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ABSTRACT 

Since the 1970s, autonomous robots have been in daily use at any altitude, for deep-
sea and space exploration as well as in almost all aircraft. The last decades, an 
increasing interest has been recorded on the exploitation of unmanned vehicles in fields 
such as environmental monitoring, commercial air surveillance, domestic policing, 
geophysical surveys, disaster relief, scientific research, civilian casualties, search and 
rescue operations, archeology, maritime patrol, seabed mapping, traffic management, 
etc. Regardless the domain (i.e., aerial, ground or surface) that they belong to, the key 
elements that distinguish them as the leading edge of their technology are the provided 
degree of autonomy (i.e., the ability to make decisions without human intervention), the 
endurance and the payload that they can support.  

 

A complicated task which is a prerequisite in robotic missions is the autonomous 
navigation of the robots. An autonomous mobile robot constructs a robust model of the 
environment (mapping), locates itself on the map (localization), governs the movement 
from one location to the other (navigation) and accomplishes assigned tasks. Going a 
step further the autonomous and self-driving impose a new research area where 
vehicles can monitor the road marks or the traffic signs and take the proper decisions 
for their navigation in space.  The image classification in real-time navigation is latency 
sensitive and resource consuming task. 

 

In this Thesis, we aimed to navigate an unmanned vehicle on an unknown path by 
recognizing and following arrow markings and signs. For the image recognition, a CNN 
was used, which is trained with a dataset of arrow markings. For dataset creation, a 
Turtlebot 2 was used along with a raspberry pi camera. A benchmarking of 
convolutional neural networks, i.e. VGG-16 and VGG-19, is presented. Finally, the real-
time experiments were executed with a Turtlebot2 in real-time navigation and 
discussed. 
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ΠΕΡΙΛΗΨΗ 

Από τη δεκαετία του 1970, τα αυτόνομα οχήματα χρησιμοποιούνται ευρέως, για 
εξερεύνηση βαθέων υδάτων και διαστήματος καθώς και σε όλα σχεδόν τα αεροσκάφη. 
Τις τελευταίες δεκαετίες, έχει καταγραφεί αυξανόμενο ενδιαφέρον για την εκμετάλλευση 
μη επανδρωμένων οχημάτων σε τομείς όπως η παρακολούθηση του περιβάλλοντος, η 
αέρια επιτήρηση για εμπορικές πτήσεις, η αστυνόμευση, οι γεωφυσικές έρευνες, η 
αντιμετώπιση φυσικών καταστροφών κι εντοπισμός θυμάτων, η επιστημονική έρευνα, οι 
επιχειρήσεις έρευνας και διάσωσης, η αρχαιολογία, η περιπολία σε θάλλασες, 
χαρτογράφηση βυθού, διαχείριση κυκλοφορίας κ.λπ. Ανεξάρτητα από τον τομέα 
(δηλαδή εναέριο, επίγειο ή επιφανειακό) στον οποίο ανήκουν, τα βασικά στοιχεία που τα 
διακρίνουν ως αιχμή της τεχνολογίας τους είναι ο παρεχόμενος βαθμός αυτονομίας 
(δηλ. ικανότητα λήψης αποφάσεων χωρίς ανθρώπινη παρέμβαση), την αντοχή και το 
ωφέλιμο φορτίο που μπορούν να υποστηρίξουν. 

 

Ένα πολύπλοκο έργο που αποτελεί προϋπόθεση στις αποστολές αυτών των οχημάτων 
είναι η αυτόνομη πλοήγηση τους. Ένα αυτόνομο κινητό ρομπότ κατασκευάζει ένα 
ισχυρό μοντέλο του περιβάλλοντος (χαρτογράφηση), εντοπίζεται στον χάρτη 
(τοποθέτηση), ελέγχει τη μετακίνηση από τη μια τοποθεσία στην άλλη (πλοήγηση) και 
εκτελεί εργασίες που έχουν ανατεθεί. Βλέποντας ένα βήμα παραπέρα, η αυτόνομη και 
αυτόνομη οδήγηση επιβάλλει έναν νέο ερευνητικό χώρο όπου τα οχήματα μπορούν να 
παρακολουθούν τα οδικά σήματα ή τα σήματα κυκλοφορίας και να λαμβάνουν τις 
κατάλληλες αποφάσεις για την πλοήγησή τους στο διάστημα. Η ταξινόμηση εικόνων 
στην πλοήγηση σε πραγματικό χρόνο είναι μια εργασία που απαιτεί χρόνο και 
καταναλώνει πόρους. 

 

Σε αυτή τη διατριβή, στοχεύουμε να πλοηγήσουμε ένα μη επανδρωμένο όχημα σε 
άγνωστο μονοπάτι αναγνωρίζοντας και ακολουθώντας τα σημάδια και τις πινακίδες με 
βέλη. Για την αναγνώριση εικόνας χρησιμοποιήθηκε ένα συνελικτικό νευρωνικό δίκτυο, 
το οποίο εκπαιδεύεται με ένα σύνολο δεδομένων από σημάνσεις βέλους. Για τη 
δημιουργία δεδομένων, χρησιμοποιήθηκε ένα Turtlebot 2 μαζί με μια κάμερα raspberry 
pi. Παρουσιάζεται μια συγκριτική αξιολόγηση των συνελικτικών νευρωνικών δικτύων, 
π.χ. VGG-16 και VGG-19. Τέλος, τα πειράματα σε πραγματικό χρόνο εκτελέστηκαν με 
Turtlebot2 σε πλοήγηση σε πραγματικό χρόνο και συζητήθηκαν. 
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1. INTRODUCTION 

In recent years, the immense development and use of unmanned vehicles seems to 
overwhelm the technological community. Unmanned vehicles are used more and more 
in many applications because of their rapid and cost-effective deployment. They can be 
used not only for reconnaissance, but also as communication platforms. Compared with 
satellite or sensor platform, an unmanned vehicle has simple system construction, high 
speed and low lag communication capability. As an auxiliary infrastructure, it provides 
reliable wireless links for remote users to realize safe and reliable transmission of 
information.  

For all these reasons, the autonomous navigation of unmanned vehicles is a main 
challenge due to the complexity and the dynamic nature of the environment around as 
the interaction between themselves, persons or any unannounced change in the area. 
For instance, a vehicle should navigate itself on the road following a specific path 
marked by arrow markings, which are numerous, indicating a set of rules. The 
autonomous navigation can be enhanced by the use of machine learning and more 
specifically the use of Convolutional Neural Network (CNNs). A CNN is a deep learning 
algorithm which can take in an input image, assign importance (learnable weights and 
biases) to various aspects/objects in the image and be able to differentiate one from the 
other. The architecture of a CNN is analogous to that of the connectivity pattern of 
Neurons in the human brain; individual neurons respond to stimuli only in a restricted 
region of the visual field known as the receptive field. A collection of such fields overlap 
to cover the entire visual area. 

This research proposes a methodology that uses CNN techniques to detect arrow 
markings in a path that show directions captured by a raspberry-pi camera and to 
classify these arrows accordingly in order to follow a specific trajectory. A pre-
processing function was implemented in CNN to enhance the classification of the 
images captured in the arrow markings classes. A popular image recognition 
architecture for CNNs were deployed which is named as Visual Geometry Group 
(VGG). VGG is the basis of deep ground-breaking object recognition models with 
multiple layers. Developed as a deep neural network, the VGG also surpasses 
baselines on many tasks and datasets beyond ImageNet. The “deep” refers to the 
number of layers with VGG-16 or VGG-19 consisting of 16 and 19 convolutional layers. 
A series of experiments were conducted, in which i) a benchmarking of VGG-16 and 
VGG-19 models with different hyperparameters and ii) a real-time navigation with an 
unmanned vehicle were performed.  The real-time experiments were executed with a 
Turtlebot2 running ROS with a raspberry pi camera installed. In Section 2 a Robotic 
Operating System (ROS) used for the controlled UGV is presented. In Section 3 Neural 
Networks and Convolutional Neural Networks are described. In Section 4 related work 
of this thesis is discussed. In Section 5 the problem, the challenges and our solution are 
presented and in Section 6 we present and explain the experiments conducted and the 
conclusions are following in Section 7. 
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2. UNMANNED VEHICLES 

2.1 Definition of Unmanned Vehicles 

An unmanned vehicle is the vehicle that operates without a human presence on board. 
They can be either remote-controlled guided vehicles or autonomously guided vehicles. 
An unmanned system is equipped with the required data processing units, sensors, 
automatic control, and communications systems to carry out missions without the need 
for human intervention. Unmanned aircraft, ground robots, undersea explorers, and 
other unusual structures are examples of unmanned systems [1]. 

The autonomous vehicles can sense their surroundings using sensors or maps that 
depict the area. The usage of a map, on the other hand, demands prior knowledge of 
the environment, suggesting that the unmanned vehicle or other device must first 
explore the world and produce the necessary map before operating autonomously in 
this environment. Unmanned vehicles, on the other hand, may explore their 
surroundings using a range of sensors such as cameras, lidar, and temperature 
sensors. Many scientists have been working on developing new algorithms or 
optimizing current ones for unmanned vehicles to operate autonomously and examine 
their surroundings with sensors. 

Unmanned vehicles, depending on the environment they are being navigated in, include 
UAVs, or unmanned aircraft aerial vehicles, also known as drones, UGVs, or unmanned 
ground vehicles, and USVs, or unmanned surface vehicles, which operate on the 
water's surface and are also known as surface drones. 

2.1.1 Unmanned Ground Vehicles 

Unmanned ground vehicles (UGVs) are vehicles that function without the presence of a 
human onboard. The vehicle's operation can be managed via teleoperation by human 
actors or it can be completely autonomous thanks to specially implemented algorithms. 
UGVs can be utilized in a variety of situations where the presence of human operator 
would be inconvenient, hazardous, or even impossible [1]. 

Today's UGVs come in a wide variety. They are used for military purposes, space, 
civilian or commercial applications. Surveillance, reconnaissance, and target acquisition 
are examples of military applications. Agriculture, mining, and construction constitute 
the industrial purposes. 

 

Figure 1 - Autonomous UGV in public transportation 
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Figure 2 - Military UGV for explosive disposal 

Unmanned cars that work autonomously and can be used for transportation as a regular 
car are now being researched by scientists all around the world. It all started in 1921, 
when the goal was to build a remotely controlled car, but in recent years, the goal has 
shifted to creating a self-driving car that will be used for human transportation. The 
safety of passengers on board a self-driving automobile is critical. As a result, the 
construction of the algorithm, particularly for navigation, must be properly designed. 
Sensors such as LiDAR, GPS, and cameras are required for these algorithms. 

 

 

Figure 3 - Self-driving car 

An unmanned aerial vehicle (UAV), also known as a drone, operates without a human 
pilot, crew, or passengers. A UAV can be fully autonomous, or controlled from a human 
operator usually on the ground or in another vehicle [1]. UAVs [2] are becoming 
increasingly popular in a variety of applications, civilian, commercial, military, and 
aerospace applications. Civilian applications include real-time monitoring, traffic 
monitoring, wireless coverage, remote sensing, search and rescue, cargo delivery, 
security and surveillance, precision agriculture, civil infrastructure inspection, or even 
aerial photography, while military applications include intelligence or reconnaissance 
missions, demining of an area. 
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Figure 4 - Italian Selex ES Falco used by several military for reconnaissance and surveillance 

 

Figure 5 - Drone used in agriculture 

2.1.2 Unmanned Surface Vehicle 

Unmanned surface vehicles (USVs) are boats that operate autonomously without 
humans on board. In most cases USVs are controlled remotely by a human actor that 
usually is on the ground. USVs can be used in military missions, in oceanography and 
seaweed farming. Furthermore, USVs are the future of cargo shipment. 

 

Figure 6 - Unmanned naval boat 

2.2 Robot Operating System 

With technology progressing so fast, robotics has become a more and more essential 
part of people’s lives. Robots can be used in many situations for many purposes, as in 
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dangerous environments (including inspection of radioactive materials, bomb detection, 
and deactivation), industry, or where humans cannot survive like in space or 
underwater). Aside from this progress, robots still present significant challenges for 
software developers, such as code reusability and computational distribution. A 
proposed solution to these challenges is a software platform called Robot Operating 
System (ROS). 

2.2.1 Definition of ROS 

ROS is an open-source, meta-operating system for robots. As it is a meta-operating 
system, it does not replace, but it runs alongside a traditional operating system. It 
provides a set of software libraries and tools, that allow someone to obtain, write, run 
code across multiple different terminals, in order for a robotics application to be built. 
Also, it provides services as of those of an operating system, such as message 
exchanging between processes, low-level device control, hardware abstraction, 
package management. 

Its open source feature allows the reusability of code by other users and requires 
another open source operating system underlying. Currently only runs on Unix-based 
platforms like Mac – OS and Linux. Other advantages are that it supports peer – to – 
peer communication through a reliable mechanism that enables communication 
between different components and that its simulators improve time and quality of code 
testing. 

In addition to the above, there are more reasons why it is so popular. ROS is  very light, 
it gives you the opportunity to control multiple robots simultaneously while they 
communicate with each other, it has great simulation tools, such as RViz and Gazebo. It 
provides many libraries that allow you to use several languages, other than C++ and 
Python that are the most popular and the chance for nodes of different languages to be 
able to communicate. 

ROS comes in versions which are called distributions. Each one was named using 
adjectives that start with successive letters of the alphabet. 

2.2.2 ROS packages 

Software in ROS is organized into packages. A package is a directory that could contain 
a collection of ROS nodes, a ROS - independent library, a dataset, configuration files, a 
third-party piece of software, external libraries and a manifest which is an xml 
configuration file called “package.xml”. The goal packages aim to achieve is to provide a 
useful functionality so that software can be easily reused and maintained.  

2.2.3 ROS stack 

Stacks are the primary mechanism in ROS for distributing software. A stack is a 
collection of packages. Practically it is a directory, that among others, contains a 
“stack.xml” file. While the goal of packages is the reusabillity of code by storing it into 
collections, the goal of stacks is the simplicity of code sharing. It can comprise 
packages that all provide a certain functionality, such as a navigation stack or a 
manipulation stack.  

Unlike an ordinary software library, these stacks can also provide this functionality via 
ROS topics and services or add functionalities, during execution time. A stack can also 
declare dependency another stack or more. Every stack has a manifest, a file with 
essential information about the stack and dependencies to other stacks. 
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2.2.4 ROS catkin 

This is the ROS build system. It is a set of tools, used to create executable programs, 
interfaces, scripts and libraries so that they can be reused and maintained. 

2.2.5 ROS nodes 

In ROS, a node is an instance of an executable. It may represent a sensor, wheel 
motor, processing or monitoring algorithm, etc. Every node that starts running declares 
itself to the Master. All nodes are combined into a graph and their communication is 
mostly based on topics. A robotic system usually includes many nodes. Nodes also 
have a node type, that simplifies the process of referring to a node executable on the 
filesystem. These node types are package resource names with the name of the node's 
package and the name of the node executable file. 

The use of nodes in ROS is very beneficial to the overall system, as code’s complexity 
has reduced in comparison to monolithic systems. Details about implementation are 
hidden better as the nodes disclose less information to the rest of the graph and 
alternate implementations, even in other programming language. 

A ROS node is written with the use of a ROS client library, such as roscpp or rospy. 

2.2.6 ROS topics 

Topics are named buses that nodes use in order to communicate with each other. This 
communication is achieved through messages. A node that is interested in a specific 
kind of data subscribes to the relevant topic and consumes data, published by other 
nodes over the same topic. Therefore, nodes exchanging data over a topic don’t know 
whom they are communicating with. There can be multiple publishers and subscribers 
to a topic as long as they are named differently. 

Topics are intended for unidirectional, streaming communication. Each topic has a 
specific type, which means that a specific type of message should be used for node 
communication through this topic.  

 

Figure 7 - ROS Topics and MasterNode Communication 

2.2.7 ROS services 

Services are another kind of communication for nodes. A service is a pair of messages, 
a request and a reply. A node offers a service under a string name and a “client” node 
calls the service by sending the request message and waiting for the first one to reply. 
They are defined using srv files. 

Like topics, services also have types. The name of the type that is the package 
resources the same with the name of the .srv file.  

http://wiki.ros.org/Names
http://wiki.ros.org/Nodes
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Figure 8 - Topics and Nodes Pub/Sub Service 

 

2.2.8 Master nodes 

The Master is a node which declares and registers all other nodes, both very essential 
for ROS’s use. It is basically a primary node, that allows all other nodes to locate each 
other, communicate and exchange data. Master node is activated by using the 
command “roscore” before any other code execution and it has to be running until the 
end of every execution and action taking place. 

 

 

Figure 9 - Master Node 

 

2.2.9 ROS messages 

As mentioned before, ROS nodes communicate with each other. That happens via ROS 
messages and through a topic. A publishing node constructs a message, publishes it on 
to atopic and other nodes subscribing to this topic can receive this message. Nodes can 
also exchange a request and response message through a service call. 
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A message is a simple data structure. A .msg file is a simple text file stored in the msg 
subdirectory of a package, that specifies the data structure of a message. Standard 
types such as integer, floating point etc. are supported and so are arrays of those types. 
A user can also create their own type of message by declaring a .msg file. 

2.2.10 Launch files 

ROS provides a tool for simultaneously launching multiple ROS nodes. This is achieved 
through launch files, xml files using a .launch extension. Roslaunch can execute one or 
more of these files that specify details about paraneters, nodes needed etc. 

2.3 Sensors 

Sensors are required for robot systems to operate as expected in any environment and 
accomplish specific tasks. A LiDAR or a Kinect camera, for example, would be regarded 
vital in a robot's navigation system. In this thesis a raspberry pi camera is used for 
picture capturing, in order for the robot to follow a path. 

2.4 Turtlebot 

TurtleBot [turtle] is a low-cost, mobile, programmable robot with open-source software, 
was created by Melonee Wise and Tully Foote at Willow Garage in November 2010. It 
consists of a mobile base, multiple sensors, but does not have a processor. So, it needs 
an external unit which runs ROS such as a laptop or a rasberry pi. 

It is very popular amongst software developers. TurtleBot can do real-time obstacle 
avoidance and autonomous navigation using the conventional TurtleBot components. It 
can construct a map using standard Simultaneous localization and mapping (SLAM) 
techniques and can be operated remotely using a laptop or an android-based 
smartphone. 

 

Figure 10 - Turtlebot UGV 

2.5 Simulators 

A well designed simulator is an essential tool for every developer who is involved in the 
field of robotics. It enables the user to test their algorithms, design robots, projects, 
environments, perform testing, debugging, work on their innovative ideas rapidly and 
efficiently, in general. For this thesis Gazebo and RViz where used. 

Gazebo offers the ability to simulate populations of robots in complex indoor and 
outdoor environments. It is a robust physics engine, high-quality graphics, and 
convenient programmatic and graphical interfaces. Best of all, Gazebo is free with a 
vibrant community. 

Rviz is a three-dimension visualization tool for ROS applications. It provides a view of 
your robot model, capture sensor information from robot sensors and replay captured 
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data. It can display data from sensors such as a camera, from 3D and 2D devices 
including pictures and point clouds. Rviz simulator is available by using the command 
“roslaunch rviz rviz”. 
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3. IMAGE PROCESSING TECHNIQUES AND NEURAL NETWORKS 

3.1 Image Processing and Unmanned Vehicles 

Sensors fitted on autonomous vehicles allow them to interact with their surroundings. 
Autonomous vehicles are equipped with a variety of sensors such as light detection and 
ranging (LiDAR), infrared, sonar, inertial measurement units, and so on, as well as a 
communication subsystem to improve sensing accuracy. Visual sensors are typically 
employed to gather images, while computer vision, signal processing, machine learning, 
and other techniques are utilized to acquire, process, and extract data in order to model 
visual scenes for navigation, 2D and 3D scene reconstruction, object and obstacle 
detection or avoidance, tracking, recognition, control, and inference. The control 
subsystem analyzes sensory data to determine the best navigation path to its goal and 
an action plan for completing tasks [14]. 

A few of the challenges autonomous vehicles come up against are blind spots, unknown 
environments, non-line-of-sight scenarios, poor sensor performance due to algorithmic 
complexity, sensor errors, limited energy, limited computational resources, human–
machine communications, size, and weight constraints, weather conditions. Several 
algorithmic approaches have been implemented to respond to these challenges, 
including sensor design, processing, control, and navigation [14]. 

In reference of image processing, there are multiple techniques such as principal or 
independent component analysis, point feature matching, linear filtering, neural network 
and so on. 

 

3.2 Artificial Neural Networks 

Neural Networks, are a subset of machine learning and are at the heart of deep learning 
algorithms [3]. They are also known as Artificial Neural Networks (ANNs) or Simulated 
Neural Networks (SNNs). Their goal is to recognize underlying relationships in a data 
set by imitating the behavior of a human brain and its neurons, thus their name and 
structure. 

Artificial neural networks consist of node layers, an input layer, an output layer, and one 
or more hidden layers in between. In an ANN, each node of layer connects with every 
node of the next layer. Each node, or artificial neuron, is connected to another node and 
has an associated weight and threshold value. If a node’s output exceeds the specified 
threshold, that node is activated, and data is sent to the next layer of the network. 
Otherwise, no data is sent to the network’s next layer. The basic structure of an ANN is 
shown in Figure 11. 
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Figure 11 - Artificial Neural Network structure 

In image processing tasks, supervised and unsupervised learning are the two main 
learning approaches, supervised and unsupervised learning [4]. 

Learning with pre-labeled inputs that serve as targets is referred to as supervised 
learning. There will be a set of input values (vectors) and one or more related defined 
output values for each training example. The purpose of this type of training is to lower 
the overall classification error of the model by correctly calculating the output value of 
each training example. 

On the other hand, unsupervised learning is characterized by the absence of labels in 
the training set. The criterion for success is the ability of the network to lower or 
enhance an associated cost function. It's worth mentioning, though, that most image-
based pattern recognition tasks rely on supervised learning for classification. 

There are different categories of neural networks, used for different purposes. The most 
common types are Multi-Layer Perceptrons (MLPs), Convolutional Neural Networks 
(CNNs) and Recurrent Neural Networks (RNNs). For the purpose of this thesis, a CNN 
has been used. 

3.3 Convolutional Neural Networks 

Convolutional Neural Networks (CNNs or ConvNets) were already used at the end of 
90’s but have become extremely popular in our days because of the impressive impact 
they have had on the area of computer vision [5]. A CNN differentiates from an ANN in 
two ways.  

CNNs are most commonly applied on analyzing and identifying visual imagery such as 
digital images or photographs [4]. This allows us to encode certain features in the 
architecture to recognize specific elements in the images. For example, a face consists 
of eyes, ears, a nose, a mouth. If we are trying to recognize a face, we look for those 
elements. Sometimes an element might be missing, such as an ear that is hidden 
behind the hair, but we still classify it as a face considering the rest of the features. 
Although at first, we need to know how these features look like. We also need to know 
those features’ relative size, where they should be placed. For all those operations a 
CNN is needed, because each of its layers learns a different level of abstraction [5]. 

In addition, as the word “convolutional” indicates, the mathematical operation of 
convolution is employed in at least one of its layers instead of the general matrix 
multiplication [4]. The main purpose of a convolutional layer is to detect features such 
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as edges, lines, color drops, etc. This means that once the network has learned a 
characteristic at a specific point in an image, it can detect it again in any other part of it. 
On the other hand, a densely connected neural network doesn’t have this property and 
has to learn the characteristic again if it appears in a new location of the image. So, this 
is why convolution is a very interesting property in this case of networks [3]. 

In conclusion, CNNs are very good feature extractors when a dataset consists of 
images. This is, why in this thesis CNNs were chosen to be used. 

3.4 CNN architecture 

A CNN consists of three types of layers. Convolutional layers, pooling layers and fully 
connected layers. Despite the fact that a CNN just requires a few layers, there is no 
one-size-fits-all approach to creating a CNN architecture. That being said, throwing a 
few layers together and expecting it to work would be unrealistic. CNNs, like other types 
of ANNs, tend to follow a common architecture, as proven by reading related literature. 
Figure 12 illustrates a common architecture in which convolutional layers are stacked, 
accompanied by pooling layers and both being repeated before being fed forward to 
fully - connected layers [4]. 

 

 

Figure 12 - Convolutional Neural Networks 

 

As shown in Figure 13, another frequent CNN architecture is to stack two convolutional 
layers before a pooling layer. This is highly recommended since stacking many 
convolutional layers enables for the selection of more complex properties of the input 
vector. In this thesis is used a model that stacks at least two convolutional layers before 
a pooling layer, named VGG. 
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Figure 13 - VGG architecture 

The abbreviation VGG stands for Visual Geometry Group. It is a typical deep 
Convolutional Neural Network (CNN) design with numerous layers. The term "deep" 
describes the quantity of layers, with VGG-16 or VGG-19 having 16 or 19 convolutional 
layers, respectively. Innovative object identification models are built using the VGG 
architecture. It is also remains one of the most often used image recognition 
architectures today.  

Small convolutional filters of size 3 × 3 are used to build the VGG network and its input 
is of size 224 × 222. Thirteen convolutional layers and three fully connected layers 
constitute the VGG-16, while vgg19 has three more convolutional layers [6]. 1 × 1 
convolution filters are used to transform the input linearly. The next part is a ReLU unit, 
shortening training time. Rectified linear unit activation function, or ReLU, is a piecewise 
linear function that, if the input is positive, outputs the input; otherwise, the output is 
zero. In order to maintain the spatial resolution after convolution, the convolution stride 
is kept at 1 pixel. All the hidden layers in the VGG network, also, use ReLU. There are 
three fully connected layers at the end the VGGNet. The first two levels each have 4096 
channels, while the third layer has 1000 channels with one channel for each class that it 
can predict. 

3.4.1 Convolutional layer 

The convolutional layer, as its name suggests, plays a fundamental role in a CNNs 
operation. The convolution operation's goal is to extract high-level characteristics from 
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the input image and compress the images into a format that is easier to process while 
preserving elements that are important for obtaining a successful prediction.  

Conventionally, the first convolutional layer is responsible for capturing low - level 
information such as edges, color, gradient direction, and so on. By adding layers the 
architecture adjusts to the high-level characteristics as well, giving a network that 
understands the photos in the dataset in the same way that people do. For example, a 
second layer can learn patterns composed of basic elements learned in the previous 
layer [4].  

Convolutional layers can also learn spatial hierarchies of patterns by retaining spatial 
relationships, which is another feature of them. As mentioned before, a first 
convolutional layer, can learn basic elements like edges, while a second convolutional 
layer can learn patterns made out of the basic elements learnt in the prior layer. And so 
on, until it is able to recognize extremely complicated patterns. Convolutional neural 
networks are able to learn very complex and abstract visual concepts as a result of this 
[3].  

The convolutional layer is defined by a few parameters that focus around the use of 
learnable kernels. The spatial dimensionality of these kernels is usually low, yet they 
spread along the entire depth of the input. When data is passed through a convolutional 
layer, the layer convolves each filter across the input's spatial dimensionality to create a 
2D activation map (Figure 14) [4]. 

 

Figure 14 - Activation maps of an image 

 

The scalar product is calculated for each value in that kernel as we move through the 
input.  In a convolutional layer depicted in Figure 15, an input tensor and a kernel tensor 
are combined to produce an output tensor through a cross-correlation operation [8]. The 
network will then learn kernels that will 'fire' when they observe a specific feature at a 
specified spatial position in the input. These are referred to as activations [4]. 
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Figure 15 - Convolutional layer 

The colored segments are the input and kernel tensor elements used for the output 
computation as well as the first output element which comes from the following 
calculations:  

0 x 0 + 1 x 1 + 3 x 2 + 4 x 3 = 19 

This sum is usually weighted. The output size is slightly less than the input size along 
each axis. We can only compute the cross-correlation for locations where the kernel fits 
entirely within the image because the kernel has a width and height higher than one. If 
the input tensor’s dimensions are input_height and input_width and the kernel’s 
dimensions are kernel_height and kernel_width, the output size is determined [8] by: 

(input_height – kernel_height + 1) x (input_width – kernel_width + 1) 

Every kernel will have its own activation map, which will be stacked along the depth 
dimension to generate the convolutional layer's whole output volume. 

As mentioned before ANN’s layers are fully connected with each other as shown in 
Figure 11. In CNN’s, on the other hand, every neuron in a convolutional layer is only 
connected to a small fraction of the input volume in order to not result in a model too 
large to train efficiently. This fraction’s dimensionality is referred to as the receptive size 
of the neuron. The depth of the input is almost always equal to the magnitude of the 
connectivity through the depth. 

Through the optimization of the model's output, convolutional layers can also greatly 
lower the model's complexity. Three hyperparameters, the depth, the stride, and the 
padding setting, are used to optimize these [4]. 

 

Size and number of filters per layer 

The size of the kernel (kernel_height x kernel_width) that holds information from 
spatially close pixels is usually 3x3 or 5x5. It has been observed that as the size of the 
filter gets bigger, the model’s accuracy is increased and model training lasts longer. 

The number of filters that tells us the number of characteristics that we want to handle is 
usually 32 or 64. As more filters are added in a layer, the accuracy is increased and the 
training lasts longer. 

Stride 

This hyperparameter indicates the number of steps in which the filter kernel moves (or 
slides). Through stride we determine the depth around the spatial dimensions of the 
input. If we set the stride to 1, for example, we will get a massively overlapped receptive 
field with extraordinarily big activations. Setting the stride to a higher number, on the 
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other hand, will lower the distance traveled and decrease the size of the information that 
will be passed to the next layer [4]. 

Padding 

The operation produces two types of results: one in which the dimensionality of the 
convolved feature is lowered when compared to the input, and the other in which the 
dimensionality is either increased or unchanged. This is accomplished by using Valid 
Padding in the first case and Same Padding in the second. 

We discover that the convolved matrix is of dimensions 5x5x1 when we augment the 
5x5x1 image into a 6x6x1 image and then apply the 3x3x1 kernel over it. As a result, 
the name "Same Padding" was coined. When we execute the same operation without 
padding, however, we get Valid Padding, which is a matrix with the same dimensions as 
the Kernel (3x3x1). 

3.4.2 Pooling Layer 

The Pooling layer, like the Convolutional Layer, is responsible for downsizing the 
Convolved Feature's spatial size. Through dimensionality reduction, the computational 
power required to process the data is lowered. It's also beneficial for extracting 
rotational and positional invariant dominant features, which helps to maintain the 
model's training process properly [4][5]. 

Pooling is divided into two types: maximum pooling and average pooling. The maximum 
value from the Kernel-covered area of the image is returned by Max Pooling. Average 
Pooling, on the other hand, returns the average of all values from the Kernel's section of 
the image. 

Max Pooling serves as a noise suppressant as well. It removes all noisy activations and 
conducts de-noising as well as dimensionality reduction. Average Pooling, on the other 
hand, just conducts dimensionality reduction as a noise suppression approach. As a 
result, Max Pooling may be said to outperform Average Pooling. 

Typically, the stride and filters of the pooling layers are both set to 2 2, allowing the 
layer to stretch throughout the input's spatial dimensions. Overlapping pooling can also 
be used, with the stride set to 2 and the kernel size set to 3. Because of the destructive 
nature of pooling, having a kernel size greater than 3 will usually result in a significant 
reduction in model performance. 

It's also worth noting that, in addition to max-pooling, CNN architectures may include 
general-pooling. Pooling neurons in general pooling layers are capable of performing a 
variety of common operations such as L1/L2-normalization and average pooling.  

3.4.3 Fully Connected Layer 

The fully connected layer is composed of neurons that are directly linked to the neurons 
in the two adjacent layers, but not to any layers in between. This is similar to how 
neurons are placed in standard ANN models. (Figure 1). [4] This is usually added as the 
last layer of the network and used for classification. It is a (typically) low-cost approach 
of learning non-linear combinations of high-level information represented by the 
convolutional layer's output. 
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4. RELATED WORK 

4.1 Image processing and classification using neural networks 

Given that there is a dataset of images, needed for an autonomous vehicle to be 
employed. The images of this dataset need to be processed and categorized. Firstly, to 
gather, process, and extract information, visual sensors are used, and computer vision 
algorithms, signal processing, machine learning, and other approaches are used. 
Several algorithmic approaches have been implemented to address these issues, 
including sensor design, processing, control, and navigation. The goal of [7] is to give 
up-to-date information on the needs, algorithms, and major issues associated with the 
use of machine vision-based navigation and control methods in autonomous vehicles. 

 Quinonez et al [8] were looking to address a simple pattern recognition problem with a 
backpropagation learning neural network. Authors trained a Multi-Layered Perceptron, 
instead of a CNN that is used in this thesis, using the Scaled Conjugate Gradient 
algorithm, in order to detect four photos. The goal of this project was to provide a secure 
way for guiding a robot from an initial location to a target position via an obstacle-free 
path within a known or unknown environment while attempting to proceed with minimum 
cost. The initial position and the destination/target must have been indicated by the 
environment. 

Authors in [9] propose an end-to-end deep learning-based approach for indoor mobile 
robot localization via image classification using a small dataset, retrieved from a real 
apartment setting using the MYNT EYE camera. Topological map information is 
collected from the robot workspace's floor plan. The topological map's navigable region 
is then extracted, and each of them is categorized as a robot workstation. In this way, 
the mobile robot is able to autonomously localize and traverse throughout the 
topological map. The dataset mentioned is utilized to train a CNN-based classifier 
model, which is subsequently used to localize and navigate the mobile robot or even 
detect potential obstructions in the robot's path. A very remarkable fact is that the 
authors present an acceptable cost function to address the CNN classifier model's 
limited generalization capability, which exists due to the dataset's small size. Unlike 
other well-known loss functions, the suggested loss considers not only the chance of 
the input data being allocated to its true class, but also the probability of the input data 
being allocated to other classes. The results indicated that the proposed system is 
efficient, effective, and generalizable. 

 

4.2 Arrow marking detection and preprocessing 

In order to create a dataset, the photos taken by the robot will need to be preprocessed. 
That is locating and extracting the arrow markings, so that they can later be classified. 

Authors in [10] present a general geometric approach using curve-based prototype 
fitting. This suggests a two-step procedure which includes a preprocessing and a 
recognition step. The first step seems to be an interesting approach when it comes to 
extracting a marking and processing it. It consists of setting a region of interest (ROI) 
that will be framing the arrow marking, extracting the connected components of it and 
contouring the arrow’s outer geometric shape, and finally, performing a plausibility 
check by reconstructing the local environment and reprojecting the extracted contour 
pixel list on the road surface. 

On the other hand, instead of extracting the arrow of the road image, the entire picture 
could be processed. The research work in [11] attempts to navigate a robot using a 
camera and identifying arrows. A track is made with various turns for the robot to move 
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around. On every turn, a right or left arrow is provided for robot to recognize the arrow 
symbol by capturing images using a wireless camera. There is an initial starting point 
and the final destination point, which the robot has to reach. Unlike [10], it doesn’t 
extract the arrow marking from the picture of the road, but processes the entire photo as 
it is taken by the robot’s camera. This photo’s pre-processing includes converting it to a 
binary image and removing noise and small objects from it. 

Similar tactic is used by [8], meaning that they also used the entire image, not just the 
arrow shape. Although before converting it to binary image, a median filter was applied 
on the images. Also, after these two steps, there was an attempt to reduce the image 
noise by removing objects smaller than 300 pixels. 

Like [8] and [11], the work in [12] processes the entire image. Shojaeipour, Haris, and 
Khairir presented a method to navigate a mobile robot, which decides the shortest path 
for the robot to follow to reach its destination while avoiding obstacles in its path. For 
that goal they used image processing techniques, such as converting the input image 
from RGB to greyscale, finding the edges of objects in the image, and removing noise 
from it. 

Another research work, that also has a little different goal than the previous ones is 
described in [13]. It presents an image-based omni-directional mobile robot guidance 
system in an indoor space with installed artificial ceiling landmarks. Just like the 
previous ones, this too is using image proccesing techniques in order to process the 
ceiling landmarks that include color space transformation, histogram equalization, color 
detection, filtering, object tracking and recording. 
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5. AUTONOMOUS NAVIGATION WITH THE USE OF NEURAL 
NETWORKS AND IMAGE RECOGNITION 

5.1 Problem Definition 

In this thesis, we aimed to navigate a robot on an unknown path by recognizing and 
following arrow markings and signs. For the image recognition, a CNN was used, which 
we trained with a dataset of arrow markings that we made. For dataset creation, a 
Turtlebot was used along with a raspberry pi camera. An image pre-processing 
technique was developed, in order to make network training and image classification 
more accurate. 

5.2 Challenges 

5.2.1 Vehicle’s computational power and communications 

Real-time navigation is a project that demands multiple resources. Usually an 
unmanned vehicle is equipped with a resource-constrained computer like a raspberry pi. 
The vehicle’s raspberry pi used for this thesis doesn’t have a strong processing power. 
Therefore, we needed a stronger device to manage and execute the pre-processing of 
an image and the image prediction using a neural networks. Consequently, a server-
client model was created, where the Turtlebot behaved as a client and the other 
computer had the role of the server. These two communicated via Python sockets. 

5.2.2 Navigation conditions 

In real-time navigation, the vehicle’s surroundings matter a lot. In this case, the colour of 
the ground and the lights or daylight can affect the vehicle’s navigation accuracy and 
overall, the navigation’s success. The darker the color of the floor, the less we had to 
modify and adjust our image pre-processing technique. As for the environment’s 
lighting, daylight and its reflection to the floor’s surface could cause a big problem to the 
image pre-processing, which, in turn, could cause a problem to the neural network’s 
image prediction. 

5.3 Dataset creation 

The first step of our research is to make our own dataset, using a raspberry pi camera, 
physically supported by a structure made of LEGO Mindstorms.  



Real-Time Navigation of Unmanned Vehicle based on Neural Networks Classification of Arrow Markings 
 

S. Reppa   34 

 

Figure 16 - Mindstorm structure for camera (left) 

This structure is used to hold the camera in a certain angle towards the floor. For each 
navigation class, i.e. abort, go front, go backwards, go right and go left specific signs 
with arrows in paper were used. The abort class was represented by an X. Photos 
(n=100 samples) for each class were captured by the raspberry camera to create the 
training datasets. 

Python functions were used to preprocess the images. We start by using a function that 
locates the sign in an image, in order to capture the photo and then classified by our 
model. This function uses area contour, binary masks, noise filters. After the sign is 
located and the area is cropped, we use a python script that flips vertically / horizontally 
the image, in order to augment the dataset. 

5.4 Pre-Processing 

As mentioned, we captured images with our raspberry camera to create a dataset. The  
same camera for the vehicle’s real-time navigation was used. The dimensions of these 
images were bigger than those needed by a VGG model and contain a lot of 
background noise. Hence, it was needed to develop a function eliminating the 
background noise in our images and reduce the size. As a result the credibility of model 
training and real-time arrow classification could be increased. 

To achieve this, an image pre-processing function was developed. This function aimed 
to locate a white area in each image containing a black sign. The function, as shown in 
Figure 17Error! Reference source not found. below, contained Gaussian noise filter, 
bitwise operations between images and contouring. 
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Figure 17 -  Image pre-processing function 

Therefore, this function located the signal in the photo, marked the area and cropped it, 
as inFigure 18. Then, the output of this function was the main input for model training or 
predicting the class of a sign in real-time navigation. 

 

 

Figure 18 - Arrow markings pre-processing 

5.5 Model 

For this thesis, the VGG model was used. It was imported from a python library and its 
last layer, a dense layer responsible for classifying up to 1000 images of different 
classes, was removed. In the removed layer’s place, a fully connected layer is added, in 
order to classify images of five categories. Training dataset was comprised of the 
images that were captured by the raspberry camera at the beginning of our research 
and then were processed by our image pre-processing function, i.e cropped and resized 
in 224x224. Resizing the in 224x224 was necessary, because VGG16 and VGG19 input 
dimensions are 224x224 exactly. 

While training the model, a few parameters could be changed, such as the optimizer 
which was used. Hence, we trained multiple different models, that vary on those 
parameters. 
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Figure 19 - Training a VGG model 

 

5.6 Navigation code 

A python script was created responsible fot the navigation of Turtlebot in space. The 
script was compatible with ROS libraries and topics like rospy, rospkg, geometry_msgs, 
nav_msgs. 

 

Figure 20 - Navigation code init, stop, forward 



Real-Time Navigation of Unmanned Vehicle based on Neural Networks Classification of Arrow Markings 
 

S. Reppa   37 

 

Figure 21 – Navigation code rotate 

 

Figure 22 - Navigation code backwards 

 

While the robot moves and follows the path, its coordinates are monitored using the 
following function in Figure 23 and then noted in a .txt file of this form in Figure 24. Then 
this file, is read by a Matlab script, which depicts the robot’s trajectory as in Figure 53 
and Figure 56. 
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Figure 23 - Odometry function 

 

Figure 24 - Robot's coordinates after each move 

 

5.7 Socket Communication 

Turtlebot and server communicated via Python sockets using the python library 
“socket”. Only one socket was used for this communication. First, the client captured an 
image with the raspberry camera and sent it to the server through the socket. 

 

Figure 25 - Client implementation 

The server received this image, preprocessed it, classified it using a VGG model and 
sent an answer to the client about the classification, through the same socket. 
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Figure 26 - Prediction of model from server side 

Then, the client received the answer about which class the arrow belongs to and moved 
accordingly. This process was repeated until an “abort” sign was detected and the 
socket closed. 
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6. EXPERIMENTS 

For our research, we started by conducting experiments involving our neural networks. 
Based on these results, the parameters of a neural network were fine tuned that would 
better fit our purpose, which was for the robot to follow an unknown path of arrows. We 
further studied the behavior of these parameters and two neural networks with different 
parameters were trained and compared regarding their performance while the robot was 
following a path. 

6.1 Experiments on CNN 

For experimenting and training with our neural network, Google Colab was used. We 
considered Python Notebooks to be very useful for this purpose, along with Colab’s 
GPU. The experiments were conducted using the dataset we made on both VGG16 and 
VGG19 models. 

6.1.1 Epochs 

Experiments were conducted concerning the model’s behaviour when we trained it with 
different number of epochs, starting with ten (10) epochs and adding 10 on each 
training, until we reached one hundred (100) epochs. For the purpose of this 
experiment, a batch size was set to 32, loss function is Categorical Crossentropy and 
Adam is used as optimizer. 

 

Figure 27 - accuracy (left) and loss (right) estimation of VGG-16 model and, batch size=32 

 

Figure 28 - accuracy (left) and loss (right) estimation of VGG-19 model 

In all graphs, a peak was spotted, which was created from early stopping in comparison 
to a training of a model with 60 epochs. In loss graphs of Figure 27  and Figure 28 as it 
is shown that the loss decreased at first, while number of epochs was increased. That is 
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expected because the more the epochs, the less the loss is. Also, due to the fact that 
we have a small dataset, the loss can easily reach the value of zero, while accuracy can 
reach the value of one. Therefore, it was decided that the models that will be used for 
navigation, will be trained for 25 epochs.  

6.1.2 Batch size 

In the following figures we conducted experiments by changing the batch size while the 
rest parameters where epochs=30, loss function= “Categorical Crossentropy” and 
optimizer= Adam. 

 

Figure 29 - accuracy (left) and loss (right) estimation of VGG-16 model and, epochs=30 

 

Figure 30 - accuracy (left) and loss (right) estimation of VGG-19 model and, epochs=30 

For VGG16 as shown in Figure 29 we can spot an expected behavior. As batch size 
increased, accuracy slightly decreased and loss increased. Due to the fact that batch 
size becomed bigger, the training in a certain number of epochs would be less accurate. 
As for VGG19 in Figure 30, accuracy had the value of one, because of our small 
dataset. Loss tends to decreased, but if we noticed better, the decrement was very 
small. It was decided that for the models used for navigation, batch size would be set to 
32 while they were trained. 

6.1.3 Loss function and Optimizer 

For our research, we also experimented with loss functions and optimizers. As loss 
functions we only used two:  

• Categorical Crossentropy and  

• Mean Squared Error.  

Categorical crossentropy is used in multi-class classification tasks, where an example 
can only belong to one out of many alternative categories, and the model is expected to 
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decide which one, while Mean Squared Error loss is calculated as the average of the 
squared differences between the predicted and actual values. 

As optimizers we used four:  

• Adagrad,  

• Adam,  

• RMSprop() and  

• Stochastic Gradient Descent. 

All possible combinations were made. The Gradient Descent algorithm calculates the 
gradient for the entire dataset and updates the values in the direction that is opposite to 
the gradients until a local minima is discovered. As long as the Gradient Descent 
generates large updates for uncommon parameters and tiny updates for frequent 
parameters, Adagrad is better suitable for a sparse data set. Adaptive Moment 
Estimation is known as Adam. This one too, determines numerous learning rates. Adam 
is quicker, more effective, and works well in practice. The basic idea behind RMSprop, 
which stands for Root Mean Square Propagation, is to keep a moving (discounted) 
average of the gradients' square and divide the gradient by the average's root. 

6.1.3.1 Loss function = Categorical Crossentropy and VGG16 

The following figures concern VGG16 models trained with Categorical Crossentropy as 
loss function. 

Categorical Crossentropy and Adam 

  

Figure 31 - Accuracy (left) and loss (right) estimation of VGG-16 model and, epochs=25 and batch 

size = 32 

Categorical Crossentropy and Adagrad 

  

Figure 32 - Accuracy (left) and loss (right) estimation of VGG-16 model and, epochs=25 and batch 

size= 32 
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Categorical Crossentropy and RMSprop 

  

Figure 33 - Accuracy (left) and loss (right) estimation of VGG-16 model and, epochs=25 and batch 

size= 32 

Categorical Crossentropy and SGD 

  

 

Figure 34 - Accuracy (left) and loss (right) estimation of VGG-16 model and, epochs=25 and batch 

size=32 

It can be pointed out that Categorical Crossentropy along with Adam and Adagrad seem 
to behave nicely, meaning that their figures’ curves (Figure 31 and Figure 32 
respectively) seem to be smooth. Also, their loss tends to decrease and their accuracy 
to increase as the number of epochs increase, which is expected. On the contrary, 
Categorical Crossentropy with RMSprop or SGD (Figure 33 and Figure 34 respectively) 
don’t seem to be good combinations as it seems from their figures that they should not 
be very stable. 

6.1.3.2 Loss function = MSE and VGG16 

The following figures concern experiments conducted on VGG16 models when MSE is 
used as loss function. 
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MSE and Adagrad 

  

Figure 35 - Accuracy (left) and loss (right) estimation of VGG-16 model and, epochs=25 and batch 

size=32 

MSE and Adam 

  

Figure 36 - Accuracy (left) and loss (right) estimation of VGG-16 model and, epochs=25 and batch 

size=32 

MSE and SGD 

  

Figure 37 - Accuracy (left) and loss (right) estimation of VGG-16 model and, epochs=25 and batch 

size=32 
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MSE and RMSprop 

  

Figure 38 - Accuracy (left) and loss (right) estimation of VGG-16 model and, epochs=25 and batch 

size=32 

On the one hand, MSE with SGD (Figure 37) and Adagrad (Figure 35) seem to behave 
as expected. Their figures’ curves seem to be smooth. Also, their loss tends to 
decrease and their accuracy to increase as the number of epochs increase, which is 
required. On the other hand, models with MSE with RMSprop (Figure 38) or Adam 
(Figure 36) don’t seem to be good combinations as it seems from their figures that they 
should not be very stable. 

6.1.3.3 Loss function = Categorical Crossentropy and VGG19  

The following figures result from experiments conducted on VGG19 and Categorical 
Crossentropy. 

Categorical Crossentropy and Adam 

  

Figure 39 - Accuracy (left) and loss (right) estimation of VGG-19 model and, epochs=25 and batch 

size=32 
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Categorical Crossentropy and Adagrad 

  

Figure 40 - Accuracy (left) and loss (right) estimation of VGG-19 model and, epochs=25 and batch 

size=32 

Categorical Crossentropy and RMSprop 

  

Figure 41 - Accuracy (left) and loss (right) estimation of VGG-19 model and, epochs=25 and batch 

size=32 

Categorical Crossentropy and Stochastic Gradient Descent 

  

Figure 42 - Accuracy (left) and loss (right) estimation of VGG-19 model and, epochs=25 and batch 

size=32 

Adam (Figure 39) and Adagrad (Figure 40) models’ curves seem to be smooth. Their 
loss tends to decrease and their accuracy to increase as the number of epochs increase 
unlike RMSprop or SGD (Figure 41 and Figure 42 respectively), whose diagrams are 
not at all stable. 
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6.1.3.4 Loss function = MSE and VGG19 

The figures that follow concern VGG19 models trained with MSE. 

MSE and Adagrad 

  

Figure 43 - Accuracy (left) and loss (right) estimation of VGG-19 model and, epochs=25 and batch 

size=32 

MSE and Adam 

  

 

Figure 44 - Accuracy (left) and loss (right) estimation of VGG-19 model and, epochs=25 and batch 

size=32 

MSE and Stochastic Gradient Descent 

  

Figure 45 - Accuracy (left) and loss (right) estimation of VGG-19 model and, epochs=25 and batch 

size=32 
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MSE and RMSprop 

  

Figure 46 - Accuracy (left) and loss (right) estimation of VGG-19 model and, epochs=25 and batch 

size=32 

MSE with Adam and Adagrad seem to function as required, based on Figure 45 and 
Figure 44, while models with SGD or RMSprop curves (Figure 45 and Figure 46 
respectively) aren’t stable. 

In conclusion, models trained with 25 epochs and 32 batch size are chosen for the real-
time navigation of our vehicle. Apparently, categorical crossentropy seems to suit better 
this purpose, along with Adam and Adagrad as optimizers, according to the conclusions 
made based on all figures. Therefore, we trained 2 models and compared their 
performance on the second phase of our real time navigation set experiments. A 
VGG16 with Categorical Crossentropy and Adam and a VGG16 with Categorical 
Crossentropy and Adagrad are discussed in the following sections. 

 

6.2 Path following 

6.2.1 Set up experiments 

First, we set up a path of arrow markings on the floor. Figure 47 shows the path’s top 
view, where the green circle represents Turtlebot at its starting point. 
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Figure 47 – Map’s top view 

Turtlebot starts facing the arrow of step 1. Then, it has to follow the rest of the steps. 
Also, the distance between each marking is very specific, because our robot’s moves 
are also very specific. For example, the marking that follows a “go forward” marking is 
placed after 1.10 m or the marking that follows a “go backwards” marking is placed after 
1.70 m. As shown, all kinds of arrow markings were used. 
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Figure 48 – Path in space 

The robot has to follow this path and classify the pictures captured with the two different 
models we decided on the previous chapter.  

As mentioned before it is very crucial that we created the best possible environment for 
our navigation to be successful. We deprived the room of daylight and turned all the 
lights on, so that the lighting is stable and doesn’t depend on whether there is sun 
outside or not. After all, the sunlight reflects on the floor and makes the pre-processing 
part a lot harder and less successful.   

6.2.2 Experiment execution 

Before starting navigation experiments, we ran a few tests regarding image pre-
processing. We adjusted a few parameters in the function in order to ensure that the 
markings will be spotted in the most efficient way possible. As a result, the image 
classification will be more credible. Then, the experiments on navigation can begin. 

First, we execute the server’s code. That will load the chosen VGG model and the set 
up socket. We wait until the server prints out a message that is ready to accept requests 
from a client. 

 

Figure 49 – Executing the server 

Then, we deploy the client’s code. The client captures the first image sends it via socket 
to the server. The server receives the image, spots the marking, crops its area and 
resizes the resulting image as 224x224, so that it can fit the VGG’s input dimensions, 
while the client waits for an answer. The server predicts the class that single image 
belongs to and sends the result, as an answer, back to the client. The client receives 
this answer and moves accordingly. That procedure is repeated until an “abort” sign is 
located. 
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Figure 50 – Server messages about classification results 

 

The entire procedure that was just described will be done twice, once for each model 
that we have chosen. 

6.2.3 Experiment results 

6.2.3.1 VGG16 with Categorical Crossentropy and Adam 

We performed one experiment with a model trained for 25 epochs, with batch size 32, 
categorical crossentropy as a loss function and Adam as optimizer. This model is used 
by the server for image classification. 

The robot had to follow the route on Figure 47 and as it turned out, the navigation was 
successful. It classified all 10 pictures correctly. In figure are shown all images that were 
received by the server. Tenth image, should contain the entire marking. That marking 
represents “abort”. All other images depict markings correctly. 
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Figure 51 – Received images by server 

The images that resulted from pre-processing and are destined for classification, are 
shown inFigure 51. The tenth image of this figure comes from the tenth image of Figure 
52, which was captured from the robot inaccurately. This is the best possible outcome 
of pre-processing for this image. Even though it is not a credible result, it was classified 
correctly leading the navigation to end successfully. 



Real-Time Navigation of Unmanned Vehicle based on Neural Networks Classification of Arrow Markings 
 

S. Reppa   53 

 

Figure 52 – Images after pre-processing 
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While the robot navigates, its coordinates are noted after each move. In the following 
figure (Figure 53), the robot’s trajectory is depicted. Each dot represents every set of 
coordinates noted. 

 

Figure 53 – Robot’s trajectory in space, classification model trained with Adam 

6.2.3.2 VGG16 with Categorical Crossentropy and Adagrad 

A second experiment was conducted, using a model trained for 25 epochs, with batch 
size 32, categorical crossentropy as a loss function and Adagrad as optimizer. This 
model is used by the server for image classification. 

The robot had to follow the route on Figure 47 and at the end, it followed the path 
correctly, just like in the previous experiment. It classified all 10 pictures correctly. In 
Figure 54 are shown all images that were received by the server. Apparently, all 
markings were captured in an efficient way by the raspberry camera. 
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Figure 54 – Received images from server 

In Figure 55, the images that resulted from pre-processing and are destined for 
classification, are shown. Since all images were captured correctly from the robot, pre-
processing results were very efficient, as expected. Therefore, each image from Figure 
55was successfully classified by our model and the navigation terminated successfully. 
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Figure 55 – Images after pre-processing 
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During this experiment, too, the coordinates of the robot were noted after each move. 
The following figure (Figure 56) depicts its trajectory, from the beginning until the end. 
Each dot represents each set of coordinates noted. 

 

Figure 56 - Robot’s trajectory in space, classification model trained with Adagrad 
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7. CONCLUSION 

The enormous growth and use of autonomous vehicles in recent years appears to have 
overwhelmed the technology community. Due to the fact they can be deployed quickly 
and efficiently, unmanned vehicles are being employed more and more in a variety of 
applications. The complexity and dynamic nature of the environment around unmanned 
vehicles, as well as their interaction with other people and objects, as well as any 
sudden changes in the environment, make autonomous navigation of these vehicles a 
major challenge for a variety of reasons.  

For instance, a vehicle should drive itself along the road by obeying the various arrow 
signs that indicate a set of restrictions. There are multiple ways, provided by machine 
learning, to achieve this, one of them being the use of Neural Networks. More 
specifically, with the use of a Convolutional Neural Network, a deep learning algorithm 
that is ideal when a dataset is comprised of images. An analogy can be drawn between 
the architecture of a CNN and the connectivity network of neurons in the human brain; 
individual neurons only respond to stimuli in a specific area of the visual field known as 
the receptive field. The entire visual field is covered by a series of such fields that 
overlap. 

This thesis has proposed a methodology that included the use of a image processing 
technique and a popular CNN, named VGG, in order to detect arrow markings in 
images captured by a raspberry-pi camera and later classify these arrows accordingly 
and follow the path that was planned. A series of experiments were conducted, starting 
with a benchmarking of VGG-16 and VGG-19 models with different hyperparameters. 
This showed the different behaviors of models trained with different combinations of 
hyperparameters, which lead to the choice of certain hyperparameters to be ideal for 
the training of 2 models, used in the second phase of experiments. As for the second 
phase, one navigation took place using each model, concluding that not only the 
hyperparameters of a model are important in a successful navigation, but also precise 
moves of the vehicle and a pre-processing technique, whose parameters are adjusted 
to the environment’s condition’s (i.e floor color, lighting of space). 
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ABBREVIATIONS - ACRONYMS 

ANN Artificial Neural Network 

CNN Convolutional Neural Network  

ConvNet  Convolutional Neural Network  

GPS Global Positioning System 

LiDAR Light Detection And Ranging 

MLP Multi-Layered Perceptron 

MSE Mean Squared Error  

ReLU Rectified Linear Unit 

RMSprop  Root Mean Square Propagation  

RNN Recurrent Neural Network 

ROS Robot Operating System 

SGD Stochastic Gradient Descent 

SLAM Simultaneous Localization And Mapping 

SNN Simulated Neural Network 

UAV Unmanned Aerial Vehicle 

UGV Unmanned Ground Vehicle 

USV Unmanned Surface Vehicle 

VGG Visual Geometry Group  
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