NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATION

BSc THESIS

Real-Time Navigation of Unmanned Vehicle based on Neural
Networks Classification of Arrow Markings

Smaragda D. Reppa

Supervisor: Stathes P. Hadjiefthymiades, Professor

ATHENS

JULY 2022

EONIKO KAI KATMOAIZTPIAKO MNMANENIZTHMIO AOHNQN

2XOAH OETIKQN EMIZTHMQON
TMHMA NAHPO®OPIKHZ KAI THAETMIKOINQNIQON

NTYXIAKH EPIrAzIA

AuTtévoun TAofpynon pn €TavopwUéVOU OXAHATOG O€
TTPAYMATIKO XPOVO, HE XPON VEUPWVIKWYV SIKTUWYV YIO TV
KOTNYOPIOTTOiNo ONUAVoewV

Zpapayda A. Pémrmma

EmBAémTwyv: Euotdiog IN. Xar{neuBupiadng, Kabnyntrig

AOHNA

IOYAIOZ 2022

BSc THESIS

Real-Time Navigation of Unmanned Vehicle based on Neural Networks Classification of
Arrow Markings

Smaragda D. Reppa
S.N.: 1115201600143

SUPERVISOR: Stathes P. Hadjiefthymiades, Professor

NTYXIAKH EPTAzZIA

Autdévopun TTAoAyNon KN ETTAVOPWHEVOU OXNUATOG OE TTPAYHATIKO XPOVO, HE XPHoNn
VEUPWVIKWY BIKTUWV YIO TNV KATNYOPIOTToiNoN ONUNAVOEWY

Zpapayda A. Pémrma
A.M.: 1115201600143

ENIBAEMONTEZ: EuoTdfiog M. Xarlneubupiddng, KabnynTrig

ABSTRACT

Since the 1970s, autonomous robots have been in daily use at any altitude, for deep-
sea and space exploration as well as in almost all aircraft. The last decades, an
increasing interest has been recorded on the exploitation of unmanned vehicles in fields
such as environmental monitoring, commercial air surveillance, domestic policing,
geophysical surveys, disaster relief, scientific research, civilian casualties, search and
rescue operations, archeology, maritime patrol, seabed mapping, traffic management,
etc. Regardless the domain (i.e., aerial, ground or surface) that they belong to, the key
elements that distinguish them as the leading edge of their technology are the provided
degree of autonomy (i.e., the ability to make decisions without human intervention), the
endurance and the payload that they can support.

A complicated task which is a prerequisite in robotic missions is the autonomous
navigation of the robots. An autonomous mobile robot constructs a robust model of the
environment (mapping), locates itself on the map (localization), governs the movement
from one location to the other (navigation) and accomplishes assigned tasks. Going a
step further the autonomous and self-driving impose a new research area where
vehicles can monitor the road marks or the traffic signs and take the proper decisions
for their navigation in space. The image classification in real-time navigation is latency
sensitive and resource consuming task.

In this Thesis, we aimed to navigate an unmanned vehicle on an unknown path by
recognizing and following arrow markings and signs. For the image recognition, a CNN
was used, which is trained with a dataset of arrow markings. For dataset creation, a
Turtlebot 2 was used along with a raspberry pi camera. A benchmarking of
convolutional neural networks, i.e. VGG-16 and VGG-19, is presented. Finally, the real-
time experiments were executed with a Turtlebot2 in real-time navigation and
discussed.

SUBJECT AREA: Image Processing, Convolutional Neural Networks

KEYWORDS: neural networks, convolutional neural networks, image processing, path

planning, navigation, unmanned vehicle, turtlebot, ROS

NEPIAHYH

A6 Tn dekaetia Tou 1970, Ta QUTOVOUA OXNAMATA XPENOIMOTTOIOUVTAI E€UPEWG, Yia
e€epelvnon BaBEwv udATWY Kal dIOCTAUATOS KABWGS Kal 0€ OAa oxXedOV Ta AEPOOTKAPN.
TIG TEAEUTAIEG OEKOAETIEG, EXEI KATAYPAPEI AUEAVOUEVO EVDIQPEPOV YIa TNV EKUETAAAEUON
M ETTAVOPWHEVWY OXNUATWY O€ TOUEIG OTTWGS N TTapaKoAoUBnan Tou TTEPIBAAAOVTOG, N
agpla €MTAPNON YIA EUTTOPIKEG TITAOCEIG, N AOTUVOUEUOH, Ol YEWQUOIKEG EPEUVEG, N
QVTIMETWTTION QUOIKWYV KATACTPOPWY KI EVTOTTIONOS BUudTWwy, N ETTIOTNUOVIKN £pEuva, Ol
EMIXEIPNOEIS €peEuvag Kal dlAowong, n apxaioAoyia, n TrePITOAia o€ BAANNAOEG,
xaptoypdenon PubBou, diaxeipion KukAo@opiag K.ATT. Avegdptnta atmd Tov Topéa
(dnAadn evaéplo, ETTIYEIO 1] ETTIPAVEIAKO) GTOV OTTOIO AVIKOUV, TA BACIKA OTOIXEIQ TTOU TA
OIOKPIVOUV WG alXuf TNG TEXVOAOyiag Toug eival o TTapeXOPEVOS Babudg auTovouiag
(OnA. IKavoeTnTa ARWNG aTTOPACEWY XWPIG avBpwTTivn TTapEéuBacn), TNV AvTOoxr Kal TO
WOEEAIPO QOPTIO TTOU PTTOPOUV VA UTTOOTNPIEOUV.

‘Eva TTOAUTTAOKO £pyo TTOU aTTOTEAEI TTPOUTTO0EON OTIG ATTOOTOAEG QUTWY TWV OXNUATWV
gival n autévoun TAoriynon Toug. ‘Eva autovopo KIvNTO POPTTOT KOTAOKEUALEl €va
IoXupOd HovTéAo Tou TrePIBAANOVTOC (XapToypdgenon), evroTmileTal OTOV XAPTN
(ToTroB£TNON), EAEYXEI TN PETAKIVNON ATTO TN PIa TOTTOBeTia otV AAAN (TTAOAyNon) Kai
EKTEAEI epyaaieg TTou €xouv avaTeBei. BAETTOVTOG €va BANO TTOPATTEPA, N AQUTOVOUN KAl
autovoun odnynon €mIRAAAEl Evav VEO €pEUVNTIKO XWPEO OTTOU TA OXAMOTA UTTOPOUV va
TTapakoAouBoUuv Ta 0dIKA Onuata A Ta ORuaTta KUKAo@opiag Kal va Aaudavouv Tig
KATAAANAEG aTTOQAOEIS yIa TNV TTAONyNor Toug oTto didotnua. H tagivounon sikévwv
oTnv TTAOAYNON O€ TIPAYMATIKO XPOVO E€ival PIa €Pyaoia TTOU QTTAITE XPOVO Kal
KATOVAAWVEI TTOPOUG.

e aut) TN d1aTpIPr), OTOXEUOUME va TTAONYACOUUE €va [N €TTAVOPWHEVO OXNPa O€
AyvwoTo JOVOTTATI avayvwpeifovTag Kal akoAouBwvTag Ta onuddia Kal TIG TTIVOKIOES e
BEAN. MNa Tnv avayvwpion €IKOVAS XPNOIMOTIOINBNKE £€va GUVEAIKTIKO VEUPWVIKO SiKTUO,
TO OTTOI0 eKTTAIdEVETAlI PE €va OUVOAO dedouévwy atmmd onudvoels BEAoug. MNa
onuioupyia dedouévwy, xpnoipgotroinenke éva Turtlebot 2 padi pe pia k&uepa raspberry
pi. MapouciAleTal PIa CUYKPITIK agloAOYNon TWV OUVEANIKTIKWY VEUPWVIKWY OIKTUWY,
T.X. VGG-16 kal VGG-19. TéAog, Ta TTEIPAPATA O€ TTPAYHUATIKO XPOVO EKTEAECTNKAV HE
Turtlebot2 o€ TAorjynon o€ TpaydaTiké Xpovo Kal oulntrienkav.

OEMATIKH NEPIOXH: 11.X. ETre€epyaoia Eikdvag, ZuveAikTiké Neupwviké AikTua

AEZEIZX KAEIAIA: veupwvikd OikTud, OUVEAIKTIKA VEUPWVIKA OikTuad, €TTeCepyaaia
€IKOVAG, OXEDIOONOG OIOdPOMNG, TTAOAYNON, KN ETTAVOPWHEVO OXNMO

AQIEpWVwW auTNV TV TITUXIAKH £0yaaia aTnVv OIKOYEVEIG oU yia TV adIidKoTTn oTHpIéN

TOUC KQTA TNV EKTTOVNON TNS, AAAG Kal KaB’0An 1n OIGPKEIA TwWV OTTOUOWYV LIOU.

EYXAPIZTIEZ (R AKNOWLEDGMENTYS)

MNa N diektTepaiwon TG TTapouoag MNTuxiakng Epyaoiag, Ba BeAa va euxapiotiow Tov
empBAETTovTa kKabnynt, EuoTtdBio XatlneuBuuiddn, TTou pou €dwoE TNV E€uKalipia va
avaAGBw TO CUYKEKPINEVO BEPA KAl VO AaoXOANBwW PE TOV TOUEIG TNG POPTTOTIKAG KAl TWV
VEUPWVIKWV OIKTUWYV. Oa ABeAa va euxaploThHow, €tmiong, tnv 01ddkTopa Kuplakn
Mavayidn yia T ouvepyaoia kal TNV TTOAUTIUN BorBeid Tng KaB’oAn Tn didpkela
EKTTOVNONG TNG £PYQTiag.

CONTENTS

1. INTRODUCTION ..o e 15
2. UNMANNED VEHICLES oo 16
2.1 Definition of UNmMannNed VENICIES oo e e e e e ra b 16
2.1.1 Unmanned Ground VENICIESooiue et e e e e et e e e et e e e eaaaeeeeen 16
2.1.2 Unmanned SUIMACE VENICIEiiiie et e e e e e e e et e e e e e e eaeen 18
2.2 RODOEt OPErating SYSTEM ..ottt et e e e st e e e e abb e e e e aabbeeeeabbeeeeane 18
A R B < 1 114 (o] I = L 1 T 19
2.2.2 ROS PACKAGES ..o e oo 19
G T = O N Y] - VxR 19
A S = @ N Yo7 1 (1 [P 20
A T = (O 3 4 (o o [N 20
P I = (@ 1S3 (] o] (o1 S O O OO PP PP PTPPPP 20
A A = (O ISR Y=Y V(o1 20
A < T Y F= 1y (Y g g Lo 1o (<Y 21
2.2.9 ROS IMESSAGES .. i iieieeeittiiie e e tet ettt aa s e e et e ee b s e e et et tas b e e e aeeee st et e e et e e e ta b n e e e e eeatr e aaaeaeerraen 21
2.2.10 = 10 [o o 10 1T 22
R T 1= o =Y 0 1 =R 22
2 U 1 4 =] o 1o AT 22
S TS 11 0 1] =1 o Y TP 22
3. IMAGE PROCESSING TECHNIQUES AND NEURAL NETWORKS...........ccuu.... 24
3.1 Image Processing and Unmanned VENICIEScoii i 24
3.2 ATHITICTAI NEUIAI NEEWOTKS ...eieriieeeiee ettt e e et e e et e e et et e e e e e et e e esaesese s eseeataseeeanseereen 24
3.3 CoNVOolULIONAl NEUIAI NEBIWOTKS ..ccvuiiiieee ettt e et et e e et e e e e e e e s et e e e eeaeseeeaneeesees 25
I O N LN I= T o] a1 (=] (UL =TT 26
R A @ 0 1Yo [0T g = L =Y/ SRS 27
I A o To [T o I = PP ERPTT PR 30
3.4.3 FUIY CONNECIEA LAYETeeeieiiiiee ittt ettt et e e e e e ettt e e e e e e e e aanbbbe e e e e e e s e e annneeneeas 30

4., RELATED WORK ...ttt 31

4.1 Image processing and classification using neural NEtWOTIKSeeeiiiiiiiiiiiiiii e 31

4.2 Arrow marking detection and PreprOCESSING ..o i i iiieiee ettt e st e s e e e sneeee s 31

5. AUTONOMOUS NAVIGATION WITH THE USE OF NEURAL NETWORKS AND

IMAGE RECOGNITION. . .cii it e e et e e e e e e et e e et e e ean e eenns 33
5.1 Problem DefiNitiONooiiiieeeie et 33
Lo @ -1 1T oo = PSR 33
5.2.1 Vehicle’s computational power and communiCationscccovuiiiiiiiiiieiniiiee e 33
5.2.2 NaVIgation CONGITIONScciiiiiiieiiiiti ettt e e ettt e e et e e s anbre e e e nnees 33
LSRG I B = 1= Y= A o3 == 14 o] o RS PPRR 33
L e (= e e Tod =L E] | o Lo R ST TPP O PUPPT PP 34
LIRS T 1V o T =] PSSP PP 35
5.6 NavIigation COU ..o 36
5.7 SOCKEL COMMUNICALION ...eeiiiriiei ittt ettt et e et e e st e e s r e e e e srr e e e e snreeeesnneeeennns 38
6. EXPERIMENT S ..o et e e e e e e e e nn e eeees 40
6.1 EXperiments 0N CNN ... 40
6.1.1 EPOCRS oo 40
B.1.2 BAICKN SIZE .. .eiiiiiiiieii ettt e 41
6.1.3 LOSS fUNCLION @Nd OPLIMIZET.....ciiiiiiiiiiiiee ettt ettt e s b e e e nbee e e e e 41
6.1.3.1 Loss function = Categorical Crossentropy and VGGLEccoviiviieiiiiieeiiiiiie e 42
6.1.3.2 L0sS function = MSE @nd VGG LBuuiiiiiiiiieiiiiiee ettt e 43
6.1.3.3 Loss function = Categorical Crossentropy and VGG19..........ccccoociiiiiiiiiiiiin i 45
6.1.3.4 Loss function = MSE and VGG19cccciiiiiiiiiiiiiiii s 47
6.2 PAtN FOIOWING ..ttt e e oottt e e e e e e e s bbb e e e e e e e e e e annbbeeeaeaeesaannes 48
B.2.1 St UP EXPEIIMENTSiiiiiiiiiiee ittt e ettt e e e e e e s et a b et e e e e e e e s s s abebaeeeaea e e s e nbabaeeeaaeeesaanbabneeaaaaaeas 48
6.2.2 EXPEIMENT EXECULIONeiiitiiiieiiiiie ettt sttt e e s sttt e e s et e e s ebb e e e anbbe e e e anbeeeeanbeeeeeaneeas 50
6.2.3 EXPEIMENT FESUILS ..ottt sttt ettt e s ettt e s ettt e e e st e e e enbeeeeennbeas 51
6.2.3.1 VGG16 with Categorical Crossentropy and AdaIMcceveeeriiiiiiiiireeee e e e e e ssnrnrenereeeees 51
6.2.3.2 VGG16 with Categorical Crossentropy and Adagradcccccooevcuvviieieeeesiiiiiieee e e seeeieee e e 54
A O © 1 [O I 1] [] N P 58

ABBREVIATIONS - ACRONYMSo 59

REFERENCES

LIST OF FIGURES

Figure 1 - Autonomous UGV in public transportationccccoeeeeeeiiiiiiiiiiiiieeeeeeeeeenns 16
Figure 2 - Military UGV for explosive diSpoSal..........cccooeeeiviveiiiiiiiiieeeceeeeiiicie e eeeeeeanns 17
Figure 3 - Self-driVINg CArcooiiiiiiiiiiii e 17

Figure 4 - Italian Selex ES Falco used by several military for reconnaissance and

SUIVEIANCE..... ettt e e e e e e e e e e e e e s e r e e e e e e e naa 18
Figure 5 - Drone used in agriCUITUIEccooieiiiiiiiic e e e e e e 18
Figure 6 - Unmanned naval DOAt ... 18
Figure 7 - ROS Topics and MasterNode CommuniCatioN.............ccoevvveviiieeiiiiieeeeeeeeeennn. 20
Figure 8 - Topics and Nodes Pub/Sub ServiCe..........c.ooooviiiiiiiiiiiiiie e 21
FIGUIE 9 - MASEEr NOUE.......uuiiii e e e e e e e e e et e e e e e e eeeeanes 21
Figure 10 - TUrtlebBOt UGVcoooiiiiiiiiiiiieeeeeeee e 22
Figure 11 - Artificial Neural Network StruCturecoovvvviiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeee 25
Figure 12 - Convolutional Neural Networks ... 26
Figure 13 - VGG arChit@CtUre.........cooeviiiii i e e e e e eaaaes 27
Figure 14 - Activation maps of @an iMageooovviiiiiiiii i 28
Figure 15 - Convolutional [ayer...........coooiiiiiiiieeeeeee e 29
Figure 16 - Mindstorm structure for camera (Ieft)cccccovviiiiiiie 34
Figure 17 - Image pre-processing fUNCLONccouiiiiiiiiiii e 35
Figure 18 - Arrow markings pre-proCeSSING.......uuiiiiiiriiieeeiiiieeee e e e e e e e e e e e eana s 35
Figure 19 - Training @ VGG MOAEL.........ccooiiiiiiiiiiiiiiieeeeeeeeeeeeeee 36
Figure 20 - Navigation code init, Stop, fOrwardcccccccviiiiiiiiiiiiiiieeeeeeeeee 36
Figure 21 — Navigation COUE FOtae.........cuuuiiieiiiie e 37
Figure 22 - Navigation code DaCKWardsScouuiiiiiiiiiiiiieieiiiii e eeeeees 37
Figure 23 - Odometry fUNCHIONooeiiiiii e e e e e e e e e e eeeenes 38
Figure 24 - Robot's coordinates after eaCh move ..., 38

Figure 25 - Client Implementationcooo i 38

Figure 26 - Prediction of model from server Sidecccccvvviiiiiiiiiiiiiiiiiiiiiieeeeeeeeeee 39

Figure 27 - accuracy (left) and loss (right) estimation of VGG-16 model and, batch
SIZB T3 e 40

Figure 28 - accuracy (left) and loss (right) estimation of VGG-19 model....................... 40

Figure 29 - accuracy (left) and loss (right) estimation of VGG-16 model and, epochs=30

Figure 31 - Accuracy (left) and loss (right) estimation of VGG-16 model and, epochs=25
AN DAICN SIZE = 32 ...ttt naane 42

Figure 32 - Accuracy (left) and loss (right) estimation of VGG-16 model and, epochs=25
AN DAICN SIZE= 32 .. 42

Figure 33 - Accuracy (left) and loss (right) estimation of VGG-16 model and, epochs=25
AN DAICN SIZET 32 ...t nnannne 43

Figure 34 - Accuracy (left) and loss (right) estimation of VGG-16 model and, epochs=25
AN DAICN SIZET32 ... 43

Figure 35 - Accuracy (left) and loss (right) estimation of VGG-16 model and, epochs=25
AN DALCN SIZET32 ...t nnnnnne 44

Figure 36 - Accuracy (left) and loss (right) estimation of VGG-16 model and, epochs=25
AN DALICN SIZET3B2 ... 44

Figure 37 - Accuracy (left) and loss (right) estimation of VGG-16 model and, epochs=25
aNd DALCN SIZET32 ... 44

Figure 38 - Accuracy (left) and loss (right) estimation of VGG-16 model and, epochs=25
AN DAICN SIZET32 ... 45

Figure 39 - Accuracy (left) and loss (right) estimation of VGG-19 model and, epochs=25
aNd DALCN SIZET32 ... 45

Figure 40 - Accuracy (left) and loss (right) estimation of VGG-19 model and, epochs=25
AN DALCN SIZET3B2 ... e ———— 46

Figure 41 - Accuracy (left) and loss (right) estimation of VGG-19 model and, epochs=25
ANd DALCH SIZET32 ... 46

Figure 42 - Accuracy (left) and loss (right) estimation of VGG-19 model and, epochs=25
AN DALCN SIZET32 ... ——— 46

Figure 43 - Accuracy (left) and loss (right) estimation of VGG-19 model and, epochs=25
AN DALICN SIZET32 ... 47

Figure 44 - Accuracy (left) and loss (right) estimation of VGG-19 model and, epochs=25
AaNd DALCN SIZET32 ... ———— 47

Figure 45 - Accuracy (left) and loss (right) estimation of VGG-19 model and, epochs=25
AN DALCN SIZET32 ... 47

Figure 46 - Accuracy (left) and loss (right) estimation of VGG-19 model and, epochs=25

AN DALCN SIZET32 ... e e e 48
FIQUIE 47 — Map’s tOP VIEWoi et e e e e e e e e e e eeeanes 49
Figure 48 — Path in SPACE.........cooiiiiiiiii 50
Figure 49 — EXeCUtiNg the SEIVEN.........cooiiiiiiiiiiiieeeeeeee e 50
Figure 50 — Server messages about classification results..............ccccevvvviiiiiiieeeneeeenns 51
Figure 51 — Received iIMages DY SEIVETccoooviiiiiiii e 52
Figure 52 — Images after pre-proCeSSINGcuuiiiiiiiiiiiiiiiiiiiieeeeeee ettt 53
Figure 53 — Robot’s trajectory in space, classification model trained with Adam........... 54
Figure 54 — Received images frOmM SEIVENuuuiiiii i 55
Figure 55 — Images after pre-proCeSSINGccovvvuuuiiiiiie e e e e eeaaans 56

Figure 56 - Robot’s trajectory in space, classification model trained with Adagrad 57

Real-Time Navigation of Unmanned Vehicle based on Neural Networks Classification of Arrow Markings

1. INTRODUCTION

In recent years, the immense development and use of unmanned vehicles seems to
overwhelm the technological community. Unmanned vehicles are used more and more
in many applications because of their rapid and cost-effective deployment. They can be
used not only for reconnaissance, but also as communication platforms. Compared with
satellite or sensor platform, an unmanned vehicle has simple system construction, high
speed and low lag communication capability. As an auxiliary infrastructure, it provides
reliable wireless links for remote users to realize safe and reliable transmission of
information.

For all these reasons, the autonomous navigation of unmanned vehicles is a main
challenge due to the complexity and the dynamic nature of the environment around as
the interaction between themselves, persons or any unannounced change in the area.
For instance, a vehicle should navigate itself on the road following a specific path
marked by arrow markings, which are numerous, indicating a set of rules. The
autonomous navigation can be enhanced by the use of machine learning and more
specifically the use of Convolutional Neural Network (CNNs). A CNN is a deep learning
algorithm which can take in an input image, assign importance (learnable weights and
biases) to various aspects/objects in the image and be able to differentiate one from the
other. The architecture of a CNN is analogous to that of the connectivity pattern of
Neurons in the human brain; individual neurons respond to stimuli only in a restricted
region of the visual field known as the receptive field. A collection of such fields overlap
to cover the entire visual area.

This research proposes a methodology that uses CNN techniques to detect arrow
markings in a path that show directions captured by a raspberry-pi camera and to
classify these arrows accordingly in order to follow a specific trajectory. A pre-
processing function was implemented in CNN to enhance the classification of the
images captured in the arrow markings classes. A popular image recognition
architecture for CNNs were deployed which is named as Visual Geometry Group
(VGG). VGG is the basis of deep ground-breaking object recognition models with
multiple layers. Developed as a deep neural network, the VGG also surpasses
baselines on many tasks and datasets beyond ImageNet. The “deep” refers to the
number of layers with VGG-16 or VGG-19 consisting of 16 and 19 convolutional layers.
A series of experiments were conducted, in which i) a benchmarking of VGG-16 and
VGG-19 models with different hyperparameters and ii) a real-time navigation with an
unmanned vehicle were performed. The real-time experiments were executed with a
Turtlebot2 running ROS with a raspberry pi camera installed. In Section 2 a Robotic
Operating System (ROS) used for the controlled UGV is presented. In Section 3 Neural
Networks and Convolutional Neural Networks are described. In Section 4 related work
of this thesis is discussed. In Section 5 the problem, the challenges and our solution are
presented and in Section 6 we present and explain the experiments conducted and the
conclusions are following in Section 7.

S. Reppa 15

Real-Time Navigation of Unmanned Vehicle based on Neural Networks Classification of Arrow Markings

2. UNMANNED VEHICLES

2.1 Definition of Unmanned Vehicles

An unmanned vehicle is the vehicle that operates without a human presence on board.
They can be either remote-controlled guided vehicles or autonomously guided vehicles.
An unmanned system is equipped with the required data processing units, sensors,
automatic control, and communications systems to carry out missions without the need
for human intervention. Unmanned aircraft, ground robots, undersea explorers, and
other unusual structures are examples of unmanned systems [1].

The autonomous vehicles can sense their surroundings using sensors or maps that
depict the area. The usage of a map, on the other hand, demands prior knowledge of
the environment, suggesting that the unmanned vehicle or other device must first
explore the world and produce the necessary map before operating autonomously in
this environment. Unmanned vehicles, on the other hand, may explore their
surroundings using a range of sensors such as cameras, lidar, and temperature
sensors. Many scientists have been working on developing new algorithms or
optimizing current ones for unmanned vehicles to operate autonomously and examine
their surroundings with sensors.

Unmanned vehicles, depending on the environment they are being navigated in, include
UAVs, or unmanned aircraft aerial vehicles, also known as drones, UGVs, or unmanned
ground vehicles, and USVs, or unmanned surface vehicles, which operate on the
water's surface and are also known as surface drones.

2.1.2Unmanned Ground Vehicles

Unmanned ground vehicles (UGVSs) are vehicles that function without the presence of a
human onboard. The vehicle's operation can be managed via teleoperation by human
actors or it can be completely autonomous thanks to specially implemented algorithms.
UGVs can be utilized in a variety of situations where the presence of human operator
would be inconvenient, hazardous, or even impossible [1].

Today's UGVs come in a wide variety. They are used for military purposes, space,
civilian or commercial applications. Surveillance, reconnaissance, and target acquisition
are examples of military applications. Agriculture, mining, and construction constitute
the industrial purposes.

Figure 1 - Autonomous UGV in public transportation

S. Reppa 16

Real-Time Navigation of Unmanned Vehicle based on Neural Networks Classification of Arrow Markings

Figure 2 - Military UGV for explosive disposal

Unmanned cars that work autonomously and can be used for transportation as a regular
car are now being researched by scientists all around the world. It all started in 1921,
when the goal was to build a remotely controlled car, but in recent years, the goal has
shifted to creating a self-driving car that will be used for human transportation. The
safety of passengers on board a self-driving automobile is critical. As a result, the
construction of the algorithm, particularly for navigation, must be properly designed.
Sensors such as LIDAR, GPS, and cameras are required for these algorithms.

Figure 3 - Self-driving car

An unmanned aerial vehicle (UAV), also known as a drone, operates without a human
pilot, crew, or passengers. A UAV can be fully autonomous, or controlled from a human
operator usually on the ground or in another vehicle [1]. UAVs [2] are becoming
increasingly popular in a variety of applications, civilian, commercial, military, and
aerospace applications. Civilian applications include real-time monitoring, traffic
monitoring, wireless coverage, remote sensing, search and rescue, cargo delivery,
security and surveillance, precision agriculture, civil infrastructure inspection, or even
aerial photography, while military applications include intelligence or reconnaissance
missions, demining of an area.

S. Reppa 17

Real-Time Navigation of Unmanned Vehicle based on Neural Networks Classification of Arrow Markings

Figure 5 - Drone used in agriculture

2.1.2Unmanned Surface Vehicle

Unmanned surface vehicles (USVs) are boats that operate autonomously without
humans on board. In most cases USVs are controlled remotely by a human actor that
usually is on the ground. USVs can be used in military missions, in oceanography and
seaweed farming. Furthermore, USVs are the future of cargo shipment.

Figure 6 - Unmanned naval boat

2.2 Robot Operating System

With technology progressing so fast, robotics has become a more and more essential
part of people’s lives. Robots can be used in many situations for many purposes, as in

S. Reppa 18

Real-Time Navigation of Unmanned Vehicle based on Neural Networks Classification of Arrow Markings

dangerous environments (including inspection of radioactive materials, bomb detection,
and deactivation), industry, or where humans cannot survive like in space or
underwater). Aside from this progress, robots still present significant challenges for
software developers, such as code reusability and computational distribution. A
proposed solution to these challenges is a software platform called Robot Operating
System (ROS).

2.2.1 Definition of ROS

ROS is an open-source, meta-operating system for robots. As it is a meta-operating
system, it does not replace, but it runs alongside a traditional operating system. It
provides a set of software libraries and tools, that allow someone to obtain, write, run
code across multiple different terminals, in order for a robotics application to be built.
Also, it provides services as of those of an operating system, such as message
exchanging between processes, low-level device control, hardware abstraction,
package management.

Its open source feature allows the reusability of code by other users and requires
another open source operating system underlying. Currently only runs on Unix-based
platforms like Mac — OS and Linux. Other advantages are that it supports peer — to —
peer communication through a reliable mechanism that enables communication
between different components and that its simulators improve time and quality of code
testing.

In addition to the above, there are more reasons why it is so popular. ROS is very light,
it gives you the opportunity to control multiple robots simultaneously while they
communicate with each other, it has great simulation tools, such as RViz and Gazebo. It
provides many libraries that allow you to use several languages, other than C++ and
Python that are the most popular and the chance for nodes of different languages to be
able to communicate.

ROS comes in versions which are called distributions. Each one was named using
adjectives that start with successive letters of the alphabet.

2.2.2R0OS packages

Software in ROS is organized into packages. A package is a directory that could contain
a collection of ROS nodes, a ROS - independent library, a dataset, configuration files, a
third-party piece of software, external libraries and a manifest which is an xml
configuration file called “package.xml”. The goal packages aim to achieve is to provide a
useful functionality so that software can be easily reused and maintained.

2.2.3RO0OS stack

Stacks are the primary mechanism in ROS for distributing software. A stack is a
collection of packages. Practically it is a directory, that among others, contains a
“stack.xml” file. While the goal of packages is the reusabillity of code by storing it into
collections, the goal of stacks is the simplicity of code sharing. It can comprise
packages that all provide a certain functionality, such as a navigation stack or a
manipulation stack.

Unlike an ordinary software library, these stacks can also provide this functionality via
ROS topics and services or add functionalities, during execution time. A stack can also
declare dependency another stack or more. Every stack has a manifest, a file with
essential information about the stack and dependencies to other stacks.

S. Reppa 19

Real-Time Navigation of Unmanned Vehicle based on Neural Networks Classification of Arrow Markings

2.2.4R0OS catkin

This is the ROS build system. It is a set of tools, used to create executable programs,
interfaces, scripts and libraries so that they can be reused and maintained.

2.2.5R0S nodes

In ROS, a node is an instance of an executable. It may represent a sensor, wheel
motor, processing or monitoring algorithm, etc. Every node that starts running declares
itself to the Master. All nodes are combined into a graph and their communication is
mostly based on topics. A robotic system usually includes many nodes. Nodes also
have a node type, that simplifies the process of referring to a node executable on the
filesystem. These node types are package resource names with the name of the node's
package and the name of the node executable file.

The use of nodes in ROS is very beneficial to the overall system, as code’s complexity
has reduced in comparison to monolithic systems. Details about implementation are
hidden better as the nodes disclose less information to the rest of the graph and
alternate implementations, even in other programming language.

A ROS node is written with the use of a ROS client library, such as roscpp or rospy.

2.2.6 ROS topics

Topics are named buses that nodes use in order to communicate with each other. This
communication is achieved through messages. A node that is interested in a specific
kind of data subscribes to the relevant topic and consumes data, published by other
nodes over the same topic. Therefore, nodes exchanging data over a topic don’t know
whom they are communicating with. There can be multiple publishers and subscribers
to a topic as long as they are named differently.

Topics are intended for unidirectional, streaming communication. Each topic has a
specific type, which means that a specific type of message should be used for node
communication through this topic.

ROS
Master Node

Publishing Callback

Figure 7 - ROS Topics and MasterNode Communication

2.2.7R0OS services

Services are another kind of communication for nodes. A service is a pair of messages,
a request and a reply. A node offers a service under a string name and a “client” node
calls the service by sending the request message and waiting for the first one to reply.
They are defined using srv files.

Like topics, services also have types. The name of the type that is the package
resources the same with the name of the .srv file.

S. Reppa 20

http://wiki.ros.org/Names
http://wiki.ros.org/Nodes

Real-Time Navigation of Unmanned Vehicle based on Neural Networks Classification of Arrow Markings

S — S —
e e
S — S —
Publicati
Node Hhicaton o Node
Subscription
e e
S — - S —
Topic

T Publication T

e e

Figure 8 - Topics and Nodes Pub/Sub Service

2.2.8 Master nodes

The Master is a node which declares and registers all other nodes, both very essential
for ROS’s use. It is basically a primary node, that allows all other nodes to locate each
other, communicate and exchange data. Master node is activated by using the
command “roscore” before any other code execution and it has to be running until the
end of every execution and action taking place.

Program #1

A

ROS

“Master Node Program #2

Program #4

h J

Program #3

Figure 9 - Master Node

2.2.9R0OS messages

As mentioned before, ROS nodes communicate with each other. That happens via ROS
messages and through a topic. A publishing node constructs a message, publishes it on
to atopic and other nodes subscribing to this topic can receive this message. Nodes can
also exchange a request and response message through a service call.

S. Reppa 21

Real-Time Navigation of Unmanned Vehicle based on Neural Networks Classification of Arrow Markings

A message is a simple data structure. A .msg file is a simple text file stored in the msg
subdirectory of a package, that specifies the data structure of a message. Standard
types such as integer, floating point etc. are supported and so are arrays of those types.
A user can also create their own type of message by declaring a .msg file.

2.2.10Launch files

ROS provides a tool for simultaneously launching multiple ROS nodes. This is achieved
through launch files, xml files using a .launch extension. Roslaunch can execute one or
more of these files that specify details about paraneters, nodes needed etc.

2.3 Sensors

Sensors are required for robot systems to operate as expected in any environment and
accomplish specific tasks. A LIDAR or a Kinect camera, for example, would be regarded
vital in a robot's navigation system. In this thesis a raspberry pi camera is used for
picture capturing, in order for the robot to follow a path.

2.4 Turtlebot

TurtleBot [turtle] is a low-cost, mobile, programmable robot with open-source software,
was created by Melonee Wise and Tully Foote at Willow Garage in November 2010. It
consists of a mobile base, multiple sensors, but does not have a processor. So, it needs
an external unit which runs ROS such as a laptop or a rasberry pi.

It is very popular amongst software developers. TurtleBot can do real-time obstacle
avoidance and autonomous navigation using the conventional TurtleBot components. It
can construct a map using standard Simultaneous localization and mapping (SLAM)
techniques and can be operated remotely using a laptop or an android-based
smartphone.

T
|

Figure 10 - Turtlebot UGV

2.5 Simulators

A well designed simulator is an essential tool for every developer who is involved in the
field of robotics. It enables the user to test their algorithms, design robots, projects,
environments, perform testing, debugging, work on their innovative ideas rapidly and
efficiently, in general. For this thesis Gazebo and RViz where used.

Gazebo offers the ability to simulate populations of robots in complex indoor and
outdoor environments. It is a robust physics engine, high-quality graphics, and
convenient programmatic and graphical interfaces. Best of all, Gazebo is free with a
vibrant community.

Rviz is a three-dimension visualization tool for ROS applications. It provides a view of
your robot model, capture sensor information from robot sensors and replay captured

S. Reppa 22

Real-Time Navigation of Unmanned Vehicle based on Neural Networks Classification of Arrow Markings

data. It can display data from sensors such as a camera, from 3D and 2D devices
including pictures and point clouds. Rviz simulator is available by using the command
‘roslaunch rviz rviz”.

S. Reppa 23

Real-Time Navigation of Unmanned Vehicle based on Neural Networks Classification of Arrow Markings

3. IMAGE PROCESSING TECHNIQUES AND NEURAL NETWORKS

3.1 Image Processing and Unmanned Vehicles

Sensors fitted on autonomous vehicles allow them to interact with their surroundings.
Autonomous vehicles are equipped with a variety of sensors such as light detection and
ranging (LIDAR), infrared, sonar, inertial measurement units, and so on, as well as a
communication subsystem to improve sensing accuracy. Visual sensors are typically
employed to gather images, while computer vision, signal processing, machine learning,
and other techniques are utilized to acquire, process, and extract data in order to model
visual scenes for navigation, 2D and 3D scene reconstruction, object and obstacle
detection or avoidance, tracking, recognition, control, and inference. The control
subsystem analyzes sensory data to determine the best navigation path to its goal and
an action plan for completing tasks [14].

A few of the challenges autonomous vehicles come up against are blind spots, unknown
environments, non-line-of-sight scenarios, poor sensor performance due to algorithmic
complexity, sensor errors, limited energy, limited computational resources, human-—
machine communications, size, and weight constraints, weather conditions. Several
algorithmic approaches have been implemented to respond to these challenges,
including sensor design, processing, control, and navigation [14].

In reference of image processing, there are multiple techniques such as principal or
independent component analysis, point feature matching, linear filtering, neural network
and so on.

3.2 Artificial Neural Networks

Neural Networks, are a subset of machine learning and are at the heart of deep learning
algorithms [3]. They are also known as Atrtificial Neural Networks (ANNs) or Simulated
Neural Networks (SNNs). Their goal is to recognize underlying relationships in a data
set by imitating the behavior of a human brain and its neurons, thus their name and
structure.

Artificial neural networks consist of node layers, an input layer, an output layer, and one
or more hidden layers in between. In an ANN, each node of layer connects with every
node of the next layer. Each node, or artificial neuron, is connected to another node and
has an associated weight and threshold value. If a node’s output exceeds the specified
threshold, that node is activated, and data is sent to the next layer of the network.
Otherwise, no data is sent to the network’s next layer. The basic structure of an ANN is
shown in Figure 11.

S. Reppa 24

Real-Time Navigation of Unmanned Vehicle based on Neural Networks Classification of Arrow Markings

Input Hidden Output
Layer Layer Layer

Input 1
—_—

Input 2
—

Input 3 Output

Input 4

Input 5

Figure 11 - Artificial Neural Network structure

In image processing tasks, supervised and unsupervised learning are the two main
learning approaches, supervised and unsupervised learning [4].

Learning with pre-labeled inputs that serve as targets is referred to as supervised
learning. There will be a set of input values (vectors) and one or more related defined
output values for each training example. The purpose of this type of training is to lower
the overall classification error of the model by correctly calculating the output value of
each training example.

On the other hand, unsupervised learning is characterized by the absence of labels in
the training set. The criterion for success is the ability of the network to lower or
enhance an associated cost function. It's worth mentioning, though, that most image-
based pattern recognition tasks rely on supervised learning for classification.

There are different categories of neural networks, used for different purposes. The most
common types are Multi-Layer Perceptrons (MLPs), Convolutional Neural Networks
(CNNs) and Recurrent Neural Networks (RNNs). For the purpose of this thesis, a CNN
has been used.

3.3 Convolutional Neural Networks

Convolutional Neural Networks (CNNs or ConvNets) were already used at the end of
90’s but have become extremely popular in our days because of the impressive impact
they have had on the area of computer vision [5]. A CNN differentiates from an ANN in
two ways.

CNNs are most commonly applied on analyzing and identifying visual imagery such as
digital images or photographs [4]. This allows us to encode certain features in the
architecture to recognize specific elements in the images. For example, a face consists
of eyes, ears, a nose, a mouth. If we are trying to recognize a face, we look for those
elements. Sometimes an element might be missing, such as an ear that is hidden
behind the hair, but we still classify it as a face considering the rest of the features.
Although at first, we need to know how these features look like. We also need to know
those features’ relative size, where they should be placed. For all those operations a
CNN is needed, because each of its layers learns a different level of abstraction [5].

In addition, as the word “convolutional” indicates, the mathematical operation of
convolution is employed in at least one of its layers instead of the general matrix
multiplication [4]. The main purpose of a convolutional layer is to detect features such

S. Reppa 25

Real-Time Navigation of Unmanned Vehicle based on Neural Networks Classification of Arrow Markings

as edges, lines, color drops, etc. This means that once the network has learned a
characteristic at a specific point in an image, it can detect it again in any other part of it.
On the other hand, a densely connected neural network doesn’t have this property and
has to learn the characteristic again if it appears in a new location of the image. So, this
IS why convolution is a very interesting property in this case of networks [3].

In conclusion, CNNs are very good feature extractors when a dataset consists of
images. This is, why in this thesis CNNs were chosen to be used.

3.4 CNN architecture

A CNN consists of three types of layers. Convolutional layers, pooling layers and fully
connected layers. Despite the fact that a CNN just requires a few layers, there is no
one-size-fits-all approach to creating a CNN architecture. That being said, throwing a
few layers together and expecting it to work would be unrealistic. CNNs, like other types
of ANNSs, tend to follow a common architecture, as proven by reading related literature.
Figure 12 illustrates a common architecture in which convolutional layers are stacked,
accompanied by pooling layers and both being repeated before being fed forward to
fully - connected layers [4].

prediclad
class

preraling canvlub=na g ullyr=-garnaGhes]

convodutional
layar

Figure 12 - Convolutional Neural Networks

As shown in Figure 13, another frequent CNN architecture is to stack two convolutional
layers before a pooling layer. This is highly recommended since stacking many
convolutional layers enables for the selection of more complex properties of the input
vector. In this thesis is used a model that stacks at least two convolutional layers before
a pooling layer, named VGG.

S. Reppa 26

Real-Time Navigation of Unmanned Vehicle based on Neural Networks Classification of Arrow Markings

Softmax

L e pr— p— g—
) e d e

| input | | input |
VGG16 VGG19

Figure 13 - VGG architecture

The abbreviation VGG stands for Visual Geometry Group. It is a typical deep
Convolutional Neural Network (CNN) design with numerous layers. The term "deep"
describes the quantity of layers, with VGG-16 or VGG-19 having 16 or 19 convolutional
layers, respectively. Innovative object identification models are built using the VGG
architecture. It is also remains one of the most often used image recognition
architectures today.

Small convolutional filters of size 3 x 3 are used to build the VGG network and its input
is of size 224 x 222. Thirteen convolutional layers and three fully connected layers
constitute the VGG-16, while vggl9 has three more convolutional layers [6]. 1 x 1
convolution filters are used to transform the input linearly. The next part is a ReLU unit,
shortening training time. Rectified linear unit activation function, or ReLU, is a piecewise
linear function that, if the input is positive, outputs the input; otherwise, the output is
zero. In order to maintain the spatial resolution after convolution, the convolution stride
is kept at 1 pixel. All the hidden layers in the VGG network, also, use ReLU. There are
three fully connected layers at the end the VGGNet. The first two levels each have 4096
channels, while the third layer has 1000 channels with one channel for each class that it
can predict.

3.4.1Convolutional layer

The convolutional layer, as its name suggests, plays a fundamental role in a CNNs
operation. The convolution operation's goal is to extract high-level characteristics from

S. Reppa 27

Real-Time Navigation of Unmanned Vehicle based on Neural Networks Classification of Arrow Markings

the input image and compress the images into a format that is easier to process while
preserving elements that are important for obtaining a successful prediction.

Conventionally, the first convolutional layer is responsible for capturing low - level
information such as edges, color, gradient direction, and so on. By adding layers the
architecture adjusts to the high-level characteristics as well, giving a network that
understands the photos in the dataset in the same way that people do. For example, a
second layer can learn patterns composed of basic elements learned in the previous
layer [4].

Convolutional layers can also learn spatial hierarchies of patterns by retaining spatial
relationships, which is another feature of them. As mentioned before, a first
convolutional layer, can learn basic elements like edges, while a second convolutional
layer can learn patterns made out of the basic elements learnt in the prior layer. And so
on, until it is able to recognize extremely complicated patterns. Convolutional neural
networks are able to learn very complex and abstract visual concepts as a result of this

[3].

The convolutional layer is defined by a few parameters that focus around the use of
learnable kernels. The spatial dimensionality of these kernels is usually low, yet they
spread along the entire depth of the input. When data is passed through a convolutional
layer, the layer convolves each filter across the input's spatial dimensionality to create a
2D activation map (Figure 14) [4].

RELU RELU ELU RELU RELU RELU
CONV CONVl CONV CONVl CONV[CONVI

4
=
=~
=
=
.
p—
=
e

Figure 14 - Activation maps of an image

The scalar product is calculated for each value in that kernel as we move through the
input. In a convolutional layer depicted in Figure 15, an input tensor and a kernel tensor
are combined to produce an output tensor through a cross-correlation operation [8]. The
network will then learn kernels that will 'fire' when they observe a specific feature at a
specified spatial position in the input. These are referred to as activations [4].

S. Reppa 28

Real-Time Navigation of Unmanned Vehicle based on Neural Networks Classification of Arrow Markings

Input Kernel Output
0 1 2
3 | 4 | 5 * =
s []-
6 7 8

Figure 15 - Convolutional layer

The colored segments are the input and kernel tensor elements used for the output
computation as well as the first output element which comes from the following
calculations:

Ox0+1x1+3x2+4x3=19

This sum is usually weighted. The output size is slightly less than the input size along
each axis. We can only compute the cross-correlation for locations where the kernel fits
entirely within the image because the kernel has a width and height higher than one. If
the input tensor's dimensions are input_height and input _width and the kernel’s
dimensions are kernel_height and kernel_width, the output size is determined [8] by:

(input_height — kernel_height + 1) x (input_width — kernel_width + 1)

Every kernel will have its own activation map, which will be stacked along the depth
dimension to generate the convolutional layer's whole output volume.

As mentioned before ANN’s layers are fully connected with each other as shown in
Figure 11. In CNN’s, on the other hand, every neuron in a convolutional layer is only
connected to a small fraction of the input volume in order to not result in a model too
large to train efficiently. This fraction’s dimensionality is referred to as the receptive size
of the neuron. The depth of the input is almost always equal to the magnitude of the
connectivity through the depth.

Through the optimization of the model's output, convolutional layers can also greatly
lower the model's complexity. Three hyperparameters, the depth, the stride, and the
padding setting, are used to optimize these [4].

Size and number of filters per layer

The size of the kernel (kernel_height x kernel_width) that holds information from
spatially close pixels is usually 3x3 or 5x5. It has been observed that as the size of the
filter gets bigger, the model’s accuracy is increased and model training lasts longer.

The number of filters that tells us the number of characteristics that we want to handle is
usually 32 or 64. As more filters are added in a layer, the accuracy is increased and the
training lasts longer.

Stride

This hyperparameter indicates the number of steps in which the filter kernel moves (or
slides). Through stride we determine the depth around the spatial dimensions of the
input. If we set the stride to 1, for example, we will get a massively overlapped receptive
field with extraordinarily big activations. Setting the stride to a higher number, on the

S. Reppa 29

Real-Time Navigation of Unmanned Vehicle based on Neural Networks Classification of Arrow Markings

other hand, will lower the distance traveled and decrease the size of the information that
will be passed to the next layer [4].

Padding

The operation produces two types of results: one in which the dimensionality of the
convolved feature is lowered when compared to the input, and the other in which the
dimensionality is either increased or unchanged. This is accomplished by using Valid
Padding in the first case and Same Padding in the second.

We discover that the convolved matrix is of dimensions 5x5x1 when we augment the
5x5x1 image into a 6x6x1 image and then apply the 3x3x1 kernel over it. As a result,
the name "Same Padding” was coined. When we execute the same operation without
padding, however, we get Valid Padding, which is a matrix with the same dimensions as
the Kernel (3x3x1).

3.4.2Pooling Layer

The Pooling layer, like the Convolutional Layer, is responsible for downsizing the
Convolved Feature's spatial size. Through dimensionality reduction, the computational
power required to process the data is lowered. It's also beneficial for extracting
rotational and positional invariant dominant features, which helps to maintain the
model's training process properly [4][5].

Pooling is divided into two types: maximum pooling and average pooling. The maximum
value from the Kernel-covered area of the image is returned by Max Pooling. Average
Pooling, on the other hand, returns the average of all values from the Kernel's section of
the image.

Max Pooling serves as a noise suppressant as well. It removes all noisy activations and
conducts de-noising as well as dimensionality reduction. Average Pooling, on the other
hand, just conducts dimensionality reduction as a noise suppression approach. As a
result, Max Pooling may be said to outperform Average Pooling.

Typically, the stride and filters of the pooling layers are both set to 2 2, allowing the
layer to stretch throughout the input's spatial dimensions. Overlapping pooling can also
be used, with the stride set to 2 and the kernel size set to 3. Because of the destructive
nature of pooling, having a kernel size greater than 3 will usually result in a significant
reduction in model performance.

It's also worth noting that, in addition to max-pooling, CNN architectures may include
general-pooling. Pooling neurons in general pooling layers are capable of performing a
variety of common operations such as L1/L2-normalization and average pooling.

3.4.3Fully Connected Layer

The fully connected layer is composed of neurons that are directly linked to the neurons
in the two adjacent layers, but not to any layers in between. This is similar to how
neurons are placed in standard ANN models. (Figure 1). [4] This is usually added as the
last layer of the network and used for classification. It is a (typically) low-cost approach
of learning non-linear combinations of high-level information represented by the
convolutional layer's output.

S. Reppa 30

Real-Time Navigation of Unmanned Vehicle based on Neural Networks Classification of Arrow Markings

4. RELATED WORK

4.1 Image processing and classification using neural networks

Given that there is a dataset of images, needed for an autonomous vehicle to be
employed. The images of this dataset need to be processed and categorized. Firstly, to
gather, process, and extract information, visual sensors are used, and computer vision
algorithms, signal processing, machine learning, and other approaches are used.
Several algorithmic approaches have been implemented to address these issues,
including sensor design, processing, control, and navigation. The goal of [7] is to give
up-to-date information on the needs, algorithms, and major issues associated with the
use of machine vision-based navigation and control methods in autonomous vehicles.

Quinonez et al [8] were looking to address a simple pattern recognition problem with a
backpropagation learning neural network. Authors trained a Multi-Layered Perceptron,
instead of a CNN that is used in this thesis, using the Scaled Conjugate Gradient
algorithm, in order to detect four photos. The goal of this project was to provide a secure
way for guiding a robot from an initial location to a target position via an obstacle-free
path within a known or unknown environment while attempting to proceed with minimum
cost. The initial position and the destination/target must have been indicated by the
environment.

Authors in [9] propose an end-to-end deep learning-based approach for indoor mobile
robot localization via image classification using a small dataset, retrieved from a real
apartment setting using the MYNT EYE camera. Topological map information is
collected from the robot workspace's floor plan. The topological map's navigable region
is then extracted, and each of them is categorized as a robot workstation. In this way,
the mobile robot is able to autonomously localize and traverse throughout the
topological map. The dataset mentioned is utilized to train a CNN-based classifier
model, which is subsequently used to localize and navigate the mobile robot or even
detect potential obstructions in the robot's path. A very remarkable fact is that the
authors present an acceptable cost function to address the CNN classifier model's
limited generalization capability, which exists due to the dataset's small size. Unlike
other well-known loss functions, the suggested loss considers not only the chance of
the input data being allocated to its true class, but also the probability of the input data
being allocated to other classes. The results indicated that the proposed system is
efficient, effective, and generalizable.

4.2 Arrow marking detection and preprocessing

In order to create a dataset, the photos taken by the robot will need to be preprocessed.
That is locating and extracting the arrow markings, so that they can later be classified.

Authors in [10] present a general geometric approach using curve-based prototype
fitting. This suggests a two-step procedure which includes a preprocessing and a
recognition step. The first step seems to be an interesting approach when it comes to
extracting a marking and processing it. It consists of setting a region of interest (ROI)
that will be framing the arrow marking, extracting the connected components of it and
contouring the arrow’s outer geometric shape, and finally, performing a plausibility
check by reconstructing the local environment and reprojecting the extracted contour
pixel list on the road surface.

On the other hand, instead of extracting the arrow of the road image, the entire picture
could be processed. The research work in [11] attempts to navigate a robot using a
camera and identifying arrows. A track is made with various turns for the robot to move

S. Reppa 31

Real-Time Navigation of Unmanned Vehicle based on Neural Networks Classification of Arrow Markings

around. On every turn, a right or left arrow is provided for robot to recognize the arrow
symbol by capturing images using a wireless camera. There is an initial starting point
and the final destination point, which the robot has to reach. Unlike [10], it doesn’t
extract the arrow marking from the picture of the road, but processes the entire photo as
it is taken by the robot’s camera. This photo’s pre-processing includes converting it to a
binary image and removing noise and small objects from it.

Similar tactic is used by [8], meaning that they also used the entire image, not just the
arrow shape. Although before converting it to binary image, a median filter was applied
on the images. Also, after these two steps, there was an attempt to reduce the image
noise by removing objects smaller than 300 pixels.

Like [8] and [11], the work in [12] processes the entire image. Shojaeipour, Haris, and
Khairir presented a method to navigate a mobile robot, which decides the shortest path
for the robot to follow to reach its destination while avoiding obstacles in its path. For
that goal they used image processing techniques, such as converting the input image
from RGB to greyscale, finding the edges of objects in the image, and removing noise
from it.

Another research work, that also has a little different goal than the previous ones is
described in [13]. It presents an image-based omni-directional mobile robot guidance
system in an indoor space with installed artificial ceiling landmarks. Just like the
previous ones, this too is using image proccesing techniques in order to process the
ceiling landmarks that include color space transformation, histogram equalization, color
detection, filtering, object tracking and recording.

S. Reppa 32

Real-Time Navigation of Unmanned Vehicle based on Neural Networks Classification of Arrow Markings

5. AUTONOMOUS NAVIGATION WITH THE USE OF NEURAL
NETWORKS AND IMAGE RECOGNITION

5.1 Problem Definition

In this thesis, we aimed to navigate a robot on an unknown path by recognizing and
following arrow markings and signs. For the image recognition, a CNN was used, which
we trained with a dataset of arrow markings that we made. For dataset creation, a
Turtlebot was used along with a raspberry pi camera. An image pre-processing
technique was developed, in order to make network training and image classification
more accurate.

5.2 Challenges

5.2.1Vehicle’s computational power and communications

Real-time navigation is a project that demands multiple resources. Usually an
unmanned vehicle is equipped with a resource-constrained computer like a raspberry pi.
The vehicle’s raspberry pi used for this thesis doesn’t have a strong processing power.
Therefore, we needed a stronger device to manage and execute the pre-processing of
an image and the image prediction using a neural networks. Consequently, a server-
client model was created, where the Turtlebot behaved as a client and the other
computer had the role of the server. These two communicated via Python sockets.

5.2.2Navigation conditions

In real-time navigation, the vehicle’s surroundings matter a lot. In this case, the colour of
the ground and the lights or daylight can affect the vehicle’s navigation accuracy and
overall, the navigation’s success. The darker the color of the floor, the less we had to
modify and adjust our image pre-processing technique. As for the environment’'s
lighting, daylight and its reflection to the floor's surface could cause a big problem to the
image pre-processing, which, in turn, could cause a problem to the neural network’s
image prediction.

5.3 Dataset creation

The first step of our research is to make our own dataset, using a raspberry pi camera,
physically supported by a structure made of LEGO Mindstorms.

S. Reppa 33

Real-Time Navigation of Unmanned Vehicle based on Neural Networks Classification of Arrow Markings

: h B E
‘I \
D et
|
(o) /
N,

X

Figure 16 - Mindstorm structure for camera (left)

This structure is used to hold the camera in a certain angle towards the floor. For each
navigation class, i.e. abort, go front, go backwards, go right and go left specific signs
with arrows in paper were used. The abort class was represented by an X. Photos
(n=100 samples) for each class were captured by the raspberry camera to create the
training datasets.

Python functions were used to preprocess the images. We start by using a function that
locates the sign in an image, in order to capture the photo and then classified by our
model. This function uses area contour, binary masks, noise filters. After the sign is
located and the area is cropped, we use a python script that flips vertically / horizontally
the image, in order to augment the dataset.

5.4 Pre-Processing

As mentioned, we captured images with our raspberry camera to create a dataset. The
same camera for the vehicle’s real-time navigation was used. The dimensions of these
images were bigger than those needed by a VGG model and contain a lot of
background noise. Hence, it was needed to develop a function eliminating the
background noise in our images and reduce the size. As a result the credibility of model
training and real-time arrow classification could be increased.

To achieve this, an image pre-processing function was developed. This function aimed
to locate a white area in each image containing a black sign. The function, as shown in
Figure 17Error! Reference source not found. below, contained Gaussian noise filter,
bitwise operations between images and contouring.

S. Reppa 34

Real-Time Navigation of Unmanned Vehicle based on Neural Networks Classification of Arrow Markings

image prep

image = 5 le
image = cv2 mage, (672,672), on cv2.INTER AREA)

(thresh, cv2 est 170, 255, cv2.THRESH BINARY)

binary white, cv2.MORPH CLOSE, kernel)

55-binary white)

cv2.THRESH BINARY))

cv2.CHAIN APPROX SIMPLE)

contours]

print
cntr_indx

cntr = conto

/,W,h = cv

Figure 17 - Image pre-processing function

Therefore, this function located the signal in the photo, marked the area and cropped it,
as inFigure 18. Then, the output of this function was the main input for model training or
predicting the class of a sign in real-time navigation.

Figure 18 - Arrow markings pre-processing

5.5 Model

For this thesis, the VGG model was used. It was imported from a python library and its
last layer, a dense layer responsible for classifying up to 1000 images of different
classes, was removed. In the removed layer’s place, a fully connected layer is added, in
order to classify images of five categories. Training dataset was comprised of the
images that were captured by the raspberry camera at the beginning of our research
and then were processed by our image pre-processing function, i.e cropped and resized
in 224x224. Resizing the in 224x224 was necessary, because VGG16 and VGG19 input
dimensions are 224x224 exactly.

While training the model, a few parameters could be changed, such as the optimizer
which was used. Hence, we trained multiple different models, that vary on those
parameters.

S. Reppa 35

Real-Time Navigation of Unmanned Vehicle based on Neural Networks Classification of Arrow Markings

+ Kwdikag + Keipevo

vgg = VGG16(input shape=IMAGE SIZE + [3], weights='1 , include top=

Fl
(folders), activation=

rNeoB RPN

EarlyStopping(monitor=

ediction)

1)

el.fit(training set, validation idation set, oc 30, batch siz

Figure 19 - Training a VGG model

5.6 Navigation code

A python script was created responsible fot the navigation of Turtlebot in space. The
script was compatible with ROS libraries and topics like rospy, rospkg, geometry _msgs,
nav_msgs.

Figure 20 - Navigation code init, stop, forward

S. Reppa 36

Real-Time Navigation of Unmanned Vehicle based on Neural Networks Classification of Arrow Markings

angular_speed)

Figure 21 — Navigation code rotate

Figure 22 - Navigation code backwards

While the robot moves and follows the path, its coordinates are monitored using the
following function in Figure 23 and then noted in a .txt file of this form in Figure 24. Then
this file, is read by a Matlab script, which depicts the robot’s trajectory as in Figure 53
and Figure 56.

Real-Time Navigation of Unmanned Vehicle based on Neural Networks Classification of Arrow Markings

PositionCB(data):
oldY, oldX, rotation

oldX = data.pose.pose.position.x
oldY = data.pose.pose.position.y
rotation = data.pose.pose.orientation

Figure 23 - Odometry function

route_adagrad.txt

Figure 24 - Robot's coordinates after each move

5.7 Socket Communication

Turtlebot and server communicated via Python sockets using the python library
“socket”. Only one socket was used for this communication. First, the client captured an
image with the raspberry camera and sent it to the server through the socket.

i i 2 .format (counter=counter)
ing image)

e,
ad (BUFFER SIZE)

data)
read (BUFFER SIZE)

BUFFER SIZE)

Figure 25 - Client implementation

The server received this image, preprocessed it, classified it using a VGG model and
sent an answer to the client about the classification, through the same socket.

S. Reppa 38

Real-Time Navigation of Unmanned Vehicle based on Neural Networks Classification of Arrow Markings

y pred=model.predict(np.e dims(cropped image, axis=0
y pred=np.argmax(y pred,a

print(
time.sleep(5)

")

Figure 26 - Prediction of model from server side

Then, the client received the answer about which class the arrow belongs to and moved
accordingly. This process was repeated until an “abort” sign was detected and the
socket closed.

S. Reppa 39

Real-Time Navigation of Unmanned Vehicle based on Neural Networks Classification of Arrow Markings

6. EXPERIMENTS

For our research, we started by conducting experiments involving our neural networks.
Based on these results, the parameters of a neural network were fine tuned that would
better fit our purpose, which was for the robot to follow an unknown path of arrows. We
further studied the behavior of these parameters and two neural networks with different
parameters were trained and compared regarding their performance while the robot was
following a path.

6.1 Experiments on CNN

For experimenting and training with our neural network, Google Colab was used. We
considered Python Notebooks to be very useful for this purpose, along with Colab’s
GPU. The experiments were conducted using the dataset we made on both VGG16 and
VGG19 models.

6.1.1Epochs

Experiments were conducted concerning the model’s behaviour when we trained it with
different number of epochs, starting with ten (10) epochs and adding 10 on each
training, until we reached one hundred (100) epochs. For the purpose of this
experiment, a batch size was set to 32, loss function is Categorical Crossentropy and
Adam is used as optimizer.

VGG16 VGG16
Training and Validation accuracy Training and Validation loss

1000 -
—&— Taining loss
0999 0.0150 4 —e~ Validation loss

0.998 0.0125

0997 0.0100

9
0996 2 00075

Accuracy

0995 0.0050

0994

- 0.0025
—8— Taining accuracy

0993 S
—e— Validation accuracy 0.0000

0 40 &0 &0 100 20 a0 80 8 100
MNumber of Epochs Number of Epochs

Figure 27 - accuracy (left) and loss (right) estimation of VGG-16 model and, batch size=32

VG619 . V6619
Training and Validation accuracy Training and Validation loss

1000 & & & & & & & & —8— Taining loss
00150 —&— Validation loss

0999

00125
0938

0997 00100

LOSS

0996 0.0075

Accuracy

0995 0.0050
0.934 0.0025
—&— Taining accuracy
0993 1 g~ validation ACCUracy 0.0000
0 0 &0 B0 100 0 40 &0 &0 100
Number of Epochs Number of Epochs

Figure 28 - accuracy (left) and loss (right) estimation of VGG-19 model

In all graphs, a peak was spotted, which was created from early stopping in comparison
to a training of a model with 60 epochs. In loss graphs of Figure 27 and Figure 28 as it
is shown that the loss decreased at first, while number of epochs was increased. That is

S. Reppa 40

Real-Time Navigation of Unmanned Vehicle based on Neural Networks Classification of Arrow Markings

expected because the more the epochs, the less the loss is. Also, due to the fact that
we have a small dataset, the loss can easily reach the value of zero, while accuracy can
reach the value of one. Therefore, it was decided that the models that will be used for
navigation, will be trained for 25 epochs.

6.1.2Batch size

In the following figures we conducted experiments by changing the batch size while the
rest parameters where epochs=30, loss function= “Categorical Crossentropy” and
optimizer= Adam.

VGG16
. N VGG16
Training and Validation accuracy

10000 1 e—e * - 0012

Training and Validation loss

—&— Taining loss

—&— Validation loss

0.9995 0.010

0.9990 0.008

0.9985 0.006

FoLuraLy
Loss

0.9980 0.004

0.9975 0.002

—e— Taining accuracy
—e— Validation accuracy

2.000 i - .
20 0 &0 &0 100 120 P 0 &0 80 100 120
Batch Size Batch Size

0.9370

Figure 29 - accuracy (left) and loss (right) estimation of VGG-16 model and, epochs=30

VGG19 VGG19
Training and Validation accuracy Training and Validatien loss
—8— Taining accuracy —&— Taining loss
104 —&— Validation accuracy ¢.0020 —&— \alidation loss
102 0.0015
g
w
gL e ¢ ® 8 0.0010
k-
0.98
0.0005
0.96
0.0000 L & o
20 1 &0 a0 100 120 20 1 &0 a0 100 120
Batch Size Batch Size

Figure 30 - accuracy (left) and loss (right) estimation of VGG-19 model and, epochs=30

For VGG16 as shown in Figure 29 we can spot an expected behavior. As batch size
increased, accuracy slightly decreased and loss increased. Due to the fact that batch
size becomed bigger, the training in a certain number of epochs would be less accurate.
As for VGG19 in Figure 30, accuracy had the value of one, because of our small
dataset. Loss tends to decreased, but if we noticed better, the decrement was very
small. It was decided that for the models used for navigation, batch size would be set to
32 while they were trained.

6.1.3Loss function and Optimizer

For our research, we also experimented with loss functions and optimizers. As loss
functions we only used two:

e Categorical Crossentropy and

e Mean Squared Error.
Categorical crossentropy is used in multi-class classification tasks, where an example
can only belong to one out of many alternative categories, and the model is expected to

S. Reppa 41

Real-Time Navigation of Unmanned Vehicle based on Neural Networks Classification of Arrow Markings

decide which one, while Mean Squared Error loss is calculated as the average of the
squared differences between the predicted and actual values.

As optimizers we used four:
e Adagrad,
e Adam,
e RMSprop() and
e Stochastic Gradient Descent.

All possible combinations were made. The Gradient Descent algorithm calculates the
gradient for the entire dataset and updates the values in the direction that is opposite to
the gradients until a local minima is discovered. As long as the Gradient Descent
generates large updates for uncommon parameters and tiny updates for frequent
parameters, Adagrad is better suitable for a sparse data set. Adaptive Moment
Estimation is known as Adam. This one too, determines numerous learning rates. Adam
is quicker, more effective, and works well in practice. The basic idea behind RMSprop,
which stands for Root Mean Square Propagation, is to keep a moving (discounted)
average of the gradients' square and divide the gradient by the average's root.

6.1.3.1 Loss function = Categorical Crossentropy and VGG16

The following figures concern VGG16 models trained with Categorical Crossentropy as
loss function.

Categorical Crossentropy and Adam

VGG16
Accuracy with Categorical Crossentropy and Adam

VGG16
Loss with Categorical Crossentropy and Adam

Looo —— Taining loss

0875 05 Validation loss

0.950

0925

Accuracy

0.900 a
3
0875 02

0.850

—— Taining accuracy
Validation accuracy

0.800 0.0
o 5 10 15 20 5

Number of Epochs

0.825

o 5 10 15 20 25
Number of Epochs

Figure 31 - Accuracy (left) and loss (right) estimation of VGG-16 model and, epochs=25 and batch
Size =32

Categorical Crossentropy and Adagrad

VGG16
Accuracy with Categorical Crossentropy and Adagrad

VGG16
Loss with Categorical Crossentropy and Adagrad

o - —— Taining loss
0.95 /'ﬂfﬂ 10 Validation loss
0oo{ f 08

-

g 085 .

5 o 06

5 080 3

—— Taining accuracy
Validation accuracy

10 15 20
Number of Epochs

25

0.4

02

10 15 20
Number of Epochs

Figure 32 - Accuracy (left) and loss (right) estimation of VGG-16 model and, epochs=25 and batch

S. Reppa

size= 32

42

Real-Time Navigation of Unmanned Vehicle based on Neural Networks Classification of Arrow Markings

Categorical Crossentropy and RMSprop

VGG16 VGG16
Accuracy with Categorical Crossentropy and RMSprop Loss with Categorical Crossentropy and RMSprop

100 ,—_._//\"‘/j\/ — _ —— Taining loss

/ 10 Validation loss
0as

0.8

0.90 06

Accuracy
Loss

085 04
0.80 0.2
—— Taining accuracy _‘\
Validation accuracy 00 VA —— —
0.75 T T T T T T) T T T T T T
o 5 10 1= 20 25 o 5 10 1= 20 25
Number of Epochs Number of Epochs

Figure 33 - Accuracy (left) and loss (right) estimation of VGG-16 model and, epochs=25 and batch

size= 32
Cateqgorical Crossentropy and SGD
VGG16 VGG16
Accuracy with Categorical Crossentropy and SGD Loss with Categorical Crossentropy and SGD
10 ‘_/x._..-—\/‘\/—"_’A“’v 16 — Ta?nin.g loss
09 i 1 Walidation loss.
(12
08
. 10
® 07 w
5 g 8
€ 06 6
0.5 4
0.4 —— Taining accuracy .
Validation accuracy o k\-—-—h-___ . —— —
0 5 10 15 20 P D 5 10 15 20 P
Number of Epochs Number of Epochs

Figure 34 - Accuracy (left) and loss (right) estimation of VGG-16 model and, epochs=25 and batch
Size=32

It can be pointed out that Categorical Crossentropy along with Adam and Adagrad seem
to behave nicely, meaning that their figures’ curves (Figure 31 and Figure 32
respectively) seem to be smooth. Also, their loss tends to decrease and their accuracy
to increase as the number of epochs increase, which is expected. On the contrary,
Categorical Crossentropy with RMSprop or SGD (Figure 33 and Figure 34 respectively)
don’t seem to be good combinations as it seems from their figures that they should not
be very stable.

6.1.3.2 Loss function = MSE and VGG16

The following figures concern experiments conducted on VGG16 models when MSE is
used as loss function.

S. Reppa 43

Real-Time Navigation of Unmanned Vehicle based on Neural Networks Classification of Arrow Markings

MSE and Adagrad

VGG16
Accuracy with Mean Squared Error and Adagrad

0.9

0.8

0.7 A

0.6

Accuracy

0.5

0.4

0.3 A

—— Taining accuracy
‘Validation accuracy

5 10 5 20 s

Mumber of Epochs

w

VGG16
Loss with Mean Squared Error and Adagrad

016

0144

012

0104

0.08 §

0.06 4

004 4

= Training loss
Validation loss

Number of Epochs

Figure 35 - Accuracy (left) and loss (right) estimation of VGG-16 model and, epochs=25 and batch

MSE and Adam

VGG16
Accuracy with Mean Sguarred Error and Adam

1000 -

0,999

0,998 4

0.997 4

0.996

Accuracy

0.995

0.954

0,993 4

—— Taining accuracy
Validation accuracy

T T T T
5 10 15 20

Mumber of Epochs

T
5

size=32

0.0030
0.0025
0.0020
E 0.0015 4
0.0010
0.0005

0.0000

VGG16
Loss with Mean Squarred Error and Adam

—— Taining loss
Validation loss

5 0 5
Number of Epochs

Figure 36 - Accuracy (left) and loss (right) estimation of VGG-16 model and, epochs=25 and batch

MSE and SGD

VGG16
Accuracy with Mean Squared Error and SGD

10

0.9 4

0.8 q

0.7 4

0.6

Accuracy

0.5 4

0.4 4

034

0.2 q

—— Training accuracy
Walidation accuracy

T T T T
5 10 15 20

Number of Epochs

T
25

size=32

I
g

VGG16
Loss with Mean Squared Error and SGD

0175 4

0.150 4

0.125 A

0.100 -

0075 4

0050

0025 4

—— Taining loss
Validation loss

T
15
Number of Epochs

Figure 37 - Accuracy (left) and loss (right) estimation of VGG-16 model and, epochs=25 and batch

S. Reppa

size=32

44

Real-Time Navigation of Unmanned Vehicle based on Neural Networks Classification of Arrow Markings

MSE and RMSprop

0.5

0.4

Accuracy

03

0.2

VGG16
Accuracy with Mean Squarred Error and RMSprop

—— Taining accuracy
Walidation accuracy

’/_Jm/\

0 5 10 15 20
MNumber of Epochs

P

Loss

0350
0325
0.300
0275
0.250
0225
0200
0175

0.150

VGG16
Loss with Mean Squarred Error and RMSprop

—— Taining loss
Validation loss

5 0 15 0
Number of Epochs

Figure 38 - Accuracy (left) and loss (right) estimation of VGG-16 model and, epochs=25 and batch

size=32

On the one hand, MSE with SGD (Figure 37) and Adagrad (Figure 35) seem to behave
as expected. Their figures’ curves seem to be smooth. Also, their loss tends to
decrease and their accuracy to increase as the number of epochs increase, which is
required. On the other hand, models with MSE with RMSprop (Figure 38) or Adam
(Figure 36) don’t seem to be good combinations as it seems from their figures that they
should not be very stable.

6.1.3.3 Loss function = Categorical Crossentropy and VGG19

The following figures result from experiments conducted on VGG19 and Categorical
Crossentropy.

Categorical Crossentropy and Adam

ViGG19
Accuracy with Categorical Crossentropy and Adam

100

095

090

085

Accuracy

a0

075

V]

——

—— Training accuracy
Validation accuracy

D 5 10 5 20 3

Number of Epochs

Loss

10

0.8

0.6

0.4

0z

00

VGG19

Loss with Categorical Crossentropy and Adam

—— Taining loss
Validation loss

5 10 5 P P

Number of Epochs

Figure 39 - Accuracy (left) and loss (right) estimation of VGG-19 model and, epochs=25 and batch

S. Reppa

size=32

45

5

Real-Time Navigation of Unmanned Vehicle based on Neural Networks Classification of Arrow Markings

Categorical Crossentropy and Adagrad

VGG19 VGG19
Accuracy with Categorical Crossentropy and Adagrad Loss with Categorical Crossentropy and Adagrad
Lo P 12 = Taining loss
,.—.__,..—'—'_'-'n\-" . N
Validation loss
0.9 10
08
g 08 "
3 5
e 0.6
07
04
0.6 —— Taining accuracy 02 "“*—-._._.\‘_‘___h_
Validation accuracy i -
0 5 10 5 20 P 0 5 1 15 0 P

Number of Epochs Mumber of Epochs

Figure 40 - Accuracy (left) and loss (right) estimation of VGG-19 model and, epochs=25 and batch

Size=32
Categorical Crossentropy and RMSprop
VGG19 VGG19
Accuracy with Categorical Crossentropy and RMSprop Loss with Categorical Crossentropy and RMSprop
100 L S S —— Taining loss
175 I
.\/\N\/ Validation loss
0.95
150
090 125
=
E 0.85 w100
5
5
§ 080 075
0.75 050
070 i — Training accuracy 0.25 M
0.65 Validation accuracy 0.00 e ™
0 5 10 15 P 5 0 5 10 15 P 5
Mumber of Epochs Number of Epochs

Figure 41 - Accuracy (left) and loss (right) estimation of VGG-19 model and, epochs=25 and batch

size=32

Categorical Crossentropy and Stochastic Gradient Descent

VGG19 VGG19
Accuracy with Categorical Crossentropy and SGD Loss with Categorical Crossentropy and SGD
100 05 —— Taining loss
093 Validation loss
098 04
0.97
Q’ " 03
5 096 n
2 5
< 095 0z
094
01
0934 Taining accuracy
097 Validation accuracy 00 B
B0 25 S50 75 100 125 150 175 oo 25 S50 75 100 125 150 175
Mumber of Epochs Mumber of Epochs

Figure 42 - Accuracy (left) and loss (right) estimation of VGG-19 model and, epochs=25 and batch

size=32

Adam (Figure 39) and Adagrad (Figure 40) models’ curves seem to be smooth. Their
loss tends to decrease and their accuracy to increase as the number of epochs increase
unlike RMSprop or SGD (Figure 41 and Figure 42 respectively), whose diagrams are
not at all stable.

S. Reppa 46

Real-Time Navigation of Unmanned Vehicle based on Neural Networks Classification of Arrow Markings

6.1.3.4 Loss function = MSE and VGG19

The figures that follow concern VGG19 models trained with MSE.
MSE and Adagrad

VGG19 VGG19
Accuracy with Mean Squared Error and Adagrad Loss with Mean Squared Error and Adagrad

10
= Training loss

0.9 _/_/_’—__—. 014 Validation loss

08 / 012

07 w 010
5

06

0.08

Accuracy

0s

0.06
04 —— Taining accuracy
‘Validation accuracy 0.04 —
0 5 10 15 20 5 0 5 10 15 20 5
Number of Epochs Number of Epochs

Figure 43 - Accuracy (left) and loss (right) estimation of VGG-19 model and, epochs=25 and batch

Size=32
MSE and Adam
VGG19 VGG19
Accuracy with Mean Squarred Error and Adam Loss with Mean Squarred Error and Adam
070 —— Taining loss
020 Validation loss
0.65
018
0.60
. 016 \
g 055 "
g a
g os0 | = 014
0.45 f 012
0.40 —— Taining accuracy 010
/ Validation accuracy
035 T T T T T T T T 005
00 25 50 75 100 125 150 175 00 25 50 75 100 125 150 175
Number of Epochs Number of Epochs

Figure 44 - Accuracy (left) and loss (right) estimation of VGG-19 model and, epochs=25 and batch

size=32
MSE and Stochastic Gradient Descent
VGG19 VIGG19
Accuracy with Mean Squared Error and SGD Loss with Mean Squarad Error and 5GD
10
~ T —— Taining loss
ng /.-—/ — 0.25 Validation loss
0s \
/ 020 ‘I

07
> /
B 06 f w015
5 f g
£ 05 [

010
04 \/
03 0as
—— Training accuracy ——
0.2 Validation accuracy o ——
A I o = 5 % 0 5 1 5 i 5

Number of Epochs Number of Epochs

Figure 45 - Accuracy (left) and loss (right) estimation of VGG-19 model and, epochs=25 and batch

size=32

S. Reppa 47

Real-Time Navigation of Unmanned Vehicle based on Neural Networks Classification of Arrow Markings

MSE and RMSprop

VGG19 VGG19

Accuracy with Mean Squared Error and RMSprop Loss with Mean Squared Error and RMSprop
0.70
0.26 —— Training loss
0&S 024 Validation loss
0.60 022 \\
. 0.55 020
g "
E] 0.50 5018
ks
0.45 016
0.40 ,.// 014 !
0.35 / —— Training accuracy 012
Validation accuracy
030+ : : ; : . . : : ' . ; . : : .
o 2 4 3] 10 12 14 o 2 4] 8 10 12 14
Number of Epochs MNumber of Epochs

Figure 46 - Accuracy (left) and loss (right) estimation of VGG-19 model and, epochs=25 and batch
Size=32

MSE with Adam and Adagrad seem to function as required, based on Figure 45 and
Figure 44, while models with SGD or RMSprop curves (Figure 45 and Figure 46
respectively) aren’t stable.

In conclusion, models trained with 25 epochs and 32 batch size are chosen for the real-
time navigation of our vehicle. Apparently, categorical crossentropy seems to suit better
this purpose, along with Adam and Adagrad as optimizers, according to the conclusions
made based on all figures. Therefore, we trained 2 models and compared their
performance on the second phase of our real time navigation set experiments. A
VGG16 with Categorical Crossentropy and Adam and a VGG16 with Categorical
Crossentropy and Adagrad are discussed in the following sections.

6.2 Path following

6.2.1Set up experiments

First, we set up a path of arrow markings on the floor. Figure 47 shows the path’s top
view, where the green circle represents Turtlebot at its starting point.

S. Reppa 48

Real-Time Navigation of Unmanned Vehicle based on Neural Networks Classification of Arrow Markings

Step 7:
Go backwards

S ——

Step &
Go forward Step &:
) Turn left
Step 4
Turn right
Step 8:
Go forward
Step 3:
Go forward
Step 9
Go forward
Step 2
Go forward
Step 1:
Stop

Step 1
Go backwards

Turtlebot starts facing the arrow of step 1. Then, it has to follow the rest of the steps.
Also, the distance between each marking is very specific, because our robot’s moves
are also very specific. For example, the marking that follows a “go forward” marking is
placed after 1.10 m or the marking that follows a “go backwards” marking is placed after
1.70 m. As shown, all kinds of arrow markings were used.

Figure 47 — Map’s top view

S. Reppa 49

Real-Time Navigation of Unmanned Vehicle based on Neural Networks Classification of Arrow Markings

Figure 48 — Path in space

The robot has to follow this path and classify the pictures captured with the two different
models we decided on the previous chapter.

As mentioned before it is very crucial that we created the best possible environment for
our navigation to be successful. We deprived the room of daylight and turned all the
lights on, so that the lighting is stable and doesn’t depend on whether there is sun
outside or not. After all, the sunlight reflects on the floor and makes the pre-processing
part a lot harder and less successful.

6.2.2 Experiment execution

Before starting navigation experiments, we ran a few tests regarding image pre-
processing. We adjusted a few parameters in the function in order to ensure that the
markings will be spotted in the most efficient way possible. As a result, the image
classification will be more credible. Then, the experiments on navigation can begin.

First, we execute the server’s code. That will load the chosen VGG model and the set
up socket. We wait until the server prints out a message that is ready to accept requests
from a client.

root@520896b4cS5f: /home/tensorflow# python3 experiment server.py

Loading VGG model...
I can now accept requests from clients.

Figure 49 — Executing the server

Then, we deploy the client’'s code. The client captures the first image sends it via socket
to the server. The server receives the image, spots the marking, crops its area and
resizes the resulting image as 224x224, so that it can fit the VGG’s input dimensions,
while the client waits for an answer. The server predicts the class that single image
belongs to and sends the result, as an answer, back to the client. The client receives
this answer and moves accordingly. That procedure is repeated until an “abort” sign is
located.

S. Reppa 50

Real-Time Navigation of Unmanned Vehicle based on Neural Networks Classification of Arrow Markings

Client with address ('5.283.138.142', 2276) is connected.
- Bs 398ms/step

- Bs 140ms/step
- Bs 173ms/step
s 145ms/step
170ms /step
170ms /step

s 147ms/step
176ms/step

147ms/step

s 141ms/step

Images received: 160.
Closing socket and exiting...

Figure 50 — Server messages about classification results

The entire procedure that was just described will be done twice, once for each model
that we have chosen.

6.2.3Experiment results

6.2.3.1 VGG16 with Categorical Crossentropy and Adam

We performed one experiment with a model trained for 25 epochs, with batch size 32,
categorical crossentropy as a loss function and Adam as optimizer. This model is used
by the server for image classification.

The robot had to follow the route on Figure 47 and as it turned out, the navigation was
successful. It classified all 10 pictures correctly. In figure are shown all images that were
received by the server. Tenth image, should contain the entire marking. That marking
represents “abort”. All other images depict markings correctly.

S. Reppa 51

Real-Time Navigation of Unmanned Vehicle based on Neural Networks Classification of Arrow Markings

Figure 51 — Received images by server

The images that resulted from pre-processing and are destined for classification, are
shown inFigure 51. The tenth image of this figure comes from the tenth image of Figure
52, which was captured from the robot inaccurately. This is the best possible outcome
of pre-processing for this image. Even though it is not a credible result, it was classified
correctly leading the navigation to end successfully.

S. Reppa 52

Real-Time Navigation of Unmanned Vehicle based on Neural Networks Classification of Arrow Markings

1 2 3

4 5 6

7 8

9 10

Figure 52 — Images after pre-processing

S. Reppa

Real-Time Navigation of Unmanned Vehicle based on Neural Networks Classification of Arrow Markings

While the robot navigates, its coordinates are noted after each move. In the following
figure (Figure 53), the robot’s trajectory is depicted. Each dot represents every set of
coordinates noted.

13 T T T T T T T

125

12

1MF

10

Figure 53 — Robot’s trajectory in space, classification model trained with Adam

6.2.3.2 VGG16 with Categorical Crossentropy and Adagrad

A second experiment was conducted, using a model trained for 25 epochs, with batch
size 32, categorical crossentropy as a loss function and Adagrad as optimizer. This
model is used by the server for image classification.

The robot had to follow the route on Figure 47 and at the end, it followed the path
correctly, just like in the previous experiment. It classified all 10 pictures correctly. In
Figure 54 are shown all images that were received by the server. Apparently, all
markings were captured in an efficient way by the raspberry camera.

S. Reppa 54

Real-Time Navigation of Unmanned Vehicle based on Neural Networks Classification of Arrow Markings

9 10

Figure 54 — Received images from server

In Figure 55, the images that resulted from pre-processing and are destined for
classification, are shown. Since all images were captured correctly from the robot, pre-
processing results were very efficient, as expected. Therefore, each image from Figure
55was successfully classified by our model and the navigation terminated successfully.

S. Reppa 55

Real-Time Navigation of Unmanned Vehicle based on Neural Networks Classification of Arrow Markings

i
il

11
jal

7 8
9 10
Figure 55 — Images after pre-processing

S. Reppa 56

Real-Time Navigation of Unmanned Vehicle based on Neural Networks Classification of Arrow Markings

During this experiment, too, the coordinates of the robot were noted after each move.
The following figure (Figure 56) depicts its trajectory, from the beginning until the end.
Each dot represents each set of coordinates noted.

Adagrad
445 T T T T T T T T

15 -

-13.5 -13 -12.5 -12 -11.5 -1 -10.5 -10 -9.5 -9

Figure 56 - Robot’s trajectory in space, classification model trained with Adagrad

S. Reppa 57

Real-Time Navigation of Unmanned Vehicle based on Neural Networks Classification of Arrow Markings

7. CONCLUSION

The enormous growth and use of autonomous vehicles in recent years appears to have
overwhelmed the technology community. Due to the fact they can be deployed quickly
and efficiently, unmanned vehicles are being employed more and more in a variety of
applications. The complexity and dynamic nature of the environment around unmanned
vehicles, as well as their interaction with other people and objects, as well as any
sudden changes in the environment, make autonomous navigation of these vehicles a
major challenge for a variety of reasons.

For instance, a vehicle should drive itself along the road by obeying the various arrow
signs that indicate a set of restrictions. There are multiple ways, provided by machine
learning, to achieve this, one of them being the use of Neural Networks. More
specifically, with the use of a Convolutional Neural Network, a deep learning algorithm
that is ideal when a dataset is comprised of images. An analogy can be drawn between
the architecture of a CNN and the connectivity network of neurons in the human brain;
individual neurons only respond to stimuli in a specific area of the visual field known as
the receptive field. The entire visual field is covered by a series of such fields that
overlap.

This thesis has proposed a methodology that included the use of a image processing
technique and a popular CNN, named VGG, in order to detect arrow markings in
images captured by a raspberry-pi camera and later classify these arrows accordingly
and follow the path that was planned. A series of experiments were conducted, starting
with a benchmarking of VGG-16 and VGG-19 models with different hyperparameters.
This showed the different behaviors of models trained with different combinations of
hyperparameters, which lead to the choice of certain hyperparameters to be ideal for
the training of 2 models, used in the second phase of experiments. As for the second
phase, one navigation took place using each model, concluding that not only the
hyperparameters of a model are important in a successful navigation, but also precise
moves of the vehicle and a pre-processing technigue, whose parameters are adjusted
to the environment’s condition’s (i.e floor color, lighting of space).

S. Reppa 58

Real-Time Navigation of Unmanned Vehicle based on Neural Networks Classification of Arrow Markings

ABBREVIATIONS - ACRONYMS

ANN Artificial Neural Network

CNN Convolutional Neural Network
ConvNet Convolutional Neural Network
GPS Global Positioning System
LiDAR Light Detection And Ranging
MLP Multi-Layered Perceptron

MSE Mean Squared Error

ReLU Rectified Linear Unit

RMSprop Root Mean Square Propagation
RNN Recurrent Neural Network
ROS Robot Operating System

SGD Stochastic Gradient Descent
SLAM Simultaneous Localization And Mapping
SNN Simulated Neural Network

UAV Unmanned Aerial Vehicle

uGv Unmanned Ground Vehicle
usv Unmanned Surface Vehicle
VGG Visual Geometry Group

S. Reppa

Real-Time Navigation of Unmanned Vehicle based on Neural Networks Classification of Arrow Markings

REFERENCES

[1] Caska, Serkan & Gayretli, Ahmet. (2014). A survey of UAV/UGYV collaborative systems. 453-463.

[2] H. Shakhatreh et al., "Unmanned Aerial Vehicles (UAVs): A Survey on Civil Applications and Key
Research Challenges,” in |IEEE Access, vol. 7, pp. 48572-48634, 2019, doi:
10.1109/ACCESS.2019.2909530.

[3] Hardesty, Larry (14 April 2017). "Explained: Neural networks". MIT News Office. Retrieved 2 June
2022.

[4] O'Shea, Keiron and Nash, Ryan. An Introduction to Convolutional Neural Networks, arXiv, 2015, doi:
10.48550/ARXIV.1511.08458

[5] Jordi TORRES.AI, Convolutional Neural Networks for Beginners using Keras & TensorFlow 2,
Retrieved 2 July 2022

[6] Afzal, Muhammad Zeshan & Kodlsch, Andreas & Ahmed, Sheraz & Liwicki, Marcus. (2017). Cutting
the Error by Half: Investigation of Very Deep CNN and Advanced Training Strategies for Document
Image Classification. 10.1109/ICDAR.2017.149.

[7] Tawiah TA-Q. A review of algorithms and techniques for image-based recognition and inference in
mobile robotic systems. International Journal of Advanced Robotic Systems. November 2020.
doi:10.1177/1729881420972278

[8] Quifionez, Yadira & Ramirez, M & Lizarraga, Carmen & Tostado, | & Bekios-Calfa, Juan. (2015).
Autonomous Robot Navigation Based on Pattern Recognition Techniques and Artificial Neural
Networks. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics). 9108. 320-329. 10.1007/978-3-319-18833-1_34.

[9] Foroughi, F.; Chen, Z.; Wang, J. A CNN-Based System for Mobile Robot Navigation in Indoor
Environments via Visual Localization with a Small Dataset. World Electr. Veh. J. 2021, 12, 134.
https://doi.org/10.3390/wevj12030134

[10] G. Maier, S. Pangerl and A. Schindler, "Real-time detection and classification of arrow markings
using curve-based prototype fitting," 2011 IEEE Intelligent Vehicles Symposium (IV), 2011, pp. 442-
447, doi: 10.1109/1VS.2011.5940451.

[11] Park, Jongan & Rasheed, Waqas & Beak, Junguk. (2008). Robot Navigation Using Camera by
Identifying Arrow Signs. 382-386. 10.1109/GPC.WORKSHOPS.2008.41.

[12] Shojaeipour, Shahed & Haris, Sallehuddin & Khairir, Muhammad. (2009). Vision-Based Mobile Robot
Navigation Using Image Processing and Cell Decomposition. 5857. 90-96. 10.1007/978-3-642-
05036-7_10.

[13] Shih, Ching-Long & Ku, Yu-Te. (2016). Image-Based Mobile Robot Guidance System by Using
Artificial Ceiling Landmarks. Journal of Computer and Communications. 04. 1-14.
10.4236/jcc.2016.411001.

[14] Tawiah TA-Q. A review of algorithms and techniques for image-based recognition and inference in
mobile robotic systems. International Journal of Advanced Robotic Systems. November 2020.
doi:10.1177/1729881420972278

S. Reppa 60

