use two larger filters one with 
a 5×5 shape and one with an 11×11 shape to find more complex features. 

Information other than the game screen: The game gives valuable information to the 
player through game log and hero status. We use the information as different inputs, from 
the game screen to our network and after some processing we combine it with the screen 
for the output, for details see paragraph 2.3. 

Partial observability: The agent sees only a part of the game state. For this reason, we 
try to close the gap between the agent observation and the environment state by using 
the LSTM network and thereby adding memory to our agent, see paragraph 1.3.2.2.1. In 
agent training we use the last eight observations as input sequence to the LSTM network. 
For this reason, training starts after 16 steps from the beginning of each episode, 8 steps 
until the first sequence of observations is ready, and 8 steps until the first training batch 
is ready. 

2.6 Code used in the thesis 

The Python programing language is used for the game of the thesis and for training the 
agent. The game code can be found on GitHub https://github.com/IliasSim/Wizard-
Werdna-Ring-Adventure-game-only and the code for the networks, agent and its training 
can be found in “APPENDIX III: Agent training code”. The code for the Adam optimizer 
par.2.2.2 with shared statistics, see paragraph 2.2.3 can be found on GitHub 
https://github.com/ikostrikov/pytorch-a3c/blob/master/my_optim.py from a PyTorch 
implementation of the code used in [17]. 

The framework used to train the agent is PyTorch "An open source machine learning 
framework that accelerates the path from research prototyping to production 
development" An attempt was made to use the other most popular platform, Tensorflow, 

https://github.com/IliasSim/Wizard-Werdna-Ring-Adventure-game-only
https://github.com/IliasSim/Wizard-Werdna-Ring-Adventure-game-only
https://github.com/ikostrikov/pytorch-a3c/blob/master/my_optim.py
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although PyTorch is easier to implement for asynchronous training methods, it includes 
a module dedicated to multiprocessing, and for this reason it was chosen.  
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3. Results 

The network described in paragraph 2.3 was trained using the algorithm described in 
paragraph 2.2 and the reward signal in paragraph 2.4. The CPU used during training was 
an Intel(R) Core (TM) i7-7700HQ CPU @ 2.80GHz with 4 cores and 8 logical processors. 
The type of the hero during the training was the warrior and the training was performed 
for about four thousand (4000) episodes, which corresponds to about seven million steps 
(7M) and roughly to nine hundred thousand (900) updates. A typical computer screen 
during the training is depicted in Figure 19 

 

Figure 19: Typical computer screen during training  

Training results in the agent accumulating more average rewards per episode compared 
to an agent acting randomly. The progress is depicted at Figure 20 

 

Figure 20: The blue line indicates the average episode rewards achieved during the agent training, 
and the red depicts the average episode rewards of an agent acting randomly for one thousand 

(1K) episodes. 
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Where the blue line shows the average episode rewards achieved during agent training 
and the red line depicts the average episode rewards achieved by an agent acting 
randomly over one thousand (1K) episodes. 

As we can see, the agent successfully learns to gradually accumulate more rewards. 
Although we must keep in mind that these rewards come from a system created to help 
train the agent and are not a scoring system that characterizes the agent's success in the 
game. For this reason, we need to evaluate the training of the agent through its behavior 
and its ability to reach the final goal of the game which is the entrance to the next cave.  

Results in this scope are mixed, with the agent certainly achieving some good behavior 
while some other goals are not. Specifically, the agent learns to react to enemy attacks 
and as a result survives longer during a game episode. For example, the next figures will 
describe the behavior of the agent when facing enemies, each figure caption will give the 
probability that an action is chosen, as well as the action the agent ultimately chooses. 

 
Probabilities for the next hero action are [moves up:0.1998, 

moves right:0.1645, moves down 0.2082, moves left 0.2199, 

rests 0.0522, uses hp potion 0.0012, uses mp potion 

0.0004, attacks 0.1535, picks a weapon 0.0004], next action 

of the hero is down 

 
Probabilities for the next hero action are [moves up:0.1977, 

moves right:0.1711, moves down 0.2064, moves left 0.2236, 

rests 0.0485, uses hp potion 0.0011, uses mp potion 0.0003, 

attacks 0.1509, picks a weapon 0.0004], next action of the 

hero is down 

 
Probabilities for the next hero action are [moves up:0.1299, 

moves right:0.0996, moves down 0.1199, moves left 0.1334, 

rests 0.0682, uses hp potion 0.0006, uses mp potion 

0.0002, attacks 0.4480, picks a weapon 0.0002], next action 

of the hero is attack 

 
Probabilities for the next hero action are [moves up:0.0853, 

moves right:0.0596, moves down 0.0739, moves left 0.0812, 

rests 0.0801, uses hp potion 0.0005, uses mp potion 0.0001, 

attacks 0.6193, picks a weapon 0.0001], next action of the 

hero is attack 

Figure 21:Sequence of events when the agent faces an enemy 
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During the sequence of events, the agent senses the presence of an enemy then tries to 
attack and kill that enemy. In the next series of figures, we will see how the agent tries to 
recover from the battle. 

 
Probabilities for the next hero action are [moves up:0.0309, 

moves right:0.0173, moves down 0.0258, moves left 0.0277, 

rests 0.4071, uses hp potion 0.0009, uses mp potion 0.0001, 

attacks 0.4898, picks a weapon 0.0002], next action of the 

hero is attack 

 
Probabilities for the next hero action are [moves up:0.0401, 

moves right:0.0253, moves down 0.0383, moves left 0.0399, 

rests 0.6155, uses hp potion 0.0022, uses mp potion 0.0004, 

attacks 0.2378, picks a weapon 0.0005], next action of the 

hero is rest 

Figure 22:Agent recovers after the encounter with the enemy. 

The agent also manages to have a good general orientation about which direction to 
move in order to fully explore the map, in the next series of figures different game starts 
are used to show the correct general orientation of the agent during exploration. 

 
probabilities for the next hero action are [moves up:0.3500, 

moves right:0.2862, moves down 0.1841, moves left 0.1724, 

rests 0.0003, uses hp potion 0.0005, uses mp potion 0.0002, 

attacks 0.0062, picks a weapon 0.0001] next action of the 

hero is down 

 
probabilities for the next hero action are [moves up:0.2259, 

moves right:0.1878, moves down 0.3117, moves left 0.2640, 

rests 0.0007, uses hp potion 0.0006, uses mp potion 0.0003, 

attacks 0.0089, picks a weapon 0.0002] next action of the 

hero is left  

Figure 23: General orientation of the agent during exploration. 
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One of the things the agent failed to learn is how to properly use the health potion. The 
agent seems to prefer the rest function instead. This is due to the problem of sparse 
rewards, see paragraph 1.4, because it is easier for the agent to understand the 
immediate rewards given by the rest action than the longer-delayed rewards from the 
health potions, even if the health potions rewards are significantly larger. 

Another area where the agent failed to develop the right strategy is acquiring weapons, 
again the problem of sparse rewards seems to be the main reason. The agent did not 
understand how acquiring a weapon in the present would benefit the future, either in the 
ability to kill enemies more easily or in the ability to withstand enemy attacks.  

In general, the agent seems to learn how to survive and kill enemies and do some basic 
map exploration. Although the agent failed to effectively achieve the ultimate goal of the 
game, which is to enter the next cave. As we can see in Figure 24, the agent managed 
to enter the next cave and to explore a large part of the map and in the meantime kill 
many enemies, notice the level of the hero, on the other hand the agent was stuck in 
parts of the map unable to understand that more rewards can be collected by re-crossing 
the already discovered part of the map and exploring new areas, where the entrance to 
the next cave is located. This problem occurs again due to sparse rewards, although one 
more challenge is added. The challenge is the randomness of the game, each time the 
game map is generated is different and the location of the entrance to the next cave is 
unknown, so the agent cannot memorize a specific pattern of how to find the next cave 
entrance and it is necessary to explore each cave to find it. This leads to an agent unable 
to link the exploration with the final goal, which is the stair type tile, see paragraph 1.1.1.2.  

 
The agent after 5380 moves has explore the most part of the 

map and manage to reach level 3. 

 
The agent after 9669 steps is stuck in the same area and 

cannot conclude that traversing the already discovered 
areas of the map will lead to more rewards and the stair to 
the next cave. 

Figure 24: The exploration problem faced by the agent
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4. Conclusions  

Most of the techniques, used in training the thesis agent, are well-proven. For example, 
CNNs are able to capture images and extract features from them [1],[11], LSTM can help 
in closing the gap between agent observation and game state [16],[18], asynchronous 
parallel training can deal with data correlation and speed-up training [17], and the Adam 
optimizer has the ability to perform well with sparse gradients and to work well in online 
and non-stationary settings [21]. Although, the challenges presented by the game of the 
thesis (par. 1.4) create a more challenging environment than those for which the 
aforementioned techniques have been used to demonstrate an RL agent capable of 
playing video games at human level.  

In particular, the two challenges that increase the difficulty are the sparse rewards and 
the randomness of the game (see paragraph 1.4), which in turn creates a huge state 
space. As a result, the agent must learn to effectively explore the game environment and 
devise extended time strategies. In order to achieve this, three tools were used, the 
entropy (see paragraph 2.2.1), the small learning rate (see paragraph 2.5) and the 
rewards signal shaping (see paragraph 2.5). The process of tuning the reward signal 
proved to be a difficult task, requiring many trials, where small changes lead to very 
different results. For example, when the rewards used did not include punishment for 
pointless actions, like attacking without the presence of an enemy, led to an agent that 
explored less and stuck to specific actions. Similarly, when the punishment for moving 
toward a wall was equal to the punishment for taking pointless actions, the agent moved 
aimlessly near walls and was reluctant to move away from them. Thus, the rewards 
system described in paragraph 2.4 is a result of many tests and although is not perfect 
creates the agent with the most promising behavior. 

Another important factor determining the behavior of the agent, was the inputs to the 
network. When games log (see paragraph 1.1.1.7) and hero status (see paragraph 
1.1.1.6) were not included as network inputs, the agent failed to detect changes in the 
game state, such as hit point reduction, and react accordingly. For this reason, the use of 
this information was critical to the performance of the agent presented in this thesis. 

The performance of the agent trained for this thesis has mixed results. The agent was 
able to learn how to survive on a game by attacking enemies and recovering lost hit 
points. Although, the agent fails to learn how to implement extended strategies (see 
paragraph 1.4) regarding the correct usage of items and the proper exploration of the 
game maps. This behavior exposes the limitation of the techniques used in this thesis. 
Simple optimization techniques like the one used in [1] can, with enough computational 
ability, solve naïve problems like some of the ATARI 2600 games. This problem arises 
for tasks that requires more extended time strategies like the game of the thesis and the 
Montezuma’s Revenge, an ATARI game famously difficult for deep reinforcement 
learning methods.  

Probably the efforts made to solve Montezuma’s Revenge can be the solution for the ring 
of the Wizard Werdna game. In particular, two recent publications use advanced 
exploration techniques to perform well in Montezuma's Revenge. The first [25] introduce 
bootstrapped DQN, a simple algorithm that explores in a computationally and statistically 
efficient manner through use of randomized value functions. The second [26] uses 
random network distillation (RND) as an exploration bonus for deep reinforcement 
learning methods. The bonus is the error of a neural network predicting features of the 
observations given by a fixed randomly initialized neural network. 
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A future effort for creating an agent capable of playing the ring of the Wizard Werdna 
game effectively, should consider the use of these two advanced exploration techniques 
described above.   
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APPENDIX I: Hyperparameters 

List of hyperparameters and their values. 

Hyperparameter Value Description 

Training Batch 8 The number of training case over which the update is 

performed 

History length 8 Number of consecutive states used as input to the 

LSTM network. 

Discount factor 0.99 Discount factor 𝛾 used in the calculation of the 

discounted reward 𝐺𝑡 

Update frequency 8 The number of actions selected by the agent between 
successive updates. 

𝑛-step 4 The maximum number of consecutive rewards used for 

the calculation of the discounted reward 𝐺𝑡 

Entropy 

regularization 𝛽 
0.0001 The parameter controls the amount of entropy 

𝐻(𝜋(∙ |𝑠𝑡; 𝒘𝒄𝒓𝒊𝒕𝒊𝒄)) added at the policy losses. 

Learning rate 𝛼 0.00001 The learning rate used by the Adam optimizer 

Exponential decay 

rate 𝛽1 
0.9 The coefficient which controls the moving average of 

the gradient 𝑚𝑡 used by the Adam optimizer 

Exponential decay 

rate 𝛽2 

0.999 The coefficient which controls the moving average of 

the squared gradient 𝑢𝑡 used by the Adam optimizer 

Epsilon 𝜀 10-8   Τerm added to the denominator of the Adam update 

equation to improve numerical stability. 
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APPENDIX II: Networks Block Diagram 

Actor network block diagram
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Critic network block diagram 
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APPENDIX III: Agent training code 

import torch.cuda 

import torch.nn.functional as F 

from torch import nn 

import torch.multiprocessing as mp 

from GamePAI import GamePAI  

import my_optim 

import sys 

import pygame 

import numpy as np 

import pandas as pd 

from os.path import exists 

 

featuresCNN1 = 32 

CNN1Shape = 4 

CNN1Step = 1 

featuresCNN2 = 16 

CNN2Shape = 5 

CNN2Step = 2 

featuresCNN3 = 8 

CNN3Shape = 11 

CNN3Step = 2 

denseLayerN = 256 

denseLayerNL_21 = 64 

denseLayerNL_31 = 128 

action_number = 9 

h_step = 8 

n_step = 4 

batch = 8 

screenfactor = 1 

decay_steps = 10000 

seeded = False 

input = (148,148,3) 

record = False 

torch_g = True 

dir = 'D:\ekpa\diplomatiki\old_versions\Wizard-Werdna-Ring-Adventure-Problem-

fixed-float-instead-integer-for-playerstatus-and-game-text-also-better-approach-

for-the-LSTM-usage\playerActorLSTM_23_8_22_1_a3c_11' 

input1 = (1, 1, 148, 148, 3) 

input2 = (1,1,8) 

input3 = (1,1,125) 

 

class actor(nn.Module): 

    '''This class creates the model of the actor part of the reiforcment learning 

algorithm''' 

    def __init__(self): 

        super(actor,self).__init__() 

        self.cnn1 = nn.Conv2d(3,featuresCNN1,CNN1Shape,stride=CNN1Step) 
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        self.cnn2 = 

nn.Conv2d(featuresCNN1,featuresCNN2,CNN2Shape,stride=CNN2Step) 

        self.cnn3 = 

nn.Conv2d(featuresCNN2,featuresCNN3,CNN3Shape,stride=CNN3Step) 

        self.lstmCnn = nn.LSTM(7688,denseLayerN,batch_first=True) 

        self.lstmStatus = nn.LSTM(8,denseLayerNL_21,batch_first=True) 

        self.lstmText = nn.LSTM(125,denseLayerNL_31,batch_first=True) 

        self.act_prob = 

nn.Linear(denseLayerN+denseLayerNL_21+denseLayerNL_31,action_number) 

     

    def forward(self,input1,input2,input3,hiddenCnn = None,hiddenl1 = 

None,hiddenl2 = None): 

        batch_size, timesteps, C, H, W = input1.size() 

        c1_in = input1.view(batch_size * timesteps, C, H, W) 

        x = self.cnn1(c1_in) 

        c2_in = F.relu(x) 

        c3_in = F.relu(self.cnn2(c2_in)) 

        c_out = F.relu(self.cnn3(c3_in)) 

        lstmCnn_in = c_out.view(batch_size, timesteps, -1) 

        if hiddenCnn is not None: 

            lstmCnn_out, hiddenCnn_out = self.lstmCnn(lstmCnn_in, hiddenCnn) 

        else: 

            lstmCnn_out, hiddenCnn_out = self.lstmCnn(lstmCnn_in) 

        if hiddenl1 is not None: 

            lstml1_out, hiddenl1_out = self.lstmStatus(input2, hiddenl1) 

        else: 

            lstml1_out, hiddenl1_out = self.lstmStatus(input2) 

        if hiddenl2 is not None: 

            lstml2_out, hiddenl2_out = self.lstmText(input3, hiddenl2) 

        else: 

 

            lstml2_out, hiddenl2_out = self.lstmText(input3) 

        a = F.softmax(self.act_prob(torch.cat((hiddenCnn_out[0][-

1],hiddenl1_out[0][-1],hiddenl2_out[0][-1]),dim=1)),dim=1) 

        return a,hiddenCnn_out,hiddenl1_out,hiddenl2_out 

 

class critic(nn.Module): 

    '''This class creates the model of the critic part of the reiforcment 

learning algorithm''' 

    def __init__(self): 

        super(critic,self).__init__() 

        self.cnn1 = nn.Conv2d(3,featuresCNN1,CNN1Shape,stride=CNN1Step) 

        self.cnn2 = 

nn.Conv2d(featuresCNN1,featuresCNN2,CNN2Shape,stride=CNN2Step) 

        self.cnn3 = 

nn.Conv2d(featuresCNN2,featuresCNN3,CNN3Shape,stride=CNN3Step) 

        self.lstmCnn = nn.LSTM(7688,denseLayerN,batch_first=True) 

        self.lstmStatus = nn.LSTM(8,denseLayerNL_21,batch_first=True) 

        self.lstmText = nn.LSTM(125,denseLayerNL_31,batch_first=True) 

        self.value = nn.Linear(denseLayerN+denseLayerNL_21+denseLayerNL_31,1) 
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    def forward(self,input1,input2,input3,hiddenCnn = None,hiddenl1 = 

None,hiddenl2 = None): 

        batch_size, timesteps, C, H, W = input1.size() 

        c1_in = input1.view(batch_size * timesteps, C, H, W) 

        x = self.cnn1(c1_in) 

        c2_in = F.relu(x) 

        c3_in = F.relu(self.cnn2(c2_in)) 

        c_out = F.relu(self.cnn3(c3_in)) 

        lstmCnn_in = c_out.view(batch_size, timesteps, -1) 

        if hiddenCnn is not None: 

            lstmCnn_out, hiddenCnn_out = self.lstmCnn(lstmCnn_in, hiddenCnn) 

        else: 

            lstmCnn_out, hiddenCnn_out = self.lstmCnn(lstmCnn_in) 

        if hiddenl1 is not None: 

            lstml1_out, hiddenl1_out = self.lstmStatus(input2, hiddenl1) 

        else: 

            lstml1_out, hiddenl1_out = self.lstmStatus(input2) 

        if hiddenl2 is not None: 

            lstml2_out, hiddenl2_out = self.lstmText(input3, hiddenl2) 

        else: 

            lstml2_out, hiddenl2_out = self.lstmText(input3) 

        v = self.value(torch.cat((hiddenCnn_out[0][-1],hiddenl1_out[0][-

1],hiddenl2_out[0][-1]),dim=1)) 

        return v,hiddenCnn_out,hiddenl1_out,hiddenl2_out 

 

class agent(): 

    '''This class creates the agent, which interacts with the game and tries to 

learn how to play folowing actor-critic RL algorithm''' 

    def __init__(self,actor,critic, gamma = 0.99): 

        self.gamma = gamma 

        self.actor = actor 

        self.critic = critic 

        self.log_prob = None 

        self.buffer_State = [] 

        self.buffer_playerStatus = [] 

        self.buffer_text = [] 

        self.buffer_reward = [] 

        self.buffer_size = 7 

 

    def act(self,state,playerstatus,gameText,agent): 

        '''This function returns the action the agent will perform based on the 

enviroment state''' 

        prob,_,_,_ = 

self.actor.forward(torch.tensor(state).float(),torch.tensor(playerstatus).float()

, torch.tensor(gameText).float()) 

        print(prob,agent) 

        dist = torch.distributions.Categorical(prob) 

        action = dist.sample() 

        return action 

     

    def value(self,state,playerstatus,gameText): 
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        '''This function returns the agent estimation for the value of the 

enviroment state''' 

        v,_,_,_ = 

self.critic.forward(torch.tensor(state).float(),torch.tensor(playerstatus).float(

), torch.tensor(gameText).float()) 

        return v 

 

    def preprocess0(self, state,playerstatus,gameText,game_start): 

        '''This function prepares the environment observations as input for the 

two networks. Creates packet of 8 consecutive observations as input for the lstm 

networks''' 

        if game_start: 

            self.buffer_State = [] 

            self.buffer_playerStatus = [] 

            self.buffer_text = [] 

        if len(self.buffer_State) > self.buffer_size: 

            del self.buffer_State[0] 

        self.buffer_State.append(state) 

        state = np.array(self.buffer_State) 

        state = np.expand_dims(state, axis=0) 

 

        if len(self.buffer_playerStatus) > self.buffer_size: 

            del self.buffer_playerStatus[0] 

        self.buffer_playerStatus.append(playerstatus) 

        playerstatus = np.array(self.buffer_playerStatus, dtype=np.float32) 

        playerstatus = np.expand_dims(playerstatus, axis=0) 

 

        if len(self.buffer_text) > self.buffer_size: 

            del self.buffer_text[0] 

        self.buffer_text.append(gameText) 

        gameText = np.array(self.buffer_text, dtype=np.float32) 

        gameText = np.expand_dims(gameText, axis=0)     

        return state,playerstatus,gameText 

 

    def preprocess1(self, state,playerstatus,gameText, 

rewards,values,actions,done, gamma): 

        '''This function prepares the environment observations as input for  

        training the networks. Creates 7 packs of 8 consecutive environmental 

observations and 

         also calculates the discounted rewards for each case  

        using the equation Vs0=R0+gamma*R1+gamma^2*R2+...+gamma^n*Vs4''' 

        discnt_rewards = [] 

        if done: 

            values[-1]=0 

        for i in range(len(rewards)): 

            if i + n_step < len(rewards): 

                power = 0 

                disc_rew = 0 

                for z in range(i,i+n_step): 

                    disc_rew += rewards[z]*(gamma**power) #+  

                    power += 1 
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                disc_rew += values[i+n_step]*(gamma**n_step) 

                discnt_rewards.append(disc_rew) 

            if i + n_step >= len(rewards): 

                power = 0 

                disc_rew = 0 

                for z in range(i,len(rewards)-1): 

                    disc_rew += rewards[z]*(gamma**power) #+  

                    power += 1 

                if i < len(rewards)-1: 

                    disc_rew += values[-1]*(gamma**power) 

                    discnt_rewards.append(disc_rew) 

        state = state[:-1] 

        playerstatus = playerstatus[:-1] 

        gameText = gameText[:-1] 

        actions = actions[:-1] 

        state = np.array(state) 

        state =  np.squeeze(state,axis = 1) 

        playerstatus = np.array(playerstatus) 

        playerstatus =  np.squeeze(playerstatus,axis = 1) 

        gameText = np.array(gameText) 

        gameText =  np.squeeze(gameText,axis = 1) 

        return  state,playerstatus,gameText,discnt_rewards,actions 

 

    def actor_loss(self, probs, actions, td): 

        '''This function calculate the actor loss using the equation Policy Loss: 

L = -log(π(a | s)) * A(s) - β*H(π)  

        where H(π)=-Σ(P(x) log(P(x))''' 

        e_loss = [] 

        p_loss= [] 

        log_probabilities = torch.log(probs) 

        for pb,lb,a,t in zip(probs,log_probabilities,actions,td): 

            policy_loss = torch.mul(torch.squeeze(lb[a]),t) 

            entropy_loss = torch.negative(torch.sum(torch.multiply(pb,lb))) 

            e_loss.append(entropy_loss) 

            p_loss.append(policy_loss) 

        p_loss = torch.stack(p_loss) 

        e_loss = torch.stack(e_loss) 

        p_loss = torch.mean(p_loss) 

        e_loss = torch.mean(e_loss) 

        loss = -p_loss - 0.0001 * e_loss 

        return loss 

 

    def losses(self, states,playerstatus,gameTexts, actions, discnt_rewards): 

        '''Critic and actor losses are calculated and refunded''' 

        discnt_rewards = torch.tensor(discnt_rewards) 

        p,_,_,_ = 

self.actor.forward(torch.tensor(states).float(),torch.tensor(playerstatus).float(

), torch.tensor(gameTexts).float()) 

        v,_,_,_ 

=  self.critic.forward(torch.tensor(states).float(),torch.tensor(playerstatus).fl

oat(), torch.tensor(gameTexts).float()) 
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        v = torch.reshape(v, (len(v),)) 

        td = torch.subtract(discnt_rewards, v) 

        a_loss = self.actor_loss(p, actions, td.detach()) 

        c_loss = 0.5*torch.mean(torch.pow(torch.subtract(discnt_rewards, v),2)) 

        return a_loss, c_loss 

 

    def share_grads_a(self, global_actor): 

        '''Sets the grads of the global model equal to those of the local 

model''' 

        for param_a_l,param_a_g in 

zip(self.actor.parameters(),global_actor.parameters()): 

            param_a_g._grad =  param_a_l.grad 

    def share_grads_c(self,global_critic): 

        '''Sets the grads of the global model equal to those of the local 

model''' 

        for param_c_l,param_c_g in 

zip(self.critic.parameters(),global_critic.parameters()): 

            param_c_g._grad =  param_c_l.grad 

     

 

def 

Agent_Runner(total_steps,global_actor,global_critic,dfrewards,agents_reward,lock,

agents,total_episodes,optimizer_actor,optimizer_critic): 

    '''A function that runs the training for 10000 episodes''' 

    local_actor = actor() 

    local_critic = critic() 

    local_actor.load_state_dict(global_actor.state_dict()) 

    local_critic.load_state_dict(global_critic.state_dict()) 

    agentoo7 = agent(local_actor,local_critic) 

    episode = 10000 

    total_avgr = [] 

    game = 

GamePAI(1,'Connan',444,444,screenfactor,True,0,False,seeded,torch_g,agents) 

    game_No = 0 

    s = 0 

    for s in range(episode): 

        s += 1 

        game_No = game_No + 1 

        done = False 

        game_start = True 

        state,playerStatus, gameText = game.initialGameState() 

        state,playerStatus, gameText = agentoo7.preprocess0(state,playerStatus, 

gameText,game_start) 

        game_start = False 

        total_reward = 0 

        train_actions = [] 

        train_states = [] 

        train_playerstatus = [] 

        train_gametexts = [] 

        train_rewards = [] 

        train_values = [] 
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        steps = 0 

        while not done: 

            for event in pygame.event.get(): 

                if event.type == pygame.QUIT: 

                    lock.acquire() 

                    total_steps[0] += steps 

                    agents_reward[0] += total_reward 

                    total_episodes[0] += 1 

                    total_avgr = agents_reward[0]/total_episodes[0] 

                    episodeStat = 

[total_steps[0],total_episodes[0],agents_reward[0],total_avgr] 

                    dfrewards.append(episodeStat) 

                    lock.release() 

                    pygame.quit() 

                    sys.exit() 

            steps += 1 

            action = agentoo7.act(state,playerStatus,gameText,agents) 

            values = agentoo7.value(state,playerStatus,gameText) 

            next_state,reward, next_playerStatus, next_gameText,done  = 

game.playerAction(action) 

            action_name = 

{0:'up',1:'right',2:'down',3:'left',4:'rest',5:'hp',6:'mp',7:'attack',8:'pick'} 

            print(agents,action_name[action.item()],reward,game.cave,steps) 

             

            total_reward += reward 

            if len(train_playerstatus) >= batch: 

                del train_actions[0] 

                del train_states[0] 

                del train_playerstatus[0] 

                del train_gametexts[0] 

                del train_values[0] 

                del train_rewards[0] 

            train_actions.append(action) 

            train_states.append(state) 

            train_playerstatus.append(playerStatus) 

            train_gametexts.append(gameText) 

            train_rewards.append(reward) 

            train_values.append(values) 

            next_state,next_playerStatus,next_gameText = 

agentoo7.preprocess0(next_state,next_playerStatus,next_gameText,game_start) 

            state = next_state 

            playerStatus = next_playerStatus 

            gameText = next_gameText 

            if done: 

                game.__init__(1,'Connan',444,444,screenfactor,True,game_No,False,

seeded,torch_g,agents) 

            if steps > batch+h_step: 

                if steps%batch == 0 or done: 

                    train_states_1,train_playerstatus_1,train_gametexts_1,discnt_

rewards_1,train_actions_1= 
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agentoo7.preprocess1(train_states,train_playerstatus,train_gametexts, 

train_rewards,train_values,train_actions,done, 0.99) 

                    al,cl = 

agentoo7.losses(train_states_1,train_playerstatus_1,train_gametexts_1, 

train_actions_1, discnt_rewards_1) 

                    print(al,cl) 

                    optimizer_actor.zero_grad() 

                    optimizer_critic.zero_grad() 

                    al.backward() 

                    cl.backward() 

                    agentoo7.share_grads_a(global_actor) 

                    agentoo7.share_grads_c(global_critic) 

                    optimizer_actor.step() 

                    optimizer_critic.step() 

                    local_actor.load_state_dict(global_actor.state_dict()) 

                    local_critic.load_state_dict(global_critic.state_dict()) 

 

            if done: 

                lock.acquire() 

                agents_reward[0] += total_reward 

                total_steps[0] += steps 

                total_episodes[0] += 1 

                print('I work '+str(agents)) 

                total_avgr = agents_reward[0]/total_episodes[0] 

                episodeStat = 

[total_steps[0],total_episodes[0],agents_reward[0],total_avgr] 

                dfrewards.append(episodeStat) 

                if total_episodes[0]%200 == 0 and total_episodes[0] !=0: 

                    d = list(dfrewards) 

                    d = pd.DataFrame(d, columns=['steps','episodes', 'rewards', 

'average_rewards'])  

                    d.to_excel(dir+'\statistics_'+ 

str(total_episodes[0])+'.xlsx') 

                    torch.save(global_actor.state_dict(), dir + '\ ' + 

str(total_episodes[0]) + 'actor_model.pt') 

                    torch.save(global_critic.state_dict(), dir + '\ ' + 

str(total_episodes[0]) +  'critic_model.pt') 

                lock.release() 

             

 

if __name__ == '__main__': 

    '''The multiprocessing part of the script. This code starts 8 Agent_Runner 

functions, one for each processor core''' 

    if exists(dir + '\steps.txt'): 

        f = open(dir+'\steps.txt','r') 

        total_steps_int = int(f.read()) 

        f.close() 

    if exists(dir + '\Total_rewards.txt'): 

        f = open(dir+'\Total_rewards.txt','r') 

        total_rewards = float(f.read()) 

        f.close() 
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    if exists(dir + '\episodes.txt'): 

        f = open(dir+'\episodes.txt','r') 

        episodes = int(f.read()) 

        f.close() 

    num_processes = mp.cpu_count() 

    total_steps = mp.Manager().list([0]) 

    total_steps[0]=total_steps_int 

    dfrewards = mp.Manager().list() 

    agents_reward = mp.Manager().list([0]) 

    agents_reward[0]= total_rewards 

    total_episodes = mp.Manager().list([0]) 

    total_episodes[0] = episodes 

    lock = mp.Lock() 

    global_actor = actor() 

    global_critic = critic() 

    print(exists(dir + '\ ' + str(total_episodes[0]) +  'critic_model.pt')) 

    if exists(dir + '\ ' + str(total_episodes[0]) + 'actor_model.pt'): 

        global_actor.load_state_dict(torch.load(dir + '\ ' + 

str(total_episodes[0]) + 'actor_model.pt')) 

        global_actor.train() 

        print('Global actor model is loaded') 

    if exists(dir + '\ ' + str(total_episodes[0]) +  'critic_model.pt'): 

        global_critic.load_state_dict(torch.load(dir + '\ ' + 

str(total_episodes[0]) +  'critic_model.pt')) 

        global_critic.train() 

        print('Global critic model is loaded') 

    global_actor.share_memory() 

    global_critic.share_memory() 

    optimizer_actor = my_optim.SharedAdam(global_actor.parameters(), lr=1e-5) 

    optimizer_critic = my_optim.SharedAdam(global_critic.parameters(), lr=1e-5) 

    processes = [] 

    for agents in range(num_processes): 

        p = mp.Process(target=Agent_Runner, 

args=(total_steps,global_actor,global_critic,dfrewards,agents_reward,lock,agents,

total_episodes,optimizer_actor,optimizer_critic)) 

        p.start() 

        processes.append(p) 

    for p in processes: 

        p.join() 

    torch.save(global_actor.state_dict(), dir + '\ ' + str(total_episodes[0]) + 

'actor_model.pt') 

    torch.save(global_critic.state_dict(), dir + '\ ' + str(total_episodes[0]) 

+  'critic_model.pt') 

    d = list(dfrewards) 

    d = pd.DataFrame(d, columns=['steps','episodes', 'rewards', 

'average_rewards'])  

    d.to_excel(dir+'\statistics_'+ str(total_episodes[0]) + '.xlsx') 

    f = open(dir+'\steps.txt','w') 

    f.write(str(total_steps[0])) 

    f.close() 

    f = open(dir+'\Total_rewards.txt','w') 
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    f.write(str(agents_reward[0])) 

    f.close() 

    f = open(dir+'\episodes.txt','w') 

    f.write(str(total_episodes[0])) 

    f.close() 
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ABBREVIATIONS – ACRONYMS 

A3C Asynchronous Advantage Actor-Critic 

AI  Artificial Intelligence  

ANN  Artificial Neural Network  

CNN Convolutional Neural Network 

CPU Central Processing Unit 

DNN Deep Neural Network 

DP Dynamic Programing 

DQN deep Q-network 

FPS First Person Shooter 

GPI General Policy Iteration 

GPU Graphic Processing Unit 

HP  Hit Points  

ID Identity 

LSTM Long Short-Term Memory 

MC Monte Carlo 

MDP Markov Decision Process 

ML  Machine Learning  

MP Mana Points 

NN Neural Networks  

POMDP Partially Observable Markov Decision Process 

ReLU Rectifier Nonlinearity 

RND Random Network Distillation 

RNN Recurrent Neural Network 

RPG  Role Playing Games  

SARSA Sate Action Reward State Action 

SGD Stochastic Gradient Descent 

TD Temporal Difference 

XP  Experience Points  
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