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ABSTRACT

In the new era of data, companies and organizations around the world offer Machine
Learning Services as a tool for enhancing people’s lives. Recommendation algorithms,
search engine’s, intra-orgranization usage in medicine, military etc. Αll of the above are
working on top of continuous data streams which are getting larger and more rich on user
data, day by day.

Users, unaware how their data are being used, accept terms and conditions, giving away
the right of data privacy, participating in various machine learning experiments with the
promise of each vendor’s data anonymity process. The vendors are reassuring users
that their data are safe and completely anonymized, ignoring the fact that the machine
learning models, they so much strive to incorporate to their product flow, suffers from
subtle vulnerabilities, which can be used to expose and identify users, along with their,
otherwise, private data.

These types of attacks are called Population Inference Attacks and we are, specifically,
going to deepen our knowledge and analyze with detail the so-called Membership Infer-
ence Attack.

In these attacks, the target uses a machine learning model trained on a secret ’target’
dataset. On the other hand the attacker, tries to inference whether some user-victim is a
member of this dataset. To display the danger posed by this attack consider the scenario
where an attacker knows that the clinical records of a user-victim are part of a disease-
related-model’s training set, then the attacker can infer if the person has the disease with
high certainty, leading to a serious privacy breach.

The goal of this thesis is to further examine, analyze and understand the mechanism,
reasoning behind membership inference attacks against machine learning models, as well
as the effect and the various ways we could prevent data leakage during training of ML
models.

Throughout this thesis, a plethora of plots and boards will be provided to the reader, to
enhance his/her understanding of this study via experiments.

SUBJECT AREA: Data Privacy, Machine Learning

KEYWORDS: Machine Learning, Neural Networks, Classification, Differential Pri-
vacy, Security, User data, Data Privacy



ΠΕΡΙΛΗΨΗ

Στην σύγχρονη εποχή, οι εταιρίες και οι οργανισμοί σε όλο τον κόσμο, χρησιμοποιούν
υπηρεσίες μοντέλων μηχανικής μάθησης, ως ένα εργαλείο για την βελτίωση της ζωής των
πελατών τους. Αλγόριθμοι συστάσεων ταινιών, παιχνιδιών και τάσεων, μηχανές αναζήτη-
σης, αλλά και ενδοεταιρικές υπηρεσίες σε φαρμακευτικούς, στρατιωτικούς οργανισμούς,
λειτουργούν βασιζόμενοι σε μια συνεχή ροή δεδομένων, η οποία συνεχώς αυξάνεται σε
όγκο και πλήθος.

Οι χρήστες αγνοώντας το πως οι πάροχοι χρησιμοποιούν τα δεδομένα τους , συννενούν
να παραδώσουν το δικαίωμα της ιδιωτικότητας των δεδομένων τους, βασιζόμενοι στον
εκαστοτε οργανισμό για την διατήρηση της ανωνυμίας και της ιδιοτικότητας των ευαίσθη-
των πληροφοριών τους. Απο την άλλη πλευρά, οι πάροχοι κατευνάζουν τις όποιες ανη-
συχίες των χρηστών υποσχόμενοι πως χρησιμοποιούν τις τελευταίες τεχνολογίες ιδιοτι-
κοποίησης δεδομένων, αγνοόντας το γεγονός ό,τι τα μοντέλα μηχανικής μάθησης, που
τοσο πασχίζουν να βγάλουν στην παραγωγή, διαθέτουν ευπάθιες, οι οποίες διακιβεύουν
τα ευαίσθητα, προσωπικά δεδομένα των χρηστών τους.

Επιθέσεις, τετοιου τύπου ονομάζονταιPopulation Inference attacks και συγκεκριμένα εμείς
θα ασχοληθούμε με τα Membership Inference Attacks.

Σε αυτές τις επιθέσεις, το μοντέλο θύμα, εκπαιδεύεται πάνω σε ένα κρυφό συνολο δεδομέ-
νων, που αποτελεί τον στόχο. Ο κακόβουλος χρήστης από τη δικιά του πλευρά, προσπαθεί
να συμπαιράνει αν κάποιοι χρήστες-στόχοι ανήκουν μέσα στο παραπάνω σύνολο εκπαί-
δευσης. Ως προς της επίδειξη του κινδύνου μια τέτοιας επίθεσης σκεφτήκε ενα σενάριο
όπου, ο επιτιθέμενος γνωρίζει πως τα κλινικά δεδομένα ενός χρήστη, χρησιμοποιήθηκαν
για την εκπάιδευση ενός μοντέλου προβλεψεων σχετικών με μία ασθένεια. Ο επιτιθέμενος,
γνωρίζει πλέον αν το θύμα έχει την ασθένεια ή όχι, εφόσον το μοντέλο του έχει εκθέσει τις
προσωπικές πληροφορίες του θύματος.

Η εργασίας αυτή έχει ως στόχο ο αναγνώστης να εξετάσει, αναλύσει και κατανοήσει τον
τρόπο λειτουργίας των Membership Inference Attacks, καθώς και τις επιπτώσεις τους και
τις διάφορετικές άμυνες που μπορεί κανείς να λάβει για να αποφευχθεί η διαρροή δεδο-
μένων κατά την εκπάιδευση μοντέλων μηχανικής μάθησης.

Για την καλύτερη κατανόηση και ενίσχυση των επιχειρημάτων που ακολουθούν, παρέ-
χουμε διαγράμματα και πίνακες ως οπτίκά βοηθήματα.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Προστασία και Ιδιωτικότητα Δεδομένων, Μηχανική Μάθηση

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Μηχανική Μάθηση, Νευρωνικά Δίκτυα, Ταξινόμηση, Διαφορική
Ιδιωτικότητα, Ασφάλεια, Δεδομένα Χρηστών, Προστασία
Δεδομένων
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Membership Inference Attacks: Threat Analysis

1. INTRODUCTION

1.1 Data Leakage in ML Models

In a world where machine learning, data science and automated decision making is the
leading power of most organizations, user data are of the greatest importance. Unfortu-
nately, that means that private user data are on the scope for many malicious individu-
als/organizations, aiming to exploit this knowledge for covering their own agenda. One
of the ways privacy could be breached, is by exploiting inherit vulnerabilities found in the
structure and nature of many ML models, deployed in public.

ML Models, by definition, try to fit training data, so that they can distinguish patterns on
them and ’learn’ how to make elaborated predictions on new input queries. This training
routine, if not done with caution, has one particular disadvantage. The training samples,
should not be skewed in any way and should be acquired randomly and uniformly across
the population we want to describe, otherwise the statistical models over-fit on them and
making non generalizable predictions, based solely on the patterns of the provided training
set. This phenomenon is called over-fitting and it causes models to under-perform when
making predictions on unseen input data. This situation is the reason behind ML models
responding with abnormal confidence to some queries, while failing to hit random choice
accuracy on others[15]. Over-fitting is the simplest vulnerability an adversary would exploit
to infer private user information.

In this thesis, we are considering only classification algorithms, meaning that the model
receives an input vector of features of any kind and it returns the predicted labeling for
input object, along with the prediction confidence scores. These models seems to be the
perfect candidate for our attack since we can use statistical inference methods to predict
a victim’s membership status.

On a different notion, the risk of breaching privacy has motivated respective defences,
which, as we will see, are not always effective against more proactive and creative ad-
versaries. So, why is over-fitting and data leakage directly connected? How do we detect
such subtle vulnerabilities on our models? How could we be sure that our models are
completely bulletproof and is that even possible when discussing ML algorithms? These
are some of the questions, we are trying to answer in this Thesis.

1.2 Membership Inference Attacks

Given a target ML model and its training data-set, an adversary could use a Membership
Inference Attack, in order to infer the membership status of users, respective to the target
data set, resulting to exposure of sensitive private user data.

A membership inference attack could be described with the following example. Let’s say
that Alice, is a patient of hospital A and she is diagnosed with cancer. At the same time,
hospital A has agreed to provide scrubbed patient data to a data analysis team, for the
training purposes of a model that predicts the probability of a patient to have cancer, based
on a medical feature set. Now let us say that Bob, one of the analysts, wants to infer if
Alice is in this training set, so that he knows for sure if she has cancer or not. So Bob
uses a membership inference classifier, such as the one we describe later and attacks the
model. If the attack is successful, then sensitive medical information about Alice’s health

E. Moutafis 14
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are publicly disclosed.

Attacking Different Services Membership Inference Attacks have multiple stages and
each one of them could be modified to fit the respective attack context. Throughout this
thesis, we explore the different points of view of the attack and experiment on different
models and data-sets, while observing eachmodel’s behaviour, on a given data-set. At the
same time, we try to elaborate on the observed behaviour and comprehend the reasons
behind the attack’s success or failure. Proceeding, we provide the reader with a high level
overview of the two main attack scenarios we encounter, with respect to the target model’s
framework interface.

Confidence Vector Membership Inference Attacks In this version of the Membership
Inference Attack, the attacker has access to an output confidence vector, the ML service
returns, after a query. The confidence vector is a k-dimensional vector of probabilities,
representing the probability of the input object belonging to class c ∈ [0, k]. In our example,
the data analysis team’s model would have 2 labels, which would interpret the answer to
whether the queried patient has cancer or not. The adversary would use those output
vectors to infer membership of the victim user[10].

Nevertheless many ML classification frameworks provide either a slice of the confidence
vector (i.e. top 3 classes) or a sole label along with its confidence probability score(top 1
class), making the membership inference’s objective harder to acquire.

Label Only Membership Inference Attacks The Label-Only MIA aims to solve the
problem above by incorporating different techniques, throughout the different attack phases,
overcoming the edge case of top 1 class provided by the target model[2]. Referring back
to our example, this means that the target model would provide only a label (0 or 1) and a
confidence score, relative to that label.

This alteration, uses data augmentations and treats the attacking stage a little differently, in
order to bypass the lack of information on classes’ confidence probabilities. However, this
alternative is also, directly connected to the over-fitting degree of the target model, along
with the extreme confidence of predictions on queries alike the target’s training data.

Note that the basic vulnerability that our attack exploits is the fact that the target model is
over confident on predictions from its training set and not over-fitting solely, while there is
a direct connection between the two[15]. Later on we discover that, in most attack cases,
the data-set characteristics and the implicit effects of model behaviour on predictions play
a significant role to the overall attack success.

1.3 Thesis’ Goal

Τhe main goal of this thesis is to understand the basic mechanisms of Membership Infer-
ence Attacks and elaborate on the fact that ML Models have inherit vulnerabilities, with
data inter-relations and varying model behaviour on different data-sets, being at the very
center of them.

The following chapters aim to thoroughly explain the attack flow and the mechanics of
every stage in a MIA and elaborate on the reason the attack works, firstly on a theoretical

E. Moutafis 15
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basis and, secondly, according to experimental results, plots, boards, etc. Afterwards, we
focus on some slight alterations of the main attack, in order to broaden our understanding
of it.

Finally, we also provide the reader with a high level overview of proposed defences and
some experimental results from our research based on the theory behind those defences.
In the same spirit, we also discuss of how MIAs would overcome some of the most famous
defences and we search for the roots of this particular fact.

E. Moutafis 16
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2. BACKGROUND

2.1 Machine Learning

Machine Learning (ML) is one of the most advanced and continuously growing fields of
our time. It focus expands on creating prediction models and using statistical algorithms
for predicting the behavior of an object, given a subset of the object’s features. Essentially
in ML we call this set of objects a dataset

D = {xi,yi}Ni=1 ∼ p, xi ∈ RD, N,D ∈ N+

where xi’s are representing the objects’ feature vectors, the independent variables and yi

are representing the true output values, the dependent variables, that the ML model tries
to predict.

To apprehend this task, we use a so-called learning algorithm that is nothing more that
the iterative solution of an optimization problem. The objective function of this problem is
called the loss function and usually refers to the ’distance’ between our predicted values
ŷi and the true values yi. Let f(x,w), be our statistical predictor, where x is the input value
and w is our algorithms weights, which consist the trainable terms of our function. Also,
let L(f(x,w),y), be our loss function. The objective function of this optimization problem
is usually in the form of

min
w

L(f(x,w),y)

By solving this equations, we usually derive either a closed form solution or an iterative
weight update rule like the following

w = w − η · ∇L(f(x,w),y).

This final equation wraps up on of the most famous update rule based algorithms, gradient
descent.

Classification is a supervised learning technique that is used when the problem lies to
assigning distinct classes or ”labels” to an entity, based on a feature set. Given an input
vector x, the MLmodel outputs a k-dimensional probability vector y, where k is the number
of possible classes. Following we define some key terminology,

• Decision Boundary is the region of problem space, where the classifier predictions
are ambiguous. The reader can think of this area as a line in a 2-D vector space
defined by the equation y = wT · ϕ(x), x, w ∈ RD, where w are the tuned weights
and ϕ(x) is a transformation of the input space.

• Binary Classifier is a classifier that uses one single decision boundary to predict
the binary class of an input datapoint (0, 1).

• One vs All Classifier is a group of binary classifiers, discriminating their respective
class from all others used to solve the multi-class classification’s objective.

• Linear Classifier is a classifier that uses a linear function to create decision bound-
aries. Most famous example of this classifiers are the logistic regression classifiers.
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• Non Linear Classifier is a classifier that uses a non linear decision boundary, usu-
ally used when input distribution follows a non-linear behaviour. Classic classifiers
with non-linear decision boundaries are neural network classifiers and knn classifi-
ers.

2.2 Neural Networks

Figure 2.1: Artificial Perceptron

Neural Networks are a subset of ML algorithms and organization interest has being grow-
ing large for the last decade, although their creation goes back enough.

The core of a neural network is called a perceptron, like the one in Figure 2.1. The per-
ceptron is consisted of the following parts

• Input weights: The weights that resemble to each one of the input features, plus
one bias weight. These are also called parameters of the perceptron.

• Aggregation function: Is usually a sum function that sums up the information the
perceptron has acquired from input.

• Non Linearity: A non linear function like sigmoid, ReLU, ELU, etc, which enables
the perceptron to detect non linear patterns in features without the use of any input
transformation.

In the end, we can interpret the described behaviour mathematically through the following
equation

ŷ = g(w0 +XTW ),

where X and W are the matrix equivalent of x and w

This basic paradigm can be expanded to perceptrons with multiple exit nodes and even
multiple perceptrons connected together, creating layers and resulting to what we call a
neural network. For example two perceptron with all inputs and outputs connected to each
other is called a dense layer, like the one below.

Following we need to train the neural network to identify patterns in the input feature space.
As we have already stated, neural networks can learn non linear patterns with the use of
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a non linearity transformation. In order to adjust the NN’s weights accordingly so that we
converge to a better solution we use the empirical loss

J(W ) =
1

n

n∑
i=1

L(f(x(i);W ), y(i)),

where x(i) is the i-th input vector, y(i) is the i-th target value and n is the size of the dataset.

In our case, we care more about solving classification problems with NNs, so we use the
cross entropy loss function

J(W ) = − 1

n

n∑
i=1

y(i) log(f(x(i);W )) + (1− y(i)) log((1− f(x(i);W ))),

and it’s multi-class variation.

Goal of training is to solve the following minimization problem

W ∗ = argminWJ(W ).

This task is easily apprehended via the gradient descent algorithm, which uses the deriv-
ative of the loss function and attempts convergence to the global minima of J(·).

First part of training is the so called, forward pass that estimates the output predicted value
and the loss quantity that represents the pass through the whole NN. After that we proceed
to the phase of backpropagation, where the derivatives of the loss function at each level
is propagated through the whole neural net and the weights are being updated.

Convolutional Neural Networks or CNNs are another great part of the Neural Networks
field and are defined by 2 basic layers

• Convolutional Filters which aim to extract features from the data and might even
reduce the feature dimensions

• Pooling Layerswhich aim to downsample the feature maps after a convolution layer
and are used for generalization reasons

Figure 2.2: Convolutional Neural Network

Usually CNNs are used with image-like inputs but they can also be used with time series
and any other input, from which features could be extracted. At the very end of a convo-
lution and min/max pooling layer sequence, there is often a series of densely connected
layers that learn the features and generate the predicted values, or as prefered in our
case, predicted classes.
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3. CONFIDENCE VECTOR MEMBERSHIP INFERENCE ATTACK

In this section, we formalize the membership inference attacks against ML models, stat-
ing the following question: Given an instance x and black box access to a classification
model Ft trained on a data setDt, can an adversary infer whether x ∈ Dt, with high confid-
ence?. To answer this question, Shokri et al [10] turned Machine Learning against its self
and exploited inherit and fundamental vulnerabilities of ML Models and leak meta-data
about the training data set, achieving highly confident inference models, that could leak
the membership features of victims, breaching their privacy.

The definition above points out that MIAs are more interested in the performance and
behaviour of Ft on data inside and outside of Dt, than on the actual data content itself[5]
[10][13]. This fact is realized in other studies on ML data leaks, where Yeom et al[15] infers
conclusions about the data used to train an ML model, using threshold tests on model
performance and loss metrics. Following, we provide the reader with the assumptions of
the original confidence vector based membership inference attack[10] and a general high
level outline of this chapter.

Before we continue any further, we note that one of the basic privacy-breaching vulner-
abilities, that this attack exploits, is that the target model is in some way overfitted on
its training dataset and because of that it may leak important information about the data,
through the way it behaves on input data, based on their existence in its training (target)
data set. Note that over-fitting is not a necessary factor for a model to manifest MIA-related
vulnerabilities, but this is the most common case in most vulnerable models.

Following the definition of MIA attacks along with acknowledging the fact that most pop-
ular public ML models today are used by the MLaaS (Machine Learning as a Service)
paradigm, we can state the basic adversary assumptions. Firstly, given a target model Ft

and its training set Dt, we assume that the adversary is able to generate data samples,
from a similar distribution as the training data. This data set is called Attacker’s Dataset,
Da and it is completely disjoint to the target’s training set, meaning that Dt ∩ Da = ∅.
Following, we should consider that the attacker has some kind of black box access1 to a
trainable model, which is of the same type as the target model. This is quite common in
MLaaS, since there are different services provided by the organization, that increase both
the utility of those models and the exploitation surface. Nevertheless, having black box
access to those models, prevents exposition of hyper-parameter tuning details and other
model meta-data to any casual user. So, in that spirit, we should now proceed to a high
level overview of a membership inference attack.

At the first stage of a MIA attack, the adversary accumulates as much data similar to the
training data set, as he can. This can be accomplished via various ways, such as Stat-
istic Based Generation[13], Active Learning Generation[13], API Querying[10][13], Re-
gion Based Generation[13] and others. The next step is consisted of training a bundle of
shadow models. Although we explore the shadow paradigm in greater detail later on,
we note that shadow models are ordinary ML models, used for imitating the behavior of
the target model. This step is called Shadow Training.At the end of this pipeline, we train
an attack model. By querying the shadow models, we build a new data set, the Attack
Model’s Data set, that we use to train our attack model. The latter is used to infer mem-
bership of a data point, provided only with an output vector, acquired after a query on the
target model (Figure 3).

1Usage of the mechanism as a components, with no knowledge of internal settings
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Figure 3.1: Overview of a Membership Inference Attack

In our experimental attacks we incorporated models from Shokri et al[10], specifically the
CNNmodels and tried to adjust the hyper parameter tuning in order to get the best model in
every case. In the same spirit we tried to alter the Shokri et al.[10] proposed attack model
architecture and documented our results, along with creating plots to elaborate further on
the points we make throughout this whole chapter.

3.1 Attacker’s Dataset

So far, we stressed the importance of providing the attack mechanism with a high quality
dataset, with respect to similarity to the target’s training data set. This data set is also
called ”Shadows’ Dataset”. In this section, we explore the different ways an adversary can
acquire this kind of dataset and determine the best way to do it, under various context.

Statistical Based Generation First, main technique of acquiring a data set to start our
attack with, is Statistical based generation. Statistical based generation[5][10][13], utilizes
informed sampling techniques in order to make a synthetic data set that is from the same
distribution as the target data set. This method, assumes that the attacker has some
access to meta-data about the distribution, such as the mean and standard deviation of
the marginal distribution for most features.

This technique utilizes, statistical information to apply informed sampling, based on ad-
versary’s a priori knowledge, resulting in the very good basis for our attack, meaning that
the membership inference confidence is quite high and the attack performs accordingly
outside of a local-training context. According to Shokri et al[10], shadow data sets must
be acquired from the original data distribution in order for the attack model to fully capture
the target model’s behaviour on data set, sampled from the very distribution, on samples
of which, the target model has been trained on.

Nevertheless, Salem et al[9], argues that this assumption could be relaxed and that in
particular cases of MIA, it is not even necessary in any degree.
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Query Based Generation An additional way of effectively acquiring a ”Shadow’s Data
set” is to utilize the target model API, combining it with a local search type of algorithm,
generating synthetic data. This algorithm generated initially by Shokri et al[10] and dis-
cussed further in[5][9] [13] seems to be a respectful alternative over a white-box derived,
statistical based generation method.

The basic idea behind this technique is that a randomly generated binary interpretation of
a data point, can be transformed to a legitimate data point using the pattern recognition
mechanism of the target model that is usually quite sensitive on the input feature distri-
bution, because of the over-fitting on the training data set. Firstly, we generate a random
binary vector and after that we progressively try to adjust the vector to fit the distribution
space, with respect to each feature. At the same time, we define some score, thresholds
considering the predicted label confidence and the adjustment mechanism details, that
ensure we do not waste time and resources on trying to ”improve” a ”broken” data point.

Algorithm 1 Data Synthesis using the target model, Shokri et al[10]
Require: class : c
1: x← RandRecord() ▷ Initialize Record Randomly
2: y∗c ← 0
3: j ← 0
4: k ← kmax

5: for iteration = 1 . . . itermax do
6: y ← ftarget(x) ▷ Query the target model
7: if yc ≥ y∗c then ▷ Accept the record
8: if yc > confmin and c = argmax(y) then
9: if rand() < yc then ▷ Sample

10: return x ▷ Syntetic Data
11: end if
12: end if
13: x∗ ← x
14: y∗

c ← yc
15: j ← 0
16: else
17: j ← j + 1
18: if j > rejmax then ▷ Many consecutive rejects
19: k ← max(kmin, ⌈k2⌉)
20: j ← 0
21: end if
22: end if
23: x← RandRecord(x∗, k) ▷ Randomize k features
24: end for
25: return NULL ▷ Failed to synthesize

Shokri et al[10], proposes Algorithm 1, a random generation based algorithm, that tries
to converge to a data point that resembles samples from the target distribution. This
algorithm penalizes many failed attempts and dismisses records that does not seem to
”improve” their synthesizing score over time. In addition, Shokri et al[10], integrates some
hyper-parameters that control the quality of the data set and could be adjusted to satisfy
the majority of attack cases.

Although the algorithm is successful in general, there are some downsides with respect to
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the data quality and completion duration. This algorithm is generating new features totally
at random, meaning that convergence is not promised and that the final data might be of
poor quality. At the same time, data that cannot have a binary representation, like images,
where features might be composed in a vector space and not in a smaller dimension
space, are almost impossible to be synthesized by this algorithm given its binary nature.
Any changes on the latter cause execution time and search space to explode exponentially
and drop the algorithm’s utility by a lot.

Active Learning Active learning[5][13], as a semi-supervised technique, tries to take a
small complete data set, allegedly sampled from the same distribution as the target data
set, and labelize a huge unlabeled data set. The task of label assignment is always a diffi-
cult one, meaning that the adversary might waste time and resources, whether he decides
to use a more brute force way. At that point he can use a small representative labeled
data set, derived by the larger one with a brute force technique and automate the task
of label assignment. This technique might be combined with a black box statistic based
generation, where we can generate a large number of input data, but with no knowledge
on their respective labels.

Region Proximity Based Generation The last method we refer to is Region Based
data point generation. In this method, we try to apply perturbation on a given data point
x, labeled with class y and we ensure that dist(x, x′), x′ ∈ Perturbations(x) is under some
predetermined threshold. This attack could be combined with some of our white box ap-
proaches, like the white box version of the statistical generation, or could occur before an
active learning pass, in order to generate more ”unlabeled” data beforehand. Note that all
the perturbations that we generate must get the same label y as the original data point x.

3.2 Shadow Models

Throughout this section, we describe the reason that we need shadowmodels, the shadow
training process and the impact they have to overall attack performance.

3.2.1 Shadow Models Promise

As we have already stated, a Membership Inference Attack will focus solely on the beha-
viour of the target model on specific data and not to the data itself. This is the real reason
that a data set from the same distribution is required and why the attack succeeds even
if the attacker’s data set is disjoint to the target data set. The target model has a specific
type (i.e. Logistic Regression, Support Vector Machine, NN, etc), is tuned in a certain way
(adversary has no knowledge on tuning) and is trained on data from a particular distribu-
tion, that would effect the classification boundaries and the overall behaviour of the model
on any given input x.

In the same spirit, we must note that the Shadow Models are just another way to sample
our very own data set to train the final attack model. You can think a Shadow Model, as a
simulation of the target model, that provide us with attack training samples and the ground
truth on input’s membership, in order to build a supervised model that infers membership
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on any given input confidence vector. Following, we go through some definitions and
mathematical notation.

We define a Shadow Model, Fshadowi
, i ∈ N, which we train on a slice of the provided

attacker data set, its Shadow Data set Dshadowi
⊆ Da. Think of each Dshadowi

= {x, y}Ni=1,
where an adversary, could give x as input to the target model and receive a probability
vector output, p = (p1, p2, . . . , pk), in a k-labels, classification problem.

The Shadow Models Bundle, promise that, whether Dshadowi
, ∀i is similar to the target

model’s data set, distribution wise, they simulate the behavioural characteristics of target
model, on ”members” and ”non-members”, referring to the produced confidence scores.
Following, we explain how the adversary can train the shadow models and what impact
the shadow training has to the quality of attack model’s training set.

3.2.2 Shadow Training

To start with, the adversary shuffles and dividesDa, toN different subsets, usually of equal
size, where they might be overlapping[10][13]. Following this division, each Fshadowi

(·) is
trained on its respective data set Dtrain

shadowi
and its performance is evaluated on Deval

shadowi
.

Note that
∀iDshadowi

∩Dt = ∅

The training process set up, is one of the most crucial decisions the adversary has to
take, since in many cases training is heavily affect the shadow models’ behaviour and
the degree of generalization and over-fitting of the attack model. For example, hyper-
parameter tuning, early stopping and learning rate decay usage must be decided before
training starts and can be applied to all or some randomly chosen shadow models in order
to sample from a larger attack hypothesis space. These little tricks increase utility of our
attack, while at the same time, they also add complexity to it, increasing the need for a
large sizedDa and more shadowmodels, than the conventional attack proposed by Shokri
et al[10].

Figure 3.2: Target and Shadow Training[10]

As the figure above suggests, Shadow Models are usually of the same type as the target
model[5][10][13] and in most cases of MLaaS, we use the very same trainable API-Service
to produce the final Shadow Model Bundle. We will now continue with some theoretical
notes and details about the impact of meta-tuning the shadow model bundle.

E. Moutafis 24



Membership Inference Attacks: Threat Analysis

3.2.3 Shadow Models Impact

Firstly, we must consider the number of total Shadow Models in the bundle. As a general
rule of thumb, Shokri et al[10] proposes that, the more shadow models one adversary
trains, the better the resulting attack model is. This conclusion, derives from the fact that
the more shadows’ behavior, varies, the better the attack model, captures the pattern of
this behavior in ”members” and ”non-members” input data points. Nevertheless, Salem et
al[9], argues that, with only one shadow model, we can score similar attack performance
to Shokri et al’s attack. In this way, we relax the assumption that we need a large number
of shadow models to acquire a high scoring attack and we might even solve the resource
consumption problem, making the attack set up a little easier. Nevertheless, from our
own experimental results on reportedly various data sets, we notice that the difference in
the number of shadow models, plays a crucial role to overall attack success, concluding
that, due to the fact that MIAs are data-driven attacks, the number of needed shadow
models differs for each given data set. This is reasonable, whether the reader considers
the fact that every different data set, from a different distribution, would require different
handling in order to explain the meta-data hypothesis space, given the data distribution
and a classification algorithm.

In the same spirit, we must consider the type of the shadow model, as a main factor of
the attack’s success. As we have already stated, Shokri et al[10] and others [5][13] sug-
gest that the shadow models must be as much alike, to the target model, as possible.
This assumption, satisfies the Shadow Model Promise and ensures that we achieve the
highest possible scores, given that we have managed to explain the exact behavior of tar-
get model, on ”members” and not. Once again, researchers such as Salem et al[9], argue
that this assumption could also be relaxed. They specifically propose a more stochastic
method of choosing the shadow model type, meaning they incorporate an ensemble of
shadow models and provide a total output confidence vector, aggregated in some way
(i.e. concatenate confidence scores, take avg/max). However, Salem et al[9], indicates
that for this ensemble alternative to work, the target model type should be one of the en-
semble’s supported types. Unfortunately, in a complete black box scenario, where we do
not have access to a trainable model of the same type as target, it is highly unlikely we
manage to successfully execute the attack without incorporating some element of guess-
ing, although there is no assurance that this method works in general, or even in the
majority of the complete black-box attack scenarios.

Finally, we could consider the necessity of a Shadowmodel bundle. As we have explained
so far, the Shadow Bundle is the most accurate way of simulating the target model and
execute a well informed and elaborated attack using a supervised machine learning attack
framework[5][10][13]. On the other hand, the target model, might be over-fitted enough
that the adversary would execute the attack with a simple threshold checking, given the
confidence vector or the per input loss function value[5][9][15]. In this kind of membership
inference attacks, there is no need for shadow models, or even for an attack model at all.
Concluding, this metric based attacks are a good alternative in a total black box setting,
but there is no reason to pick them over a supervised ML based attack.

3.2.4 Building the Attack Model’s Data set

At this phase of the attack, we already possess a bundle of trained Shadow models and
their respective training and evaluation data sets. We now shift focus on building a data
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set that can be used to train a binary classifier that decides the membership status of
x ∈ Rd, given its confidence vector p = (p1, . . . , pk), acquired by the target model.

We first start by constructing two sets, per shadow model, Din
shadowi

and Dout
shadowi

, where
they contain ”member”-labeled samples and ”non-member” samples, respectively. Spe-
cifically, we can define the sets as it follows

Din
shadowi

= {p(j), 1}nj=1, such that p(j) = Fshadowi
(x(j)), x(j) ∈ Dtrain

shadowi

and
Dout

shadowi
= {p(j), 0}nj=1, such that p(j) = Fshadowi

(x(j)), x(j) ∈ Deval
shadowi

By concatenating and re-shuffling those slices, we create a final data set that can be
utilized to train a binary MIA classifier.

3.3 Attack model

In the following few pages, we describe the set up and training procedure for the final
attack model of a membership inference attack. We also raise some points, about the
type of the model and the tuning based on the resources we have gathered.

Definition and Training Process At this stage of the attack, the adversary possesses a
synthetic dataset similar to the target dataset and has created a bundle of trained shadow
models, providing himself with a ”ground-truth” enriched dataset of confidence vectors. Let
us remind to the reader that, a MIA would learn to recognise and distinguise the patterns
of target model behaviour in ”members” and ”non-members”, that being the sole reason
we use the shadow models output confidence vectors.

Shokri et al[10], argues that the best way is to create another model bundle, in which
each class has its own MIA classifier. This means that we end up with k classifiers and
for a given input x, labeled as y, we need to use the appropriate MIA classifier to infer the
membership status. So let us define the attack model’s dataset

Dc
g =

N∪
i

{(p(j), I(x(j) ∈ ∪Din
shadowi

)) : y(j) = c}nj=1

and the attack model
F c
g : [0, 1]

k → N2

Having those definition, the adversary can use a ML training scheme and derive a bundle
of k models that he uses as described.

Aggregated AttackModel In our experiments we alter the architecture of the final attack
model by incorporating the ”true label” of input x, as a model parameter and letting the
selected ML algorithm interpret this feature as needed. Specifically, we define

Fg : Nk ∪ [0, 1]k → N2
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as our attack model and as we are about to see in our experimental work, the results are
relatively, if not exactly, the same. We also have to redefine the attack model dataset as

Dg =
N∪
i

{(y(j),p(j), I(x(j) ∈ ∪Din
shadowi

))}nj=1,

meaning that the last term of each tuple is the membership status and the rest are the
confidence vector concatenated with the true label.

Attack Model Impact Finally, we explain the attack model’s effect on the overall attack
performance. Most importantly, we would consider the attack model’s type, because as
we have repeatedly argued, MIAs are inherently data driven attacks, meaning that the
model, which interprets meta-patterns in Dg the best, would be the preferred classifier, for
the task. By the term meta-patterns, we refer to the fact that the original data space is
transformed, with respect to the behavior of the shadow models.

In many cases, when the target and shadow models are NN classifiers, the adversary
usually utilizes a shallow NN classifier as well [5][9][10][13]. On the other hand, when a
statistical approach is used for making predictions, the adversary incorporates this kind
of prediction models to both shadow and attack model architecture[5]. Finally, when the
adversary attacks in a total black box scenario, with no knowledge on target model ar-
chitecture, then the adversary could use an ensemble algorithm[5], or, more commonly,
a simple threshold based approach, to build the attack model, utilizing any target model
leakedmetrics. It’s important to understand, that these are just general guidelines and that
there exist many variations[5] of Shadow-Attack model architectures, where the design
process is always considering the target data set’s characteristics and the behavior of
each respective model type on it.

3.4 Conclusions & Motivations

Concluding our chapter on confidence vector membership inference attacks, we took a
deep dive into the mechanism and the different attack phases. We have also explicitly
addressed the characteristics that identify MIAs as data driven attacks and we have also
pointed out the importance of acquiring a good data set on the attack end, along with
some of the ways to acquire it, in order to realistically simulate the behaviour of target
model. Following, we discussed, the matter of Shadow Training and the reasons of why is
so important, if not crucial, to our attack. Finally, we focused on attack model and its data
set’s production, where we discussed the architecture and data formatting, respectively,
as proposed by Shokri et al[10]. We also, defined our own alterations, referring to some
of the above matters.

Nevertheless, the original membership inference attack, would, as we would see later,
become less effective, whether we decrease the amount of output information, such as the
number of labels and their confidence scores. The safest a model can be, is by providing
the user with only the top-voted label and its confidence score. In the following chapter,
we describe the effect of this situation on our original attack[10], while we are exploring an
alteration of membership inference attack, called Label-Only MIA[2]. This attack exploits
the same vulnerabilities as the original attack, but is more sensitive to the model’s behavior
on target data, achieving similar performance, at the same time.
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4. LABEL ONLY MEMBERSHIP INFERENCE ATTACKS

Mitigating Confidence-Based MIA As we have seen so far, membership inference at-
tacks aim to predict the membership status of a user, in a target model’s dataset, based on
the fact that a ML model predictions will score higher confidence, when the query sources
from its training set. This behavior derives directly from overfitting of target model on
its training set, where the model will learn training-specific data patterns, resulting to not
generalizing well outside the training set, hence the difference in the confidence scores.
A large amount of work has been submitted, in order to avoid these kinds of privacy leaks
through algorithmic training of prediction models. The two basic solutions proposed by
experts[2][9][10]; are

• overfitting reduction methods, such as regularization, dropout layers, early stop-
ping, weight decay or simply increase the variety and size of training data, aim to
fight the problem to its core and reduce overfitting[2][5][10]

• confidence masking, aim to hide as much information as possible from the ad-
versaries, minimizing data leakage by slicing or adding noise to the final output con-
fidence vector[2][6].

At this chapter, we focus on surpassing the obstacles, confidence masking defenses in-
troduce, since they are considered countermeasures, specific to Membership Inference
Attacks. Specifically, we are turning our attention towards the work of Choo et al[2] and
their Label Only MIA framework. This new version of MIA exploits the same vulnerabil-
ity, over-fitting, but with a rather interesting approach. Having in mind that an over-fitted
model makes robust predictions on augmentations of data points, seen during training,
we investigating the workings and the reasons behind these attacks’ success.

4.1 Attacker’s Dataset

As with the original version of membership inference attack, we start by describing the
attacker’s dataset, but this time, we focus on adjustments made to pave the way for the
Label-Only version of the attack.

With respect to the means of acquiring the attacker’s dataset, we can use anyone of the
various ways we proposed in Section 3.1. The Label Only attack builds on top of the ori-
ginal attack’s requirements and add some extra adjustments to each phase. Respectively
to how an adversary would use this dataset, Choo et al[2]; propose the use of data aug-
mentations for each record, that we use on the Attack’s Model Dataset building phase.
Following, we describe how Choo et al; uses perturbations of the attacker dataset and
what purpose does they serve.

4.2 Data Perturbations

One of the most popular ways of acquiring more training data during a MLmodel’s training,
is augmenting the training data set. These data augmentations of the original training
set, aim to increase the data variety the model sees through training, hence decrease
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training variance and over-fitting, so that the model generalizes better in foreign data.
Data perturbations can be applied in many datatypes, with the preferred candidate being
images, during a classification, recognition or identification task.

Images, in Machine Learning, are usually interpreted as tensors, meaning they are multi
dimensional data. At the same time, images are the only data where the user can easily
notice some relation between the features of the image (i.e. facial characteristics of a
person’s picture). That is the main reason, that perturbations of images, are easy to un-
derstand and even easier to design. Most famous perturbations of images are consisted
of translations, rotations, mirroring, filter convolution, contrast adjusting, cutting, blurring,
etc. We are interested only to the first 2 types of perturbations, as proposed by Choo et
al[2], because they provide us with convenient tuning and have a more subtle impact to
the prediction of the target model.

Perturbations of a multidimensional data point, could be interpreted as ”navigating” the
vector space of the data. Specifically, more subtle perturbations aim to derive a new
data point ”relatively close” to the original point (according to some metric), while more
aggressive perturbations, aim to derive a long distanced datapoint, with relation to the
original vector. Rotations and translations are considered ”subtle” perturbations, since
a rotation/translations of couple of pixels would not ruin the image’s feature correlation.
On the other hand, filter application or aggressive, non supervised mirroring, would be
considered ”aggressive” perturbation techniques (i.e. object identified as ”snow” being
orange after filter convolution). So the reader might be having the question of how would
perturbation help us to infer the membership status of a target datapoint, given a target
model? The answer is really simple, but quite creative at the same time.

Imagine an adversary, who executes a confidence vector membership inference attack,
but with only the top label, along with an optional confidence score, returned to him by
the target model. This adversary, as we show at the Evaluation section, will get poor
performance, which is a reasonable effect of minimizing privacy leaks through confidence
masking. Nevertheless, our adversary, convinced that the target model suffers from over-
fitting, notices that an overfitted model, would make more robust predictions, when input
belongs to its training set. This observation is the key idea of the Label Only Framework of
MIA. The fact that overfitted models, are less, prediction-wise, sensitive to changes/per-
turbations on their training data, could enable the attacker to infer the membership status
of the target dataset, without the need of any confidence vectors at all. In a total black-box
scenario this would mean, that the target model would only return a hard label, with no
confidence score coming along with it. As we are about to see, this situation does not
pose a serious threat for the attack’s performance.

So now that we made our case about data augmentations, we describe the framework of
using them along with some notation to set the foundations of Label OnlyMIA. Given a data
point (x, y), we create the augmentation set {x1, . . .xN}. Every xi, is an augmentation of
the original data point. The augmentation we use in our experiments[2] are image rotations
withing 15 degrees of the original image orientation. More specific, we use rotations of
magnitude r ∈ [1, 15], generating N ∈ {1, 3, 5} augmentations, in total, by rotating the
image r degrees, left and right. Furthermore, Choo et al; proposes translations of the
original image i, j pixels, horizontally or vertically, respectively, generating N = 4d + 1
augmentation, translated by, totally, d = |i|+ |j|. During the evaluation section we also try
to explore the effect the augmentation budget has in the Label Only attack context.
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4.3 Shadow Models

As we established earlier, Choo et al[2]; sustains the same assumptions and attack ar-
chitecture as Shokri et al[10]; with the sole difference that the target and shadow models
return only a label. With respect to this change, we describe how we should adjust shadow
models respectively, to fit the mechanics of the new attack.

4.3.1 Shadow Model Adjustments

Shadow models, following the assumption of using the target model as archetype, now
return only the top label of each predicted result. The functionality, as well as the reason
we are still using shadow models have not changed; shadow models still are imitating the
target model’s behavior and they still provide as with a basis of building a data-set to train
the inference classifier model[2][10].

In the same spirit, we must notice that no shadow models use any of the augmented
data, during their training phase. This refinement ensures that the Shadow training is
not impaired by learning any more than what the target data-set’s distribution allows the
target model to learn. The reader should not forget that using augmentations in training,
essentially normalizing the whole procedure, is yet another method that aims reduce over-
fitting, but there is a catch. Whether the data-set continuous to fail the generalization
diversity standards and the machine learning system has not escaped its previous low
data regime, the model still over-fits and the label only MIA continues to score satisfying
results (see Evaluation Section).

Having said that, we are ready to set up the AttackModel’s data-set, using a similar method
to the confidence based attack, with one small addition.

4.3.2 Building the Attack Model’s data-set

As we have previously stated, augmentations of a record x are a set,

Aug(x(k)) = {x(k)
1 , . . . ,x

(k)
N },

of N augmentations. Let (y1, . . . , yN)(k), yi = y(k), be the set of labels we assign to all
those augmentations. It is trivial to understand that all yi labels are all equal to the original
record’s label, y(k), since they are all referring to perturbations of the same original record.

Our next step is to query all shadow models on their Dshadowj
and acquire the predicted

labels for all perturbations. We use these predictions to form a new vector,

(Shadowj(x
(k)
1 ), . . . , Shadowj(x

(k)
N )) = (ŷ1, . . . , ŷN)

(k)
j

representing the behavior of the model on all augmentations of a specific record x(k) ∈
Dshadowj

, meaning that it gives away details about how sensitive the model is to the specific
input query.

To create the respective Dg’s record , we have to create the boolean vector

b(j,k) = (I(ŷ1 = y1), . . . , I(ŷN = yN))
(k)
j .

We should note that, for each prediction on a x(k) ∈ Dshadowj
, the respective b

(j,k)
i re-

sembles on a picture of over-fitting for all ”members”. This picture might differ along the
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different target models. For example using this paradigm on a trivial ”hard-memorizing”
ML model, which remembers every input, would result to b

(j,k)
i ̸=0 = false, where the ori-

ginal query’s b-value would evaluate to true, for all ”members”, due to prediction by sere
memory. On the other hand, non members would produce a vector of zeros. In this
specific case, determining ”membership” status would be trivial. Usually, the robustness
that [2]; refers to, is concerned with statistical models that classify input based on soft
boundaries, enabling close-to-original perturbation to easily be identified as of the same
class. Note that records in Dg interpret a normalized and vectorized form of a sensitivity
measure, based on locality on the vector space.

Concatenating the true label and the predicted label with this boolean vector gives us the
final inference record, on which we train our attack model.

At the end of this process we acquire the following data set

Dg =
∪
j

{(y(k), ŷ(k), b(j,k)) : (x(k), y(k)) ∈ Dshadowj
},

on which we can now attack our inference classifier.

As we can see, the new attack data-set format, has captured the whole information the
attacker wants the classifier to learn in a simple vector. More specific, we pass the true
label, interpreting the inference classifier choice, the predicted label, a seemingly con-
cise addition in order to inform the classifier for wrong target predictions and the boolean
perturbation vector, which interprets the behavior of the model on the i-th perturbation of
the target record. This boolean record could interchanged with the actual predicted label
instead of the output of the true label equality condition check. Nevertheless, a boolean
vector is way more subtle and normalized view of the information we are trying to interpret.

Now that we defined, the way we derive and the interpretation of records in our attack
data-set, we are ready to discuss the refinements of the respective attack model, along
with the impact it has on the attack.

4.4 Attack Model

Regarding the attack model’s architecture, we are using an inference model, similar to
the confidence based version of MIA, since the attack classifier is either a simple binary
classifier, based on a statistical model, or a shallow NN, Fg(·), which we train on the attack
dataset, Dg and use it to predict inference of the given member[2][10]. The definition of
this model does not change for our attacks and although Choo et al, utilizes Shokri et
al[10] type of attack model (one attack model per class), we move forward using our own
version of the model, which, as we may observe later, would not impair the results of the
Label Only attack.

As it is normal to assume, using a different kind of model, fitting for the inference problem
at hand, is still quite important and, although we might fail to score as high as the original
attack, in some cases a different model, than the best fitting model for a confidence based
attack, would pose the perfect candidate for a Label Only MIA attack model. Nevertheless,
to keep the comparison between the attacks as simple and intuitive as it can be, we use
the same models in our confidence based MIA vs label only MIA studies (section ”Attack
Evaluation”).
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4.5 Label Only MIA on Categorical Data

In the previous section about Data Perturbations (section 4.3), we described the data
types that we could apply intuitive and meaningful data augmentations. In this section, we
go beyond that and understand why unconventional and non intuitive data perturbation in
tabular categorical data, would allow us to generalize the Label Only framework to more
than just image data sets. We start with our assumptions and we propose a method of
generating random perturbations that actually allow us to integrate the Label Only Attack,
in another data-set class.

To begin with, assumewithout loss of generality, that our categorical data are purely binary.
This data set, D ∈ RN×D has been sampled from a distribution that determines a D-
dimensional sample space. Training a model on this sample space, create a models that
classifies queries based on binary vectors. On the other hand, the attack model, following
the attack pipeline we described, would infer membership status of a given victim, solely on
themeta-data acquired by the target’s prediction confidence vector. Leaving the adversary
out of the whole confidence vector is, seemingly, defending the model and hiding any
vulnerabilities. Note that the attack model is being trained based on ”prediction” data,
meaning we do not care about the actual relationship of the features, but only the behavior
of the model on them. This, gave us the idea of incorporating a new way of executing a
label only attack that use the following data augmentation schema, during the Attack Data
set acquisition phase.

Naive Binary Perturbator Let P (·), be the perturbation function, that accepts a data
point x ∈ {0, 1}D and outputs an augmentation set Augmentations(x). We propose a na-
ive version of this binary augmentation mechanism, in which we use a number of random
perturbations of the binary vector x, that satisfy a distance threshold. We also define the
distance between original and perturbation points, dist(x,xp), as the number of bits that
differ, with respect to their place in the binary vector, also known as hamming distance.

How it works This perturbation mechanism, produces an predefined number of perturb-
ations of the original data point, by utilizing different combinations of the binary features,
with no regard to the relationship between any k given features. This very behavior is
the reason behind its naive nature, since random selection of features, might meet the
end-goal of its creation, but it does not maximize the attack’s performance as much as it
actually could. Let us think, a normal ML model creation process. We start at data pre-
processing, feature extraction, model training, model evaluation and model selection at
the very end. The phase of feature extraction, is a key stage in the whole process, since it
defines the overall performance threshold in any case. In our case, we could think of the
feature extraction process as the random selection of x’s features to mix up. So, given
the non determinism, why would this mechanism work?

Why it works As we have already stated, MIAs are data driven, or meta-data driven
attacks, since their sole focus is the target model’s behavior on the target data set. This
very fact, in combination to the provided perturbations, enables the Label Only frame-
work to exploit, any target vulnerabilities, since the perturbations would introduce totally
foreign and maybe even non legit, queries that would stress the model and expose its

E. Moutafis 32



Membership Inference Attacks: Threat Analysis

over-fitted state, does it exists. So we could realize that, respectively to the naive perturb-
ator mechanics, one could propose a mechanism to maximize the explained variance of
the meta-data, meaning the sample behavior of victim model on target data set, and in
this manner generate the minimum number of perturbations to achieve the best possible
attack performance.

The need of tuning Our proposed perturbator, utilizes some hyper-parameters, used to
enhance and control the non determinism, but it also provides a threshold framework that
does not overload our attack model with irrelevant and redundant features. To start with,
we provide a max_n perturbation threshold, that reduces the number of generated per-
turbations up to a maximum. This specific parameter accommodates as a space threshold
since our data points count would now be a multiple of max_n, meaning a great increase
on the need for memory. Following, we provide a max distance threshold, that tunes
the number of features we want to change in its generated augmentation of a data point.
This threshold is related to the distance definition, we mentioned before and interprets a
”sphere” of data points, from which we get to choose to ”replace” our original point. Finally,
we provide the user with a sampling choice. This particular hyper parameter, enhances
the randomness of our perturbator and one can use it to study the difference between
choosing different feature sets, on which we base our augmentation sets.

As an additional note, it would be interesting to estimate the total number of perturba-
tions, our naive perturbator would produce, in order to elaborate on the aforementioned
threshold, relative to a single point’s total augmentation set size. Let n be the number
of binary features and max_dist = d. We now have to produce all the perturbation for
distance, dist ∈ {1, . . . , n} meaning we would have

|P (x)| =
d∏

i=0

(
n

i

)
perturbations in total. For example for a vector x ∈ {0, 1}20 and max distance of 2, we
would ultimately get 3800 augmentations of the original data point; too many features for
any simple attack model.

4.6 Conclusions

In this chapter, we focused on an obfuscated version of the default confidence vector
attack and, more specifically, in the Label Only[2] version of the attack. Choo et al[2];
constructed an attack framework, which can, not only overcome obfuscations of confid-
ence score information, but also, as we see in the next chapters, break many popular
defences that aim to mitigate confidence based MIA by ”masking” or hiding the output
confidence scores. Following the road-map to this MIA version, we set the motivation for
the Label Only Attack and describe how this attack works. One of the most crucial com-
ponents of the attack was the augmented query data-set we used as input to the model.
We essentially created a framework, where each original input query is interpreted by a
binary vector. Each element of the vector would represent the fact that perturbation’s pre-
dicted label being equal to the original predicted label. Respectively to this modification,
we established a new attack model definition, with similar architecture to the one on the
confidence based attack, but with a different interpretation to solve the task at hand. In
the same spirit, we argued on the fact that this attack would also succeed in data sets of
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different data types, relaxing Choo et al’s[2]; assumption, where they focused on applying
meaningful perturbations on the input queries, such as image translations and rotations.
At this point, we also proposed an augmentation framework, for data sets with categorical
features. Although we stated that the latter is fairly naive in its perturbation choices, we
elaborated why such a framework would perform satisfactorily, given that proper tuning
would be provided. At the end, we also proposed some motivations and thinking paths to
improve this unorthodox perturbation framework, by maximizing the explained variance of
the meta-data, our attack model is trying to explain.

So far, we have been arguing that the Label Only attack is an enhanced, more powerful,
version of the original Membership Inference Attack. This reputation, is based on the fact
that the most famous defences against confidence based Membership Inference Attacks,
namely confidence ”masking” defences, such as Memguard[6], or any other output obfus-
cation method, cannot protect user privacy against Label Only Attacks and the reason is
quite intuitive. Confidence masking defences, use noise injection or vector slicing to hide
information about target model’s behavior on target data-set, but, in order to retain utility,
they always return the true predicted label[2], meaning that the attack framework could be
mitigated to a Label Only Attack, with the respective assumptions and constraints. This
fact means that, although masking defences might confuse the original confidence based
MIA, Label Only attack’s performance, would not be impaired at all. Having established
that, how could we reduce the effect of label only attacks? Furthermore, given we achieve
our goal, how are we sure that there are no effect on the outliers of the data-set, which
models are known to learn by heart, essentially ”over-fitting” to them; how are we protec-
ted from this outlier attack? As an attempt to answer all these questions, we explore the
most popular defences and frameworks that ensure basic privacy promises, with respect
to the target ML models.
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5. ATTACK EVALUATION

5.1 Experimental Set up

For most of our experiments, we utilize identical or similar in most ways, neural networks
from the work of [2][10]. These NNs are usually simple and fast to train, while they serve
as a reference point to previous work[2][5][10]. With our focus turned on target models,
we try to keep the architecture and training process the same, especially in the image-
based experiments, where CNNs are utilized. Furthermore, the attack models, besides
the subtle changes we proposed in chapter 1, are the same shallow NNs that Shokri et
al[10] used in their original work.

On the other hand, all the statistical models, used with tabular data sets like Adult, Pur-
chase, etc, are hand-picked from a pool of available sk-learn models, following the set-up,
that previous work established[5][10]. In most of the cases, we do not diverge from the
previously tested ML architectures, while there are cases, where we slightly change the
victims’ and attack’s settings.

5.2 Metrics Used

With respect to the metrics used to evaluate our attacks’ success, we use the proposed
[2][5][10] precision, recall, as well as the AUC score. Furthermore we define one metric
for measuring target models’ vulnerability to a MIA attack, which be expressed in a unit of
its own.

Let Acc(Model(D)), be the accuracy of model Model(·) on dataset D. In the same spirit,
let Loss(Model(D)), be the loss value of Model(·) with input D, given an arbitrary loss
function. We define the following quantities

A =
Acc(Model(Dtarget))

Acc(Model(Dattacker))

and
L =

Loss(Model(Dattacker))

Loss(Model(Dtarget))

assuming that Dtarget ∩ Dattacker = ∅, since we need a data sets of both members and
non-members to estimate the victim’s vulnerability degree.

Given A and L we can define the following quantity as our unitary vulnerability metric

V uln(Model,Dattacker, Dtarget) = log 2× A× L

A+ L
.

We can notice that due to the fact that, A ≥ 1, L ≥ 1, we get V uln(·) ≥ 0. In theory, the
greater this quantity is, the more vulnerable the model is to our MIA attack, with V uln(·) =
0, meaning that the model is theoretically, bulletproof to a MIA, while the actual model
vulnerability can increase to∞, without any constraint.
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5.3 Datasets

The following sections are dedicated to introduce the datasets we used to evaluate our
experiments.

CIFAR-10 is a benchmark dataset, used during evaluation process of image recognition
and classification algorithms1. It is composed of 50, 000 training and 10, 000 evaluation
images, labeled with 10 classes in total. Every class has 6, 000 images. Cifar-10’s images
are 32 × 32 RGB images and are ideal for our experiments on how MIAs affect image
classification algorithms. We come back to this dataset quite often among our studies
results displaying. For our experiments we use different slices of Cifar-10 dataset to show
the attack performance, without the effect of any bias across those slices.

MNIST dataset2 is another benchmark dataset, where each 32 × 32 image, represents
a handwritten, centered digit. There are 70, 000 images, of which 60, 000 of them are part
of the training slice, while the rest consist the evaluation set. We also, use slices of the
dataset to study the effect of MIAs on MNIST dataset.

UCI Adult (Census Income) datset3 is consisted of 48, 842, records of 14 features each.
Features contain information about each record’s age, education, gender, marital status,
occupation, etc. This data set is used to train a binary classifier, that predicts if a person
makes more that 50K a year or not. We use different randomly sampled slices of those
data.

Purchase K data set4, is similarly acquired to Shokri’s et al[10], Purchase dataset, with
the sole difference that Kaggle’s ”Acquire Values Shoppers” Competition5 has changed
the dataset format a bit. The final dataset, is consisted of binary records, where each
feature is assigned 1 if the customer has acquired the described product or 0 if not. To
label this dataset, we use a K-Means algorithm in order to create 5, 10, 20, 50 and 100
labels, that interpret a customer type. At the end, we use the derived data sets to train a
new classifier that decides the customer’s type and we study the effect of labels’ amount to
our MIA attacks. The slices we use for target model’s training dataset, Dt, and attacker’s
dataset, Da, are as balanced as possible, through random sampling.

5.4 Confidence Based Membership Inference Attack Evaluation

We start with the default, confidence based membership inference attack and display
some of our experimental results, along with our notes and comments on the latter. In
order to recreate our attack, we provide a python library, implementing most of the attacks
and their alterations, which one could find in this GitHub repository.

1https://www.cs.toronto.edu/ kriz/cifar.html
2https://yann.lecun.com/exdb/mnist/
3https://www.kaggle.com/datasets/wenruliu/adult-income-dataset
4https://www.kaggle.com/datasets/vissarionmoutafis/purchase-datasets
5https://www.kaggle.com/c/acquire-valued-shoppers-challenge/data
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5.4.1 Target Overfit Effect

There is a variety of ways amodel could result to over-fit on its training set. In this study, we
explore the effect of the target data-set size/diversity and the number of training epochs to
the attack performance. The point of this study is to elaborate on the fact that over-fitting
is a sufficient factor for a successful and accurate attack.

In both runs, we use the CIFAR-10 data-set and a CNN model as target model. The latter
has 2 filter layers of 32 and 64 filters, respectively, pipelined into 1 max pooling layers
each and a tanh activation between each layer. At the end of the CNN, we use a dense
layer with 128 nodes, connected to an output layer of c nodes, where c is the number of
the classes on the data-set.

Overfitting: Extended Training While studying the number of training epochs effect,
we use an early stopping callback, during first training to acquire the best model. After
that, we train the target model for 2 epochs and then attack the model. Our adversaries
have in their possession 20 shadow models and 500 data-points for each one of them.
Comparing them with the initial 50000 data-points of the target training data-set, it is really
interesting to observe whether the attack succeeds, given the extreme gap between the
training set’s size and the adversaries’ data-set. Note that Shokri et al[10] argues that the
dataset size, especially in the case of CIFAR-10, is indicative of the diversity the target
model has witnessed, meaning that we don’t expect high performance. Nevertheless, we
expect to get accuracy over the baseline gap-attack model[15].

Figure 5.1: Target Model vulnerability metric with respect to epochs of target model training. Our
vulnerability metric quantifies the degree of over-fit in the target model. We observe that the more

we train the model the more it over-fits into its training data set

As we could see in Figure 5.2, the precision score hits a relatively good high-score of
almost 0.76. This maxima, indicates that the model was the most vulnerable at the 16-th
epoch, while before and after that point the scores seem to decline. It is valid to assume
that, at the left of the maxima, before 16 epochs of training, the model was increasingly
becoming more vulnerable, meaning that it over-fitted more on its training set.

Following, as Figure 5.3 indicates, we notice that the recall of the model behaves similarly
to the precision score, while it displays a smaller gap between its minima andmaxima. This
fact drives us to the conclusion, that the attack model is biased towards the ”member”
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Figure 5.2: Attack’s Precision Figure 5.3: Attack’s Recall Figure 5.4: Attack’s AUC Score

labels, resulting into high precision scores and relatively low recall. In other words the
model prefers to classify input queries as ”members”, indicating a low accuracy attack
classifier. Nevertheless, note how the attack model scores over the baseline and how the
AUC score in Figure 5.4 is resembling the very same behavior as attack’s recall.

In order to understand the vulnerability degree of our model, we could observe the vulner-
ability metric we proposed earlier in this chapter (Figure 5.1). The figure above displays
a constant and, most of the time, monotonous increase in the model vulnerability met-
ric, throughout the training, which might trouble us, referring to the reason that our attack
fails to perform better, as the training proceeds. The reader might have noticed that, our
main concern from the beginning of this experiment was the large gap between the at-
tacker knowledge of the data-set and the knowledge that the target model acquires during
training, no matter how simplistic its structure is.

All of the above indicators, drives us to believe that there is a strong connection between
the target and attacker data-set, size, diversity rate and explainability of the input data
space. In the following study, we try to explain the target data-set relation to the perform-
ance of the attack, from the scope of over-fitting, model vulnerability and attack sensitivity.

Overfitting: Training Data-set Size To start with our study on the effect of the training
set size, we must firstly state that, there is no promise the target model is not over-fitted
further as we increase the training data set size. For example, whether we decide to add
n thousand different perturbations of the same image to its training data set, we would
harm the model, privacy-wise, since, although we increased the data-set size, the final
model is extremely good at predicting different alterations of the image we augmented,
while it does not be respectively confident on predicting other images, or even images
in other classes. Having said that, we should try to explain the results of this study with
a careful mind, knowing that there are more behind the success of this attack, that the
over-fit degree of the attack model.

Once again, we see that the precision of the attack, in Figure 5.5, hits a very high maxima,
over 0.8 units, meaning that our attack can identify most of the ”members” and classify
them correctly. This, seemingly expected, result, could only be explained, whether we
assumed that the target data set size, is highly related to the attack precision. From the
rest of the precision graph we can see that for training sizes under 10000 records, the
attack has high precision, while there is a dramatic performance decrease when attacking
a target trained on a data set of 10000 records and a linear decrease as we double the last
target data set size. This behavior points out how important the target data set size is, in
order for MIAs to succeed.

However, in rest of the figures, we notice a rather odd behavior. In Figure 5.6, the recall of
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Figure 5.5: Attack’s Precision Figure 5.6: Attack’s Recall Figure 5.7: Attack’s AUC Score

the attack, starts at a global maxima of almost 0.75 and then decreases, respective to the
attack to a target model trained on 5000 data points, but then we notice that it increases
again to a local maxima. After that the recall measurements follow the same behavior as
the precision with a dramatic fall and a relatively linear decrease. The strange behavior
we have noticed, given it is relatively unremarkable to the rest of the plot, might have been
the outcome of a lucky guess from the attack model. We investigate this behavior more,
in the following sections.

Figure 5.8: Target Model vulnerability metric with respect to target’s training set size. As we
expect, a larger more diverse data set enhances the target’s generalization power and decrease the

degree of over-fitting, hence decreasing the value of the target vulnerability metric.

In the last figure (Figure 5.8), we display the plot for themodel vulnerability metric, acquired
for models, trained on different data set sizes. The vulnerability metric line-plot follows
similar behavior to the rest of the graphs, starting at an unseen high of 1.4 units, meaning
that the model is very vulnerable to membership inference attacks, while resulting to a
score of 0.6 units, on attacking a target model, trained on 20000 data points. Combining
our notes from all four graphs, we can see that the last attack, although surpasses the
base gap-attack’s performance, do not satisfy one’s expectations, since even the precision
score is relatively low (under 0.6 units).

To conclude our study on the relationship between target model over-fitting and attack per-
formance, we could notice that MIAs are inherently biased to ”members”, hence the high
precision scores in both studies, while the attacks’ accuracy, recall and overall sensitivity
on the input queries, witness some interesting results. In the first study, we could see
that the more we try to over-fit on a given data set, the more vulnerable the model would
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become; but there is a pitfall. Due to the remarkable differences on target and attacker
data set, in both size and interpretation power of the data space, the shadow models fail
to simulate the target model predictive behavior. This situation becomes more obvious
in the second experiment, where we elaborate on model performance and target’s vul-
nerability, with respect to the target’s training set size. Our results indicate that the more
similar target’s training set is, to the shadow models’, the better attack performance we
yield. However, there is yet one another important factor that we have not considered, the
shadow models number. In the following section, we investigate the overall effect of the
shadow training on attack performance and we elaborate on whether it is important to the
attack. Note that there are many researchers who argue this opinion[5][9][13][16], making
us more interested in investigating the reasons behind shadow training being such a vital
part of Shokri et al[10]; version of MIA.

5.4.2 Shadow Training Effect

In this study, we investigate the tuning of the attack, regarding the Shadow Training con-
figurations and we evaluate our results based on precision, recall and AUC score of the
attack. The model vulnerability metric, while useful to display in each case, does not
concern this study, since we use only one model as a target.

With regard to the set up, we keep the same settings as in the previous experiments in
order to have a common reference point, while interpreting our findings.

As Shokri et al[10] and others[5][13] have noted, the most important stage of the attack
is the Shadow Models training. The tuning of this training is equally important, since it
gradually leads the attack to better assumptions about the target behavior, hence builds
up to a higher-performance MIA. The two main ”hyper-parameters” we decide to look at,
are the number of the shadow models we train during this phase and the size of each
shadow model’s data set, Dshadowi

. Note that we introduce a new graph type, which might
be a little hard to interpret at the beginning, but we will lead you right through it.

Figure 5.9: Attack’s Precision

To start with, we explain how to interpret Figure 5.9, the precision plot. From left to right,
the first column displays the target’s training size, taking 3 distinct values (2500, 5000, 7500).
The following two columns refer to number of shadow models and |Dshadowi

|, respectively,
while the last column, far right, displays the value of the AUC score metric. As we can
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see, there is coloring, indicating relationship between different attack set-up settings and
the final AUC Score we get.

To get into the specifics of the precision plot, we can firstly notice one main notion. The
higher performance attacks, meaning the red, green and some blue lines, indicate that the
more shadow models we train, the better performance we acquire, which is the expected
behavior according to Shokri et al[10]. Furthermore, it is quite trivial to point out that when
the attacker has more knowledge over the dataset, than the target, the MIA scores high in
the precision metric. At the same time, as the target’s training data set increases in record
count, the precision score declines, with the number of shadow models, constraining the
rate of decline by balancing the closing of the knowledge gap, with the knowledge over
the target ML model.

Figure 5.10: Attack’s Recall

When it comes to recall (Figure 5.10), we expect from previous experiments to be remark-
ably lower than precision, but in this case we notice that, under appropriate training, the
recall scores skyrocket next to precision. Nevertheless, recall plot, seem to ”spread out”
more smoothly, in comparison to the precision scores that create clusters inside specific
score ranges and the transition across the experiments are steep and non gradual. In the
same spirit, we could observe that recall scores are indicating when an attack is poorly
tuned(gray plot-lines), resulting in recall scores under the baseline threshold, 0.5. The
latter, indicates a great knowledge gap between the target and the adversary, essentially,
referring to the shadowmodels number and the shadow data set size. For instance, during
a MIA with 1 shadow model, trained on 2500 data points, against a target model, trained
on a data set of size 7500, the attack recall falls under the baseline, elaborating on the
previously discussed knowledge gap of the attacker-target model pair.

The AUC Score plot (Figure 5.11), follows the notion of the recall graph, but manifests a
sole difference; the AUC score is not falling under the baseline threshold. This indicator
witnesses that, although the respective attack setting is poorly tuned, the target model is
still vulnerable and the attack classifier recognizes it, without the power to yield member-
ship information out of it.

As we have seen so far, the shadow training is an significant component of the general
attack pipeline and more importantly, the number of the shadow models, n, we choose to
utilize, essentially set a lower threshold for our attack performance. The attack’s sensitiv-
ity to attacker data set quality and quantity is highly related to n as one could notice from

E. Moutafis 41



Membership Inference Attacks: Threat Analysis

Figure 5.11: Attack’s AUC Score

Figure 5.12: Attack’s Precision, Recall & AUC Score with respect to the number of shadow models

Figure 5.12. We can see that the clusters of the attack scores are getting more concen-
trated, the more n increases, while at the extreme case of training 1 shadow model, the
attack scores’ variance is fairly high.

5.4.3 Classes of the Dataset Effect

Until now, we have explored the effect of target model vulnerability on the attack and the
relation of MIA performance and Shadow Training’s tuning. Now we are ready to change
study domain and investigate how does the data space affect MIAs[5][10].

In this study, we focus in the effect the amount of labels assigned to the data set, have
on the attacks performance. We utilize the Purchase-K group of data sets, which is con-
structed using unsupervised methods, making it a good candidate for such a study and we
deploy NNs in the place of target, shadow and attack models. Next, we provide the reader
with metric plots, respective to the number of data set classes and proceed to evaluate
the attacks and explain our findings.
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Before we start, note that the experimental set up for this study, along with the target-vs-
attack settings, are the same as in Shokri et al[10] investigation.

Figure 5.13: Target Model vulnerability metric for Purchase data sets. Note how the increase on the
number of assigned classes, increases the target’s vulnerability up to 1.1, suggesting a very

vulnerable target model. As expected, the attack performance follows the same trend.

Figure 5.14: Attack’s Precision Figure 5.15: Attack’s Recall Figure 5.16: Attack’s AUC Score

Starting with Figure 5.14, the precision scores seems to rise almost linearly to the number
of classes, a result which could only derive from the fact that the more classes we di-
vide our data to, the more information we leak about their characteristics and the target’s
behavior on them. It is safe to assume that by decreasing the amount of classes, there
are more data, regarding quantity and versatility, to the data set, meaning the final target
model generalizes better and the attack is harder to perform well.

We could notice similar results in the other 2 figures, referring to recall and AUC score of
the MIA, with focus on the fact that recall reaches similar scores as the precision, indicator
of high attack accuracy and good discrimination between the 2 membership status flags.
But what is the reason the attack is succeeding in extensively divided data sets? To answer
this question we must take a look at the model vulnerability metric report.

By studying Figure 5.13, we conclude that the model’s vulnerability to a MIA attack is
related to the number of classes in the data set. It is relatively trivial to understand that
the more classes the data set is divided into, the less data points are assigned to each
class, meaning the model has less examples to train on for identifying a given class. This
situation leads to a decreased generalization degree, which is quite apparent from the
vulnerability metric plot, which is specifically specifically manifested in the transition from
assigning 10 classes, to assigning 20 and 50 classes to Purchase users’ data points. This
steep incline in the vulnerability plotting, indicates a high degree of over-fit, along with a
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high advantage for the adversary, who achieves a high confidence membership inference
attack.

5.4.4 Missing Features Effect

In the next experiment, we try to investigate the character of the relationship between
target and attacker data quality, with respect to missing, or invalidated data features. For
the purpose of this study, we use the ADULT data set, which includes both categorical and
numerical features for each row. We utilize Random Forest Classifiers, for both target and
attack models, while we design the shadowmodels to resemble the target model, as much
as possible, in order to follow the proposed set up[5][10][13]. Finally, to interpret data loss,
we simply replace some a percentage of features, with either the mean or the median of
the column, based on common techniques against missing data. Following, we present
the precision and recall boards of our experimental findings, along with some comments,
regarding the attack behavior on different settings.

Let

• |Da|−%: percentage of missing features from the attacker data set

• |Dt|−%: percentage of missing features from the target data set

Table 5.1: MIA Precision Scores on ADULT with missing features

|Da|−% over |Dt|−% 0% 5% 10% 15% 20% 25% 50%
0% 0.78 0.72 0.66 0.64 0.63 0.6 0.6
25% 0.78 0.7 0.66 0.63 0.62 0.6 0.6
50% 0.78 0.7 0.65 0.63 0.61 0.6 0.6
75% 0.78 0.7 0.66 0.64 0.62 0.61 0.59

Table 5.2: MIA Recall Scores on ADULT with missing features

|Da|−% over |Dt|−% 0% 5% 10% 15% 20% 25% 50%
0% 0.6 0.59 0.57 0.57 0.57 0.56 0.57
25% 0.6 0.59 0.57 0.57 0.56 0.56 0.57
50% 0.6 0.58 0.57 0.57 0.56 0.56 0.56
75% 0.6 0.58 0.57 0.57 0.56 0.56 0.56

By observing Table 5.1 and Table 5.2, we could derive the conclusion that no matter how
much of the data are corrupted in the attack data set, the fact that, the model is still vul-
nerable to MIA, over-compensates the information gap. Furthermore, it is obvious that
the higher the missing data percentage in the target data set gets, the less accurate our
attack gets, since both recall and precision drop, with the latter declining 0.18 units from
attacking a complete data set, to attacking a data set with a missing feature rate of 25%.
The severe drop of precision, along with the similar recall score, would also indicate a
more stable attack, with small variance between different settings, but with low scores,
posing no important danger to the model (recall score of slightly over 50%).

The interesting bit of this study is the fact that, adding obscurity into the data set, by
removing, for instance, features and nulling random values, does not guarantee that the
model is safe against MIAs. Having said that, any data keeping vendors that decide to
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make scrubbed user-data public, put their clients’ privacy on a great risk since, adversaries
could surpass the restrictions posed by the obstruction of private information and infer the
membership of individual targets that, at first sight, might not appear to be part of the target
data set.

5.5 Label Only Membership Inference Attack Evaluation

With regard to the original MIAs, Label Only attack can be compared to the confidence
based attack on a plethora of image data sets like CIFAR-10, CIFAR-100, MNIST, etc[2][10].
In order to re-create and compare these two attacks, we can use our own frameworks, cre-
ated solely for experimental purposes.

From out results, we acquired similar results to Choo et al[2], where the recall and precision
of Label Only Attack, are quite close to the original attack results. We provide some
statistics from our attacks as a reference point

• Attack on CIFAR-10, with 5 shadow models, |Dshadowi
| = 2500 and a target CNN

model of similar architecture to Shokri et al[10] trained on 2500 data points;

– Confidence Vector MIA scored precision of 0.85 and recall of 0.80
– Label Only MIA score precision of 0.82 and recall of 0.79

• Attack on MNIST, with 5 shadow models and |Dshadowi
| = 2500 and a target CNN

model trained on 2500 data points

– Confidence Vector MIA scored precision of 0.53 and recall of 0.51
– Label Only MIA scored precision of 0.51 and recall of 0.51

So as we can see, since label only attack builds on the foundations of the confidence
based MIA, the first behaves quite similar to the latter, while being an improved version
of the original MIA, due to the extra ”pre-processing” phase to enrich the rather restricted
attack data set.

We now proceed to a comparison between the confidence based and the Label Only
attack, on the Purchase data sets, using the categorical perturbation engine we referred
earlier, on the Label Only chapter.

Figure 5.17: Attack’s Precision Figure 5.18: Attack’s Recall Figure 5.19: Attack’s AUC Score

As the Figure 5.17 displays, the precision of the 2 attacks is progressing differently, as
we increase the data set class assignment. For the confidence based attack, we notice
that the progress is relatively steady and converges a little over 0.8 units of precision,
while for the Label Only attack, the precision is constantly high, over 0.75 units, only to
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be surpassed by the confidence vector precision score, while attacking the Purchase-50
data set. In the last data set, Purchase-100, we notice similar scores with label only to
be slightly better. In order to get a better idea of the reasons behind this behavior, we
proceed to the examination of the rest of the metrics.

Figures 5.18 and 5.19, are providing further insights, relative to the behavior of the Label
Only attack. Essentially, we observe that, the 2 attacks seem to scale gradually and on a
similar pace, with label only version being ahead for the first couple data sets, but then left
far behind, regarding to performance scoring, from the original confidence based attack.
Furthermore, the final performance gap between these two versions of MIA, is as large
as 0.05 units, which might seem small, but in the context of the attack performance upper
and lower limits, its fairly significant.

Combining all three plots, we can conclude the following

• confidence vector attacks are, often, more stable in behavior across all threemetrics,
meaning that the complete information about the output vector of probabilities, is of
high importance no matter the data set.

• label only attacks can extend to more than image based data sets and perform as
good as the respective confidence based attack

• between the two attacks, we should always go with the one that utilizes the most
information on the attacker’s end

• precision metric, is useful indicator of our model distinguishing the ”members” of the
target data set, but it should not be the only performance metric in use, since it might
not provide enough insights to evaluate the attack’s power.

Summing up, we have explored the different settings on which a MIA might work and
we have investigated the reasons that those attacks perform so well. We also, observed
different versions and attack scenarios, while we applied our understanding of the at-
tack mechanics to perform a distorted version of the Label Only Attack, which essentially,
scored results, similar to the default attack, but it made clear to us, that the attack’s suc-
cess is a combination of knowledge of the data set features, the target model’s tuning, or
even the target’s model-type. All these support the opinion that the over-fitting state of the
target model is quite sufficient to perform a successful attack, but there are more factor to
consider in order to properly defend our model from MIAs[2][5][7][10].
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6. DEFENCES

So far, we have presented and described various versions of membership inference at-
tacks. Now we turn our attention to the other side of the coin, defences against mem-
bership inference attacks. As mentioned in Shokri et al[10] and others[2][5][13], there are
couple of mechanisms to effectively defend your model from the aforementioned privacy
leaks, divided in two large categories

• over-fitting reducing defences, that were originally used out of the privacy context

• defences against specific inference attacks, that were designed to prevent this kind
of attacks.

In the following sections, we document this defences and describe how they reduce the
performance of the membership inference attacks. We start with the over-fitting reduction
based defences, in order to elaborate further on why over-fitting is such a dangerous
vulnerability, leading to privacy breaches. At the same time, we explore the argument that
over-fitting is not a necessary assumption for a MIA to succeed. Later on, we turn our sight
into defences against inference attacks and extend our research onto the most famous
defences, confidence masking and differential privacy. Furthermore, we present couple
of points on why, some of the defences, might fail in the face of the Label Only attack
framework. As we have mentioned before, although many defences might work against
the original MIA version, they might also lead to dangerous paths when the adversary uses
a more advanced and sophisticated attack framework, like the Label Only one. Finally, we
follow with a whole chapter, in which we present our experimental results, using couple of
these defences.

6.1 Reducing Over-fitting

6.1.1 Training Phase Defenses

One the most effective and obvious stages of applying over-fitting preempting techniques
could be the training of the model. During the model training phase, researchers use a
variety of mechanisms to reduce the over-fitting[16] degree of the final selected model.
Namely, one of these mechanisms is regularization, applied into the update rule of the
models weights and used in both statistical models and Neural Networks. Other popular
mechanisms are dropout nodes, usually seen in NN training routines and early stopping.

Regularization Let f(x;w) be our prediction algorithm and let L(f,x,w), be the loss
function. In order to avoid over-fitting and try to penalize the weights responsible of causing
it, we define a new loss function,

LR(f,x,w) = L(f,x,w) + λC(f), λ ∈ R.

The function C(·) is called regularizer and according to the type of the function, the training
procedure adjusts the weights respectively. The two most famous regularization functions
are consisted of the l2-norm or Euclid norm and l1-norm. The l2-norm

||x||2 =
d∑
i

x2
i ,

E. Moutafis 47



Membership Inference Attacks: Threat Analysis

is usually utilized when we want to penalize some weights more than others given the
amount of over-fitting they add, leading to more stable models. On the other hand, l1-
norm regularization

||x||1 =
d∑
i

|xi|,

is often part of a feature extraction mechanism, although it also has pro-generalization
effects, during model training. As we will see in following chapters, the regularization
hyper-parameter λ, is a critical components of the defensive efforts, since the model’s
creator tries to balance the utility of the algorithm and the desired amount of user privacy.

Dropout Another common over-fitting reduction methods to combine with the aforemen-
tioned one, is dropout nodes. Dropout is a technique used in NN training and is interpreted
as blocking out some node outputs between two consequent layers. This could be visu-
alized in the figure below (Figure 6.1), where we can notice that, in the right version of
the Dense NN, there are missing connections between randomly chosen nodes[3]. The
mechanism of a dropout layer, works like a dampener of arbitrary node connections based
in a probability p, which is called the dropout rate. This feature disables the information
to propagate forward and in many cases prevents the model of learning dataset-specific
patterns, by introducing a sense of uncertainty in the learning process, since there is a
constant non deterministic information cutoff. In this way, dropout layers, prevent models
(especially deep learning ones) from over-fitting to the training data set and enhances their
generalization power[3].

Figure 6.1: Dropout in NNs

Early Stopping One of the most famous and effective ways of avoiding poorly general-
ized models, is cutting off the training early, using a technique called early stopping[16].
With this technique, as the name suggests, the model stops its training, usually based on a
given threshold, checked at the end of every epoch. Most common threshold is the differ-
ence of the validation error/score between epochs, given the validation set is present. This
method essentially is monitoring the progress of the training and when the latter is starting
to fade out, stops the training, since there is no reason to continue iterations, that could
actually harm the final model generalization power. Early stopping could be even more
sophisticated by adjusting the mechanism to apply triggers after a predetermined number
of occurrences that indicate the need to stop early. Furthermore, a patience mechanism
could be integrated into the technique in order to skip temporary obstacles in the learning
processes, a usual phenomenon in deep learning.

It is important to note that all of the above techniques were not essentially created to defend
statistical inference based attacks, but to prevent MLmodels from over-fitting. Having said
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that, we could assume that by migrating the majority of vulnerabilities, inference attacks
are not as effective as before. Nevertheless, there is research work[2][7]; arguing that
even well generalized models could be affected by MIA attacks and argue that over-fitting
is not a necessary assumption for the attack to succeed, but it sets a sufficient starting
point for a successful MIA.

6.1.2 Data Driven Defences

Another way to reduce over-fitting and ensure that the the final model generalizes well is
to provide the model with a diverse and representative training data set, or even utilize
the data set characteristics to specifically defend the model from any adversarial attacks.
Following, we present the most popular paths one can use, in order to enhance model’s
generalization power.

Data Sampling A simple way to ensure that the model does not over-fit on the training
data points, is to acquire a representative, non skewed, unbiased data set, following a
proper sampling technique that ensures the vast majority of the population can be inter-
preted. Having said that, our problems lie on the acquisition of this data set, since there
is no cure-all that could improve the state of a biased data set, or one with outliers, which
can distort the overall behavior of the model. To deal with this particular issue, machine
learning researchers manufactured new techniques to enhance the representability and
information completeness, the training data set can provide us with. Most of these tech-
niques are based on inserting more randomness while sampling data, meaning that either
we utilize the existent data set in a more creative way (k-fold or hold-out training), or we
increase the population we are sampling from.

Data Augmentations Having explored an application of perturbing data during model
training, we are now about to discuss the real reason data augmentations were originally
created for. As we have already stated, augmenting an existing data set in a meaning-
ful way, leads to a larger more diverse data set, where some records are similar in a
way but explain a lot more of the original data distribution and enhance the power of the
model to identify feature relationships, such as objects in picture[16]. Furthermore, data
perturbations, combined with other statistical methods, are used by researchers, to fur-
ther understand the distribution and perform a more informed feature selection and model
design.

This process usually leads to well generalized models, but there is a catch; whether the
original data set is skewed or fairly inadequate in terms of distribution representational
power, the model still over-fits. As we will notice from our experiments, the Label Only
framework performs similarly to the ”undefended” case, since making the target robust to
perturbations, in combination with over-fitting on the training set, leads to further privacy
leaks.

Adversarial Examples Finally, we talk about a more sophisticated application of per-
turbations, adversarial example training. In this technique, the user tries to train the model
and at the same time, defend it by incorporating adversarial examples to the training
procedure[17]. Adversarial examples are nothing more but perturbations of the initial data
points, but they differ to the point that they are initially made to confuse the model and lead
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to false predictions. The combination of ”adversarial” and ”standard” learning is key to this
kind of defences, with the first trying to minimize the so called ”robust” loss, while the lat-
ter, takes steps towards ”standard” loss’ minimum[17]. Nevertheless, Song et al[12][11];
proved that the adversarial training, would only enhance the privacy related vulnerabilities
and make no difference to the performance of a MIA, while under certain circumstances,
it might even increase the performance.

6.2 Defences Against Inference Attacks

In this section, we turn our attention to more case-specific defences, constructed for the
sole reason of defending inference based attacks. Firstly, we explore the effect of confid-
ence masking on attack performance, while, in the second part of our study, we introduce
differential privacy and describe of how we could be utilizing its mechanics to defend our
model.

6.2.1 Confidence Vector Masking

As one of the first defences against Membership Inference Attacks, confidence vector
masking, is designed to provide the minimum amount of necessary information to the
user-end. In this notion, ML services, provide the user with a part, or the whole, confid-
ence vector, obfuscating the view of the data for the adversary and possibly mitigating
any over-fitting related, privacy vulnerabilities[5][10]. The most famous defences in this
category are label slicing or confidence restriction, noise injection into confidence vector
and Memguard, which is seemingly, a noise addition technique, but with some refined
alterations during the injection process.

Confidence Restriction Applying restrictions to the confidence vector, was initially doc-
umented by Shokri et al[10]; in order to experiment on the effect of the attackers knowledge
on confidence vector and the relationship of this information to the overall attack power.
As the name suggests, the ML services, provides users with a segment of the final output
vector, usually including the first n top scoring labels, along with their confidence scores.
In this manner, the model becomes more robust to membership inference attacks, since
the better part of the meta data, referring to the models behavior on training and foreign
data, is concealed or ”masked”, resulting in attack surface reduction. Nevertheless, Shokri
et al[10] along with other researchers[2][5][13], have proved this argument false, by dis-
playing a similar and sometimes identical attack performance, when the provided label
number has fallen significantly. We come to an agreement, with these results in our own
evaluation sections (see the next chapter), testing our attack on CIFAR-10 data set, in
particular. So one could see that, a seemingly trivial way to obfuscate the target model’s
behavior, are quite meaningless, when over-fitting takes over.

Noise Injection Another famous mechanism to prevent privacy leaks in machine learn-
ing models is injecting random noise into the output probability vector. In this version
of confidence masking, Shokri et al[10] study the how small additions of normal noise
affects the MIA framework scores. At this point, we should notice that random noise ad-
dition, not only might change the probability scores of a specific label, but it could actually
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lead to a complete change of the labels ordering, hence the output vector indicates mis-
classification. Having said that, the data scientist has to estimate the return of such an
integration, with respect to the loss of model utility and preserve a balance between the pri-
vacy loss and the utility loss. On the other hand, as Shokri et al[10] and other papers[2][5];
display experimental results, arguing that, this defence, falls into the same pitfall as the
previous one, since unorganized attempts to obfuscate output confidence scores do not
stop the effect that over-fitting commands on the model’s behavior on training data.

Memguard The last and most effective confidence masking method was proposed by
Jia et al[6] at 2019 and it is widely known as the Memguard mechanism. It incorporates the
noise injection method, along with adversarial examples construction methods, to create
a pipeline which obfuscates the final ouput vector of the model, but reserves model-utility
guarantees. Essentially, Memguard is an active attack, meaning it attempts to attack the
adversary’s attack model. As we have previously discussed the attack model is nothing
more that a binary classifier, which could be attacks with the aid of adversarial examples.
The general idea behind this noise injection method, lies to the assumption that the ML
engineer can inject specific noise that confuses the attacker model and result into mis-
classifing the membership status of a victim user, thus introduce further uncertainty to
the adversaries predictions and preserve privacy. Moreover, this defence mechanism
guarantees that the original predicted label remains the same, hence model utility does
not endure any important decrease[5][6]. According to researchers[6], the experimental
results of this defences seem quite promising, resulting into closing the gap between the
baseline attack and Shokri’s version of the confidence vector attack[5][6][10].

The Label Only Danger The defence mechanisms we discussed in this section, focus
on reducing the attackers information and harden the membership inference process, with
the assistance of information obfuscation, either by integrating random or carefully crafted
noise into the confidence score, or by cutting off the better part of the output probability
vector. On the attacker side, this poses a serious issue, most of the times, which could
be tackled with the use of the label only framework. Assume that our model integrates
2 or more defences, for example Memguard along with total Confidence Restricting (1
label only), resulting in a, seemingly, well defended model. Label Only creators[2]; guar-
antee that providing the framework, solely with the predicted label, the first returns a high
confidence membership status prediction. The reason behind why this guarantee holds is
rather simple; confidence masking defences, focus on protecting the model, while keeping
the utility intact, meaning that the predicted label is the same in both raw and obfuscated
output vectors. Given this context, the assumptions of Label Only framework hold and
the adversary can infer membership with accuracy very similar to the default confidence-
based attack.

6.2.2 Differential Privacy

At this section, we introduce the differential privacy paradigm and explain how we could
use it in privacy preserving machine learning.

Randomized Response One of the first and most famous privacy preserving mechan-
isms is randomized response, used in surveys, which item of study concerns private and
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undisclosed information about the participants. In order not to stigmatize the participants
and acquire accurate and legitimate data, researchers answer a ”yes or no question” ac-
cording to the following paradigm[4]:

1. Flip a coin,

2. If landed on heads, answer truthfully

3. Otherwise, flip another coin,

(a) If landed on heads, answer negatively
(b) Otherwise, answer positively

In the same notions, researchers, came up with a more sophisticated and more effective,
in terms of utility, mechanism, called differential privacy.

Definition of Differential Privacy Before introducing the reader to DP, we define the
following;

• A Randomized algorithmM , of domain A and discrete range of results B, is asso-
ciated with the mapping M : A→ B

• Distance between databases A and B is defined as the l1-norm, ||A−B||1, meaning
the count of the items in which they differ. For example id A and B differ in a single
row, then dist(A,B) = 1.

• Adjacent databases, are 2 databases, A and B, that have distance of 1.

Now we are ready to define Differential Privacy. Given a randomized algorithm M , of do-
main N |A|, we say that this mapping is (ϵ, δ)-deferentially private, whether ∀S ∈ Range(n)
and ∀x, y ∈ N |A| s.t. ||x− y||1 ≤ 1, then

Pr[M(x) ∈ S] ≤ eϵPr[M(y) ∈ S] + δ.

Note that the probability space is over the coin flips of the mechanism M .

General Applications To start with, differential privacy is a concept usually integrated
in data analysis systems, where the analyst is allowed to perform aggregation queries on
them. Utilizing differential privacy, the system’s administrator makes sure that there is no
way, the attacker can distinguish whether 2 databases are adjacent, leading to a privacy
leak about the individual data point, that consists the difference between them. As one
can understand, if we set δ = 0, then we can have a (ϵ)-differential private mechanism,
but what ϵ really means in this context? By carefully interpreting the above mathematical
formula one could understand that

• the larger the ϵ gets, the less the databases seem alike

• the smaller the ϵ gets, the harder it is for an data analyst to derive
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Researchers usually characterize this quantity as the privacy loss of the data analysis
systems, defining it as

Loss(M) = log Pr[M(x) ∈ S]

Pr[M(y) ∈ S]
≤ ϵ

Theoretically, we could have a totally differential private mechanism, with no privacy loss,
where no difference is ever observed between 2 databases, but this system is useless in
any data analysis process. Here is where δ comes to play, often interpreted as the privacy
cost, added to the privacy mechanism to enhance utility of the data analysis system,
but decreasing its privacy guarantee. Having said that, differential privacy is ultimately a
way to ensure that the output of the mechanism is independent of database adjacency,
meaning query results are most likely similar, regardless of individual row existence. In
this way, the ability of an arbitrary adversary to recognise individual data points between
2 neighbouring databases, is bounded by ϵ.

Applications in ML Training Next point of conference is how such a system is integ-
rated in anML pipeline. For starters, we could argue to use themechanism before training,
resulting into a pre-processing stage integration, which should be applied to all input data
points, making it quite trivial to the adversary to attack our model, since this pre-processing
pipeline is available in order to provide the users with the model. More effective ways of
applying differential privacy mechanism into the ML pipeline, are integrating it into the
training phase[1][5][8], or even at the deployment phase, by adding customized noise to
the final trained weights of the ML model[14].

Private Training DP-SGD The first and most common way of adjusting ML training to
promise the differential privacy guarantee, is to enhance the weight adjustments with a
noise addition mechanism. In their paper Abadi et al[1], proposed a new version of the
stohastic gradient descent algorithm

1. Initialize weights, θ0, randomly

2. For t training steps of total T

(a) Take a random sample with probability L
N
, where L is the sample size and N

the dataset size
(b) Compute gradient
(c) Clip gradient, based on a hyper-parameter C
(d) Add normal noise, from N(σ2C2I), where σ is the noise multiplier
(e) Update weights

At the end of this procedure, we have an algorithm where every step is (ϵ, δ)-deferentially
private, resulting, by the summation rule[4], to a (qϵ, qδ)-differentially private algorithm,
where q = L

N
, being the sampling rate[1]. Another important part of this algorithm, which

is derived easily from the theory, is that the noise multiplier, σ, inversely proportionate to ϵ,
meaning that the more noise we add, the more differential private ”we are”. As Abadi et al
argues, there is a serious need of tuning σ and C in order to balance privacy and model’s
utility. According to their experiments, studying the mechanism’s behavior on different
values for epsilon and delta, there is a capacity of up to 8 units of epsilon quantity, while
the value of delta is always bounded from the respective data set’s size. It is important
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to note here that, differential privacy principles[4] want δ to always be smaller, than the
inverse of the data set’s size, in order to keep privacy guarantees, without unexpected
leaks. Another, quite remarkable, finding of those experiments is that, privacy-wise, we
can afford an upper bound of privacy loss of values greater that the standard differential
privacy mechanisms[1][4].

Differential Obfuscated Predictions Another effective technique of applying the dif-
ferential privacy mechanism on a ML pipeline is described in Wu et al’s[14] work. Their
method, namely Bolt-On Differential Privacy, integrates a differential privacy machine at
the end of the training, by perturbing the final weights, using a similar noise injection en-
gine as the one above. This method can easily be appended at any given iterative training
algorithm, since it is treating the latter as a black box, by adjusting only the final weights,
without changing the base-algorithm process. Bolt On technique is allegedly better that
DPSGD, since the convergence of the algorithm is faster, while the privacy-model utility
gap seemingly closes by a lot, compared to the in-training noise injection mechanism[14].
Wu et al[14], reports results similar or better to the DPSGD method[1][8], while the overall
models utility, with respect to resources and time management, is improved. Further-
more, Wu et al, indicates that this method is derived by the combination of output perturb-
ation methods, which we previously described, along with the idea of noise injection in
the weights of the ML model. Having said that, it is safe to trust the experimental results
against Label Only Framework are valid, since this mechanism breaks the assumption of
real and adjusted prediction labels to be the same.
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7. DEFENCES EVALUATION

7.1 Over-fitting Reduction Defenses Evaluation

In this section, we focus our research in general mechanisms that prevent over-fitting
in machine learning training. Over-fitting, being a highly sufficient factor of a successful
MIA, consists the majority of privacy-breach dangers in machine learning. Nevertheless,
the readers must be aware that eliminating over-fitting does not mean that their models
are completely safe against MIAs, since there are attack scenarios where, although the
model-victim is well generalized, the adversary target outlying victim records, on which
the target model behaves differently, leading to a similar privacy leak[7].

In our research, we test our MIA frameworks against generalized models that use famous
generalization mechanisms such as early stopping, dropout layers, weight regularization
(decay). Furthermore, we elaborate on the reasoning behind failure of augmentations
training to decrease MIA’s success, along with some educated hypothesis on what effect
does this type of training really have.

In our experiments, we use CIFAR-10 data set following Shokri et al[10] experimental set
up, with the structure of the attack model, being the sole difference, since we are using
the unified attack model we proposed earlier (chapter 3).

7.1.1 Dropout and Regularization Effect

In this experiment, we apply different training settings, with respect to dropout and weight
decay tuning, in order to determine which method is more effective on defending against
MIAs.

As long as our experiments settings, we tried different Dt sizes, sampled from a total of
50000 data points, in order to include the data set size effect on the training mechanism.
On the adversary side, we fixed a single attack setting, with

• |Da| = 10000

• 15 shadow models,

• |Dshadowi
| = 7500 records

• no dropout/regularization used in training the shadow models

We start with Figure 7.1, displaying a high level report of the dropout effect on the attack
scores and the vulnerability metrics. Note that it follows a min, max, avg trend of the attack
metrics, aggregated by the desired variable (i.e. drop-out rate). We observe a decreasing
behavior in all 3 metrics, with the precision metric having the greatest gap between min,
max and mean plots, meaning that it was less affected by the addition of dropout that
the rest of the metrics. Nevertheless, as we stated before, a high precision attack, is not
always the desired attack, since the steep fall of attack recall score, is a strong indicator
of an effective defense against MIA. Furthermore, the estranged lines indicate non stable
behavior among different training settings. For now we assume that, since the min plot is
quite stable, it resembles a high rate of regularization, combined with the largest data set
Dt, we provide the target model with, during training.
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Figure 7.1: High Level View of Dropout Effect on Attack Performance and Target Model’s
Vulnerability

Following, we see that the model vulnerability resembles the recall line-plot, starting at
a high of over 0.8 units and resulting a little under 0.2, referring to the max plot, while it
displays a relatively stable behavior, first on the min plot and then on the monotonously
decreasing mean plot. This indicator, leads us to the conclusion that although dropout is
a fairly satisfying defence mechanism, there is a need for extra protection, since in low-
sized data sets there is still a remarkable attack performance, even if it scores closer to
base-line threshold.

Figure 7.2: High Level View of L2-Regularization Effect on Attack Performance and Target Model’s
Vulnerability

In the same notion, we now take a look at Figure 7.2, the l2-regularization plot, where
we find a rather different behavior, although it is quite expected. To start with, the model
vulnerability and precision graphs, are indicating that small increments in regularization
rates, drop the attack performance quite fast. It is also important to notice, how closely
min, max and average plots are placed in all 3 graphs. This fact is strong evidence that L2
regularization in small proportions can defend the model from over-fitting and decrease
the adversary’s advantage over the target. Another conclusion we arrive to by watching
Figure 2, is that L2 Regularization is a much more efficient way to decrease the chances of
a successful MIA attack, since it drops the precision score below threshold in the average
use case, preventing any kind of attack, including the threshold based attacks. Neverthe-
less, this means that the target model might lose some of its predictive utility, so for the
best results the model designer should tune the model with respect to both predictive and
privacy utilities.

In the next couple of pages, we display the detailed graphs from our experiments and we
comment in the general MIA behavior over different target-model training settings.

In Figure 7.3, we see that the coloring coding of the attack behavior follows a logical
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Figure 7.3: Detailed View of Dropout & Regularization Effect on Attack’s Precision

map; the more red there is in the colors, the more dangerous the attack is, leading to
higher performance. From the precision figure, we arrive to the conclusion, that higher
regularization rates, lead to poor attack performance, as we have already suspected from
the investigation of the two previous figures. On a second view of the figure, one could
also notice a previously elaborated point; when the target model data set, Dt, is smaller
that the attackers data set, Da, then the attack is hitting its highest scores. On the other
hand, it is now clear that proper tuning of dropout and regularization rates, can even handle
this phenomenon, preventing the target model from over fitting and dropping the precision
metric close to baseline.

Figure 7.4: Detailed View of Dropout & Regularization Effect on Attack’s Recall

Figure 7.5: Detailed View of Dropout & Regularization Effect on Attack’s AUC Score
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We follow with the commentary of Figures 7.4 and 7.5, the recall and AUC score multi-
dimensional graphs. The coloring is again leading to the same conclusion. As we have
assumed earlier, l2-regularization during training, decreases the recall scores, earlier in
the tuning scale, than dropout layers would. Since recall, indicative of how sensitive our
attack model is on identifying ”members” correctly, is the most reliable performance metric
for this attack, we conclude that both ”Target-vs-Attacker” data knowledge and l2-rate
tuning, consist the most important defense mechanisms against attacks that exploit over-
fitting. As usual, the AUC score follows the same behavior with recall metric, backing
up further our point about attack model’s sensitivity and its relation with anti over-fitting
mechanisms.

Figure 7.6: Detailed View of Dropout & Regularization Effect on Target Model’s Vulnerability Metric

The last figure, Figure 7.6, refers to the model vulnerability scores throughout our exper-
iments. Notice how the vulnerability metric scores are indicating a seemingly different
result to the rest of the study; the dropout rate seems to be the main factor, that con-
strains the upper and lower limits of the vulnerability metrics. We may observe, how the
more dropout we add, the smaller the metric values diverge and the lower this value-range
is mapped in the ”Model Vulnerability” scale. However, if we notice the primary coloring
of every distinct value range, we see through the illusion of the complex graph and under-
stand that l2-rate is dictating the ranges. For instance, it is trivial to see that the ”colder”
colors, the primary colors of the lower end in the metric scale, are mainly sourcing from
high regularization rates.

7.1.2 Early Stopping Effect

Often utilized in research work[2][5][9][10][13], early stopping is considered one of the
fundamental mechanisms to reduce over-fitting during training. In this part of our investig-
ation, we display how effective early stopping is against leaking privacy information during
training. Notice how early stopping is preventing over-fitting by stopping the training earlier
than the max epochs given by the data analyst, hence prevents the model from becoming
significantly more sensible to training data.

We follow similar set up as in the previous experiments and we focus in the effect of early
stopping tuning before training, based on target’s performance on a validation set. Note
that we tune only the min delta parameter, while the patience hyper parameter is fixed to
7-10 epochs in order to ensure that the target model gets sufficient training and the latter
is not cut off too soon.
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Figure 7.7: Attack’s Precision Figure 7.8: Attack’s Recall Figure 7.9: Attack’s AUC Score

As we observe in the above figures, the effect of early stopping during training, is one of the
most effective ways to defend against attacks that exploit vulnerabilities related to over-
fitting. Considering that early stopping mechanism’s min delta hyper-parameter is usually
tuned from values in {10−i , i ∈ N+}, we can notice that we allow pretty low increase/de-
crease of the monitored quantity and still end up with a fairly generalized model, which
defends against a MIA attack on a satisfying degree. Nevertheless, we observe how the
lowest scores we hit are still above the baseline threshold, indicating that no matter how
much we reduce the over-fitting degree, we might still be vulnerable to a MIA[5][7][10].

7.1.3 Augmentation Training

In this experiment, we investigate the effect of augmentation training to MIA performance.
We utilize our Label Only Framework since this is the most interesting aspect of this attack-
defense combination and we take a different path to explain the attack’s behavior on the
respective defence.

The set up is the same as in the related bibliography[2][5][10]; and we use a slice of CIFAR-
10, as the data set under attack. Firstly, we train an attack on a similar CIFAR-10 slice,
using a fixed perturbation tuning, same as in [2]. Afterwards, we re-train the target model,
but this time we integrate perturbations of the exact same settings as in the Label Only
Framework, in order to make the model more robust to inference through perturbations.
We keep track of the attack performance but most importantly, we trace the number of
divergent predicted labels during the attack phase. We also display a distribution, of how
many data points diverge from their originally predicted label, during the attack data set
construction phase, both for queries inside and outside the target data set, in order to justify
the attacks behavior onto the defended and undefended model. Following, we present a
board of the metric scores that both attacks achieved and the figures that display the
true-vs-predicted label divergence.

Table 7.1: MIA Performance on simple and augmentation enhanced training of the same model

Metrics/Model Precision Recall AUC Score
Normal Training 0.85 0.83 0.85

Augmentation Training 0.84 0.80 0.80

Table 7.1 indicates that, the same attack scores similar performance on both the CNN
model that was trained normally and on the one that was trained with an augmentation
enhanced training data set. But why would this be the case? Why does every other
over-fitting preventing defense works sufficiently, while augmentation training fails to that
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degree? In order to answer these questions we will take a look to the label divergence
bar-plots.

Figure 7.10: Label Divergence without Augmentation Training

Figure 7.11: Label Divergence with Augmentation Training

We start by noticing the divergence distribution in the ”undefended” model. We notice that
in most of the classes, the data points inside Dt are more robust to perturbations, with
respect to the predicted label. This means that close-to-original perturbations, are most
possibly being assigned the same label as the original data point[2].

On the same spirit, we notice an exaggerated notion of this situation in Figure 7.11, where
the data points inside Dt are highly robust to perturbations, which is expected since their
perturbations was used during the model training. Furthermore, by interpreting the total
label divergence distributions, we can conclude that the augmentation training made slight
to zero difference to the the label divergence distribution of data points that do not belong
in the target data set.

Taking everything under consideration, along with the fact that the target model still dis-
plays signs of over-fitting, we can conclude that this defense is highly reliant to the quality
of the data, since training on the same data set and augmentations of it results into a
similarly vulnerable model.
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7.2 Confidence Vector Masking Defenses Evaluation

In this section, we investigate the effect of confidence masking defences against mem-
bership inference attacks. As Shokri et al[10] and others[5][7][9][13] have stated before,
confidence masking defences, in their simplified version, are not effective against MIA
attacks. The simplest confidence masking defence is the confidence slicing mechanism.
In this defence the MLaaS administrator, reduces the information flow between the data
analyst and the model, by providing the analyst with k labels, usually the top scoring ones.
In this manner, we reduce the privacy leaks by decreasing the features the inference clas-
sifier could exploit to identify members of the target dataset. Nevertheless, as we shortly
see, this kind of defences are not quite effective. This study focus solely on exploring
the behavior of different attack settings on a context where a model applies confidence
restriction mechanisms.

As usual we follow the Shokri et al set up and we use the CIFAR-10 dataset since it
provides 10 classes, which is a sufficient label count to elaborate on our point. One import-
ant detail to have in mind is that both the target and shadow models, provide k confidence
scores along with the respective label.

Figure 7.12: MIA Performance vs Confidence Score Slicing

Starting with an aggregated graph, in Figure 7.12, we easily observe that the min, max
and average lines are quite stable and they diverge from each other by a lot, meaning that
the attack performance is not correlated to the number of the confidence scores provided.
Following, we can notice something quite interesting; the max plot is manifesting a global
maxima while attacking a model that emits a confidence vector of 3 elements/probabilities.
This indicates that, not only the attack is not affected by the output omission, but that
smaller feature sets might even achieve higher MIA performance, leading us to believe
that decreasing the attack feature set might work as a feature selection process. Having
that in mind, we will proceed in a more detailed examination of our findings, considering
the attack configuration along with the target training settings.

The figures in this section are referring to training models that utilize an early stopping
mechanism with delta of 10−4, with patience of 10 or 12 epochs. The same early stopping
settings are used during the shadow model training, since the target model is provided as
a black box to the attacker.

By observing the figures of precision, recall and AUC, we can understand that the attack
performance has little to do with the size of the produced confidence vector and more with
the attack settings that we discussed in the respective section of the Attack Evaluation
chapter. Since this is the case, it is interesting to note how the variance of all three metrics
is changing with respect to the confidence vector size (refer to the plots below the graphs).

E. Moutafis 61



Membership Inference Attacks: Threat Analysis

Figure 7.13: MIA Precision vs Confidence Score Slicing

Figure 7.14: MIA Recall vs Confidence Score Slicing

We notice a constant ”spreading” of the attack score as we increasing the number of the
classes provided to the user/analyst. This means that the attack model might be over-
fitting on the produced attack dataset, since it displays a more stable behavior the smaller
the output probability vector gets. In this spirit, it is important to notice again how much
effect the number of shadow models has to the overall attack performance. One could
notice that most red lines (high performing attacks) source right from the upper parts of
the shadow model number axis, with the more blue or green (low performing attacks) to
source from the lower half of this axis.

Finally, in this study, we did not touch the Label Only context. This might seem contradict-
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Figure 7.15: MIA Precision vs Confidence Score Slicing

ory to what we previously have stated, but remember that the Label Only context is the
only confidence slicing defence mechanism that decreases the confidence based MIA,
since the latter is highly dependent to the relation between the predicted label and the rest
of the confidence vector. Taking away this context, as a defence against MIAs, is quite
effective to attacks similar to Shokri et al’s, but not enough to defend a more subtle and
complex version of the Membership Inference Attack[2].

E. Moutafis 63



Membership Inference Attacks: Threat Analysis

8. CONCLUSIONS AND FUTURE WORK

The goal of this thesis was to deep dive into the general notion of Membership Inference
Attacks and understand the reason that this attacks could succeed in real life scenarios.
Furthermore, we investigated alterations of the attack, along with defences that a model
designer could utilize to prevent privacy leaks during model querying. Finally, we provided
an attack framework that enhances our points and the readers understanding of the attack
and relative defences.

Membership inference attacks pose a serious privacy threat for all users that are included
in ML-related studies, when the responsible analysts ignore the privacy context that their
experiments are being conducted on. From our experimentation with the attack and its
alterations, we could argue that no matter how safe of a model seems to be, even if it
generalizes well enough, it could breach users’ privacy, after the proper exploitation of the
inherit vulnerabilities of ML training.

On a different note, there are many countermeasures that we could integrate inside the
ML pipeline to protect user privacy, with most effective of them being, over-fitting reducing
methods, along with smart noise injection, during or after the ML training phase[1][4][8].
Nevertheless, simply reducing the over-fitting degree of a model does not promise that it
would be robust to a carefully crafter MIA[7].

In our experimental studies, we displayed how dangerous and effective the confidence
based MIA is, as well as its Label Only alteration, proving how subtle and well hidden the
privacy vulnerabilities in an ordinary ML pipeline are. The membership inference research
field, is continuously developing, meaning that there is further exploration on the inference-
related vulnerabilities of widely used ML models.

Our proposition on continuing the experimental work of this thesis would be the con-
struction of a tuning system for the label only attack framework, that could perform a
perturbation-feature selection, in order to maximize the attack’s performance. This could
be accomplished via a GAN-like mechanism that tunes a model, defending against Label
Only MIAs, like its Memguard[6] equivalent. More interesting results could derive by in-
corporating Differential Privacy into our defence mechanisms and apply tuning, aiming to
close the gap between model’s privacy and utility.
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ABBREVIATIONS - ACRONYMS

MIA Membership Inference Attack

ML Machine Learning

SVM Support Vector Machine

NN Neural Networks

DP Differential Privacy

CSV Comma Separated Values

SGD Stochastic Gradient Descent
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