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Περίληψη 

 

Στη σημερινή εποχή, το πρόβλημα της αυτόνομης πλοήγησης στα σύγχρονα κινητά ρομπότ 

αποτελεί σημείο ενδιαφέροντος για την πλειοψηφία της έρευνας που γίνεται γύρω από τη 

ρομποτική. Αυτό το θέμα γίνεται ακόμα πιο απαιτητικό, καθώς οι απαιτήσεις στα δυναμικά 

περιβάλλοντα περιλαμβάνουν αυτονομία υψηλού επιπέδου και ευέλικτες δυνατότητες λήψης 

αποφάσεων για το ρομπότ, ώστε να επιτευχθεί αποφυγής συγκρούσεων. Το Deep learning  

κατάφερε να λύσει κάποια κοινά ζητήματα στη ρομποτική, όπως η λήψη αποφάσεων, η 

πλοήγηση και ο έλεγχος, όμως, με εποπτευόμενο τρόπο. 

Οι Reinforcement learning τεχνολογίες έχουν συνδυαστεί με το Deep learning, με αποτέλεσμα 

ένα νέο ερευνητικό θέμα γνωστό ως deep reinforcement learning (DRL). Με τη χρήση του 

DRL, η διαδικασία μπορεί να αυτοματοποιηθεί με τη μετάφραση δεδομένων αισθητήρων 

πολλών διαστάσεων σε εντολές κίνησης ρομπότ χωρίς τη χρήση κεντρικοποιημένων 

πληροφοριών, παρέχοντας έναν μη εποπτευόμενο τρόπο. Αυτό που χρειάζεται, για να 

ενθαρρυνθεί ο agent μάθησης και μέσω διαδικασίας δοκιμής και σφάλματος με το περιβάλλον, 

να βρει την καλύτερη δράση για κάθε κατάσταση, είναι μία βαθμωτή συνάρτηση ανταμοιβής. 

Στην εν λόγω διατριβή, δημιουργήθηκε ένα προσομοιωμένο περιβάλλον με ένα κινητό ρομπότ 

που αλληλεπιδρά με αυτό. Δύο αλγόριθμοι βασισμένοι στο DRL, οι Actor-Critic και PPO, 

χρησιμοποιήθηκαν για να εκπαιδεύσουν τον παράγοντα να κινείται με ασφάλεια στο 

περιβάλλον, αποφεύγοντας τα εμπόδια και στοχεύοντας στην επίτευξη ενός καθορισμένου 

στόχου. Τα αποτελέσματά τους παρουσιάζονται και συγκρίνονται. 

 

 

 

 

 

 

 

Λέξεις κλειδιά: αυτόνομη πλοήγηση σε κινητά ρομπότ, Reinforcement Learning, Actor-Critic, PPO 
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Abstract 

 

Nowadays, the problem of autonomous navigation in modern mobile robots is the point of 

interest for the majority of research in robotics. This topic becomes even more challenging as 

the requirements in dynamic environments include high-level autonomy and flexible decision-

making capabilities for the robot, to achieve collision avoidance. Deep learning has succeeded 

in solving some common issues in robotics, such as decision making, navigation and control, 

in a supervised manner though. 

Reinforcement learning frameworks have been combined with deep learning, resulting in a 

new research topic known as deep reinforcement learning (DRL). With the use of DRL the 

procedure can become automated by mapping high-dimensional sensory data to robot motion 

commands without using ground-truth information, providing an unsupervised manner. It 

simply takes a scalar reward function to encourage the learning agent through trial-and-error 

interactions with the environment, with the goal of finding the best action for each state. 

In the project thesis in question, a simulated environment was created with a mobile robot 

interacting with it. Two DRL-based algorithms, Actor-Critic and PPO were used to train the 

agent to move safely in the environment, avoiding the obstacles and aiming to reach a specified 

goal. Their results are presented and compared. 

 

 

 

 

 

 

 

 

 

 

Keywords: mobile robot, Reinforcement Learning, Actor-Critic, PPO 
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1 Introduction  

 

1.1 Motivation 

Artificial Intelligence (AI) is used in a wide range of domains, including robots, computer 

vision, and gaming, and has sparked widespread interest across all fields, particularly in 

hazardous applications. Traditional fixed industrial robots have a place in a lot of industries, 

whereas mobility robots can move around in their working environment. Mobility offers 

greater flexibility in a wide range of industrial applications, such as warehouse transportation 

and distribution. 

In their working environment, industrial mobile robots should have autonomous navigation 

capability, which strives to identify a collision-free path from a starting point to a goal point 

[1], such as when transferring products from one location to another in a warehouse. When a 

complete and thorough knowledge of the environment is needed, global path planning 

approaches can be used. However, local path planning strategies that rely on sensory input 

from mobile robots, such as fuzzy logic control, potential field method, and genetic algorithms, 

have effectively proven adequate in performing the goal of obstacle avoidance while robots are 

working in unknown settings. 

Classic path planning approaches, on the other hand, have the constraint that the control 

strategy must be well-designed by programmers. When the environment changes or the robot 

meets problems not anticipated by the creators, the robot may not react and instead follow the 

predetermined coping technique. This could result in harmful or even tragic outcomes, such as 

a collision or a crash. 

In this approach, such a robot remains a type of machine that flawlessly does what it is 

programmed to do but lacks adaptability. However, what someone would anticipate is a truly 

intelligent autonomous robotic system. As a result, self-learning mobile robots have become a 

prominent study area. Robot learning is usually accomplished through interaction between the 

robot and its surroundings. Reinforcement learning is a machine learning technique, based on 

trial-and-error mechanisms, that improves performance by receiving input from the 

environment. 
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Having all these in mind, the idea for this thesis was born. The main goal was to study the 

concepts of the reinforcement learning field and investigate one of the most interesting 

navigation problems, the obstacle avoidance, through its methods. In this work, an effort was 

made to conclude whether a deep reinforcement learning solution will help improve a robot’s 

behavior when it moves around a random environment, trying to reach a certain position. The 

ability to trigger the obstacle avoidance maneuver within a particular distance, known as the 

triggering distance, is a challenge for current systems, and this became a motivation for 

engaging with this project. 

 

1.2 Structure of the document 

This work is structured into 6 chapters. Each chapter contains key issues and algorithms used 

to develop this work, as well as the methods developed in this work. More specifically, in the 

first chapter an introduction about the motivation and scope of this thesis is presented. In the 

second chapter, reinforcement learning, machine learning, and Artificial Intelligence methods 

and algorithms are analyzed.  

The third chapter includes all methods used in Deep Reinforcement Learning and concern this 

implementation, while the fourth chapter presents the implementation details. Chapter five is a 

summarization of the outcomes resulting from the evaluation of the system. Finally, the last 

chapter includes a conclusion, presenting a summary of the results presented in this thesis. 
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2 Reinforcement Learning 

Learning by interacting with the environment is a fundamental idea with respect to nearly all 

theories regarding learning. Reinforcement learning is often perceived as a modern control 

method but has old underlying ideas frequently found in nature, where difficult control 

problems are demonstrated with ease. Insects and birds are able to exploit turbulent unsteady 

aerodynamic flow effects to increase efficiency when flying. A gazelle calf is struggling to its 

feet minutes after it is born, yet is running at 30 kilometers per hour half an hour later. [2] 

Such examples from nature, alongside countless more, have guided the development of 

reinforcement learning. The agent, analogous to the controller in traditional control theory, is 

not told which actions to take, but must by trial-and-error discover which actions that generate 

the best reward. An interesting remark is that the immediate reward received from an action 

may not result in the best cumulative reward. Reinforcement learning algorithms can therefore 

be perceived as optimization algorithms. As is the case with most other optimization problems, 

there is a question of whether the solution found is a local or a global solution. Should the agent 

find a local solution, it can be difficult to exit from the local solution and continue searching 

for the optimal solution. Different reinforcement learning methods have different approaches 

to this issue. 

 

2.1 Machine Learning 

Machine learning is the field of computer science where one tries to fit statistical models to a 

set of data. The goal is then for the computer to be able to make good predictions or actions 

given a sample set of data, without explicitly programming the computer how to do so. There 

are three main directions in the field of machine learning; supervised learning, unsupervised 

learning and reinforcement learning [4]. All of the methods usually use a large amount of 

gathered data for learning and make predictions and decisions based on them. 

• Supervised learning:  

In supervised learning the data that is used for training is labeled, meaning human 

supervision is necessary. This means that for every data tuple, there exists a label with 

the true association on it. When training a machine learning algorithm, this boils down 
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to trying to fit a statistical model to the dataset in such a way that one can do inference 

on a random sample, and obtain the true answer. 

• Unsupervised learning:  

In this self-organized subset of machine learning, the goal is to spot trends in the data 

without explicitly knowing what to look for. In this case, the data is not labeled, in 

contrast to the supervised setting. Now, the computer is trying to discover unknown 

patterns and connections in the data, that otherwise could not be seen by the naked eye. 

This field is dominated by clustering algorithms that find clusters of data with similar 

characteristics and classifies them accordingly. 

• Reinforcement Learning: 

In reinforcement learning (RL), there are no known labels in the same way as in 

supervised learning, but scalar evaluative rewards that guide the agent. The agent then 

learns by interacting with the environment on its own. 

The big difference here is that the data that the statistical models are trained on, have to be 

generated by the agent itself, and that the training labels are continually updated. This means 

that both the distribution of training data and the distribution of labels for training are changing 

simultaneously. 

This concludes in a much harder problem to solve in comparison to the supervised learning 

setting, where the distribution of training data and labels was fixed. Therefore, there is 

increased difficulty in reaching convergence in a reinforcement learning problem, and much 

care has to be taken to not end up in local maxima. 

 

2.2 The perceptron 

To begin the explanation of artificial neural networks, it is worthwhile to take a look at the 

perceptron. This is a binary classifier that, given the input data, will either activate an output y 

or deactivate it. It works by doing a weighted sum of the input data and adding a constant bias 

and then inputting everything into an activation function φ as shown in Figure 1. The output y 

can thus be expressed as: 

1 1 2 2( ... )m my x x x b   = + + + +
 

(1) 
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Figure 1: Representation of the perceptron [4] 

In the case of the perceptron, this activation function is just a step function that is either true or 

false.[4]  

 

2.3 Artificial Neural Networks 

If several perceptrons are chained together into a fully-connected network and change its 

activation function, the result is an Artificial Neural Network (ANN) [5]. Each node in this 

network is now called a neuron. The activation function itself can be changed according to the 

task at hand (examples are ReLU, leaky ReLU, Sigmoid, Tanh, etc.). This type of classifier is 

able to learn more complicated classification problems than binary classification, as it easily 

can handle non-linearities in the input data. Depending on its size, it is also very suitable for 

finding features in the data without explicitly being told what they are, and thus can do robust 

inference based on these features.  

 

2.4 Gradient Based Training 

The training of an ANN is all about adjusting its weights and biases. For each neuron we have 

a set of weights for every input, and a bias. The goal now is to be able to accurately predict an 

output, given an input. One of the major training algorithms used for ANNs is called Stochastic 

Gradient Descent. Stochastic because there is a random sampling of a batch of data to find a 

gradient to a loss function. The loss function can be defined as following [6]: 
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L b y y
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= −
 

(2) 

where ŷi is the estimated output given by the network, and yi is the true label of the input data. 

Notice that the number of outputs on this network is decided by the designer, and may as well 

be just one. In such a case, n = 1 and the summation in the above equation disappears. These 

outputs may be doing either some form of regression, for example predicting the price of a 

certain item, or classification, for example predicting what type of flower the input data 

suggests. Either way, the network learns in the same manner. It can be easily seen that this loss 

function is small whenever the predicted ŷi is close or equal to the real yi. Therefore the 

intention is to do a gradient descent on this loss function, meaning to find the gradient of the 

function at each point, and do a step in the opposite direction to minimize the loss function. 

An important concept in the training of neural networks is overfitting. This is when a neural 

network is so perfectly optimized for a training dataset that it has basically begun to learn it by 

heart, instead of actually generalizing and seeing the bigger trends. The symptom of overfitting 

is when the validation loss starts to climb, instead of decreasing like it is wanted to. The 

validation loss is a measure of the performance of a neural network on a piece of the data set 

that it has not been trained for, and it is a better metric of its true performance than the training 

loss which indicates the performance on its training dataset. 

2.4.1 Backpropagation 

In order for the loss function to be minimized there is the concept of backpropagation [7]. 

Focusing on a single output ŷ1 and its corresponding true value y1, the magnitude of the gradient 

of this output is proportional to how far ŷ1 is from the true value y1, and the direction of the 

gradient indicates if ŷ1 needs to be increased or decreased. Now, knowing how much this output 

should change and the direction of the change, there can be an observation of the previous 

layer. The weights, activations and bias that cause this activation in ŷ1 need to be changed so 

that ŷ1 either increases or decreases depending on the gradient direction. These weights are 

then changed proportionally to their corresponding activations, and the amount of change of 

each previous neuron is noted. Now, this process repeats, as there is knowledge of how much 

and in which direction the activation of the neuron should change. Thus, a recursive pattern 

that propagates gradients backwards throughout the network's neurons, weights and biases, can 

be seen. 
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When all these gradients have been propagated throughout the network, the negative gradient 

can be written as: 

1 2 1 2( , ) [ , ,... , , ,..., ]m tL b b b b    −  =      
 

(3) 

where η is a proportionality constant. Now, having found the gradient of the above function, a 

gradient descent step by changing the weights and biases in the direction of their negative 

gradient can be done. 

A challenge with deep networks is that the more layers the network has, the smaller the 

magnitude of these gradients gets. This means that the first layers will learn slower than the 

last layers. This is mentioned as the vanishing of gradients and is the reason why big neural 

networks require longer training times. 

2.4.2 Deep Learning 

Classic machine learning algorithms use techniques like decision trees, linear regression, 

random forests, support vector machines, and artificial neural networks in order to learn a 

predictive model on some data. The models’ purpose is to generalize, to be able to make 

predictions. From a mathematical point of view, machine learning’s goal is to approximate a 

function from data. 

In the past, when computers didn’t have the speed they do today, neural networks that consisted 

of much fewer layers of fully connected neurons were used, and as a result, they did not perform 

exceptionally well on difficult problems. This situation totally changed with the introduction 

of deep learning and the evolution of computers. Now there are deep neural networks that 

consist of many neuron layers and use different types of connections between them. 

When the width of each layer and the number of layers of a neural network increase, it is 

common to use the term “deep learning”. This term denotes the network’s ability to learn 

complex features and trends that shallower networks are unable to capture, and has led to many 

important advances in the field of computer science like computer vision. Deep learning and 

deep networks have enabled machine learning to be applied to and solve high-dimensional 

problems, like recognizing objects in high-resolution images in real-time, and at the same time 

allowing it to achieve greater accuracy on important tasks. 

It is easy to assume that the deeper the network, the more observant it is, and thus the better. 

However, this is not always the case. Apart from the problem of vanishing gradients and the 
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fact that larger networks require much more computation, there is also a trade-off between 

generalization and overparameterization. The best size of a neural network is the smallest one 

where it can still accurately detect and learn the level of complexity in the features of the 

dataset. As deep ANNs are considered to be black boxes, meaning it is not possible to 

understand, with any confidence, what happens inside it, choosing the size of a network is more 

an art than a science. 

Deep learning is based on a function f: X → Y parameterized with θ ∈ Rn
θ (nθ ∈ N) [8]: 

y = f (x; θ) (4) 

A deep neural network is defined by a series of many processing layers that follow one another. 

Each layer consists of a non-linear transformation, and the order in which these transformations 

are performed concludes to the learning of various levels of abstraction. 

Given the example of a very simple neural network with only one fully-connected hidden layer, 

the first layer receives the input values x as a column vector of size nx (nx ∈ N). The values of 

the next layer, which is the hidden one, are a transformation of these input features by a non-

linear parametric function. This function is a matrix multiplication by W1 of size nh × nx (nh ∈ 

N), plus a bias term b1 of size nh, followed by a non-linear transformation, with A being the 

activation function: 

1 1( )h A W x b= • +
 

(5) 

This non-linear activation function is the one that provides the expressivity of the neural 

network by making the transformation non-linear at each level. The hidden layer h, having size 

nh, can in turn be transformed into other sets of values until the last transformation which finally 

gives the output values y. For this example: 

2 2( )y W h b= • +
 

(6) 

with W2 being of size ny × nh and b2 of size ny (ny ∈ N) 
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Figure 2: Example of a neural network with hidden layers [8] 

Each of these layers has been specifically trained to reduce the empirical error IS[f]. Gradient 

descent using the backpropagation algorithm is the most frequent approach for optimizing the 

parameters of a neural network. 

In the simplest scenario, the algorithm alters its internal parameters in each iteration to fit the 

intended function: 

[ ]a S f   −  
 

(7) 

with α being the learning rate. 

Beyond the simple feedforward networks already mentioned above, several new types of neural 

network layers have appeared in modern applications. Depending on the application, each type 

offers distinct benefits. 

Furthermore, an arbitrarily high number of layers can be contained within a single neural 

network, with the intention in recent years being to have an ever-increasing number of layers, 

with certain supervised learning tasks to requiring more than 100. 

2.4.3 Activation Function 

As mentioned before, every neuron in a neural network is composed of a weight vector, a bias 

value and an underlying activation function. The network consists of an input layer, multiple 
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hidden layers and an output layer. The number of neurons, sometimes referred to as nodes, 

within these layers varies. The input layer usually consists of the observed states, while the 

output layer often is the action(s) to be done. The hidden layers are incrementally built as the 

agent interacts with the environment. The information that flows between the layers needs to 

be converted such that the output in one neuron can be taken as input in another neuron. This 

is where the activation function is relevant. The most important feature of an activation function 

is its ability to add non-linearity in a neural network. Each neuron takes the previous neuron’s 

linear output and generates a non-linear output based on this linear input. In this manner, the 

system is capable of handling nonlinear data.  

Many different activation functions exist. The rectified linear unit (ReLU), tanh and sigmoid, 

which can be seen in Figure 3 are some of the most recognized activation functions. The tanh 

and sigmoid activation functions are in many ways similar, especially since both increase 

mostly around x = 0, but the tanh allows negative values also. The sigmoid function is mostly 

presented for historical purposes and is rarely used in modern applications, as it is 

computationally expensive, not zero-centered and tends to shift the gradients towards zero. 

This last property is referred to as the vanishing gradient problem and is due to the network’s 

depth and the activation shifting the value to zero. The tanh activation function solves the zero-

centered issue, but is relatively computationally expensive and suffers from the vanishing 

gradient problem as well. ReLU is easy to compute and does not cause vanishing gradient 

problems, therefore it is widely used as an activation function. However, since the output is 

zero for all negative inputs, it can cause neurons to die and not learn anything. Another issue 

is that it never saturates, sometimes leading to unusable neurons. Several other activation 

functions have been introduced to solve these issues, such as leaky ReLU [9], parametric 

exponential linear unit [10] and Hard-Swish [11]. 

 
Figure 3: Activation functions 
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3 Deep Reinforcement Learning 

 

3.1 Markov Decision processes 

The representation describing dynamic behavior in a system, meaning the random motion of 

an object among a discrete set of possible locations, formalized through a transition matrix can 

be considered as a Markov chain. In each node of the Markov chain, the possibility of 

transitioning into another node or staying in the same node is denoted by a probability. The 

probability of the different transitions in each node must sum to one. 

There are two types of such models, the discrete-time and the continuous-time model. In the 

discrete, the state of the Markov chain, namely the position of the object is recorded at every 

unit of time, as opposed to the continuous, where the state is monitored at all times. The state 

of the Markov chain changes randomly. Every time, the future motion depends only on the 

current location, regardless of all the previous. 

From this, a Markov Decision Process (MDP) [12] can be defined. MDPs are stochastic, 

sequential decision processes where the cost and the transition functions depend only on the 

current state and action of the system. A sequential decision process is a model for dynamic 

system under the control of a decision maker. Whenever a decision is to be made, the decision 

maker observes the system state. This observation’s derived information guides him to choose 

one action from a set of available alternatives. 

When the dynamic system is in state s at time t there are two consequences of choosing an 

action. One is that the decision maker receives an immediate reward and the other is that he 

determines the probability distribution for the state of the system at the next stage. When the 

reward is positive it can be considered as income and when it is negative as cost. 

The decision maker has the objective to choose a sequence of actions, named a policy, that will 

optimize the system’s performance over the horizon of the decision making. The decision 

maker should take into consideration the future consequences before making his choice for the 

next action, since the action selected at present has an impact on the future evolution of the 

system. 
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The classification of the sequential decision processes is made according to the length of the 

decision making horizon, the epochs when the decisions are made, the mathematical properties 

of the state space and the action space and the optimality criteria. 

The main goals of the analysis of the sequential decision processes in general and particularly 

in the MDPs are to provide an optimality equation that describes the supremal value of the 

objective function, to characterize the form of an optimal policy if one exists and to develop 

efficient computational procedures to be used to find optimal or close to optimal policies. 

The Bellman equation is the fundamental, in MDP theory, entity and is the basis for practically 

all existence, characterization, and computational results. 

The optimality criteria, as well as the nature of the states, the actions, the rewards, and the 

transition probability functions, determine the form of this equation. 

Almost any problem can have a sufficiently general class of policies to yield an optimal or 

substantially optimal approach. The biggest question, both theoretically and practically, is 

whether there is an optimal or nearly optimal policy in a specified class, among the class of all 

other policies, and under which circumstances this happens. 

In many applications, if such a policy exists, it is important to focus on whether it has a special 

form or structure and restrict the search to policies of this form in order to find the optimal 

ones. 

All time points at which the system is observed and decisions can be made are called decision 

epochs or stages. These epochs can be classified in two ways, being either finite or infinite and 

either a discrete set or a continuum. 

Calculations for finite horizon problems are based on backward induction, which is also known 

as dynamic programming, whereas calculations for infinite horizon problems are based on 

value iteration, policy iteration, and their variants. 

A decision rule is a function that denotes the action the decision maker will choose with the 

system being in state s at time t. It is said to be history dependent if it is such a function that 

summarizes the sequence of previous states and actions of the system. On the other hand, it is 

referred to as randomized if it specifies a probability distribution on the total of allowable 

actions, in each state and in that case the action chosen is a random event. 
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Figure 4: Typical reinforcement learning cycle 

A policy denotes the decision rule that the decision maker will use at each time. It is a sequence 

of decision rules that guides the decision maker to choose a decision under any possible future 

state that the system might be in. 

Having that said, the basic concepts that characterize the Markov decision process are ready to 

be defined. As almost every Reinforcement Learning problem is theoretically modeled as 

maximizing the return in a Markov Decision Process these concepts are substantial parts of 

reinforcement learning, too. 

3.1.1 States 

The set of states S in the environment is the finite sets s1, s2, ..., sn , with the corresponding size 

of the state space being |S| = N. Each state contains a unique description of everything that 

matters in a state of the given modeled problem. States can either be legal or illegal, with legal 

states being the ones the agent can explore, like an empty space, and illegal states being the 

ones the agent is not able to explore, like the inside of a wall. 

3.1.2 Actions 

The set of actions A in the environment is the finite set a1, a2, ..., ak, where the size of the action 

space is denoted |A| = K. The set of actions that can be executed in a given state s ∈ S is denoted 

A(s), where A(s) ⊆ A. An action can be used by the agent to control the system state. An 

important side note is that not all actions can necessarily be applied in every state. 

3.1.3 The transition function 

When applying an action a ∈ A in a given state s ∈ S, the system makes a transition from the 

state s to a new state s0. This transition is based on a probability distribution over the set of 

possible transitions from the original state. The transition function T is defined as follows: T: 
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SxAxS − − > [0, 1]. This symbolizes the probability of ending up in the state s0 after performing 

an action a in state s, and is denoted T (s, a, s0). 

This transition function must fulfill the following two conditions. 

1. The probability of a given transition T (s, a, s0) must be in the set [0, 1] 

2. The sum of transition probabilities in each state must sum to one 

A very important property of markovian dynamics is that the current state gives sufficient 

information about the past to make an optimal decision in the current state. In essence, the 

information of the past history is lumped into the previous state [2]. This is called the Markov 

Property, and this assumption is a fundamental building block in all methods discussed in this 

project thesis. 

3.1.4 The reward function 

The state reward function is defined as: R : S × A × A → R , and often denoted R(s, a, s0). This 

reward function is what the agent will use in the learning process to determine what actions to 

take, and thus it implicitly specifies the goal of the learning. It is up to the designer of the 

reward function to determine in which way the system, or rather the MDP, should be controlled. 

This all wraps up into the definition of a Markov Decision Process. It is defined as a tuple <S, 

A, T, R> where S is a finite set of states, A is a finite set of actions, T a transition function and 

reward function R as specified earlier. The transition matrix T and the reward function R 

constitute the model of the MDP. 

3.1.5 Policies 

Given a Markov Decision Process <S, A, T, R>, a policy π is a function that maps states into 

actions, π : S → A. The policy interacts with the MDP in the following way: 

1. First, an initial state s0 is generated from the initial state distribution 

2. An action a0 = π(s0) is then performed as decided by the policy π 

3. Based on the models for T and R, a transition is made to the next state, s1 with 

probability T(s0, a0, s1) and reward R(s0, a0, s1) 

4. The process above continues and produces the tuples <s0, a0, r0>, <s1, a1, r1> and so on 

5. If the case is an episodic setting, the process ends when the system reaches a 

predetermined state s goal. 
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3.2 Recurrent networks 

There are numerous different types of deep learning architectures, depending on input data of 

different types and characteristics. Such architectures are convolutional neural networks 

(CNN) and recurrent neural networks (RNN). In most cases, CNNs and DNNs are unable to 

deal with temporal information of input data. 

RNNs are easily expandable and can recall critical details about the input they receive thanks 

to their internal memory, allowing them to precisely predict what will happen next. They can, 

for example, use data from previously occurred events to provide a wide range of sequence-to-

sequence mappings and incorporate numerous types of information, including temporal order. 

As a result, RNNs are popular in study domains containing sequential data, such as time series, 

voice, text, financial data, audio, video, and weather. In general, RNNs are a type of neural 

network that is particularly well adapted to sequential input and, when compared to other 

algorithms, can create a far deeper grasp of a sequence and its context [13]. 

RNNs, which are derived from feedforward networks, behave similarly to human brains. They 

are divided into two categories: discrete-time RNNs and continuous-time RNNs. A cyclic 

connection is a typical feature of the RNN architecture, which allows the RNN to update its 

current state based on previous states and current input data. Two important aspects in the 

understanding of RNNs are the feed-forward neural networks and the sequential data (Figure 

5). 

• Sequential data is simply ordered data in which related items appear one after the 

other. Financial data or the DNA sequence are two examples, but probably the most 

typical type of sequential data is time series data, which is just a chronologically 

ordered list of data points. 

RNN’s and feed-forward neural networks’ names imply the way that they channel 

information. The information, in a feed-forward neural network, only flows in one 

direction, from the input layer to the output layer, passing through the hidden layers. 

The data travels in a straight way through the network, never passing from the same 

node twice. 

• Feed-forward neural networks have no recollection of the information they receive 

and are poor predictors of what will happen next. A feed-forward network has no 

concept of time order because it only analyzes the current input. Except for its 

training, it has no memory of what previously occurred. More specifically, in 

https://builtin.com/data-science/feedforward-neural-network-intro
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feedforward networks, history is limited as in N-gram backoff models and 

represented by the context of N-1 words, as opposed to RNNs that have unlimited 

length history, represented by neurons recurrently connected with each other.  

 

Figure 5: Recurrent and Feed-forward neural network representation 

In addition, recurrent networks can learn to compress entire histories in low-dimensional space, 

whereas feedforward networks can only compress a single word. 

RNNs usually have a short-term memory. However, variations with long-term memory also 

exist. The information in an RNN travels through a loop. It takes into consideration the current 

input as well as what it has learnt from prior inputs, before it makes a decision. As a result, 

there are two inputs to an RNN, the present and the immediate past. This is significant because 

the data sequence provides critical information about what will happen next and is the reason 

why an RNN can perform tasks that other algorithms cannot. 

Like all other deep learning algorithms, a feed-forward neural network applies a weight matrix 

to its inputs before producing the output. RNNs apply weights to both the current and prior 

inputs. 

In addition, a recurrent neural network will adjust the weights overtime via gradient descent 

and backpropagation (BPTT). 

Finally, RNNs may map one to many, many to many, for translation, and many to one, when 

classifying a voice, whereas feed-forward neural networks map one input to one output, only. 

3.2.1 Standard Recurrent Cell 

RNNs typically consist of standard recurrent cells like sigma and tanh cells. 
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In some problems, standard recurrent cells have shown some successful results. However, 

recurrent networks made out of standard recurrent cells are incapable of addressing long-term 

dependencies: learning connection information becomes difficult as the interval between 

related inputs widens. 

The root cause of long-term dependencies problem is that error signals that travel backward in 

time tend to explode or vanish. 

3.2.2 Long Short-Term Memory 

Unfortunately, when there is a significant gap between the relevant input data, the RNNs 

mentioned above are incapable of connecting the important information. The long short-term 

memory (LSTM) concept was introduced to deal with the long-term dependencies. Simple 

variants, however, have a restricted amount of input variables that can be efficiently handled. 

Gated architectures are designed to address this constraint by incorporating gating units that 

are trained to control information flow through the network and, as a result, learn to keep 

information for a long time. In real-world applications, both Long Short-Term Memory 

(LSTM) and Gated Recurrent Unit (GRU) networks have shown benefits. [14] 

However, gated RNNs were not created to engage with the recommendation domain. 

Specifically, they are not designed to take into account the interaction between the user and the 

system. 

The recurrent layers, also known as hidden layers in RNNs, are made up of recurrent cells 

whose states are influenced by both previous states and current input via feedback connections. 

The recurrent layers can be arranged in a variety of ways to create distinct RNNs. RNNs are 

distinguished primarily by the network design and the recurrent cells. There can be RNNs of 

different capacities depending on variations in cells and inner connections. 

In order to eliminate the problem of long-term dependencies, the LSTM cells were introduced. 

They boosted the standard recurrent cell's remembering capability by putting a "gate" into the 

cell. Many researchers have updated and popularized LSTMs since this groundbreaking study. 

LSTM without a forget gate, LSTM with a forget gate, and LSTM with a peephole connection 

are some variations, but when referring to LSTM cells, LSTM cells with a forget gate are 

implied. 
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Long short-term memory networks (LSTMs) are an extension of recurrent neural networks that 

provide extended memory. As a result, it is highly suited to learning from significant 

experiences separated by lengthy periods of time. The layers of an RNN are built using LSTM 

as the building blocks. LSTMs assign weights to data, allowing RNNs to either let new 

information in, forget it, or give it enough relevance to affect the output. 

LSTMs provide RNNs the ability to recall inputs over a long period of time, due to the fact that 

they store information in a memory, similar to that of a computer. The LSTM has the ability to 

read, write, and delete data from its memory. This memory can be thought of as a gated cell, 

with the definition of gated indicating that the cell selects whether or not to store or erase 

information, i.e., whether or not to open the gates, based on how important it considers the data 

to be. Weights, which are also learned by the algorithm, are used to justify the importance of 

the data. This basically implies that, over the time, it learns which information is important and 

which is not. 

 

Figure 6: Original LSTM architecture [14] 

There are three gates in an LSTM, the input, forget, and output. These gates determine whether 

fresh input should be allowed (input gate), whether it should be deleted because it is not 

important (forget gate), or whether it should have an impact on the output at the current 

timestep (output gate). 
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An LSTM's gates are analog in the form of sigmoids, which means they range from zero to 

one, and thus they can perform backpropagation. 

The problem of disappearing gradients, where the model stops learning or it takes far too long 

to learn due to very small gradient values, is overcome by LSTM, as it keeps the gradients steep 

enough, resulting in a quick training period and good accuracy. 

3.2.3 Gated Recurrent Unit 

The LSTM cell's learning capacity is superior to that of a conventional recurrent cell. The 

additional parameters, on the other hand, add to the computing load. This resulted in the 

introduction of the gated recurrent unit (GRU) [14]. 

The GRU cell integrates the forget gate and input gate of the LSTM cell as a single, update 

gate so as to reduce the number of parameters. There are only two gates in the GRU cell, an 

update gate and a reset gate. Hence, it could save one gating signal and the associated 

parameters. The GRU is just a forget gated version of a vanilla LSTM.  

The single GRU cell lacks power compared to the original LSTM since one gate is missing. 

After empirical evaluation of the performance of the LSTM network, the GRU network and 

the traditional tanh-RNN, it was found that the LSTM, as far as the GRU cell outperformed the 

classic tanh unit when both networks had roughly the same amount of parameters. 

 

3.3 Convolutional Neural Networks 

Over the last decade, Convolutional Neural Networks have achieved breakthroughs in many 

pattern recognition domains, ranging from image processing to speech recognition. 

Convolutional Neural Networks (CNNs) [15] are similar to classic Artificial Neural Networks 

(ANNs) in that they are made up of neurons that learn to optimize themselves. Each neuron 

will still receive an input and conduct an action, which is the foundation of innumerable 

artificial neural networks. 

The most advantageous feature of CNNs is that they reduce the number of parameters in ANN. 

This accomplishment has motivated both researchers and developers to consider larger models 

in order to perform complex tasks that were previously impossible to solve with traditional 

ANNs. 
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The most significant assumption about issues solved by CNN is that they should not contain 

spatially dependent properties. To put it another way, in a face detection problem, the position 

of the faces in the image should not be a concern. The only thing that matters is that they be 

detected, regardless of where they are placed in the photos.  

Another essential property of CNN is the ability to extract abstract features as input propagates 

through deeper levels. The entire network will still express a single perceptual scoring function, 

the weight, starting from the input raw picture vectors and ending to the final output of the 

class score. The last layer will contain the loss functions related to the classes, and all of the 

standard ANN features will still apply. 

One of the most significant changes is that the layers within the CNN are made up of neurons 

that are organized in three dimensions, the input's spatial dimensionality (height and width) 

and depth. The depth is referred to the third dimension of an activation volume and not the total 

number of layers within the ANN. 

Unlike traditional ANNs, the neurons in each layer only connect to a small portion of the layer 

before it. 

A convolutional neural network would have been suitable if the approach of the complex 

environment was followed, as the image input would have played a significant role. The CNN 

would have processed the image gathered from the state to help train the agent to move safely 

in the room and also recognize the target. 

 

3.4 Agents and algorithms 

The best possible future reward can be computed in several ways. Simulation is often favored 

because it allows not having a predefined mathematical model. Learning without a predefined 

mathematical model is a major idea that has made reinforcement learning stretch beyond its 

classical borders. One of several methods to obtain the optimal future reward is by parametric 

cost approximation. In this method, the optimal future reward is chosen to be a member of a 

parametric class of functions where the parameters are optimized by a given algorithm or even 

by a neural network. The reward can, for instance, be given based on an incremental least 

square algorithm. Actor-critic methods, or actor-critic inspired methods, such as TRPO and 

PPO, fall under this category. 
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3.4.1 Offline and Online Learning Methods 

It is common to classify reinforcement learning algorithms as offline or online methods. In the 

approximation of value space, one could compute the cost-to-go and the suboptimal control 

policy offline, meaning before the control process begins, or online, meaning after the control 

process begins. This design choice can be significant for the system. With online learning 

methods, the system will learn "on the go" and calculate the cost-to-go just after the current 

state is known. If the system encounters a never-before-experienced situation, the network will 

improve its knowledge by learning how to handle the new situation online. Online learning is 

also popularly called incremental learning and has a typical depth-first search structure. PPO 

and TRPO are online algorithms. In an offline scheme, the model is trained with all possible 

situations of the environment. The entirety of the cost-to-go function is calculated at every time 

step before the control process begins in a breadth-first search structure. The weights depend 

on the whole set of data. In this method, Actor-critic algorithms are widely used. 

3.4.2 Actor-critic 

There are two main types of RL methods, the value based and the policy based method. In 

value based method an attempt is made to discover or approximate the optimal value function, 

being a mapping between the action and the value. In this category, the most well-known 

algorithm is the Q learning and all the algorithms created to improve it. On the other hand, 

policy based algorithms, such as Policy Gradients and REINFORCE, attempt to determine the 

optimal policy without Q-value interfering. Policy based algorithms have faster convergence 

and are more suitable for continuous and stochastic environments, whereas value based are 

steady and more sample efficient. By combining these two types of methods and trying to keep 

all their advantages and, at the same time, eliminate any drawbacks, the Actor-critic methods 

were established. [16] 

The algorithm that receives the state as input and produces the best action is the actor. It 

effectively directs the agent's behavior by learning the best policy and it represents the policy-

based part. On the other hand, the critic calculates the value function to evaluate the action 

taken and as a result, it is the value-based part. The two models are in a process where they 

both improve in their respective roles as time passes. Consequently, the combination of the two 

methods resulted in better training of the whole architecture and proved more efficient than 

any of the two methods individually. 
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The actor can be an approximator function, such as a neural network, a fully connected one or 

a convolutional one, having the task of producing the best action for a given state. The critic is 

also an approximator function with two inputs, the environment’s state and the actor's chosen 

action. It concatenates them and produces the action value (Q-value) for the pair created. 

 

Figure 7: Actor-critic architecture 

A policy is a mapping between states and actions and can be thought of as the agent’s "strategy" 

to reach the goal. A policy iteration network generates a sequence of stationary policies and a 

corresponding sequence of approximate cost functions that are evaluated during the simulation 

of the system and is possible to determine the next improved policy. Where the critic’s task is 

to evaluate the current policy, the actor’s task is to actually improve the policy. 

The two networks are trained individually, and their weights are updated using gradient ascent, 

to obtain the global maximum. 

The actor-critic scheme, when using neural networks, will gradually learn better policies by 

observing behavior. However, an important note to make is that even though the system learns 

by itself, it is dependent on external guidance - the predefined reward function. The system 

learns to behave better by improving the policy through experiences gained when interacting 

with the environment. It's also worth noting that, unlike policy gradients, the weights are 

updated at each step rather than at the end of the episode. 
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3.4.3 Policy Gradient Methods 

Policy gradient learning methods [17] are often advantageous in robotics and other continuous 

space problems. They optimize a parametrized control policy by maximizing the expected 

reward, usually by using direct gradient descent or some other optimization algorithm. The 

policy gradient method differs from the value function approximation method, which derives 

policies indirectly from an estimated value function. Policy gradient methods prevail because 

they enable the incorporation of domain knowledge. They can also naturally handle continuous 

states and actions, as well as imperfect state information. 

Many policy gradient methods guarantee convergence to a locally optimal point and often have 

a more compact optimal policy than the corresponding value function. However, there are 

certain disadvantages, particularly in terms of the timestep. Too small timestep and the method 

will be slow, too large and it will be affected by noise and diverge or not reach a stable solution. 

However, the major problem is that the policy gradient, while often guaranteeing a local 

optimum, will struggle to identify local optima that are not globally optimal. PPO and TRPO 

are all methods that use ideas inspired by policy gradient methods. 

3.4.4 Trust Region Policy Optimization 

The policy gradient methods have been fundamental to the development and breakthrough of 

deep reinforcement learning for control. However, getting good and reliable results has been 

difficult due to learning sensitivity caused by the stepsize. If the step size is too small, the 

system will be too slow. If it is too large, the system will be significantly affected by noise and 

may yield unwanted results. There are two major optimization methods, line search (similar to 

gradient ascent) and trust region. In line-search, the algorithm makes the directional decision 

first based on the steepest ascent, then takes the step in that direction. When using trust region, 

the maximum allowed step size, referred to as the trust region, is first determined. When the 

trust region is chosen, the optimal point to move within the trust region is chosen. 

Gradient-based optimization algorithms enjoy much better sample complexity guarantees than 

gradient-free methods. Continuous gradient-based methods have been successful at learning 

function approximators with huge numbers of parameters. However, their success has often 

been associated with supervised learning. With the trusted region policy optimization (TRPO) 

algorithm [18], this was extending the field into the reinforcement learning area. This allowed 

for more efficient training of more powerful and complex policies. TRPO guarantees policy 



Training an agent to move towards a target interacting with a complex environment 

 

31 
 

improvement with non-trivial step sizes by minimizing a surrogate objective function. To 

understand the TRPO algorithm, there are three core concepts to be aware of: 

1. The Minorize Maximization algorithm (MM): An algorithm that guarantees that any 

policy updates always improve the expected rewards by iteratively maximizing a lower 

bound function. This will eventually lead to a local or a global optimal policy. 

2. Trust Region: The maximum step size to explore the environment is first chosen, then 

the optimal location to move, within the radius of the trust region, is found. 

3. Importance sampling: Calculates the expected value of a function given a data 

distribution. This is important because it makes it possible to rewrite the objective and 

use samples from an old policy to calculate a new policy. 

TRPO can guarantee monotonic improvement for policy optimization. In practice, this means 

that every step in the algorithm will have a better policy than the previous step. However, this 

guarantee is only valid within the trust region. 

3.4.5 Proximal Policy Optimization 

Proximal Policy Optimization (PPO) [19], like the TRPO, is an online policy gradient method. 

However, it is significantly easier to implement, it has better sample complexity, and is easier 

to tune. PPO was motivated by the desire to design an algorithm that achieves TRPO's data 

efficiency and reliability, however, it provides only first-order optimization. Instead of a KL-

constraint, PPO employs an adaptable penalty (adaptive KL-penalty). The algorithm calculates 

the update that optimizes the reward while keeping the deviation from the previous policy to a 

minimum at each step.  

PPO alternates between applying a stochastic gradient ascent to optimize a surrogate objective 

function and sampling data from the environment. The policies are optimized somewhere 

between sampling data from the policy and running various optimization epochs on the 

sampled data. A unique objective with clipped probability ratios is used to find the lower 

bound. The Hessian calculation and its derivative are the major objectives that PPO addresses 

differently than TRPO. Because this is a costly operation, neither algorithm directly solves it. 

TRPO reduces the computing complexity by approximating the hessian. PPO, on the other 

hand, brings the first order derivative closer to the Hessian by using soft constraints. This is 

done at the expense of ensuring policy improvement at every step; however, because of the soft 

constraints, the chances of making a faulty decision are reduced. 
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3.5 Exploration vs exploitation 

At any point in time, an agent has always partial knowledge about the state, actions, rewards 

and upcoming states in a given environment. However, its actions serve two purposes at the 

same time, the purpose of exploring (learn) and a means to exploit (optimize). 

Because exploration is intrinsically expensive in terms of resources, time, and opportunity, the 

reconciliation of the conflict between uncharted territory exploration and existing knowledge 

exploitation is a natural and important challenge in RL problems. This dilemma arises in both 

stateless RL contexts and more general multi-state RL situations. 

In particular, the agent must strike a balance between greedy exploitation of the knowledge he 

has already gained, to choose actions that offer bigger rewards in the short term, and continuous 

exploration of the environment, to get additional information in order to potentially attain long-

term gains. Thus, the two basic terms, exploration and exploitation can be defined as follows: 

• Exploration: 

Exploration is more of a long-term benefit idea in which the agent improves its 

knowledge of each action, potentially leading to long-term benefit. 

• Exploitation: 

Exploitation is the concept where the agent exploits the current estimated value and 

in order to maximize the reward, it chooses the greedy approach. However, in this 

case, the agent is being greedy with the estimated value rather than the actual value, 

resulting in the possibility of not getting the highest reward. 

An example of a concept that intends to achieve a balance between exploration and exploitation 

is the e-greedy method. It chooses the currently best action a in a state s with probability 1-e 

and a completely random action with probability e. The value for e can, thus, be tuned to lead 

to this balance. 
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4 Implementation 

 

4.1 Initial Environment created 

In the initial implementation, a more complex yet realistic idea was in mind for the design of 

the environment. In this idea, a three-dimensional environment was designed for the robot to 

move in. It simulated a room, with walls around, some cuboid obstacles and a human body, 

each placed in a random position for every episode. The robot’s starting position was also 

random and its goal was to approach the human in the room, avoiding the obstacles it might 

come across on its way. The robot was enhanced with five proximity sensors able to detect 

objects within a detection volume and a vision sensor, being a camera-type sensor, reacting to 

light, colors and images. 

In this version, the state of the environment each time consisted of two parts. The one part 

contained the sensors’ readings, the polar coordinates and the linear and angular velocities and 

the other the image input of the robot’s camera. 

The environment in question was designed using three significant, in the robotics field, tools, 

OpenAI gym, CoppeliaSim and PyRep. 

4.1.1 OpenAI Gym 

OpenAI Gym [20] is a toolbox that enables development and comparison of reinforcement 

learning algorithms. It provides simulated environments to be used for RL algorithms training 

and as benchmarks to demonstrate the usefulness of any new research methodology. This 

variety of environments ranges from simple games to large physics-based engines. 

A wide range of environments that are used as benchmarks for proving the efficacy of any new 

research methodology is implemented in OpenAI Gym, out-of-the-box. Except for the 

predefined environments, OpenAI gym provides an easy way for custom environment creation 

to fulfill all the needs. 
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In action, OpenAI gym gives access to an “agent” that can perform actions on an 

“environment”, building an environment-agent arrangement. The return, as in the consequence 

of a particular action performed in the environment, is an observation and a reward. 

For each "step" taken by the agent, the environment returns four different values. 

1. Observation (object): an environment-related object that represents the observation of 

the environment, in this case, the two-part state of the environment. 

2. Reward (float): the amount of reward/score earned as a result of the preceding action. 

Although the scale varies depending on the environment, the intention is always to 

improve the total reward/score. 

3. Done (boolean): indicates that it is time for the environment to be reset. In this case, 

done is true if the robot hits an obstacle or reaches the goal. 

4. Info (dict): diagnostic data that can make debugging easier. 

4.1.2 CoppeliaSim 

CoppeliaSim [21] is a robotic simulator with a built-in development environment that has been 

utilized in industry, education, and research. It uses a distributed control architecture, which 

means that each object/model can be controlled separately via an embedded script, a plugin, a 

ROS node, a remote API client, or a custom solution. As a result, CoppeliaSim is extremely 

adaptable and well-suited to multi-robot applications. 

CoppeliaSim provides rigid body simulation by using a kinematics engine for forward and 

inverse kinematics calculations, as well as many physics simulation libraries, like Bullet, ODE, 

Vortex and Newton Game Dynamics. Models and scenarios are created by putting together a 

hierarchical structure of numerous items (meshes, joints, various sensors, Point clouds, OC 

trees, and so on). Motion planning (through OMPL), synthetic vision and imaging processing 

(e.g. via OpenCV), collision detection, minimum distance calculation, specialized graphical 

user interfaces, and data visualization are all features available by plug-ins. Among other 

things, CoppeliaSim is used for fast algorithm development, factory automation simulations, 

rapid prototyping and verification, robotics teaching, remote monitoring, safety double-

checking, and as a digital twin. 
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CoppeliaSim can be used as a standalone application or easily integrated into a major client 

program. It is incredibly versatile thanks to the Lua or Python script interpreter, which allows 

the user to combine low/high-level functionalities to create new high-level functionalities. 

CoppeliaSim was used to create the scene of the environment. As shown in the image below, 

the scene composition is visualized in a scene hierarchy view, indicating object aliases, types, 

selection and visibility states, associated control scripts, loop closures, selection and visibility 

states etc. This structure made it easy to drag and drop the composing elements of the scene, 

place them on the floor available on scene creation, select them, change their position in all 

dimensions, affect their visibility and make them detectable and collidable. In addition, the 

robot was also designed via this tool, by adding easily its visual and ultrasonic sensors, 

adjusting its camera angle etc. 

The tool was also used for watching the simulation with the robot moving in the environment 

created, among the training episodes. 

 
Figure 8: Visual representation of the initial environment in CoppeliaSim 

 

4.1.3 PyRep 

PyRep [22] is a robot learning research toolbox built on top of CoppeliaSim/V-REP. It enables 

Python to launch CoppeliaSim's simulation thread. As a result, PyRep python code can be 

executed synchronously with the simulation loop. This considerably boosts speed as compared 
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to a Python client interacting with CoppeliaSim via remote procedure calls. These 

characteristics make PyRep especially relevant to learning algorithms in the fields of 

reinforcement learning, imitation learning, state estimation, and so on.  

The PyRep API keeps track of simulation handles and provides an object-oriented interface to 

the simulation environment. Furthermore, it provides simple addition of new robots with 

motion planning capabilities, by writing only a few lines of Python code. 

The use of the PyRep library provided a simple way to control the robot and manipulate the 

scene. It built the connection between the visual representation of the elements and the actual 

access in their attributes through the Python code, so as the distances, the velocities and the 

positions could be available and used to format the state and compute the reward each time. 

 

4.2 Environment used 

The above environment added a lot of complexity and computational load to the project and 

due to lack of resources, it could not be used to complete the training of an agent and yet to 

fulfill the purposes of the implementation. 

The final environment created, the one where the two types of agents, Actor-critic and PPO 

were configured and tested, is much simplified compared to the initial one. Two libraries were 

used, Box2D, to create the elements of the environment and implement the physics and 

PyGame to visualize the simulation. 

It is, too, represented as a room with size 16x16 meters with walls around, of 30cm thickness. 

In each episode, eight obstacles are generated with random sizes and positions, along with a 

target of size 10x10cm, also being placed in random position. 



Training an agent to move towards a target interacting with a complex environment 

 

37 
 

 

Figure 9: Visual representation of the final environment. 

The robot that moves around the room, trying to reach the target, is 30x40cm and has two 

wheels of 10cm length and 2mm thickness. To make the robot move, it was necessary to use 

physics, in order to create a realistic result. To start its movement, a boost is given to the wheels 

in such a way that it can simulate an engine’s operation. Due to lack of gravity, a force of the 

robot’s linear velocity multiplied by -5 had to be applied, so that it could brake quickly. 

Furthermore, in order to avoid spinning when braking, an impulse of the robot’s inertia 

multiplied by its angular velocity, multiplied by -1 had to be also applied. 

In order to detect the collision of the robot with an obstacle, the ray cast concept of Box2D 

library was used. Ray casting is frequently used to determine what items are present in a given 

location. A ray is simply a straight line created from a specified start and end point. Box2D 

traces the line from start to finish and returns all its fixtures that it collides with. In this case, 

the collision threshold is set to be 2cm and the target threshold 1cm. 
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4.2.1 Box2D 

Box2D [23] is a game-specific 2D rigid body simulation package. It can be used by 

programmers to make objects move in realistic ways and make the game world more interactive 

in their games. A physics engine is just a system for generative procedural animation, as seen 

from the perspective of the game engine. Box2D is written in the portable C++ programming 

language. 

It can imitate convex polygons, circles, and edge forms as bodies. Bodies are connected by 

joints and influenced by forces. Gravity, friction, and restitution are also applied by the engine. 

An incremental sweep and prune broad phase, a robust linear-time contact solver and a 

continuous collision detection unit make up Box2D's collision detection and resolution system. 

These techniques make it possible to simulate rapid bodies and big stacks efficiently, without 

missing collisions or triggering instabilities. 

4.2.2 PyGame 

Pygame [24] is a set of cross-platform Python tools for video games creation. It provides sound 

and graphics libraries that can be utilized with the Python programming language. It makes use 

of the Simple DirectMedia Layer (SDL) library, with the goal of facilitating real-time computer 

game production without the low-level mechanics of C and its variants. This is founded on the 

idea that the most expensive functions in games may be abstracted from the game logic, 

allowing the game to be structured using a high-level programming language like Python. 

Vector math, collision detection, 2D sprite scene graph management, MIDI support, camera, 

pixel-array manipulation, transformations, filtering, advanced freetype font support, and 

drawing are among SDL's other features. 

The two types of agents used for the training process, Actor-Critic and PPO, along with the 

RNN network architectures, were provided from the Tensorforce library. 

4.2.3 Tensorforce 

TensorForce [25] is an open-source deep reinforcement learning framework that aims to 

provide flexible modularized library design and facilitate application both in research and in 

practice. It is built on top of the TensorFlow library and requires Python 3 for utilizing this 

deep RL framework. 
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Tensorforce attempts to keep its feature implementations as flexible and feasible as possible. 

An important feature is that it allows parallel execution of multiple RL environments. It also 

provides separation between the application and the RL algorithm, meaning that the algorithms 

that use the library are agnostic both to the states, the actions and the interaction with the 

application’s environment. It supports a wide variety of neural network layers like fully 

connected, 1 or 2D convolutions, pooling etc, optimization algorithms, L2 and entropy 

regularization techniques, random replay memory and batch buffer memory. Finally, the whole 

reinforcement learning logic, including control flow, is implemented in TensorFlow, allowing 

for portable computation graphs independent of the application programming language and 

facilitating model deployment, also by supporting TensorBoard.  
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5 Results 

In this implementation, several tests were performed with different reward approaches, 

different network architectures and different number of episodes among the runs, for both agent 

types, Actor-Critic and PPO. The basic experiments conducted to train the agent contained the 

following reward computation functions:  

The agent gets: 

1. fixed penalty: when he hits on an obstacle or wall, when he moves close to obstacles 

or walls and when he gets further away from the target  

reward: when he reaches the target and when he moves close to the target 

2. fixed penalty: when he hits on an obstacle or wall,  when he moves close to obstacles 

or walls and for each time step he is “alive” and moving, to pressure him and give him 

motivation to move faster towards the target 

variable penalty: proportional to the distance he has from the target, meaning less 

when he is close to the target and more when he moves away from it 

reward: when he reaches the target and when he moves close to the target 

3. fixed penalty: when he hits on an obstacle or wall 

reward: when he reaches the target 

4.     same as case 3, with a huge negative reward on hitting an obstacle 

The above reward function cases were used with several network architectures that combined 

both dense and LSTM layers and the two agents, Actor-Critic and PPO mentioned in an earlier 

chapter. 

The first reward case was tested with two different network architectures with different type of 

agent each, a dense(32)/lstm(16)/dense(32) with AC and a dense(32)/lstm(128)/dense(32) with 

AC and dropout layers p=10%. The first one needed to stop early because it was not giving any 

good results. The second one, with the large LSTM, has satisfying results, however it needed 

to run with many more episodes for the LSTM to be fully exploited. 
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Regarding the third case of reward, its calculation is very simple, denoting positive on success 

and negative on failure. It was tested with a PPO agent and an lstm(4)/dense(64) network. This 

case is all about exploration, meaning that the agent has no other way to understand how he 

could maximize his reward, but moving around the environment and eventually crash on an 

obstacle or reach the goal, and finally realize that his action could have some impact. In such a 

scenario, many episodes are required for the agent to pass the exploration barrier, discover the 

target and start moving towards it. However, despite the fact that limited episodes were run, 

their results were satisfactory. 

Approximately, the same situation occurred also with the use of the second reward approach. 

This approach was combined with two different network architectures, an 

lstm(128)/dense(64)/dense(32) with PPO agent and a dense(64)/lstm(64)/dense(32) with AC. 

The most promising between them was the one with the PPO agent, which found a good 

solution, but tended to “quit early”, meaning that the robot kept leading to obstacles in order to 

quit the episode and in that way minimize the negative reward. The one with the AC oscillates 

between good behavior, with the robot searching the environment for the target and bad 

behavior, with it crashing really quickly. Both approaches need to be run for more episodes for 

the exploration to kick in. 

Some early tests, without the use of LSTM, performed poorly, with the agent unable to learn. 

In these tests the most common results were for the agent to keep spinning around himself 

eternally or keep crashing with ease on the closest obstacle without taking time to move around 

the environment. On the other hand, the tests that were performed with LSTM networks 

achieved to train the agent to move and explore the environment, and successfully avoid the 

obstacles. 

To sum up, both of the actor types used, had similar results, with the network architectures and 

the reward selections being the aspects that brought the differences in the training efficiency. 

Architectures with LSTM appear to have small variations. Besides the runs with a small 

number of steps per episode, that did not have the required time to infer on the reward, the 

differences appeared mostly on how fast they will reach ascending slopes. 

By using the Tensorforce library there was a limitation on the control over the LSTM. In a 

more custom implementation, where there could be parametrization of the LSTM, the 

differences in the results and the overall training could have been substantial. 
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Indicatively, there are some graphic representations cited, showing the progress of the training 

of the agent. When the episode length increases, it indicates that the agent manages to stay 

“alive” longer, without hitting an obstacle. In addition, the episode return shows that the agent 

learns, either going through several stages, where it “remembers” and “forgets” (Figure 11), or 

having a permanent upward course (Figure 15), where it improves in each episode.  

Since there was no direct control over the structure of RNN via Tensorforce, a manual increase 

of the neural network’s input was made, to include prior states, thus increasing both agent 

return and episode length, which means that the agent learns better. The result is presented in 

Figure 15. 

In all cases, the simulation needed more episodes to run in order to have better results and a 

more clear learning state of the agent. 

 

Figure 10: Episode length with network lstm(64)/dropout(0.1)/dense(32) and agent PPO. 

 

 

Figure 11: Episode return with network lstm(64)/dropout(0.1)/dense(32) and agent PPO. 
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Figure 12: Episode length with network dense(32)/gru(64)/dense(16) and agent PPO. 

 

 

 

Figure 13: Episode return with network dense(32)/gru(64)/dense(16) and agent PPO. 

 

 

Figure 14: Episode length dense(128)/gru(64)/dense(64) and agent PPO. 
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Figure 15: Episode return dense(128)/gru(64)/dense(64) and agent PPO. 
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6 Conclusion 

In this thesis, a study on reinforcement learning took place and an effort was made to find a 

solution to the problem of navigating a blind robot in an unknown environment. Two types of 

actors were used with different results each. The results were satisfactory, having in mind the 

low computational power of the machine used to train the agent. 

Ideally, to have more complete and robust results, runs of many episodes should be performed, 

using both the PPO and Actor-Critic algorithms, the four different reward cases mentioned 

above and the five distinct network architectures. These runs will provide sufficient outcomes 

that will, eventually, help adjust the settings of the reward function and the networks in such a 

way that the agent would, finally, be fully trained and capable of finding the target with a 

collision-free movement. These runs, unfortunately, could not take place at this time due to the 

long time and the resources they demand. 

Furthermore, it would be very interesting to be able to use the first version of the environment, 

which achieves a more complete simulation. An agent should be trained to move around a room 

without colliding, by utilizing the image input from the camera attached to it. In this version, 

the agent won’t be blind anymore and it would recognize its target and move safely towards it. 

The real challenge would be to bring this whole application from simulation to reality, by 

creating a real robot, possibly using a 3D printer. The robot should be equipped with the 

appropriate distance and camera sensors, and have a board embedded with the algorithm 

running on it. In this way, it can start moving in a real environment, such as a house, and learn 

by trial-and-error to avoid the obstacles and reaching the goal, under real circumstances.  
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