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ABSTRACT

Geospatial knowledge graphs suffer from incompleteness which is due to the not-always-
reliable data sources. This dramatically affects the results of geospatial query answer-
ing with traditional techniques which use standard query languages like stSPARQL or
GeoSPARQL.An alternative method for query answering is by using KG embeddings.
Embedding-based models project entities and relations of the posed query onto the con-
tinuous vector space, predicting, this way, the answers to the posed query. Hence, they
can handle queries for which the data required for their answering is not explicitly stated
in the knowledge graph. In this research work, we have developed the embedding-based
geospatial query answering model, SQABo, which encodes the geospatial queries as boxes
into the embedding space and returns the answers inside the box. We show that this ap-
proach performs better than existing work in the literature, which encodes the queries as
points in the vector space. Additionally, we make freely available a query-answering data-
set for YAGO2geo, one of the richest and most precise geospatial knowledge graphs, to
the research community for future research.

SUBJECT AREA: Information systems Geographic information systems

KEYWORDS: Geospatial Query Answering, Geospatial Knowledge Graph Embed-
dings



ΠΕΡΙΛΗΨΗ

Τα γραφήματα γεωχωρικής γνώσης πάσχουν από ελλιπή στοιχεία, τα οποία οφείλονται
στις όχι πάντα αξιόπιστες πηγές δεδομένων. Αυτό επηρεάζει δραματικά τα αποτελέσματα
της απάντησης γεωχωρικών ερωτημάτων με τις παραδοσιακές τεχνικές που χρησιμο-
ποιούν τυποποιημένες γλώσσες ερωτημάτων όπως η stSPARQL ή η GeoSPARQL. Τα
μοντέλα που βασίζονται στην ενσωμάτωση προβάλλουν τις οντότητες και τις σχέσεις του
ερωτήματος που τίθεται στον συνεχή διανυσματικό χώρο, προβλέποντας, με αυτόν τον
τρόπο, τις απαντήσεις στο ερώτημα που τίθεται. Ως εκ τούτου, μπορούν να χειριστούν
ερωτήματα για τα οποία τα δεδομένα που απαιτούνται για την απάντησή τους δεν δηλώ-
νονται ρητά στον γράφο γνώσης. Στην παρούσα ερευνητική εργασία, αναπτύξαμε το μο-
ντέλο απάντησης γεωχωρικών ερωτημάτων με βάση την ενσωμάτωση, SQABo, το οποίο
κωδικοποιεί τα γεωχωρικά ερωτήματα ως κουτιά στον χώρο ενσωμάτωσης και επιστρέφει
τις απαντήσεις εντός του κουτιού. Δείχνουμε ότι αυτή η προσέγγιση έχει καλύτερες επιδό-
σεις από τις υπάρχουσες εργασίες στη βιβλιογραφία, οι οποίες κωδικοποιούν τα ερωτή-
ματα ως σημεία στο διανυσματικό χώρο. Επιπλέον, διαθέτουμε ελεύθερα στην ερευνητική
κοινότητα ένα σύνολο δεδομένων για την απάντηση ερωτημάτων για το YAGO2geo, έναν
από τους πλουσιότερους και ακριβέστερους γράφους γεωχωρικής γνώσης, για μελλοντική
έρευνα.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Πληροφοριακά Συστήματα, Γεωγραφικα πληροφοριακα
συστηματα

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Απάντηση Γεωχωρικών Ερωτημάτων, Ενσωματώσεις
Γεωχωρικών Γράφων Γνώσης
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Geospatial Query Answering Using Knowledge Graph Embeddings

1. INTRODUCTION

1.1 Problem Statement

Geospatial data and knowledge have become ubiquitous in the Web today and in applic-
ations, such as navigation, smart cities, Earth observation, etc. To retrieve efficiently such
geospatial knowledge, several geospatial knowledge graphs (KGs) have been proposed
in the literature (e.g., YAGO2geo [16], WorldKG [6], KnowWhereGraph [13]). Geospatial
knowledge graphs enable the representation of geospatial knowledge in a semantically
enriched, formal and structured way using ontologies and the RDF data model.

The standard way to retrieve knowledge from such geospatial KGs is by using geospatial
query answering systems, such as Strabo 2 [?] or GraphDB1, which perform geospatial
processing over RDF graphs, mainly targeting the GeoSPARQL [18] vocabulary and query
language. A bottleneck of such approaches is that they require that the targeted KG is
complete, which rarely happens. Incompleteness in knowledge graphs occur either from
wrong or from incomplete data entries (e.g. missing relations, entities or attributes such
as location) due to the different and often crowd-sourced data sources (e.g., Wikidata,
DBPedia). Moreover, geospatial knowledge suffers from an intrinsic vagueness [27]: the
shape of some geospatial features (e.g., forest, mountain) cannot be precisely defined
(e.g., borders of a mountain and a valley), and, in cases that these can be defined, timeli-
ness (e.g., the sizes of cities can change through time) and administrative definitions (e.g.,
boundaries of administrative regions can change from government authorities) often affect
the query answering results.

One way to address these issues is by employing KG embedding techniques. Embedding-
based models project entities and relations of the queries and the KGs onto a continuous
vector space. This way, they are able to predict an embedding (representing the query),
“close enough” to the desired answer entity embedding. Hence, they can handle queries
for which the data required for their answering is not explicitly stated in the KG.

Current state-of-the-art geospatial query answering models that use KG embeddings were
initially introduced by Nickel et al., 2012 [25] and later extended by Hamilton et al.,
2018 [10] and Wang et al., 2018 [32]. The geospatial component of the geospatial KGs
introduces the additional difficulty of having to encode, also, datatype properties (e.g.,
points, polygons) into the KG embedding space. One of the first attempts for geospatial
encoding was Space2Vec [21], which was later exploited by the location-aware model for
query answering SE-KGE [19]. SE-KGE, uses a feature and geospatial (Space2Vec) en-
coder to better capture all the aspects of each entity and returns the k-nearest neighbors
to the target node. However, as in most such systems, the number k is rather arbitrarily
defined, hence we may miss important answers or get some redundant ones. To over-
come this issue, recently, Ren et al. [28], proposed the framework Query2Box, with which
the queries are represented as trainable boxes in the vector space and the answers as
sets of points within these boxes.

1http://graphdb.ontotext.com/documentation/free/

M. Iliakis 13
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Figure 1.1: The DAG Structures we used in the sampling stage. In each conjunctive graph query,
there is a target node (red nodes), one or more anchor nodes (starting white nodes) and zero or
more variable nodes (intermediate white nodes). The target node represents the desired answer

and the anchor nodes represent the locations given in the query.

Figure 1.2: The DAG graph of the query Q(x) = ∃y :
north_of(athens, x) ∧ near_To(y, x) ∧ within_inverse(attica, y), which corresponds to the question

“Which places are north of Athens and near to another place which is within Attica?”.

1.2 Project Scope

In this thesis, we will address the research question of whether the transformation of the
encoded geospatial queries into boxes can optimize the results of SE-KGE.

Since SE-KGE is the starting point of our research, we focus on answering the same type
of conjunctive queries as SE-KGE. Specifically, these types are presented in Figure 1.1,
where each query has a query answer node (target node illustrated with red in the fig-
ure) and one (1-,2-,3-chain) or more instances of the KG. An example of such a query is
illustrated in Figure 1.2.

We train and test our model by using two geospatial KGs: i) YAGO2geo2, and ii) DBGeo3.
We chose YAGO2geo as it is one of the richest andmost precise geospatial KGs. DBGeo4,
was chosen because it was also used for the evaluation of SE-KGE in [19].

1.3 Aim and Objectives

The overarching aim of this thesis is to create a model for query answering over geospatial
knowledge graphs that will be able to handle queries for which, the data required for their
answering is not explicitly stated in the KG. More specifically, the objectives for this thesis
are formed as follows:

• Objective O1: To study the state-of-the-art in QA over KGs with the use of KG em-
beddings and, then, examine further the model that focus on geospatial QA. This
will lead to the identification of challenges that remain open in the literature.

2https://yago2geo.di.uoa.gr/
3https://github.com/gengchenmai/se-kge
4https://github.com/gengchenmai/se-kge

M. Iliakis 14
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Figure 1.3: The output of SQABo for the query presented in Figure 1.2
.

• Objective O2: To design the architecture and implement geospatial QA model over
KGs that will address some of the challenges identified in O1.

• Objective O3: To train and evaluate the model and fine-tune its hyper-parameters.

1.4 Methodology

In this thesis, we develop the novel geospatial query answering model SQABo (geoSpatial
conjunctive graph Query Answering based on knowledge graph embeddings with Boxes),
by leveraging the techniques developed for both SE-KGE and Query2Box. Particularly,
SQABo initially encodes the entities and relations appearing in any incoming conjunctive
graph query, utilizing the entity encoder developed in SE-KGE. Then, by using techniques
fromQuery2Box, these vectors are gradually projected into boxes. The answer to the input
conjunctive graph query is resulted by intersecting these boxes using contextual graph
attention and returning all the entities that are inside this box. In this way, for instance, the
answer to the question of Figure 1.2 will be included in the box depicted in Figure 1.3.

We compared our model against SE-KGE and we show that for both datasets (YAGO2geo,
DBGeo) SQABo outperforms SE-KGE.

1.5 Thesis Layout

The rest of the thesis is structured as follows. First, for better comprehension of the text,
we introduce the main terms mentioned in this thesis in Section 2. Then, to explore the
different techniques of embedding knowledge graphs, an overview of the related work is
presented in Section 3. In Section 4, we present in detail the architecture of SQABo. In
Section 5 we describe the pre-processing methods used to create the dataset, the training
method of the model and finally, the evaluation of the model. The conclusions and future
work are outlined in Section 6.

M. Iliakis 15
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2. PRELIMINARIES

In this section we will describe and define all the prerequisite knowledge needed for this
thesis such as Geospatial Knowledge Graphs, Query Answering with Knowledge Graph
Embeddings and Geospatial Data Modeling.

2.1 Geospatial Data Modeling

A geographic feature (or simply feature), is an abstraction of a real world phenomenon
and can have various attributes that describe its thematic and spatial characteristics [26].
Geographic features, are essentially components of a planet like mountains, canyons,
lakes, streams and can be referred to as locations, sites, areas, or regions. Knowledge
about the spatial attributes of a feature can be quantitative or qualitative. For example,
the fact that the distance between Athens and Patras is 250 km is quantitative knowledge,
while the fact that river Rhine crosses Germany and France and forms their border is
qualitative knowledge. Quantitative geographic knowledge is usually represented using
geometries (e.g., points, lines and polygons on the Cartesian plane) while qualitative geo-
graphic knowledge is captured by qualitative binary relations between the geometries of
features [26].

The geometry of every place and object is composed of points. Points are coordinates in
a 2-, 3- or 4-dimensional space. All points in a geometry have the same dimensionality.

A bounding box is the rectangle that contains every point from a set that describes a place
or an object. A minimum bounding box is the box with the smallest measure (area, volume,
or hypervolume in higher dimensions) within which all the points lie.

2.2 Knowledge Graphs

A Knowledge Graph G⟨V ,R⟩ is a directed edge and node labeled multigraph that rep-
resents knowledge about world objects (the nodes v ∈ V of the graph) and relationships
among these world objects (the edges r ∈ R of the graph).

Some well-known open source KGs are the DBpedia, Wikidata, YAGO. DBpedia is a pro-
ject aiming to extract structured content from the information created in the Wikipedia
project. Wikidata is a collaboratively edited multilingual knowledge graph hosted by the
Wikimedia Foundation and is used by Wikipedia to get its data. YAGO which is created
by Max Plank Institute is open source and it is automatically extracted from Wikipedia and
other sources.

2.2.1 Geospatial Knowledge Graphs

For the purpose of this thesis we define geospatial KGs as follows:

A Geospatial Knowledge Graph G⟨V
∪

VG,R⟩ is a directed edge and node labeled multi-
graph where V is a set of entities/nodes, VG ̸= ∅ represents the set of (geo)spatial entities
and R is the set of directed edges. Each entity vi ∈ VG can be mapped to either a point
x ∈ A ⊆ R2 or to a bounding box [x; y] ∈ R4, where x, y ∈ A ⊆ R2 and A denotes the

M. Iliakis 16
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bounding box containing all geographic entities in G. VG is formed from the union of VT
which is the set of the geospatial entities represented by a point and VB which is the set
of geospatial entities represented by a polygon.

We also define PT () which is the function that returns the coordinates of an entity if it is
represented as a point and PN()which is the uniform sampling function over the bounding
box of an entity’s polygon.

Although DBpedia andWikidata have some geospatial knowledge, some other well known
sources like YAGO2 and GeoNames gazeteer contain more specific geospatial data or are
entirely dedicated to them. YAGO2 [12], the second version of YAGO, introduces geospa-
tial and temporal information to the YAGO KG. Geopatial information in YAGO2 comes
not only from Wikipedia but also from the gazeteer GeoNames. Temporal information is
represented using dates as time points. GeoNames gazeteer is a freely available geo-
graphical database with 7M geographical names in various languages. As topological
information it contains partonomic relations (e.g., Berlin is located in Germany is located
in Europe) and neighboring countries for each location.

YAGO2geo [15] is an extention of YAGO2 [12] with geospatial information represented
by geometries (e.g., lines, polygons, multipolygons, etc.) encoded by Open Geospatial
Consortium standards. The added geospatial information comes from official sources
such as the administrative divisions of countries but also from volunteered open data of
OpenStreetMap. YAGO2geo contains the geometries of places and objects as well as the
geospatial relationships between them inside the UK, Ireland, Greece and USA.

DBGeo [19] is a subgraph of DBpedia containing the mainland of United States which has
relatively richer geographic coverage than other regions in DBpedia. It contains 176.671
triples with 25.980 entities and 227 geospatial and non-geospatial relations.

Themost recent geospatial knowledge graphs are the KnowWhereGraph [14] andWorldKG
[7]. KnowWhereGraph contains also data about extreme events, administrative boundar-
ies, soils, crops, climate, transportation giving this way rapid access to information such
as the wildfires that have affected an area, the major transportation axis crossing a certain
region, and the type of crops and soils present in a given region. WorldKG data come from
OpenStreetMap containing more than 100M geographic entities from 188 countries and
more than 800M triples where the geographic objects are represented as points.

2.3 Graph Queries

Conjunctive Graph Queries (CGQ) [10] are a subclass of the first-order logical queries that
use only existential (∃) quantifier and conjunction (∧) logical operator. They are formally
defined as follows:

q[V?] = V?.∃V1, . . . , Vk : e1 ∧ e2 ∧ · · · ∧ en,

where ei = r(va, V ), V ∈ {V?, V1, ..., Vk}, va ∈ V , r ∈ R, or
ei = r(V, V ′), V, V ′ ∈ {V?, V1, ..., Vk}, V ̸= V ′, r ∈ R,

where va represents a constant, V1, . . . Vk are existentially quantified variables, e1, . . . , en
are the directed edges and V? is the target variable (i.e., the queried node).

The dependency graph of a conjunctive query q, is a graphical representation query q,
where the nodes can be either the variables or the anchor entities, and the edges are
the relations appearing in q. According to [10], for a CGQ to be valid (i.e., there are no

M. Iliakis 17
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contradictions or redundancies), its dependency graph must be a directed acyclic graph
(DAG), having the anchor node as the source node and the query target as the unique
sink node.

2.4 Knowledge Graph Embeddings

KG embedding systems are systems which learn a low or high, depending on the task
and the implementation, dimensional representation of a KG’s entities and relations while
preserving their semantic meaning. They can be used for various tasks such as link pre-
diction, triple classification, recommender systems and enrichment based embeddings.

The link prediction task focuses on finding an entity that can be represented as a fact
(edge) together with a given relation and entity i.e., (entity, relation, ?), where ? refers to
the missing entity. Enrichment based embeddings are essentially contextualized embed-
dings created by enriching the entity’s embedding using information from its neighbour-
hood. Triple classification is the problem of identifying whether a given triple is correct and
give a yes or no answer. Finally, recommender systems assists the user in an environ-
ment where multiple options are available by providing a certain ordering of choices that
the recommendation algorithm infers. This inference can be based on the similarity of the
choices and behaviour pattern of different users.

2.4.1 Conjunctive Query Answering with Knowledge Graph Embeddings

Query Answering with knowledge graph embeddings is an evolution of simple edge pre-
diction. Hamilton et al., [10] first introduced more complex DAG structures (Figure 1.1)
sampled from the knowledge graph as conjunctive queries. He also created the archi-
tecture to answer them by adding a sophisticated intersection module to the existing link
prediction methods. This module, which is, also, incorporated a simple attention mech-
anism [2], was used to combine the simple queries (answered with the classical link pre-
diction techniques) from which the complex conjunctive one was made. At the end, the
complex query was represented as a point in the vector space and the answer to it is the
closest entity.

2.5 Summary

In this chapter we introduced the definitions of knowledge graphs, knowledge graph quer-
ies, geographical features, geographical points, and bounding boxes. We also presented
some large, open-source geospatial and non-geospatial knowledge graphs. Finally, we
introduced the notion of knowledge graph embeddings and how they can be used for query
answering.
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3. RELATED WORK

In this section, we initially present the related work in the domain of knowledge graph
embeddings and the various categories of knowledge graph embedding models, and then
we present in detail the models developed by Mai et al. [19] and Ren et al. [28] which are
utilized by our model.

3.1 Semantic Matching Models

SemanticMatchingModels use similarity-based functions to calculate the similarity between
the different entities and relations. The first model using low-dimensional representations
belonging also in the Semantic Matching Models category was RESCAL [25]. It followed
the Statistical Relational Learning Approach which is based on a Tensor Factorization
model that takes into account the inherent structure of relational data. Tensor Factoriza-
tion is basically the expression of a Tensor as a sequence of elementary operations acting
on other, often simpler Tensors. Using tensor factorization, which was a similar method to
decomposition into directional components developed by Harshman et al. [11], RESCAL
authors were able to derive better models. They achieved higher quality and significant
runtime improvements over models using decomposition into directional components.

The main disadvantage of RESCAL is that it is a three-way model which performs fairly
good for relationships which occur frequently but it performs poor for the rare relationships
and leads to major over-fitting. The issue of major over-fitting for rare relationships can be
controlled by regularizing or reducing the expressivity of the model. The second method
for reducing the expressivity is Two-way interaction. Two-way interaction approaches
overperform the Three-way approaches on many datasets and specifically on those that
have more rare relationships. The problem with the two-way interaction is that they are
limited and are not able to represent all kinds of relations with entities. TATEC [9] is a
latent factor model which is capable of incorporating the high capacity Three-way model
with well-controlled two-way interactions and take the advantage of both of them.

Another problem that we face on KG applications that predict missing relations or en-
tities is that while dot product of vector embedding of KG triplets is being successfully
used for symmetric, reflexive, anti-reflexive and even transitive relations, it can’t be used
for anti-symmetric relations. Complex [30] embedding facilitates joint learning of subject
and object entities while preserving the asymmetry of the relation. It uses Hermitian dot
product of embedding of subject entities and object entities. The eigen vector decompos-
ition is used to identify a low rank diagonal matrix W which is later used to predict missing
relations.

3.2 Translational Models

Later on, translational models like TransE [4] and TransH [33] appeared. They belonged
in this category as they were using distance-based scoring functions to calculate the sim-
ilarity between the different entities and relations. They were based on the concept of
encoding the relations as geometric transformations between the head and the tail of a
fact. To compute the embedding of the tail, it was necessary to apply a transformation to
the head embedding. Then, the distance function was used to evaluate the embedding or
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to score the reliability of the fact.

TransE was the first translational model proposed and specifically used a scoring function
that forces the embeddings to satisfy a simple vector sum equation in each fact in which
they appear (head + relation = tail). To learn the embeddings, minimization of ranking
based loss function over the training set was used. Although its novelty at that time, this
model fails in case of one-to-many and many-to-many relations.

To overcome this deficit a new model TransH was proposed. TransH was an evolution of
TransE that introduced a hyperplane as geometric space to solve the problem of correctly
representing the types of relations. This model also enabled an entity to have distrib-
uted representation based on their involvement in the relation. Although these systems
made fundamental contributions, they lack the ability to generalize and, also, to encode
geospatial data.

These approaches also fail to capture the semantic hierarchies. In HakE [36], the authors
have proposed a method to model the hierarchy in the entities as concentric circles in
polar coordinate. The entity with smaller radius belongs to higher level up in the hierarchy
and the angle between them represents the variation in the meaning.

3.3 Deep Neural Network Models

The models TransGCN [5], R-GCN [29] and SE-KGE use deep neural networks to learn
the embeddings of the KGs. Despite their less-efficient training, these models have the
ability to generalise well and achieve good predictive performance, especially when they
are pre-trained. TransGCN and R-GCN use convolutional neural networks, which con-
volve the input data, applying a low-dimensional filter capable of embedding complex
structures with few parameters by learning nonlinear features and dealing with the high
multi-relational data characteristic of realistic knowledge graphs. More specifically, Re-
lational Graph Convolutional Network (R-GCN) uses a convolution-based entity encoder
which maps each entity to a real-valued vector and a decoder which reconstructs the
edges of the graph based on vertex representations. Unlike R-GCN in which entity em-
bedding learning was done through a convolution-based encoder and relation embedding
learning was in the decoder, TransGCN trains relation and entity embeddings simultan-
eously during graph convolution operation. It uses fewer parameters compared to R-GCN
by using relation as transformation operator between head and tail entity in a triple.

Hamilton et al. [10] developed a method that goes beyond simple edge prediction and
handles more complex logical queries, which might involve multiple unobserved edges,
entities, and variables. This end-to-end logic query answering model can answer con-
junctive graph queries. Wang et al. [32] used an entity-context-preserving translational
embedding model which is specially designed for SPARQL queries and can compute ap-
proximate answers for SPARQL queries that return an empty set. It does so by leveraging
the RDF embeddings and the translation mechanism. Mai et al. [20] expanded the sys-
tem of Hamilton et al. by dealing with the variability of contributions from different query
paths. To do so, they created a multi-headed contextual graph attention mechanism that
incorporated into an end-to-end logical query answering model.

Another recent work on logical query embeddingmodels is CQD [1]. CQD is an embedding-
based KG completion model and trained it to create missing edges during inference and
merge entity rankings using t-norms and t-conorms [17]. CQD uses beam search for infer-
ence and although having severe scalability issues, it has demonstrated strong capability
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of generalizing from KG edges to arbitrary EPFO queries. The scalability issues aremostly
due to scoring every entity for every atomic query.

Another very recently presented work from Mai et al. [22] shows promising results on em-
bedding geospatial data (points, polygons etc.) using convolution neural networks like
ResNet1D and NUFT (Non-Uniform Fourier Transformation). Using these methods, they
are able to capture local and global structures of polygons, while at the same time achiev-
ing loop origin invariance, trivial vertex invariance, part permutation invariance and topo-
logy awareness. We plan to utilize this method in our future work.

3.4 The SE-KGE Model

All aforementioned KG embedding systems, before the work of Mai et al. [19], did not take
into account triples containing objects with values of datatype properties like dates, texts,
numbers, and geometries. Mai et al. [19] encode and use such information to achieve bet-
ter representations employing the conjunctive graph query answering system of Hamilton
et al. [10]. They, also, use their previous work [20], and train the whole model jointly on
sampled query-answer pairs from the original KG. To use the system for geospatial query
answering, the geospatial representation learning technique Space2Vec [21] was utilized.
Space2Vec is a representation learning model which encodes the absolute positions and
geospatial relationships of places inspired by biological grid cells [8]. The main idea of
Space2Vec is to use sinusoidal functions with different frequencies to encode these po-
sitions. Another recently proposed location encoding module by the same authors, is
Sphere2Vec [23]. This framework has a location encoding module which instead of map-
ping coordinates from manifolds, like spherical surfaces, to Euclidean spaces, it directly
encodes spherical coordinates, preserving spherical distances. This method leads to in-
creased performance in geospatial entity encoding as it overcomes the map projection
distortion problem [34].

3.5 The Query2Box Model

Another recent work on KG-embedding-based query answering has been the Query2Box
[28]. This architecture models the query more naturally by using box embeddings instead
of point embeddings in the vector space. This way the query boxes enclose the sets of
answer entities, and operations like intersection of query boxes, have also a geometric
meaning as in Venn diagrams. Also, executing logical operators over boxes result in new
boxes, which means that the operations are closed and thus, logical reasoning can be
effectively performed by iteratively updating boxes according to the query computation
graph. Boxes also solves the problematic part of how to effectively model a set of answer
entities using a single point in the vector space as answer. Techniques like searching
for the k closest entities (nearest neighbours) are not so clear as to the definition of the
number k. Instead, using boxes, every embedded knowledge graph entity located inside
the box is considered as part of the set of answer entities.
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3.6 Summary

In this chapter we discuss related work about knowledge graph embedding systems as
well as query answering using these embeddings. We also see that most recent models of
knowledge graph embeddings have incorporated neural networks with more sophisticated
architectures and modules, achieving better results than older algorithms.
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4. THE SQABO MODEL

In this section we present the architecture of the model.

To provide an intuitive understanding of the funtionality of SQABo we illustrate in Fig-
ure 4.1 how the query of the running example (Figure 1.2) will be processed. Initially, the
anchor nodes (attica, athens) are encoded using the entity encoder of SE −KGE. Each
generated embedding is used as a box center embedding by the box decoder. The box
decoder takes also as input the relations (within_inverse, north_of ) and creates one box
for each of the 2 branches. The branch that has as leaf attica has one more relation so
the previously generated box is now the input to the box decoder along with the relation
(near_to). The two resulting boxes (red and blue in Figure 1.3) are intersected to get the
final answer box embedding (orange box).

Next, we will describe the architecture of SQABo model in detail. SQABo is composed of
the following four modules:

• Entity encoder

• Box decoder

• Box center intersection

• Box offset intersection

Each one of these components is described below.

4.1 Entity Encoder

The task of an entity encoder is to create high dimension embeddings in order to represent
each entity of the KG. This embedding is then fed into following neural network modules.
It is a common practice for entity encoders to initialize an embedding matrix randomly and
then train it in order to learn the correct representations through the neural network back-
propagation. Each column of this matrix essentially indicates an embedding for a specific
entity.

The Entity Encoder [19], Enc(), presented graphically in Figure 4.2, takes as input an
entity, ei, and outputs the embedding of this entity, ei (i.e., Enc(ei) = ei), based on the
geospatial and non-geospatial (class) features of this entity. It consists of the entity feature
encoder and the entity space encoder. The entity feature encoder consists of type-specific
feature embedding matrices, which are learned over the training time. This part helps
the model to learn more general information about each entity based on their type (e.g.,
country, city).

The entity space encoder utilizes Space2Vec [21] to enrich the final representation with
the geospatial information of the entity. For entities that have point representations, the
geographic input to the module is each entity’s co-ordinations. If an entity is of a larger
geographic extent, the input is a uniformly random point inside the bounding box of the
entity. The intuition behind this is that over the training time the encoder will be called many
times and will learn a uniform distribution over the entity’s bounding box. After constructing
the input, the space representation will pass through a feed-forward neural network to get
the geospatial embedding. We see the space is calculated as follows:
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Figure 4.1: Processing of the query Q(x) = ∃y :
north_of(athens, x) ∧ near_To(y, x) ∧ within_inverse(attica, y) by SQABo.

Figure 4.2: The Entity Encoder as developed by Mai et al.[19]

esi = Encs(xi) =
{
NN(Space2V ec(xi)), where xi = PT (ei), if ei ∈ VT

NN(Space2V ec(xi)), where xi = PN(ei) = U(xmin
i , xmax

i ), if ei ∈ VB

where esi is the final space embedding, xi the point coordinates and xmin
i , xmax

i the corners
of the bounding box of the entity’s polygon. NN() is the feed forward neural network and
Space2V ec() the Space2Vec system.

In the end, the feature embedding (efi ) and the geospatial embedding (esi ) will be concat-
enated ([efi ; esi ]) resulting in the entity embedding (ei) which will have both general and
geospatial information embedded and will be passed to the next module.

ei = Enc(ei) = [Encf (ei);Encs(ei)] = [efi ; esi ]
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4.2 Box Decoder

In most cases of KG embedding systems, a projection operator is utilized in order to predict
the embedding of the answer given a query (one or more entities and relations).

The second module, the Box Decoder (Figure 4.3), goes a step beyond simple edge
prediction and incorporates the idea of box embeddings, proposed by Ren et al. [28].
The intuition behind the box embeddings’ approach is that instead of dealing with points
in the vector space (simple embeddings), to embed the queries as boxes and get the
answers as the entities (vector points) which are inside the box. For this purpose, we use
a center embedding (of the box of the query) and and an offset (from the center of the
box) embedding.

The role of the Box Decoder is to create, move and enlarge the query box embedding
by changing the center and offset embeddings. For this purpose, the Box Decoder takes
as input the embedding of the non-variable anchor node va (for simplicity consider for
now that there is only a single anchor node in the query) of the DAG query Q (where
Q = r1(va, v1) ∧ r2(v2, v3) . . . ∧ rm(vm, vm+1)) from the Entity Encoder, and considers it
as the center of the initial box with zero offset. It continues by encoding the relation r1
with which the anchor node is connected to, and by combining the embeddings with the
previous zero-size initial boxes, it creates actual boxes, i.e. with offset > 0. Continuing to
the next relation, r2, in the path, the box decoder takes as input the box previously created,
and combines it with the embedding of r2. This process repeats until all relations in the
path from the non-variable anchor node to the target node are processed.

The trainable matrices Relation Feature, rf , and Geospatial Embedding, rs, are used to
encode each relation and focus on the feature and geospatial entity embedding, respect-
ively. The concatenation of these matrices ([rf , rs]) is the Relation Box Center Embedding.
Also, the trainable Relation Box Offset Embedding matrix is used, which when trained, it
represents the correct size of the box (i.e., the distance from the center).

Formally, let B = ⟨e, r1, r2, . . . , rn⟩ be a branch of a DAG query Q. We operate on Rd, and
define the decoding function Dec() : VG ×R −→ R2d, which computes the box embedding
of B, as p = (Cen(p), Off(p)) ∈ R2d. Initially, the box embedding is calculated as follows:

Cen(p1) = Enc(e)

Off(p1) = 0

where Enc(e) ∈ Rd is calculated by the Entity Encoder, Enc(), and 0 is a d-dimensional
all-zero vector. Then, given an input box embedding pi, the center Cen(pi+1), and offset
Off(pi+1) of the new box pi+1, generated by the projection of pi onto ri, are defined as:

Cen(pi+1) = Cen(pi) + Cen(ri)
Off(pi+1) = Off(pi) + sigmoid(Off(ri))

where ri = (Cen(ri), Off(ri)), with:

Cen(ri) = [rif ; ris] (4.1)

and Off(ri) is randomly initialized.

If the query contains multiple anchor nodes (i.e., multiple branches), then the Box Decoder
generates multiple boxes. For this case, as it is described below, the answer is retrieved
by intersecting these boxes.
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Figure 4.3: The Box Decoder of SQABo. Compared to [28], the relation space encoder component
(Relation Spatial Embedding) is added to capture the geospatial relations and sigmoid function is

used for the calculation of the offsets.

4.3 Box Center Intersection Attention

As we can have multiple branches in a query (i.e. 3-inter or 3-inter-chain DAG structure)
and each branch will produce a box with a center and an offset, multiple boxes will occur.
These box centers and eventually boxes will have to be combined to get a final answer box.
To combine the n different output box embeddings from the Box Decoder to a single final
answer box embedding, the Box Center Intersection Attention module is used to create
the final box center and the Box Offset Intersection module to create the final box offset.

A very simple way to combine these box centers would be to take the mean of the centers
but this would assume that each branch has an equal contribution to the final intersection
embedding which is not necessarily the case in real settings. Ren et al. [28] showed that
using a simple Attention mechanism [2] outperforms other techniques like average and
DEEPSETS [35]. More complex and graph-oriented attention mechanisms like Graph
Attention Networks [31] has shown that using an attention mechanism on graph-structured
data also gives better results than other simpler approaches.

Mai et al. [20], following the idea of Graph Attention Networks, proposed an attention-
based geometric intersection operator which uses multi-head self attention layer. This
method represents the logical conjunction in the embedding space and it has shown better
results than GQE [10] which used an element-wise mean or minimum approach. The
novelty here was that instead of using the original multi-headed self attention, used an
entity-type-specific trainable attention vector for each attention head in place of the original
attention vector.

The Box Center Intersection Attention module applies the graph self-attention mechanism
(Figure 4.4) introduced in CGA model [20]. It is also implemented by using a multi-head
attention layer and a feed-forward neural network layer having normalization layers in
between. In the end, using this method, the attention-weighted box center embedding is
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computed as the weighted average of different input box center embeddings, while the
weights are automatically learned by the multi-head attention mechanism. This leads to
better representations incorporating the uneven participation of the neighboring box center
embeddings to the final box center embedding.

Formally, if B(1), . . . ,B(n) is the set of all branches appearing in Q, and Dec(B(i)) =
(Cen(p(i)), Off(p(i))) the embedded box for branch B(i), then the center ofQ is calculated
as follows:

Cen(Q) = CGA(Cen(p(1)), . . . , Cen(p(n))) = LayerNorm2(Wγeln1 +Bγ + eln1)

where LayerNorm2() is a normalization layer and Wγ ∈ Rdxd and Bγ ∈ Rd are trainable
entity type γ specific weight matrix and bias vector, respectively, in a feed forward neural
network. eln1 is defined as :

eln1 = LayerNorm1(eattn + einit)

where LayerNorm1() is a normalization layer, einit is a permutation invariant transforma-
tion of the initial box center embeddings and

eattn = σ(
1

K

K∑
k=1

n∑
i=1

aikei)

where K is the number of attention heads, σ() is the sigmoid activation function and n is
the number of all the answer box centers to be intersected. aik is defined as:

aik =
exp(LeakyReLU(aTγk[einit; ei]))∑n
j=1 exp(LeakyReLU(aγk[einit; ej]))

where aγk ∈ Rdx2 is the γ-type-specific trainable attention vector for the kth attention head.

4.4 Box Offset Intersection

The secondmodule is based on the offset intersection operator proposed by Ren et al. [28]
and works as a box shrinking mechanism to get the intersection of the boxes. This module
uses the permutation-invariant deep architecture Deepsets of Zaheer et al. [35]. Deepsets
is modeled as:

DeepSets(x1, . . . , xN) = MLP ((
1

N
) ·

N∑
i=1

MLP (xi))

where MLP () is the Multi-Layer Perceptron. The final intersection offset is given by
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Off(p1, . . . , pn) = Min(Off(p1), . . . , Off(pn)) · σ(DeepSets(p1, . . . , pn))

where the input are the offsets of the boxes generated for each branch of Q.

Figure 4.4: The Contextual Graph Attention [20] mechanism used from Box Center Intersection
module

4.5 Summary

In this chapter we introduced the architecture of SQABo. We described the entity encoder,
which is the same as the one developed for SE-KGE [19] and encodes the geospatial
entities. We analyzed the Box Decoder which works as a projection operator and the In-
tersection modules that combine the different branches of the queries. In order to achieve
better results we incorporated the Contextual Graph Attention [20] mechanism.
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5. EXPERIMENTS

SQABo1 is trained in two KGs: DBGeo and YAGO2geo. The statistics of both KGs and
the respectively generated QA datasets are presented in Table 5.1.

YAGO2geo DBGeoG
Triples 17,353,031 176,671

Relations 9 227
Entities 772,143 25,980
Queries 1,000,000 1,000,000
Places UK / Ireland / Greece United States (DBpedia)

Table 5.1: Statistics of Knowledge Graphs used in SQABo

5.1 Preprocessing

DBGeo did not require any preprocessing, as it was already used for the evaluation of the
SE-KGE model, and SQABo takes the input in exactly the same form with SE-KGE.

YAGO2geo data is in the form of RDF triples, representing the properties of each entity
(id, type, geometry, label, population, etc) and the relations between these entities. From
this data we produced mappings of entities, relations, and geometries to ids, the reverses
of these files (ids to entities) and custom structures represented by their entities’ ids and
classes. The geometries of the entities in YAGO2geo are given in points and polygons.
To encode the entities described by polygons we created the respective bounding boxes,
so as to decrease the computational complexity and follow the entity encoder architecture
of SE-KGE [19].

For the generation of the training and validation queries, we selected 10% of the edges
uniformly random and removed them from the graph and then we performed sampling
on this down-sampled training graph, taking n samples of the 10 different DAG structures
presented in Figure 1.1. To make the test queries, we sampled them from the original
graph, but we ensured that the test query samples are not directly answerable in the
training graph. This means, that at least the answer nodes of these testing sub-graphs
(queries) should not be part of the training graph and, therefore, the model should not
have used them in the training phase. This method for the generation of the dataset was
first introduced by [10] and, then, used by [19] for the generation of DBGeo QA dataset.
The QA dataset for YAGO2geo is openly available.2

5.2 Model Training

The training of the model is supervised, as we sample the query-answer pairs from the
graph. In the training phase we sample n conjunctive query-answer pairs, m for each
DAG structure (i.e., n = 7 ∗m) and k negative answers for each query. An example of a
sampled query is the one presented in Figure 1.2.

1https://github.com/markos-iliakis/GeospatialKGEmbeddings
2https://github.com/markos-iliakis/GeospatialKGEmbeddings/tree/master/Data
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The objective is to make the correct answer entity embedding, v ∈ Rd, be inside the
query box, q ∈ R2d, generated by SQABo and, in particular to be the closest one to the
predicted query box center embedding. The negative answers should be away from the
box. To measure the distance between v and q, we follow the approach of Ren et al. [28],
which is briefly described below.

The answer entity distance from the predicted query box embedding ((Cen(q), Off(q)))
is measured by adding the L1 distance ∥Cen(q)− v∥1, of the entity to the perimeter of the
box and the box offset embedding. If the answer entity is inside the box then the distance
is only calculated by the L1 distance of the entity from the box center embedding. The
calculation of the model loss is based on Query2Box [28]:

L = −logσ(γ − distbox(v;q))−
k∑

i=1

1

k
logσ(distbox(v′;q)− γ)

where γ represents a fixed scalar margin, v is an answer to the query q (positive entity),
v′ is the i-th negative entity (non-answer to the query q), and k is the number of negative
entities. distbox is the distance of the answer entity from the predicted query box and is
calculated as:

distbox(v;q) = distoutside(v;q) + a ∗ distinside(v;q)
where a is a fixed scalar and

distoutside(v;q) = ∥Max(v− qmax, 0) +Max(qmin − v, 0)∥1
distinside(v;q) = ∥Cen(q)−Min(qmax,Max(qmin, v))∥1

and

qmax = Cen(q) +Off(q)
qmin = Cen(q)−Off(q)

5.3 Evaluation Results

To measure the performance of SQABo, i.e., how representative are the final embeddings
of the target nodes (answers), we use Average Percentile Rank (APR). The percentile
rank of a given score is the percentage of scores in its frequency distribution that are less
than that score. APR in our model is calculated for each query by getting the average
percentile rank of the correct answer among all negative answers based on the prediction
of the model.

PR =
CF − (0.5 ∗ F )

N
∗ 100

where CF (Cumulative Frequency) is the count of all scores less than or equal to the score
of interest and F is the frequency for the score of interest.
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Parameter Value
Entity Encoder Feature Embedding dimension 128
Entity Encoder Spatial Embedding dimension 128

Feed Forward Hidden size 512
Feed Forward Dropout 0.5

Feed Forward skip connections True
Space2Vec Max radius 5400000
Space2Vec Min radius 50
Space2Vec frequency 16
Graph Attention heads 2

Table 5.2: Best Hyperparameters for each module of the architecture

Due to the fact that APR uses all negative samples for each query, as opposed to the AUC
(Area Under Roc Curve) which uses only one negative sample per query, as an evaluation
metric, it is more robust.

The hyperparameters that returned the optimal results are presented in Table 5.2. We im-
plemented all models in PyTorch and trained/evaluated each model on a Ubuntu machine
with 1 GeForce GTX 1080 Nvidia GPU core, which has 10GB memory.

The evaluation results of SQABo against SE-KGE are presented in Table B.1. We com-
pare the two models with two experiments per model plus one for the original SE-KGE
with all of its data as a reference point. Also, in order to test the contribution of Contextual
Graph Attention we run an experiment using only simple attention from Bahdanau et al.,
[3]. For the first experiment, we used the geospatial fragment of the DBGeo, DBGeoG, i.e.
the fragment of DBGeo KG that represents knowledge only about geospatial entities and
the subset of DBGeo QA dataset that is only about geospatial entities. For every single
query structure, except for 2-inter (where SE-KGE oupterformed SQABo only by 1.15%),
SQABo demonstrates better APR, resulting in an APR score difference of 4.5%, when
macro averaged. For the second experiment, we used YAGO2Geo. The results in this
dataset were even better, with SQABo being better in every query structure and having
a macro averaged APR score difference of 5.6%. Lastly, the model without the contex-
tual graph attention still performed better than SE-KGE with an average APR of 89.29 but
worse than the model with contextual graph attention showing the importance of its use.

It is worth noting that, for 3-chain queries over DBGeoG, SQABo outperformed SE-KGE
by 13.46%. While the maximum difference between the two models for YAGO2geo KG
was in 3-inter queries, by 8.72%.

5.4 Summary

In this chapter we compared our model with SE-KGE using the Average Percentile Rank
as a metric. We showed that SQABo achieved better results on both DBGeo (geospatial
part) and YAGO2geo. We also replaced the contextual graph attention mechanism with
simple attention and showed its important contribution.
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6. CONCLUSIONS-FUTURE WORK

In this research work, we present the novel geospatial query answering model SQABo.
SQABo encodes the geospatial and non-geospatial features of the entities and relations
appearing in incoming conjunctive graph queries. Then, these encodings are gradually
projected into boxes in the vector space. The answer to an input conjunctive graph query
is computed by intersecting these boxes using contextual graph attention and returning
the entities inside the boxes. Experimental results on the two geospatial KGs YAGO2geo
and DBGeo, demonstrate that SQABo outperforms the existing relevant work.

As a future research work, we plan to increase the accuracy of our results by employing
geospatial encoding techniques that appeared very recently in the literature [22]. These
techniques capture local and global structures of polygons and not only of bounding boxes.
We plan to extent the expressivity of the queries that SQABo can support, as in [28], by
exploiting the special feature of boxes, that are essentially the Venn Diagrams in vector
space. Another plan is to replace the bounding boxes and the polygons with spherical
data. Using boxes rises the problem of projection distortion due to the mapping of real-
world gps data (spherical surface) to 2D euclidean surfaces. A very recent and promising
work (Sphere2Vec [24]) solves this problem by encoding the point coordinates on a spher-
ical surface. This idea could also be incorporated in our system. Finally, we plan to make
more comparisons with traditional systems such as Strabo 2 in order to determine any
computation time advantages as well as the advantages on incomplete data.
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AUC Area Under ROC Curve
APR Average Percentile Rank
CGA Contextual Graph Attention
CF Cumulative Frequency
DAG Directed Acyclic Graph
GQE Graph Query Embedding
KG Knowledge Graph

NUFT Non-Uniform Fourier Transform
SQABo geoSpatial Query Answering using Boxes
RDF Resource Description Framework

SE-KGE Spatially-Explicit Knowledge Graph Embedding
TATEC Two And Three-way Embeddings Combination

TransGCN Translational Graph Convolutional Network
R-GCN Relational Graph Convolutional Network
ResNet Residual Network
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