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PRELUDE 

My PhD thesis seeks to elucidate the effects of remote ischaemic conditioning on arterial 

stiffness, endothelial glycocalyx integrity, and biochemical function in patients undergoing 

PPCI for STEMI. Expanding on these acute processes, it explores their interaction with 

ventricular remodelling in an attempt to identify and propose a role for remote conditioning, 

in the everlasting endeavour to inhibit the progression to ischaemic heart failure. 

This research project has taken place in the Laboratory of Preventive Cardiology and 

Vascular Diseases of the Second Cardiology Department of the Attikon University Hospital, 

under the expert guidance and support of Professor Ignatios Ikonomidis. It is him who I thank 

first and foremost for his relentless efforts and invaluable mentoring. His scientific expertise 

and work ethics set the pillars for the conduction of this demanding and laboursome clinical 

trial. 

I am equally grateful to Professor John Lekakis, who upon examining me in the context of 

my Cardiology finals, recognised my passion for the cardiovascular system and gave me a 

ticket to an exciting world of scientific exploration. Without his generosity and disinterest, I 

would have never been given this amazing opportunity. 

For our joint investigation of remote conditioning properties, I am grateful beyond words to 

Professor Eftasthios Iliodromitis. His world-class expertise in studying these phenomena 

facilitated our attempts to design our study, comprehend the data obtained, and validly 

expand on the commonly conflicting evidence pertaining to the cascades underlying 

ischaemic conditioning. 

Words are not enough to express my gratitude to Professor Ioanna Andreadou. By providing 

us with expert insight into the intriguing biochemical mechanisms of the cardiovascular 

system, and by overseeing the utilised experimental methods, she played an irreplaceable role 



in the completion of our project. I would also like to thank all my colleagues, who 

contributed to any degree to these efforts, making our Laboratory a formidable centre of 

medical exploration. 

This thesis is dedicated to Katerina, my better half, who has supported me through storms of 

doubt and fear. It is also dedicated to Nicholas, who I was blessed to have as my brother, and 

my parents Kostas and Kyriaki, with the hope to give something small in return for 

dedicating their lives to us. 

‘If I have seen further, it is by standing on the shoulders of giants.’ 

Isaac Newton 
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ABSTRACT 

Aims 

Remote ischemic conditioning (RIC) alleviates ischemia-reperfusion injury via several 

pathways, including micro-RNAs (miRs) expression and oxidative stress modulation. We 

investigated the effects of RIC on endothelial glycocalyx, arterial stiffness, LV remodelling, 

and the underlying mediators within the vasculature as a target for protection.  

Methods & Results We block-randomised 270 patients within 48h of STEMI post-PCI to 

either one or two cycles of bilateral brachial cuff inflation, and a control group without RIC. 

We measured: a) the perfusion boundary region (PBR) of the sublingual arterial microvessels 

to assess glycocalyx integrity; b) the carotid-femoral pulse wave velocity (PWV); c) miR-

144, -150, -21, -208, nitrate-nitrite (NOx) and malondialdehyde (MDA) plasma levels at 

baseline (T0) and 40 minutes after RIC onset (T3); and d) LV volumes at baseline and after 

one year. Compared to baseline, there was a greater PBR and PWV decrease, miR-144 and 

NOx levels increase (p<0.05) at T3 following single- than double-cycle inflation (PBR: ΔT0-

T3=0.249±0.033 vs 0.126±0.034 μm, p=0.03 and PWV:0.4±0.21 vs -1.02±0.24 m/s, p=0.03). 

Increased miR-150, -21, -208 (p<0.05) and reduced MDA was observed after both protocols. 

Increased miR-144 was related with PWV reduction (r=0.763, p<0.001) after the first-cycle 

inflation in both protocols. After one year, single-cycle RIC was associated with LV end-

systolic volume reduction (LVESV) >15% (odds-ratio of 3.75, p=0.029). miR-144 and PWV 

changes post-RIC were interrelated and associated with LVESV reduction at follow-up 

(r=0.40 and 0.37, p<0.05), in the single cycle RIC.  

Conclusions 

RIC evokes “vascular conditioning” likely by upregulation of cardio-protective microRNAs, 

NOx production, and oxidative stress reduction, facilitating reverse LV remodelling.  
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INTRODUCTION 

Expeditious primary percutaneous coronary intervention (PPCI) constitutes the cornerstone 

of treating ST-segment elevation myocardial infarction (STEMI) [1,2]. ‘Time is muscle’, 

since the duration of ischaemia significantly affects infarct size, and prompt management 

reduces STEMI morbidity and mortality [3,4]. However, the restoration of blood flow and the 

abrupt reoxygenation of the ischemic myocardium induces an additional component of 

ischaemia-reperfusion injury (IRI) which expands infarct size [5]. Importantly, IRI limits the 

beneficial effects of PPCI on myocardial salvage in patients with STEMI [6]. Remote 

ischemic conditioning (RIC), with application of brief episodes of ischemia and reperfusion 

in vascular beds distant to the organ at risk, activates a protective phenotype against IRI [7]. It 

confers reduced myocardial infarct size and improved myocardial salvage index, decreases 

the need for pharmacological and mechanical haemodynamic support, and induces superior 

recovery of left ventricular (LV) systolic function after STEMI [8], with mixed evidence 

regarding its impact on cardiac mortality and hospitalisation for heart failure [8, 9]. In 

addition, seven-day RIC improves local and systemic endothelial function and 

microcirculation in healthy humans [10]. However, the role of RIC on vascular function in 

STEMI post-PCI patients and the mechanism of its possible protective action have not been 

evaluated. 

Endothelial glycocalyx consists of glycoproteins and proteoglycans that form a surface layer, 

preventing the direct contact between blood cells and vascular endothelium [11]. It is 

damaged after exposure to atherogenic risk factors, including hyperglycaemia, dyslipidaemia, 

hypertension, and smoking [12], and by IRI [13], contributing to coronary microvascular 

injury (resulting in oedema, vasomotion impairment, coronary microembolization, capillary 

destruction and haemorrhage). In turn, coronary microvascular injury adversely affects 

ventricular function and remodelling, and is associated with increased incidence of 



cardiovascular complications and mortality [13]. Increased oxidative stress appears to play an 

important role, since reactive oxygen species (ROS) induce an acute but reversible 

impairment of glycocalyx structure [14]. In addition to the coronary circulation, endothelial 

function of the peripheral arteries is also impaired following AMI with the maximal 

disturbance observed during the first 24 to 72 hours post AMI [15,16], while its assessment 

within 24 hours of the index event has been shown to predict infarct extension and adverse 

LV remodelling [15]. Furthermore, endothelial glycocalyx impairment assessed by sublingual 

microscopy has been associated with microvascular angina, providing additional evidence 

that the properties of the peripheral arterial system may reflect the state of the coronary 

microvasculature [17]. In the context of RIC investigation, this method of endothelial 

glycocalyx integrity measurement might be preferable to assessment of endothelial function 

using measurement of the flow- mediated dilation (FMD) of the brachial artery. This is 

because it obviates the need for an additional ischemia-hyperaemia cycle provoked by the 

extra cuff inflation needed for the FMD study, which would confound the total ischemic 

burden and stimulus timing of our intervention. Moreover, endothelial glycocalyx integrity is 

a measure of vascular permeability, while FMD measurement mainly quantifies the capability 

of NO production by the endothelium. Although RIC has been demonstrated to improve 

peripheral [7] and coronary endothelial function [18,19] and to reduce the oxidative stress 

burden associated with IRI [20], its effects on glycocalyx properties have not been defined. 

RIC is associated with arterial stiffness alleviation in patients with stable ischemic heart 

disease [21]. Increased arterial stiffness augments LV afterload and decreases diastolic 

coronary perfusion [22], reducing oxygen supply to demand ratio. Thus, arterial stiffening 

may contribute to adverse LV remodelling and thus, to poor prognosis post-AMI [23]. 

However, the effects of RIC on arterial elastic properties and their interaction with LV 

remodelling in AMI patients remain unclear. 



Oxidative stress enhancement constitutes an important component of IRI [24]. Biomembrane 

polyunsaturated lipid peroxidation by ROS generated during abrupt reperfusion generates 

malondialdehyde (MDA) [24]; indeed, increased MDA levels have been reported following 

PCI and thrombolysis for STEMI [20]. Studies in patients with systemic inflammatory 

disease have linked increased MDA with impaired LV function and its reduction after 

treatment with a concomitant LV function improvement [25]. In this respect, RIC reduces 

lipid peroxidation with attendant decreased MDA levels [20], and thus may induce 

improvement of myocardial function post-PCI in STEMI. 

Nitrate (NO3-) and nitrite (NO2-) have recently been shown to function as recycling 

substrates in a process of NO regeneration, which is independent of the classic L-arginine-

NO-synthase (NOS) pathway [26]. Thus, the nitrate-nitrite (NOx) pool could be perceived as 

a reservoir of NO bioactivity that complements NOS in states of low-oxygen tension, such as 

during AMI and could further contribute to vascular protection and myocardial protection 

post-RIC [27]. 

In addition, IRI evokes a systemic inflammatory response with significantly increased IL-6 

levels [28]. This results in enhanced neutrophil adherence to the cardiovascular endothelium, 

with deleterious effects [28]. Similarly, IL-6 pathway appears to mediate vascular 

inflammation in various disease processes [29]. RIC has been reported to decrease IL-6 levels 

in animal models of systemic inflammation and ischemia [30], but its effects on IL6 

production post-STEMI have not been clearly defined. 

MicroRNAs (MiRs) are small, single stranded, non-coding RNA molecules that regulate 

post-transcriptional gene expression in response to cellular or environmental stimuli [31]. 

MicroRNA-144 (miR-144) has been recognised as an important mediator [32] implicated in 

RIC signalling both in vascular and myocardial cells. Moreover, miR-150 inhibits apoptosis 



and fibrosis in the setting of animal models of myocardial IRI [33]. Additionally, miR-21 has 

been demonstrated to mediate cardio-protection in coronary artery bypass graft (CABG) 

patients undergoing remote ischemic conditioning [34]. On the contrary, miR-208 exerts 

deleterious effects by way of hypertrophy and adverse remodelling induction [35]. However, 

the effects of RIC on miRs involved in cardiac and vascular function are not fully 

investigated in the clinical setting. 

Following AMI, a non-contractile and expanding infarcted zone of scar tissue is formed. This 

expansion leads to an increased volume load, which in turn augments the pressure load 

exerted on non-infarcted regions resulting in adverse LV remodelling. Long-term LV 

remodelling after AMI may last for up to 2 years after the index event and is associated with 

cardiovascular mortality [36]. 

Based on the above observations, the aim of the present study was to determine the “vascular 

conditioning” potential of RIC by investigating its effects on endothelial glycocalyx, arterial 

stiffness, and oxidative stress burden after primary PCI, as well as to identify the role of 

specific miRs, NOx and IL-6 production on vascular function early post MI. With regards to 

the implemented protocols, there is evidence supporting that a total ischemic period of 5 to 10 

minutes may confer the optimum ischemic conditioning stimulus [37,38], while 5 minutes of 

ischemic inflation induce maximal shear-mediated NO release and vasodilation in FMD 

studies [39]. Additionally, a single 5-minute inflation-deflation cycle has been demonstrated 

to confer increased nitrite levels and attendant cyto-protection, both of which progressively 

weaned following each additional ischemic cycle [40]. Based on the above, we utilised either 

a single or a double 5-minute cycle ischemic inflation to explore the potential effects of each 

RIC protocol on “vascular conditioning”. Additionally, we intended to shed light on any 

possible contribution of “vascular conditioning” to long-term reverse LV remodelling. 



LITERATURE REVIEW 

1. Ischemia-reperfusion injury: the price of coronary reperfusion 

IRI encompasses the injurious effects of restoring perfusion and oxygenation of a previously 

ischaemic organ [5,6,41]. Intriguingly, it further contributes to the existent ischaemic damage 

and leads to the expansion of the infarcted area [5]. It was first described in a canine model of 

reperfused myocardium: cellular swelling, myofibrillar contracture, sarcolemmal disruption, 

and intramitochondrial calcium phosphate precipitation were among the identified 

histological changes [42]. Myocardial IRI culminates in four types of dysfunction, namely 

myocardial stunning, no-reflow phenomenon, reperfusion arrhythmias, and lethal reperfusion 

injury [5]. Myocardial stunning is defined as mechanical dysfunction in spite of coronary 

flow restoration and the absence of irreversible ischaemic damage [43], while no-reflow 

phenomenon is an extreme form of microvascular dysfunction [44] that prevents the 

reperfusion of a previously ischaemic territory [45]. Reperfusion arrhythmias can be 

malignant [46], while lethal reperfusion injury denotes the reperfusion-induced 

cardiomyocyte death [5].  

Oxidative stress serves as a key mediator of IRI [5,47,48], both directly within the realms of 

the oxygen paradox (whereby the cumulative injury after reoxygenation surpasses the injury 

caused by the ischemia per se [49]) and indirectly through the reduction of NO bioavailability 

(which inhibits inflammation, inactivates ROS, and improves coronary flow [50]). The 

calcium paradox phenomenon further aggravates IRI and is the result of sarcollemal damage 

and oxidative stress-derived dysfunction of the sarcoplasmic reticulum [51]. It is 

characterised by calcium overload that overwhelms the myocardial calcium regulation 

mechanisms and leads to cardiomyocyte hypercontracture, mPTP opening, and a resultant 

cellular death [51]. The normalisation of pH is an additional trigger of deleterious cascades 



(the pH paradox [52]), while sterile inflammation is recognised as an additional component of 

injury [5,41]. More specifically, neutrophil migration promoted be chemotactic signals and 

cell-adhesion molecules results in vascular plugging, ROS generation, and release of 

proteases [53-56]. 

The deleterious effects of IRI are clinically reflected on the natural history of ischaemic heart 

disease following PPCI for STEMI [6]. Despite the accumulated experience and the 

constantly evolving techniques for coronary reperfusion, the morbidity and mortality of heart 

failure after AMI remain considerable [57,58]. More specifically, 1-year cardiovascular 

mortality post-PCI varies from 2 to 11% [9,59,60]. In this context, infarct size has been 

demonstrated as a powerful predictor of outcomes: infarct size at a median time of 4 days 

after STEMI independently predicted all-cause mortality and rehospitalisation for heart 

failure within 1 year [61]. Furthermore, IRI is not physiologically isolated in the index 

reperfused organ and may induce a systemic inflammatory reaction with the potential to 

progress to multi-organ dysfunction [7,62,63]. The systemic nature of IRI is also underscored 

by the peripheral endothelial dysfunction that accompanies ACS [64,65]. Interestingly, 

peripheral endothelial function assessment has prognostic properties, as forearm blood flow 

response was a significant independent predictor of poor prognosis, while peripheral 

vasoreactivity response recovery within 8 weeks of the index event predicted further event-

free survival after ACS [64] (the endothelial recovery suggests that the ACS caused an 

additional and potentially reversible insult). Similarly, endothelium-dependent brachial artery 

dilation independently predicted adverse outcomes within 24.8 months [65]. 

 

 



2. Ischaemic conditioning: the protective properties of brief ischaemia and 

reperfusion episodes 

Ischaemic preconditioning signifies the original cardioprotection paradigm. This 

phenomenon was first studied in a canine model of myocardial ischaemia, whereby four 

episodes of 10-minute circumflex occlusion of the circumflex artery, each followed by 20 

minutes of reperfusion, resulted in less extensive adenine triphosphate (ATP) loss and 

necrosis compared with a 40-minute occlusion [66]. In addition, successive occlusions caused 

diminished lactate production [66]. This study set the stage for the subsequent demonstration 

of the protective ischaemic preconditioning properties: 4 episodes of 5-minute circumflex 

occlusion, each followed by 5 minutes of reperfusion, limited the infarction caused by 40 

minutes of sustained circumflex ischaemia by 25% in comparison with dogs that had not 

undergone preconditioning [67]. Ischaemic preconditioning in humans was first applied in 

patients undergoing elective percutaneous transluminal coronary angioplasty (PTCA): in a 

landmark study investigating the clinical, haemodynamic, and metabolic response to 

sequential 90-second left-anterior descending (LAD) artery occlusions it was evident that the 

second occlusion caused less anginal discomfort, smaller ST-segment deviations, lower mean 

pulmonary artery pressure, and decreased lactate production [68]. 

The concept of ischaemic conditioning has been expanded temporally and anatomically. 

Ischaemic postconditioning entails brief cycles of ischaemia and reperfusion applied after the 

onset of the index reperfusion: in one of the key experimental studies, it was shown that 3 

cycles of 30-second reperfusion and 30-second LAD occlusion at the beginning of 

reperfusion, i.e., postconditioning, was equally effective with a preconditioning protocol of a 

5-minute LAD occlusion and 10 minutes of reperfusion before the index ischaemic event 

with regards to infarct size reduction, coronary endothelial function preservation, and lipid 

peroxidation reduction [69]. These findings were later clinically confirmed in patients 



undergoing PCI for AMI, where 4 episodes of 1-minute inflation followed by 1-minute 

deflation of the angioplasty balloon after the culprit lesion stenting leaded to a significant 

decrease of the creatine kinase area under the curve and a significant increase of blush grade, 

reflecting a 36% infarct size reduction and improved myocardial reperfusion, respectively 

[70]. Similarly, postconditioning at PCI for STEMI reduced creatine kinase peak serum levels 

and reduced myocardial infarct size and oedema, as assessed by magnetic resonance imaging 

[71]. In the same clinical context, 4 cycles of 1-minute occlusion and 1-minute reperfusion 

ameliorated coronary microvascular obstruction as signified by the reduced incidence of no-

reflow phenomenon [72]. Moreover, in one of the most recent postconditioning trials, 4 

cycles of 30-second inflation/deflation at PCI for STEMI inhibited microvascular obstruction 

and conferred improved LV-remodelling 1 year after the index event as assessed by magnetic 

resonance imaging [73]. Postconditioning has also been shown to confer improved LV 

functional recovery: a protocol of 4 1-minute occlusion/reperfusion cycles was associated 

with a significantly greater EF by 7% and an increased peak systolic strain of the area at risk 

at 1-year post-PPCI for STEMI [74]. These findings are not indisputable, since among the 

clinical studies that have investigated the postconditioning phenomenon in patients with 

STEMI [75-101] evidence can be found of a neutral effect on infarct size, as well as markers 

of necrosis, myocardial salvage, ejection fraction, and adverse cardiac events during follow-

up as presented by the POSTEMI trial [94]. The POST-AMI trial even suggested that there 

was a possibility of harm, due to a trend for postconditioning patients to develop infarcts of 

greater size (although the universal applicability of this study is obscured by the utilisation of 

intravenous abciximab in all patients and by the uneven distribution of diabetics between the 

intervention and the control arms) [85]. 

In addition to its temporal variations, ischaemic conditioning has also evolved anatomically 

[7,102]. In a landmark experimental study of a canine myocardial ischaemia model, four 



episodes of 5-minute occlusion/reperfusion of the circumflex artery conferred cardiopotection 

to the LAD territory from a sustained 1-hour occlusion [103]. Thus, it was inferred that 

factors mediating conditioning may be transported to or activate protective mechanisms in 

remote vascular beds [103], marking the dawn of RIC. Subsequent investigations sought to 

explore the possibility of a circulating humoral factor instigating conditioning. Interestingly, 

coronary effluents from preconditioned rabbit hearts were infused in virgin recipient hearts 

and their effects were compared with those of control non-preconditioned effluents. 

Preconditioned effluent elicited cardioprotection of the virgin hearts against a 40-minute 

global ischaemia and 60-minute reperfusion episode as evident by the significantly smaller 

infarct size [104]. The discovery of inter-organ RIC marked a pivotal advance of the 

ischaemic conditioning concept. More specifically, in an experimental rat model, mesenteric 

and renal artery occlusions protected from IRI caused by coronary artery occlusion to a 

degree similar to that of local conditioning [105]; these findings were confirmed by similar 

studies, where mesenteric or renal artery occlusions elicited RIC [106-108]. Another 

interesting study explored the effects of limb ischaemia/reperfusion on a swine model of 

myocardial infarction and on human IRI-induced endothelial dysfunction: in the swine 

model, four 5-minute lower limb ischaemic stimuli preceded a 40-minute balloon occlusion 

of the LID, while in the human participants, three 5-minute upper limb ischaemic cycles were 

applied before a contralateral upper limb 20-minute ischaemic inflation [109]. In the former 

model, RIC significantly reduced the infarct size, while in the latter RIC preserved the 

endothelial response to acetylcholine which was otherwise impaired by IRI [109]. Similarly, 

three 5-minute upper limb ischaemic cycles protected the contralateral upper limb from the 

IRI-induced impairment of flow-mediated dilation [110]. Importantly, two separate windows 

of protection were uncovered, one starting immediately after RIC, and another starting within 

24 hours and lasting at least up to 48 hours [110]. In a more clinically-oriented investigation, 



three cycles of 5-minute forearm ischaemia/reperfusion reduced the troponin release caused 

by cardioplegic arrest in patients undergoing coronary artery bypass grafting (CABG) [111]. 

Even in the absence of cardioplegic arrest (off-pump CABG), four 5-minute upper limb 

ischaemic stimuli resulted in decreased troponin, MDA, and IL-6 levels [112]. In the context 

of STEMI, one of the most important relevant studies demonstrated that four 5-minute upper 

limb ischaemic cuff inflation/deflation cycles applied before PPCI conferred improved 

myocardial salvage index as assessed by myocardial perfusion imaging 30-days after the 

index reperfusion event [113]. Further expanding on this evidence, the application of three 5-

minute lower limb ischaemic cuff inflation/deflation cycles before PPCI reduced infarct size 

and improved myocardial salvage index, decreased the need for diuretics, pharmacological 

and mechanical haemodynamic support during the index hospitalisation, improved EF 

recovery at 12-month follow-up, and reduced cardiac mortality and hospitalisations for HF 

over a median follow-up period of 2.1 years [8]. The CONDI trial also highlighted a 

decreased risk for major adverse cardiac and cerebrovascular events, as well as reduced all-

cause mortality over a median follow-up period of 3.8 years, in patients undergoing four 

cycles of 5-minute arm ischaemic cuff inflation/deflation before PCI [114]. Nonetheless, 

these findings are not unequivocal, as the CONDI-2/ERIC-PPCI trial demonstrated no 

benefits of utilising this RIC protocol in patients undergoing PPCI for STEMI with regards to 

cardiac death or hospitalisation for HF at 12 months [9]. 

 

 

 

 

 



3. The role of endothelial glycocalyx in IRI and ischaemic conditioning 

Endothelial glycocalyx consists of glycoproteins and proteoglycans that form a surface layer, 

preventing the direct contact between blood cells and vascular endothelium [11]. It is a major 

determinant of vascular permeability, leukocyte and platelet adhesion, and endothelial 

function [115,116]; experimental studies have demonstrated that glycocalyx damage is 

associated with increased lipoprotein influx [118], enhanced leukocyte and platelet adhesion 

[118,119], as well as endothelial dysfunction [120,121,122]. IRI exerts deleterious effects on 

endothelial glycocalyx by inducing shedding of its components [6,123-125]. This contributes 

to coronary microvascular dysfunction which manifests itself with a multifaceted process that 

includes myocardial oedema [126], impaired vasomotion [127], platelet-leukocyte 

aggregation [128], coronary microembolisation [129], and even capillary destruction and 

intramyocardial haemorrhage with an attendant no-reflow phenomenon [130,131]. Coronary 

microvascular dysfunction is very frequent with an incidence of up to 70% in the context of 

reperfusion after acute myocardial infarction (AMI) [132] and is associated with worse long-

term outcomes, more extensive LV dysfunction, and enhanced adverse remodelling [133-

135]. The systemic nature of IRI is further reflected on the peripheral endothelial dysfunction 

that accompanies acute coronary syndromes (ACS) [64,65]. Interestingly, impaired peripheral 

vasomotion has been associated with an increased occurrence of future adverse 

cardiovascular events [64,65], while restoration of systemic vasodilatory response predicts 

event-free survival [64]. Ischaemic conditioning alleviates coronary microvascular 

dysfunction [18]: coronary vasomotion is improved [136,137], myocardial oedema [69,71] 

and platelet-leukocyte aggregation are reduced [138], as is the risk of no-reflow [139]. 

Similarly, remote ischaemic conditioning improves peripheral endothelial function in patients 

undergoing PCI for AMI [140]. Sideview darkfield imaging (SDF) is a modality that provides 

high-contrast visualisation of the microvasculature in easily accessible vascular beds 



[141,142]. It utilises green light illumination which allows imaging of the superficial venules 

and capillaries based on the principle of green light absorption by haemoglobin [141,142]. 

Further, the lateral displacement of red blood cells (RBC) within the microvascular lumen 

can be depicted and calculated as the perfused boundary region (PBR) [143,17]. Hence, PBR 

calculation is a validated [144-148] method of estimating the depth of RBC penetration 

which is inversely proportional to glycocalyx thickness. Deeper RBC penetration, i.e., 

increased PBR has been associated with impaired microvascular perfusion [143] and 

microvascular angina [17]. Thus, it serves as a marker of systemic glycocalyx-mediated 

microvascular dysfunction. Despite the existing evidence of the beneficial effects of ischemic 

conditioning on microvascular function, its direct effects on endothelial glycocalyx integrity 

have not been explored. 

 

 

 

 

 

 

 

 

 

 

 



4. The role of arterial stiffness in IRI and ischaemic conditioning 

Arterial distensibility is crucial for the determination of the systemic circulation impedance 

characteristics [22]. High proximal aortic distensibility results in low proximal aortic 

impedance, which is the hydraulic load imposed on the LV during systole [22]. In addition, 

adequate distensibility allows the aorta and proximal large arteries to function as an elastic 

buffer during systole and store about 50% of the stroke volume, which is forwarded during 

diastole due to their elastic recoil, resulting in a nearly continuous systemic blood flow [91]. 

This Windkessel effect reduces LV afterload, while augmenting coronary blood flow and 

facilitating ventricular relaxation [91]. Reversely, increased stiffness and the attendant 

reduced distensibility result in increased systolic and decreased diastolic blood pressure for 

any given mean arterial pressure level, increased LV afterload, and decreased diastolic 

subendocardial perfusion [149,150]. This is further compounded by the acceleration and early 

return of the reflected pulse waves during systole [151]. Ultimately, an imbalance ensues 

between increased myocardial oxygen demands and impaired coronary perfusion [150]. 

Carotid-femoral pulse wave velocity (PWV) is considered the gold-standard for the 

measurement of arterial stiffness [152]. It is a simple, non-invasive, and reproducible method, 

whereby the distance between two points in the aorto-femoral pathway is divided by the time 

of propagation of the pulse wave between them [152]. Aortic stiffness as quantified by 

carotid-femoral PWV independently predicts adverse cardiovascular events and mortality 

both in healthy individuals as well as in the presence of cardiovascular risk factors [153-163]. 

Importantly, it is an independent risk factor for major adverse cardiac and cerebrovascular 

events, refines risk stratification [23], and is associated with chronic high-sensitivity troponin 

elevation following STEMI [164]. Moreover, it is known that increased LV afterload, even 

when transient in nature, can enhance adverse remodelling following MI [165]. In agreement 

with this notion aortic stiffness was recently demonstrated to independently predict 



myocardial healing and infarct size reduction after STEMI [166]. Intriguingly, increased 

aortic stiffness is also a risk factor for in-stent restenosis following PCI [167]. Chronic 

remote ischaemic conditioning has been demonstrated to decrease arterial stiffness and 

central systolic pressure in patients with chronic angina [21]. However, its acute effects in 

patients following PPCI have not been elucidated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5. The role of oxidative stress in IRI and ischaemic conditioning 

Enhanced oxidative stress has long been established as a key mechanism underlying IRI and 

exaggerating myocardial injury [5,47,48]. It is mediated by oxygen free radicals and other 

reactive oxygen species (ROS), which are molecules with unpaired electrons that trigger self-

propagating ‘chain-reactions’ [47]. This contributes to the ‘oxygen paradox’ phenomenon, 

whereby the abrupt reoxygenation of the ischemic myocardial tissue results in a cumulative 

degree of injury which surpasses that caused by ischemia itself [49]. Under normal 

circumstances, ROS are inactivated by endogenous scavenger systems [168]. However, 

reperfusion of ischemic tissues leads to generation of increased ROS amounts that overwhelm 

the cellular antioxidant capacity [169-170]. Beyond a certain threshold membrane lipid 

peroxidation ensues, causing organelle functional impairment and ultrastructural damage 

[169,171-174]. Moreover, ROS induce opening of the mitochondrial permeability transition 

pores (mPTP) culminating in cytosolic calcium overload and cell necrosis [175-177], while 

mPTP opening is also coupled with mitochondrial cytochrome c release and a resultant 

triggering of apoptotic cascades [177]. Additional deleterious effects include DNA 

fragmentation [178], nitric oxide inactivation [179], enhancement of inflammatory cells 

migration [180,181], and activation of prothrombotic pathways [182]. Myocardial reperfusion 

enhances oxidative stress in both thrombolysis [183-189] and PCI treatment strategies [189-

195]; mitochondria are the main source of excessive ROS production [196,197]. Conversely, 

several biochemical pathways mediating ischemic conditioning converge on mitochondrial 

function normalisation [198] and mitigate the oxidative stress response that follows 

reperfusion [199-200]. Malondialdehyde (MDA) constitutes a stable breakdown product of 

lipid peroxidation and therefore serves as a widely used marker of oxidative stress in 

cardiovascular disease [20,201,202]. Against this background, remote ischemic conditioning 

has been shown to reduce MDA levels in patients with STEMI undergoing PPCI [20]. 



6. The role of nitrate-nitrite-NO pathway in IRI and ischaemic conditioning 

In stark contrast to the traditional conception of nitrate and nitrite anions as inert by-products 

of nitrogen oxide (NO) metabolism, it is now established that they can be endogenously 

recycled to NO [27,203-205]. While the traditional L-arginine-NO synthase (NOS) pathway 

constitutes the principal pathway of NO generation, it is dependent on the consumption of 

molecular oxygen [206,207], imposing an inherent limitation in hypoxic states. Nitrate can be 

systemically reduced to nitrite [208], which in turn is further reduced to NO through 

numerous pathways involving haemoglobin [27,209], myoglobin [210,211], xanthine 

oxidoreductase [212-214], ascorbate [215], polyphenols [216,217], and protons [203,204]. 

These cascades are accentuated under hypoxic conditions [218], offsetting the attendant 

deficiency of the traditional L-arginine-NOS mechanism [219,220]. Thus, the nitrate-nitrite-

NO pathway may be perceived as a valuable reservoir of NO production in the setting of 

tissue hypoxia. Experimental data have shown the cytoprotective effects of nitrite in the 

context of cardiac IRI [221-223]. One of the key underlying mechanisms is the modulation of 

mitochondrial function and the reduction in mitochondrial-derived ROS [224-226]. In 

addition, mitochondrial electron transfer is induced with a resultant inhibition of mPTP 

opening and cytochrome C release [227] (protecting from calcium overload and the triggering 

of necrotic and apoptotic cascades [26,226,227]). An important aspect of nitrite metabolism 

is its endocrine nature which allows it to circulate to distant organs and confer remote NO-

bioavailability enhancing effects [125]. Indeed, it has been demonstrated to mediate remote 

ischemic conditioning: experimental femoral ischemia resulted in reduction of mitochondrial 

respiration, ROS generation, and infarct size reduction in the myocardium [26]. Importantly, 

the level of nitrite generated by ischemic conditioning depends on the duration of the 

ischemic stimulus and in this respect, conservative protocols appear to be superior to more 



prolonged ischemic stimuli [40]. This is in agreement with findings that suggest that short 

ischemic stimuli suffice to induce maximal NO vasodilatory responses [228].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



7. IL-6 in IRI and ischaemic conditioning 

Neutrophils play a key role in the inflammatory processes underlying IRI [5]. In specific, 

their destructive potential which stems from their oxidants and proteases might be invaluable 

in the context of bacterial invasion, but is misdirected against endothelial cells and 

cardiomyocytes during reperfusion [53]. There is substantial evidence of neutrophil 

activation during IRI [54] and their migration to reperfused myocardial territories coincides 

with cellular damage [55,230,231]. Their deleterious effects include release of ROS [56], 

elastase and collagenase [53,54], microvascular embolisation with resultant no-reflow 

[55,230,232-234], endothelial injury and dysfunction [235-237], as well as platelet activation 

[238,239]. Cardiomyocyte surface expression of intercellular adhesion molecule-1 (ICAM-1) 

appears to be a prerequisite for neutrophil-mediated injury [240,241]. To this end, 

interleukin-6 (IL-6) production is enhanced during acute coronary syndromes (ACS) [242-

244] and induces ICAM-1 expression in the reperfused myocardium, facilitating the 

contribution of neutrophils to IRI [240,241]. Furthermore, IL-6 suppresses myocardial 

contractility [245-249] and mediates adverse remodelling after AMI [250]. In addition to its 

cardiac effects, vascular endothelium in general is affected by IL-6 [251]: endothelial 

activation [252-254], increased endothelial permeability [255,256], and endothelial 

dysfunction [257,258] have been recognised among the deleterious effects of IL-6 signalling. 

Remote ischemic conditioning (RIC) has been demonstrated to ameliorate the increase of IL-

6 in animal models of IRI [259-261]. Clinical study results have been less consistent in this 

respect and despite evidence of RIC reducing IL-6 levels [212], data have also been obtained 

that suggest a neutral relationship [262-264]. Therefore, despite abundant experimental 

evidence of the prominent role of IL-6 in IRI and the potential of RIC to confer 

cardiovascular protection by inhibiting its increase, its clinical significance remains to be 

elucidated. 



8. MicroRNAs in IRI and ischaemic conditioning 

MicroRNAs (MiRs) are small, single stranded, non-coding RNA molecules that regulate 

post-transcriptional gene expression in response to cellular or environmental stimuli [31]. 

Among them, miR-144 appears to play a prominent role in regulating IRI via pleiotropic 

effects [32, 265-269]. More specifically, it has been demonstrated to reduce infarct size and 

IRI-induced apoptosis [31,265-267], mitigate the activation of inflammatory signals [268], 

activate vascular antioxidant mechanisms [269], and decrease DNA fragmentation and the 

triggering of apoptotic pathways [266]. Crucially, while IRI downregulates miR-144 

expression [32,265,268], its levels are increased by ischaemic conditioning [269] and RIC 

[32,267]. Moreover, systemic administration of miR-144 evokes a cardioprotective response 

that mimics RIC [32]. Conversely, treatment with anti-miR-144 antibodies inhibits RIC [32] 

and, similarly, ischaemic conditioning was abrogated in animal models of miR-144/451 

cluster knock-out [269]. It has been experimentally shown that miR-144 is upregulated in 

aortic endothelial and/or smooth muscle cells exposed to stress [28], suggesting a possible 

vascular source of production during RIC. MiR-150 has also been shown to confer cardio-

protection from ischaemic stress: it decreased monocyte migration [270] and reduced 

cardiomyocyte death [33] in experimental AMI models. MiR-21 is one of the first micro-

RNAs discovered and regulates numerous pathways implicated in cardiovascular 

pathophysiology [271,272]. It is produced in abundancy by endothelial cells [273] and is 

upregulated upon exposure to ROS [274]. Experimental studies have highlighted its 

cardioprotective properties that include mitigation of reperfusion-induced apoptosis and 

myocardial infarct size reduction [275-277]. Its expression is downregulated in infarcted 

territories, an effect that is reversed by ischaemic preconditioning [275]. In agreement with 

these notions, ischaemic postconditioning has been similarly found to upregulate miR-21 

leading to a reduction of IRI-induced infarct size, inhibition of myocardial apoptosis, and 



cardiac function improvement in animal model of reperfusion [278]. Similar results were 

obtained from a clinical study of RIC in patients undergoing coronary artery bypass surgery 

(CABG), where miR-21 levels were increased and conferred cardio-protection [34]. Mir-208 

is an additional micro-RNA affecting cardiac pathophysiology [35]. Existing evidence 

thereof are contradictory: on the one hand, miR-21 inhibition leaded to IRI enhancement by 

way of increased oxidative stress, increased apoptosis, and adversely affected cardiac 

function [279]; on the other hand, it promotes hypertrophy and adverse remodelling [35]. In 

this context, despite the rapidly accumulating evidence of the significant role of microRNAs 

in IRI, their exact effects remain to be explored. 

 

 

 

 

 

 

 

 

 

 

 

 

 



9. Cardiac remodelling: from myocardial infarction to heart failure 

Cardiac remodelling encompasses the molecular, cellular, and interstitial changes that lead to 

alterations in the size, the shape, and the function of the heart in response to excessive 

loading or injury [280]. The process of ventricular remodelling following AMI has long been 

established: following AMI, a non-contractile and expanding infarcted zone of scar tissue is 

formed; this expansion leads to an increased volume load, which in turn augments the 

pressure load exerted on non-infarcted regions resulting in adverse LV remodelling [281]. 

Postinfarction remodelling begins within a few hours of the index event [282-284] and has 

been found to progress for at least two years after STEMI [285]. Eventually heart failure 

ensues, as LV end-systolic volume index (LVESVi) increases and ejection fraction (EF) 

decreases, portending a worse prognosis [286,287]. This natural history is affected by the 

severity of the underlying disease, secondary events (including recurrent ischaemia), 

neuroendocrine activation, genetic predisposition, and the applied treatment [288-291]. 

However, the size of the infarct caused by the primary event determines the extent of 

remodelling: larger infarcts evoke greater dilatation and amplified increases in systolic and 

diastolic stress [292]. Hence, the significance of IRI is underscored since it may account for 

up to 50% of the final infarct size [5]. Interestingly, peripheral endothelial dysfunction may 

also predict the extension of myocardial infarct [15], while increased aortic stiffness was also 

found to adversely affect myocardial healing post-STEMI and PWV independently predicted 

infarct size reduction [166]. Moreover, oxidative stress and inflammatory cascades 

significantly contribute to adverse remodelling after reperfusion [293]. More specifically, 

ROS and inflammatory cytokines induce matrix metalloproteinase (MMP) activation and 

decrease the levels of tissue inhibitors of MMPs (TIMPs) [294], both of which are key 

mediators of LV enlargement [295]. In addition, cardioprotective miRs are conceptually 



expected to inhibit LV remodelling; indeed, miR-144 was experimentally found to potently 

reduce the extent of post-infarction myocardial remodelling [296]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



METHODS 

Study design and population 

The present study was a prospective, randomized trial conducted at the Second Department of 

Cardiology in Attikon University Hospital, which entailed an acute and a chronic phase. Two 

hundred seventy patients with STEMI after primary PCI (mean age 53±16 years, 84% male) 

were recruited and underwent block randomisation (block size 9) to either one (single-cycle, 

n=90), or two 5-min cycles of bilateral brachial cuff inflations, separated by 5 minutes 

(double-cycle, n=90), or no cuff inflation (control group, n=90) added to standard care. 

Randomisation was assigned to a team member who was unmasked to group allocation and 

was performed via a website generator (Sealed Envelope, London, UK). Data collection and 

outcome assessment was performed only by members blinded to group allocation. We chose 

to apply RIC within 48 h after primary PCI (36±12h), in an effort to induce “vascular 

conditioning” during the period of maximum endothelial dysfunction [15]. Οur first protocol 

utilized two ischemic stimuli by bilateral brachial cuff inflation at 200 mmHg for 5 minutes 

[38], separated by 5 minutes, after a baseline vascular function assessment (T0). Each 

ischemic stimulus was followed by a vascular function assessment (T1, T2), with a final 

assessment 25 minutes after the second cuff deflation (T3). The second protocol was identical 

to the first, except for the second ischemic stimulus omission; thus, the total ischemic 

stimulus was either 10 (double-inflation) or 5 minutes (single inflation). Both protocols were 

preceded by a sham procedure, by way of cuff placement around the ordinary brachial 

position without inflation. Blood samples were drawn at baseline (T0) and at protocol 

termination (T3). Αll patients were in sinus rhythm, while exclusion criteria included age>85 

years, cardiogenic shock or Killip class>2 during the index event, administration of nitrates, 

history of previous known coronary artery or other cardiovascular disease, previous PCI or 

coronary artery bypass surgery (CABG), as well chronic inflammatory, systemic, or 



malignant disease.  All patients were scheduled for 2-dimensional echocardiography 

examination at 12 months after the index hospitalisation to assess the extent of LV 

remodelling. The study was approved by the University General Hospital “Attikon” 

Institutional Review Board, conforms to the principles outlined in the Declaration of 

Helsinki, and is registered at the US National Institutes of Health (ClinicalTrials.gov: 

#NCT03984123). In addition, all participants gave their written informed consent. 

Endothelial glycocalyx assessment 

The perfusion boundary region (PBR) is the cell-poor layer that results from the phase 

separation of flowing red blood cells (RBC) and plasma on the microvessel luminal surface. 

It includes the glycocalyx component that allows cell penetration. An increased PBR is 

consistent with deeper penetration of erythrocytes into the glycocalyx, reflecting impairment 

of glycocalyx barrier properties and reduced glycocalyx thickness [11]; hence, it represents a 

standardized, reproducible, operator-independent method for assessment of arterial 

endothelium glycocalyx properties [11]. We measured the PBR of the sublingual arterial 

microvasculature (diameter span from 5 to 25 μm) using Sidestream Darkfield imaging 

(Microscan, Glycocheck, Microvascular Health Solutions Inc., Salt Lake City, UT, USA; 

figure 2). 

Arterial stiffness assessment 

Arterial stiffness was assessed by carotid-femoral pulse wave velocity (PWV) [297] using 

arterial tonometry (Complior, Alam Medical, Vincennes, France; normal values <10 m/s 

[297]). PWV was calculated as the distance between the carotid and femoral arterial pulse 

palpation site, divided by the respective transit time (m/s). All measurements were performed 

by the same blinded examiner (intra-observer variability=5%). 

Oxidative stress and inflammatory biomarkers 



Malondialdehyde (MDA) was determined spectrophotometrically with a commercial kit 

(Oxford Biomedical Research, Rochester Hills, Mich, colorimetric assay for lipid 

peroxidation; measurement range 1-20 nmol/L; 3.39% and 4.75% intra-assay and inter-assay 

variability respectively) [298]. IL-6 was measured by a high-sensitivity immunoassay [human 

IL-6 Quantikinine (high sensitivity)] that detects values as low as 0.094 (intra-assay 

variability <5%) [244].  

Plasma microRNA levels  

Serum miRNAs were obtained from samples using the NucleoSpin miRNA Plasma Kit 

(MACHEREY-NAGEL GmbH & Co. KG, Duren, Germany) according to instructions of the 

manufacturer.  

Nitrate-nitrite-nitric oxide pathway 

The concentration of nitrate/nitrite in blood plasma was determined using Griess reaction 

with a commercially available kit (Cayman's Nitrate/Nitrite Colorimetric Assay Kit 780001) . 

LV remodelling 

LV remodelling was assessed by way of two-dimensional echocardiography, using a Vivid 7 

or E95 (GE Medical Systems, Horten, Norway) phased array ultrasound system. All studies 

were digitally stored and analysed by two blinded observers, using a computerised station 

(Echopac 202 GE, Horten, Norway). LV end-diastolic (LVEDV) and end-systolic volumes 

(LVESV) were calculated from four-and two-chamber views using the modified Simpson 

biplane method within 48 hours post PCI before RIC and after 1 year. A cut-off of >15% 

decrease in LVESV was implemented as a criterium of reverse LV remodelling, as this 

constitutes a validated reverse remodelling marker in the context of ischemic cardiomyopathy 

[299, 300].  



Statistical analysis 

Power analysis 

In a pilot study of 30 STEMI patients who underwent single-cycle, double-cycle, or no cuff 

inflation RIC protocol (1:1:1), the response within each subject group for ΔPWV (Τ0-Τ3) 

was normally distributed with a standard deviation of 1 and the calculated effect size was 

0.13 with a correlation among repeated measures of 0.2. Thus, we would need 80 patients in 

each group to reject the null hypothesis that the population means of the single-cycle, double-

cycle, and no cuff inflation groups are equal with a probability (power) of 0.8.  The Type I 

error probability associated with the test of this null hypothesis is 0.05 (ANOVA, repeated 

measures, between factors, G*Power version 3.1.9.6, University of Kiel, Germany). 

Assuming a 10% loss of patients during follow up and 5% poor echocardiography images, we 

decided to include 90 patients in each group. 

STATA v.11 and SPSS v.22 were used to analyse the data. The Shapiro-Wilk test was used 

to examine whether the data were normally distributed, whereas the Levene test was used to 

examine the homoscedasticity of the data. All non-parametric variables were compared using 

the Wilcoxon test for comparisons between baseline and post-intervention values and were 

transformed into ranks for multivariate analysis. In all analyses, we used two tailed tests with 

p<0.05. We used parametric (Pearson r) and non-parametric (Spearman rho) correlation 

coefficients to examine cross-sectional associations. Analysis of variance (ANOVA) for 

clinical and biological data was performed to test the differences among groups and all non-

parametric variables were transformed into ranks before entering the analysis using a 

previously published methodology [298]. Two-way ANOVA (general linear model, SPSS 22, 

SPSS Inc, Chicago, Ill) for repeated measurements was applied on the examined vascular 

function and biochemical markers (at T0, T1, T2, and T3 for the vascular markers  and  T0 



and T3 for biomarkers ) with the parameter of time used as a within-subject factor and the 

applied protocol, age, sex, BMI, dyslipidaemia, diabetes, hypertension, concomitant medical 

treatments, MI location, and number of diseased coronary vessels (>70% stenosis) used as 

between-subject factors; ANCOVA (analysis of covariance) was applied to investigate the 

effect of the baseline values of the investigated marker and myocardial enzyme elevation. 

The Greenhouse-Geisser correction was used when the sphericity assumption, as assessed by 

Mauchly's test, was not met. Post hoc comparisons were performed with Bonferroni 

correction. A p-value of <0.05 was considered as statistically significant. Inter- and intra-

observer variabilities (%) of vascular and biochemical markers were calculated as the SD of 

the differences between the first and second measurements, and expressed as a percentage of 

the average value in 30 healthy volunteers. Logistic regression analysis using the presence of 

LV remodelling at 1-year follow-up as the dependent variable and the application or not of 

RIC as the independent variable was performed. Similar to the acute phase measurements, 

ANOVA and ANCOVA were used to examine the effects of age, sex, BMI, dyslipidaemia, 

diabetes, hypertension, concomitant medical treatments, MI location, myocardial enzymes, 

number of diseased coronary vessels (>70% stenosis), and baseline values.  

RESULTS 

Study population characteristics 

Out of the 270 patients, 126 (47%) suffered from an anterior STEMI, 119 (44%) had single-

vessel, 123 (45%) two-vessel, and 28 (11%) three-vessel CAD. Median high-sensitivity (hs)-

troponin T was 3886 [807-9779] ng/mL. Patients undergoing RIC had similar clinical 

characteristics to the control patients (p>0.05, Table1). All except three single-cycle, two 

double-cycle inflation, and 3 control patients had achieved TIMI 3 flow by PCI at 

angiographic reperfusion assessment. All were free from angina, arrhythmias, and any 



significant ECG change during PCI. There were no differences in the angiographic or 

biochemical characteristic of STEMI, time from onset of symptoms to hospital admission, 

and time from admission to reperfusion (total ischemic time) between the groups assigned to 

single-, double-cycle inflation, or no RIC (Table 1).  

Medical treatment included antiplatelet therapy (aspirin and clopidogrel) and anticoagulation 

(enoxaparin). Additional bolus infusions of unfractionated heparin (UFH) were given during 

PCI. β-blockers, ACE inhibitors, and statins were given to all patients. No difference was 

noted between the drug therapy given to the study groups (Table 1).  

Glycocalyx barrier properties 

Compared to baseline, all patients had decreased PBR at T2 and T3 (p<0.05, Figure 3, Table 

2). By ANOVA there was a statistically significant interaction between the changes of PBR 

and the RIC protocol (p=0.03), suggesting that the magnitude of PBR changes along time 

was different between the 2 protocols and controls. The single-cycle inflation group achieved 

a greater improvement of PBR than the double-cycle inflation group at termination of the 

protocol (T3) (ΔT1=-0.259±0.031 vs -0.3±0.029 μm, p=0.7; ΔT2=-0.245±0.025 vs -

0.149±0.02 μm, p=0.04; ΔT3=-0.249±0.033 vs -0.126±0.034 μm, p=0.03, for the single 

versus the double-cycle inflation protocol, respectively). A greater improvement of 

glycocalyx properties was observed after the first inflation cycle at T1 in patients with 

baseline PBR> 2.1 μm (n=50; mean difference in PBR improvement=0.5±0.03 μm at T1, 

p<0.001). No changes in PBR were induced by sham inflation (p=0.7, data not shown). No 

changes in PBR were observed in the control group of no inflation (p=0.9, Table 2). 

Biochemical markers 

There was no statistically significant difference in the baseline MDA, NOx, or IL-6 levels 

among the studied groups (p>0.05). Compared to baseline, MDA was significantly reduced at 



T3 (p<0.001) in both protocols (ΔMDA=-0.49±0.29 vs -0.48±0.21 nmol/L, p=0.9, for the 

single- versus the double-inflation protocol, respectively) (Figure 4). Additionally, the single-

inflation protocol promoted an increase in NOx levels, in contrast to the double-inflation 

protocol, which resulted in reduced NOx levels at protocol termination (T3) (ΔNOx= 

2.85±0.81 μmol/l vs -1.88±0.62 μmol/l, p= 0.01, for the single- versus the double-inflation 

protocol, respectively). IL-6 levels were not affected by any intervention (p>0.05). No 

changes in the examined biomarkers were observed following sham (p>0.05, data not shown) 

or no inflation (p>0.05, Table 3). 

MiRs 

Compared to baseline, all patients had increased Micro-RNA plasma concentration post-RIC 

(p<0.05, Table 3). There was a significantly greater increase in miR-144 concentration 

following the single- compared to the double-inflation protocol (Δmir144= 48.5±15.3 vs 

32.3±12.1 /U6sn, p=0.02, for the single- versus the double-cycle protocol, respectively). The 

increase in miR-144 levels correlated with PWV reduction measured 5 minutes following the 

first cuff deflation in both protocols (T1; r=0.763, p<0.001). Both RIC protocols induced a 

similar increase in miR -150, -21, and -208 levels compared to baseline (p<0.05, Table 3) 

(Δmir-150=1.6±0.4 vs 1.5±0.5 /U6sn, p=0.9; Δmir-21=0.9±0.3 vs 0.9±0.4 /U6sn, p=0.99; and 

Δmir-208=0.5±0.2 vs 0.37±0.19 /U6sn, p=0.6, for the single- versus the double-cycle 

protocol, respectively) (Table 3, Figure 5). No changes in miRs were observed in the control 

group (p=0.9, Table 3). 

Arterial stiffness 

PWV was significantly affected by our intervention (p<0.05; table 2, figure 4).  By ANOVA, 

there was a statistically significant interaction between PWV changes and the RIC protocol 

exploited (p=0.03). Compared to baseline, ΔT1=-0.55±0.19 vs -0.49±0.17 m/s, p=0.7; ΔT2=-



0.7±0.2 vs -0.69±0.21 m/s, p=0.9; ΔT3: -0.4±0.21 vs +1.02±0.24 m/s, p=0.03, for the single- 

versus the double-inflation protocol, respectively (Figure 6). Thus, there was a decrease of 

PWV at T1 and T2 in both protocols (P<0.05), but at protocol termination (T3, 25 min after 

the second inflation) there was as a net PWV decrease in the single- compared to an increase 

in the double-inflation group. Regardless of the protocol used, patients with baseline PWV 

>11 m/s benefited from a larger aortic elasticity improvement than patients with lower 

baseline PWV after the first inflation cycle (T1: mean difference in PWV improvement= 

3.5±0.6 m/s, p< 0.002). No changes were observed following sham (p=0.7, data not shown) 

or no inflation (p=0.8, Table 3). 

LV remodelling 

We assessed every patient at 1-year follow-up be echocardiography and compared the LV 

volumes changes in the single- and double-cycle group with the respective changes in the 

control group. Out of 180 patients who underwent RIC, 85 of the single-cycle group and 87 

of the double-cycle group were found for follow–up echocardiography and were compared 

with 85 patients without RIC. Single-cycle was associated with a significantly greater 

decrease in LVEDV and LVESV within 12 months of the index event compared with double- 

and no inflation (ΔLVEDV= -23±3 vs -7±2 vs -6±2 ml, p<0.001; ΔLVESV: -10±2 vs -3±1 vs 

-2±1, p<0.001, respectively; table 4, figure 7). By binary logistic regression, single-inflation 

RIC was related to reverse LV remodelling (LVESV change>15%) with an odds ratio of 3.75 

(95% CI: 1.120-8.675, p=0.03), after adjusting for patient age, sex, BMI, dyslipidaemia, 

diabetes, hypertension, concomitant medical treatments, MI location, myocardial enzymes, 

number of diseased coronary vessels (>70% stenosis), and baseline values of the LVEDV and 

LVESV. Interestingly, within this group, the increase in miR-144 post-RIC was significantly 

correlated with the respective decrease in LVESV (r=-0.40, p=0.001). Additionally, 

compared to baseline, the reduction of PWV at protocol termination (PWV T0-PWV T3) in 



the single-inflation group was related with the respective LVESV reduction at follow-up 

(r=0.37, p=0.002), after adjustment for age, sex, BMI, dyslipidaemia, diabetes, hypertension, 

concomitant medical treatments, MI location, myocardial enzymes, number of diseased 

coronary vessels (>70% stenosis), and baseline PWV. 

DISCUSSION 

In this study, we have shown that RIC with a single 5 min cycle of bilateral brachial cuff 

inflation conferred improvement of endothelial glycocalyx properties and reduction of aortic 

stiffness, at 5 and 35 minutes post-inflation in STEMI patients. This improvement in vascular 

function was in parallel with upregulation of protective miRs, namely miR-144, -150, and -

21, oxidative stress burden reduction, and increase in NOx levels. More specifically, 

increased miR-144 concentration was closely associated with PWV improvement after RIC. 

These changes were not evident in the control group without cuff inflation. Single-cycle 

protocol was demonstrated to be superior regarding improvement of endothelial glycocalyx 

properties, miR-144 levels, aortic stiffness reduction, and increased NO bioavailability. 

Furthermore, the RIC-induced increase of miR-144 levels and improvement of PWV in the 

early phase of AMI were interrelated and both associated with a greater decrease of LVESV 

at 1 year of follow-up. Moreover, RIC by a single cuff inflation cycle was associated with a 

3-fold higher probability of reverse LV remodelling within 12 months of the index event

compared to the double-cycle or no RIC. 

IRI induces coronary microcirculation injury with endothelial glycocalyx shedding, 

resulting in myocardial oedema, resistant vasoconstriction, platelet-leukocyte aggregation, 

coronary microembolization, and capillary destruction [7,13,18]; peripheral endothelial 

function is similarly affected [7]. RIC has been demonstrated to ameliorate coronary 

endothelial dysfunction, reducing myocardial oedema and infarct size [13,18,19], as well as 



peripheral endothelial dysfunction, preserving flow-mediated dilation [7]. Interestingly, 

coronary microvascular dysfunction is reflected on the peripheral endothelial glycocalyx 

impairment as assessed by sublingual microscopy [17]. Further expanding this notion, our 

study is the first in our knowledge to provide direct evidence of improved endothelial 

glycocalyx properties in patients undergoing RIC after primary PCI. This could be at least 

partially mediated by the attendant oxidative stress alleviation, which has been shown to 

cause a rapid glycocalyx cadherin externalisation and gap junction restoration [14], 

normalising glycocalyx permeability. 

Nitrate-nitrite-NO pathway has been demonstrated to mediate myocardial protection 

from IRI by modulating mitochondrial membrane electron transfer and inhibiting apoptosis

[26]; RIC increases circulating nitrite levels in both human and animal models of IRI [26]. 

Interestingly, one 5-minute inflation-deflation cycle has been found to induce superior levels 

of plasma nitrite and associated cyto-protection compared with multiple cycles, with 

progressively diminished effects after every successive ischemic stimulus [40]. In agreement 

with the above-mentioned findings, our single-cycle intervention conferred increased nitrate 

and nitrite levels; on the contrary, the double-cycle protocol caused a net decrease in the 

measured concentrations, suggesting a possible consumption of the NOx pool by the 

ischemic insult of the second inflation-deflation (T2) cycle. 

Enhanced oxidative stress with attendant membrane phospholipid peroxidation plays 

a major role in IRI and MDA constitutes a breakdown product of lipid peroxide β-cleavage 

[4]. Indeed, increased MDA levels have been reported following thrombolysis and PCI for 

STEMI [20]. In this respect, RIC has been demonstrated to ameliorate oxidative stress and 

reduce MDA concentration following PCI [20]. In agreement with this, our intervention 

resulted in MDA levels reduction, irrespective of the protocol applied. Moreover, IRI evokes 

a systemic inflammatory response with significantly increased IL-6 levels. Interestingly, 



myocytes produce increased IL-6 levels in response to hypoxia, resulting in enhanced 

neutrophil adherence to the cardiovascular endothelium with deleterious effects [301]. 

Similarly, activation of the nuclear factor kappa-light-chain-enhancer of activated B cells 

(NFκB)-/IL-6 pathway appears to mediate vascular inflammation in various disease processes 

[29]. On the one hand, RIC has been reported to activate heme oxygenase -1 (HO-1), thereby 

inhibiting NFκB and decreasing IL-6 levels in animal models of systemic inflammation and 

ischemia [30]. Remote ischemic conditioning (RIC) has been demonstrated to ameliorate the 

increase of IL-6 in animal models of IRI [259-261]. Clinical study results have been less 

consistent in this respect and despite evidence of RIC reducing IL-6 levels [212], data have 

also been obtained that suggest a neutral relationship [262-264]. It could therefore be 

hypothesised that IL-6 could be a circulating factor of RIC instead of a solely deleterious 

mediator, but evidence has been inconclusive. In our study, IL-6 levels were not affected by 

any of the applied protocols; this remains an interesting area for future investigation. 

MiR-144 is a key effector of RIC [32], whose non-coding nature, small size, and 

direct effects on ribosomal function [31] allow it to rapidly modulate multiple cascades that 

abrogate IRI. It serves as a pivotal mediator of cellular adaptation to hypoxia [302] and 

experimental studies have demonstrated that its expression is upregulated in aortic 

endothelial and/or smooth muscle cells in response to stress [28]. Our finding suggests a 

possible vascular source of miR-144 production during RIC. One of its main mechanisms of 

action is the rapid -within 60 minutes [32] - activation of the reperfusion injury salvage 

kinase (RISK) pathway which constitutes a common pro-survival signalling pathway of 

remote pre- and post-conditioning [303]. Moreover, miR-144 evokes a crucial vascular 

antioxidative mechanism, in the form of Rac-1 downregulation [269].  To this end, 

modulation of ROS endothelial signalling appears to be one of its main mechanisms of action

[304]. Indeed, we demonstrated that RIC results in increased miR-144 concentration, in 



parallel with oxidative stress reduction as assessed by MDA reduction, and in correlation 

with arterial elasticity improvement as assessed by PWV reduction. 

Increased NO bioavailability [22] and oxidative stress alleviation [10] are promoted by miR-

144 expression and have been found to reduce arterial stiffness. Indeed, in our study 

increased miR-144 levels were correlated with PWV reduction. This finding suggests that  

our single-cycle intervention through increased miR-144 expression, increased NOx levels, 

reduced oxidative stress and improved glycocalyx properties likely resulted  in PWV 

reduction [32,269,303]; on the contrary, double-cycle inflation caused a net decrease in the 

measured NOx concentrations, suggesting a possible consumption of the NOx pool by the 

ischemic insult caused by the second inflation-deflation cycle, possibly contributing to the 

increased PWV values at protocol termination. RIC has been previously demonstrated to 

improve arterial elasticity in patients with CAD [21], but our study is the first to describe 

PWV improvement within 48 hours of primary PCI. 

Increased arterial stiffness increases LV afterload while reducing diastolic coronary perfusion 

with resultant subendocardial ischemia [22,149,150] and ventricular-arterial decoupling

[150]. These effects within 48 hours of AMI contribute to adverse LV remodelling and 

prognosis [305,306]. Moreover, it has been experimentally demonstrated that even transient 

increases in LV afterload may detrimentally affect remodelling [165]. In support of these 

findings, our single inflation protocol was associated with a greater reduction of LVESV and 

increased prevalence of reverse remodelling (LVESV decrease >15%) at 12 months post-

AMI compared to double or no inflation likely through reduction of PWV at a critical for 

myocardial salvage time. Importantly, the reduction of PWV at protocol termination as well 

as the miR-144 concentration were associated with the LVESV decrease at follow-up. 

Previous studies regarding the effects of ischemic conditioning on LV remodelling have 

produced mixed results. On the one hand, repeated RIC has failed to improve LV remodelling 



in the context of chronic ischaemic heart failure, with the exception of longitudinal 

deformation improvement in a subgroup of patient with higher NT-proBNP plasma levels 

[307]. On the other hand, repeated RIC inhibited adverse LV remodelling and prolonged 

survival in an animal model of IRI [308]. Similarly, per-conditioning by staccato reperfusion 

has been associated with reduced LV volumes within 12 months of PCI [305], while post-

conditioning has been found to confer improved LV remodelling, as assessed by LVESV, 

within 1 year of AMI [73]. 

The discrepancy between our single- and double-cycle protocol effects highlights the 

association between the number of ischemic cycles, the total ischemic time, and the 

underlying ischemic damage with RIC effectiveness [37]. In more detail, the second cycle 

may have crossed the ischemic burden threshold above which the beneficial effects of RIC on 

arterial stiffness are lost. This is concordant with previous findings of superior nitrite levels 

and cyto-protection with a single, compared to multiple inflation-deflation cycles [40]. Given 

the prominent role of NO in muscular arteries stiffness modulation [309], it can be postulated 

that the second ischemic stimulus consumed a component of the NOx pool, thereby reducing 

NO bioavailability with an attendant increase in aortic stiffness and failure to promote reverse 

LV remodelling. Similarly, the single-cycle protocol conferred superior restoration of the 

endothelial glycocalyx integrity. This could reflect coronary microvascular impairment 

amelioration to a greater extent compared to the double cycle RIC [17] and is in agreement 

with existing evidence of coronary microvascular injury adversely affecting LV remodelling 

[13]. The above mechanisms may explain the similar changes in LV volumes between the 

double- and no inflation group. These observations are also in accordance with the notion that 

one 5 min ischemic cycle may induce a favourable ischemic conditioning response [12], 

compared with multiple ischemic cycles [9,310-313]. 



There are some limitations to the interpretation of the results of our study, which are pertinent 

to the effects of PWV improvement on LV remodelling. On the one hand, it is known that 

increased LV afterload can adversely affect LV remodelling after AMI, even when it is 

transient in nature [165] and thus an early reduction of afterload may prohibit adverse LV 

remodelling. On the other hand, staccato reperfusion [305] and ischemic postconditioning 

[73] have also been demonstrated to have direct beneficial effects on the myocardium, 

leading to reverse LV remodelling. Our design does not permit to investigate the causality 

between LV remodelling and changes of vascular function caused after RIC versus the direct 

effects of RIC on the myocardium given the fact that aortic stiffness alleviation was an 

inherent result of our conditioning protocols. In addition, NOx levels represent the 

cumulative measurement of nitrates and nitrites, the levels of which (especially of nitrates) 

may be affected by food intake. The relatively high percentage of male subjects in our study 

should be also acknowledged as a limitation as female subjects may be underrepresented. 

CONCLUSIONS 

      In conclusion, our findings suggest that RIC within 48 hours of STEMI acutely 

modulates the cardiovascular biochemical environment, evoking “vascular conditioning”. 

More specifically, miR-144 is upregulated, nitrate-nitrite-NO pathway is activated, and 

oxidative stress burden is reduced. Consequently, endothelial glycocalyx properties are 

improved, resulting in arterial stiffness alleviation. Ultimately, reverse LV remodelling is 

encouraged. The above protective effects of “vascular conditioning” occur at a time window 

after the first critical 90 min needed to diagnose STEMI and rush the patient to primary PCI, 

facilitating the application of RIC in clinical practice at a more convenient time for both the 

patient and the medical team, to encourage positive LV remodelling. Another future 

implication of our study would be to investigate the potential of interventions to restore NO 



bioavailability early post STEMI, aiming to reduce aortic stiffness and inhibit adverse LV 

remodelling. 
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FIGURE LEGENDS 

Figure 1: Double-cycle, single-cycle, and no bilateral cuff inflation protocols 

Figure 2: Sideview darkfield imaging assessment of endothelial glycocalyx Dper: diameter of 

perfusion; PBR: perfusion boundary region; RBC: red blood cell; RBCW: red blood cell width 

a) Sideview darkfield (SDF) imaging utilises the light emitting diode (LED) light reflected 

from haemoglobin to visualise the red blood cells (RBC) flowing in sublingual microvessels. 

The lateral distribution of the observed RBC columns demarks the boundaries of the perfused 

area of the vascular lumen, quantified by the Diameter of perfusion (Dper). Thus, an increased 

Dper infers deeper RBC penetration and a reduced non-permeable endothelial component, 

which signifies glycocalyx structural damage. b) The measurement process begins with image 

capturing, where the perfused luminal area is depicted as dark contrast flow. c) Thereafter, 

vascular segments are automatically identified. d) This is followed by RBC column width 

(RBCW) calculation, the distribution of which is used to calculate the perfused area diameter 

(Dperf) and the perfusion boundary region (PBR) according to the formula: PBR= (Dperf – 

RBCW) / 2. 

Figure 3: Effects of remote conditioning on perfusion boundary region PBR: perfusion 

boundary region (μM); RIC: remote ischemic conditioning. The vertical lines represent the 

standard deviation of the mean. Two-way ANOVA for repeated measurements was applied 

with the parameter of time (T0,T1,T2,T3) used as a within-subject factor, and single- versus 

double-inflation, age, sex, BMI, dyslipidaemia, diabetes, hypertension, concomitant medical 

treatments, MI location, myocardial enzymes and the number of diseased coronary vessels 

(>70% stenosis) as between subject factors; ANCOVA was applied to investigate the effect of 

the baseline values of the respective markers. Post hoc comparisons were performed with 

Bonferroni correction and the adjusted p values for the comparison between T0 versus T1, T2, 



and T3 are shown. The interaction between RIC protocol [single- vs double-cycle vs no cuff 

inflation (controls)] and changes of PBR over time were also examined, and the p values of the 

interaction are shown.  

Figure 4: Effects of remote conditioning on pulse wave velocity PWV (m/sec): pulse wave 

velocity; RIC: remote ischemic conditioning. The vertical lines represent the standard deviation 

of the mean. Two-way ANOVA for repeated measurements was applied with the parameter of 

time (T0,T1,T2,T3) used as a within-subject factor, and single- versus double-inflation, age, 

sex, BMI, dyslipidaemia, diabetes, hypertension, concomitant medical treatments, MI location, 

myocardial enzymes and the number of diseased coronary vessels (>70% stenosis) as between 

subject factors; ANCOVA was applied to investigate the effect of the baseline values of the 

respective markers. Post hoc comparisons were performed with Bonferroni correction and the 

adjusted p values for the comparison between T0 versus T1, T2 and T3 are shown.   adjusted 

p values are shown. The interaction between RIC protocol [single- vs double-cycle vs no cuff 

inflation (controls)] and changes of PBR over time were also examined, and the p values of the 

interaction are shown. 

Figure 5: Effects of remote conditioning on serum malondialdehyde levels MDA: 

malondialdehyde (nmol/L); RIC: remote ischemic conditioning. The vertical lines represent 

the standard deviation of the mean. Two-way ANOVA for repeated measurements was applied 

with the parameter of time (T0,T1,T2,T3) used as a within-subject factor, and single- versus 

double-inflation, age, sex, BMI, dyslipidaemia, diabetes, hypertension, concomitant medical 

treatments, MI location, myocardial enzymes and the number of diseased coronary vessels 

(>70% stenosis) as between subject factors; ANCOVA was applied to investigate the effect of 

the baseline values of the respective markers. The interaction between RIC protocol [single- vs 

double-cycle vs no cuff inflation (controls)] and changes of PBR over time were also examined, 

and the p values of the interaction are shown.  



Figure 6: Effects of remote post-conditioning in miR-144 expression RIC: remote ischemic 

conditioning. The fold change in expression level compared to the housekeeping gene, U6sn, 

was calculated using the 2−ΔΔCt method. The vertical lines represent the standard deviation 

of the mean. Two-way ANOVA for repeated measurements was applied with the parameter of 

time (T0, T3) used as a within-subject factor, and single- versus double-inflation, age, sex, 

BMI, dyslipidaemia, diabetes, hypertension, concomitant medical treatments, MI location, 

myocardial enzymes and the number of diseased coronary vessels (>70% stenosis) as between 

subject factors; ANCOVA was applied to investigate the effect of the baseline values of the 

respective markers. The adjusted p values for the comparison between T0 and T3 are shown. 

The interaction between RIC protocol [single- vs double-cycle vs no cuff inflation (controls)] 

and changes of PBR over time were also examined, and the p values of the interaction are 

shown. 

 

Figure 7: Effects of remote conditioning on LV remodelling LV: left ventricular, LVEDV: left 

ventricular end-diastolic volume, LVESV: left ventricular end-systolic volume, RIC: remote 

ischemic conditioning. The vertical lines represent the standard deviation of the mean. Two-

way ANOVA for repeated measurements was applied with the parameter of time (baseline, 1 

year follow-up) used as a within-subject factor, and single- versus double-inflation, age, sex, 

BMI, dyslipidaemia, diabetes, hypertension, concomitant medical treatments, MI location, 

myocardial enzymes and the number of diseased coronary vessels (>70% stenosis) as between 

subject factors; ANCOVA was applied to investigate the effect of the baseline values of the 

respective markers. The interaction between RIC protocol [single- vs double-cycle vs no cuff 

inflation (controls)] and changes of PBR over time were also examined, and the p values of the 

interaction are shown. 

 



TABLES 

Table 1: Baseline patient characteristics 

Patient 

characteristics 

Single-cycle 

RIC (n=90) 

Double-cycle 

RIC (n=90) 

Control 

(n=90) 

p-value 

Age (years) 53±16 54±16 52±16 0.70 

Sex  (Male  %) 72 (80%)  73(82%)  75 (83%) 0.69 

BMI 27±4 27±5 27±5 0.72 

Hypertension  24 (27%)  26 (29%)  27 (30%) 0.70 

Diabetes mellitus  15 (17%)  15 (17%)  16 (18%) 0.74 

Dyslipidemia  21 (24%)  23 (26%)  22 (25%) 0.69 

Smoking  47 (53%)  49 (55%)  51 (56%) 0.60 

1 vessel disease  38 (42%)  41 (46%)  40 (44%) 0.50 

2 vessel disease  41 (46%)  40 (44%)  42 (47%) 0.31 

3 vessel disease  11 (12%)  9 (10%)  8 (9%) 0.22 

Infarct related artery 

LAD  42 (47%)  43 (48%)  41 (46%) 0.40 

Cx  23 (25%)  22 (24%)  21 (23%) 0.41 

RCA  25 (28%)  25 (28%)  28 (31%) 0.21 

hs-Troponin (ng/mL) 3843 [991-9338] 3926 [600-

10000] 

3890 [832-

10000] 

0.31 

Symptom to balloon 

time (min) 

179 [133-280] 181 [131-279] 180 [135-

278] 

0.12 

First medical contact 

to balloon time (min) 

104 [80-130] 102 [79-131] 105 [82-129] 0.18 



WBC (/mcL) 8.790±2.577 8.540±2.588 8.680±2.592 0.20 

CRP (mg/L) 191±3 170±4 185±4 0.30 

EF (%) 44±13 46±14 46±10 0.50 

Systolic BP (mmHg) 121±18 120±17 122±19 0.70 

Diastolic BP (mmHg) 78±15 79±14 80±14 0.77 

control: no inflation; BMI: body mass index; BP: blood pressure; CRP: C-reactive protein; Cx: 

circumflex artery; EF: ejection fraction; hs-Troponin: high sensitivity Troponin; LAD: left 

anterior descending artery; RCA: right coronary artery; RIC: remote ischemic conditioning; 

WBC: white blood cells count 



Table 2: Effects of RIC on endothelial glycocalyx integrity and aortic stiffness 

Vascular 

assessment 

Group T0 T1 T2 T3 

PBR (μm) Single 2.31±0.05 2.05±0.04* 2.06±0.06*  2.06±0.05* 

Double 2.34±0.04 2.04±0.06*  2.19±0.05* 2.21±0.06* 

Control 2.32±0.07 2.32±0.08 2.31±0.1 2.32±0.09 

PWV (m/s) Single 12.09±0.6 11.54±0.7* 11.39±0.7* 11.71±0.65*¶ 

Double 12.06±0.5 11.57±0.6 11.37±0.7* 13.8±0.7*¶ 

Control 11.7±0.8 11.6±1 11.6±1 11.7±1.5 

PBR: perfusion boundary region; PWV: pulse wave velocity; T0: baseline; T1: after first cuff 

inflation; T2: after second inflation (or omission of 2nd inflation); T3: 20 min after second (or 

omission) inflation; controls=no inflation; *: p<0.05 for comparison with T0; ¶: p<0.05 for 

single- vs double-cycle protocol 

 

 

 

 

 

 

 

 

 

 



Table 3: Effects of RIC on oxidative stress, cumulative nitrate-nitrite levels, and miRs 

expression 

Biochemical 

assessment 

Group T0 T3 

MDA (nmol/L) Single 2.57±0.16 2.08±0.14* 

Double 2.61±0.15 2.13±0.15* 

Control 2.5±0.29 2.5±0.18 

NOx (μmol/L) Single 8.25±1.18 11.1±2*¶ 

Double 10.79±1.18 8.91±2*¶ 

Control 9.5±1 9.4±0.8 

IL-6 (pg/ml) Single 6.55±4.02 6.78±4.21 

Double 6.61±4.18 6.58±4.5 

Control 6.54±4,26 6.63±4.19 

miR-144(/U6sn) Single 7.4±0.7 55.9±0.8*¶ 

Double 7.65±0.5 39.87±0.7*¶ 

Control 5±0.6 4.8±0.5 

miR-150(/U6sn) Single 1.8±0.8 3.4±0.9* 

Double 2.05±0.5 3.53±0.6* 

Control 1.7±0.6 3.1±1.8 

miR-499(/U6sn) Single 1.6±0.4 3.5±0.4* 

Double 1.72±0.5 2.96±0.4* 

Control 1.4±0.3 1.8±0.3 

miR-21(/U6sn) Single 1.2±0.3 2.1±0.3* 

Double 1.28±0.4 2.18±0.5* 



T0: baseline; T3: 20 min after second (or omission of 2nd) inflation IL-6: interleukin-6; 

MDA: malondialdehyde; NOx: nitrate-nitrite; *: p<0.05 for baseline vs T3;  ¶: p<0.05 for 

single- vs double-cycle protocol 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Control 1.1±0.3 1.3±0.3 

miR-208(/U6sn) Single 1.9±0.5 2.4±0.4* 

Double 1.99±0.4 2.36±0.4* 

Control 1.8±0.4 2±0.3 



Table 4: Progression of LV remodelling within 12 months of the index event 

 group baseline 12 months p-value 

LVEDV (mL) single 105±34 83±31*¶ 0.03 

double 107±29 100±32*¶ 0.04 

control 110±29 104±32*¶ 0.04 

LVESV (mL) single 59±31 49±25*¶ 0.02 

double 60±25 57±25¶ 0.06 

control 63±25 61±25¶ 0.06 

LVEF (%) single 44±13 44±12 0.16 

double 45±10 43±12 0.1 

control 46±10 44±12 0.1 

LVESV left ventricular end systolic volume LVEDV, left ventricular end diastolic volume 

LVEF left ventricular ejection fraction; *: p<0.05 for baseline vs 1 year follow up; ¶: p<0.05 

for single-cycle vs double-cycle or control (no inflation) 

 

 

 

 

 

 

 

 

 



FIGURES 

 

 

 

 

 

 

 

Figure 1  



 

 

 

 

 

 

 

 

 

 

Figure 2  



 

 

 

 

 

 

 

 

 

 

Figure 3  



 

 

 

 

 

 

 

 

 

 

Figure 4  



 

 

Figure 5  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 6  



 

 

 

 

 

 

 

 

 

 

Figure 7  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 



The role of microRNA expression in remote ischemic conditioning improvement of 

aortic elastic properties and endothelial glycocalyx integrity in acute myocardial 

infarction 

61 view(s)  

Session Role of non coding RNAs in cardiovascular diseases  

Speaker Doctor Ignatios Ikonomidis  

Event : ESC Congress 2018  

• Topic : basic science 

• Sub-topic : Vascular Tone, Permeability, Microcirculation 

• Session type : Moderated Posters 

Authors : I Ikonomidis (Athens,GR), D Vlastos (Athens,GR), M Gazouli (Athens,GR), D 

Benas (Athens,GR), M Varoudi (Athens,GR), I Andreadou (Athens,GR), H Triantafyllidi 

(Athens,GR), P Efentakis (Athens,GR), G Makavos (Athens,GR), C Kontogiannis 

(Athens,GR), A Kapelouzou (Athens,GR), J Lekakis (Athens,GR), D Cokkinos (Athens,GR), 

EK Iliodromitis (Athens,GR)  

 

 

 

 

 

 

https://esc365.escardio.org/Congress/ESC-Congress-2018/Role-of-non-coding-RNAs-in-cardiovascular-diseases/24600-role-of-non-coding-rnas-in-cardiovascular-diseases
https://esc365.escardio.org/Person/9289-dr-ikonomidis-ignatios


The role of microRNA expression in remote ischemic conditioning improvement of 

aortic elastic properties and endothelial glycocalyx integrity in acute myocardial 

infarction 

62 view(s)  

Session Role of non coding RNAs in cardiovascular diseases  

Speaker Doctor Ignatios Ikonomidis  

Event : ESC Congress 2018  

• Topic : basic science 

• Sub-topic : Vascular Tone, Permeability, Microcirculation 

• Session type : Moderated Posters 

Authors : I Ikonomidis (Athens,GR), D Vlastos (Athens,GR), M Gazouli (Athens,GR), D 

Benas (Athens,GR), M Varoudi (Athens,GR), I Andreadou (Athens,GR), H Triantafyllidi 

(Athens,GR), P Efentakis (Athens,GR), G Makavos (Athens,GR), C Kontogiannis 

(Athens,GR), A Kapelouzou (Athens,GR), J Lekakis (Athens,GR), D Cokkinos (Athens,GR), 

EK Iliodromitis (Athens,GR)  

 

 

 

 

 

 

https://esc365.escardio.org/Congress/ESC-Congress-2018/Role-of-non-coding-RNAs-in-cardiovascular-diseases/24600-role-of-non-coding-rnas-in-cardiovascular-diseases
https://esc365.escardio.org/Person/9289-dr-ikonomidis-ignatios


Remote ischemic post-conditioning may prevent cardiac remodeling within two years of 

STEMI by cardioprotective microRNA upregulation 

19 view(s)  

Session Poster session 1  

Speaker Doctor Ignatios Ikonomidis  

Event : EuroEcho 2019  

• Topic : imaging 

• Sub-topic : Imaging of Coronary Artery Disease 

• Session type : Poster Session 

Authors : I Ikonomidis (Athens,GR), D Vlastos (Athens,GR), S Katsanos (Athens,GR), M 

Gazouli (Athens,GR), J Thymis (Athens,GR), C Triantafyllou (Athens,GR), M Varoudi 

(Athens,GR), I Andreadou (Athens,GR), H Triantafyllidi (Athens,GR), G Makavos 

(Athens,GR), A Kapelouzou (Athens,GR), AR Vrettou (Athens,GR), A Frogoudaki 

(Athens,GR), D Cokkinos (Athens,GR), EK Iliodromitis (Athens,GR)  

 

 

 

 

 

 

 

https://esc365.escardio.org/Congress/EuroEcho-2019/Poster-session-1-Imaging-Coronary-Artery-Disease/s8213-poster-session-1-imaging-coronary-artery-disease
https://esc365.escardio.org/Person/9289-dr-ikonomidis-ignatios


Remote ischemic conditioning by single cuff inflation improves aortic elastic properties 

and endothelial glycocalyx thickness in acute myocardial infarction patients 

15 view(s)  

Session Endothelial dysfunction  

Speaker Doctor Ignatios Ikonomidis 

Event : ESC Congress 2017  

• Topic : basic science

• Sub-topic : Vascular Biology and Physiology

• Session type : Rapid Fire Abstracts

Authors : I Ikonomidis (Athens,GR), D Vlastos (Athens,GR), S Vlachos (Athens,GR), D 

Benas (Athens,GR), M Varoudi (Athens,GR), I Andreadou (Athens,GR), H Triantafyllidi 

(Athens,GR), P Efentakis (Athens,GR), G Makavos (Athens,GR), J Lekakis (Athens,GR), E 

Iliodromitis (Athens,GR)  

https://esc365.escardio.org/Congress/ESC-CONGRESS-2017/Endothelial-dysfunction/21792-endothelial-dysfunction
https://esc365.escardio.org/Person/9289-dr-ikonomidis-ignatios


Remote ischemic conditioning results in oxidative stress reduction and nitrate- nitrite- 

nitric oxide pathway activation in acute myocardial infarction patients 

47 view(s)  

Session Cardioprotection  

Speaker Doctor Ignatios Ikonomidis  

Event : ESC Congress 2016  

• Topic : basic science 

• Sub-topic : Cardiac Diseases 

• Session type : Advances in Science 

Authors : I Ikonomidis (Athens,GR), D Vlastos (Athens,GR), I Andreadou (Athens,GR), P 

Efentakis (Athens,GR), M Varoudi (Athens,GR), G Pavlidis (Athens,GR), G Makavos 

(Athens,GR), S Vlachos (Athens,GR), D Mpenas (Athens,GR), H Triantafyllidi (Athens,GR), 

E Seitanidi (Athens,GR), EK Iliodromitis (Athens,GR), J Lekakis (Athens,GR)  

 

 

 

 

 

 

 

 

https://esc365.escardio.org/Congress/ESC-CONGRESS-2016/Cardioprotection/19046-cardioprotection
https://esc365.escardio.org/Person/9289-dr-ikonomidis-ignatios


Remote ischemic conditioning results in oxidative stress reduction and nitrate- nitrite- 

nitric oxide pathway activation in acute myocardial infarction patients 

49 view(s)  

Session Cardioprotection 

Speaker Doctor Ignatios Ikonomidis 

Event : ESC Congress 2016  

• Topic : basic science

• Sub-topic : Cardiac Diseases

• Session type : Advances in Science

Authors : I Ikonomidis (Athens,GR), D Vlastos (Athens,GR), I Andreadou (Athens,GR), P 

Efentakis (Athens,GR), M Varoudi (Athens,GR), G Pavlidis (Athens,GR), G Makavos 

(Athens,GR), S Vlachos (Athens,GR), D Mpenas (Athens,GR), H Triantafyllidi (Athens,GR), 

E Seitanidi (Athens,GR), EK Iliodromitis (Athens,GR), J Lekakis (Athens,GR)  

https://esc365.escardio.org/Congress/ESC-CONGRESS-2016/Cardioprotection/19046-cardioprotection
https://esc365.escardio.org/Person/9289-dr-ikonomidis-ignatios

	PRIZES/DISTINCTIONS



