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ABSTRACT

Constraint Programming is an Artificial Intelligence methodology that aims to solve real
world problems in an efficient way. In this work, we extend the open source constraint
solver Gecode by expanding its features concerningGlobal Constraints, specifically Global
Cardinality Constraints. A Global Cardinality Constraint restricts the value occurrences
among a collection of variables, to be between certain bounds. We develop the Global
Cardinality Constraint With Costs, which is similar to the Global Cardinality Constraint and
additionally associates a cost with each variable-value assignment, while further restricting
the sum of the costs related to the assigned variable-value pairs to not exceed a given cost
bound. Moreover, we add the Symmetric Global Cardinality Constraint, which is defined
on Set variables and introduces additional restrictions on the cardinality of each set, aside
from the value occurrences. We attempt to optimize their performance by experimenting
with various different implementation choices, and finally we evaluate our constraints to
discover under which conditions they are beneficial compared to decomposing them to
multiple simpler ones.

SUBJECT AREA: Constraint Programming

KEYWORDS: constraint solver, open source, gecode, global constraint, global
cardinality



ΠΕΡΙΛΗΨΗ

Ο Προγραμματισμός με Περιορισμούς είναι μια μεθοδολογία της Τεχνητής Νοημοσύνης
που αποσκοπεί να επιλύσει πραγματικά προβλήματα με αποτελεσματικό τρόπο. Σε αυ-
τή την διπλωματική εργασία, επεκτείνουμε τον επιλυτή προβλημάτων ικανοποίησης πε-
ριορισμών ανοιχτού κώδικα Gecode, συνεισφέροντας στις δυνατότητές του σχετικά με
Καθολικούς Περιορισμούς, συγκεκριμένα περιορισμούς Global Cardinality. Ένας Global
Cardinality περιορισμός περιορίζει τον αριθμό εμφάνισης τιμών μέσα σε μια συλλογή με-
ταβλητών, ώστε να βρίσκεται μεταξύ συγκεκριμένων ορίων. Αναπτύσσουμε τον περιορι-
σμό Global Cardinality With Costs, ο οποίος είναι παρόμοιος του Global Cardinality και
επιπλέον συσχετίζει ένα κόστος με κάθε ανάθεση τιμής σε μεταβλητή, ενώ ταυτόχρονα α-
παιτεί το άθροισμα των κοστών να μην ξεπερνάει ένα όριο. Στη συνέχεια προσθέτουμε τον
περιορισμό Symmetric Global Cardinality, ο οποίος ορίζεται πάνω σε μεταβλητές που α-
φορούν σύνολα, δίνοντας επιπλέον περιορισμούς γύρω από τον πληθικό αριθμό του κάθε
συνόλου, πέραν των περιορισμών που αφορούν τις τιμές. Ερευνούμε τη βελτιστοποίηση
της επίδοσής τους, πειραματιζόμενοι με διάφορες εναλλακτικές επιλογές υλοποίησης, και
τελικά τους συγκρίνουμε ώστε να ανακαλύψουμε κάτω από ποιές συνθήκες είναι ωφέλιμοι,
σε σχέση με την αποσύνθεσή τους σε περισσότερους απλούστερους περιορισμούς.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Θεωρία Γράφων

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: επιλυτής προβλημάτων ικανοποίησης περιορισμών, ανοιχτός κώ-
δικας, gecode, καθολικός περιορισμός, global cardinality
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PREFACE

At the early stages of this thesis, Gecode’s features were compared with other constraint
solvers to discover ideas and possible ways to extend its functionality and usability. After
that it was decided that global cardinality constraints should be the point of focus, and liter-
ature research was conducted to conclude the specific constraints to implement. Gecode
was studied through its documentation and by example, to get familiar with its internal
environment and the methodology of programming custom constraints for it. While initially
it was simple working versions of the constraints that were implemented, further on effort
was focused into optimizing them by trying different implementation ideas, data structures
and algorithms. Finally, experiments were conducted with computer generated and real
world data for applications of the constraints, and they were compared to different config-
urations of their own and to using default constraints that already come with Gecode.



Extending upon the Gecode open source toolkit, for developing constraint-based systems and applications

1. INTRODUCTION

In recent years, a lot of research interest has been focused on artificial intelligence. Con-
straint programming is an approach to represent and solve a particular problem, by model-
ing it with variables which can take values from a domain, and imposing constraints over
them, in a way that mathematically expresses the nature of the problem. By assigning
values to the variables while at the same time respecting the constraints, we can find a
solution to it. To speed up the process, we can enhance our constraints to detect inconsis-
tent values, and remove them from the domain before attempting to assign them. Many
other strategies can be used with the goal to minimize execution time and solve prob-
lems faster, like deciding on which variables and values we should prioritize. There exist
platforms called constraint solvers, that provide the necessary tools and environment to
achieve this and make it accessible to programmers.

An important category of constraints is global constraints. Such constraints can involve a
large non-fixed number of variables, and can be semantically represented by the conjunc-
tion of other simpler constraints. They are a key point of interest, because they can provide
a more accurate view of the problem to the solver, which in turn can achieve deeper value
propagation. Certain inconsistent values can be detected and pruned early from the solu-
tion, only if we treat the constraint as a global one, instead of breaking it down to multiple
simpler ones.

A state-of-the-art constraint solver is Gecode [1], a powerful open source platform natively
implemented in C++, that provides extensive features and customization to develop con-
straint satisfaction problems efficiently. In this work, we enhance the global constraints
selection of the Gecode library, specifically focusing on global cardinality constraints. Par-
ticularly, we implement the Global Cardinality Constraint With Costs and the Symmetric
Global Cardinality, both of which are absent from Gecode, as it includes only the regular
Global Cardinality Constraint.

The Global Cardinality Constraint restricts the value occurrences assigned among a col-
lection of variables, to be between a lower bound and an upper bound, potentially different
for each value. The Global Cardinality Constraint With Costs further associates a cost with
each variable-value assignment, and introduces the restriction that the sum of the costs
related to a solution should not exceed an upper limit. The Symmetric Global Cardinality
Constraint is similar to the original Global Cardinality but defined on set variables, which
are variables whose domain is a set of sets of values. This version additionally limits the
cardinality of the set of each variable, aside from the value occurrences. These constraints
have already been proposed in the literature in [10], [2] and [18] respectively. The regu-
lar Global Cardinality Constraint can be viewed as a specialization of Global Cardinality
Constraint With Costs in which all the costs are equal to 0, and as a specialization of
Symmetric Global Cardinality where the cardinality bounds of each variable are equal to

I. Papatsoris 15
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1.

The publications around them are complete in terms of presenting and analyzing an effi-
cient algorithm, but they do not provide guidance around implementation details. As we
aim to not only realize them but also optimize their performance, we mainly experiment
with the following ideas for the Global Cardinality Constraint With Costs:

• Improving the shortest paths search by keeping some costs of the residual graph
negative and using Bellman-Ford’s algorithm, instead of following the proposed re-
duced costs method that transforms them to positive in order to utilize Dijkstra’s
algorithm.

• Deleting edges from the value network as values get prunedwith a backtrack-efficient
structure that minimizes copying overhead during branching, which is suggested in
[14], versus marking them as deleted but copying the whole graph each time.

• Not backtracking the flow versus backtracking it.

• A trivial data structure to hold the residual graph versus a more sophisticated one.

• A useful branching heuristic derived internally from the constraint, that prioritizes
branching on values that are known to lead to a solution.

The value network is a graph that represents the constraint and consists of a node for
each variable and value, and an edge from a value to a variable if the value belongs to the
variable’s domain, with some additional nodes and edges. The residual graph is derived
from the value network and is used to gradually build a solution by assigning values to
variables step by step, while it additionally expresses alternative decisions that can be
made, or the ability to retract a choice. The term flow refers to a property of each edge
which marks whether the respective variable and value associated with it are currently
assigned to each other, and finding shortest paths along the residual graph is a way to
choose the edges to provide flow with, so that the total cost will be minimized. These terms
are explained in more detail in Chapter 2.2.2.

Additionally, we study how the constraint can be used in optimization problems, where the
goal is not just to find any solutions lower than a given cost bound, but to minimize a cost
function.

The Symmetric Global Cardinality Constraint algorithm shares a common core with the
Global Cardinality Constraint With Costs, therefore we take the most efficient ideas that
we described for the former and adapt them to the latter as well. Furthermore, we attempt
an optimization mentioned in [14] that partitions edges of the graph to important and unim-
portant, and does not trigger the constraint on the removal of unimportant ones, as they
would not cause any domain pruning.

The rest of the thesis is organized as follows:

1. In Chapter 2 we go through necessary knowledge around constraint programming,

I. Papatsoris 16
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global cardinality constraints, flow theory and constraint solvers, in order to build a
foundation for the reader to be able to comprehend the rest of the chapters.

2. In Chapter 3 we focus on the Global Cardinality Constraint With Costs, and describe
our implementation along with various alternative choices, a specialized branching
heuristic, and we study its application as an optimization problem.

3. In Chapter 4 we discuss the Symmetric Global Cardinality Constraint, and mention
our implementation and different ideas for it.

4. In Chapter 5 we conduct experiments on our constraints with real world and com-
puter generated data, to discover which configuration of them performs best, and
under which conditions they perform better than a decomposition of them.

5. In Chapter 6 we summarize our results and contribution.

I. Papatsoris 17
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2. BACKGROUND

2.1 Constraint Programming

Constraint programming is based on the idea that many interesting and difficult problems
can be expressed declaratively in terms of variables and constraints. The variables range
over a set of values and typically denote alternative decisions to be taken. The constraints
are expressed as relations over subsets of variables and restrict feasible value combina-
tions for the them. A solution is an assignment of variables with values which satisfies all
constraints.

A key difference between the common primitives of imperative programming and con-
straint programming, is that in the latter we express the properties of the solutions that we
are looking for, rather than specifying a sequence of algorithmic steps to execute. This
means that certain problems may be intuitive to model as constraint satisfaction problems
(CSPs), while others could be completely unsuitable for constraint programming. A clas-
sic example that can be well defined as a CSP is the N-Queens problem. In this problem,
the goal is to place N queens on an N ×N chessboard, such that no queen is attacking
another. A possible way of modeling this problem as a CSP is the following:

1. Define N variables, representing a queen on each column.

2. Define the domain of each variable as {1, 2, ..., N}

3. Constrain Xj ̸= Xk for j < k

4. Constrain |j − k| ̸= |Xj −Xk| for j < k

We give an explanation for the steps above:

1. Since we have a variable for each column, it means that by default no queens will
be attacking each other vertically.

2. The value of a variable Xj represents the row on which the queen for the column j

will be placed.

3. Constraining all variables to have different values with each other ensures that no
two queens will ever be placed on the same row.

4. Constraining the queens to not be the same number of columns apart as they are
rows apart, ensures that no queen will ever attack another one diagonally.

Any particular problem can be represented in different ways, and the way we model it can
make a tremendous difference in the size of the solution search space, yielding different
performance results. For instance, a perhaps less optimized representation of N-Queens
could be to have a boolean variable for all N ×N positions on the chessboard, signifying
whether we place a queen on them or not.

I. Papatsoris 18
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Figure 1: A solution to the 8-Queens problem

Constraint programming allows us to find feasible solutions for problems, solutions whose
quality fits a certain criteria, or even ”optimal” solutions. This could be a challenging task
with regular programming techniques, as many of the problems are NP-Hard, meaning
that we are not aware of a performant algorithm to solve them. Notable applications of
constraint programming include crew scheduling, timetable creation, resource manage-
ment, car sequencing, protein structure prediction and many others.

2.1.1 Notation

More formally, we can define the following notation involving around CSPs, which we will
use throughout the thesis to describe algorithms and constraints. The following definitions
are due to [2].

A finite constraint network N is defined as a set of n variables X = {x1, ..., xn}, a set
of current domains D = D(x1), ..., D(xn) where D(xi) is the finite set of possible values
for variable xi, and a set of constraints between variables. We introduce the particular
notation D0 = {D0(x1), ..., D0(xn)} to represent the set of initial domains of N . Indeed,
we consider that any constraint network N can be associated with an initial domain D0

(containing D), on which constraint definitions were stated.

A constraint C on the ordered set of variablesX(C) = (xi1 , ..., xir) is a subset T (C) of the
Cartesian product D0(xi1)× ...×D0(xir) that specifies the allowed combinations of values
for the variables xi1 , ..., xir An element of D0(xi1)× ...×D0(xir) is called a tuple on X(C).
|X(C)| is the arity of C.

A value a for a variable x is often denoted by (x, a). var(C, i) represents the ith variable
of X(C), while index(C, z) is the position of variable x in X(C). τ [k] denotes the kth value
of the tuple τ . D(X) denotes the union of domains of variables of X. #(a, τ) is the number
of occurrences of the value a in the tuple τ .

Let C be a constraint. A tuple τ on X(C) is valid if (x, a) ∈ τ, a ∈ D(x). C is consistent
iff there exists a tuple τ of T (C) which is valid. A value a ∈ D(x) is consistent with C iff

I. Papatsoris 19



Extending upon the Gecode open source toolkit, for developing constraint-based systems and applications

x /∈ X(C) or there exists a valid tuple τ of T (C) with a = [index(C, x)]. A constraint is
arc consistent (or domain consistent) iff ∀xi ∈ X(C), D(xi) ̸= ∅ and ∀a ∈ D(xi), a is
consistent with C.

A bound support on a constraint C is an assignment of all variables in the scope of C
to values between their minimum and maximum values (called lower and upper bound
respectively), such that C is satisfied. A variable-value Xi = v is bounds consistent on C

iff it belongs to a bound support of C. A constraint C is bounds consistent iff the lower
and upper bounds of every variable in its scope are bounds consistent on C. A constraint
is range consistent iff every value in the domain of every variable in the scope of C is
bounds consistent on C.

2.1.2 Filtering

Not all combinations of variables and values necessarily form a solution. Constraints often
attempt to remove inconsistent values, for which they can infer with certainty that they
cannot participate in any solution. It is NP-Hard to decide whether a value is useful for the
whole CSP at once, so normally this filtering is done locally in each constraint separately.

There is a distinction between complete filtering, which prunes all inconsistent values from
variables involved in a constraint, and partial filtering, which removes only some of them.
It is not always clear whether complete or partial filtering is preferred, because there is a
trade-off between the effectiveness of the filtering (how many inconsistent values are re-
moved) versus its efficiency (how long it takes to execute). The methods used to achieve
this filtering depend on the nature of each constraint, and can range from trivial to under-
stand inference, to complex dedicated algorithms.

Complete filtering is also known as arc consistency (or domain consistency). A variable is
arc consistent with another one, if for each possible value assignment to it, there exists at
least one admissible value for the other, according to the constraints that surround them.
A CSP is arc consistent if every variable is arc consistent with each other. Partial filtering
methods can include bounds consistency and range consistency, with the latter being
stronger than bounds consistency, but still weaker than arc consistency.

Consider variablesX and Y with domains {5, 6} and {4, 7} respectively, and the constraint
X < Y . First and foremost, the constraint is consistent, because there is at least one pos-
sible assignment that forms a solution (X = 5, Y = 7). However, not all values individually
are consistent. If we assign X with 5 or 6, there is at least one value in Y for which the
constraint stands (the value 7). But if we assign Y with 4, there are no values in X for
which X < 4, thus 4 is inconsistent and can be removed from the domain of Y . The value
7 for Y is also consistent. So after pruning 4 from Y , we have achieved arc consistency
for this constraint.

Each time a variable is updated due to the filtering invoked by a constraint, all other rele-
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vant constraints to this variable are activated and checked again in order to verify consis-
tency, and to potentially infer more filtering. This process is called constraint propagation,
and is repeated until a fixed point is reached, meaning that no further reasoning can take
place with the current state of the domains of the variables.

2.1.3 Search

Although constraint propagation can verify the consistency of constraints and keep the
CSP up to date by removing inconsistent values, most of the time it is not enough to find
solutions to non trivial problems. Thus we also need to assign values to variables in a sys-
tematic way. We call this procedure search. A naive way to search would be to enumarate
all possible assignments for values to variables and then test against the constraints, to
either declare solutions, or conclude that no more exist by exhausting the search space.
Because such a method has exponential complexity in the best case, we combine it with
constraint propagation, removing inconsistent values from the CSP every time a domain is
altered. As a result, we can detect ”dead ends” early, before trying useless assignments.

We can think of search as a tree structure. It starts with a root node, and it branches from
it using a branching strategy. An example of a simple one is to branch on a variable-value
assignment, by creating two alternatives, one in which a specific variable is assigned to
a specific value, and the alternative in which it is pruned from the domain of the variable.
This procedure continues recursively, and on each step the consistency of the constraints
involving the affected variables are verified, in addition to performing constraint propa-
gation and potentially pruning values. If a failure is detected, the search backtracks and
tries an alternative assignment, otherwise if all variables have been assigned, a solution
is reported and then backtracking occurs to look for alternative solutions.

The choice on which variable to choose to branch on first and which values to prioritize for
them can be impactful. One strategy is the minimum remaining values (MRV), according
to which the variable with the least values is selected, thus the most restricted one. The
intuition is that since this variable is the most likely to cause a failure, and that we would
have to assign it eventually, it’s better to do it sooner than later and prevent pointless
assignments to other variables before it. If we are looking for just one solution and not
all of them, a value selection strategy that can be beneficial is least constraining values
(LCV), which tries to avoid failure by assigning values that allow for maximal flexibility for
the remaining variables, aiming for a branch that is most likely to succeed.

Since every problem has unique characteristics, it is necessary to experiment with different
branching strategies to discover the most performant ones. According to the nature of
the problem, quite often it is possible and advised to use a dedicated branching strategy
specifically adapted to the problem itself, to maximize performance.
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2.1.4 Global Constraints

In the ealier days of constraint programming, research was initially focused in designing
efficient filtering algorithms for fundamenantal constraints that are common and can be
adopted by any problem, like simple value relations (=, ̸=,≤,≥, ...). As time went by, it
became more and more evident that for more complex problems, it can be inconvenient
to express complicated constraints just by combining the basic ones. Aside from ease of
design, it was also observed that domain filtering was limited to the local scope of these
simple constraints, and was unable to examine the whole picture of the problem. Thus
attention started to focus on a new category of constraints, named global constraints.

Global constraints encapsulate the a set of other simpler constraints. We can see an ex-
ample of the driving motivation behind them in the constraint ALLDIFF, which requires all
variables to take a different value from each other. This constraint is equivalent to pair-
wise inequality constraints ( ̸=) between each variable. Consider variables x1, x2, x3 with
domains D(x1) = {a, b}, D(x2) = {a, b}, D(x3) = {a, b, c}. Without the global constraint,
we would achieve the desired effect by constraining x1 ̸= x2, x1 ̸= x3, x2 ̸= x3. Enforcing
arc consistency here would not prune any value, however the arc consistency of the global
constraint ALLDIFF would remove values a and b from x3.

We present a summary of categories and examples of global constraints, drawing infor-
mation from the survey in [3].

We can distinguish global constraints in the following categories:

• Classical Constraints. Common constraints like ALLDIFF, GCC, REGULAR, SEQUENCE,
PATH...

• Weighted Constraints. Constraints that are associated with some form of cost
or weight. A lot of NP-Hard problems are on this category, like COSTGCC, KNAPSACK,
BINPACKING...

• Soft Constraints [4]. They are relaxed versions of classical or weighted constraints.
They often come with an additional cost variable measuring the distance to the full
satisfaction.

• Constraints on Meta-Variables [5]. These are constraints defined on set and graph
variables, instead of classical ones.

• Open Constraints [6]. In this category, the exact variables involved in the constraint
are not known. Instead, we only know variables which could potentially be involved.

For the first two categories, we list the following subcategories of global constraints, along
with some examples.

• Counting Constraints. ALLDIFF, PERMUTATION, global cardinality (GCC), global cardi-
nality with costs (COST-GCC), cardinality matrix constraints (CARD-MATRIX)
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• Balancing Constraints. BALANCE, DEVIATION, SPREAD

• Combination based Constraints. MAX-SAT, OR, AND

• Sequencing Constraints. AMONG, SEQUENCE, generalized sequence GEN-SEQUENCE,
global sequencing constraints (GSC).

• Distane Constraints. INTER-DISTANCE, SUM_INEQ

• Geometric Constraints. DIFF-N

• Summation based Constraints. SUBSET-SUM, KNAPSACK

• Packing Constraints. SYM-ALLDIFF, STRETCH, K-DIFF, number of distinct values
(NVALUE), BIN-PACKING

• Graph based Constraints. CYCLE, PATH, TREE, weighted spanning tree (WST)

• Order based Constraints. LEXICO≤, SORT

2.2 Global Cardinality

The global cardinality constraint (GCC) belongs in the counting category of global con-
straints, and it constrains the number of times every value can be taken by a set of vari-
ables. Specifically, it restricts the frequency of each value to be within a certain range,
which can differ for each one. The ALLDIFF constraint is a specialization of GCC in which the
ranges are [0, 1], thus every value can be used at most once.

For a formal definition, we have the following:

A global cardinality constraint is a constraint C in which each value ai ∈ D(X(C)) is
associated with two positive integers li and ui and

T (C) =
{
τ such that τ is a tuple on X(C) and ∀ai ∈ D(X(C)) : li ≤ #(ai, τ) ≤ ui

}
It is denoted by gcc(X, l, u).

The GCC constraint appears in many scheduling and rostering problems. Wemention some
real world application examples of it.

• Sports scheduling: The problem is introduced in [7]. It involves scheduling games
between n teams over n− 1 weeks, with each week being divided into n/2 periods.
The following constraints must be met:

1. Each team must play against every other team.

2. A team must play exactly once a week.

3. A team must play at most twice in the same period, across the season.

The third constraint is achieved with GCC.

• Car sequencing: The car sequencing problem [8] is to sequence cars on a conveyor
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through a factory. There are a number of optional parts that may be fitted to the
cars, and each optional part has a corresponding machine which fits the part. For
an option i, the machine cannot accept more than pi cars in every qi . Therefore,
in every contiguous subsequence of length qi there must be no more than pi cars
requiring the option. There are a number of different types of car, where each type
has a set of options that it requires, and a fixed number of each type is required in
the sequence. Multiple GCCs are used to enforce these restrictions.

• Equidistant frequency permutation arrays (EFPAs): The EFPA problem [9] is to
find a set (often of maximal size) of code words, such that any pair of codewords
are Hamming distance d apart. Each code word is made up of symbols from the
alphabet {1, ..., q}, with each symbol occurring a fixed number λ of times per code
word. A fourth parameter v is the number of code words in the set. Typically v would
be maximized. Multiple GCCs are utilized to enforce λ occurrences of each symbol.

In GCC, the lower and upper bounds are fixed values. It is worth mentioning that we can
define a generalized version of GCC called the extended global cardinality constraint (EGCC)
in which the cardinality values are not constant, but they appear as variables, being able to
take different values. An example problem of EGCC is the Magic Sequence problem, where
the goal is to find a sequence of given length n such that element i in the sequence is the
number of occurrences of i in the sequence.

2.2.1 Related Work

Since GCC is a fundamenantal constraint which appears in many different real world appli-
cations, naturally several variations of it have been proposed and studied. We start off by
mentioning the state-of-the-art research in the literature for the classic GCC, and after we
list some adaptations.

• GCC Arc Consistency by Régin: In [10], an algorithm based on flow theory is
introduced, running in O(|X(C)|2|D(X)|) and achieving arc consistency in O(δ +

|X(C)| + |D(C)|), where δ is the number of arcs in the value network of the con-
straint (explained more in publication). To check the consistency of the constraint,
it uses Ford-Fulkerson’s algorithm [11] to compute a flow which corresponds to an
assignment to the target variables, satisfying the lower and upper bounds for each
value. Afterwards, Tarjan’s algorithm [12] is used for the search of strongly connected
components, to compute the set of edges that cannot belong to any maximum flow.
These edges correspond to the domain values to be pruned. Ford-Fulkerson’s algo-
rithm time complexity dominates the algorithm.

• GCC Arc Consistency by Quimper: In [13], an algorithm based on graph matching
is presented with complexity O(|X(C)|1.5|D(X)|), improving upon Régin’s one. In
addition, a cardinality variable pruning algorithm is shown for the case of EGCC, which
runs in O(|X(C)|2D(X) + |X(C)|2.66)
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• Survey on GCC and EGCC arc consistency algorithms: In [14], techniques and
implementation optimizations are gathered from the above publications and other lit-
erature, along with some newly proposed ones, and they are combined and bench-
marked together. Régin’s flow based algorithm is upgraded to make use of such
optimizations, achieving 4 times faster performance compared to an unoptimized
version. It is observed that even though Quimper’s algorithm has better complexity,
in practice Régin’s algorithm runs faster thanks to its simplicity.

• GCC Bounds/Range Consistency: In [15], a bounds consistency algorithm is de-
scribed exploiting bipartite graph convexity and running in O(|X(C)| + |D(C)| + t),
where t is the time required to sort the assignment variables by range endpoints. It
is special in the fact that it prunes the cardinality variables in addition to the assign-
ment ones, making in compatible for EGCC. An improved algorithm in [16] which is
specific to the simple GCC without cardinality variables, achieves bounds consistency
in O(|X(C)| + t), by identifying Hall intervals. This algorithm is later used in [17] to
achieve range consistency in O(X(C) + t + N), where N is the number of values
with a null lower bound.

We now mention some global cardinality variations proposed in the literature. We can de-
fine COST-GCC, which is the same as the original global cardinality constraint, but with the
addition that a cost is associated with every variable-value pair assignment. The added
restriction is that the sum of the costs of the variable-value pairs which satisfy the cardi-
nality constraints, should be lower or equal to a given bound. This constraint is proposed
in [2] and solved using flow theory, and is discussed further in Chapter 3.

In [18], the symmetric global cardinality constraint is proposed (SYM-GCC), which is like the
GCC but is defined on set variables. Thus, a set variable can take none, one, or multiple
values from each domain. As an additional restriction to the value cardinalities, for each
variable we restrict its set cardinality to be between a lower and upper bound, potentially
different for each variable. This constraint is approached using flow theory as well. We
look into it more in Chapter 4.

In [19], we can find symmetric global cardinality with costs SYM-COST-GCC, which is the
weighted version of SYM-GCC, associating costs with each variable-value assignment and
restricting the sum of the costs that appear in a solution to an upper bound, similarly to
COST-GCC. Once more, flow theory is used to solve it.

In [20], an alternative method to flow theory utilizing graph matching is discussed, and
different solutions are given to some of the above constraints, like COST-GCC, SYM-GCC and
SYM-COST-GCC. Other global cardinality family constraints can also be found, like symmetric
alldifferent, alldifferent with costs, symmetric alldifferent with costs.

In [6], the concept of open constraints is introduced, which refers to constraints that are not
a priori defined on specific sets of variables, but their variables may be discovered during

I. Papatsoris 25



Extending upon the Gecode open source toolkit, for developing constraint-based systems and applications

the solution process. This problem can arise often in scheduling applications and other
distributed settings. The article deals specifically with open global cardinality constraints,
and the conjunctions of them (in case they are defined on disjoint sets of variables), and
provides a set-domain consistency algorithm, based on flow theory, along with a weaker
propagation algorithm for the case when they not disjoint.

In [21], a constraint called the ordered distribute constraint is described, which restricts
the number of times a value v or any value greater than v is taken by the variables. It is an
extension of the global cardinality constraint, taking into account also the values greater
than v. This constraint can be useful in solving assignment problems, where teams needs
to be balanced in respect to hierarchical skills of the members, or in over-constrained
problems, in which costs represent degrees of violation of constraints. A linear algorithm
that achieves arc consistency is proposed.

In [22], the SAME constraint is extended with GCC-like restrictions. The SAME constraint is
defined among two sets of variables, and it enforces that the multiset of the values as-
signed in the first, is equal to the multiset of the values assigned in the second. This new
constraint adds lower and upper bound restrictions on the occurrences of the values, on
top of the SAME constraint. It can be used to model certain scheduling problems. A flow
based approach is presented for arc consistency, along with a faster bounds consistency
algorithm for a restricted case of it.

2.2.2 Flow Theory

Since flow theory is fundamental for solving GCC constraints and has been used exten-
sively in literature, we present some basic concepts of it, which we will refer to in the later
sections of this thesis as well. The following are taken from [2], which in turn are based on
[23, 24, 25, 26].

A directed graph or digraph G = (X,U) consists of a vertex set X and an arc set U ,
where every arc (u, v) is an ordered pair of distinct vertices. We will denote by X(G) the
vertex set of G and by U(G) the arc set of G. The cost of an arc is a value associated with
the arc.

A path from node v1 to node vk in G is a list of nodes [v1, ..., vk] such that (vi, vi+1) is an arc
for i ∈ [1...k−1]. The path contains node vi for i ∈ [1...k] and arc (vi, vi+1) for i ∈ [1...k−1].
The path is simple if all its nodes are distinct. The path is a cycle if k > 1 and v1 = vk. The
length of a path p, denoted by length(p), is the sum of the costs of the arcs contained in p.
A shortest path from a node s to a node t is a path from s to t whose length is minimum.
A cycle of negative length is called a negative cycle. Let s and t be nodes, there is a
shortest path from s to t if and only if there exists a path from s to t and no path from s to t

contains a negative cycle. If there is a shortest path from s to t, there is one that is simple.

The complexity of the search for shortest paths from a node to every node in a graph
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with m arcs and n nodes depends on the maximal cost γ and on the sign of the costs.
Therefore, we will denoted this complexity by S(m,n, γ) if all the costs are nonnegative;
and Sneg(m,n, γ) otherwise.

Let G be a graph for which each arc (i, j) is associated with three integers lij, uij, and cij,
respectively called the lower bound capacity, the upper bound capacity and the cost
of the arc.

A flow in G is a function f satisfying the following two conditions:

• For any arc (i, j), fij represents the amount of some commodity that can “flow”
through the arc. Such a flow is permitted only in the indicated direction of the arc,
i.e., from i to j. For convenience, we assume fij = 0 if (i, j) /∈ U(G).

• A conservation law is observed at each node: ∀j ∈ X(G) :
∑

i fij =
∑

kfjk. The
cost of a flow f is cost(f) =

∑
(i,j)∈U(G)fijcij.

We will consider three problems of flow theory:

• the feasible flow problem: Does there exist a flow in G that satisfies the capacity
constraint? That is find f such that ∀(i, j) ∈ U(G)lij ≤ fij ≤ uij.

• the problem of the maximum flow for an arc (i, j): Find a feasible flow in G for
which the value of fij is maximum.

• the minimum cost flow problem: If there exists a feasible flow, find a feasible flow
f such that cost(f) is minimum.

Without loss of generality, we will consider that:

• if (i, j) is an arc of G then (j, i) is not an arc of G.

• all boundaries of capacities are nonnegative integers.

Consider, for instance, that all the lower bounds are equal to zero and suppose that we
want to increase the flow value for an arc (i, j). In this case, the flow of zero on all arcs,
called the zero flow, is a feasible flow. Let P be a path from j to i different from (j, i), and
val = min({uij} ∪ {upqs.t.(p, q) ∈ P}). Then we can define the function f on the arcs of G
such that fpq = val if P contains (p, q) or (p, q) = (i, j), and fpq = 0 otherwise. This function
is a flow in G. (The conservation law is obviously satisfied because (i, j) and P form a
cycle.) We have fij > 0; hence it is easy to improve the flow of an arc when all the lower
bounds are zero and when we start from the zero flow. It is, indeed, sufficient to find a path
satisfying the capacity constraint. The main idea of the basic algorithms of flow theory, is
to proceed by successive modifications of flows, that are computed in a graph in which all
the lower bounds are zero and the current flow is the zero flow. This particular graph can
be obtained from any flow and is called the residual graph:

The residual graph for a given flow f , denoted by R(f), is the digraph with the same
node set as in G. The arc set of R(f) is defined as follows: ∀(i, j) ∈ U(G):
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• fij < uij ⇔ (i, j) ∈ U(R(f)) and has cost rcij = cij and upper bound capacity
rij = uij − fij.

• fij > lij ⇔ (j, i) ∈ U(R(f) and has cost rcji = −cij and upper bound capacity
rji = fij − lij.

All the lower bound capacities are equal to 0. Instead of working with the original graph G,
we can work with the residual graph R(f 0) for some f 0. From f ′ a flow in R(f 0), we can
obtain f another flow in G defined by ∀(i, j) ∈ U(G) : fij = f 0

ij + f ′
ij − f ′

ji. And from a
path in R(f 0) we can define a flow f ′ in R(f 0) and so a flow in G:

We will say that f is obtained from f 0 by sending k units of flow along a path P from j to
i if:

• P is a path in R(f 0)− {(j, i)}

• k = min({rij} ∪ {ruvs.t.(u, v) ∈ P})

• f corresponds in R(f 0) to the flow f ′ defined by:

– f ′
pq = k for each arc (p, q) ∈ P ∪ {(i, j)}

– f ′
pq = 0 for all other arcs.

Let f 0 be any feasible flow in G, and (i, j) be an arc of G.

• There is a feasible flow f in G with fij > f 0
ij if and only if there exists a path from j

to i in R(f 0)− {(j, i)}.

• There is a feasible flow f in G with fij < f 0
ij if and only if there exists a path from i

to j in R(f 0)− {(i, j)}.

Maximum Flow Algorithm:With the above, we can construct a maximum flow in an arc
(i, j) by iterative improvement, due to Ford and Fulkerson [11]: Begin with any feasible
flow f 0 and look for a path from j to i in R(f 0)−{(j, i)}. If there is none, f 0 is maximum. If,
on the other hand, we find such a path P , then define f 1 obtained from f 0 by sending flow
along P . Now look for a path from j to i in R(f 1)− {(j, i)} and repeat this process. When
there is no such path for fk, then fk is a maximum flow. A path can be found in O(m), so
a maximum flow of value v in an arc (i, j) can be found from a feasible flow in O(mv).

Feasible Flow Algorithm: For establishing a feasible flow, follow this method which re-
peatedly searches for maximum flows in some arcs:
Start with the zero flow f 0. This flow satisfies the upper bounds. Set f = f 0, and apply the
following process while the flow is not feasible:

1. pick an arc (i, j) such that fij violates the lower bound capacity in G (i.e. fij < lij).

2. Find P a path from j to i in R(f)− {(j, i)}.

3. Obtain f ′ from f by sending flow along P ; set f = f ′ and goto 1)

If, at some point, there is no path for the current flow, then a feasible flow does not exist.
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Otherwise, the obtained flow is feasible.

MinimumCost Flow Problem: The search for a feasible flow with a minimum cost implies
only few modifications in the previous algorithm to ensure that the cost of the feasible
flow will be minimum. In fact, only one aspect of the method is modified; the flow will be
obtained by sending flow along special paths: the shortest ones. That is, the shortest paths
are computed in the residual network by using the residual cost as cost. This algorithm is
called the successive shortest paths algorithm.

Incrementality: Suppose f 0 is a minimum cost flow in G0, and G is the same graph as
G0 except that some capacity boundaries have been tightened (i.e. some lowers bounds
have been increased and some upper bounds have been decreased). f 0 is not necessarily
feasible inG. We can obtain a feasible flow inGwhich is also a minimum cost flow or prove
there is none by applying the following algorithm:
Start with f = f 0 and apply the following process while f is infeasible inG: Pick an arc (i, j)
such that fij violates a bound capacity in G. If fij < lij, then find P a shortest path from j

to i in R(f)− {(j, i}). If fij > uij, then find P a shortest path from i to j in R(f)− {(i, j}).
Obtain f ′ from f by sending flow along P ; set f = f ′. If, at some point, there is no path
for the current flow, then a feasible flow does not exist. Otherwise, the obtained flow is
minimum cost flow.

2.3 Constraint Solvers

Constraint solvers are platforms which provide the necessary environment to successfully
build, benchmark and study CSPs. They are typically packaged as a library to a specific
programming language, and they consist of a toolbox that allows users to define CSPs
declaratively, combining already built in constraints to form more complex ones. Search
engines are implemented within a constraint solver, and the programmer can specify which
configuration they would like to use for their application, through controllable parameters.
They can offer a plethora of different branching and search strategies, which in turn allows
for extensive experimental evaluation of a particular program and benchmarking. Several
other features are common as well, like debugging conveniences, programming new con-
straints and customizations to suit an application’s specific needs.

Constraint solvers originated as an extension of Logic Programming, creating the field of
Constraint Logic Programming (CLP). Taking advantage of the declarative nature of logic
programming, modelling problems with constraints has been intuitive within languages
like Prolog, combined with constraint programming libraries like ECLiPSe [27]. However,
logic programming itself did not apply to a wide audience. It’s an unconventional paradigm,
demanding a different way to think and approach problems compared to procedural pro-
gramming, which can be challenging for beginners to understand and ease into. Thus
later on effort was put into designing constraint solvers for different languages, so that
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constraint programming could become more accessible to a broader audience, and find
itself in more industrial applications and promote research. On this thesis we will focus on
the constraint solver Gecode, as it is the one our work is based on.

2.3.1 Gecode

Gecode is a state-of-the-art free open source environment for developing constraint-based
systems and applications, implemented in C++. It offers a wide range of features and cus-
tomization, allowing the programmer to extend almost every part of it. Its core is optimized
for performance with respect to runtime, memory usage and scalability, in addition to ex-
ploiting multiple cores to allow for parallel search, and it has won multiple benchmarking
awards. Finally, it has a sizeable and loyal user community that contributes to it frequently,
an online group to ask and answer inqueries, and rich and extensive documentation to un-
derstand every part of it.

We take a closer look at some of the features of Gecode. For a complete and detailed
view, please consult its official documentation.

In Gecode, we can create models using variables of types Integer, Boolean, Float, and
Set. It is also possible to program new variable types, at the same efficiency level as the
built-in ones. For each variable type, there exists a package of constraints that we can
use to restrict their domain and design our model. Certain constraints can even allow the
combination of different variable types (for example, Integer and Boolean).

For each constraint, we can define the propagation level that we desire, based on what
are available. That is, we can use value propagation, bound consistency, or domain con-
sistency. Not all constraints offer all the propagation levels, so we consult the relevant
documentation for that. Furthermore, we can program our own constraints. The Gecode
documentation includes a chapter with guidelines about how to build a constraint the cor-
rect way, and optimize it accordingly to avoid pointless propagator execution.

We can choose the desired way to branch on variables and values, from a plethora of
predefined ones, but we can also create our own. This can be done either by providing
a function to branch on variables and a function to choose the value to branch on, or
by programming a completely new brancher from scratch, allowing for deeper control to
achieve more sophisticated and targeted behavior. Gecode is packed by default with all
the common variable-value branching strategies, in addition to including more advanced
ones, like the following:

• Accumulated Failure Count (AFC): The AFC of a variable (also known as weighted
degree) is defined as the sum of the AFCs of all propagators depending on the
variable plus its degree (to give a good initial value if the AFCs of all propagators
are still zero). The AFC of a propagator counts how often the propagator has failed
during search.
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• Action: The action of a variable captures how often its domain has been reduced
during constraint propagation.

• Conflict-History Based Branching (CHB): The CHB of a variable combines how
often its domain has been reduced during constraint propagation with how recently
the variable has been reduced during failure.

In case of a tie during the selection, Gecode allows the programmer not only to specify tie
breaking strategies, but to also manually precise what is considered as a tie.

In some problems, there exist many solutions who are essentially the same because they
are symmetric. Gecode supports Lightweight Dynamic Symmetry Breaking (LDSB [?]),
that is, given a specification of the symmetries, it can avoid visiting symmetric states during
the search, which can result in dramatically smaller search trees and greatly improved
runtime.

A requirement for solution search is that it can return to previous states, because an al-
ternative suggested by a branching may not lead to a solution, or even if a solution has
been found more solutions might be requested. It is vital to have a system in place that
is optimized and efficient at its core, to be able to traverse through the solution space
effectively. Gecode employs a technique called hybrid recomputation, along with an op-
timization named adaptive recomputation, to not slow down in situations where we are
stuck in a failed subtree because of an incorrect choice higher up in the search tree.

Gecode supports by default 3 search engines: depth-first left-most (DFS), limited discrep-
ancy (LDS), branch-and-bound (BAB). DFS and BAB support parallel execution, to ex-
plore different parts of the search tree simultaneously. Every search engine can be con-
figured by an extensive selection of parameters, and fully custom search engines can be
programmed from scratch as well.

TheGraphical Interactive Search Tool (Gist), provides user-controlled search, search tree
visualization, and inspection of arbitrary nodes in the search tree. Gist can be helpful when
experimenting with different branching strategies, with different models for the same prob
lem, or with propagation strength (for instance bounds versus domain propagation). It
gives direct feedback on how the search tree looks like, if the branching heuristic works,
or where propagation is weaker than expected.

More and more possibilities exist, such as restart-based search, portfolio search, no-
goods, tracing, CPProfiler support. Further information can be found on the Gecode doc-
umentation itself.

I. Papatsoris 31



Extending upon the Gecode open source toolkit, for developing constraint-based systems and applications

3. GLOBAL CARDINALITY WITH COSTS

The global cardinality constraint with costs (costgcc) restricts the minimum and maximum
number of occurrences of each value just like the original global cardinality, with the addi-
tion of a cost associated with each variable-value assignment, and the constraint that the
sum of the assigned costs should be less or equal to a given cost upper bound.

Costgcc can arise in scheduling applications. Consider an example derived from a real
problem given in [28]. We need to schedule managers for a directory-assistance center,
with 5 activities and 7 people over 7 days. Let’s study only one particular day: a person
has to perform an activity, and there can be a minimum and maximum number of times
that this activity can be performed in general. Each person might have the technical skills
to perform a different set of activities. This constraint can be expressed with a regular gcc.
Now, if we were to include a preference value for each person-activity pair, and say that
we would like the total preference value of everybody to be less than an upper bound in
order to improve worker satisfaction, we can use costgcc. Instead of preference, the costs
could also signify how unsuitable each person is for a particular activity. People with low
cost are more suitable than those with high cost, and so we would like to bound the total
value of unsuitability.

A more complex industrial problem where costgcc could be used is Continuous Casting
Steel Production with Electricity Bill Minimization, as described in [29].

More formally, we define a cost function on a variable set X as a function which as-
sociates with each value (x, a), x ∈ X and a ∈ D(x) an integer denoted by cost(x, a). A
global cardinality constraint with costs is a constraint C associated with cost a cost
function on X(C), an integer H and in which each value ai ∈ D(X(C)) is associated with
two positive integers li and ui

T (C) =
{
τ such that τ is a tuple on X(C) and ∀ai ∈ D(X(C)) : li ≤ #(ai, τ) ≤ ui} and∑|X(C)|

i=1 cost(var(C, i), τ [i]) ≤ H
}

The code developed for this constraint, along with a usage example for the experiments
conducted on Chapter 5.1.1 can be found in the Github repository in [30] under the branch
name costgcc, in the subdirectory gecode/int/cost-gcc.

3.1 Modeling With Gecode

Costgcc can be decomposed into the conjunction of a gcc and a sum constraint. Gecode
offers the original gcc through the constraint count. Consider X = {X1, ..., Xn} to be the
set of variables involved in costgcc, D = {D1, ..., Dm} to be the set of different possible
values, and C to be an integer array of n rows and m columns, with each element Cij

holding a cost value associated with assigning variable Xi with value Dj. We can model
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the sum part in the following way:

1. Define B as a boolean variable array of n rows and m columns.

2. Constrain each element Bij of B to be true iff Xi = Dj, false otherwise.

3. Use linear constraint to restrict that the sum of each element of C multiplied by the
respective element of B, will be less or equal to the given cost upper bound.

This decomposition canmiss pruning some inconsistent values, as it cannot see the global
picture involving the sum, and Gecode does not include costgcc, thus the motivation of
this thesis for choosing to implement it.

3.2 Constraint Usage

The costgcc we have implemented is

countCosts(home, X, D, L, U, C, H, B, P)

as follows:

• home: the current Gecode home space. Mandatory argument for all Gecode con-
straints.

• X: array of the variables to constrain (type IntVarArgs).

• D: array of all the different possible domain values (type IntArgs).

• L: array containing the lower bound for each value in D (type IntArgs).

• U: array containing the upper bound for each value in D (type IntArgs).

• C: array containing the cost associated with each variable-value assignment (type
IntArgs). Element C[i × |D| + j] corresponds to the cost of assigning variable X[i]

with value D[j].

• H: cost upper bound. Is of type IntVar and its maximum value is regarded as the
cost upper bound.

• B: Controls whether to use the custom branching technique described in 3.5 or not. Is
of type BestBranch *, and in case we don’t want to use it, it should be NULL. Optional
argument, default value is NULL.

• P: optional argument. Specifies propagation level, accepts IPL_DOM for arc consis-
tency or IPL_VAL for just checking if the constraint holds, but without pruning any
values. Optional argument, default value is IPL_DOM.

The cost upper bound is given in the form of a Gecode variable, to be able to tighten it in
case we use a Branch and Bound method to solve an optimization problem. There is no
inference on the cost variable, each time only its maximum value is taken as the cost sum
bound.
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Using the argument B for the custom branching described in Chapter 3.5 is highly rec-
ommended, as we will show in Chapter 5 that it dramatically improves performance.

BestBranch is a class that implements a Local Object Handle. This is Gecode’s way to
share data structures between propagators and branchers. This class serves as the link
between them, as it is written by the propagator and read by the brancher, to make a smart
branching decision. More information can be found on the Managing Memory section of
the Programming Propagators chapter in the Gecode documentation.

In addition to the BestBranch class, we also need to implement a custom brancher, which
will use this information and branch accordingly. For example code of this class and the
custom brancher, see Figures 12 and 13 respectively in the Annex.

An exception is thrown if one of the following conditions involved around the arguments is
not met:

• X should not contain duplicate variables and should be of at least size 1.

• D should not contain duplicates.

• D should include all the values from the domains of the variables in X.

• L and U arrays should be the same size as D.

• Bounds in L and U should be non-negative.

• Each lower bound L[i] should be smaller or equal to the respective upper bound U [i].

• C should be of size |X| × |D|.

There is no restriction on the sign of the costs and the cost upper bound. Cost values C[ij]

for which the value D[j] does not belong to the domain of variable X[i] are ignored.

3.3 Algorithm

The base algorithm that we implement proposed by Régin [2] is based on network flows.
We first establish a foundation by studying the simple gcc without costs.

3.3.1 Global Cardinality Constraint

Given C = gcc(X, l, u) be a gcc; we define the value network of C to be the directed
graph N(C) with a lower bound and upper bound capacity on each edge, as follows:

• for each variable v and value u that belongs to its domain, add an edge (u, v) with
luv = 0 and uuv = 1.

• add a node s and an edge from s to each value. For such an edge (s, ai) : lsai = li,
usai = ui.

• add a node t and an edge from each variable to t. For such an edge (x, t) : lxt = 1,
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uxt = 1.

• add an edge (t, s) with lts = uts = |X(C)|.

To prove feasibility for gcc, we need to find a feasible flow in N(C). A feasible flow corre-
sponds to a legal solution which consists of the variable-value assignments that map to
the edges (u, v) that end up having flow through them. The intuition behind this connection
between a feasible flow in the value network and a legal solution to the constraint is the
following:

• All variables will be instantiated to exactly one value, to satisfy the lower and upper
bounds of 1 of the (v, t) edges.

• A value may or may not be assigned to a variable of its domain, thus the lower bound
of 0 and upper bound of 1 for (u, v).

• The amount of flow through the (s, u) edges signifies the number of occurrences
of said value u in the solution, and thus it will respect the corresponding lower and
upper bounds specified by gcc for this value.

Let’s take a look at an example. Consider the following variables with their respective
domain values:

peter = {M,D}

paul = {M,D}

mary = {M,D}

john = {M,D}

bob = {N}

mike = {B}

julia = {B,O}

and a GCC that restricts the occurences of each value as follows:

lM = 1 uM = 2

lD = 1 uD = 2

lN = 1 uN = 1

lB = 0 uB = 2

lO = 0 uO = 2

In Figure 2 we see a variable-value network for this particular instance, taken from [2], and
with a solution already formed on it. Edge M → peter has flow because variable peter is
assigned to valueM . According to the flow conservation law, the incoming flow amount of
a node should be equal to its outgoing amount, so the edge peter → T also has flow. The
combination of the flow conservation law and the added restriction that outgoing edges
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from variable nodes should have a flow amount of exactly 1, ensures that each variable
will be assigned to exactly one value. Furthermore, the flow on edge S → M is equal to
the number of occurences of value M in the solution, in this case 2, since M is assigned
to peter and paul. The flow restriction on the incoming edges of value nodes imposes the
value occurence limits as defined by GCC, in this case requiring value M to appear at
least once and at most twice in a solution.

Figure 2: Example of a GCC Variable-Value network

In the example above we have an already established feasible flow, that corresponds
to a solution. To compute this flow, we follow the method described in Chapter 2.2.2. In
particular, we start with the graph shown above but without any flow on the edges. We
select an edge that violates its flow restrictions, say S → M and we want to send flow to
it. We work on the residual graph, which is initially identical to the variable-value network.
In order to push flow into this edge, we need to find a path from M to S and send flow
along it, to abide with the flow conservation law among the nodes of the graph. Therefore
we push flow along the path M → peter → T → S → M , which ”assigns” M to peter.

The residual graph is now updated to account for this flow change, according to the rules
in Chapter 2.2.2, as follows:

• The edge M → peter is removed (since an already assigned variable-value pair
cannot be assigned to itself), and a mirror edge peter → M is introduced, to allow
changing the assigned value of peter.
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• The edge S → M still exists to permit another assignment of value M to a variable,
because its flow is equal to 1 but the upper limit is 2. A mirror edge M → S is not
added at this point, because we cannot remove flow from this edge, since its lower
flow bound is now equal to its current flow (so removing it would violate the lower
bound that we just fixed). However, if in the future the flow was to be increased to 2,
then we would include the mirror edge, because it would be legal to take it back to
1.

• The edge peter → T is removed, because peter has been assigned to a value, and
therefore we don’t want to undo this operation, as we need all variables to have a
value. But varible peter can still swap its value with another one, and that is why the
mirror edge peter → M has been included previously.

The process repeats until there are no remaining edge flow bound violations, at which
point GCC is consistent.

3.3.2 Global Cardinality Constraint With Costs

For the case of costgcc, instead of simply finding a feasible flow, we need to compute
a minimum cost flow with cost less than or equal to the cost upper bound. The main
difference is that now we care particularly about shortest paths when sending flow, instead
of any paths. If we denote m as the number of edges in N(C), n the number of variables,
d the number of values, and γ the greatest cost involved, then finding a min cost flow has
complexity O(nS(m,n+d, γ)). We remind that S is the complexity of finding shortest paths
from a node to all other nodes in a graph, as declared in Chapter 2.2.2.

Furthermore, in practice the consistency of a constraint is checked multiple times, as do-
mains are shortened during search. In this case, there is no need to do all the work from
scratch again, as we can repair the most recent flow to account for these domain changes,
by using the incremental algorithm also presented in Chapter 2.2.2. The complexity in this
case becomes O(kS(m,n+ d, γ)), where k is the number of values that got pruned since
the last run of the algorithm. This is the theoretical bound mentioned in the publication,
but in our implementation which we will describe later on, k is limited to the number of
values which got pruned and at the same time belonged in the most recent min cost flow,
thus requiring the flow to be repaired to exclude them. Values that got pruned but didn’t
participate in the flow, do not result in needing to do a successive shortest paths run for
them.

Let C be a consistent gcc and f be a feasible flow in N(C). A value a of a variable x

is not consistent with C if and only if fax = 0 and a and x do not belong in the same
strongly connected component in R(f). The intuition here is that in this case there is no
cycle containing them both, which means there is no way to ever send flow through the
arc (a, x). Thus, arc consistency for gcc can be achieved in O(m + n + d) by computing
the strongly connected components of the residual graph.
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Consider C = costgcc(X, l, u, cost,H) is a consistent costgcc and that f is a minimum cost
flow in N(C). A value a of a variable y is not consistent with C if and only if fay = 0 and
dR(f)−{(y,a)}(y, a) > H− cost(f)−rcay, where dR(f)−{(y,a)}(y, a) is the shortest path distance
from y to a in the residual graph without taking into account a (y, a) edge, and rcay is the
cost of (a, y) in the residual graph. The idea is that now knowing whether there is a cycle
containing a particular arc is not enough. We need to find a cycle with a length greater
than a given value, because costs are involved and the upper bound must be satisfied.

We care about finding shortest path distances, so arc consistency for costgcc can be
achieved in O(|∆|S(m,n + d, γ)), where ∆ is the set of values b for which fsb > 0. While
this is the main idea, some little optimizations can be applied to take advantage of the
structure of the residual graph and save computations , which are explained in more detail
in [2].

3.4 Implementation Details and Optimizations

Even though the publication of Régin is complete in regards to the algorithm presentation
from a theoretical scope and offers some optimizations, there is still room for improvement
and experimentation when we translate the algorithm to an actual program. In this section,
we go through several alternative implementations that we experimented with, and we
evaluate them to find the most performant one. While we do not present benchmarks for
each one, we describe our findings and give a justification for the performance of them.

3.4.1 Basic Implementation

We start off with a simple implementation, which is not the most efficient one as we will
show later on in this chapter, but it is a solid foundation. As soon as the constraint is posted,
the value network is built, along with the residual graph. Both of these graphs are internally
represented as a vector of vectors, to hold the nodes and for each node to hold its edge
destination nodes, along with extra information like its lower and upper bounds and flow
value. A first minimum cost flow is established by looking for lower bound violations and
repairing them, sending flow along the way, and then arc consistency is applied.

As values get pruned from the variables, either due to reasoning of other constraints,
or directly from branching choices of the search, costgcc is also notified and we check
whether we need to verify its consistency, by utilizing Gecode’s Advisors feature. The
constraint is scheduled for propagation only in the case of the pruning of a variable-value
pair that participates in the current min cost flow. In that case, we verify consistency by
repairing the min cost flow, and then re-apply arc consistency. If the pruned variable-value
did not belong in the current min cost flow, then we know for sure that the constraint is
consistent, and we skip this procedure. Of course, since we don’t apply arc consistency
on every opportunity, we might detect some inconsistent values later on in the search tree,
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but this is a trade-off we are willing to make for the sake of execution time; the propagator
is expensive and if we attempt to perform arc consistency on each step, we will easily
observe that performance starts to deteriorate significantly.

Within the advisor, when we are notified of a domain update, Gecode provides us with the
variable that got affected, but we are not given exact information about the value(s) that
got pruned. Which means that to discover it, we need to iterate through the current domain
of the variable and compare it with the internal state of the propagator. This is done in a
fast way by holding a varToVals structure, which is an array of hash tables, mapping each
variable to its domain. This structure is essentially the inverse of the value network, and
is needed for fast lookups.

As variable-value pairs are pruned, instead of deleting the corresponding edges of the
value network, we maintain them but lower their upper bounds to 0. If the upper bound
of an edge which has flow becomes 0, then we need to repair the flow, as it is no longer
feasible, so we schedule the propagator for execution. If not, there is no need to schedule.
We push the edges that got updated in a vector called updatedEdges.

When the propagator is executed, we update the residual graph taking into account only
the changes that happened in updatedEdges, and we repair the upper bound violation on
them, removing flow and transferring it to other edges, according to the min cost flow
algorithm. If we manage to find a new feasible min cost flow, we clear the updatedEdges. If
at any point either the successive shortest paths method fails because there is no path that
can transfer the flow, or because the total cost exceeds the upper limit, then the constraint
reports failure.

Each time either a solution or failure is reported, the search tree is backtracked. To be able
to revert back to previous states, Gecode copies the propagator state on each branching.
In our case the graph state is copied, including the upper and lower bounds and flow, along
with the residual graph. There are several helper data structures that exist throughout the
lifetime of the search that do not need to be copied, like the following:

• valToNode: map domain values to node ids on the graph.We don’t need a varToNode,
because by convention we place the variables at the beginning of the nodes array,
so the nth variable corresponds to the nth position.

• nodeToVal: map node ids to domain values.

Gecode does not provide a way for the propagator to choose to not copy some data struc-
tures. An initial approach to solve this is to place these structures on the heap, in the copy
constructor to copy just the pointer to them, and to never delete them. This method, while
it may seem efficient, is not acceptable because it suffers from a memory leak; there is
no way to know when the last reference to them will become inaccessible, to finally delete
them. A workaround is to upgrade to smart pointers, specifically shared_ptr. This way
reference counting is done automatically, and there is no leaked memory.

I. Papatsoris 39



Extending upon the Gecode open source toolkit, for developing constraint-based systems and applications

Since the propagator is relatively expensive to run, we define its ”cost” as high, to tell
to the Gecode scheduler to pass priority to cheaper propagators first, before executing
costgcc. In particular we use PropCost::cubic with parameter PropCost::HI. Assume that
the propagator is notified for a change in the domain of a variable x, it finds out that a value
a got pruned, and inserts the edge (a, x) in updatedEdges and schedules the propagator. It
is not necessary that it will be executed right away, as it is possible that another propagator
might take precedence, and prune another value(s), say value b. In this case, costgcc will
be notified again about this new change, and it will try to find which values have changed.
If this change happened to be again on the same variable x as before, then it will identify
both a and b as changed values, and it will insert the edge (a, x) again in updatedEdges. It
means that it can contain duplicates, and we need to be cautious to not attempt to repair
the flow or remove an edge that has already been removed. While we could use a set
data structure instead of an array to ensure unique content, it would add more overhead
than gain. It is cheaper to use a simple vector and just ignore an entry if we have already
processed it before.

3.4.2 Improving Shortest Path Search

Regarding finding shortest paths on the residual graph for the min cost flow algorithm,
Régin suggests Dijkstra’s algorithm [31], as it offers a great complexity of O((V +E)logV )

when implemented with a binary heap as a priority queue, where V is the number of nodes
and E the number of edges in the graph.

But Dijkstra’s algorithmworks only in the presence of positive costs, and the residual graph
can contain negative costs. To overcome this obstacle, the costs are transformed using
the reduced costs method, as described in [2].

If instead we use Bellman-Ford algorithm [32] which can operate with negative costs too,
we do not need to maintain the reduced costs. In its original form it runs in O(V × E)

time, but we can upgrade to an improvement called the Shortest Path Faster Algorithm
[33], which although has the same complexity, in practice it can reduce the number of
computations and terminate much earlier. We have found that this approach is faster than
Dijkstra and reduced costs.

Note that we make this switch only for the successive shortest paths algorithm to check
consistency, and not in the arc consistency. For the arc consistency, we first calculate the
reduced costs on the spot by finding the shortest paths from node t to all other nodes in
the residual graph using Shortest Path Faster Algorithm. This allows us to use Dijkstra’s
algorithm for the shortest path searches required by the arc consistency algorithm, which
proves to be efficent for several reasons. First of all, in that part of the algorithm we care
about shortest paths to a specific set of nodes, and not to all. In this case Dijkstra can
terminate early if it encounters all of them, as opposed to Shortest Path Faster Algorithm,
which needs to do more iterations, since as soon as it finds a cost for a path to a node,
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there is no guarantee that it will not find a path of cheaper cost later on. Moreover, since
with Dijkstra the costs are non-negative, and it always chooses the edge with the cheaper
cost to advance to next, we can compare this cost with the global cost upper bound, and if
we exceed it then we can terminate early, as all the edges after that point will also exceed
it. These Dijkstra optimizations are mentioned in Régin’s publication.

Although Régin points to a Fibonacci heap as the priority queue for Dijkstra’s algorithm for
slightly better complexity, we did not experiment with that, as it is common for this version
to run slower in practice.

In addition, two further upgrades [34, 35] to the Shortest Path Faster Algorithm exist that
can reduce the worst case number of iterations even more. Their main idea is to partition
the edges into two sets and to traverse them in an order that minimizes the number of
iterations. The bottleneck here is the overhead of creating and maintaining the partition,
since the residual graph changes on each call to the propagator. They were attempted
with two different implementation approaches, but they were proven to be significantly
less performant.

3.4.3 Edge Deletion and Backtracking Without Flow

On this approach, instead of altering the upper bounds of edges to mark that we don’t
need them anymore, we now delete them completely from the graph. A key point of im-
provement here is that we also optimize the backtracking scheme for the graph, by using
a technique described in [14]. According to it, each node on the graph consists of the
following structure, which we will name BtVector:

• list: a vector holding its adjacent nodes, along with any additional data like edge
bounds and flow value.

• valToPos: a hash table mapping adjacent node ids to their position in list.

• listSize: the current size of the list.

list and valToPos are backtrack stable, which means that we do not copy them on each
branch, instead we always use their most recent version. The only component that needs
to be backtracked is listSize. Initially, list holds all the neighbor nodes of a particular
node. As an edge gets deleted, we don’t remove it from list, but instead we swap it with
the last element (also update valToPos to match this change), and we decrement listSize
by one.When backtracking occurs, the old value of listSize is restored, and the previously
deleted edges are found again at the end of the array.

The advantage of this method is that we do not need to copy the entire graph on each
branch, insteadwe only copy one integer. Additionally, valToPos offersO(1) element lookup
and access. This method works because we only remove values, we never add new ones,
except when backtracking. This data structure is also used for the varToVals field of the
graph. As mentioned previously, this structure is the inverse of the graph, and is needed
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to be able to efficiently compare the propagator’s internal state with the latest domain
changes of a variable.

In order to not backtrack list and valToPos, we place them on the heap using shared_ptr,
as mentioned in Chapter 3.4.1. But we have a BtVector structure for each node of the
graph, and another for each variable node of the graph (for varToVals), so an identical
amount of smart pointers. We notice that this becomes expensive and contributes to a no-
ticeable performance overhead. This is caused because shared_ptr internally implements
reference counting and has atomic operations, in order to be thread safe. We remove this
overhead by taking all the content that does not need to be backtracked and wrapping it
within a single smart pointer. This means that we remove the listSize field that belongs
to BtVector and place it externally, so that it will be backtracked. Eventually, we end up
with a nodeListSize array of size equal to the number of nodes, and a varToValsSize array
of size equal to the number of variable nodes.

A crucial point of interest here is that we do not backtrack the flow. The flow values are
tied to the edges in list, and so each time we hold the most recent flow. This has some
important implications.

First of all, when the propagator is posted, we will achieve a minimum cost flow, and as
values get pruned, we will also repair it if necessary and remain on a flow of minimum
cost. But when we backtrack, some edges that have been previously removed will come
back, which means that the most recent flow is not necessarily minimum anymore, it is
possible that those fresh edges can be used to lower it further. In the case that it is no
longer minimum, the residual graph will contain cycles of negative cost, meaning that if
we do not take special care, the Shortest Path Faster Algorithm will be stuck in an infinite
loop, always finding paths of lower and lower cost, until minus infinity.

We upgrade the Shortest Path Faster Algorithm to be able to identify negative cost loops.
The way to achieve this is by counting the length of the path to each node. Without cycles,
the maximum length would be equal to the number of all the nodes in the graph, so if
for a node we exceed this, it means that it has to be contained within a cycle. When the
propagator is executed (either after some values have been pruned or after backtracking,
Gecode cannot provide this distinction to the propagator), we check for cycles. To make
sure the graph is connected and that we will not miss a cycle, when the very first min cost
flow is established, we include the residual edges (t, v) for each variable v, so that later
we can look for cycles starting from the t node, and this way we will cover all the other
nodes (by strict definition of the residual graph in chapter 2.2.2, these residual edges would
normally not be included, because their flow and lower and upper bounds are all equal to
1). This inclusion does not have any side effects, as there are not any inbound nodes to t.

If a cycle is found we send flow through it, and we repeat the process, looking for more
cycles and sending flow through them, until there are no more. At this point we know we
have established a flow of minimum cost, so it is safe to proceed normally and iterate
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through updatedEdges and repair the flow along any edges that have been marked for
deletion. A point to remember is that it is possible that the cycle repair algorithm has
already removed flow from an edge which has been marked for deletion. To take this
case into account, we need to check if there is still flow in a particular edge that we are
processing, and if not we must skip repairing the flow for it and delete it right away.

Furthermore, we cannot backtrack the residual graph anymore. The reason for this is
that it depends on the flow, and the flow is not backtracked, so if we backtracked only
the residual graph then they would not be synchronized. Instead, we opt to build it from
scratch every time the propagator is executed, just before we check for negative cycles.
Note that we build it only during actual execution, and not at the moment that we identify
that some values have been pruned and schedule the propagator, to save computational
time. In addition, it is not possible to adapt the backtracking structure that we used for the
graph edges, to be able to handle the residual graph too, because in the residual’s case,
edges can also be added, instead of only removed. The efficiency and elegance of that
structure are based on the fact that it is restricted to deletions.

Finally, during the successive shortest paths, when we find a path and want to send flow
to it, we need make sure to first check if the total flow cost would exceed the upper bound,
and if not, to not send it and to fail. Because if we were to first change the flow and then
check the cost restriction, if it was false then we would backtrack with an infeasible flow.

Although we need to do extra work at the start of each iteration to look for cycles to re-
establish the optimality of the flow, we found out that this implementation is significantly
faster than the base one, even when the base uses Faster Shortest Path Algorithm instead
of Dijkstra’s.

3.4.4 Edge Deletion and Backtracking With Flow

While the implementation described in Chapter 3.4.3 is the best so far, it raises the follow-
ing question: is there a way to always land on a minimum cost flow when backtracking, so
as to skip the overhead of the search for negative cost cycles each time? We answer this
by experimenting with another implementation which is based on the previous one, with
the modification that we now save the flow and backtrack it.

We hold a separate hash table structure whichmaps value nodes to sets of variable nodes,
since flow in the value network will always head from value nodes to variable ones. A
variable node v is included in the set of a value node u if fuv = 1. And to know the flow
value for (s, v) edges, we only need to query the size of the set that maps to value node
v, this way we hold minimal information.

Even though with this choice of data structures we have O(1) lookup for the flow value of
an edge, it turns out that the cost of copying it during branching outweighs the benefit of
skipping cycle detection, and actually runs even slower in practice.
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3.4.5 Edge Deletion and Backtracking With Flow and Reduced Costs

The implementation in Chapter 3.4.3 had the property that on backtracking, the residual
graph and the flow were not synchronized and we would have to rebuild the residual
from scratch, since we could not backtrack it, which prohibited us from trying a reduced
costs Dijkstra approach, because we would have no way to efficiently save and restore
the costs. But in Chapter 3.4.4 where we now backtrack the flow, it means that we can
also backtrack the residual graph and have them synchronized, and in turn the reduced
costs too. However, this approach proves to be inefficient, as it is slower than all other
alternatives, except for the base initial implementation of Chapter 3.4.1.

3.4.6 Residual Graph Structure

We take the fastest implementation so far, which is the one in Chapter 3.4.3, and we
experiment with a more sophisticated data structure for the residual graph. Until now, it
has been represented as a simple vector of vectors. For each node, we had an array that
held the residual edges of it. While this is good enough for iterating the edges, searching
for a particular edge and deleting an edge takes O(α), where α is the number of edges of
a particular node. For sparse graphs this should not be a problem, but for dense ones it
could be a bottleneck.

We design a structure that achieves O(1) for lookup, addition, deletion and clearing, and
the previous O(α) for iteration. The structure is a n × n matrix, where n is the number
of nodes in the graph. In reality it is implemented in a single dimension for good spatial
locality, but we will refer to it as two-dimensional here for simplicity.

Element at row i and column j represents an edge from node i to node j in the residual
graph. We care to know if this edge actually exists, or if it has been pruned (or never ex-
isted). While we could use a boolean for that, instead we use an integer variable active.
The residual graph maintains integer variable activeFlag which is a number used to iden-
tify active edges. For an edge, if active == activeFlag then it is active, otherwise it is not.
This approach allows us to clear the graph simply by incrementing activeFlag, thus de-
activating all edges in O(1). For adding and removing edges, we make active equal to
activeFlag or decrement it respectively.

While the search and retrieval of a particular edge takes O(1), we would also like to be
able to iterate all the neighbors of a particular node, without taking extra steps. For each
row i, we hold start and end, which indicate the array position of the first and last outgoing
edges from i. When adding an edge, we go directly to its last edge, and add it at the end.
Each edge for row i also includes next and prev variables, which point to the next and
previous edge of it respectively. This way all the edges are linked and we can iterate them
without taking extra steps, and we also know the start and end of this chain list. During
addition and deletion, all these fields are updated accordingly to maintain the chain.
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Evaluating this structure through experiments, we find out that it is of neutral impact on
sparse graphs. On an instance of 100 variables and 100 values, resulting in a complete
graph of 10000 nodes, we start to see a 7% improvement in the number of solutions
reported over a time limit of 5 minutes. Increasing the variables to 1000, there is a 5%
deterioration. Increasing both the variables and values to 1000, thus having a graph of
1 million nodes, we notice a 41% decrease in the number of solutions. In this instance,
memory consumption is 335MB compared to 260MB with simple vectors.

Even though on first glance this approach can seem to benefit us when running on dense
graphs, the graph can easily grow too large, as the memory consumption is O(n2). We
speculate that performance starts to drop because of the unreasonable memory usage,
resulting in more page faults.

We can improve the memory consumption and tighten the array further. We know for sure
that there are some bounds for specific edges, for example:

• S node can only point to value nodes.

• T node can only point to variable nodes and S.

• Variable nodes can only point to value nodes in their domain and to T node.

• Value nodes can only point to variable nodes if the value belongs to the respective
variable domain.

Taking these into account, we do not need to hold the whole n× n array. With some extra
logic, we can carefully minimize the amount of useless stored information. However, we
did not attempt this memory optimization, as we thought that the potential gain did not
seem to be strong enough to justify the development time. In fact, eventually we opted in
to use just the initial vector of vectors implementation, for the sake of simplicity, but also
better performance on large graphs.

3.5 Custom Branching Heuristic

In the practical improvements section of the original paper by Régin, the use of the Max
Regret branching heuristic is suggested. The regret of a variable is defined as the cost
distance between its best and second best assignments. The variable with the maximum
regret is chosen. The idea is that if we do not choose this variable and if this variable is
instantiated with a value different from the one leading to the best assignment, we will
have to pay at least the value of the regret.

Because in the arc consistency algorithmwe calculate shortest paths from each variable to
every other possible value in its domain, we are able to calculate the precise regret values,
as opposed to the common case in other problems, where we simply approximate them,
thus the reason why this heuristic was proposed. However, it is not practical. Assume
that we branch on a variable of maximum regret. This branching might cause the regret
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values of the other variables to change, but because our propagator is not necessarily
executed right away on a domain change, we cannot update the regret values, because
they are updated as part of the arc consistency algorithm. So the next choices based
on max regret will not necessarily be correct. We also experimented with ordering our
propagator to always perform arc consistency, regardless of if we know that it’s consistent,
in order to check if the max regret heuristic could provide a good enough gain to outweigh
the overhead induced by this modification, but it was not the case.

While the Max Regret heuristic described by Régin concerns choosing which variable to
branch on next, instead we propose and implement a different one that determines which
value to choose. Our heuristic is lightweight, does not depend on arc consistency, and it
proves to dramatically reduce the number of failed search nodes, and for most cases, to
improve running time by a large factor.

The costgcc finds all feasible solutions that satisfy the capacity and demand restrictions
for the values, that have a cost lower or equal to a given bound. However, one important
property of the algorithm is that internally it will always compute a min cost flow, meaning
that every time it checks for feasibility, it will find an assignment of minimum cost. We can
forward this information to the brancher and use it as a heuristic, to prioritize branching on
values that are already known to form a solution.

Since this is an interesting property, for the remainder of this chapter we make an ob-
servation about the order that solutions are reported when it comes to their optimality by
using this heuristic, and we make a distinction between when the constraint is used alone,
and when there are more constraints interfering on the same variable set.

3.5.1 Order of solutions: costgcc on its own

When the constraint is first posted, we naturally compute a min cost flow to check for
feasibility. During the search, we branch according to the heuristic, so we go directly to
a solution of optimal cost. After we report it, when we branch on an alternative choice
and thus we prune a value, the constraint is re-checked for feasibility, and so another min
cost flow is computed. Our heuristic is updated with the new optimal solution. The search
subtree below that alternative will therefore lead straight to another optimal solution.

As we traverse down a search tree we are removing values, so the costs of solutions found
down a subtree will be equal or higher to the parent ones. When we return to the root node
to try an alternative choice and thus form a different subtree, the same will occur. However,
we do not have any relation between the costs of two sibling subtrees, which means that if
we look for multiple solutions using this branching strategy, they will not necessarily appear
with same or increasing cost compared to the costs of solutions reported previously from
a sibling subtree. This is because while we do make sure to choose the values to branch
on for each variable to lead to a solution of optimal cost, we do not have any logic for
prioritizing which variables to choose first for branching.
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In the case of costgcc alone, the first solution that is reported is guaranteed to be of optimal
cost, which means that if we use costgcc with our proposed branching strategy and ask
Gecode for exactly one solution, we will receive one with the lowest possible cost, and not
just one with cost lower than the upper bound provided.

3.5.2 Order of solutions: costgcc in conjunction with other constraints

Assume that we have found amin cost flow and search has assigned some variables to the
respective values that follow this min cost flow, but not all yet. If at this moment another
constraint causes the pruning of a value which is used by our min cost flow (and we
haven’t branched on it yet), then the min cost flow will change, to account for the removal
of that value, and so the values on which we will branch next will also be updated. But
in this case, the new min cost flow will be optimal only for the subproblem in which some
variables have already been assigned to some specific values, but not necessarily for the
original problem. So it is possible that the pruning of a value from an external constraint
will lead us first to a more costly solution than the optimal one. Nevertheless, of course
if we look for all solutions and not just one, we will receive them all, and the branching
heuristic will still minimize failed search nodes and be effective.

3.6 Interest in Optimization Problems

In the previous section we described a branching strategy that not only drastically improves
running time, but if used without other constraints, it can also provide us with a solution
of optimal cost, instead of just a solution of cost lower than the bound given, which was
the original purpose of this constraint. This restricted use case of the costgcc alone is
not of much interest, as in a real world scenario, usually multiple different constraints are
combined together to solve complex problems. This raises the question: is there a way
to extend costgcc’s applications, by enabling it to efficiently solve optimization problems
combined with other constraints, in which the goal is to minimize a global cost function?

Note that it is not essential to use our custom branching strategy anymore, but it is still
highly recommended to improve performance. We can start by using a branch and bound
search method. Each time the search finds a solution, it will try to improve it by looking for
one with smaller cost. This method will work also in conjunction with other constraints too,
as all solutions will be tested, and the ones with suboptimal cost than the current best one
will be rejected.

While this method is correct, it is not the best we can do. We can improve it by taking
advantage of the upper bound limit for the cost of costgcc. Internally, the algorithm com-
putes a min cost flow, and if anytime it finds out that its cost is higher than the bound, it
reports failure. In addition, this limit can be used to further prune values during arc consis-
tency. Since branch and bound tries to find solutions with a decreasing upper cost bound
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each time, we can adapt this bound change internally to costgcc as well. We distinguish
between two cases:

• Case A: The cost variable that we wish to minimize depends only on costgcc.

• Case B: The cost variable that we wish to minimize depends on costgcc and external
constraints.

In both cases, multiple constraints can co-exist with costgcc, but the important part is how
the cost variable is constrained. For case A, the cost upper bound of costgcc can always
be identical to the cost bound used for the branch and bound method, and be updated as
we find solutions of lower cost, since it doesn’t depend on anything else. For case B, the
cost upper bound for costgcc must be large enough to cover the worst case scenario of
the external constraints. It would be incorrect to use the min cost flow of the most recent
solution as the new bound for the branch and bound, because it is possible that a better
solution could exist that has higher min cost flow than the most recent one, but lower cost
overall because of the cost participation of the external constraints.

Some examples for each case respectively are the Travelling Saleman Problem and the
Warehouse Location Problem, which are explained in more detail in Chapter 5. Gener-
ally, case A results in much better performance than case B, since it allows us to strongly
restrict the upper bound of costgcc. The obligation to comply with the worst case scenario
of the external constraints of case B can result in large upper bounds, which certainly do
not provide efficient propagation.
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4. SYMMETRIC GLOBAL CARDINALITY

The symmetric global cardinality constraint (symgcc) is similar to the original gcc, but
defined on set variables instead of integer variables. That is, variables whose domain is
a set of sets of possible values. Aside from the usual lower and upper bound restrictions
on the occurrences of the values, there exist additional constraints on the set cardinality
of each variable. More specifically, each variable has a lower and an upper bound for its
set cardinality.

Similarly to the gcc, this constraint can arise in many scheduling problems. Consider a
simple example in which there are workers and tasks to be executed. Each worker Xi is
capable of executing a specific set of tasks, and must take responsibility for at least lxi

tasks and at most uxi
. Moreover, each task j requires at least lvj people to be dedicated

to it, and at most uvj . This can be modeled with symgcc.

More formally, for a given assignment P , let P (xi) denote the value assigned to the variable
xi by P and #(xi, P ), the cardinality |P (xi)| of the set P (xi) and for any constraint C and
element vj ∈ D(C),#(vj, C, P ) denote the number of occurrences of vj in the values
assigned by P to the variables . If T (C) is a subset of the Cartesian product of the domain
of each variable that specifies the allowed combinations of values for the variables, then
a symmetric cardinality constraint is a constraint C over a set of variables X(C) which
associates with each variable xi ∈ X(C) two non-negative integers lxi

and uxi
, and with

each value vj ∈ D(C) two other non-negative integers lvj and uvj , such that a restriction
of an assignment P to the variables in X(C) is an element in T (C) iff

∀i(lxi
≤ #(xi, P ) ≤ uxi

) and ∀j(lvj ≤ #(vj, C, P ) ≤ uvj)

The code developed for this constraint, along with a usage example for the experiments
conducted on Chapter 5.2.1 can be found in the Github repository in [30] under the branch
name symgcc, in the subdirectory gecode/set/gcc.

4.1 Modeling With Gecode

As there is no gcc defined on set variables in Gecode, one can achieve symgcc with the
model described below. Consider X = {X1, ..., Xn} to be the set of variables involved in
symgcc, D = {D1, ..., Dm} to be the set of different possible values, and lxi

, uxi
, lvi , uvi as

the lower and upper bounds of the variable cardinalities and values respectively.

1. Define B as a boolean variable array of n rows and m columns. Assigning Bij to
true means that value Dj is included in variable the Xi set, while assigning to false
means that the value is excluded from the set. Set Bij to false for each value Dj

that does not belong to the domain of variable Xi, either because it got pruned or
because it never belonged in the first place.
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2. Constrain the sum of the variables of each column j to be greater than or equal to
lvj and less than or equal to uvj .

3. Constrain the sum of the variables of each row i to be greater than or equal to lxi

and less than or equal to uxi
.

Steps 2 and 3 can be achieved with the use of linear or count constraints, since boolean
values are represented with the numbers 0 and 1. This decomposition can miss some
pruning during arc consistency, because it cannot examine the whole picture of the prob-
lem globally, hence the motivation for implementing a dedicated symgcc.

4.2 Constraint Usage

The symgcc we have implemented is

countSet(home, X, D, LVAL, UVAL, LVAR, UVAR, P)

as follows:

• home: the current Gecode home space. Mandatory argument for all Gecode con-
straints.

• X: array of the variables to constrain (type SetVarArgs).

• D: array of all the different possible domain values (type IntArgs).

• LVAL: array containing the lower bound for each value in D (type IntArgs).

• UVAL: array containing the upper bound for each value in D (type IntArgs).

• LVAR: array containing the lower bound for each variable in X (type IntArgs).

• UVAR: array containing the upper bound for each variable in X (type IntArgs).

• P: optional argument. Specifies propagation level, accepts IPL_DOM for arc consis-
tency or IPL_VAL for just checking if the constraint holds, but without pruning any
values. Optional argument, default value is IPL_DOM.

An exception is thrown if one of the following conditions involved around the arguments is
not met:

• X should not contain duplicate variables and should be of at least size 1.

• D should not contain duplicates.

• D should include all the values from the domains of the variables in X.

• LV AL and UV AL arrays should be the same size as D.

• LV AR and UV AR arrays should be the same size as X.

• Bounds in LV AL, UV AL, LV AR and UV AR should be non-negative.

• Each lower bound LV AL[i] should be smaller or equal to the respective upper bound
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UV AL[i].

• Each lower bound LV AR[i] should be smaller or equal to the respective upper bound
UV AR[i].

4.3 Algorithm

The symgcc is a natural extension of the original gcc. We will consider again the way
we approach the gcc in Chapter 3.3. The value network of symgcc is the same, with the
following two changes:

• For the edges from each variable x to node t, the lower and upper bounds follow the
cardinality constraints for said variable.

• The lower and upper bound of the edge from t to s are zero and infinite respectively.

The new bounds on the edge from t to s describe that it is not necessary for a variable to
take a value, as it is legal to have variables be assigned to an empty set (as long as their
cardinality lower bound is zero).

Aside from this change, the algorithm for symgcc is identical to gcc. We need to find a
feasible flow to prove consistency, and for arc consistency we care about the strongly
connected components in the residual graph. A flow that is feasible means that all the
edge bound restrictions will be satisfied, and thus the cardinality and value constraints will
be met. Regarding arc consistency, a variable and a value node which have no flow going
through their edge, and that belong in a different strongly connected component, will never
be able to be assigned to each other, and thus can be pruned. There is no cycle involving
them, and thus we will never be able to send flow through their edge. Arc consistency can
be achieved in O(m+n+d) wherem is the number of edges, n is the number of variables
and d is the number of values.

The incremental aspect of the algorithm is also identical to the original gcc, as during each
iteration of value pruning we can repair the flow based on the previous one and without
needing to compute it from scratch.

Compared to costgcc, symgcc is simpler and easier to implement, because of the absence
of costs. It means that for finding shortest paths, we can just use DFS or BFS instead of
complicated cost-based shortest path algorithms, and for arc consistency, we care about
just existence of nodes in strongly connected components, without needing to take into
account their path cost in addition.

4.4 Implementation Details and Optimizations

The original publication for symgcc does not mention any implementation details or op-
timizations. In this section, we will present an initial naive approach, and then a way to
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speed up the algorithm in practice. Because of the similarity for the data structures used
between this constraint and costgcc, we can reuse our research findings and utilize the
best implementation ideas, without needing to re-invent the wheel.

4.4.1 Basic Implementation

The base implementation is the same as the one described in Chapter 3.4.1, for costgcc.
Therefore, we will only mention any differences. The main one is that since there are no
costs involved, we care about finding a feasible flow and not a min cost flow.

In Gecode, since the domain of a set variable can be exponentially large, they are de-
scribed by using 2 set intervals: the Greatest Lower Bound (GLB) and the Least Up-
per Bound (LUB). GLB includes all values that are for sure known to be included in
the set, while LUB includes values that could be included . However, these two inter-
val bounds cannot fully represent the domain of a set. Consider the example domain of{
{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}

}
. This domain cannot be captured exactly by an inter-

val, as the closest one would be a GLB of {} and an LUB of {1, 2, 3}. Therefore, in addition
Gecode adopts min and max cardinalities for this purpose. Thus, the domain described
from the above intervals would be further restricted by stating that the min cardinality
should be 1 and the max cardinality should be 2.

When dealing with set variables, value prunings are described by changes in the interval
sets or the cardinality bounds. Including a value in the GLB implies that all other sets of
cardinality equal to the one of GLB that are different from GLB, cannot be assigned to
the variable. Excluding a value from LUB implies that it will never be included in the set.
Increasing the min cardinality means that all sets of lower cardinality will be pruned from
the domain, while decreasing the max cardinality means that all sets of greater cardinality
will be excluded.

Therefore, to check what values got pruned during each iteration, we iterate the GLB and
LUB sets, and in addition we check the min and max cardinalities. If a value is included in
the GLB of a variable but has no flow in the corresponding edge of the graph, we change
its lower bound from 0 to 1 and report a lower bound violation. If the edge corresponding
to a variable-value has an upper bound of 1 but does not exist in the LUB, we reduce the
upper bound to 0 to mark that it is pruned, and if it also had flow, we mark it as an upper
bound violation. We update the bounds on the edges from a variable to t node to match
the cardinality bounds for said variable. If the flow is no longer between the bounds due to
this change, we report another bound violation. All these violating edges are included in
a vector, and they are repaired by the incremental algorithm at the next execution of the
propagator.

A violation in the bounds of a value-variable edge will be repaired in one step by the
incremental algorithm, when the violating edge is met and examined. However, a change
in cardinalities could require more steps. If the min or max cardinalities are changed by
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more than 1, then we need to take care to remain on this violation and keep repairing until
the flow becomes within the bounds. For instance, if the min cardinality of a variable x

turns to 2 from 0 and the flow through the corresponding edge (x, t) was 0, we need to
remember to consider it twice, in order to achieve at least the lower bound of 2, because
flow is added or removed from the network at a value of 1 each time.

To find the strongly connected components, we implement an iterative version of Tarjan’s
algorithm [12]. The iterative approach is much more efficient than a recursive one, as it lim-
its expensive function calls to the stack. The algorithm requires certain data structures of
size equal to the number of nodes in the graph, which need to be cleared at the beginning
of each run. These structures state which SCC id each node belongs to, and also mark if a
node has been visited during the algorithm execution. To avoid constantly clearing them,
we allocate them only once and use a certificate integer number to mark valid elements
between two iterations. At the end of each run, the certificate is updated to be larger than
the maximum element in the structures, instantly invalidating all the elements in O(1). We
compare against this certificate within the algorithm, to know about element validity and
existence. SCC ids that are lower than the certificate are considered as invalid.

4.4.2 Edge Deletion and Backtracking Without Flow

This idea is taken from the survey in [14], and is the exact same one as described in
Chapter 3.4.3. Essentially, instead of altering the lower and upper bounds on the edges
of the graph, we delete edges that correspond to pruned values. Additionally, the graph is
backtracked in a space efficient way, minimizing unnecessary overhead. Since we don’t
change bounds on the edges, we take a note in an array of which edges are violating
them each time, and we repair them on the next execution, clearing the array after. When
building the residual graph, normally we would compare an edge’s flow against its lower
and upper bounds, but since these bounds are not altered in this backtrack-efficient im-
plementation, instead we compare directly with a variable’s GLB, LUB and min and max
cardinalities, to obtain the ”implied” edge bounds.

4.4.3 Important Edges

An optimization mentioned in [14] for the extended global cardinality constraint (EGCC)
deals with important edges. The idea is that the edges of the graph can be partitioned into
important and unimportant. Only the the removal of important ones can result in further
pruning, and so the propagator can skip execution when unimportant edges are removed.
The important edges are decided from within Tarjan’s algorithm to find the strongly con-
nected components. Only minor instrumentation in the code is required to maintain them,
but their bottleneck is the fact that they need to be backtracked, thus copied during each
cloning of the propagator. They were attempted, but they either provided no significant
gain or made performance worse because of the copying overhead.
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4.4.4 Dynamic Partitioning

Another optimization for EGCC found in [14] is Dynamic Partitioning. That is, the real-
ization that after some value prunings, symgcc could be split into multiple independent
constraints. Essentially, this would allow the propagator to deal with a smaller, more fo-
cused graph each time internally, depending on which partition of the constraint is triggered
based on the values that got pruned during each iteration. The benefit would come in Tar-
jan’s algorithm for the search of the strongly connected components, as the search would
contain itself within a subset of the graph, ignoring unnecessary computations.

This optimization was not implemented, however it is still mentioned as it could be a point
of future experimentation. Since symgcc and gcc are very closely related to each other, it
is likely that it could prove to be beneficial for our case too.

4.5 Custom Branching Heuristic

In Chapter 3.5, we described a powerful branching heuristic that is capable of dramatically
reducing runtime. It is based on the property that during each consistency check of the
propagator, a feasible flow is calculated internally, which represents a legal solution to the
problem. This solution can be used to guide the search branching, and be updated on the
go as we deal with alternative choices.

While at first look it could seem like we could do this on symgcc too, unfortunately it is not
possible. This is due to Gecode’s way to branch on set variables. According to it, we can
either include values in the GLB, exclude from the LUB, or tighten the cardinalities. For
our heuristic to work, we would need to be able to branch by strict equality and inequality.
That is, to say that a variable should be equal to an exact value set, and to remove said
value set as the alternative choice. We are able to achieve the equality part by including
the necessary elements in the GLB and reducing the max cardinality to be equal to the
cardinality of the GLB. But we cannot do something similar for the inequality part. If we re-
move a value from LUB or tighten the max cardinality, we are already potentially removing
more set values from the domain than we would like.

One way to work around this restriction would be to use an array of boolean variables, to
represent if a value is included on a set variable or not, which is the default way to model
symgcc in Gecode, as described in Chapter 4.1. This would allow the use of the custom
branching heuristic, as we would be able to easily branch on equality and inequality on
boolean variables instead of set ones. But we speculate that it would not help in practice,
as it would drastically increase the number of variables required to represent our initial
problem, requiring a variable for each possible value for each set variable.
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5. EXPERIMENTAL EVALUATION

In this section, we conduct experiments to evaluate the performance of our programs. We
care to observe the behaviour of their various propagation levels, to discover patterns to
know which configuration is best to use for each case, and to compare to the alternatives
that Gecode offers. For the remaining of this chapter, we will use the following terms to
refer to different configurations for our programs:

• Val: no domain pruning

• Val B: no domain pruning, use our custom branching heuristic

• Dom: arc consistency

• Dom B: arc consistency, use our custom branching heuristic

The custom branching heuristic configurations appear only on costgcc, as we have ex-
plained in Chapter 4.5 that is not possible to use it for symgcc as well. We will also adopt
the term Multi to refer to using a model that decomposes costgcc / symgcc to multiple
constraints, to achieve the same behaviour . We will use it to compare the performance
of our constraints to using constraints that already come with Gecode.

All experiments were performed on a 64-bit Intel® CoreTM i7-7500U CPU @ 2.70GHz /
3.50Ghz Turbo× 4machine with 16GBmemory, running Ubuntu 18.04.1 LTS and Gecode
version 6.3.1.

5.1 Global Cardinality With Costs

For costgcc, we will choose the implementation described in Chapter 3.4.3, as we have
found that it is the best one.

The custom branching heuristic is the one mentioned in Chapter 3.5. It’s a method for
choosing which value to branch on next. For choosing the variable, we will use the Max
Regret heuristic, as described on that same chapter. The regret value for each variable
is not exact, but is approximated as the difference between the lowest and second lowest
costs involving that variable. We have found that it is generally more effective than a simple
MRV. For the cases when we don’t use our custom branching heuristic, we will branch on
values by simply selecting the minimum one.

Since we were unable to find real world problem data that covers all the aspects of costgcc
at once, we will benchmark this part by generating random instances. Next, we will study
its behaviour on optimization problems, first on the Traveling Salesman Problem, and
after briefly on the Warehouse Location Problem. For these two real world problems,
we will use input data taken from benchmark libraries.
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5.1.1 Randomly generated instances

We generate data using a separate program, according to the following parameters. All of
them are followed by space and then a number, except for -f , which is followed by string
that specifies the name of the output file.

• -n: number of variables

• -m: number of values

• -p: percentage representing the density of variable-value graph

• -umin: minimum upper bounds percentage

• -umax: maximum upper bounds percentage

• -lmin: minimum lower bounds percentage

• -lmax: maximum lower bounds percentage

• -cmin: minimum possible cost value

• -cmax: maximum possible cost value

• -c: cost upper bound

• -s: seed for random generator

The upper bound percentages are in relation to the total occurrences number of a specific
value in the domains of the variables, while the lower bound percentages are in relation
to the upper bounds of each value. If the seed is not specified, then it will be automatically
generated and printed, so that identical data can be replicated in the future.

We create the following files with the respective commands, that we will use for experi-
mentation in this chapter:

• big: ./gendata -f big -n 100 -m 100 -p 100 -umin 20 -umax 30 -lmin 0 -lmax 8 -c
100 -s 294367347

• big-sparse: ./gendata -f bigSparse -n 100 -m 100 -p 10 -umin 20 -umax 30 -lmin
0 -lmax 50 -c 171 -s 294367347

• big-var-low-val: ./gendata -f bigVarLowVal -n 100 -m 25 -p 100 -umin 20 -umax 30
-lmin 0 -lmax 8 -c 109 -s 294367347

• big-var-low-val-sparse: ./gendata -f bigVarLowValSparse -n 100 -m 25 -p 10 -umin
50 -umax 75 -lmin 0 -lmax 0 -c 386 -s 294367347

• low-var-big-val: ./gendata -f lowVarBigVal -n 25 -m 100 -p 100 -umin 20 -umax 30
-lmin 0 -lmax 8 -c 25 -s 294367347

• low-var-big-val-sparse: ./gendata -f lowVarBigValSparse -n 25 -m 100 -p 10 -umin
20 -umax 30 -lmin 0 -lmax 50 -c 39 -s 294367347
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We will compare our program’s different configurations with themselves, and with a model
that substitutes costgcc by using a conjunction of gcc and sum. In Gecode, these can be
achieved with count and linear respectively, and we will refer to this decomposition by the
termMulti. In the results that we will showcase, for Multi we use only the best configuration
for each cost upper bound case, between no pruning, arc consistency, and bounds consis-
tency. For instances big, bigSparse and bigVarLowVal, arc consistency is the best choice
for Multi, and for instances bigVarLowValSparse, lowVarBigVal and lowVarBigValSparse,
no pruning at all is better.

Internally, as of Gecode version 6.3.1, gcc bound consistency is based on [16], and domain
consistency is based on [13] (even though in the latest documentation version which is
6.2.0, it is stated that it follows Régin’s [10] approach).

The interest of using costgcc compared to a simple gcc is when the cost sum is con-
strained. For each data instance, we start to do our comparisons by setting the cost upper
bound to be equal to the minimum possible cost sum of a valid solution (we will call it min
cost). We then increase it gradually, until we reach the point where we notice that Multi
performs better than our costgcc configurations. In order to find the min cost, we only make
a modification in the code so that costgcc will print the cost of the first min cost flow it will
find.

We run our program with a timeout of 1 minute, and report the number of solutions found
within this limit. We begin with instance big, which consists of 100 variables and 100 values
with full density, forming a complete variable-value graph. From Figure 3 and Table 1, we
can make the following observations:
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Figure 3: Number of solutions for increasingly higher cost upper bound for instance big
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Table 1: Number of failures for different configurations and cost upper bounds for instance big

V al V alB Dom DomB

100 2036K 1117K 1638K 41K
150 1940K 918K 1542K 119K
200 1837K 922K 1308K 119K
400 2200K 911K 1324K 119K
500 3027K 898K 1262K 119K
600 4013K 917K 718K 119K

• Dom B is the best only for when the cost upper bound is equal to the minimum cost.
For the other cases it remains consistent, but Dom and Val B perform better.

• Val B is far superior to Val, which is the worst.

• Multi is always failing while finding no solutions at all, except for when the cost upper
bound is loosened enough, when it outperforms every other configuration by a large
factor. At this point, the cost sum is unrestricted enough that the costs barely matter.

• Dom B always has the least amount of failures.

We now experiment on a sparse graph of the same dimensions, in bigSparse. In Figure 4
and Table 2 we observe:
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Figure 4: Number of solutions for increasingly higher cost upper bound for instance big-sparse
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Table 2: Number of failures for different configurations and cost upper bounds for instance
bigSparse

V al V alB Dom DomB

171 3486K 2575K 0 16K
200 3484K 916K 4 7K
300 3673K 834K 16K 4K
400 3763K 830K 466 4K
500 4471K 803K 11K 4K
600 2460K 834K 58 4K

• Dom B is again the best choice for when the cost bound is equal to the minimum
cost.

• The best configuration overall is Val B.

• Even though Dom B has more failures than Dom, it still performs better for most
cases.

• Val B dramatically reduces the number of failures from Val.

• Multi finds no solutions, until the cost sum is loosened enough when it outperforms
every other configuration.

Further on, we keep the number of variables at 100 but decrease the total values to 25,
resulting in a complete variable-value graph found in bigVarLowVal. From Figure 5 and
Table 3, we can see the following:
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Figure 5: Number of solutions for increasingly higher cost upper bound for instance big-var-low-val
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Table 3: Number of failures for different configurations and cost upper bounds, for instance
big-var-low-val

V al V alB Dom DomB

109 4218K 1736K 700 27K
200 4148K 740K 4 9K
400 4662K 758K 11K 9K
500 6425K 748K 1235K 8K
600 30945K 3710K 8468K 50K

• Val B is always superior to every other configuration.

• Dom B seems to be the better choice compared to Dom, even though the latter
performs better for some cost bounds.

• Using the custom branching on Dom sometimes reduces failures, while other times
introduces more.

• Contrary to the previous datasets, after we start finding solutions for Multi, costgcc
is still better for a while.

We take the previous instance dimensions, but make the variable-value graphmore sparse,
in bigVarLowValSparse. From Figure 6 and Table 4, we observe:
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Figure 6: Number of solutions for increasingly higher cost upper bound for instance
big-var-low-val-sparse
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Table 4: Number of failures for different configurations and cost upper bounds, for instance
big-var-low-val-sparse

V al V alB Dom DomB

386 126K 69K 0 0
400 5094K 2218K 568 45K
500 4358K 516K 6K 220
600 178K 527K 0 215

• When the cost upper bound is equal to the minimum cost, all costgcc configurations
find all the solutions instantly in less than a second, with only Val taking 1.5 seconds,
while Multi does not find a single solution within the 1 minute cutoff.

• Val B is the best one.

• Dom B is better than Dom.

• On the highest cost upper bound, Val manages to overcome Dom and Dom B. This
is because the cost sum becomes unrestricted enough that the overhead of Dom
does not justify the (lack of) pruning benefit.

We experiment with reducing the variables to 25, while keeping the values at 100. In Figure
7 and Table 5 we observe:
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Figure 7: Number of solutions for increasingly higher cost upper bound for instance low-var-big-val
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Table 5: Number of failures for different configurations and cost upper bounds, for instance
low-var-big-val

V al V alB Dom DomB

25 4721K 230K 0 0
50 4735K 1K 0 0
75 4675K 6 0 0

100 4155K 6 0 0

• Dom B is best only for the minimum cost upper bound.

• Dom and Dom B reduce failures to none for all cost upper bounds. Val B also has
only a few.

• Val B is the best overall.

Finally, we take the previous instance and make it sparse. In Figure 8 and Table 6 , we
can see:
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Figure 8: Number of solutions for increasingly higher cost upper bound for instance
low-var-big-val-sparse
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Table 6: Number of failures for different configurations and cost upper bounds, for instance
low-var-big-val-sparse

V al V alB Dom DomB

39 3K 740 1 0
50 5524K 2570K 27K 10K
75 4663K 1137K 2K 0

100 3380K 1084K 158 0
125 516K 1045K 33 0

• Costgcc wins for a while even after multi starts to find solutions.

• When the cost upper bound is the minimum, costgcc finds all solutions instantly with
all configurations.

• Dom and Dom B have limited failures.

• Dom B is better than Dom.

• Val B is the best overall except for when the cost upper bound is low.

• For the highest cost upper bound, Val manages to beat Dom, because the sum is
too unrestricted and the overhead of Dom is not worth it, as it cannot prune many
values.

Across all these different instances, we gather our conclusions:

• The best configuration overall is Val B. While Val is not promising, if we upgrade it
with our custom branching heuristic, it transforms into a powerful method, as it is
lightweight yet effective.

• For most instances, Multi is stuck in a failure loop without finding a single solution,
but when it finally escapes, it outperforms every other configuration by a large factor.
This is because at that point, the cost upper bound is so loose that the costs are not
important anymore. Gcc does not have to deal with costs internally, so in this case
it performs much better than costgcc, who on the contrary has a higher complexity.

• When the cost upper bound is equal to the minimum, Dom B is best for most in-
stances, while for one instance Val B wins, and for two instances, all costgcc con-
figurations are equivalent.

• Val B is always better than Val, but Dom B is not always better than Dom.

• Val is the worst, except for one instance when it manages to beat Dom and Dom B,
because the cost upper bound becomes unrestricted enough to the point that arc
consistency cannot prune enough values to outweigh its computational overhead.

The ultimate factor that determines whether costgcc is worth to use over a decomposition
or not, is the tightness of the cost sum upper bound. It is easy to see that the closer it is to
the minimum cost, the better performance is, and as we loosen it, the overhead of costgcc

I. Papatsoris 63



Extending upon the Gecode open source toolkit, for developing constraint-based systems and applications

overtakes and is no longer a good investment. In Table 7, for each instance we show the
cost upper bound percentage compared to the minimum one, after which costgcc is no
longer beneficial.

Table 7: Cost upper bound relation to min cost, after which costgcc starts to perform worse than
decomposition

big 600%
big-sparse 350%

big-var-low-val 550%
big-var-low-val-sparse 155%

low-var-big-val 400%
low-var-big-val-sparse 320%

average 304%

Another interesting point to study is how well we can detect infeasible instances, that is,
instances which have zero solutions. For all the datasets presented above, costgcc is
remarkable in this regard, as if we reduce the cost upper bound to be lower than the mini-
mum cost, then it reports infeasibility instantly, no matter the value of the bound. The same
cannot be said for Multi, which seems to struggle. For example, for instance lowVarBigVal
which has a minimum cost sum of 100, if we reduce it to anything from 0 to 5 then failure
is reported instantly, if we increase it to 5 then it takes 5 seconds, while if we turn it to 7
or more, it does not terminate within the time limit. Or for instance bigSparse which has a
minimum cost sum of 100, reducing the bound to 20 reports the result instantly, increasing
it to 30 takes 7 seconds, while making it 40 or more does not finish within the time cutoff.
A similar behaviour is noted with all the rest datasets as well.

We will now tackle a variation of costgcc where it turns to an optimization problem, in
which we don’t care to just find solutions of cost lower than a given bound, but instead
we want to find the solution of minimal cost. We use a Branch and Bound method, whose
cost to optimize is the cost upper bound variable in costgcc. Each time a solution is found,
we further restrict the cost upper bound, to find solutions of better quality. Referencing
the problem case distinction for optimization problems mentioned in Chapter 3.6, this is a
problem case of type A.

We run the program and see the results in Table 8. We report the time spent to find the
optimal solution, or the distance between the best solution found and the optimal one, in
case that we did not manage to find it within a time limit of 5 minutes. On first glance, it
is obvious that our branching heuristic is a very strong choice for this type of problems,
since both Val B and Dom B find the optimal solution in just a few milliseconds. This is
expected, as the heuristic leads us straight to an optimal solution when used on costgcc
without any other constraints, as studied in Chapter 3.5.1. Dom is efficient too, taking less
than one second for most instances. The execution times for Val are also reasonable. We
can clearly see that Multi is the worst configuration, as it never finds an optimal solution.
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Table 8: Distance to optimal solution with 5min cutoff for different instances, or time spent in case
the optimal solution was found

V al V alB Dom DomB Multi

big 405 72ms 6s 70ms 509
big-sparse 12s 44ms 0.8s 15ms 505

big-var-low-val 11s 26ms 0.9s 26ms 457
big-var-low-val-sparse 0.3s 4ms 81ms 10ms 515

low-var-big-val 7.9s 15ms 0.2s 11ms 92
low-var-big-val-sparse 0.1s 7ms 32ms 9ms 61

5.1.2 Traveling Salesman Problem

The Travelling Saleman Problem (TSP) is a very well known NP-Hard problem, in which
the goal is to visit all the cities of an area exactly once each, to return back to the starting
city, and to minimize the travelling cost. In graph terms, each node is represented by a
city, an edge between two cities is a road that connects them, and there is a cost which
is usually defined as the distance between them. To solve the problem, we need to find a
Hamiltonian Circle of minimal cost.

There is already a packaged TSP examplemodel in Gecode, which generates Hamiltonian
circles using the constraint circuit and finds the one of minimum cost using Branch and
Bound. In this model, each variable represents a city, and its domain represents the links
to the other cities. Assigning variableXn with valuemmeans that we will include the edge
(n,m) in our travel plan. We will call this model Multi, and compare it with a model which
again uses circuit to find Hamiltonian paths, but is also enhanced with a costgcc. The
lower and upper bounds of it are equal to one, accounting for visiting each city exactly
once. The cost upper bound is the cost variable used for Branch and Bound. As better
solutions are found, the internal costgcc cost bound is tightened, which results in stronger
propagation. This is also an optimization problem case of type A.

In Table 9, we compare our enhancement with the built-in Gecode approach, across 4
different instances. The instances are taken from TSPLIB [36], which is a library collection
of various TSP datasets, a lot of which are derived from real world data. The first two
instances are also included in the example packaged in Gecode. Again, we show the time
spent to find the optimal solution, or the distance of the best solution found to the optimal
one, in case it was not able to be found with a 5 minutes cutoff.

For br17, Multi is actually faster than costgcc. For ftv33 and bays29, Dom B finds the
optimal solution fast, while Multi reaches a timeout. Across all instances, Dom B is the
best configuration for costgcc, and Val B is much better than Val, again showcasing the
advantage of our custom branching heuristic.

We also attempted to enhance the Multi model with a gcc to see if there could be any
extra propagation that could help, but there was no improvement. In fact it was much
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Table 9: Distance to optimal solution with 5min cutoff for different city instances, or time spent in
case the optimal solution was found

V al V alB Dom DomB Multi

br17 1 3m26s 10s 5s 10ms
ftv33 254 61 2.1s 0.6s 269

bays29 892 392 1m35s 15s 87
berlin52 11879 2053 3030 989 2287

slower, suggesting that the benefit of costgcc comes from pruning around the cost, and
not because of the extra cardinality constraints.

Finally we tested against the Concorde TSP Solver [37]. It is a dedicated software for
solving TSP instances efficiently, using various techniques. Concorde is able to optimally
solve all the instances in just a fewmilliseconds. Of course, our approach is not competitive
with state-of-the-art algorithms specifically designed for TSP, but it improves the default
way to solve it within Gecode.

5.1.3 Warehouse Location Problem

We study the Warehouse Location problem. A company needs to open warehouses in
order to supply goods to stores. There is an upper limit to the amount of goods each
warehouse can provide (warehouse capacity), and each store can be supplied by only
one warehouse. Supplying from a specific warehouse to a specific store has a cost, which
usually depends on their distance. There is also a fixed cost tied to opening a warehouse.
The goal is to minimize the sum of the costs induced by opening warehouses and the
distance costs.

Gecode is packaged with a built-in example of this problem, which is modeled as follows:
there is a variable representing each store, and a variable’s domain represents the ware-
houses it can be supplied from. Each variable will be assigned to exactly one value, so
with this approach we already comply with each store being supplied from exactly one
warehouse. To find out which warehouses are open and to calculate all the necessary
costs, element constraints are utilized. Finally, a gcc constraint is used to express the sup-
ply limitation of each warehouse. A Branch and Bound search minimizes the total costs.
We will call this model Multi.

We attempt a slightly different model in which we use a similar setup, but with costgcc
instead of gcc, to see if we can have any benefit from cost pruning reasoning. Here we
have an optimization problem of case type B. The total cost to minimize with Branch and
Bound is the sum of the open warehouses costs and the costs from assigning warehouses
to stores, so the cost upper bound within costgcc is not identical to the Branch and Bound
global one, thus we have limited domain reasoning.

Since the hardcoded input data within the bundled Gecode example is trivial to solve, we
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take datasets from a Discrete Location Problems benchmark library [38]. We look into the
Capacitated Facility Location Problem, which is the same as our case problem, but with
an extra factor. This version of the problem specifies a demand value connected to each
store-warehouse pair, which represents the amount of product that will be transferred if
said pair is chosen. For each warehouse, the sum of the amount of product concerning it
must be less than the warehouse capacity.

First, we ignore the demand values and assume they are all equal to 1, to have the same
version of the problem as the one packaged with Gecode, and then we adapt our models
to also test the second version. In Table 10 we compare costgcc with Multi, using the first
dataset in Class 1 found in the benchmarks section of the Capacitated Facility Location
Problem benchmarks library [38].

Table 10: Best solution found with 5min cutoff for the Warehouse Location Problem

V al V alB Dom DomB Multi

without demands 7247 4709 7762 4616 6017
with demands 9211 5056 9211 5056 6021

Since the dataset is large, we cannot find the optimal solution with any configuration.
However, costgcc manages to get much closer to it than Multi. By trying different instances
from the library, we get similar results. Since this is an optimization problem of case type
B, we cannot expect to have remarkable results, as the cost upper bound within costgcc
is not necessarily tightened enough on each iteration. In addition, the version with the
demands is harder than the other one, because we cannot use the value counting part of
gcc/costgcc anymore to express it with upper bounds. Because when the demands are
all 1, we can just count occurrences of warehouse values, but when not we need to use
an external sum constraint.

5.2 Symmetric Global Cardinality

For symgcc, we choose the implementation described in Chapter 4.4.2. We will first run
experiments using randomly generated data, and then test our program on Sports Tour-
nament Scheduling, which is a real world problem.

5.2.1 Randomly generated instances

We generate data using a separate program, according to the following parameters. All of
them are followed by space and then a number, except for -f , which is followed by string
that specifies the name of the output file.

• -n: number of variables

• -m: number of values
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• -p: percentage representing the density of variable-value graph

• -umin: minimum value upper bounds percentage

• -umax: maximum value upper bounds percentage

• -lmin: minimum value lower bounds percentage

• -lmax: maximum value lower bounds percentage

• -uvarmin: minimum variable cardinality upper bounds percentage

• -uvarmax: maximum variable cardinality upper bounds percentage

• -lvarmin: minimum variable cardinality lower bounds percentage

• -lvarmax: maximum variable cardinality lower bounds percentage

• -s: seed for random generator

The value lower and upper bound percentages are in relation to the total occurrences
number of a specific value in the domains of the variables, while the variable cardinality
lower and upper bound percentages are in relation to the maximum cardinality possible of
each variable, based on its domain. If the seed is not specified, then it will be automatically
generated and printed, so that identical data can be replicated in the future.

We create the following files with the respective commands, that we will use for experi-
mentation in this chapter:

• big: ./gendata -f big -n 100 -m 100 -p 100 -lmin 0 -lmax 8 -umin 20 -umax 30 -s
3118417791

• big-sparse: ./gendata -f bigSparse -n 100 -m 100 -p 25 -lmin 0 -lmax 8 -umin 20
-umax 30 -s 3118417791

• big-var-low-val: ./gendata -f bigVarLowVal -n 100 -m 25 -p 100 -umin 20 -umax 30
-lmin 0 -lmax 8 -s 294367347

• big-var-low-val-sparse: ./gendata -f bigVarLowValSparse -n 100 -m 25 -p 10 -umin
70 -umax 75 -lmin 50 -lmax 70 -s 294367347

• low-var-big-val: ./gendata -f lowVarBigVar -n 25 -m 100 -p 100 -umin 20 -umax 30
-lmin 0 -lmax 8 -s 294367347

• low-var-big-val-sparse: ./gendata -f lowVarBigValSparse -n 25 -m 100 -p 10 -umin
70 -umax 75 -lmin 50 -lmax 70 -s 294367347

In the above commands we do not include the parameters that control the set cardinality
bounds, because they are not constant as we will experiment will various different combi-
nations for them below.

We will compare symgcc with the model using default Gecode constraints described in
Chapter 4.1. Between the choice of Gecode’s linear and count constraints to express the
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sum, we use the former since we have found that it outperforms the latter.

We now present computational results on each of the above datasets. For each instance,
we compare our program to Multi for different combinations of the -uvarmin -uvarmax
-lvarmin -lvarmax parameters. That is, we want to observe how performance changes
depending on the cardinality bounds of the variables, as this is the part in which symgcc
differs from the original gcc. We keep -uvarmin and -uvarmax equal to each other as we
modify them (and respectively -lvarmin and -lvarmax). We always run the programs with
arc consistency, as we have found that it is the best propagation level for both symgcc
and Multi.

In Figures 9, 10 and 11, for each cardinality bounds percentage combination, there is a
point that indicates which programmanaged to find the most solutions within a time limit of
1 minute, or which reported failure faster in the case of absence of solutions. A blue circle
indicates that Dom found the most solutions while Multi found none, a red triangle that
Multi found the most of them, a green circle that there were no solutions and Dom reported
failure instantly while Multi did not manage to do so within the time cutoff, and a black circle
that there were no solutions and both programs reported failure right away. Note that by
definition the lower cardinality bounds are lower or equal to the upper cardinality ones,
and that is why some data points are ”missing” from the plots.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Cardinality lower bound percentage

C
ar
di
na

lit
y
up

pe
rb

ou
nd

pe
rc
en

ta
ge Dom

Multi
Tie with no solutions
Dom with no solutions

Figure 9: Comparison of symgcc versus Multi for instances big, big-sparse and low-var-big-val for
different cardinality bound percentages

In Figure 9, we observe that symgcc outperforms Multi as we tighten the lower cardinality.
Even when having the lower cardinality bound as low as 10%, it is enough for Dom to be
faster even when the upper bounds are fully loose (aside from 20% and 30% where Multi
wins). In the case that we leave the lower cardinality fully unbounded (0%), Multi performs
better regardless of the upper cardinality percentage value. We omit the plot for instance
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big-var-low-val, as we have the exact same behaviour as in Figure 9, with only one data
point of difference. At coordinates (10, 30), this time Multi wins.

In Figure 10 where the input data results in a sparse graph with many variables but not a lot
of values, we see that tightening the lower cardinality seems to be irrelevant for the most
part, as it is the upper cardinality that dictates the victor. If we loosen the upper cardinality
enough, Multi rises on top, except for when the lower cardinality is tightened more than
50% and the upper is fully loose, in which case the hard lower cardinality bound takes
over and lets symgcc win.
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Figure 10: Comparison of symgcc versus Multi for instance big-var-low-val-sparse, for different
cardinality bound percentages

Finally, in Figure 11 which contains results for a sparse graph instance with many values
but not a lot of variables, we observe the following: for lower cardinality bound less than
50%, symgcc wins until the upper cardinality is unbounded enough to be larger than 50%.
For lower cardinality bound tighter than 50%, symgcc generally wins regardless of how
loose the upper cardinality bound is, except for 4 cases.
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Figure 11: Comparison of symgcc versus Multi for instance low-var-big-val-sparse, for different
cardinality bound percentages

In general, we can conclude that symgcc can outperform Gecode’s default solution as we
tighten the cardinality bounds. After all, it’s the set cardinality restriction that differentiates
symgcc from the original gcc.

5.2.2 Sports Tournament Scheduling

The problem concerns to schedule a tournament involving n teams over n−1 weeks, with
each week consisting of n

2
periods. A period signifies a time slot at which a match between

two teams can take place. The goal is to create a schedule such that all teams play with
each other once, no team plays twice during each week, and no team plays more than 2
times during each period across the weeks.

To solve this using our constraint, we define a Set variables array of rows equal to the
number of periods and columns equal to the number of weeks. Each set variable repre-
sents a game between two teams, and thus we set the lower and upper cardinality bounds
of all of them to be equal to two.

To state that all teams should play with each other across the tournament season, all we
need to do is prohibit a pair of teams from playing with each other more than once. In
other words, it suffices to constrain each variable to be different from all the others. For
the restriction that no team should play more than once per week, we can define a symgcc
for each week, with lower and upper bounds for each value equal to 1. Finally, to ensure
that a team can play at most twice during a certain period, we define a symgcc for each
period, with the numbers zero and two as lower and upper bounds for each value. For all
the symgcc constraints, the cardinality bounds are equal to two, since we are dealing with
pairs of teams on each time slot.
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Since Gecode does not offer global cardinality constraint defined on sets by default, to
achieve the same behaviour without our constraint, we need to double our variables. We
now define two variables per time slot, thus resulting in a matrix of rows equal to the
number of periods but columns equal to twice the number of weeks. We need to do this
to represent pairs of teams.

The restriction about each period remains straightforward, as all we need to do is define a
gcc for each, in the same manner as we did earlier. For the restriction per week, we need
to make sure that we include all pairs of teams on each gcc for each week. Thus, for each
weekly gcc we have double the variables involved. Finally, the obligation that each team
should play with each other requires some extra work. Like before, we can express this by
stating that no teams should play each other more than once, thus all team pairs should
be different.

Assuming w weeks, p periods and t teams, let X be a single dimension version of the
matrix that we described that we need for this model, consisting of w × p × 2 integer
variables. If i and j index the beginning of two different time slots within X, we can define
the following constraint for each possible pair of i and j representing different time slots:

¬(Xi = Xj ∧Xi+1 = Xj+1)

∧
¬(Xi = Xj+1 ∧Xi+1 = Xj)

The above states that for a specific pair of time slots, there should not be the same pair
of teams playing. We will call this model Multi, and we will assume that we use arc con-
sistency on it during experiments, as we have empirically found that it provides the best
results for it.

In Table 11, we compare the time required to generate a tournament schedule, for different
number of teams and with different configurations. A dash indicates that no solution was
found within a time limit of 10 minutes.
Table 11: Time spent to find a solution to the Sports Tournament Scheduling Problem for different

number of teams

V al Dom Multi

6 71ms 3ms 12ms
8 2m53s 3.9s −
10 − 6m22s −

We can clearly see that symgcc outperforms the Gecode alternative. Arc consistency is
the best configuration, but even when not applying it, it is still much faster than Multi,
as even with 8 teams Multi cannot find a solution within a reasonable time limit. We can
conclude that this happens because by using set variables we are dealing with a smaller
total number of variables, and propagation can also have a more global impact compared
to decomposing to multiple integer variables. It is a problem case in which having the
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ability to model using a set helps significantly.
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6. CONCLUSIONS AND FUTURE WORK

Global cardinality constraints arise very commonly in real world applications. We have
studied the constraints Global Cardinality With Costs and Symmetric Global Cardinality
and implemented them within the open source constraint solver Gecode, which offered no
native support for them prior. We have described various different implementation choices
that we have went through, as an attempt to optimize the performance of the constraints.
For the Global Cardinality With Costs, we have additionally proposed a powerful branching
heuristic that can reduce computational time in most cases. We have discovered through
experiments that the more we restrict the cost upper bound for this constraint, the better
it will perform compared to using a decomposition. Moreover, we have explained how to
expand its use case to the scope of optimization problems, outperforming theGecode built-
in example for the Traveling Salesman Problem. For the Symmetric Cardinality Constraint,
it is the tightness of the cardinality bounds that dictates performance. In both cases, we
have shown that under certain conditions, using a global constraint that examines the
problem fully can provide better results than decomposing to multiple simpler constraints
that will potentially miss some domain pruning.

As for future work, there exist many other Global Cardinality related constraints that could
be implemented, for instance the Symmetric Cardinality Constraint With Costs, for which
we could combine algorithms and ideas from both the programs we have implemented.
Furthermore, additional research can be done towards their optimization, for example by
attempting a Fibonacci priority queue for Dijkstra’s algorithm, or by trying Dynamic Parti-
tioning for Symmetric Global Cardinality, and other micro improvements.
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ACRONYMS AND ABBREVIATIONS

CSP Constraint satisfaction problem
GCC Global cardinality constraint
EGCC Extended global cardinality constraint
COSTGCC Global cardinality constraint with costs
SYMGCC Symmetric global cardinality constraint
NP Non-deterministic polynomial time
MRV Minimum Remaining Values
LCV Least Constraining Values
DFS Depth-first search
BAB Branch-and-bound
TSP Travelling Salesman Problem
GLB Greatest Lower Bound
LUB Least Upper Bound
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ANNEX

Figure 12: BestBranch class implementing Local Object Handle to share state between costgcc
and custom brancher

1 #ifndef H_BEST_BRANCH
2 #define H_BEST_BRANCH
3

4 #include <gecode/kernel.hh>
5

6 using namespace Gecode;
7

8 // Local Object Handle for an array of integers on the heap
9 class BestBranch : public LocalHandle {

10 protected:
11 class LIO : public LocalObject {
12 public:
13 int* data;
14 int n;
15

16 LIO(Space& home, int n0)
17 : LocalObject(home), data(heap.alloc<int>(n0)), n(n0) {
18 home.notice(*this,AP_DISPOSE);
19 }
20

21 LIO(Space& home, LIO& l)
22 : LocalObject(home,l), data(heap.alloc<int>(l.n)), n(l.n) {
23 heap.copy(data, l.data, l.n);
24 }
25

26 virtual LocalObject* copy(Space& home) {
27 return new (home) LIO(home,*this);
28 }
29

30 virtual size_t dispose(Space& home) {
31 home.ignore(*this,AP_DISPOSE);
32 heap.free<int>(data,n);
33 return sizeof(*this);
34 }
35 };
36 public:
37 BestBranch(Space& home, int n)
38 : LocalHandle(new (home) LIO(home,n)) {}
39
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40 BestBranch(const BestBranch& bestBranch)
41 : LocalHandle(bestBranch) {}
42

43 BestBranch() {}
44

45 BestBranch& operator =(const BestBranch& bestBranch) {
46 return static_cast<BestBranch&>(LocalHandle::operator =(bestBranch));
47 }
48

49 int operator [](int i) const {
50 return static_cast<const LIO*>(object())->data[i];
51 }
52

53 int& operator [](int i) {
54 return static_cast<LIO*>(object())->data[i];
55 }
56 };
57

58 #endif

Figure 13: Custom brancher that reads shared information provided from costgcc to make a good
value branching choice

1 #include <gecode/int.hh>
2

3 using namespace Gecode;
4

5 class BestVal : public Brancher {
6 protected:
7 ViewArray<Int::IntView> x;
8 mutable int start;
9 BestBranch bestBranch;

10 class PosVal : public Choice {
11 public:
12 int pos; int val;
13

14 PosVal(const BestVal& b, int p, int v)
15 : Choice(b,2), pos(p), val(v) {}
16

17 virtual void archive(Archive& e) const {
18 Choice::archive(e);
19 e << pos << val;
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20 }
21 };
22 public:
23 BestVal(Home home, ViewArray<Int::IntView>& x0, BestBranch& bestBranch)
24 : Brancher(home), x(x0), start(0), bestBranch(bestBranch) {}
25

26 static void post(Home home, ViewArray<Int::IntView>& x, BestBranch&
bestBranch) {

27 (void) new (home) BestVal(home, x, bestBranch);
28 }
29

30 virtual size_t dispose(Space& home) {
31 (void) Brancher::dispose(home);
32 return sizeof(*this);
33 }
34

35 BestVal(Space& home, BestVal& b)
36 : Brancher(home,b), start(b.start) {
37 x.update(home,b.x);
38 bestBranch.update(home, b.bestBranch);
39 }
40

41 virtual Brancher* copy(Space& home) {
42 return new (home) BestVal(home,*this);
43 }
44

45 virtual bool status(const Space&) const {
46 for (int i=start; i<x.size(); i++)
47 if (!x[i].assigned()) {
48 start = i; return true;
49 }
50 return false;
51 }
52

53 virtual Choice* choice(Space&) {
54 int p = start;
55 int maxRegret = x[start].regret_max();
56 for (int i=start+1; i<x.size(); i++) {
57 int regret;
58 if (!x[i].assigned() && ((regret = x[i].regret_max()) >

maxRegret)) {
59 p = i; maxRegret = regret;
60 }
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61 }
62 return new PosVal(*this,p, bestBranch[p]);
63 }
64

65 virtual Choice* choice(const Space&, Archive& e) {
66 int pos, val;
67 e >> pos >> val;
68 return new PosVal(*this, pos, val);
69 }
70

71 virtual ExecStatus commit(Space& home,
72 const Choice& c,
73 unsigned int a) {
74 const PosVal& pv = static_cast<const PosVal&>(c);
75 int pos=pv.pos, val=pv.val;
76 if (a == 0)
77 return me_failed(x[pos].eq(home,val)) ? ES_FAILED : ES_OK;
78 else
79 return me_failed(x[pos].nq(home,val)) ? ES_FAILED : ES_OK;
80 }
81

82 virtual void print(const Space&, const Choice& c, unsigned int a,
std::ostream& o) const {

83 const PosVal& pv = static_cast<const PosVal&>(c);
84 int pos=pv.pos, val=pv.val;
85 if (a == 0)
86 o << "x[" << pos << "] = " << val;
87 else
88 o << "x[" << pos << "] != " << val;
89 }
90 };
91

92 void branchBestVal(Home home, const IntVarArgs& x, BestBranch&
bestBranch) {

93 if (home.failed()) return;
94 ViewArray<Int::IntView> y(home,x);
95 BestVal::post(home, y, bestBranch);
96 }
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