
NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCES
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

PROGRAM OF POSTGRADUATE STUDIES
”M.SC. IN COMPUTER SCIENCE”

DIPLOMA THESIS

Approximation Algorithms for Virtual Service Functions
Chain Placement

Nikolaos S. Lazaropoulos

SUPERVISOR: V. Zissimopoulos, Professor NKUA

ATHENS

SEPTEMBER 2022

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ
”ΠΛΗΡΟΦΟΡΙΚΗ”

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Προσεγγιστικοί Αλγόριθμοι για Ανάθεση Αλυσίδων
Συναρτήσεων Εξυπηρέτησης με Περιορισμούς Διάταξης

Νικόλαος Σ. Λαζαρόπουλος

ΕΠΙΒΛΕΠΩΝ: Β. Ζησιμόπουλος, Καθηγητής ΕΚΠΑ

ΑΘΗΝΑ

ΣΕΠΤΕΜΒΡΙΟΣ 2022

DIPLOMA THESIS

Approximation Algorithms for Virtual Service Functions Chain Placement

Nikolaos S. Lazaropoulos
SN: CS3.20.0001

SUPERVISOR: V. Zissimopoulos, Professor NKUA

THREE-MEMBER EXAMINATION COMMITTEE

V. Zissimopoulos, S. Kolliopoulos,
Professor NKUA Professor NKUA

D. Fotakis,
Associate Professor NTUA

Examination Date: September 16, 2022

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Προσεγγιστικοί Αλγόριθμοι για Ανάθεση Αλυσίδων Συναρτήσεων Εξυπηρέτησης με
Περιορισμούς Διάταξης

Νικόλαος Σ. Λαζαρόπουλος
ΑΜ: CS3.20.0001

ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: Β. Ζησιμόπουλος, Καθηγητής ΕΚΠΑ

ΤΡΙΜΕΛΗΣ ΕΞΕΤΑΣΤΙΚΗ ΕΠΙΤΡΟΠΗ

Β. Ζησιμόπουλος, Σ. Κολλιόπουλος,
Καθηγητής ΕΚΠΑ Καθηγητής ΕΚΠΑ

Δ. Φωτάκης,
Αν. Καθηγητής ΕΜΠ

Ημερομηνία Εξέτασης: 16 Σεπτεμβρίου 2022

ABSTRACT

Network Function Virtualization (NFV) is an emerging techonology in which network func-
tions are no longer executed by proprietary software appliances but instead, can run on
commodity servers located in distributed cloud nodes. These functions typically perform
packet flow operations according to policies designed by network engineers. Examples
of network functions include firewalls, load balancers, content filters, and deep packet in-
spection. This technology aims at dealing with the major challenges of today’s enterprise
middlebox infrastructure, such as monetary cost, capacity limitations, management com-
plexity, energy consumption and failures. One of the main advantages of this approach is
that Virtual Network Functions (VNFs) can be instantiated and scaled on demand without
the need of installing new equipment. Network flows are often required to be processed
by an ordered sequence of network functions. For instance, an Intrusion Detection Sys-
tem may need to inspect the packet before compression or encryption are performed.
Moreover, different customers can have different requirements in terms of the sequence
of network functions to be performed. The sequence of multiple VNFs required by network
operators to perform traffic processing is called a Service Function Chain (SFC).

A virtual function can be executed on one or several servers. A fundamental problem aris-
ing when dealing with chains of network functions is how to map these functions to nodes
(servers) in the network while achieving a specific objective. This problem is in general
very hard to solve and most existing algorithms, mainly heuristics, have no provable per-
formance guarantees.

For this reason, in this thesis we study notable approximation algorithms for SFC/VNF
placement, targeting to highlight techniques of guaranteed approximation solutions. We
aim to show how instances of the SFC/VNF placement problem reduce to known prob-
lems, like the Multiple Knapsack With Assignment Restrictions Problem and the Budgeted
Maximum Coverage Problem. We also propose a problem definition that arises in cloud
environments, where operators may need to route themost profitable service chains under
resource constraints and we sketch a solution for a special instance of it.

SUBJECT AREA: Service Functions Chains, Virtual Network Functions

KEYWORDS: SFCs, VNFs, Approximation Algorithms

ΠΕΡΙΛΗΨΗ

Η εικονικοποίηση λειτουργιών δικτύου (NFV) είναι μια αναδυόμενη τεχνολογία στην οποία
η επεξεργασία των ροών του δικτύου δεν εκτελείται πλέον από εξειδικευμένο hardware,
αλλά αντίθετα, μπορεί να επιτελείται σε απλούστερους servers που βρίσκονται σε κόμβους
ενός κατανεμημένου υπολογιστικού νέφους (cloud). Αυτές οι λειτουργίες συνήθως εκτελού-
νται σύμφωνα με πολιτικές που έχουν σχεδιαστεί από τους μηχανικούς του δικτύου. Τέτοιες
λειτουργίες μπορεί να είναι τείχη προστασίας, εξισορροπητές φορτίου, φίλτρα περιεχομένου
και βαθιά επιθεώρηση πακέτων. Αυτή η τεχνολογία στοχεύει στην αντιμετώπιση των
βασικών προκλήσεων της δικτυακής υποδομής (data centers) των παρόχων υπηρεσιών,
όπως το χρηματικό κόστος, οι περιορισμοί χωρητικότητας, η πολυπλοκότητα της διαχείρισης
του δικτύου, η κατανάλωση ενέργειας και οι αστοχίες λογισμικού.

Ένα από τα κύρια πλεονεκτήματα αυτής της προσέγγισης είναι ότι οι λειτουργίες εικονικού
δικτύου (VNF) μπορούν να δημιουργηθούν και να κλιμακωθούν κατ’ απαίτηση χωρίς την
ανάγκη εγκατάστασης νέου εξοπλισμού. Οι ροές δικτύου συχνά απαιτείται να υποβάλλονται
σε επεξεργασία από μια διατεταγμένη ακολουθία λειτουργιών δικτύου. Για παράδειγμα,
ένα σύστημα ανίχνευσης εισβολής μπορεί να χρειαστεί να επιθεωρήσει τα πακέτα πριν
από τη συμπίεση ή κρυπτογράφηση τους. Επιπλέον, διαφορετικοί πελάτες μπορούν να
έχουν διαφορετικές απαιτήσεις λειτουργίας σχετικά με την ακολουθία των λειτουργιών
δικτύου που πρέπει να εκτελεστούν. Η διατεταγμένη ακολουθία πολλαπλών VNFs που
απαιτείται να εκτελεστεί σε ένα δίκτυο ονομάζεται αλυσίδα εικονικών λειτουργιών (Service
Function Chain - SFC).

Ένα θεμελιώδες πρόβλημα που προκύπτει όταν ασχολούμαστε με αλυσίδες λειτουργιών
δικτύου είναι η ανάθεσή τους σε επιλεγμένους κόμβους του δικτύου με σκοπό την βελτιστο-
ποίηση κάποιου κριτηρίου. Αυτό το πρόβλημα είναι γενικά πολύ δύσκολο να λυθεί και οι
περισσότε-ροι υπάρχοντες αλγόριθμοι, κυρίως ευρετικοί, δεν έχουν εγγυημένη απόδοση.

Για το λόγο αυτό, στην παρούσα διπλωματική εργασία μελετάμε κάποιους σημαντικούς
προσεγγιστικούς αλγόριθμους για την τοποθέτηση SFCs/VNFs. Προσπαθούμε να δείξουμε
πώς ορισμένες περιπτώσεις του προβλήματος τοποθέτησης SFC/VNF μεταπίπτουν σε
γνωστάπροβλήματα, όπως τοΠρόβλημαΠολλαπλών Σακιδίων με Περιορισμούς Ανάθεσης
και το Πρόβλημα Μεγιστικού Καλύμματος με Περιορισμό Πόρων. Προτείνουμε επίσης
έναν ορισμό προβλήματος που προκύπτει σε περιβάλλοντα υπολογιστικού νέφους. Εκεί
οι διαχειριστές αποσκοπούν στις πιο προσοδοφόρες, από πλευράς ρυθμού μετάδοσης
δεδομένων, αλυσίδες υπηρεσιών υπό περιορισμούς πόρων και προτείνουμε μια πιθανή
λύση για μια ειδική περίπτωση του προβλήματος.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Service Functions Chains, Virtual Network Functions

ΛΕΞΕΙΣΚΛΕΙΔΙΑ: Αλυσίδες Εικονικών Λειτουργιών Δικτύου, VNFs, Προσεγγιστικοί Αλγόριθμοι

ACKNOWLEDGEMENTS

I would like to acknowledge and give my warmest thanks to my supervisor, Mr. V. Zis-
simopoulos, Professor of the Department of Informatics and Telecommunications of Na-
tional and Kapodistrian University of Athens for the opportunity he provided me to deal
with this specific topic, and for his guidance throughout the preparation of this thesis.

I would also like to thank the members of the Examination Committee: Mr. S. Kolliopou-
los, Professor of the Department of Informatics and Telecommunications of National and
Kapodistrian University of Athens and Mr. D.Fotakis, Associate Professor of the School of
Electrical and Computer Engineering of National Technical University of Athens for hon-
oring me through their presence in the examination of this thesis.

Also, I would like to express my gratitude to my family for their support during all these
years of my studies. Their belief in me was what sustained me this far.

CONTENTS

1 INTRODUCTION TO NETWORK FUNCTIONS VIRTUALIZATION 21
1.1 Introduction . 21
1.2 VNFs Architecture . 22
1.3 Resource Allocation Problems in VNFs Placement 24

1.3.1 VNFs - Service Chain Composition (VNFs-SCC) 25
1.3.2 VNFs - Forwarding Graph Embedding (VNFs-FGE) 26
1.3.3 VNFs - Scheduling (VNFs-SCH) . 27

2 THE SERVICE FUNCTION CHAIN PROBLEM 29
2.1 Virtual Network Function Placement . 29
2.2 Service Function Chain Routing For VNFs . 31
2.3 Joint Optimization of VNF Placement and SFC Routing 32

3 EXISTING APPROXIMATIONS 35
3.1 Approximation algorithms for SFC Placement . 35

3.1.1 SFC with single function . 35
3.1.2 Equivalence with Hitting Set . 36
3.1.3 Greedy Algorithms for SFC Placement . 38
3.1.4 Naive and Faster Greedy Algorithms . 40

3.2 Joint Placement and Allocation of VNFs with Budget and Capacity Constraints 44
3.2.1 System Model And Problem Formulation 45
3.2.2 Hardness of Approximation for the VPCA Problem 46
3.2.3 Proposed Algorithms . 48
3.2.4 MKAR LP Rounding: A 1/2 Approximation Algorithm 48

3.3 The Set-Union Knapsack problem (SUKP) . 50
3.3.1 Approximation for a special case of the Set-Union Knapsack problem 52

4 CONTRIBUTION 55
4.1 System Model and Problem Formulation . 56
4.2 Routing in the scene . 57
4.3 Solving MDR-SFC-GCC Problem . 58

5 OPEN PROBLEMS 61
5.1 Joint Placement and Allocation of SFCs with Budget and Capacity Constraints 61
5.2 General cases . 62

6 CONCLUSION 63

ABBREVIATIONS - ACRONYMS 65

REFERENCES 68

LIST OF FIGURES

1.1 A Service Function Chain . 22
1.2 NFV Architecture . 23
1.3 NFV Orchestrator . 24
1.4 VNF Chain Composition . 25
1.5 VNFs Forwarding Graph Embedding . 27
1.6 VNFs Scheduling . 28

2.1 VNF Placement . 30
2.2 Conflict between VNF placement and SFC routing 32

3.1 The Associated Network . 37
3.2 Example of a proper cut (dashed nodes in red) for the layered graph

relative to a demand d associated with a path of length 4 and a chain
of length 3 . 39

4.1 A network with network functions at different locations 55
4.2 Configuration graph - general case . 57
4.3 Configuration graph for SFC path finding 58

PREFACE

Network Functions Virtualization, NFV is an approach to telecommunications networking
where the network entities that traditionally used dedicated hardware items are now re-
placed with computers on which software runs to provide the same functionality.

By running a network based around NFV, Network Functions Virtualization techniques, it
is easier to expand and modify the network, and it is able to provide considerably more
flexibility as well as being able to standardise on much of the hardware as it consists of
additional computing power. In this way costs can be considerably reduced.

Working in various software companies for telecommunications, and living the develop-
ments around the transition of network solutions to the cloud, I noticed that there is almost
no consistent way of making decisions for placing virtual applications in the servers. Each
way is empirical, with its pros and cons. This fact piqued my interest to look for prob-
lem modeling techniques and algorithms that can provide direct and provable solutions in
terms of their performance.

As in other fields, here too, theoretical computing can illuminate the search for guaranteed
design approaches and help build efficient architectures in today’s rapidly evolving cloud
solutions.

Approximation Algorithms for Virtual Service Functions Chain Placement

1. INTRODUCTION TO NETWORK FUNCTIONS VIRTUALIZATION

This thesis studies approximation algorithms in the field of Network Functions placement
and Service Function Chain placement/routing. We start with an introduction to Network
Functions Virtualization, so that the reader can understand the technology field where
the discussed approximation algorithms apply. We continue with a discussion around the
Service Function Chain problem. After we study in a mathematical context existing tech-
niques of guaranteed performance and finally we present a problem formulation inspired
by ideas of cloud networking research.

1.1 Introduction

Network functions (NFs), also known as ”middleboxes”, are playing an increasingly im-
portant role in modern networks, ranging from mobile networks, enterprise networks, to
datacenter networks. NFs improve the network performance (e.g., WAN Optimizer, web
proxy and video transcoder, load balancer), enhance the security (e.g., firewall, IDS/IPS)
or monitor the traffic (e.g., lawful interception, passive network monitor). Conventionally,
NFs are built in dedicated hardware for performance concerns, which incur high capital
investment and operating expense. Furthermore, they are hard to manage. Their re-
placement and upgrade involve non-trial human effort. In light of this situation, NFV was
proposed [3] (Juliver Gil Herrera and Juan Felipe Botero, IEEE 2016) , aimed to address these
issues by leveraging visualization technologies to consolidate NFs into general-purpose
hardware platforms.
Network functions virtualization (NFV) is a new network architecture framework where
network functions that traditionally used dedicated hardware (middleboxes or network ap-
pliances) are now implemented in software that runs on top of general purpose hardware
such as high volume servers. NFV emerges as an initiative from the industry (network
operators, carriers, and manufacturers) in order to increase the deployment flexibility and
integration of new network services with increased agility within operator’s networks and
to obtain significant reductions in operating and capital expenditures.
In November 2012, seven of the world’s leading telecom network operators selected the
European Telecom Standards Institute (ETSI) [4] (R. Guerzoni et al., 2012) to be the home
of the industry specification group for NFV. Under the paradigm of NFV, traditional mid-
dleboxes are managed as single modules of software, programmed to play the role of
a particular Virtual Network Function (VNF), this allows modularity and isolation of each
function, so they can be managed independently. In addition, NFV facilitates installation
and deployment of VNFs on general purpose servers (e.g., x86-based blades), thus al-
lowing dynamic migration of VNFs from one server to another, that is, to any place of the
network.
In summary, NFV is the envisioned framework to solve most of the current network prob-
lems due to the wide use of specific hardware appliances. Also, it provides opportunities
for network optimization and cost reduction. Moreover, it enables to configure hybrid sce-

21 N. Lazaropoulos

Approximation Algorithms for Virtual Service Functions Chain Placement

Figure 1.1: A Service Function Chain

narios where functions running on virtualized resources co-exist with those running on
physical resources. Such hybrid scenarios may be important in the transition towards
NFV. The traditional deployment of a Network Service (NS) requires the data traffic to
pass through a certain fixed set of middleboxes in a particular order, which cause some
processing according to the function they perform. The task of choosing the needed mid-
dleboxes and steer the traffic among them is commonly known as middleboxes orches-
tration [5] (A. Gemberet al., 2013). Traditionally, this task is performed manually, and is set
at the forwarding table entries of routers; the above is a cumbersome and error prone
process. Moreover, any placement of these physical middleboxes is destined to become
ineffective over time; because it is very costly and impractical to keep changing the lo-
cation of these hardware with changing network conditions. In the NFV ecosystem, a
Network Service (NS) is a set of chained VNFs as shown in Figure 1.1. An NS is built and
deployed in NFV by defining its: i) number of VNFs, ii) their respective order in the chain
and iii) the allocation of the chain in the Network Functions Virtualization Infrastructure
(NFVI), also called Substrate Network (SN). One of the main challenges to deploy NFV
is to achieve fast, scalable and dynamic composition and allocation of NFs to execute an
NS. However, since an NS requires a set of VNFs, achieving an efficient services’ coor-
dination and management in NFV raises two questions: 1) how to compose VNFs for a
determined NS, and 2) how to efficiently allocate and schedule the VNFs of an NS onto a
SN. The ETSI, through its NFV technologies group, is partnering with network operators
and equipment vendors to promote NFV and is currently progressing with regard to the
first question above.

1.2 VNFs Architecture

VNFs can be deployed and reassigned to share different physical and virtual resources
of the infrastructure, so as to guarantee scalability and performance requirements. This
allows Telecom Service Providers (TSPs) to rapidly deploy new and elastic services. In
general, there are three main components in the NFV architecture: Services, NFVI and
the NFV Management and Orchestration (NFV-MANO), as shown in Figure 1.2.

These components are described as follows. 1) Services: A service is a set of VNFs, that
can be implemented in one or multiple virtual machines. In some situations, VNFs can
run in virtual machines installed in operating systems or on the hardware directly; they
are managed by native hypervisors or virtual machine monitors. A VNF is usually ad-

N. Lazaropoulos 22

Approximation Algorithms for Virtual Service Functions Chain Placement

Figure 1.2: NFV Architecture

ministered by an Element Management System (EMS), responsible of its creation, con-
figuration, monitoring, performance and security. An EMS provides the essential infor-
mation required by the Operations Support System (OSS) in a TSP’s environment. The
OSS is the general management system, that, along with the Business Support System
(BSS), help providers to deploy and manage several end-to-end telecommunications ser-
vices (e.g., ordering, billing, renewals, problem troubleshooting, etc.). NFV specifications
mainly focus on integration with existing OSS and BSS solutions. 2) NFVI: NFV infras-
tructure covers all hardware and software resources that comprise the NFV environment.
NFVI includes network connectivity between locations, e.g., between data centers and the
public or private hybrid clouds. Physical resources typically include computing, storage
and network hardware providing processing, storage and connectivity for VNFs through
the virtualization layer that sits just above the hardware and abstracts the physical re-
sources (logically partitioned and assigned to VNFs). There is no specific solution for the
deployment of NFV; rather NFV architecture can take advantage of an existing virtualiza-
tion layer, such as a hypervisor, with standard features that simply extracts the hardware
resources and assigns them to the VNFs. When this support is not available, often, the
virtualization layer is achieved through an operating system that adds software on top of a
non-virtualized server or by implementing a VNF as an application [1] (Xin Li and Chen Qian,
CCNC, 2016). 3) NFV-MANO: NFVManagement and Orchestration is composed of: the or-
chestrator, VNFs managers and Virtualized Infrastructure Managers. Such blocks provide
the functionality required for the management tasks applied to the VNFs, e.g., provision-
ing and configuration. NFV-MANO includes the orchestration and lifecycle management of
physical or virtual resources that support the infrastructure virtualization, and the lifecycle
management of VNFs. It also includes databases that are used to store the information
and data models defining both deployment as well as lifecycle properties of functions,
services, and resources. NFV-MANO focuses on all virtualization-specific management

23 N. Lazaropoulos

Approximation Algorithms for Virtual Service Functions Chain Placement

tasks necessary in the NFV framework. In addition, the framework defines interfaces that
can be used for communications between the different components of the NFV-MANO, as
well as coordination with traditional network management systems (i.e., OSS and BSS) to
allow the operation of both VNFs and functions running on legacy equipment. Summariz-
ing, if an NS using a firewall and a DPI is deployed, then NFV-MANO shall be responsible
to say where these VNFs are located on the physical network. In turn, these VNFs are
controlled by the EMS and the same MANO. Besides, the virtualization layer exposes the
physical resources of chosen NFVI locations to the VNFs.

1.3 Resource Allocation Problems in VNFs Placement

Resource allocation in NFV requires efficient algorithms to determine on which hypervisors
VNFs are placed, and be able to migrate functions from one server to another for such ob-
jectives as load balancing, reduction of CAPEX and OPEX, energy saving, recovery from
failures, etc. [2] (Juliver Gil Herrera and Juan Felipe Botero, 2016). In the NFV architecture
framework the component that performs the resource allocation is the orchestrator.

Figure 1.3: NFV Orchestrator

Figure 1.3 illustrates a scenario where the orchestrator manages VNFs through the VNF
manager and the virtualized infrastructure manager (see Figure 1.2). The orchestrator
evaluates all the conditions to perform the assignment of VNFs chains on the physical re-
sources, leaning on the VNF managers and the virtualized infrastructure managers. The
resource allocation in NFV is carried out in three stages: 1) VNFs Chain composition
(VNFs-CC), also known in the literature as Service Function Chaining [6] (P. Quinn and J.
Guichard, 2014) , 2) VNF Forwarding Graph Embedding (VNF-FGE) and 3) VNFs Schedul-
ing (VNFs-SCH).

N. Lazaropoulos 24

Approximation Algorithms for Virtual Service Functions Chain Placement

The three stages that conform the resource allocation problem in NFV-based network’s
architectures are presented below.

1.3.1 VNFs - Service Chain Composition (VNFs-SCC)

NFV exploits the flexibility introduced by virtualization to dynamically compose chains of
VNFs and strategically deploy them on a set of physical network nodes so as to achieve a
predefined operator’s objective or to meet a Service Level Agreement (SLA), unlike the
current static network function chain placement that depends on the physical location of
the middleboxes in the SN. The ETSI defines an NS as entities composed by an ordered
number of VNFs [2] (Juliver Gil Herrera and Juan Felipe Botero, 2016). That is, a packet
must pass through a set of VNFs to be part of the offered network service. As VNFs
are software, one of the main challenges that arises is: How to concatenate the different
VNFs efficiently in order to compose an NS in the most adequate way, with respect to the
TSP goals? This first challenge is the chaining process, that we call chain composition.
TSPs will need to efficiently compose such chains to deploy customized and dynamic
NFV-enabled network services.

Figure 1.4: VNF Chain Composition

Figure 1.4 illustrates VNFs-CC. It shows a Virtual Network Functions Request (VNFR) and
two possible chainings (VNF-FGs) of its VNF instances. For the i-th VNFR, VNFRi , the
initial data rate of the network flow -rinit(VNFRi)- and its VNFs are given. Some VNFs
may split the traffic flow; for instance, a load balancer VNF separating incoming data into
two streams can specify that 60% of the incoming traffic is forwarded to VNF2 and 40% to
VNF3 (see VNF1, 2, and 3 in Fig. 1.4a). li (VNF) denotes the set of “outgoing” links of a
VNF. For each link, relative traffic rate -rrel- percentage with respect to the total outgoing
VNF’s traffic is defined (60% and 40% in the case of VNF1).

25 N. Lazaropoulos

Approximation Algorithms for Virtual Service Functions Chain Placement

Neither bandwidth demands of the links nor capacity demands of the nodes in the VNF-
FG are static; they depend on the ordering of the VNFs. This ordering is flexible, but it is
tied to the dependencies between VNFs; i.e., the network flow first has to pass through a
set of VNFs before it arrives at a specific VNF (blue dotted line in Fig. 1.4a from VNF4 to
VNF1, implying that VNF4 depends on VNF1 andmust therefore be executed after VNF1).
Additionally, VNF link dependencies can be defined for VNFs that should selectively be
placed on one of the sub-flows (see VNFs 2 and 3, both pointing to the VNF links of VNF1
in Fig. 1.4a).
Based on the dependencies, several valid chaining options (VNF-FGs) of VNFRs can be
derived. Fig. 1.4b shows two possible VNF-FGs for the VNFR in Fig. 1.4a). In VNF-FG
1, the 1 GBps (rinit) is divided in 600 MBps (60%) to VNF2 and 400 MBps (40%) to VNF2
as indicated in the VNFR. In VNF-FG 2, the composition of the VNFs is different as in
the lower branch VNF4 goes before VNF3, which is another perfectly feasible chaining
solution (see Fig. 1.4b).

1.3.2 VNFs - Forwarding Graph Embedding (VNFs-FGE)

The chain of VNFs composing an end-to-end network service is called VNF-Forwarding
Graph (FG). This resulting graph in the first stage is given as the input of the embedding
stage. VNF-FG is composed by the ordered set of VNFs that the NS runs in order to fulfill
service’s attributes (e.g., reliability, availability, security and performance) [2] (Juliver Gil
Herrera and Juan Felipe Botero, 2016).
VNF-Forwarding Graph Embeeding (FGE) is the second challenge identified in the NFV-
RA, which seeks to find where to allocate the VNFs in the network infrastructure in a
suitable way, considering a set of requested network services. Besides, resource opti-
mization must be accomplished with regard to a specific objective (e.g., maximization of
remaining network resources, minimization of SN’s power consumption, optimization of a
specific QoS metric, etc.). VNF-FGE can be seen as a generalization of the well-known
Virtual Network Embeeding (VNE) Problem [2] (Juliver Gil Herrera and Juan Felipe Botero,
2016).
VNE is NP-hard [2] (Juliver Gil Herrera and Juan Felipe Botero, 2016) and, as VNF-FGE prob-
lem is a generalization of VNE, it is also NP-hard. Generally speaking, the problem con-
sists on the mapping of virtual resources to candidate substrate resources. Only if all
virtual resources can be mapped, the entire network is then embedded and substrate re-
sources are actually spent. The two stages of VNE also apply to VNF-FGE: virtual node
and virtual link mapping. In addition, in VNF-FGE, each VNF is annotated with a type:
computing, storage or networking and therefore, it has to be allocated into a physical
node that meet the VNF’s type.

Figure 1.5 shows the deployment of an end-to-end network service S = {Firewall →
LoadBalancing → Encryption → PacketInspection → Decryption} between two sub-
strate nodes in a NFV-enabled SN infrastructure. It illustrates the embedding stage involv-
ing: Orchestrator, service, virtualization layer and NFVI. The orchestrator is responsible
of the embedding stage; it is in charge of the management and orchestration of software

N. Lazaropoulos 26

Approximation Algorithms for Virtual Service Functions Chain Placement

Figure 1.5: VNFs Forwarding Graph Embedding

resources and the virtualized hardware infrastructure to realize networking services. The
service is composed by a set of VNFs that together provides a specific functionality. The
virtualization layer abstracts the physical resources and anchors the VNFs to the virtu-
alized infrastructure. It ensures that the VNF lifecycle is independent of the underlying
hardware platforms by offering standardized interfaces. This type of functionality is typi-
cally provided in the forms of Virtual Machines (VMs) and their hypervisors which can be
located in data centers, at network nodes, and in end-user facilities.
A High Volume Server (HVS) is considered a physical network node in a NFV based net-
work architecture, which uses a hypervisor to manage virtual machines, according to the
availability of resources (CPU, Disk, NIC and RAM). VMs running on top of HVSs can host
one or more VNFs of the same type (computing, storage, networking).
An example to illustrate the embedding stage is shown in Figure 1.5. First of all, it is im-
portant to clarify that the orchestrator runs a VNF-FGE algorithm which makes embedding
decisions, according to the objective to optimize. Here, as in the VNE, there are virtual
node and link mapping phases. In the virtual node mapping phase; VNF1 is hosted onto
HVS1, similarly, VNF2 is embedded onto HVS2, then, both VNF3 and VNF4 are mapped
onto HVS3 and finally VNF5 is allocated onto HVS4. In the virtual link mapping phase, the
algorithm maps each virtual link between VNFs to a path in the SN. It is important to note
that the path may be composed of more than one physical link; for instance, the virtual link
between VNF3 and VNF4 is mapped into the path composed of the physical links HVS3
- HVS5 and HVS5 - HVS4.

1.3.3 VNFs - Scheduling (VNFs-SCH)

A third and final stage of the NFV-RA problem is the scheduling process, that is called
Virtual Network Functions Scheduling. This stage attempts to provide a functions’ policy

27 N. Lazaropoulos

Approximation Algorithms for Virtual Service Functions Chain Placement

of execution in order to minimize the total operating time without degrading the service
performance and respecting all the precedences and dependencies between the VNFs
composing the NS.
The NFV infrastructure is comprised of several and different HVSs, therefore, a proper
scheduling of VNFs’ execution should be performed in order tominimize the total execution
time of the network services, and thus obtain improved performance.

Figure 1.6: VNFs Scheduling

Figure 1.6 illustrates an example on how three different NSs, with different chains, and
different network functions, can be scheduled over a limited NFVI, five servers in this
case, minimizing the total execution time of the service set in order to maximize the system
performance. Service 1 is composed of four VNFs; e.g., VNF1 runs onto HVS1 and takes
2.5 time units, VNF2 runs onto HVS4 and takes 1.0 time unit, VNF3 runs on HVS2 and
takes 1.0 time unit, VNF4 runs onto HVS5 and takes 2.5 time units, VNF5 runs onto HVS1
and takes 2.0 time units. The runtime of service 1 was 10 time units. While service 2 has
the shortest runtime. Table I shows the summary information for the services 1, 2 and 3
respectively.

N. Lazaropoulos 28

Approximation Algorithms for Virtual Service Functions Chain Placement

2. THE SERVICE FUNCTION CHAIN PROBLEM

Service Function Chain (SFC) [11] (Weihan Chen et al., 2020) refers to connecting differ-
ent network functions in specific sequence and providing corresponding service for users.
The network functions in SFC are realized as different Virtualized Network Function (VNF).
In actual network, SFC can be configured and adjusted according to different traffic de-
mand. The configuration process involves two aspects: 1) the placement of VNF and 2)
the traffic steering (routing) among different VNFs. In terms of VNF placement, the net-
work operators (or Internet Service Providers) need to select the location for VNF Instance
(VNFI), which can run VNF and allocate the resource (CPU, memory, etc.) for each VNFI.
And in terms of traffic steering (routing), the path used to transmit traffic through specific
VNFs of SFC needs to be determined. Proper SFC configuration can be helpful for im-
proving network performance and reducing operational cost.
The VNF placement and routing optimization problem can be considered independently
or jointly. When treating VNF placement optimization problem independently, VNF de-
ployment and operational cost is considered as the prior optimization objective, the cost
may include minimizing placement cost, minimizing traffic switching cost among different
VNFs, etc. And the constraints of placement problem mainly focus on resource capacity
constraints, which can be host CPU core number, link capacity or other network resources.
In contrast, the optimization objective of routing problem tends to prioritize routing cost.
It aims to find a path with least cost. The cost has many choices (such as financial cost,
delay, QoS requirement, etc.). Meanwhile, the main constraint of routing problem is that
user traffic flow should pass through the services provided by the SFC in the specified
order.
In order to achieve better network performance, the VNF placement problem and traffic
routing problem can be considered jointly. The optimization objective can be the combina-
tion of placement and routing optimization objectives. The constraints are also similar with
the VNF placement optimization problem constraints plus routing constraints. However,
optimizing VNF placement and routing jointly may cause some conflict. Because lower
placement cost means less VNFIs are deployed, which results in higher routing cost (some
traffic may be routed to longer path in order to achieve necessary network functions). On
the contrary, to realize lower routing cost, more VNFIs need to be deployed, which causes
placement cost increasing. Hence, finding a trade-off solution for joint optimization prob-
lem is necessary.

2.1 Virtual Network Function Placement

When a specific SFC is deployed, it first instantiates the required VNFs as VNFIs, and then
places these VNFIs in proper location of the network. Different VNF placement schemes
can affect the network performance and placement cost. For example, as shown in Figure
2.1a, if only one VNFI for each VNF of SFC is placed in the network, the placement cost
(approximatively the number of deployed VNFIs) is minimized, but the network perfor-

29 N. Lazaropoulos

Approximation Algorithms for Virtual Service Functions Chain Placement

mance is relatively low. SFC traffic throughput is equal to the available bottleneck band-
width of path shown in Figure 2.1a, which may not satisfy users requirement. However,
if the placement scheme as shown in Figure 2.1b is adopted, the network performance
can be better (traffic throughput can be improved), but the placement cost also ascends.
During the placement process, network operators usually hope to allocate minimized re-
sources to each VNFI while satisfying the performance requirements. VNF placement
optimization can also bring financial benefit for network operators (e.g. reduction of de-
ployment and operational cost).

Figure 2.1: VNF Placement

In the current optimization solutions of VNF placement, the actual network is usually con-
sidered as a graph which includes a set of nodes and edges. The nodes are the abstract
of forwarding devices in the network. Some of the nodes can connect with the server-
clusters, and VNF can be deployed in these clusters. Each server-cluster has its own
physical resources, containing CPU, memory, storage, etc. These resources should be
allocated to the VNF as requirements. The edges in the graph represent the links between
different nodes, and edges also have physical resource, mainly referring to link capacity.
According to user requirements and resource constraints, the optimization solutions need
to deploy VNFIs which are required by specific SFC in the graph, and then realize ex-
pected optimization goal.

N. Lazaropoulos 30

Approximation Algorithms for Virtual Service Functions Chain Placement

In general, the cost that physical devices use to run VNF is mainly considered. This host
resources allocation cost is related to the resource demand for each VNF and the number
of VNFIs running on host, and the bandwidth resources allocation cost is related to the
volume of traffic on each link.
Most optimization problems of VNF placement are modeled as Integer Programming prob-
lem or Mixed Integer Programming (MIP) problem [11] (Weihan Chen et al., 2020). Besides
the optimization objective mentioned above, the problems also include the related re-
sources and user demand constraints such as physical device capacity constraint, location
constraint, link capacity constraint, throughput constraint and so on. These constraints are
the boundary of VNF placement optimization problem, and they help to find optimal solu-
tion under specified conditions. Meanwhile, the computational complexity of solving the
optimization problem also needs to be evaluated. Usually, the computational complexity
is related to the number of nodes (namely physical devices that can run VNFs) in the net-
work and the length of SFC (namely the number of VNFs in each SFC). More nodes or
longer SFC means the computational complexity of solving process is higher.
Some VNF placement optimization problems are proved to be NP-hard [11] (Weihan Chen
et al., 2020). That means it is difficult to realize fast solving for large-scale network. There-
fore, some heuristic algorithms are proposed to realize fast solving. These heuristic al-
gorithms include both classical algorithms (e.g. local search, greedy, etc.) and novel
algorithms (e.g. bipartite graph matching, etc.).

2.2 Service Function Chain Routing For VNFs

Besides VNF placement, traffic routing also needs to be considered. The process of rout-
ing traffic requires to determine the forwarding path that traverses each VNF of SFC in
specified order and consider the related network characteristics (such as link load, link
transmission delay, etc.). The network operators usually wish to compute forwarding path
efficiently and the routing cost could be minimized. In practice, traditional shortest path
algorithm (e.g. Dijkstra’s algorithm) can be helpful when computing forwarding path, but
additional SFC constraints also need to be considered for satisfying user demands.
Similar to VNF placement optimization problem, SFC routing optimization problem also
considers the actual network as a directed graph. The traffic should be transmitted from
starting node to terminating node and pass through the VNFs of specified SFC. Mean-
while, the locations of these VNFs in the graph are assumed to be known in advance.
The routing optimization solutions should calculate the shortest path with least cost and
ensure the found paths are admissible.
The metric of SFC routing algorithm has many potential choices. It could be financial
aspect (such as maintaining cost of forwarding devices, etc.) or network performance
aspect (such as traffic propagation delay, user QoS demand, etc.). Existing optimization
solutions usually aim to reduce the routing costs and improve the network performance
like throughput. Minimization of the delay cost when calculating forwarding paths can be
the only metric for link communication and VNF processing [11] (Weihan Chen et al., 2020).
The reason is that delay is an important consideration in many networks, and it can also

31 N. Lazaropoulos

Approximation Algorithms for Virtual Service Functions Chain Placement

be used to represent dynamic loads on network links and on VNF processing nodes.
The SFC routing algorithms need to find a forwarding path that can transfer traffic from
source to destination with least cost. Meanwhile, they also need to ensure the traffic can
be processed by required network services.

2.3 Joint Optimization of VNF Placement and SFC Routing

When VNF placement and SFC routing optimization problems are considered jointly, there
cloud be a conflict between these two problems. For example, as shown in Figure 2.2a
and 2.2b, there are three traffic requests T1 (from node 3 to 11), T2 (from node 11 to 1)
and T3 (from node 10 to 5) demand SFC1 composed of VNF1, VNF2 and VNF3 (the order
of VNFs is VNF1-VNF2-VNF3). In Figure 2.2a, if there is only one instance of SFC1 in
the network, traffic flow T2 and T3 have to be routed over longer path, which causes more
routing cost. However, if we deploy two SFC1 instances in the network, as shown in Figure
2.2b, the routing cost can be reduced due to using shorter forwarding paths. This example
implies that optimizing VNF placement alone by instantiating fewer VNFIs may cause the
traffic routing cost increasing. Whereas, if SFC routing optimization is considered prefer-
entially, the additional VNF placement cost may be introduced, because more VNFIs are
required to satisfy abundant traffic demand in today’s network environment. Hence, joint
optimization of VNF placement and SFC routing is necessary to find a trade-off optimal
SFC deployment scheme.

Figure 2.2: Conflict between VNF placement and SFC routing

Joint optimization solutions should deploy required VNFs of SFC properly, which means
the deployment scheme can achieve high resource utilization or minimize the resources
that need to be allocated with VNFs. Meanwhile, user traffic flow should also be routed
through specified VNFs with QoS requirements. Besides these tasks, some solutions also
consider the migration of VNFIs in response to the variation of user demand or network
situation.
The objective of VNF placement and SFC routing joint optimization can be diverse. Some
joint optimization solutions usually combine the VNF placement and SFC routing optimiza-
tion objectives together. On the other hand, some solutions do not explicitly represent the
VNF placement and SFC routing optimization objectives.
The type of optimization problem formulation mainly depends on the optimization objec-
tive. If the optimization objective is the combination of VNF placement and SFC routing

N. Lazaropoulos 32

Approximation Algorithms for Virtual Service Functions Chain Placement

optimization objectives, the joint optimization problem is usually modeled as Mixed Integer
Linear Programming (MILP) problem [11] (Weihan Chen et al., 2020). The reason is besides
integer variables (like physical resources capacity), some SFC routing optimization solu-
tions may involve real variables (like link delay). If the optimization objective does not
involve real variables, the optimization solutions usually use ILP to model the optimization
problem.
Since the joint optimization problems of VNF placement and SFC routing are basically NP-
hard, most solutions propose corresponding heuristic algorithms to realize rapid solving.
The details of each heuristic algorithm can be different according to the specific optimiza-
tion problems. But the main idea of these heuristic algorithms is similar. They all rely
on related network operational experience, leverage constraint relaxation, iteration and
other methods to achieve the trade-off between optimality gap and computational com-
plexity, and then find the result that is close to the optimal solution. However, the results
solved by heuristic algorithm are usually near-optimal and the gap between near-optimal
and optimal solutions cannot be estimated.

33 N. Lazaropoulos

Approximation Algorithms for Virtual Service Functions Chain Placement

N. Lazaropoulos 34

Approximation Algorithms for Virtual Service Functions Chain Placement

3. EXISTING APPROXIMATIONS

In this chapter we present notable approximation algorithms around SFC Placement and
VNF Capacity Allocation problems.

3.1 Approximation algorithms for SFC Placement

Existing Service Function Chain placement algorithms can be roughly classified into two
categories: ILP-based and greedy-based. These approaches typically have no provable
performance guarantees. Although many works on SFC placement have been reported in
the literature, the work in [7] (A. Tomassilli et al., IEEE INFOCOM 2018) is the first to propose
a provably efficient algorithm to place chains of virtualized network functions within the
network.
The authors model the network as a digraph G = (V,E). A demand d ∈ D is modeled by
a couple composed of a path path(d) of length l(d) and a service function chain sfc(d) of
length s(d). A path is a sequence of vertices in V . It is considered the case of an operator
which has already routed its demands and which now wants to optimize the placement
of network functions. A service function chain is an ordered sequence of functions in F ,
where F is the set of network functions. The flow associated with the demand should be
processed by the network functions of its chain in the correct order. Each function f ∈ F
has a setup cost which may depend on the nodes. The setup cost of function f in node
v ∈ V is noted as c(v, f).
The considered problem, referred to as SFC-PLACEMENT, is to find a placement of net-
work functions of minimum setup cost satisfying the service chain constraints of all de-
mands. It can be stated as follows.
Input: A digraph G = (V,E), a set of functions F , and a collection D of demands. Each
demand d ∈ D is associated with a path path(d) ∈ V ∗ and a sequence of functions
sfc(d) ∈ F ∗. Lastly, a cost c : V × F → c(v, f), defining the cost of setting up the function
f in node v.
Output: A function placement that is a subset Π ⊂ V × F of function locations, such
that, all demands of D are satisfied. We say that a demand d ∈ D associated with a path
path(d) = u1, u2, ..., ul(d) and a chain sfc(d) = r1, r2, ..., rs(d) is satisfied by Π, if there exists
a sequence of indices i1 ≤ i2 ≤ ... ≤ is(d), such that (vij , rj) ∈ Π, for 1 ≤ j ≤ s(d).
Objective: minimize

∑
(v,f)∈Π c(v, f).

3.1.1 SFC with single function

The Minimum-Weight Hitting Set Problem (MIN-WHS), which is the hitting set formulation
of the Minimum-Weight Set Cover Problem (MIN-WSC), can be formally defined as fol-
lows:
Input: Collection C of subsets of a finite set S.

35 N. Lazaropoulos

Approximation Algorithms for Virtual Service Functions Chain Placement

Output: A hitting set for C, i.e., a subset S ′ ⊆ S such that S ′ contains at least one element
from each subset in C.
Objective: Minimize the cost of the hitting set, i.e.,

∑
x∈S′ cx.

When all the demands have a service function chain which consists of a single function,
the problem can be directly mapped to an instance of MIN-WHS:

1. the elements of S are the possible function locations, i.e., the vertices in V . Each
element has cost c(v).

2. the sets in C correspond to the paths of the demands in D. For each path path(d),
the corresponding set is the set of all the nodes in the path, i.e., {u1, ..., ul(d)}.

The placement of minimum cost covering all demands thus corresponds to a minimum
cost hitting set. In the equivalent MIN-WSC formulation, the elements are the paths of the
demands and the sets correspond to the function location for node v. The set associated
with v has cost c(v) and it is the set of all paths containing v. The equivalence directly gives
us anH(|D|)-approximation using the greedy-algorithm for Set Cover [8] (V. Chvatal, 1979)
on the positive side. On the negative side, it tells us that the SFC Placement Problem is
hard to approximate within ln|D| [9] (N. Alon et al., 2006).

3.1.2 Equivalence with Hitting Set

Even in the general case (with order), SFC Placement Problem is proven to be equiva-
lent to MIN-WHS (and so to MIN-WSC) [7] (A. Tomassilli et al., IEEE INFOCOM 2018). For
each demand d ∈ D, we denote with l(d) and s(d) the length of the associated path and
chain respectively. Let path(d) = u1, u2, ..., ul(d) and assume that d requires the sequence
of functions sfc(d) = r1, r2, ..., rs(d). Given a demand d, we build an associated network
H(d).

Definition 1. The network H(d) is an associated one for a demand d if and only if it
is built as follows:

1. H(d) has s(d) layers L1, L2, ..., Ls(d). Each layer contains l(d) nodes corresponding
to the nodes of path(d). We note (ui, j) the i-th node of layer j.

2. There is an arc between the node (u, j) and the node (v, j+1) if u = v or if u precedes
v in path(d).

3. H(d) has two other nodes, sd and td. There is an arc between a node sd and all the
nodes of the first layer and an arc between all the nodes of the last layer and td.

Figure 3.1 shows the example of an associated network of a demand d ∈ D routed on a
path path(d) = u1, u2, ..., ul(d) that requires a chain sfc(d) = r1, r2, ..., rs(d). We then define

N. Lazaropoulos 36

Approximation Algorithms for Virtual Service Functions Chain Placement

Figure 3.1: The Associated Network

the capacities to obtain the capacitated network H(d,Π) associated with a demand d and
a function placement Π: 1) all arcs have infinite capacity, and 2) each node has a capacity,
and the capacity of the node u of layer i is 1 if (u, ri) ∈ Π and 0 otherwise.

Lemma 1. A demand d ∈ D is satisfied by Π if and only if there exists a feasible st −
path in the capacitated associated network H(d,Π).
Proof. The intuition of the proof is that an sdtd − path (or st − path in short) in the layered
graph contains exactly one node from each layer and defines where the flow associated
with the demand is going to be processed by the required functions in the specified order.
Each layer is associated with a function - the jth layer corresponds to the jth function of
the function chain sfc(d) = r1, r2, ..., rs(d). Since node (u, j) is connected to (v, j + 1) if
and only if u precedes v in the path path(d), the sequence of functions is performed in the
right order when travelling along the path. Suppose there exists a feasible st − path, p.
This means that there exists a set of indices i1, ..., is(d) such that p = {s, ui1 , ..., uis(d) , t}.
This implies that the capacity of uij is equal to one, i.e., (uij , rj) ∈ Π, for all 1 ≤ j ≤ s(d).
Since, in the associated network H(d,Π), node (u, j) is connected to (v, j + 1) if and only
if u precedes v in path(d), we have that i1 ≤ ... ≤ is(d). Therefore all functions of sfc(d)
are placed in the right order with respect to the nodes of path(d), that is, d is satisfied by
Π.
Suppose now that d is satisfied by Π. It means that there exists a set of indices i1≤...≤is(d),
such that (uij , rj) ∈ Π, ∀ 1 ≤ j ≤ s(d). Nodes (uij , j) of the associated network H(d,Π)
thus have capacity one. Moreover, there is an arc between (uij , j) and (uij+1, j + 1) as
uij precedes uij+1

in path(d). Hence, {s, (ui1 , 1), ..., (uis(d), s(d)), t} is a feasible st − path in
H(d,Π).
With this notion of associated network, the following problem is defined [7](A. Tomassilli et
al., IEEE INFOCOM 2018):

Problem 1.HITTING-CUT-PROBLEM (D, c) is an instance of the Weighted Hitting Set
problem where:

1. the elements are the function locations (u, f), for all u ∈ V and f ∈ F . Its cost is
c(u, f).

37 N. Lazaropoulos

Approximation Algorithms for Virtual Service Functions Chain Placement

2. the subsets of the universe correspond to all the st-vertex cuts of the associated
networks H(d) for all d ∈ D.

The problem is thus to find the sub-collection S of elements (functions placement) hitting
all the subsets (cuts) of the universe of minimum cost.

Proposition 1. HITTING-CUT-PROBLEM (D, c) is equivalent to SFC-PLACEMENT (D, c).
Proof. By construction, a solution S of HITTING-CUT problem corresponds to a solution
of SFC-PLACEMENT of same cost.
Let us show that S is feasible for HITTING-CUT-PROBLEM if and only if it is a feasible
solution of SFC-PLACEMENT. The proof is direct using Menger’s theorem for digraphs
[10]. Consider a digraph and two vertices s and t not connected by an arc. The theorem
states that the number of st − paths in a digraph is equal to the minimum st-vertex cut.
Lemma 1 says that all the demands in D are satisfied by Π if there exists an st − path in
all the associated networks H(d,Π) for each d ∈ D. We thus have that all demands are
satisfied if all st − vertex − cuts ofH(P,Π) have a capacity larger or equal to one. Consider
C an st-vertex cut. It is hit by S. This implies that in H(d,Π), the capacity of the cut is
larger than 1. This yields the proposition.

SFC Placement problem as defined in [7](A. Tomassilli et al., IEEE INFOCOM 2018), is thus
equivalent to a Hitting Set Problem, for which approximation algorithms exist. However,
the number of st-vertex cuts is exponential in the number of vertices of the digraph. To
derive a polynomial algorithm, the authors try to reduce the size of an instance of CUT-
HITTING-PROBLEM. To this end, they use the fact that checking only the extremal cuts
is enough (An extremal cut is a cut that is not strictly included in another cut) and that, in
their problem, the extremal cuts of the associated graphs have a specific shape that of
proper st-cuts.

3.1.3 Greedy Algorithms for SFC Placement

The authors in [7](A. Tomassilli et al., IEEE INFOCOM 2018)propose two greedy algorithms
to solve the SFC-PLACEMENT problem. Before stating them, they give the idea of proper
st-cuts, which reduce the size of the search space for the HITTING-CUT problem which
is equivalent to SFC-PLACEMENT problem.

Definition 2. A proper st-cut of the associated graph H(d) is a cut of the following form:
{(u1, 1), ..., (uj1 , 1), (uj1+1, 2), ..., (uj1+j2 , 2), ..., (uj1+j2+...+js(d)−1+1, s(d)), ..., (ul(d)=j1+j2+...+js(d) , s(d))}
for j1, j2, .., js(d) ≥ 0, such that

∑s(d)
i=1 ji = l(d). The right value of the above node pairs de-

notes the layer index in the associated graph.

Property 1. All the extremal cuts of the associated graphs are proper [7](A. Tomassilli
et al., IEEE INFOCOM 2018) .
Proof. Let us consider a cut C in the associated graph. If it is possible to reach node (ui, l)

N. Lazaropoulos 38

Approximation Algorithms for Virtual Service Functions Chain Placement

from the source s, then node (ui+1, l) can also be reached. Similarly, if the sink t can be
reached from node (ui, l), then the sink can also be reached from node (ui−1, l). Suppose
that there exists an extremal cut C such that, for a layer l, C contains nodes ui, ui+2 with
ui+1 /∈ C. Since by definition C is a cut, we have 2 possibilities:

1. ui+1 at layer l cannot be reached by the source. Then, all the nodes uj with j ≤ i+1
in the layer l−1 cannot be reached, and so ui is not reachable from the source. We
can remove it from C and still get a cut. It follows that C is not an extremal cut
(contradiction).

2. ui+1 at layer l cannot reach the sink. In the same way, ui+2 cannot reach the sink.
We can then remove ui+2 from C and still get a cut. C is not an extremal cut (con-
tradiction).

Therefore, for a layer l, an extremal cut C cannot contain nodes (ui, l), (ui+2, l), if it does
not contain (ui+1, l).

As an example, consider a demand d that requires the service function chain {f1, f2}.
Suppose that the demand is routed on the path P = {a, b, c}. There are four proper
cuts: {(a, 2), (b, 2), (c, 2)}, {(a, 1), (b, 2), (c, 2)}, {(a, 1), (b, 1), (c, 2)}, {(a, 1), (b, 1), (c, 1)} cor-
responding respectively to j1 = 0, ..., l(d).

Figure 3.2: Example of a proper cut (dashed nodes in red) for the layered graph relative to a
demand d associated with a path of length 4 and a chain of length 3

A new problem of smaller size is defined in [7](A. Tomassilli et al., IEEE INFOCOM 2018).

Problem 2. HITTING-PROPER-CUT-PROBLEM(D, c) is the same problem as HITTING-
CUT-PROBLEM(D, c), except that the sets to be hit are only the proper st-vertex-cuts of
the associated networks H(d) for all d ∈ D.

Proposition 2. The problem SFC-PLACEMENT(D, c) is equivalent to a Hitting Set Prob-
lem with

∑
d∈D

(
l(d)+s(d)−1

s(d)−1

)
sets as an input. If each demand requires at most smax network

functions and is associated with a path of length smaller than lmax, then the size of the
instance is at most O(|D|∙(lmax)

smax−1.

39 N. Lazaropoulos

Approximation Algorithms for Virtual Service Functions Chain Placement

Proof. HITTING-PROPER-CUT-PROBLEM(D, c) is equivalent to HITTING-CUT-PROBLEM(D, c)
as it is enough to consider extremal sets of the collection in a Hitting Set Problem and all
extremal cuts are proper cuts. SFC-PLACEMENT(D, c) thus is equivalent to HITTING-
PROPER-CUT-PROBLEM(D, c).
The size of the ground set of HITTING-PROPER-CUT-PROBLEM(D, c) is the number of
proper cuts of all the associated networks. For each path P , the number of proper cuts of
H(P) is simply equal to

(
l(d)+s(d)−1

s(d)−1

)
.

Indeed, to obtain the indices j1, ..., js(d) defining a proper cut, it is sufficient to select s(d)−1
numbers (notice that (u1, 1) and (us(d), s(d)) are pre-selected nodes in any proper cut) be-
tween 0 and l(d) + s(d)− 1. Without loss of generality, we call them n1 ≤ ... ≤ ns(d)−1. We
then take j1 = n1−1, ji = ni−ni−1−1 for 1 ≤ i ≤ s(d)−1, and js(d) = (l(d)−s(d)−1)−ns(d)−1.
We have that

∑l(d)
i=1 ji = l(d), so the indices define a proper cut. There are

(
l(d)+s(d)−1

s(d)−1

)
ways

of choosing s(d)− 1 elements in a set of l(d) + s(d)− 1 elements. It yields the number of
proper cuts. The size of the ground set is thus

∑
d∈D l(d)s(d)−1.

Last, we have
(
l(d)+s(d)−1

s(d)−1

)
= O(l(d)s(d)−1). This gives that the number of proper cuts over

all paths of the set of demands D is of the order O(|D|(lmax)
smax−1).

Proposition 2 leads to two approximation algorithms, a greedy one and one using LP-
rounding.

3.1.4 Naive and Faster Greedy Algorithms

Naive Greedy Algorithm. The naive greedy algorithm is just the classic greedy algorithm
for set cover [8](V. Chvatal, 1979).It consists of a main loop: while there are proper cuts not
hit, it selects the function location with the smallest average cost per newly hit proper cut.
When the demands are routed on paths with length at most lmax and require at most smax

functions, the greedy algorithm achieves an approximation ratio equal to H(|D|lsmax−1
max) ∼

ln(|D|) + (smax− 1)ln(lmax) [8](V. Chvatal, 1979), where H(n) is the n-th harmonic number.

Problem for large chains. When the number of functions in the service chains is large,
the greedy algorithm could become impractical if it is implemented naively. In fact, the
greedy algorithm selects the function location with the smallest average cost per newly
hit proper cut. In a naive implementation, it is necessary to generate explicitly all the
proper cuts, and this is not practical since, for a demand d, there may be O(lsmax−1

max) of
such cuts. Indeed, lmax is in the order of the network diameter. As an example, consider
a network that has a diameter of 28. For a chain of length 10, we would have

(
37
9

)
proper

cuts. However, since the structure of the proper cuts is very specific, we can take advan-
tage of it, providing a much faster greedy algorithm.

Faster Greedy Algorithm, SFCFastGreedy. The main idea of the faster greedy algo-
rithm is to avoid generating all proper cuts by showing it is enough to keep track of the
number of not hit proper cuts. We show here that, by using dynamic programming, this
number can be counted in time O(|D|l2maxsmax) instead of O(|D|lsmax

max).
The authors in [7](A. Tomassilli et al., IEEE INFOCOM 2018)introduce some useful notation.

N. Lazaropoulos 40

Approximation Algorithms for Virtual Service Functions Chain Placement

For a demand d = (path(d), sfc(d)), a function placement Π can be seen as a matrix
Ad with l(d) rows and s(d) columns and for which Ad[i, j] = 1 iff (ui, rj) ∈ Π. We note
Ad[i : j, k : l] the submatrix of Ad considering only the rows from i to j and the columns
from k to l.
For a demand d = (path(d), sfc(d)) and a function placement Π (or equivalently Ad), we
note N(d) the number of proper cuts not hit by Ad. It can be computed using the recursive
function N(r, c) defined below. We have N(d) = N(l(d), s(d)) with

N(r, c) = 1i∗(r,c)=0 +
∑r−i∗(r,c)

jc=0 N(n− jc, c− 1), c ≥ 2

N(r, 1) = 1i∗(r,c)=0

(3.1)

where i∗(r, c) is defined as follows. We consider the matrix Ad[1 : r, 1 : c]. We consider the
ones placed in the last column of the matrix, column c. If there are none, i∗(r, c) = 0. Oth-
erwise, i∗(r, c) is the maximum index of such ones, that is, i∗(r, c) = max0≤i≤l(d){i|Ad[i, c] =
1}.
The explanation of the formula is the following. We carry out a recursion on the columns
of Ad[1 : r, 1 : c]. First, if i∗(r, c) = 0, the cut {(u1, c), ..., (ur, c)} is not a hit. We thus count
1i∗(r,c)=0. We then consider all possible values of jc for the proper cuts (recall that a proper
cut is defined by a set of indices j1, ..., jc). For a not hit proper cut, jc ≤ l(d) − i∗. For a
possible value of jc, the number of corresponding not hit proper cuts is equal to the num-
ber of not hit proper cuts in the submatrix Ad[1 : r − jc, 1 : c− 1] for a path of length r − jc
and a chain of size c− 1, that is, N(r − jc, c− 1, Ad[1 : r − jc, 1 : c− 1]).
N(r, c) can be computed using dynamic programming, see the function NC of Algorithm
1. We use a table T with r rows and c columns to keep track of the partial results of the
computation. Initially, T (i, 1) = 1i∗(r,c)=0 for 1 ≤ i ≤ r.

An example. Consider a demand d with sfc(d) = f1, f2, f3 and path(d) = u1, u2, u3.
Let Π be a potential function placement. Π = {(u1, f1), (u3, f2), (u2, f3)}, that is, f1 is
installed on u1, f2 on u3, and f3 on u2. All the required functions are placed, but not in
the right order. We show that, in this case, some proper cuts of the associated network
H(d,Π) are not hit. H(d,Π) has

(
5
2

)
= 10 proper cuts according to Proposition 2. We com-

pute here the number of not hit proper cuts from this set without generating them. The
matrix Ad associated with the demand and the starting table T in Algorithm 1 would be the
following:

Ad =

1 0 0
0 0 1
0 1 0

 , T =

0 _ _
0 _ _
0 _ _

As Ad[1, 1] = 1, we have i∗(3, 1) = 1 ̸= 0 (the cut {(u1, 1), (u2, 1), (u3, 1)} is hit). We thus
initialize the first column of T with only zeroes.
From Ad we can see that i∗(3, 3) = 2. In order to compute T (3, 3) the following steps are
necessary:
T (3, 3) = T (1, 2) + T (2, 2) + T (3, 2)
T (1, 2) = 1 + T (1, 1) = 1

41 N. Lazaropoulos

Approximation Algorithms for Virtual Service Functions Chain Placement

T (2, 2) = T (2, 1) + T (1, 1) + 1 = 1
T (3, 2) = T (3, 1) = 0
Since T (3, 3) = 4, we can derive that 2 proper cuts, out of the overall 10 proper cuts of
H(P,Π), are not hit. Note that this corresponds to the two proper cuts {(v1, f2), (v2, f2)(v3, f3)}
and {(v1, f2)(v2, f3)(v3, f3)}. This shows that the order of the functions is not valid.
From this approach, we can derive a faster algorithm with pseudo-code given in Algorithm
1. At each iteration, the algorithm selects the pair (u, f) of minimum cost, i.e., with the
smallest average cost per newly hit proper cut. In order to do this, it makes use of the
function NC, calling it for each demand and for each pair (u, f) ∈ V × F . The pair of
minimum cost is added to the solution Π. Then, the number of remaining proper cuts to
be hit is updated. This process is repeated until all the proper cuts are hit.

Algorithm Complexity. The number of iterations of the main loop of the algorithm is
bounded by |V ||F | as we install a function at each iteration. The complexity of the function
NC(l(d), s(d),Π) is of the orderO(l(d)2s(d)). It gives us a complexity ofO(l2maxsmax|V |2|F |2|D|),
when a naive algorithm would be of order O(lsmax

max |V |2|F |2|D|), as it would generate all
proper cuts.

In the following page, we describe the SFCFastGreedy algorithm, and the recusivemethod
as well.

N. Lazaropoulos 42

Approximation Algorithms for Virtual Service Functions Chain Placement

Algorithm 1 SFCFastGreedy Algorithm
Require: Set of demands D.
Ensure: Placement Π
for each d ∈ D do

not_hit[d]←
(
l(d)+s(d)−1

s(d)−1

)
end for
Π← ∅
repeat

min_cost← +∞
best_sol ← null
best_not_hit← null
for each (u, f) ∈ V × F do

newly_hit← 0
Π

′ ← Π ∪ {(u, f)}
for each d ∈ D do

T ← new l(d)× s(d)matrix of null
for 1 ≤ i ≤ l(d) do

T [i, 1]← 1i∗(i,1)
end for
new_not_hit[d]← NC(l(d), s(d),Π

′
, T)

newly_hit+ = not_hit[d]− new_not_hit[d]
end for
cost← cost(u,f)

newly_hit
if cost < min_cost then

min_cost← cost
best_sol ← (u, f)
best_not_hit← new_not_hit

end if
end for
Π← Π ∪ {best_sol}
not_hit← best_not_hit

until not_hit[d] = 0 ∀ d ∈ D

43 N. Lazaropoulos

Approximation Algorithms for Virtual Service Functions Chain Placement

function NC(row r, column c)
if T [r, c] ̸= null then return T [r, c]

result← 0
if i∗(r, c) = 0 then

result← result+ 1
end if
for 0 ≤ j ≤ n− i∗(r, c) do

result+ = NC(n− j, c− 1)
end for
T [r, c]← result
return result

3.2 Joint Placement and Allocation of VNFs with Budget and Capacity Constraints

Existing SFC placement solutions mainly aim to minimize deployment cost and improve
network performance. SFC Placement policies involve VNF placement strategies, which
model the optimization problem with integer linear programs. Usually when VNF place-
ment comes into consideration, SFC paths are known as part of the input.
However, VNF placement asks for an optimal investment to deploy VNFs at certain net-
work nodes (called VNF-nodes), which has to account for practical constraints such as the
deployment budget and the VNF-node capacity. To that end, it is important to design a
joint VNF-nodes placement and capacity allocation algorithm that can maximize the total
amount of network demands that are fully processed by the VNF-nodes while respecting
such practical constraints. In contrast to most prior work that often neglects either the
budget constraint or the capacity constraint, the work in [12] (Gamal Sallam and Bo Ji, IEEE
INFOCOM 2019)explicitly considers both of them. Accounting for these constraints intro-
duces several new challenges. Specifically, the authors study a problem that is not only
NP-hard but also non-submodular. To address these challenges, they introduce a novel
relaxation method such that the objective function of the relaxed placement subproblem
becomes submodular. Leveraging this useful submodular property, they propose two ap-
proximation algorithms that achieve an approximation ratio of 1

2
(1 − 1/e) and 1

3
(1 − 1/e)

for the original non-relaxed problem, respectively.
In the context of [12] (Gamal Sallam and Bo Ji, IEEE INFOCOM 2019), a network demand
consists of a traffic load that must be fully processed at one VNF-node so that the poten-
tial benefits introduced by NFV can be harnessed. Due to the budget limit, only a subset
of nodes can be selected for deploying/placing VNFs. Moreover, VNF instances typically
have a limited capacity, which is shared for processing multiple passing flows. Therefore,
given a deployment budget and capacity limit, it is of critical importance to choose a best
subset of nodes to become VNF-nodes and to determine the optimal capacity allocation
so as to maximize the amount of network traffic fully passing through them.
The authors explicitly consider both budget and capacity constraints and formulate a joint
problem of VNF-nodes placement and capacity allocation(VPCA). The VPCA problem has
two main components: VNF-nodes placement and VNF-nodes capacity allocation, which

N. Lazaropoulos 44

Approximation Algorithms for Virtual Service Functions Chain Placement

are tightly coupled with each other. That is, deciding where to place the VNF-nodes de-
pends on how the capacity of the VNF-nodes will be allocated; determining an optimal
capacity allocation apparently depends on where the VNF-nodes are placed. The chal-
lenges posed by this problem are two folds. First, the placement and capacity allocation
subproblems are both NP-hard. Second, the placement subproblem is non-submodular.
This is in stark contrast to the studied problem in [13] (K. Poularakis et al., IEEE INFOCOM,
2017)that does not include the capacity constraint, which has been shown to be submod-
ular and can be approximately solved using efficient greedy algorithms.
Retrieving useful information from the work in [12](Gamal Sallam and Bo Ji, IEEE INFOCOM
2019), we present a VNFs placement problem that can be solved when demands of single
VNFs must be placed in substrate graphs, where nodes are knapsacks of specified capac-
ities and all demands are characterized by foreknown paths. A budget (usually monetary)
limits the number of VNF-nodes that can be selected for the installation of VNFs.

3.2.1 System Model And Problem Formulation

Let us consider a network graph G = (V,E), where V is the set of nodes, and E is the
set of edges connecting nodes in G. We have a set of demands D. A demand d ∈ D is
modeled by a couple composed of a virtual network function fd = f that has to service
flow wf and a predefined (e.g. a shortest) path whose set of nodes is denoted by Vf .
Thus, we have a set of flows F , with F = |F |. The traffic of flow wf will be sent along the
predetermined path of the demand.
We use FU to denote the set of all functions whose path has one or more nodes in a given
set U , i.e., FU = {f ∈ F |Vf ∩ U ̸= ∅}. When a node is able to support some VNFs, we
call it a VNF node. Since ISPs have a limited budget to deploy VNFs in their networks,
they can only choose a subset of nodes U ⊆ V to become VNF nodes. We request that
the traffic rate wf of each function flow cannot be split and must be processed at a single
VNF-node.
In the context of the relaxed, linear programming version of the capacity allocation sub-
problem, we use wu

f to denote the portion of flow wf that is assigned to VNF-node u and
use W = (wu

f) ∈ RF×V to denote the assignment matrix of the relaxed problem.
With A = AU we denote the set of pairs (u, f) that includes the assignment of virtual
function f to node u. The assignment set AU expresses the allocation of virtual functions
to the selected VNF-nodes , that have been elected according to the budget constraint.
The benefits of processed traffic can be harnessed from fully processed flows, i.e., flows
that have all of their traffic processed at some VNF-node. The total processed traffic can
be expressed as follows:

J1(U,A) =
∑
f∈F

∑
u∈Vf∩U

wfχA(u, f) (3.2)

where χA(u, f) is the indicator function, that is equal to 1 only if function f has been as-
signed to VNF-node u according to the assignment A. Note that each VNF-node u has a
limited processing capacity, denoted by cu. Hence, the total traffic rate assigned to a node

45 N. Lazaropoulos

Approximation Algorithms for Virtual Service Functions Chain Placement

should satisfy the following capacity constraint:∑
f∈F

wfχA(v, f) ≤ cv, ∀v ∈ U (3.3)

We assume that the largest traffic flow of any function is no larger than the smallest pro-
cessing capacity of any node. Also, we consider a limited budget, denoted by B, and
require that the total cost of introducing VNF-nodes do not exceed B. We use bu to de-
note the cost of making node u a VNF-node. Hence, the total cost of VNF-nodes should
satisfy the following budget constraint:∑

f∈F

∑
u∈Vf∩U

χA(u, f)bu ≤ B (3.4)

The above budget constraint limits the number of nodes that can become VNF-nodes, and
we may only have a subset of flows that traverse some VNF-nodes. Accounting for the
above deployment budget and VNF capacity constraints, we consider a joint problem of
VNF-nodes placement and capacity allocation (VPCA). The objective is to choose a best
subset of nodes to become VNF-nodes and optimally allocate their capacities so as to
maximize the total amount of fully processed traffic. The mathematical formulation of the
VPCA problem is the following:

max
U⊆V,A

J1(U,A)

s.t. (3.3), (3.4)
(3.5)

3.2.2 Hardness of Approximation for the VPCA Problem

The VPCA problem formulated in (3.5) is characterized by some special challenges. To
highlght this, we first decompose the VPCA problem into two subproblems: 1) placement:
how to select a subset of nodes to become VNF-nodes and 2) allocation: for a given
set of VNF-nodes, how to divide their capacity for processing a subset of flows. It is
proved that both these subproblems are NP-hard and that the placement subproblem
is non-submodular. This is very different from similar problems neglecting the capacity
constraint (3.3) [12](Gamal Sallam and Bo Ji, IEEE INFOCOM 2019), which have been shown
to be submodular and can be approximately solved.
First, we present the formulations of the two subproblems. We start with the allocation
subproblem because it will be used in the placement subproblem. For a given set of
VNF-nodes U ⊆ V, let JU

2 (A) denote the total amount of fully processed traffic under VNF
assignment A. Note that JU

2 (A) has the same expression as that of J1(U,A) in Eq. (3.2).
The superscript U of JU

2 (A) is to indicate that it is associated with a given set U of VNF-
nodes. Then, the capacity allocation subproblem for a given set U of VNF-nodes can be
formulated as:

max
A:(3.3)holds

JU
2 (A) (3.6)

N. Lazaropoulos 46

Approximation Algorithms for Virtual Service Functions Chain Placement

Let J3(U) = maxA:(3.3)holds J
U
2 (A) denote the optimal value of problem (3.6) for a given set

of VNF-nodes U . Then, the placement subproblem can be formulated as:

max
U⊆V

J3(U)

s.t. (3.4)
(3.7)

Note that in order to solve problem (3.7), we need to solve problem (3.6) to find the opti-
mal A for a given set of VNF-nodes U . In the following theorem, we will show that both
subproblems (3.6) and (3.7) are NP-hard.

Theorem 1. The capacity allocation subproblem (3.6) and the placement subproblem
(3.7) are both NP-hard [12](Gamal Sallam and Bo Ji, IEEE INFOCOM 2019).
Proof. We start by proving that the allocation subproblem (3.6) is NP-hard. The proof is
by a reduction from a special case of the Single Knapsack (SK) problem, where for each
item the profit and the weight are identical. In the SK problem, we have a knapsack k
and a set of items I. The knapsack has a capacity W , and each item i ∈ I has a weight
of wi, which is the same as the profit. The objective is to find a subset of items I

′ ⊆ I
that has the maximum total profit and can be packed in the knapsack without exceeding
its capacity. Given an arbitrary instance A = (k, I) of the SK problem, we construct an
instance D = (V, F) of the allocation problem (3.6). The set V has only one node v1 with
a capacity that is equal to the capacity of the knapsack k. Each virtual function f ∈ F ,
having weight wf corresponds to an item in i ∈ I. Node v1 is the only VNF-node, and all
the flows traverse node v1. If we can solve the instance D of problem (3.6), the subset
of functions/flows assigned to node v1, which has the maximum total traffic rate, can be
mapped to the corresponding items and solve the instance A of SK problem. Similarly, a
solution for instance A of the SK problem can be mapped to a solution for instance D by
simply mapping the selected items I

′ to the corresponding flows that solve the instance
D of problem (3.6).
Next, we prove the NP-hardness of the placement subproblem (3.7). The proof is by a re-
duction from the Budgeted Maximum Coverage (BMC) problem. In the BMC problem, we
have a set of pointsM and a set of candidate locations S. Each pointm ∈M has a weight
of wm. Each location s ∈ S has a cost of bs and covers a subset of points Ms ⊆ M . The
objective is to select a subset of locations S

′ ⊆ S such that the total weight of the points
covered by at least one location in S

′ is maximized while the total cost of the selected
locations does not exceed a given budget B. Given an arbitrary instance A = (M,S,B)
of BMC, we will construct an instance D = (F, V,B) of problem (3.6) as follows. Each
function f ∈ F corresponds to a point m ∈ M ; the rate of a flow is equal to the weight
of the corresponding point. Each node u ∈ V corresponds to a location s ∈ S; the cost
of a node is equal to that of the corresponding location. The path of a flow consists of
the nodes corresponding to the locations that cover the point corresponding to this flow.
The deployment budget of the instance D is equal to the budget of the instance A. All the
nodes have an infinite capacity. We will show that a solution for the instance D exists if
and only if a solution for the instance A exists. If we can solve the instance A of BMC,
the subset of locations S ′ ⊆ S that solves A of BMC can be mapped to the corresponding

47 N. Lazaropoulos

Approximation Algorithms for Virtual Service Functions Chain Placement

nodes in V to become VNF nodes and solves the instance D of problem (3.6). Similarly,
if we solve the instance D, then the obtained set of VNF nodes can be mapped to the
corresponding subset of locations that solve the instance A of BMC.

3.2.3 Proposed Algorithms

Let’s assume the case where VNF-nodes have uniform costs, i.e., bv = b for all v ∈ V .
Then, the budget constraint can be expressed as a cardinality constraint, i.e., |U | ≤ k,
where k = ⌊B/b⌋. In this case, we can use a 2-steps algorithm to approximately solve
both placement and capacity allocation problems.
We first solve the VNF-nodes placement problem: we start with an empty set of VNF-
nodes U ; in each iteration, we add a node that has the maximum marginal contribution to
U , i.e., a node that leads to the largest increase in the value of the objective function (We
choose the best k nodes that are eligible to host most VNFs). We repeat the above pro-
cedure until k VNF-nodes have been selected. This solution has been shown to achieve
an approximation ratio of (1− 1/e) [17](S. Khuller, et al., 1999).

Algorithm 2 Greedy Choosing of VNF Nodes
Require: Set of nodes V , Set of demands D, cardinality k
Ensure: Set of VNF Nodes U , Set of supported demands DU

U ← ∅
DU ← ∅
T ← D
while |U | ≤ k do

u← argmax
v∈V

(|{d ∈ T |v ∈ d}|)

Du ← {d ∈ T |u ∈ d}
U ← U ∪ u
DU ← DU ∪Du

T ← T \Du

end while=0

In the second step, we make the capacity allocation decision according to the Multiple
Knapsack with Assignment Restrictions (MKAR) Approximation Algorithm.

3.2.4 MKAR LP Rounding: A 1/2 Approximation Algorithm

In MKAR, we are given a set of itemsN = {1, ..., n} and a set of knapsacksM = {1, ...,m}.
Each item j ∈ N has a positive real weightwj and each knapsack i ∈M has a positive real
capacity ci associated with it. In addition, for each item j ∈ N a set Aj ⊆M of knapsacks
that can hold item j is specified. Let Bi ⊆ N be the set of items that can be assigned to
knapsack i. We say item j is admissible to knapsack i, if j ∈ Bi.

N. Lazaropoulos 48

Approximation Algorithms for Virtual Service Functions Chain Placement

In a feasible assignment of items to knapsacks, for each knapsack i ∈ M , we need to
choose a subset Si of items in N to be assigned to knapsack i, such that:

1. All Si’s are disjoint. (Each item is assigned to at most one knapsack.)

2. Each Si is a subset of Bi , for i = 1, ...,m. (Assignment restrictions are satisfied.)

3.
∑

j∈Si
wj ≤ ci, for i = 1, ...,m. (Total weight of items assigned to a knapsack does

not exceed the capacity of the knapsack.)

Without loss of generality we assume that wj ≤ ci ∀j ∈ Bi , otherwise j can be removed
from Bi . The problem becomes trivial if all Aj ’s are disjoint, or if

∑
j∈Si

wj ≤ ci, ∀i ∈M . In
the case where all Bi’s are disjoint, the problem decomposes into m single 0-1 knapsack
problems.
The assignment restrictions can be represented by a bipartite graph, where the two dis-
joint node sets of the bigraph correspond to the sets N and M. Let G = (V,E) be the
corresponding bipartite graph with V = N ∪M . Then, there exist an edge (j, i) ∈ E be-
tween nodes j and i if and only if j ∈ Bi.
The IP formulation of the MKAR problem is as follows:

maximize
∑
i∈M

∑
j∈Bi

wjxij

subject to
∑
j∈Bi

wjxij ≤ ci, i ∈M

∑
i∈Aj

xij ≤ 1, j ∈ N

xij ∈ {0, 1}, i ∈M, j ∈ N

where the 0-1 variable xij denotes whether item j is assigned to knapsack i. Let us denote
the LP relaxation by LP-MKAR, which is obtained by replacing the constraints xij ∈ {0, 1}
with the constraints 0 ≤ xij ≤ 1.
LP-MKAR can be solved by a maximum flow algorithm on a directed graph constructed
from the bigraph as follows. Each edge (j, i) of G is directed from the item node j to the
knapsack node i and is assigned capacity wj . A source node s is connected to each item
node j via an arc (s, j) with capacity wj . In addition, a sink node t is connected to each
knapsack node i via an arc (i, t) with capacity ci . Then, the maximum flow from s to t
equals the LP relaxation value and the amount of flow on arc (j, i) divided by wj gives
the value of xij. Thus, if flow on (j, i) equals wj , i.e., xij = 1, then item j is assigned
to knapsack i. If 0 < xij < 1, the variable is said to be fractional (in the corresponding
solution).
Let x be an optimal basic feasible solution to LP-MKAR and let f denote the vector of frac-
tional variables of x. We denote the subgraph of the bigraph representation G induced by
the edges in f by RG and call it the residual graph.

49 N. Lazaropoulos

Approximation Algorithms for Virtual Service Functions Chain Placement

Lemma 1. The residual graph, RG, of the LP relaxation is a forest [15](M. Dawande et
al., 2000).
We can consider each connected component of RG separately. Let OPT denote the
optimum value of LP-MKAR and let AW (Ki) denote the total Assigned Weight (AW) to
knapsack Ki in x. In RG, if a knapsack has degree 1, then we refer to that knapsack as a
singleton knapsack.

Lemma 2. If RG has a singleton knapsack node, say K1, then there is a rounding step for
knapsack K1 such that R1 ≥ OPT − 1

2
AW (K1), where R1 denotes the objective function

value of the solution obtained after the rounding step [15](M. Dawande et al., 2000).
Proof of Lemma 2. Let S denote the set of items which have been assigned (integrally)
to knapsackK1 by the solution x. Note that S is nonempty, because the optimal solution x
of the LP-MKAR would not choose a knapsackK1 to assign only one item fractionally to it.
Fractional assignment for an item can happen only to satisfy maximum assignment pro-
vided that all chosen knapsacks have been already paired with some fully assigned items.
LetW (S) denote the total weight of items in S. In addition, let I1 be the item which is frac-
tionally assigned to knapsack K1 with value f1. IfW (S) ≥ w1f1, then we round f1 down to
zero. NowK1 has no fractional variable incident on it. Let us denote the new solution by x1.
Then, x1 has objective value R1 = OPT −w1f1. Since AW (K1) = w1f1+W (S) ≥ 2w1f1, it
is true that R1 ≥ OPT − 1

2
AW (K1). On the other hand, if w1f1 ≥ W (S), then we unassign

all items in S and round f1 to 1. We also round all other fractional variables incident on I1
to 0. Then, R1 ≥ OPT −W (S) ≥ OPT − 1

2
AW (K1).

Lemma 3. Using Lemma2, Algorithm 3 (as described above), has an approximation ratio
of 1/2 [15](M. Dawande et al., 2000).

It follows that VPCA problem in (3.5) can be solved with an approximation of 1/2(1− 1/e).

3.3 The Set-Union Knapsack problem (SUKP)

Before we proceed to the next chapter, where we propose a new problem formulation, we
would like to provide some information for the Set-Union Knapsack problem (SUKP). The
reason is that, we use SUKP as a subproblem in the proposed solution of our definition.

The Set-Union Knapsack problem (SUKP) is a generalization of the 0-1 knapsack problem.
The SUKP comprises of a set of elements U = {1, ..., n} and a set of items S = {1, ...,m}.
Each item, i = 1, ...,m, corresponds to a subset of elements, denoted by Si, with a
nonnegative profit given by p : S → R+ and each element has a nonnegative weight
given by w : U → R+. For a subset A ⊆ S, we define the weighted union of set A as
W (A) =

∑
e∈∪i∈ASi

we and P (A) =
∑

i∈A pi. We want to find a subset of items S∗ ⊆ S

N. Lazaropoulos 50

Approximation Algorithms for Virtual Service Functions Chain Placement

Algorithm 3 MKAR Based, SC-Single Function Allocation Algorithm
Require: Set of VNF-nodes U , Set of functions FU , function sizes wf , and VNF-node
capacities cu.

Ensure: Allocation of Functions to nodes AU

AU ← ∅
/* Phase I - Solve Fractional LP-MKAR */
Obtain a basic optimal solution WU ;
xuf ← wu

f/wf for all wu
f ∈ WU ;

/* Assign each function with xuf = 1 to VNF-node u */;
if xuf = 1 then

AU ← AU ∪ (u, f)
end if
/* Phase II - Modify residual graph for the unassigned functions with positive wu

f */
G

′ ← RG(WU); /* RG is the residual graph of fractional solution */
while ∃ singleton VNF-node u1 with fractional assignment f1 under edge e1 in G

′ do
S ← {f ∈ F |(u1, f) ∈ AU} /* S ̸= ∅ */
if W (S) ≥ w1f1 then

/* Removing edge e1 from residual graph makes u1 a non-singleton node */
G

′ ← G
′ \ e1; /*Remove single edge of fractional weight */

else
AU ← AU \ {(u1, f) ∈ AU |f ∈ F}
/* Rounding f1 to 1, makes u1 a non-singleton node */
AU ← AU ∪ (u1, f1)
while ∃u ∈ V : 0 < wu

f1
< 1 do wu

f1
= 0

end while
end if

end while

51 N. Lazaropoulos

Approximation Algorithms for Virtual Service Functions Chain Placement

such that P (S∗) is maximized andW (S∗) ≤ B, where B is a given budget. Goldschmidt et
al. [16] studied the problem and presented a dynamic programming algorithm running in
exponential time to solve the problem exactly. The SUKP remains NP-hard, even in very
restricted cases.

A closely related problem is the densest k-subhypergraph problem [19](V.V. Vazirani et
al., 2006), in which we are given a hypergraph H(V,E) and we have to determine a set of
k nodes such that the subhypergraph induced by this set has a maximum number of hy-
peredges. SUKP reduces to the densest k-subhypergraph problem (DkH), when we have
unit weights and unit profits, with the elements and items corresponding to the nodes and
hyperedges respectively and the budget being k. It has been shown [19](V.V. Vazirani et al.,
2006)that the densest k-subhypergraph problem cannot be approximated within the factor
of 2(logn)δ , for some δ > 0, unless 3SAT ∈ DTIME(2n

3
4+ϵ

). For the special case, where
we have the item size equal to exactly 2, we have the densest k-subgraph (DkS) problem.
The best known algorithm provides an approximation factor of O(min{nδ, n/k}), for any
δ ≤ 1/3 [20](U. Feige et al., 2001).

3.3.1 Approximation for a special case of the Set-Union Knapsack problem

Based on the greedy algorithm for the budgeted maximum coverage problem developed
by Khuller,Moss and Naor in [17], the author in [18] presents a greedy algorithm for the
SUKPwith the additional restriction that the number of items in which an element is present
is bounded by a constant d. It is proved in [18] that the algorithm provides a (1 − e−

1
d)

approximation. This factor naturally extends to densest k-subgraph problem where the
input graph has a bounded degree.

The algorithm in depicted below, as Algorithm-5. There are some notations needed though.
We define de as the frequency of an element e, i.e., the number of items in which element
e is present. So, we have maxe∈U de ≤ d. For an item i, we denote the profit of item i by pi
and define W

′
i =

∑
e∈Si

we

de
, where we is the weight of element e. We consider all possible

subsets of items of cardinality 2 or less, whose weighted union is within the budget B. We
augment each of these subsets with items (not in the subset) one by one in the decreas-
ing order of the ratio pi

W
′
i

, if its inclusion does not violate the budget B. We then choose
of the best of these augmented sets as A. The author in [18] pointed out that the items
could be considered in the increasing order of the ratio of sum of weights of elements in
the item that are yet to be picked to its profit and this will ensure the same guarantee on
the approximation factor, but it is easier to follow the analysis of Khuller et al. with the
one presented in [18]. For the greedy augmentation part we use the Budgeted Maximum
Coverage Greedy algorithm as a subroutine (Algorithm-4).

N. Lazaropoulos 52

Approximation Algorithms for Virtual Service Functions Chain Placement

Algorithm 4 GREEDY(G,U,B)
Require: Set of items U , Budget B
Ensure: Set of items with highest profit
to weight ratio G
while U ̸= ∅ do

i← argmax
i∈U

(pi
W

′
i

)

if W (G ∪ {i}) ≤ B then
G← G ∪ {i}

end if
U ← U \ {i}

end while

Algorithm 5 A-SUKP(G,B)
Require: Set of subsets G, Budget B
Ensure: Set of subsets of highest profit

A
A← ∅
for each G ⊂ S such that |G| ≤ 2,
W (G) ≤ B do

G← GREEDY (G,S \G)

A← argmax(P (G), P (A))
end for

We want to point out that

lim
d→∞

∣∣∣(1− e−
1
d)− 1

d

∣∣∣ = 0

This means that the true approximation factor is actually the constant 1/d.

53 N. Lazaropoulos

Approximation Algorithms for Virtual Service Functions Chain Placement

N. Lazaropoulos 54

Approximation Algorithms for Virtual Service Functions Chain Placement

4. CONTRIBUTION

When Telco Cloud Operators have to deal with the placement or routing of Service Func-
tion Chains in substrate physical data networks, they need to take into account a set of
restrictions and requirements.
First of all, they usually have a limit on the CPU resources, that are available for the in-
stallation of VNFs in the given VNF nodes. The available CPU may be a global quantity
of virtual cores in a distributed farm of data centers, or it may refer to physical servers of
defined capacities, where VNFs can be assigned. Since each VNF incurs a weight in the
installation, equal to its CPU consumption, and each SFC is a set of VNFs, we ask for
a policy that chooses a subset of SFCs which fits into the available CPU budget. In real
scenarios, the operators have the freedom to distribute the CPU budget in the networks’
VNF nodes as they desire, however, this decision should be done with some optimality cri-
terion in mind. Usually, SFCs are characterized by two metrics, these are the flow amount
processed by SFC VNFs and the latency of the path where VNFs are placed and route
their packets. Ideally, network designers want to place SFCs that provide the maximum
flow under processing, with the minimum latency achieved.
Another important requirement is that each VNF node can support specific VNFs. This
means that some VNFs can be enabled in specific nodes, while others on different nodes
of the network.

Figure 4.1: A network with network functions at different locations

An example is provided in Figure 4.1 in which different network functions are supported
at different locations. Assume that we have a flow from v1 to v6, with the following SFC
constraint: (v1, F irewall (FW), wide area network(WAN) optimizer, v6). Different paths
that satisfy the SFC constraint are available for this flow such as (v1, v2, v4, v3, v6), or
(v1, v4, v5, v6). Which of these paths to choose depends on the load at each instance and
the total congestion/latency along each path.
In this chapter we formulate a problem of joint SFC selection and path routing, with given
CPU budget. We formulate an optimization objective that asks to maximize the total routed
SFC flows under minimum path latency. We actually seek to route those SFCs that pro-
vide the maximum total processed data rate. We propose an algorithm for this problem,
and try to sketch an approximation ratio for it, thus suggesting a problem (and a possi-

55 N. Lazaropoulos

Approximation Algorithms for Virtual Service Functions Chain Placement

ble solution) for an approximate solution of SFC placement/routing under VNF chaining
constraints.

4.1 System Model and Problem Formulation

Let us consider a graph G = (V,E, T) (V is the set of nodes, E is the set of edges and
T is the set of time delays upon the edges), a set of virtual functions F , and a collec-
tion D of demands. Each node u ∈ V of the graph can support a subset Fu ⊂ F of
network functions. Each demand d ∈ D is associated with an ordered sequence of func-
tions sfc(d) = (f1, f2, ..., fr) ∈ F ∗ and a volume of packets vol(d) ∈ R+. A (setup) weight
wf : F → R+, defines the CPU consumption of function f ∈ Fu, when this function is acti-
vated in node u ∈ V . When a function is activated in some VNF-node, then the function’s
CPU cost is paid once and only. Different SFCs can use the same function to route their
packets through that function, if it is decided so. A CPU budget C limits the total number
of service function chains that can be selected in the network.

Definition of function placement: For a demand d ∈ D we denote with Pd the set of
all directed paths in G that respect the SFC constraint represented as: (us, f1, ..., fr, ud),
where us and ud are the source and destination, respectively, and (f1, ..., fr) denotes a
sequence of network functions by which all the packets of the flow need to be processed
before reaching ud. A path p ∈ Pd has a trip time cost trip_time(p) ∈ R+ which is the
sum of the delays of the edges of the path. A feasible function placement is a path p ∈ Pd

whose nodes that support each function {fi}i=r
i=1 are used to host the functions of the chain

sfc(d) = (f1, f2, ..., fr).

Objective: maximize ∑
d∈D

∑
p∈Pd

vol(d)

trip_time(p)
xpd (4.1)

Where:

xpd =

{
1, p is chosen for SFC placement for demand d ∈ D

0, otherwise
(4.2)

With: ∑
p∈Pd

xpd ≤ 1, ∀d ∈ D (4.3)

And: ∑
d∈D

∑
p∈Pd

∑
f∈sfc(d)

wfxpd ≤ C (4.4)

The maximization of the objective function (4.1) asks to find and route to the network these
service functions chains that lead to the maximum routed data rate in total (i.e. Mbits/sec).
Constraints (4.2) and (4.3) state that only one path can be selected to route the packets of

N. Lazaropoulos 56

Approximation Algorithms for Virtual Service Functions Chain Placement

one service chain, whereas constraint (4.4) denotes that the total weight of the functions of
the chains cannot be larger that the available CPU budget C. This is a capacitated routing
problem, that can be found in Cloud environments, where administrators must decide
which chains to route in the network and under which paths. We call this the Maximum
Data Rate SFC Routing under Global Capacity Constraint Problem (MDR-SFC-GCC).

4.2 Routing in the scene

In order to maximize the objective function of the problem, we need to evaluate the coeffi-
cients of the form in (4.1). This means we need to estimate the trip_time(p) for the paths
of the demands. We will use a greedy strategy that finds the timely shortest path,
which in the same time it respects the sequence of the functions (us, f1, f2, ..., fr, ud) that
obliges the packets of a demand d to pass through its predefined order of virtual functions.
The evaluation of the timely shortest path results in having the largest possible data rate
profits for each demand, independently of its weight. So, in a first step we calculate the
”VNF-functions constrained” timely shortest path for each demand of the input set.
Using the configuration graph for each demand we can find the best trip_time(p) of the
timely shortest paths p ∈ Pd, ∀d ∈ D in polynomial time. This path will be the route of
a demand if the demand is finally selected. The configuration graph is a layered graph
(Figure 4.2), where the nodes of each layer are the nodes of the original graph that are
able to host the function of the respective layer of the chain. The cost of each edge is the
cost of the timely shortest path between the respective VNF-nodes of the original graph.
In this context, the path with the best trip_time(p) is the shortest path in the configuration
graph, that can be found using a shortest path finding algorithm like Djkstra’s algorithm.

Figure 4.2: Configuration graph - general case

Figure 4.3 shows a configuration graph (CG) for a given network and service chain. As
easily observed, we have two nodes of FW and WAN functions in each layer of the CG,
since two nodes support the specific functions in the initial graph.

57 N. Lazaropoulos

Approximation Algorithms for Virtual Service Functions Chain Placement

Figure 4.3: Configuration graph for SFC path finding

After evaluating the trip_time(p) denominators of the profits in the form (4.1), we can pro-
ceed to the selection of the best service function chains against the given CPU budget.
We have to investigate a capacitated set union problem with known profits, but without
knowing a priori whether the sets share elements or not.

4.3 Solving MDR-SFC-GCC Problem

After finding the optimal path for each demand, we put in a ground set all the functions
of the paths of the service chains. There could be functions of the same operation type
residing in different nodes of the network. Routing phase can give paths sharing the
same function/node or not. As a result, in order to maximize the cumulative data rate of
the satisfied service chains, we check the following conditions:

• If the routing phase resulted in paths that do not share functions, then we have to
solve a knapsack problem for which an FPTAS scheme exists. In this case we collect
all the functions of a chain’s path as one item, having weight equal to the summary
of the weights of the functions.

• If the routing phase resulted in paths that share functions/nodes, then we have to
solve a Set-Union knapsack problem.

So, if we assume that there is a constant bound q on the shared VNFs among the service
chains, which can be a real condition in cloud environments, we propose an algorithm
with guaranteed ratio, this of (1 − e−

1
q). We do this by using the Algorithm-5 presented

in subsection 3.3.1 (special instance for SUKP problem). In realistic conditions, this can
happen provided that a given number of the VLAN ports in each VNF is part of the input,
which makes the SFC paths sharing a VNF also bounded. In this case the problem be-
comes harder, as we need to solve a separate (multidimensional) knapsack problem in a
first place which needs further investigation and analysis.

N. Lazaropoulos 58

Approximation Algorithms for Virtual Service Functions Chain Placement

Algorithm 6 MDR-SFC-GCC-Algorithm(D,C)
Require: Set of demands D, CPU Budget C
Ensure: Set of demands with highest data rate D̃

paths← new vector of length |D| of null
for each d ∈ D do

paths[d]← Configuration_Graph_Shortest_Path(d)

profit[d]← vol(d)
cost(paths[d])

end for
items← paths, items.profit← profit[d], items.weight← weight[d]
if ∀i ̸= j, paths[i].nodes ∩ paths[j].nodes = ∅ then

D̃ ← Knapsack_FPTAS(items,C)
else

D̃ ← A− SUKP (items,C)
end if

59 N. Lazaropoulos

Approximation Algorithms for Virtual Service Functions Chain Placement

N. Lazaropoulos 60

Approximation Algorithms for Virtual Service Functions Chain Placement

5. OPEN PROBLEMS

In this chapter we talk about open problems around SFC/VNF placement. At a first place,
we give the generalization of a problem we saw in the previous chapter.

5.1 Joint Placement and Allocation of SFCs with Budget and Capacity Constraints

In paragraph (3.2) we investigated the problem of Joint Placement and Allocation of VNFs
with Budget and Capacity Constraints. A natural generalization of this problem, comes
to light when we want to place SFCs instead of single VNFs. The problem is very hard,
considering that we need to take into consideration the precedence constraints between
the VNFs of the service chains.
We give the following definition of the problem:

Input: A digraph G = (V,E), a set of functions F , and a collection D of demands. Each
demand d ∈ D is associated with a path path(d) ∈ V ∗, a sequence of functions sfc(d) ∈ F ∗

and a flow p(d) ∈ R+. A (setup) weight w : F → wf , defines the weight (i.e. CPU/Memory)
of function f in any node. Each node v ∈ V has a capacity cv. A (usage) cost b : V → bv,
defines the cost (i.e. monetary) of using node v for setting up at least one VNF.

Definition of function placement: A service functions chain placement is a subset
Π ⊂ V × F of function locations. We say that a demand d ∈ D associated with a path
path(d) = u1, u2, ..., ul(d) and a chain sfc(d) = r1, r2, ..., rs(d) is satisfied by Π, if there exists
a sequence of indices i1 ≤ i2 ≤ ... ≤ is(d), such that (vij , rj) ∈ Π, for 1 ≤ j ≤ s(d).

Output: An optimal service functions chain placement that is a subset Π ⊂ V × F of
function locations, such that, demands d ∈ D of maximum cumulative flow are satisfied.

Objective: maximize ∑
d∈D

p(d)f(Π, d) (5.1)

Where:

f(Π, d) =

{
1, Π satisfies d
0, otherwise

(5.2)

under the constraints: ∑
f∈F

χΠ(v, f)wf ≤ cv, ∀v ∈ V (5.3)

∑
v∈V

∑
f∈F

χΠ(v, f)bv ≤ B (5.4)

The quantity B is a budget. With χΠ(v, f) we mean the indicator function showing whether

61 N. Lazaropoulos

Approximation Algorithms for Virtual Service Functions Chain Placement

policy Π places function f in node v or not. A function can be placed in at most one node,
which leads to: ∑

v∈V

χΠ(v, f) ≤ 1, ∀f ∈ F (5.5)

5.2 General cases

VNF placement and SFC routing joint optimization solutions have the optimization ob-
jectives in both VNF-level (mainly consider deployment cost, resource usage, etc.) and
routing-level (mainly consider link utilization, delay, etc.). Because of the conflict between
these two levels, the optimization solutions need to balance the objectives of VNF-level
and routing-level according to the requirements of network operators and users. Fur-
thermore, in order to realize fast solving in large-scale network, these solutions propose
different approximation algorithms to exchange the accuracy of optimization results for
lower computational complexity.
The MDR-SFC-GCC problems asks for further investigation, in the direction which will ex-
pose the conditions needed for having a guaranteed approximation solution for the prob-
lem. We hope that the problem definition will trigger the reader to search for more infor-
mation around similar problems, inspiring them to propose sophisticated techniques in the
area.
Important existing open problems ask for the maximization of resource utilization and/or
minimization of average path latency, with proved upper/lower bounds of algorithm per-
formance. Energy consumption of VNFs is another important parameter that is taken into
consideration when designing approximation algorithms for the specific domain.
A remaining unaddressed issue is considering flow rates and the accounting of practical
constraints such as soft capacities on network functions or hard capacities on network
nodes. An interesting future research direction may concern an investigation of the pos-
sibility of efficiently approximating these problems.
Of course online versions of the discussed problems are always in the centre of industry’s
interest, as in real conditions VNFs appear and die dynamically in cloud data centers.
Last but not least, we note the importance of studying certain topologies of the problems
(trees, chordal graphs), which can ease the finding of approximations for some instances.

N. Lazaropoulos 62

Approximation Algorithms for Virtual Service Functions Chain Placement

6. CONCLUSION

In this thesis we studied significant approximation algorithms for SFC/VNF placement,
targeting to present techniques of guaranteed approximation solutions. We showed how
instances of the SFC/VNF placement problem reduce to known problems, like the Multiple
Knapsack With Assignment Restrictions Problem and the Budgeted Maximum Coverage
Problem. We presented a problem definition that arises in cloud environments, where
operators need to route the most profitable (in terms of data rate) service chains under a
general capacity constraint. Finally. we sketched a solution for a special instance of the
problem.

63 N. Lazaropoulos

Approximation Algorithms for Virtual Service Functions Chain Placement

N. Lazaropoulos 64

Approximation Algorithms for Virtual Service Functions Chain Placement

ABBREVIATIONS - ACRONYMS

NFV Network Function Virtualization
VNF Virtual Network Function
SFC Service Functions Chain
TELCO Telecommunications Company
MKAR Multiple Knapsack With

Assignment Restrictions
Problem

SUKP Set Union Knapsack Problem
BMC Budgeted Maximum Coverage

Problem

65 N. Lazaropoulos

Approximation Algorithms for Virtual Service Functions Chain Placement

N. Lazaropoulos 66

Approximation Algorithms for Virtual Service Functions Chain Placement

REFERENCES

[1] Xin Li and Chen Qian, ”A Survey of Network Function Placement”, Department of Computer Science,
University of Kentucky, 13th IEEE Annual Consumer Communications Networking Conference (CCNC),
2016.

[2] Juliver Gil Herrera and Juan Felipe Botero, ”Resource Allocation in NFV: A Comprehensive Survey”,
IEEE Transactions on Network and Service Management (Volume: 13, Issue: 3, September 2016).

[3] R. Guerzoni et al., ”Network functions virtualisation: an introduction, benefits, enablers, challenges and
call for action”, introductory white paper. In SDN and OpenFlow World Congress, 2012.

[4] ETSI. European Telecommunications Standards Institute. Accessed on Feb. 28, 2016.

[5] A. Gemberet al., “Stratos: A network-aware orchestration layer for middleboxes in the cloud”, CoRR,
vol. abs/1305.0209, 2013.

[6] P. Quinn and J. Guichard, “Service function chaining: Creating a service plane via network service
headers,” Computer, vol. 47, no. 11, pp. 38–44, Nov. 2014.

[7] A. Tomassilli, F. Giroire, N. Huin, and S. Perennes, ”Provably Efficient Algorithms for Placement of Ser-
vice Function Chains with Ordering Constraints”, IEEE INFOCOM 2018 - IEEE Conference on Computer
Communications.

[8] V. Chvatal, “A greedy heuristic for the set-covering problem”, Mathematics of operations research, vol.
4, no. 3, pp. 233–235, 1979.

[9] N. Alon, D. Moshkovitz, and S. Safra, “Algorithmic construction of sets for k-restrictions,” ACM Trans.
Algorithms, vol. 2, no. 2, 2006.

[10] K. Menger, “Zur allgemeinen kurventheorie,” Fundamenta Mathematicae, vol. 10, no. 1, pp. 96–115,
1927.

[11] Weihan Chen, Xia Yin, Zhiliang Wang and Xingang Shi, ”Placement and Routing Optimization Problem
for Service Function Chain: State of Art and Future Opportunities”, International Conference on Artificial
Intelligence and Security, 2020.

[12] Gamal Sallam and Bo Ji, ”Joint Placement and Allocation of Virtual Network Functions with Budget
and Capacity Constraints”, IEEE INFOCOM 2019 - IEEE Conference on Computer Communications.

[13] K. Poularakis, G. Iosifidis, G. Smaragdakis, and L. Tassiulas, “One step at a time: Optimizing sdn
upgrades in isp networks,” in Proceedings of IEEE INFOCOM, 2017.

[14] G. L. Nemhauser and L. A. Wolsey, “Maximizing submodular set functions: formulations and analysis
of algorithms,” in North-Holland Mathematics Studies. Elsevier, 1981, vol. 59, pp. 279–301.

[15] M. Dawande, J. Kalagnanam, P. Keskinocak, F. S. Salman, and R. Ravi, “Approximation algorithms for
the multiple knapsack problem with assignment restrictions,” Journal of combinatorial optimization, vol.
4, no. 2, pp. 171–186, 2000.

[16] O. Goldschmidt, D. Nehme, G. Yu, ”Note: on the set-union knapsack problem”, Naval Res. Logist.
(NRL) 41 (6) (1994) 833–842.

67 N. Lazaropoulos

Approximation Algorithms for Virtual Service Functions Chain Placement

[17] S. Khuller, A. Moss, J. Naor, ”The budgeted maximum coverage problem”, Inform. Process. Lett. 70
(1999) 39–45.

[18] Ashwin Arulselvan ”A note on the set union knapsack problem”, Elsevier, Discrete Applied Mathematics
Volume 169, 31 May 2014, Pages 214-218.

[19] M.T. Hajiaghayi, K. Jain, K. Konwar, L.C. Lau, I.I. Măndoiu, A. Russell, A. Shvartsman, V.V. Vazi-
rani, ”The minimum k-colored subgraph problem in haplotyping and DNA primer selection”, in: Proc. Int.
Workshop on Bioinformatics Research and Applications, IWBRA, 2006.

[20] U. Feige, G. Kortsarz and D. Peleg ”The dense k-subgraph problem”, Algorithmica, 29 (1999), p. 2001.

N. Lazaropoulos 68

	CONTENTS
	INTRODUCTION TO NETWORK FUNCTIONS VIRTUALIZATION
	Introduction
	VNFs Architecture
	Resource Allocation Problems in VNFs Placement
	VNFs - Service Chain Composition (VNFs-SCC)
	VNFs - Forwarding Graph Embedding (VNFs-FGE)
	VNFs - Scheduling (VNFs-SCH)

	THE SERVICE FUNCTION CHAIN PROBLEM
	Virtual Network Function Placement
	Service Function Chain Routing For VNFs
	Joint Optimization of VNF Placement and SFC Routing

	EXISTING APPROXIMATIONS
	Approximation algorithms for SFC Placement
	SFC with single function
	Equivalence with Hitting Set
	Greedy Algorithms for SFC Placement
	Naive and Faster Greedy Algorithms

	Joint Placement and Allocation of VNFs with Budget and Capacity Constraints
	System Model And Problem Formulation
	Hardness of Approximation for the VPCA Problem
	Proposed Algorithms
	MKAR LP Rounding: A 1/2 Approximation Algorithm

	The Set-Union Knapsack problem (SUKP)
	Approximation for a special case of the Set-Union Knapsack problem

	CONTRIBUTION
	System Model and Problem Formulation
	Routing in the scene
	Solving MDR-SFC-GCC Problem

	OPEN PROBLEMS
	Joint Placement and Allocation of SFCs with Budget and Capacity Constraints
	General cases

	CONCLUSION
	ABBREVIATIONS - ACRONYMS
	REFERENCES

