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ABSTRACT

Asymmetric CPUs consisting of cores with different processing capacities have been
widely used in mobile devices in the last decade. Their design allows chip-makers to
offer improved energy efficiency while maintaining solid performance. The other side of
the coin is that CPUs of this type require extra care from operating system developers,
who have to design schedulers that take advantage of this asymmetry.

Recently, heterogeneous (asymmetric) architectures have started to appear in the PC
space, which has traditionally been dominated by homogeneous CPUs. In addition to the
energy-efficiency benefits, this development is being propelled by the improved space-
efficiency of small cores. Replacing a single big core with several small cores leads to
increased multi-threaded performance without increasing manufacturing costs.

Asymmetric Multi-Processing in computers poses some unique challenges that sched-
ulers have to handle. Heterogeneity in computers aims for strong, sustainedmultithreaded
performance in high-load situations and low power consumption in low-load situations. On
the contrary, in mobile devices, heterogeneous architectures aim to maximize battery life
while offering decent performance to a limited number of tasks with short bursts of CPU-
intensive activity. Apart from that, Simultaneous Multi-threading hasn’t seen much use in
mobile platforms leading to the design of heterogeneity-aware SMT-unaware schedulers.
Mishandling SMT can lead to significant performance degradation and is unacceptable for
a modern computer scheduler.

In this thesis, we present HCS, a heterogeneity-aware, SMT-aware, general-purpose CPU
scheduler for servers, desktops and laptops. It combines utilization-based, bias-based,
and fairness-based scheduling schemes to provide efficiency and performance. To add to
that, HCS allows both users and application developers to configure its behavior to better
suit their needs. HCS is built on top of ULE and has been implemented in the Linux Kernel
as a replacement for the energy-aware variant of the CFS scheduler.

SUBJECT AREA: Operating Systems

KEYWORDS: CPU Scheduling, Heterogeneous CPUs, Bias Scheduling, Linux, Ker-
nel Development



ΠΕΡΙΛΗΨΗ

Την τελευταία δεκαετία έχουν χρησιμοποιηθεί ευρέως ασύμμετροι επεξεργαστές που απο-
τελούνται απόπυρήνες διαφορετικών επεξεργαστικών δυνατοτήτων στις κινητές συσκευές.
Η σχεδίαση τους επιτρέπει στους κατασκευαστές επεξεργαστών να προσφέρουν ελαττώ-
σουν την κατανάλωση ενέργειας διατηρώντας καλή ταχύτητα. Ταυτοχρόνως, τέτοιοι επε-
ξεργαστές απαιτούν ειδική μεταχείριση από τους προγραμματιστές λειτουργικών συστη-
μάτων, οι οποίοι πρέπει να σχεδιάσουν ειδικούς χρονοπρογραμματιστές που να εκμεταλ-
λεύονται την ασυμμετρία.

Προσφάτως έχουν κυκλοφορήσει ασύμμετροι επεξεργαστές για προσωπικούς υπολογι-
στές, ένας χώρος στον οποίο παραδοσιακά κυριαρχούν οι συμμετρικοί επεξεργαστές.
Αυτή η εξέλιξη είναι αποτέλεσμα της βελτιωμένου ενεργειακού τους προφίλ, καθώς και
της χωρικής αποδοτικότητας αυτών των αρχιτεκτονικών. Η αντικατάσταση ενός μεγάλου
πυρήνα με πολλούς μικρούς προσφέρει αυξημένη διεκπεραιωτική ικανότητα πολυνηματι-
κών εργασιών χωρίς να αυξάνει το κόστος παραγωγής.

Οι ασύμμετροι επεξεργαστές για υπολογιστές δημιουργούν μία σειρά από προβλήματα
που οι χρονοπρογραμματιστές καλούνται να αντιμετωπίσουν. Η ανομοιογένεια στους υπο-
λογιστές αποσκοπεί στον συνδυασμό της ελαχιστοποίησης της κατανάλωση ενέργειας σε
καταστάσεις χαμηλού φόρτου και στη μακροχρόνια και ταχύ πολυνηματική απόδοση σε
καταστάσεις αυξημένου φόρτου. Αντιθέτως, στις κινητές συσκευές, οι ανομοιογενής αρχι-
τεκτονικές αποσκοπούν στη μεγιστοποίηση της διάρκειας μπαταρίας, και την γοργή από-
δοση σε σύντομα διαστήματα υψηλού φόρτου. Επιπλέον, η ταυτόχρονη πολυνημάτωση
(SMT) είναι μία τεχνική που ενώ δεν χρησιμοποιείται σε κινητές συσκευές, χρησιμοποιείται
από σχεδόν όλους τους επεξεργαστές υπολογιστών. Η κακή διαχείριση της ταυτόχρονης
πολυνημάτωσης μπορεί να οδηγήσει σε σημαντική ελάττωση της αποδοτικότητας του συ-
στήματος.

Στην παρούσα πτυχιακή εργασία παρουσιάζουμε τον HCS, έναν γενικό χρονοπρογραμ-
ματιστή για ανομοιογενής επεξεργαστές που υποστηρίζουν ταυτόχρονη πολυνημάτωση.
Συνδυάζει υπάρχουσες τεχνικές χρονοπρογραμματισμού ασύμμετρων επεξεργαστών για
να προσφέρει ενεργειακή αποδοτικότητα και ταχύτητα. Επιπλέον, ο HCS είναι εύκολο να
τροποποιηθεί από τους χρήστες ή τους προγραμματιστές εφαρμογών. Ο HCS εχει υλο-
ποιηθεί, ως επέκταση του ULE, στον πυρήνα των Linux ως αντικαταστάτης του χρόνο-
προγραμματιστή CFS.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Λειτουργικά Συστήματα

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Χρονοπρογραμματισμός ΚΜΕ, Ανομοιογενής Επεξεργαστές,
Χρονοπρογραμματισμός ΚΜΕ με Bias, Linux, Προγραμματισμός
Πυρήνα
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A Linux Kernel Scheduler Implementation for Asymmetric CPUs

1. INTRODUCTION

1.1 CPU Schedulers
The CPU scheduler is one of the core parts of an Operating System. It is responsible
for allocating CPU resources to processes (tasks) in a way that achieves the goals of the
system designer. In the land of general-purpose schedulers, this means reaching a good
compromise between maximizing throughput and minimizing response time.

In single-core systems, all processes share the same CPU. A process should not mono-
polize a CPU because that would ruin any semblance of fluidity (high response time). To
solve that issue, CPU time is divided into slices and each process receives slices depend-
ing on some scheduling policy. If the slices are tiny, the system will waste a lot of time
switching between tasks (low throughput).

Multicore systems introduce an additional layer of complexity, load balancing between
cores. Processes aren’t randomly placed on a core and left there until their execution is
finished. A multiprocessing-aware scheduler tries to evenly distribute work between all
the cores of the system. To that end, the scheduler uses some metric to calculate the load
of each core and migrates processes between cores when the load is uneven.

1.2 Heterogeneous CPUs
In the early days of computing, single-core CPUs saw dramatic performance increases
every year, leading to lower response times and higher system throughput. As frequency
and power requirements increased, chips became harder to cool, making them impractical
for personal use. This phenomenon is known as the “Power Wall” and led to the introduc-
tion of multicore CPUs, which enabled CPU providers to circumvent thermal issues and
increase system throughput [14].

After the introduction of multicore CPUs, designers and researchers started looking for
new ways to improve performance, reduce energy consumption, and lower production
costs. This is where heterogeneous CPUs come in [11]. There are many types of hetero-
geneous CPUs, some have cores with different ISAs (functional asymmetry), and others
have cores that differ only in their speed (performance asymmetry). The last type has
been widely used in mobile devices for many years, one notable example being ARM’s
big.Little architecture[7].

Many different configurations of cores have been tested, either in research or in products,
but the prevailing design has been to use two types of cores [7, 4]. One group consists
of small/efficient cores and one group consists of big/performant cores (figure 1.1). Such
CPUs enable the OS to use the small/energy-efficient cores for light and/or background
tasks, and the big/fast cores for CPU-bound processes. This way, battery performance
is improved when the system is under light load without sacrificing system performance
under high load.

S. A. Kefalidis 12
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Figure 1.1: An asymmetric CPU consisting of 2 big cores, each of which has its own L2 cache, and
4 small cores, with shared L2 cache

1.3 Schedulers for Heterogeneous CPUs
The main difference between a heterogeneity-aware scheduler (for functional asymmetry)
and a conventional scheduler is the ability to decide whether a process should be placed
on a strong or on a weak core. Multiprocessing-aware schedulers try to evenly split the
load between the cores of the system. This behavior makes sense if all cores are similar,
which isn’t the case with heterogeneous processors. Instead, the scheduler should try to
leverage the asymmetry and place tasks according to the speed and energy efficiency of
each core.

Generally, smaller cores are more energy-efficient, so running non-CPU-bound processes
on them reduces energy consumption while not impacting response times too much. On
the other hand, big cores are less energy-efficient but are able to work faster and are
suitable for CPU-bound tasks. The scheduler needs to decide which core-type is the most
suitable for each process when a process is created. Additionally, a heterogeneous-aware
scheduler must be able to migrate processes from one type of core to another, since both
the nature of the process and the system load might change as time progresses.

For example, a cloud syncing application might involve two stages, compressing some
data and uploading the compressed data to the cloud. Compression is CPU-bound, and
it would probably benefit from using a big core (figure 1.2). On the other hand, uploading
doesn’t require much from the CPU, so using a small core would probably be more energy
efficient (figure 1.3). In this case, a good scheduler would run the compression part of the
task in a big core and when the uploading stage is reached, move the task to a small core.

Figure 1.2: Cloud task
compressing data on a

big core.

Figure 1.3: Cloud task
uploading data on a

small core.

Figure 1.4: Cloud task
compressing data on a

small core.

S. A. Kefalidis 13
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In another example, imagine the same cloud syncing application that is compressing data
in the background. The user has set a low nice value for this application. As long as
there is available capacity in the big cores, this process runs on a big core (figure 1.2). At
some point, the user opens a multithreaded competitive video game that requires a lot of
CPU-time and has a higher nice value. A good scheduler will run this video game on the
big cores, and if there isn’t enough CPU capacity for the cloud syncing application, it will
be moved to a small core (figure 1.4).

The two previous examples show that heterogeneity in CPU designs is a complex problem
that requires purpose-built algorithms to reap its benefits.

1.4 The need for new heterogeneity-aware schedulers
As we mentioned previously, heterogeneous CPU architectures have been used success-
fully in mobile devices for over ten years. Naturally, CPU schedulers have been developed
to handle these platforms. One might wonder whether there is a need to develop new
schedulers to handle heterogeneity in computers. The answer to that question is “yes”.

One important issue of most, if not all, existing schedulers, is the lack of support for Sim-
ultaneous Multi-threading (an important technique used by x86 CPU designers, but not in
mobile platforms). Another important issue that plagues some existing schedulers is the
inability to effectively schedule systems at both low and high system loads. Finally, most
heterogeneity-aware schedulers are unfair, which is expected on low systems loads but
might be undesirable for systems under high load.

In this thesis, we make the case for HCS, a performant, energy-efficient, SMT-aware, and
easily configurable scheduler for asymmetric CPUs that combines utilization, bias, and
proportional-share mechanisms (fair [8]).

The rest of this thesis is organized as follows. In chapter 2 we present previous work
done on scheduling for heterogeneous CPUs. In chapter 3 we present HCS in detail and
in chapter 4 we document the implementation and validation of HCS.

S. A. Kefalidis 14
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2. RELATED WORK

2.1 Overview
Scheduler design has always been an area of compromise, a conventional scheduler can’t
maximize both response time and throughput. Likewise, a heterogeneity-aware scheduler
can’t maximize both performance (throughput and response time) and energy efficiency.
A good scheduler for asymmetric processors has two objectives:

1. to be energy efficient, without noticeably sacrificing performance in low-medium load
situations.

2. to maximize performance in high load situations.

To achieve these objectives, the scheduler requires information about each process. In-
formation can either be prepared offline, in the compilation or development stages, and
provided to the scheduler as part of the executable program, or gathered in real-time.
There are two main techniques that fall under the latter category:

1. Choosing the best core-type for each process by watching its CPU utilization, mean-
ing the amount of time it (i.e. the process) is running or wants to be running. This
way, we can separate CPU-bound processes from IO-bound processes and place
them appropriately [1, 2, 7].

2. Reading performance counters, usually provided by a performance monitoring unit
(PMU), and calculating a bias score for each process. This bias score is sub-
sequently used to determine the most suitable core-type. Some widely used per-
formance counters are last-level-cache misses, retired instructions per second, and
page faults. The goal is to ensure that the big cores are used effectively instead of
wasting their cycles waiting for other parts of the system [9, 13, 17, 18].

2.2 Utilization-based Scheduling
Utilization-based approaches have seen widespread success in the real world, specifically
in the Linux Kernel as extensions to CFS (Completely Fair Scheduler). Linux has been at
the forefront of developing asymmetric CPU schedulers, thanks to its role in the Android
operating system.

2.2.1 Capacity Aware Scheduling
The goal of Capacity Aware Scheduling (CAS) [1] is to provide every process in the sys-
tem with as much CPU-capacity as it requires, as long as that is possible. It doesn’t try
to utilize the architectural asymmetry to optimize power consumption, instead, it tries to
optimize throughput. As stated in its name, the main pillar of this scheduler is the notion of
CPU Capacity, which is a MIPS-like metric of CPU performance. Capacity describes the
maximum throughput of each core-type. It isn’t a value that is calculated by the scheduler,
instead, it is provided by the CPU manufacturers, and it is normalized against the fastest
core in the system.

S. A. Kefalidis 15



A Linux Kernel Scheduler Implementation for Asymmetric CPUs

For capacity-aware scheduling to work, the scheduler needs a metric to represent the
amount of CPU capacity that a task requires. In CFS, this is called ‘task utilization’. Fre-
quency and architectural differences must be taken into account when calculating task
utilization. One second on a fast core isn’t the same as one second on a slow core. For
that reason, the following equation is used to make task utilization core and frequency
invariant:

task_util(p) = duty_cycle(p) ∗ current_frequency(CPU)

max_frequency(CPU)
∗ capacity(CPU)

max_capacity

Now that we have both a capacity value for every core and the ability to compute the
amount of capacity that each task requires (using the previous formula), the scheduler
needs to make sure that each task is placed on a core that has enough capacity. For new
tasks, the scheduler estimates the required capacity and places the task on a core with
space capacity. If the guess proves to be incorrect or if a process at some point of its
execution requires more CPU capacity than is available in its current core, it is moved to
a core with enough spare capacity.

Capacity, as a metric, can’t accurately describe the relative performance of different core
architectures. There is no guarantee that because task X is 10% faster when running on
a big core compared to running on a small core, task Y will see the same speedup. That’s
an important limitation of all scheduling methods that use Capacity [1].

2.2.2 Energy Aware Scheduling
Energy Aware Scheduling (EAS) [2] is an evolution of Capacity Aware Scheduling (CAS).
Instead of only trying to optimize throughput, energy-aware scheduling tries to find the
optimal compromise between throughput and energy efficiency.

For EAS to work, an energy model of the CPU is required. This energy model contains
information about the power consumption of each core-type at different capacity levels
(meaning, at different frequencies, provided that the core supports frequency scaling).
Like Capacity, the energy model is provided by the CPU manufacturer (figure 2.1).

The scheduler uses this information to select the core that will increase total power con-
sumption the least, among the cores that have adequate capacity for the process that is
being scheduled. Generally, this means that processes are scheduled to smaller cores if
they have enough available capacity, but in some cases, small cores are less efficient at
high frequencies than big cores at low frequencies.

Energy-aware scheduling is effective when the system is under light or moderate load, but
it is unable to handle high loads, since it doesn’t have any mechanisms to take advant-
age of asymmetry when all cores are loaded and the system is running at its maximum
capacity. For that reason, when a core is used at more than 80% capacity, the system
disables the energy-aware mechanisms, and the regular CFS load balancing algorithm is
used. Like most schedulers for asymmetric CPUs, EAS doesn’t support SMT (simultan-
eous multithreading), instead treating sibling cores like physical cores.

2.2.3 Global Task Scheduling
One other notable scheduler is ARM’s Global Task Scheduler [7]. This scheduler, which
is also built on top of CFS, moves processes between big and small cores depending on

S. A. Kefalidis 16
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Figure 2.1: Example of an Energy Model, taken
from the Linux Kernel documentation. Different
capacity levels for the same CPU are essentially

different frequencies of operation.

their CPU demands (tracked using PELT [3]).

Every new process is always placed on a big core. If it turns out to not require much
CPU, i.e. task utilization falls below the down-migration threshold set by the developer, it
is then moved to a small core, otherwise, it stays on the big core. The opposite happens
if a process is placed on a small core and its computational demands increase, i.e. task
utilization rises above the up-migration threshold.

When the system is under full load, tasks are periodically moved to the small cores to
improve the total throughput of the system, disregarding the thresholds.

2.3 Bias Scheduling
Bias scheduling has been studied extensively over the years. A bias scheduler calculates
a bias value for each process, which describes how suitable each core-type is for the
process [9, 13, 17, 18].

For example, imagine a process that never sleeps, demanding 100% of a core’s capacity.
Utilization-based schedulers would place it on a big core. The question now is what hap-
pens if the process spends half of its runtime waiting because the cache cannot handle its
demands. Our memory-intensive process could be moved to a small core to make space
for other compute-intensive processes that effectively utilize the big core’s CPU time, thus
increasing system throughput. Essentially, bias schedulers place tasks based on how
”well” they spent CPU-time, while utilization-based schedulers place tasks based on how
much CPU-time they require.

In [9] researchers used IPC (instructions per cycle) ratios between core-types (2.1) as the
bias. In this case, a task that has a bigger bias score than another task benefits more
from running on a big core. The end goal is to maximize the total IPC. To achieve that,
the tasks with the biggest IPC ratios are placed on the big cores and the rest are placed
on the small cores.
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IPC_Ratio =
IPC_in_big_core

IPC_in_small_core
(2.1)

For this to work, the scheduler needs to know the IPC value of each process on each
core type. To that end, processes periodically change core-type, to update the informa-
tion used to calculate the IPC ratio. Processes that exhibit IPC fluctuations are swapped
between core types independently, to update their IPC ratios and be appropriately sched-
uled. Additionally, there is a minimum time spent in each core, to ensure that processes
are not constantly being moved.

In [13], the authors use a variety of metrics (retired instructions, cache-misses, tlb-misses)
to calculate process bias. Subsequently, tasks are placed in the appropriate core-type by
modifying the load-balancing algorithm of CFS.

In [17], performance monitoring counters are used to compute a speed-up factor for each
process, using an additive-regression engine, which is then used to determine which pro-
cesses would be best suited for execution on big cores.

The main disadvantage of bias schedulers is that they can lead to inefficient task place-
ment in low or medium system loads. For example, a bias scheduler might place a task
with a very light, periodic activity on a big core because it uses big cores effectively. The
problem, in this case, is that this task could be running on a small core with no noticeable
difference in response time since it has a light CPU-load, but since it is placed on a big
core, it doesn’t allow the big core to become idle to reduce its power consumption.

2.4 Fairness
Fairness is a key concept in homogeneous schedulers. The two most successful open
source schedulers (CFS and ULE) are both fair schedulers. Fairness means splitting
resources between tasks in such a way that all tasks receive some amount of CPU-time
depending on their priority and behavior [8]. Such designs allow all tasks to progress, and
seem to provide the best combination of throughput and responsiveness.

The heterogeneous schedulers that were presented previously are all inherently unfair.
Some tasks are placed on big, fast cores, while other tasks are placed on small, slower
cores. Both bias and utilization-driven scheduling methods aim to leverage the asymmetry
of the system, whichmeans that tasks that are deemed unsuitable for big cores never have
a chance to run on them.

This way of thinking might prove problematic in a system that has heavy and heavier tasks.
All tasks would benefit from running on the big cores, but the heaviest tasks in the system
monopolize the big cores. In this case, it can be beneficial to give the ”less CPU-bound”
tasks the opportunity to run on the big cores, essentially sharing big-cores depending on
task utilization and/or bias [15].

There have been attempts to create fair schedulers for asymmetric systems [15, 18]. In
[15], researchers combined bias scheduling with lottery scheduling to share (proportional-
share) the big cores between tasks and showcased promising results, albeit in a limited
environment. In [18] a fair scheduler that trades throughput for fairness, by swapping tasks
between cores depending on a runtime metric, is presented, built upon [17] and Linux’s
CFS.
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2.5 Offline Profiling and Signature Matching (HAAS)
A completely different approach to scheduling asymmetric CPUs was proposed in [19].
The Heterogeneity-Aware Signature Supported scheduler uses architectural signatures
to estimate the completion time of the application on each core-type. Depending on that
estimated completion time, processes are placed in the appropriate cores and stay there
until their execution finishes. An architectural signature contains information about the
process, specifically about its cache access patterns. The signatures are built together
with the executable, possibly as an additional compilation step. This is an example of a
scheduler that doesn’t use online monitoring.

This approach trades accuracy and flexibility for reduced overhead and scalability. One
downside of this approach is that because each application has one architectural signa-
ture, the scheduler can’t handle applications with varying demands on CPU resources.
Another significant downside is that it can’t handle applications with significantly different
behavior depending on user input, again because each application has only one signature.

2.6 Summary
We presented the main approaches to asymmetric CPU scheduling. Each approach has
a unique set of advantages and disadvantages. Utilization-based algorithms are not great
at scheduling systems under high load, bias and fair schedulers may lead to suboptimal
scheduling for systems under low or medium loads. In addition, none of the aforemen-
tioned schedulers supports SMT. For HCS, we combined all these techniques to create a
scheduler that can handle low, medium, and high loads as well as architectures that utilize
SMT.
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3. HCS: HETEROGENEOUS CPU SCHEDULER

The Heterogeneous CPU Scheduler is an attempt to create a robust scheduler that is cap-
able of utilizing system resources effectively on a variety of systems and system loads,
providing both energy efficiency and performance. To achieve that, we combined utiliza-
tion, bias and proportional-share (fair) scheduling. It is important to note that HCS is only
tasked with placing tasks on core-groups (we refer to all cores of the same type in a sys-
tem as a core-group). Each core-group is scheduled by a conventional, multiprocessor
scheduler, in our case ULE [16].

HCS uses utilization-based and bias mechanisms for low to medium system loads, and
bias and proportional sharing mechanisms for high system loads.

3.1 Scheduling Low - Medium System Load
A system under low to medium load has enough CPU capacity for all running tasks, so
system throughput isn’t a concern. Instead, the focus is on energy efficiency and respons-
iveness. The utilization-based mechanisms make sure to avoid placing light tasks on big
cores. At the same time, the use of bias allows us to avoid placing tasks with medium
CPU requirements on big cores, if they have a high bias value (which means that the task
is better suited for a small core). This part of HCS is an evolution of Global Task Schedul-
ing proposed in [7]. The most significant improvements are the use of bias and dynamic
migration thresholds.

3.1.1 HCS Score
The scheduler calculates the task utilization (CPU load) and bias (core-type suitability)
of each process. These two values are combined into a single value called HCS Score
(abbreviated to HScore). In this subsection, we will present how each score is calculated
and how they are combined into the HScore.

For task utilization, HCS uses ULE’s Interactivity metric [16], which categorizes processes
as IO or CPU bound in varying degrees on a range of 0 (IO-bound) to 100 (CPU-bound). A
process that voluntarily gives up CPU time is classified as IO-bound, while a process that
uses most/all of its CPU slices is classified as CPU-bound. The following set of equations
calculate the interactivity value of a process:

Interactivity =


m

sleep
run

for sleep > run

m
run
sleep

+m for sleep ≤ run
(3.1)

m =
MaxInteractiveScore

2
= 50

Sleep is the number of ticks that have passed between a sleep() and wakeup() or while
sleeping on a condition variable. The runtime (run) is the number of ticks that the thread
has been running. Neither sleep-time nor runtime are allowed to grow infinitely, instead
being reduced to a fraction of their size when their sum reaches a configurable limit. This
essentially limits the history kept.

The careful reader might notice a problem with this Interactivity formula, in the context of
asymmetric processors. Cores of different types have different performance profiles, so
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interactivity values between cores aren’t comparable. To deal with that, we must make
the runtime (run) core invariable, as it is done in CFS:

InvariantRuntime = Runtime ∗ capacity(current_CPU)

max_capacity
(3.2)

To calculate bias, HCS uses Last Level Cache Misses, Data-TLB misses and Instruction-
TLBmisses, which are tracked via hardware performance counters. A configurable amount
of history is kept for each value to avoid bias fluctuations that don’t represent the general
behavior of an application. To set up and read these counters, we used perf, a Linux Ker-
nel subsystem for performance monitoring and analysis. Bias is constrained to a range of
0 to 100.

Again, architectural differences between cores might cause bias calculations to differ
between core types. Currently, there isn’t a system in place for HCS to make bias core-
type invariant. A possible solution to this problem was presented in [13].

By putting these two values together, we calculate the HScore of a process p:

HScore(p) = Interactivity(p)− Bias(p) ∗W (3.3)

In this equation, W is a configurable weight that reflects the importance of Bias in the
system. The default value for W is 0.5 and the full range of possible values is [0, 1].

We chose to subtract bias from interactivity, instead of adding the values, because it is
advantageous to move a medium-load task that ineffectively spends CPU time away from
a big core, to a small core. At the same time, it doesn’t make much sense to migrate a
process that doesn’t use much CPU time to a big core just because it has a low bias score.
HScore expresses both the amount of CPU capacity that a task needs and how well the
task uses the CPU-time that is given to it. A task with a large HScore should be placed
on a big core and a task with a low HScore should be placed on a small core.

Figure 3.1: A task’s HScore graph.

Figure 3.1 shows a graph of the HScore of a sample process. When the process is running
and its bias is low, its HScore increases rapidly. When the process sleeps, the HScore
decreases, because the Interactivity value decreases. In the end, the process is running
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but because its workload is cache and/or TLB intensive, its HScore rises slowly, because
simultaneously with the increasing interactivity the bias value is increased.

We explained how HCS calculates the HScore of each task. In the next subsections, we
explain how HCS uses the HScore to decide on which core-group to place each task.

3.1.2 Wake Up Migration
Each core-group “owns” a range of HScore values. At system startup, the big cores own
the range [30-100] and the small cores the range [1-30], with 30 being considered the “bor-
der”. Additionally, there are two dynamic thresholds, one above the border and one below
the border, used for big-core (up) migration and small-core (down) migration respectively,
with initial values of 35 and 25 (an offset of 5 from the border). When the border is moved
(see section 3.1.5), the thresholds are moved with it, maintaining the offset.

Wake up migration happens when a task becomes runnable and the scheduler has to
decide on which core to place it. Normally, tasks are placed on the core that they were
running on before they slept or a core near it. In our case, this event is a good opportunity
to move tasks to the correct core-group. If a task’s HScore right before sleeping is at
or under the small-core migration threshold, the task is placed on a small core (figure
3.2). We don’t use the current HScore because that would move CPU-bound tasks that
voluntary sleep for a long time to the small-core group, only to then immediately move
them back to the big-core group.

Figure 3.2: Wake Up Migration.

3.1.3 Active Migration
If a task never goes to sleep voluntarily and is running on a small core, Wake Up Migration
is unable to move the task in question to a big core. This is where Active Migration comes
in. A running task is moved to a big core as soon as it reaches the up-migration threshold
(figure 3.3), instead of waiting to sleep. Active Migration only supports moving tasks to
the big cores, moving tasks to small cores while they are running is unlikely to improve
system performance, and it is something that only the load balancer can do if it is deemed
necessary.
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Figure 3.3: Active Migration.

3.1.4 Forking - New Process Placement
All new processes are placed on big cores, provided that there is adequate space for them.
Otherwise, they are placed in the small core-group. If neither core-group has enough
space for the new process, then the system is under high load. If a process is incorrectly
placed on a big core, it will quickly migrate to a small core. This design choice trades a bit
of energy efficiency, for responsiveness, which is a good trait for a general, multipurpose
scheduler.

3.1.5 Load Balancing
The Load Balancer runs periodically and checks the load of the core-groups (the mean of
the loads of each core in the group). If neither core-group is under “high load” (meaning
more than 80% utilization) then nothing happens. When one of the two core-groups is
under high load, we want to move tasks to the other core group, to better balance the load
of the two core groups. The goal of load balancing is to avoid overwhelming a single core-
group to keep the utilization-based mechanisms working as well as optimizing throughput
and responsiveness.

At first, HCS attempts to move tasks away from the overloaded group, choosing from the
ones that exist between the two migration thresholds. Depending on the load and spare
capacity of the core-groups, tasks are moved until no core-group is overloaded anymore
or until both core-groups are overloaded (figure 3.4). This process doesn’t modify the
border and thresholds.

If there aren’t enough tasks in the zone between the two thresholds to achieve balance
and one core-group continues to be overloaded while the other is not, HCS migrates tasks
that are outside the “zone”. The difference here is that once the load balancer finishes,
it adjusts the “owned” HScore ranges of each core-group to better reflect the state of the
system (figure 3.5). This means that the border and the migration thresholds are moved,
which makes it harder to reach the same unbalanced state if the system continues to be
used in a similar way. Subsequent executions of the Load Balancer check to see if the
system is under light load. If so, the border and the migration thresholds are returned
to their original locations. By moving the thresholds via the Load Balancer, HCS avoids
relying on the load balancer to schedule medium-load situations with tasks that don’t fit
under the default migration thresholds. Instead of constantly needing the Load Balancer
to move tasks from the overloaded core-group to the other one, tasks are naturally moved
through Active and Wake Up Migration, reducing the overhead of HCS.
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Figure 3.4: Load Balancing by migrating processes between the migration thresholds.
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Figure 3.5: Load Balancing by migrating processes outside the migration thresholds.
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3.2 Scheduling High System Load
A system under high load (both core groups are utilized over 90%) focuses on through-
put. As we discussed previously, high load neutralizes utilization-based mechanisms. For
example, Linux disables its Energy Aware Scheduler when one core reaches over 80%
utilization and reverts to the standard CFS load balancer. On the other hand, pure bias
scheduling can lead to performance improvements compared to random scheduling, but it
also leads to some tasks monopolizing the big cores, which has been proven to be harm-
ful to system performance in [15, 18]. Instead, HCS uses bias to fairly share big cores
between processes.

3.2.1 Proportional-share Mechanism
The moment a system first becomes highly loaded, the Load Balancer attempts to evenly
split the load between all cores in the system. Subsequently, the normal load balancing
and inter-group migration mechanisms are disabled in favor of the Proportional-share
Mechanism (PSM). When system load decreases and the system stops being highly
loaded (both groups fall under 80% of utilization), PSM is disabled and the normal load
balancing and migration mechanisms are re-enabled. The small difference between the
threshold for enabling and disabling PSM exists to ensure that the scheduler doesn’t con-
stantly switch between the two types of scheduling, which is highly unlikely to begin with.

PSM is a lottery scheduling algorithm for heterogeneous CPUs, in the same vein as [15].
Lottery schedulers distribute tickets to each process in the system and decide which pro-
cesses will be scheduled next by randomly selecting tickets [8]. PSM applies this logic
to migration to big cores. The selected process is moved to a big core, if it is not are not
already on one. At the same time, the last process that ran on that big core is moved to
the small core from which the lucky process originated. PSM uses the bias score of each
process to calculate the number of tickets to give to each process. The smallest the bias
(more effective big-core utilization) the larger the number of tickets. The amount of tickets
selected each time the lottery is run depends on the core configuration. The amount is
equal to the number of cores in the smallest core group. So, in a system with 8 big cores
and 4 small cores, 4 tickets will be chosen each time the lottery runs.

Until the next lottery execution, the scheduler watches the swapped tasks and calculates
system speedup/slowdown by calculating the IPC ratios of the swapped tasks, similarly
to [9]. If the system was sped-up, the task that was placed on the big core receives a
decaying number of bonus tickets (the bonus starts at +50% and is reduced by 10% for
every lottery execution). PSM runs every 3 - 5 seconds, the exact number is randomly
chosen.

Both the ticket bonus and the frequency of the lottery are configurable. More frequent
lottery execution improves system fairness, while running the lottery less often increases
throughput, provided that the bias score is working well for the system’s workload.

To minimize the overhead of the lottery algorithm, a delayed-lottery implementation was
chosen for HCS. Instead of searching for the process with the winning ticket, HCS does
the following:

1. Find the core with the winning ticket. This is simple since PSM knows the number of
tickets on each core (they are updated every time the bias calculations are done).

2. If that core is a big core, do nothing. Alternatively, tell the small core to find the
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winning ticket by giving it the winning ticket and suspend the lottery scheduler until
the process is found.

3. For every process that is executed on the small core, subtract its ticket number from
the winning ticket number.

4. The process that has more tickets than the winning ticket number is the winner and
will be moved to the queue of a big core by the small core.

This implementation introduces a negligible overhead both computationally, an additional
subtraction is carried out on each context switch, and memory-wise, no special data struc-
ture is needed. The main disadvantage of this implementation is that the completion time
of the lottery algorithm varies depending on the number of processes in the system and
the selected ticket numbers, although a system that has enough CPU-bound processes
for this to be a problem has bigger issues to deal with.

3.2.2 Forking - New Process Placement
When a system is under high load, new processes are placed on the core with the least
amount of load.

3.3 Simultaneous Multi-threading
Simultaneous Multi-threading (SMT) is a technique that allows a single core to run mul-
tiple threads in parallel [14]. The implication for schedulers is that the number of logical,
schedulable cores isn’t the same as the number of physical cores (e.g. a dual-core sys-
tem with SMT has four logical cores). Sibling cores, logical cores that co-exist in the same
physical core, share the execution components and cache of the core. As one might
imagine, this makes logical cores weaker than physical cores. For this reason, most con-
ventional schedulers for homogeneous CPUs handle SMT by having only one runqueue
per physical core, with logical cores sharing processes (the migration penalty between
sibling cores is minuscule).

In HCS, the existence of SMT poses two questions:

1. How do sibling cores affect core and group utilization? For example, if a core is util-
ized at 80% and its sibling core at 20%, this doesn’t mean that half of its processing
power is used. Instead, the core is being used at approximately 75% of its total
capacity (depending on the SMT implementation).

2. How do sibling cores affect the Interactivity metric? Running two CPU-bound pro-
cesses on the same physical core is significantly slower than running them on two
different physical cores, and this is reflected in the Interactivity score of the pro-
cesses.

In both light-to-medium and high-load scheduling, HCS makes decisions related to core
utilization on a physical core basis. This means that a dual-core system with SMT has two
cores as far as load balancing in HCS is concerned. Additionally, HCS uses the busiest of
the sibling cores as a representation of the utilization of the physical core. For example,
if CPU0 and CPU1 are sibling logical cores, and CPU0 is utilized at 30% while CPU1 is
utilized at 40%, the physical core is utilized at 40% as far as HCS is concerned.
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As far as the Interactivity Score of each process goes, in low and medium loads, there
is more than enough CPU capacity for all processes in the system, so SMT doesn’t no-
ticeably affect Interactivity. Any good SMT-aware scheduler makes sure to avoid putting
tasks on the same physical cores if there is another physical core available, and there
always is by definition in such loads. In high-load situations, interactivity doesn’t matter
since utilization-based mechanisms are disabled in favor of PSM.

3.4 Niceness
HCS uses nice values to break ties when load balancing. If two tasks have the same
HScore their niceness (nice value) is used to decide which one to place on a big core and
which one to place on a small core (figure 3.5).

3.5 Quality of Service
One last feature of HCS, is the inclusion of a nice-like Quality of Service (QoS) value,
inspired by Apple’s scheduler [12, 6]. There are two classes of service, normal and back-
ground. All tasks start in the normal class, but the user or the task itself can decide to set
QoS to background, permanently or temporarily. A background task is always scheduled
on a small core, while a normal task can be scheduled on either core type depending on
its behavior. This feature is useful for minimizing the effect that long-running CPU-bound
tasks (e.g. compressed system backup) have on system performance.
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4. IMPLEMENTATION AND VALIDATION

In this chapter, we discuss our implementation [5] of HCS in the Linux Kernel and present
some tests to validate it. Due to the lack of the required hardware, there are no bench-
marks to present in this thesis.

4.1 Implementation
HCS is a heterogeneity-aware scheduler that handles placing tasks on the correct core-
group (a core-group is a group of architecturally identical cores). Scheduling cores of the
same type is left to a conventional, heterogeneity-unaware scheduler. For our implement-
ation, we use ULE, the FreeBSD scheduler, as our intra-core-group scheduler. We chose
ULE for its simplicity (around 3,000 lines of code) compared to CFS (over 10,000 lines of
code) which made it easier to develop HCS, without sacrificing performance [10].

Implementing HCS in the Linux Kernel was done in four steps:

1. Update the ULE patch created in [10] to work with the latest version of the Kernel.

2. Setup perf to collect the counters needed for calculating the bias of each process.

3. Setup core utilization tracking.

4. Implement the HCS algorithm on top of ULE.

4.1.1 Updating ULE to work on the latest Linux Kernel
The end goal of this work is to build a system with an asymmetric desktop CPU and
compare HCS and CFS (both EAS and CAS). For our comparison to be fair, we want CFS
to have all the improvements that have been introduced in the years since the creation of
the ULE port for Linux. To enable that, we rebased (git rebase) HCS on the latest, at the
time of development, version of the Linux Kernel. The kernel has undergone a significant
amount of restructuring since 2018, so one contribution of this work is a working version
of ULE for Linux 5.19.

4.1.2 Collecting performance counters for all processes
We decided to use the perf subsystem of the Linux Kernel to read hardware performance
counters. Perf is mostly used through the userspace application of the same name, ex-
amples of in-kernel usage of it are hard to find. Fortunately, the NMI Watchdog uses perf
to detect if the system has locked up. Based on that, we set up performance monitoring
via the function perf_event_create_kernel_counter().

In our earliest attempts, we tried to set up and read performance counters inside the sched-
uler code. Unfortunately, this proved to be impossible because scheduler code is non-
preemptible, while the functions to interact with perf in the Kernel require preemption. In
the end, we decided to set up process monitoring on process creation, in kernel_clone().
This way, performance counters are set up when a process is created and the counters
are updated when a process is running, at a set frequency, and outside the scheduler
code.
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4.1.3 Core utilization
The original ULE port didn’t include setting up core utilization for the scheduler. In other
words, the Kernel was unaware of the amount of CPU utilized by each core for tasks
being scheduled via ULE. This meant that subsystems that depend on that information
(e.g. CPUFreq Governor) would misbehave, even though this was unimportant for the
scope that the port was originally created for.

HCS needs per-core utilization information for its load balancing algorithm, so we had to
implement that. We decided to use PELT[3] instead of other utilization tracking mechan-
isms (like WALT, suggested by Qualcomm) to make it easier to compare HCS with CFS.

4.1.4 Implementing HCS
Implementing the HCS algorithm itself was the most straightforward part of the imple-
mentation. HCS uses ULE’s data structures, and its logic neatly fits on top of the SCHED-
ULER_CLASS interface that Linux uses for its schedulers. It is important to note that our
implementation of HCS in the Kernel is a work in progress. Some features, namely SMT
support, Niceness and Quality of Service, haven’t been implemented yet.

4.2 Validation
Lacking the required hardware to present benchmarks, we present and discuss some
of the validation tests that we use for developing HCS. The validation tests that we will
present are targeted at the utilization and bias based mechanisms of HCS (presented in
3.1). PSM provides fairness, so there isn’t anything meaningful to showcase using our
simulated environment. All programs that we have created and use for validation are
included in the git repository of HCS[5], in the sources folder.

Figure 4.1 presents a graph of the execution of hcs_primes_burst, a CPU-bound program
that calculates a large number of prime numbers. The process starts on a big core and as
it never voluntarily sleeps, its HScore increases until it reaches the maximum value. This
application has a low bias score (meaning that it is suitable for big cores), so HScore is
primarily influenced by the Interactivity Score.

Figure 4.1: Execution of hcs_primes_burst.

Figure 4.2 is the execution graph of hcs_primes_periodic, which calculates a small number
of prime numbers every few seconds. This is an example of a periodic process with light
computational demands, like a chat application or an email client. Again, this process has
a low bias value, but because its processing needs are relatively minor it is more efficient
to place it on a small core. Initially, the process is placed on a big core, it subsequently
sleeps for a long period of time, but when it wakes up it stays on the big core. The second
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time it wakes up, HCS understands that this process is better suited to run on a small core,
and is migrated away from the big core.

Figure 4.2: Execution of hcs_primes_periodic.

In figure 4.3 we see the execution graph of hcs_primes. The difference to hcs_primes_burst
is that hcs_primes waits for user input before starting its calculation. Waiting for user input
reduces the HScore, but HCS doesn’t move the task to a small core on wakeup (as de-
scribed in 3.1.2). Instead, the task stays on a big core until the end of its execution, which
is the most efficient and performant way to handle it.

Figure 4.3: Execution of hcs_primes.

Lastly, in figure 4.4 we see the execution graph of hcs_add3, an extremely cache-intensive
process that does matrix calculations. Even though the process never voluntarily sleeps
(high Interactivity Score), we see that its HScore goes below the small-core migration
threshold (we don’t use the default bias weight of 0.5 for this example, instead opting for a
value of 0.8). Nonetheless, the task stays on a big core because active migration doesn’t
migrate tasks to the small cores. If big cores become highly loaded, this process will be
one of the first ones to be moved to a small core.

Figure 4.4: Execution of hcs_add3.
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An interesting side effect of executing processes that have a high interactivity score (fig-
ures 4.1, 4.3, 4.4) is that because ULE passes some of the interactivity score of the child
process to the parent process when execution ends, the shell process (which spawns all
these processes) is sometimes momentarily moved to a big core. The Quality of Service
feature can be used to avoid this behavior.

These validation tests demonstrate HCS’s ability to handle a variety of applications and
correctly schedule them. All the programs used, and more, are included in the repository
of HCS [5].
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5. CONCLUSIONS & FUTURE DIRECTIONS

Recently, Asymmetric CPUs have made their appearance in the PC space, bringing en-
ergy efficiency and performance improvements. With them, a series of challenges arise
for operating system schedulers. Existing heterogeneity-aware schedulers either have
obvious deficiencies or are unable to handle Simultaneous Multi-threading (SMT) an im-
portant technique widely used in x86 processors.

We proposed HCS, an SMT-aware, Heterogeneity-aware general-purpose scheduler im-
plemented in the Linux Kernel. HCS combines the three main methods of heterogen-
eous scheduling, utilization-based scheduling, bias scheduling, and proportional-share
(fair) scheduling to limit the weaknesses that each method has individually and create a
solid general scheduler. HCS is able to handle any system load and can be easily con-
figured to trade throughput for energy efficiency or fairness. HCS is built on top of a ULE
port for Linux which we have updated for Linux 5.19.

We presented validation tests that showcase the ability of HCS to handle a number of
different tasks. In the future, we are planning to complete the Linux Kernel implementa-
tion of HCS, which is missing some relatively minor features, and benchmark HCS on a
purpose-built system.
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ABBREVIATIONS - ACRONYMS

SMT Simultaneous Multi-threading

CFS Completely Fair Scheduler

HCS Heterogeneous CPU Scheduler

ISA Instruction Set Architecture

CPU Central Processing Unit

OS Operating System

PMU Performance Monitoring Unit

MIPS Million Instructions per Second

EAS Energy Aware Scheduling

CAS Capacity Aware Scheduling

PELT Per-Entity Load Tracking

WALT Window Assisted Load Tracking

IPC Instructions per Cycle

TLB Translation Lookaside Buffer

HScore HCS Score

PSM Proportional Share Mechanism

QoS Quality of Service
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