
NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCES
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

BSc THESIS

A Language Server for Soufflé Datalog

Ioannis N. Daridis

Supervisors: Yannis Smaragdakis, Professor NKUA
Sifis Lagouvardos, PhD Student

ATHENS

OCTOBER 2022

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

A Language Server for Soufflé Datalog

Ιωάννης Ν. Δαρίδης

Επιβλέποντες: Γιάννης Σμαραγδάκης, Καθηγητής ΕΚΠΑ
Σήφης Λαγουβάρδος, Διδακτορικός Φοιτητής

ΑΘΗΝΑ

ΟΚΤΩΒΡΙΟΣ 2022

BSc THESIS

A Language Server for Soufflé Datalog

Ioannis N. Daridis
S.N.: 1115201700028

SUPERVISORS: Yannis Smaragdakis, Professor NKUA
Sifis Lagouvardos, PhD Student

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

A Language Server for Soufflé Datalog

Ιωάννης Ν. Δαρίδης
Α.Μ.: 1115201700028

ΕΠΙΒΛΕΠΟΝΤΕΣ: Γιάννης Σμαραγδάκης, Καθηγητής ΕΚΠΑ
Σήφης Λαγουβάρδος, Διδακτορικός Φοιτητής

ABSTRACT

Software development is increasingly supported by programming language tools and IDEs,
in order to meet the increase in software complexity and computing power. Programmers
nowadays also expect a level of automation like automatic syntax error detection or a level
of auto complete when editing their source-code. In this thesis we explore how one can
use the Language Server Protocol and other technologies to add tool support to a novel
programming language like Soufflé Datalog, a logic programming language used for static
program analysis. We developed a Language Server for Soufflé, which can be used inside
a plugin for a variety of source-code editors or IDEs, compatible with LSP, to add smart
functionality and support for Soufflé.

SUBJECT AREA: Programming Language Tools

KEYWORDS: Soufflé, Datalog, LSP, tooling, IDE

ΠΕΡΙΛΗΨΗ

Τα τελευταία χρόνια η ανάπτυξη λογισμικού υποβοηθείται σε μεγάλο βαθμό από εργαλεία
και βιβλιοθήκες που προσφέρονται ως μέρος των γλωσσών προγραμματισμού, καθώς
και από Ολοκληρωμένα Περιβάλλοντα Ανάπτυξης. Επίσης, πλέον οι προγραμματιστές
αναμένουν ένα επίπεδο αυτοματοποίησης την ώρα της συγγραφής κώδικα, όπως αυτό-
ματη συμπλήρωση κώδικα ή επισήμανση συντακτικών λαθών. Σε αυτή την εργασία εξε-
ρευνούμε το πως μπορεί να χρησιμοποιηθεί το πρωτόκολλο LSP και άλλες τεχνολογίες
για την προσθήκη λειτουργιών υποστήριξης, όπως αυτές που αναφέρθηκαν, σε μια νεα
γλώσσα, τη Soufflé Datalog. H Soufflé είναι μια γλώσσα λογικού προγραμματισμού, που
χρησιμοποιείται για στατική ανάλυση προγραμμάτων. Αναπτύξαμε έναν Language Server,
ο οποίος μπορεί να ενσωματωθεί σε πρόσθετο οποιουδήποτε συγγραφέα πηγαίου κώδικα
συμβατό με το πρωτόκολλο LSP, για να προστεθούν "έξυπνες" λειτουργίες και υποστήριξη
για τη γλώσσα Soufflé Datalog.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Εργαλεία γλωσσών προγραμματισμού

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Soufflé, Datalog, LSP, tooling, IDE

Αφιερωμένο στους γονείς μου

CONTENTS

1. INTRODUCTION 12

2. BACKGROUND 13

2.1 Datalog . 13
2.1.1 Soufflé . 13

2.2 Language Server Protocol (LSP) . 14
2.2.1 LSP4J library . 14

2.3 ANTLR . 16

3. THE LANGUAGE SERVER 17

3.1 Parsing the input . 17
3.1.1 Soufflé . 17
3.1.2 C Preprocessor . 18

3.2 Extracting the information . 18
3.2.1 Infrastructure . 19

3.3 Features . 21
3.3.1 Syntax error reporting . 21
3.3.2 Hover . 21
3.3.3 Go to Definition . 22
3.3.4 Go to Type Definition . 22
3.3.5 Auto complete . 23
3.3.6 Signature Help . 23
3.3.7 Rename . 24
3.3.8 Find all references . 24
3.3.9 Find all rules for relation . 25
3.3.10 Document symbols . 25

4. EVALUATION 26

4.1 Libraries used . 28
4.1.1 Doop framework . 28
4.1.2 Gigahorse . 28
4.1.3 Securify2 . 28
4.1.4 Soufflé Benchmark . 28

4.2 Problems and limitations . 28

5. CONCLUSIONS 29

ABBREVIATIONS - ACRONYMS 30

REFERENCES 32

LIST OF FIGURES

2.1 The Language Server Sequence (as taken from their website) 16

3.1 Soufflé Context Hierarchy . 19
3.2 Soufflé model UML Class Diagram . 20
3.3 Syntax error message . 21
3.4 Hover popup examples . 21
3.5 Go to definition example . 22
3.6 Go to type definition example . 22
3.7 Auto Complete examples . 23
3.8 Signature Help example . 23
3.9 Rename examples . 24
3.10 Find references example . 24
3.11 Find all rules example . 25
3.12 Document outline example . 25

4.1 Scatter plots of the total project lines vs the time and RAM usage 27

LIST OF TABLES

4.1 Soufflé Language Server evaluation . 26

A Language Server for Soufflé Datalog

1. INTRODUCTION

Software development is becoming increasingly complex, as our computers keep getting
faster and modern languages continue to evolve to meet growing needs. As this trend
continues, we see the need for better tools supporting programming languages, tools such
as linters, static analyzers, debuggers, and so on. Programmers are now accustomed to
having these tools available through an Integrated Development Environment (IDE) or a
source-code editor. We also expect some level of automation, such as auto complete and
type hints, to be at our disposal. This fact is true for all the major industrial languages,
but often the smaller, more academically focused languages are left behind in the support
from major IDE or source-code editor providers. With the introduction of the Language
Server Protocol this can be changed.

The Language Server Protocol was designed by Microsoft, to enable the decoupling of the
language tools and the source-code editors. This allows the language vendors to write a
single target for their tools, rather than repeating the same job over and over, also enabling
a greater degree of separation of concerns. It is now an open-source project and standard
and it is used by major languages, for instance Java and Typescript, and editors, such as
VS Code and Eclipse IDE.

We will present the development of a language support tool, a Language Server, for the
Soufflé Datalog language [25], a logic programming query language used primarily for
static program analysis. Notable Soufflé applications include the DOOP framework [8],
the Gigahorse toolchain [14] and Securify2 [2], to name a few. We explore how we can
add some of the familiar functionality one might expect from a modern source-code editor
to a novel language, with the help of the LSP, and the challenges and design choices this
entails. During the implementation we see a great overlap with technologies used in a
language compiler front end, namely: grammar construction, parsing, semantic analysis
and symbol table construction.

Below we introduce the contents of this thesis:

• In chapter 2 we introduce the Datalog and Soufflé languages, along with the LSP
and how it operates, followed by ANTLR, which was used for the parsing.

• In chapter 3 we present a bottom up view of how the Soufflé Language Server is
implemented, starting from the source-code parsing and ending with the user facing
features.

• In chapter 4 we show how we tested and evaluated our tool and the problems and
limitations of the current implementation.

• In chapter 5 summarize the conclusions we made.

I. Daridis 12

A Language Server for Soufflé Datalog

2. BACKGROUND

2.1 Datalog

Datalog [9] is a declarative logic programming language designed for deductive database
querying. It is a syntactical subset of Prolog, but the semantics of the two languages are
quite different. The main strength of Datalog is the bottom-up evaluation of the proof trees,
until a fixpoint is reached, when there is a finite set of facts, and thus the program always
terminates. This principle is also referred to as forward chaining, and is in contrast to the
backward chaining, used in languages like Prolog.

A Datalog program consists of a finite set of Horn clauses [17], called facts and rules.
The general shape of a rule clause is: L : − L1, ..., Ln, where each Li is a literal of the
form pi(t0, ..., tk). Fact clauses, are represented like the rules but with an empty body. For
a Datalog program to be guaranteed to produce a finite set of facts, and thus to always
terminate, a number of safety conditions must hold, namely:

• Each fact must be ground, meaning it does not contain any variables

• Each variable which occurs in the head of a rule must also occur in the body of the
same rule.

• Impose stratified negation in rules

Initially designed for relational database querying, Datalog introduces two sets of clauses:
the Extensional Database (EDB), the set of ground facts stored in a relational database
and the Intenional Database (IDB), the Datalog program itself. Lately though, Datalog
has seen a revival outside of the traditional database querying, in static program analysis,
through the use of different frameworks based on vaious implementations of Datalog.

2.1.1 Soufflé

Datalog, like many logic programming languages, does not have a formal implementa-
tion. Soufflé [25], rather than just a Datalog implementation, is a programming language
inspired by Datalog with some extensions of its own [18]. Focused more on static pro-
gram analysis, Soufflé overcomes some limitations, by permitting programmers the use
of functors (intrinsic, user-defined, records/constructors, etc.) and the use of non finite
domains.

As stated in their website1: Soufflé is short for Systematic, Ontological, Undiscovered Fact
Finding Logic Engine. The EDB represents the uncooked Soufflé and the IDB causes the
Soufflé to rise, i.e., monotonically increasing knowledge. When it stops rising and a fixed-
point is reached, the result is a puffed-up ready-to-eat Soufflé.

Soufflé is designed to fix some of the challenges of logic programming by translating the
programs to efficient C++ code, leveraging modern computer hardware, including multi-
core computers and parallelization. It achieves that by using advanced compiler tech-
niques namely Futamura Projections [12], staged-compilation and partial evaluation.

1https://souffle-lang.github.io/docs.html

I. Daridis 13

https://souffle-lang.github.io/docs.html

A Language Server for Soufflé Datalog

In addition to its default optimizations [5, 27], Soufflé also allows programmers to optim-
ize their programs in various ways and at different levels. At the program level, Side-
ways Information Passing Strategy [7] can be selected. At the relation level users can
enable the magic-set transformation [6] or select the data structures used for each rela-
tion [19][20][22]. Finally, at the rule level the programmer can alter the evaluation order of
recursive rules via query plans.

2.2 Language Server Protocol (LSP)

Modern software development is becoming increasingly polyglot, but the tools supporting
the languages, such as source-code editors, linters etc, remain limited. It is econom-
ically infeasible to build the toolchains to support each language, from the ground up.
The Language Server Protocol2 [11] was designed to solve this exact problem. It allows
the decoupling of the source-code editor and the language processing, by delegating the
language smarts to a Language Server, which then communicates with the editor with
Inter-Process Communication. This way every editor compatible with the LSP can provide
feautures akin to go-to-definition or autocomplete, for a greater variety of languages.

The Language Server Protocol uses JSON-RPC for the communication between the Lan-
guage Server and the source-code editors implementing the protocol, called Language
Clients. This design enables a language agnostic type of communication, between the
server and the client, where they communicate in terms of document URIs and generic
data types. In the code listing 1 we can see how the actual messages are structured and
in figure 2.1 we can see an overview of the communication sequence.

2.2.1 LSP4J library

The Language Server Protocol team does not provide an implementation, rather just the
specification for the protocol. The LSP4J library3 is a Java implementation of the LSP,
developed by the Eclipse Foundation, for use in the Eclipse IDE and other editors. It
is a wrapper for LSP JSON-RPC calls, but can also be used as a generic JSON-RPC
implementation for Java. In the code listing 2 we can see an example of the library usage.

Because the Java programming language is so prevalent the LSP4J library integrates
well with many other tools. The LSP4J library was used for the implementation of many
tools, namely: the Language Server for the Ballerina programming language [16], the
MagpieBridge tool for static analysis [21] and the ExtendJ compiler [26]

2https://microsoft.github.io/language-server-protocol/
3https://github.com/eclipse/lsp4j

I. Daridis 14

https://microsoft.github.io/language-server-protocol/
https://github.com/eclipse/lsp4j

A Language Server for Soufflé Datalog

{
"jsonrpc": "2.0",
"id" : 1,
"method": "textDocument/definition",
"params": {

"textDocument": {
"uri": "file:////VSCode/Playgrounds/cpp/use.cpp"

},
"position": {

"line": 3,
"character": 12

}
}

}

{
"jsonrpc": "2.0",
"id": 1,
"result": {

"uri": "file:///VSCode/Playgrounds/cpp/provide.cpp",
"range": {

"start": {
"line": 0,
"character": 4

},
"end": {

"line": 0,
"character": 11

}
}

}
}

Listing 1: Example of a LSP JSON-RPC request/response

public class SouffleTextDocumentService implements TextDocumentService {

public SouffleTextDocumentService(SouffleLanguageServer) {...}

@Override
public void didOpen(DidOpenTextDocumentParams) {...}

@Override
public void didChange(DidChangeTextDocumentParams) {...}

@Override
public void didClose(DidCloseTextDocumentParams) {...}

@Override
public void didSave(DidSaveTextDocumentParams) {...}

@Override
public CompletableFuture<Either<List<? extends Location>, List<? extends LocationLink>>>

definition(DefinitionParams) {...}↪→

@Override
public CompletableFuture<Hover> hover(HoverParams) {...}

@Override
public CompletableFuture<Either<List<CompletionItem>, CompletionList>> completion(CompletionParams) {...}

@Override
public CompletableFuture<WorkspaceEdit> rename(RenameParams) {...}

@Override
public CompletableFuture<SignatureHelp> signatureHelp(SignatureHelpParams) {...}

}

Listing 2: Example of the LSP4J library usage

I. Daridis 15

A Language Server for Soufflé Datalog

Figure 2.1: The Language Server Sequence (as taken from their website)

2.3 ANTLR

Parsing of a computer program refers to the process of breaking it down to its component
pieces and checking if they conform with the rules of the language’s grammar. A grammar
is a set of rules describing a language’s syntactic structure. A parser is a program that,
given a language grammar, checks if the input conforms to the grammar and, if it does, it
produces a parse tree, a data structure for further analysis of the input. The parser can
be written by hand, for simpler language grammars, but the complexity rises quickly, so
nowadays we have tools for automatically producing parsers, called parser generators.

ANTLR4 (ANother Tool for Language Recognition) [23] is a parser generator, developed by
Terence Parr, built to solve many of the problems programmers were facing with other
parser generator tools. It uses a top down LL(*) parsing technology, making it very fast.
The new v4 iteration of ANTLR introduced the the Adaptive LL(*) technology [24], making
it possible to express a greater variety of grammars, without worrying about left recursion.
ANTLR provides a scanner generator, as well, and it integrates the regular expressions
into the grammar file, making it a more complete and easy experience to generate a parser
for any language you want. It also produces parse tree walkers and visitors, and exposes
APIs for parse tree manipulation for all the languages it supports. This encourages the
decoupling of the grammar and the underlying implementation, making the grammar re-
usable and extensible.

4https://www.antlr.org/

I. Daridis 16

https://www.antlr.org/

A Language Server for Soufflé Datalog

3. THE LANGUAGE SERVER

In this chapter we present how the Soufflé Language Server is implemented and the fea-
tures it provides. As discussed on section 2.2 the architecture consists of a Language
Client and a Server. For the purposes of this thesis we chose Visual Studio Code as the
client, and the server is part of a broader plugin for VS Code we implemented, so the
majority of the assumptions we made or the examples we’ll give are based on that fact.
The server is implemented in the Java programming language using the LSP4J library
version 0.16, which targets version 3.17 of the LSP and it is packaged in the form of a jar
file inside the plugin.

This is a brief introduction of the Language Server: When the language client recognizes
the Soufflé Datalog file type (.dl) it starts the server and makes a connection to it, via the
standard I/O system. When the connection is established, the initialize command is
sent and after the server sets up all its internal state and announces its capabilities to the
client, it finishes initialization and proceeds to read, parse and process all the Soufflé files
on the current project directory. As soon as the processing is complete the server is ready
to be used in ”interactive mode” and handle any further requests it receives from the client.
When a user saves a file, the parsing and processing of the file is being performed again
and the internal state of the server is refreshed to mirror the current state.

3.1 Parsing the input

One of the main aspects of our tool, in order to provide the smart features, is the ability
to correctly read and parse the source-code being edited. For that we need to access the
source-code and pass it on for parsing and further analysis, which will then extract the
information we need. The LSP and lsp4j library provide the document URI so that we can
feed it to the parser, which then reads the document text and proceeds with the parsing
stage, syntax error checking and information retrieval.

3.1.1 Soufflé

The current implementation of the Soufflé language uses a grammar1 written for the GNU
Bison parser generator [10]. For the purposes of our tool we needed to port the grammar to
ANTLR. The process was quite straightforward, because even though the original LALR
grammar contains left recursion, the ANTLR4 parser generator, as mentioned (2.3), is well
equipped to handle it. All we had to do was copy the regular expressions and grammar
rules and change the syntax so it conforms with ANTLR grammar syntax. The resulting
grammar2, after some modifications for the preprocessor handling, combines the regular
expressions for scanning and the grammar for parsing into one file.

The Soufflé language uses C style comments, both one line and multiline, so we incorpor-
ated them into the grammar. Instead of ignoring them, we used ANTLR’s lexical channel
feature to save the comments for later use, as documentation.

1https://github.com/souffle-lang/souffle/blob/master/src/parser/parser.yy
2https://github.com/jdaridis/souffle-lsp-plugin/blob/master/grammar/Souffle.g4

I. Daridis 17

https://github.com/souffle-lang/souffle/blob/master/src/parser/parser.yy
https://github.com/jdaridis/souffle-lsp-plugin/blob/master/grammar/Souffle.g4

A Language Server for Soufflé Datalog

3.1.2 C Preprocessor

Soufflé makes use of the C preprocessor in order to include files or to define macros for
reuse later in the source-code. We noticed that this feature is widely used in the industry
and in popular open source libraries, so our tool need to be robust enough to handle it.

The parsing proved to be a bit of a challenge, because the syntax differs from that of
Soufflé. In addition to that, the heavy use of macros made it difficult to differentiate
between macro and legitimate Soufflé code, without running the preprocessor ourselves,
thus adding time and complexity. The solution we came up with is to introduce another
parsing stage and the corresponding grammar3, before the main stage, in order to parse
the input correctly.

The parser reads the whole input and ignores most of the text until it reaches a prepro-
cessor directive (#include, #define), then it breaks it down to its components. When the
whole input is parsed, the resulting syntax tree is traversed by a Visitor object and when
a macro definition is reached, we save the definition in a dictionary (HashSet) for later use.
The dictionary is then passed to the next, and main stage of parsing, and is being used
to find which identifier is a macro use. We achieve that by inserting code into the scanner
so that when it encounters a macro use it produces a different lexical token and then we
change the grammar to include the new special preprocessor token.

3.2 Extracting the information

The LSP is simply the mechanism that enables the communication between the code
editors and the language tools. It is the tool’s responsibility to provide the smart features
(for instance go to definition or auto complete) on top of the language. To accomplish that,
we need to perform semantic analysis and extract all the useful information, and for that,
we need efficient data structures, to hold and query all the information and provide the
intelligence to our tool.

The core elements of a Soufflé program are relations and logic statements on these re-
lations. Each relation, has a set of typed attributes. A fact is a logic statement which
unconditionally holds true, and a rule is a conditional logic statement, that has one (or
more) relation(s) as a head predicate and one or more literals as a body. The rule literals
can be either relations or attribute constraints. Soufflé has, also, introduced the concept
of components, to make logic programs modular and reusable. Therefore, if we want to
reference some element that’s inside a component we need its fully qualified name.

Once the parsing is complete, we are left with the parse tree for each file. The ANTLR
runtime provides us with an implementation of the Visitor pattern [13] and an interface to
extend it and traverse the parse tree. Since Soufflé is a statically typed language and the
types and relations are known at compile time, it is wise to collect information about them
ahead of time, by performing two passes of the parse tree traversal.

Firstly, for all the files parsed, the SouffleDeclarationVisitor visits all the Relation, Type
and Component declaration nodes and saves the information about the declaration in a
special data structure. If there are comments above the declaration, we access them
through ANTLR’s hidden lexical channel, then process and save themwith the declaration.

3https://github.com/jdaridis/souffle-lsp-plugin/blob/master/grammar/Preprocessor.g4

I. Daridis 18

https://github.com/jdaridis/souffle-lsp-plugin/blob/master/grammar/Preprocessor.g4

A Language Server for Soufflé Datalog

Then we proceed with the next stage, where the SouffleUsesVisitor visits all the other
Soufflé grammar rules. When it visits a Soufflé rule node, it queries the server to find the
definitions of the involved relations, containing useful information, such as the declaration
site, and stores them alongside the rule. A similar process is performed for the facts.
As mentioned, with the introduction of components sometimes we need a fully qualified
name, in order to correctly reference a relation or rule, so we store the component name
alongside the relation name, and when the SouffleUsesVisitor visits a fully qualified
name node, it has all the information it needs to perform a correct query for the definition.

3.2.1 Infrastructure

In this subsection, we present how it all works under the hood. First of all, we needed
a data structure to efficiently support the random navigation throughout the document, a
user might perform. The solution we came up with, is a balanced binary search tree, using
the range of each grammatical scope as a key and the caret position as a query key. The
TreeMap4 class in Java has the properties we want, because it is implemented using a
Red-Black tree [15]. We also wanted to keep some information about the context and
lexical scope of each grammatical structure, so we implemented the following hierarchy,
shown in figure 3.1, loosely mirroring the structure of a Soufflé program. With the modified
data structure we achieve a time complexity of O(m logn), where m is the scope depth
and n is the number of nodes in each scope level. The query stops when it reaches a full
match either at a leaf or an internal node.

Document Context

Component

...*

Rule

Relation Use

Identifier
(Component)

Identifier
(Attribute)

Attribute

Relation Declaration

Attribute Type

Fact
(Relation Use)

Identifier
(Component)

Identifier
(Attribute)

* Component, Rule,
Relation Declaration, Fact

Figure 3.1: Soufflé Context Hierarchy

As mentioned, in each level we also keep information about the lexical scope. The scopes
are unique per level, but there can be some overlap at times. Also, we note that each
Soufflé Component carries its scope with it. We make use of two different data structures
depending on the situation. If wewant to perform a query using a specific name of a symbol
we use a HashMap and retrieve a list of all the symbols with the given name. Alternatively,
if we want a spacial query, for example involving the cursor position, we use a TreeMap for
a more efficient search.

4https://docs.oracle.com/javase/8/docs/api/java/util/TreeMap.html

I. Daridis 19

https://docs.oracle.com/javase/8/docs/api/java/util/TreeMap.html

A Language Server for Soufflé Datalog

The figure 3.2 shows the complete Soufflé modeling we came up with, including all the in-
formation about each Soufflé component we found useful. The basic block is the SouffleSym-
bol class, so we analyze it further. It contains the basic identifying information of the sym-
bol in question, such as its name and range (line & column number) and the type of symbol
for easy differentiation between components. Each symbol has associated with it a declar-
ation and the URI of the document it is located in. Optionally, it also has a documentation
(taken from comments) and a component, used for fully qualified names. We then extend
the base class SouffleSymbol and add all the extra information we might need about each
symbol.

Figure 3.2: Soufflé model UML Class Diagram

I. Daridis 20

A Language Server for Soufflé Datalog

3.3 Features

3.3.1 Syntax error reporting

After the parsing of a file, if a syntax error occurs, we notify the user about it by provid-
ing them with the line, column and an error message, as shown in figure 3.3. In order to
produce more helpful error messages, we had to change ANTLR’s error reporting mech-
anism and provide our own messages. Then we send an error message to the client,
which presents the user with the error.

Figure 3.3: Syntax error message

3.3.2 Hover

When a user hovers the mouse over a specific object, we query the server by traversing
the Soufflé context hierarchy object, using the cursor position as a key, and provide them
with relevant information about that object. Specifically, when they hover over a relation or
a component, we show the full signature, alongside with any documentation wemight have
collected about it. Alternatively, when they hover over a variable, we show the variable
name and its type.

Figure 3.4: Hover popup examples

I. Daridis 21

A Language Server for Soufflé Datalog

3.3.3 Go to Definition

In Soufflé each relation needs to be declared ahead of time, so when a user asks for the
definition of a relation, we have it available in the Soufflé object and can provide it. We
point them to the declaration site, alongside with the file it is located in. The same process
is being performed for the types and components. If, in a given project, there are multiple
declarations we present the user with a list to choose from.

Figure 3.5: Go to definition example

3.3.4 Go to Type Definition

We follow the same process, as with the plain definitions, but because Soufflé is statically
typed, we found it useful to add this shortcut for when the user wants to navigate directly
to a variable’s type definition.

Figure 3.6: Go to type definition example

I. Daridis 22

A Language Server for Soufflé Datalog

3.3.5 Auto complete

When a user starts typing, we provide a list of auto complete suggestions, contextually
relevant to what the user is typing. This list contains relations, types or Soufflé directives,
which we have acquired by querying the Soufflé context objects of all the the files in the
project. It is then filtered according to the context the user is typing in or the trigger word.
For example, a dot will trigger directive auto complete and a colon a type auto complete.

Figure 3.7: Auto Complete examples

3.3.6 Signature Help

When the user is in the process of writing a relation, we show a popup with the relation
signature alongside with its attributes and their type, with the current attribute being high-
lighted. Because the file parsing is being performed after the user has saved the file, we
couldn’t perform the query for the relation while the user is typing it, so we had to find a
different way. The solution we came up with is to use the ANTLR’s parsing error reporting,
on the live, and thus not yet grammatically correct text, to obtain the last token the user
has written and use it as a query key in the Soufflé context object.

Figure 3.8: Signature Help example

I. Daridis 23

A Language Server for Soufflé Datalog

3.3.7 Rename

We provide the user with the ability to rename any symbol they want, either at a global or at
a local level. The Soufflé context object, proves to be instrumental in the implementation
of this feature, because we can determine the context, and thus the scope, of the symbol
in question and perform the rename on all the relevant symbols.

(a) Global rename

(b) Local rename

Figure 3.9: Rename examples

3.3.8 Find all references

Perform a full search of the project for all appearances of a certain symbol, by querying
all the project’s Soufflé context objects. We then provide the user with a list of all the
appearances and locations within the file.

Figure 3.10: Find references example

I. Daridis 24

A Language Server for Soufflé Datalog

3.3.9 Find all rules for relation

If a user wants to find all the rules a certain relation is the head predicate in, we perform
a query of all the project’s Soufflé context objects, for rule symbols only, and return to the
user a list of all the rules, alongside with the files and locations within the files.

Figure 3.11: Find all rules example

3.3.10 Document symbols

We provide the client with a list of all the symbols contained in a specific file alongside with
their type, for example a relation or a rule. We also provide a way to connect the symbols
with each other. For example, for each relation we provide all the rules, this relation is
the head predicate, or for a component we provide the scope of it. In the case of Visual
Studio Code, as shown in figure 3.12, it uses these information to construct a file outline
and help the user navigate the file.

Figure 3.12: Document outline example

I. Daridis 25

A Language Server for Soufflé Datalog

4. EVALUATION

In this chapter, we present how we test and evaluate our tool. We test the server in two
code editors compatible with the LSP, namely Visual Studio Code and Sublime Text. The
main development was carried out in the VS Code editor, so this is our reference platform.
The testing was performed on a modern mid-tier laptop with an Intel i7-1065G7 processor
with 4 cores and 8 threads and a frequency of 3.9Ghz running Ubuntu 20.04 LTS. The
system is also equipped with 16GB of RAM.

For the evaluation we used the libraries found on the Souffle site [1], alongside with some
of our own examples. For each library, we keep track of how many Soufflé Datalog lines
it contains. The metrics we chose were the startup time, memory footprint and finally the
file coverage. A more extensive breakdown is given below:

Time We calculate the server’s startup time, from the moment the server is started and
the initialize command is sent, until the initialized command. In that time, the
server parses all the files and builds the context objects for later use. We figured it
is the best time window, since the bulk of the work is being performed in that time.
This time is also auto reported by the language client. To reduce the system noise,
we took 5 measurements and calculated their geometric mean.

Memory Footprint We note how much RAM, in mebibytes (MiB), the server uses when it
is fully loaded and operational. This should give an idea of the total memory footprint
of the server, since most of the structures are in memory from the start.

File Coverage In any given project, the core objective is to be able to edit and work with
as much of the project’s files as possible. For this reason, we count how many of the
Soufflé Datalog files, located in the project, our tool can correctly parse and process,
and then offer a project coverage percentage.

In the table 4.1 we can see all the data we gathered for each library and in the figure 4.1
we can see the scaling of the server’s startup time and RAM usage in conjunction with the
Soufflé Datalog lines of each library.

Table 4.1: Soufflé Language Server evaluation

Library File Coverage Time (ms) Memory Footprint
Soufflé Benchmark (65.759)a 47 / 47 (100%) 4.382, 6 754.9 MiB

Doop (44.793) 229 / 229 (100%) 4.077, 9 450.2 MiB
Gigahorse (13.595) 46 / 46 (100%) 2.324, 7 307.0 MiB
Securify2 (3.365) 65 / 66 (98.48%) 1.603, 8 170.0 MiB
Ddisasm (15.437) 60 / 60 (100%) 1.750, 9 272.0 MiB

Vandal (636) 5 / 5 (100%) 963, 6 78.0 MiB
cclyzer++ (15.670) 127 / 127 (100%) 2.221, 6 228.0 MiB

Dynamic-datalog (2.307) 3 / 3 (100%) 775, 2 80.9 MiB
Ghc-grin (717) 8 / 22 (36.36%) 800.2 107.0 MiB

Insieme compilerb (1.505) 10 / 31 (32.26%) 1.060.0 101.0 MiB

aNumber of Soufflé Datalog lines in library, at the time of testing
bUses custom preprocessing script and keywords outside of grammar

I. Daridis 26

A Language Server for Soufflé Datalog

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

·104

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Number of lines

Ti
m
e
[s
]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

·104

100

200

300

400

500

600

700

800

Number of lines

R
AM

U
sa
ge

[M
iB
]

Figure 4.1: Scatter plots of the total project lines vs the time and RAM usage

I. Daridis 27

A Language Server for Soufflé Datalog

4.1 Libraries used

In this section we provide a quick overview of the main libraries used in our evaluation and
testing. We note that we will not present all the libraries used for the evaluation, but only
the ones we used extensively during the development of the server.

4.1.1 Doop framework

Doop [8] is a points-to analysis framework for Java programs. It contains a variety of
pointer analysis tools. Doop was originally written for the LogiQL datalog dialect and im-
plementation and was later ported to Soufflé [4].

4.1.2 Gigahorse

Gigahorse [14] is a decompiler toolchain, for the Ethereum Virtual Machine (EVM) byte-
code. It converts EVM bytecode to a higher level 3-address code representation, enabling
different analyses on smart contracts both new and already deployed in the blockchain,
without needing access the original source-code.

4.1.3 Securify2

Securify version 2.0 [2] is security scanner for smart contracts written in the Solidity pro-
gramming language and run on the Ethereum blockchain. The security analyses are writ-
ten in Soufflé Datalog.

4.1.4 Soufflé Benchmark

The team behind the development of Soufflé team has built a library [3], meant to be used
as a benchmark tool for the performance of a local installation of Soufflé. It is a large
compilation of Soufflé Datalog files, used for stress testing and benchmarking.

4.2 Problems and limitations

During the testing we identified some weaknesses in our tool. Notably, in certain libraries
the server failed to correctly parse and process all the files present in the project, thus
lowering the project coverage. After investigation, we found that the reason for that was
the extensive use of the C preprocessor. The libraries in question are using a mixture of
conditional compilation guards (#ifdef) and nested macro definitions, making it difficult for
our preprocessor parser to correctly process them. In particular, the use of conditional
compilation guards, where the complete program text was not available ahead of time,
was often a point of failure, due to the nature of the parser.

A proposed solution to the above problems might be to add an additional stage, executing
the C preprocessor itself and then keeping track of the changes in the source-code. That
solution would require the user to have a C compiler installed on their machine, but also
would add complexity and extra startup time to the server.

I. Daridis 28

A Language Server for Soufflé Datalog

5. CONCLUSIONS

In this thesis we explored how support for programming languages in source-code edit-
ors can be extended, even for novel languages. We used the Language Server Protocol
for the implementation of a support tool for Soufflé Datalog. We found that the extensive
use of the C preprocessor in popular Soufflé programs, presented a problem for us, be-
cause we couldn’t correctly parse the whole text in all cases. For the implementation we
used most of a compiler front end stack, from grammar construction and parsing to the
construction and use of an efficient symbol table.

I. Daridis 29

A Language Server for Soufflé Datalog

ABBREVIATIONS - ACRONYMS

LSP Language Server Protocol

VS Code Visual Studio Code

IDE Integrated Development Environment

I. Daridis 30

A Language Server for Soufflé Datalog

BIBLIOGRAPHY

[1] Applications | Soufflé; A Datalog Synthesis Tool for Static Analysis — souffle-lang.github.io. https:
//souffle-lang.github.io/applications. [Accessed 04-Oct-2022].

[2] GitHub - eth-sri/securify2: Securify v2.0 — github.com. https://github.com/eth-sri/securify2.
[Accessed 04-Oct-2022].

[3] GitHub - souffle-lang/benchmarks: Datalog benchmark suite — github.com. https://github.com/
souffle-lang/benchmarks/. [Accessed 04-Oct-2022].

[4] Tony Antoniadis, Konstantinos Triantafyllou, and Yannis Smaragdakis. Porting doop to soufflé: A tale
of inter-engine portability for datalog-based analyses. In Proceedings of the 6th ACM SIGPLAN Inter-
national Workshop on State Of the Art in Program Analysis, SOAP 2017, page 25–30, New York, NY,
USA, 2017. Association for Computing Machinery.

[5] Samuel Arch, Xiaowen Hu, David Zhao, Pavle Subotić, and Bernhard Scholz. Building a join optim-
izer for soufflé. In Logic-Based Program Synthesis and Transformation: 32nd International Symposium,
LOPSTR 2022, Tbilisi, Georgia, September 21–23, 2022, Proceedings, page 83–102, Berlin, Heidel-
berg, 2022. Springer-Verlag.

[6] I. Balbin, G.S. Port, K. Ramamohanarao, and K. Meenakshi. Efficient bottom-up computation of queries
on stratified databases. The Journal of Logic Programming, 11(3):295–344, 1991.

[7] C. Beeri and R. Ramakrishnan. On the power of magic. In Proceedings of the Sixth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, PODS ’87, page 269–284, New
York, NY, USA, 1987. Association for Computing Machinery.

[8] Martin Bravenboer and Yannis Smaragdakis. Strictly declarative specification of sophisticated points-to
analyses. SIGPLAN Not., 44(10):243–262, oct 2009.

[9] S. Ceri, G. Gottlob, and L. Tanca. What you always wanted to know about datalog (and never dared to
ask). IEEE Transactions on Knowledge and Data Engineering, 1(1):146–166, 1989.

[10] Robert Paul Corbett. Static Semantics and Compiler Error Recovery. PhD thesis, EECS Department,
University of California, Berkeley, Jun 1985.

[11] Microsoft Corporation. Language server protocol. Technical Report 3.17.

[12] Yoshihiko Futamura. Partial evaluation of computation process, revisited. Higher Order Symbol. Com-
put., 12(4):377–380, dec 1999.

[13] Erich Gamma, editor. Design patterns: elements of reusable object-oriented software. Addison-Wesley
professional computing series. Addison-Wesley, Reading, Mass, 1995. pp 331.

[14] Neville Grech, Lexi Brent, Bernhard Scholz, and Yannis Smaragdakis. Gigahorse: Thorough, declar-
ative decompilation of smart contracts. In 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE), pages 1176–1186, 2019.

[15] Leo J. Guibas and Robert Sedgewick. A dichromatic framework for balanced trees. In 19th Annual
Symposium on Foundations of Computer Science (sfcs 1978), pages 8–21, 1978.

[16] Nadeeshaan Gunasinghe and Nipuna Marcus. Implementing a Language Server, pages 23–33.
Apress, Berkeley, CA, 2022.

[17] Alfred Horn. On sentences which are true of direct unions of algebras. Journal of Symbolic Logic,
16(1):14–21, 1951.

[18] Xiaowen Hu, Joshua Karp, David Zhao, Abdul Zreika, Xi Wu, and Bernhard Scholz. The choice con-
struct in the soufflé language. In Hakjoo Oh, editor, Programming Languages and Systems, pages
163–181, Cham, 2021. Springer International Publishing.

[19] Herbert Jordan, Pavle Subotić, David Zhao, and Bernhard Scholz. Brie: A specialized trie for concur-
rent datalog. In Proceedings of the 10th International Workshop on Programming Models and Applica-
tions for Multicores and Manycores, PMAM’19, page 31–40, New York, NY, USA, 2019. Association for
Computing Machinery.

I. Daridis 31

https://souffle-lang.github.io/applications
https://souffle-lang.github.io/applications
https://github.com/eth-sri/securify2
https://github.com/souffle-lang/benchmarks/
https://github.com/souffle-lang/benchmarks/

A Language Server for Soufflé Datalog

[20] Herbert Jordan, Pavle Subotić, David Zhao, and Bernhard Scholz. A specialized b-tree for concur-
rent datalog evaluation. In Proceedings of the 24th Symposium on Principles and Practice of Parallel
Programming, PPoPP ’19, page 327–339, New York, NY, USA, 2019. Association for Computing Ma-
chinery.

[21] Linghui Luo, Julian Dolby, and Eric Bodden. MagpieBridge: A General Approach to Integrating Static
Analyses into IDEs and Editors (Tool Insights Paper). In Alastair F. Donaldson, editor, 33rd European
Conference on Object-Oriented Programming (ECOOP 2019), volume 134 of Leibniz International Pro-
ceedings in Informatics (LIPIcs), pages 21:1–21:25, Dagstuhl, Germany, 2019. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik.

[22] Patrick Nappa, David Zhao, Pavle Subotić, and Bernhard Scholz. Fast parallel equivalence relations
in a datalog compiler. In 2019 28th International Conference on Parallel Architectures and Compilation
Techniques (PACT), pages 82–96, 2019.

[23] Terence Parr. The definitive ANTLR 4 reference. The pragmatic programmers. The Pragmatic Book-
shelf, Dallas, Texas, 2012. OCLC: ocn802295434.

[24] Terence Parr, SamHarwell, and Kathleen Fisher. Adaptive ll(*) parsing: The power of dynamic analysis.
SIGPLAN Not., 49(10):579–598, oct 2014.

[25] Bernhard Scholz, Herbert Jordan, Pavle Subotić, and Till Westmann. On fast large-scale program
analysis in datalog. In Proceedings of the 25th International Conference on Compiler Construction, CC
2016, page 196–206, New York, NY, USA, 2016. Association for Computing Machinery.

[26] Fredrik Siemund and Daniel Tovesson. Language server protocol for extendj. 2018.

[27] Pavle Subotić, Herbert Jordan, Lijun Chang, Alan Fekete, and Bernhard Scholz. Automatic index
selection for large-scale datalog computation. Proc. VLDB Endow., 12(2):141–153, oct 2018.

I. Daridis 32

	CONTENTS
	INTRODUCTION
	BACKGROUND
	Datalog
	Soufflé

	Language Server Protocol (LSP)
	LSP4J library

	ANTLR

	THE LANGUAGE SERVER
	Parsing the input
	Soufflé
	C Preprocessor

	Extracting the information
	Infrastructure

	Features
	Syntax error reporting
	Hover
	Go to Definition
	Go to Type Definition
	Auto complete
	Signature Help
	Rename
	Find all references
	Find all rules for relation
	Document symbols

	EVALUATION
	Libraries used
	Doop framework
	Gigahorse
	Securify2
	Soufflé Benchmark

	Problems and limitations

	CONCLUSIONS
	ABBREVIATIONS - ACRONYMS
	REFERENCES

