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ABSTRACT 

 

On the eve of 5G-enabled Connected and Automated Mobility, challenging Vehicle-to-Eve-
rything services have emerged towards safer and automated driving. The requirements 
that stem from those services pose very strict challenges to the network primarily with re-
gard to the end-to-end delay and service reliability. At the same time, the in-network Artifi-
cial Intelligence that is emerging, reveals a plethora of novel capabilities of the network to 
act in a proactive manner towards satisfying the aforementioned challenging requirements. 
This work presents PreQoS, a predictive Quality of Service mechanism that focuses on 
Vehicle-to-Everything services. PreQoS is able to timely predict specific Quality of Service 
metrics, such as uplink and downlink data rate and end to-end delay, in order to offer the 
required time window to the network to allocate more efficiently its resources. On top of 
that, the proactive management of those resources enables the respective Vehicle-to-Eve-
rything services and applications to perform any potential Quality of Service-related re-
quired adaptations in advance. The evaluation of the proposed mechanism based on a re-
alistic, simulated, Connected and Automated Mobility environment proves the viability and 
validity of such an approach. 
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ΠΕΡΙΛΗΨΗ 

Την παραμονή της συνδεδεμένης και αυτοματοποιημένης κινητικότητας (CAM) με δυνατό-
τητα 5G, εμφανίστηκαν οι απαιτητικές υπηρεσίες όχημα-σε-οτιδήποτε (V2X) για αυτοματο-
ποιημένη και ασφαλέστερη οδήγηση. Οι απαιτήσεις που απορρέουν από αυτές τις υπηρε-
σίες δημιουργούν πολύ αυστηρές προκλήσεις για το δίκτυο κυρίως όσον αφορά τον βα-
σικό δείκτη απόδοσης (KPI) καθυστέρησης από άκρο σε άκρο (end-to-end delay). Ταυτό-
χρονα, η τεχνητή νοημοσύνη (AI) που εμφανίζεται εντός του δικτύου, αποκαλύπτει μια 
πληθώρα νέων δυνατοτήτων του δικτύου, να ενεργεί με προληπτικό τρόπο ως προς την 
ικανοποίηση των προαναφερθεισών απαιτήσεων. Αυτή η πτυχιακή εργασία παρουσιάζει 
έναν μηχανισμό πρόβλεψης ποιότητας υπηρεσιών (PreQoS), που υποστηρίζεται από τε-
χνητή νοημοσύνη, εστιάζει στις υπηρεσίες όχημα-σε-οτιδήποτε και είναι σε θέση να προ-
βλέψει έγκαιρα συγκεκριμένες μετρήσεις ποιότητας υπηρεσίας. Παράδειγμα αυτών των υ-
πηρεσιών είναι ο ρυθμός δεδομένων (data rate) και η καθυστέρηση στις ανερχόμενες 
(uplink) και κατερχόμενες ζεύξεις (downlink) από άκρο σε άκρο, προκειμένου να προσφέ-
ρει το απαιτούμενο χρονικό παράθυρο στο δίκτυο για να κατανείμει αποτελεσματικότερα 
τους πόρους του, καθώς και στις αντίστοιχες υπηρεσίες και εφαρμογές όχημα-σε-οτιδή-
ποτε για την εκτέλεση των απαιτούμενων προσαρμογών. Η αξιολόγηση του προτεινόμε-
νου μηχανισμού βασίζεται σε ένα ρεαλιστικό, προσομοιωμένο περιβάλλον όχημα-σε-οτιδή-
ποτε που αποδεικνύει τη βιωσιμότητα και την εγκυρότητα μιας τέτοιας προσέγγισης. 
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PREFACE 

The current thesis has been conducted for the bachelor’s program degree offered by the 
department of Informatics and Telecommunication from the National and Kapodistrian Uni-
versity of Athens. The main study of this thesis concerns the development of an innovative 
QoS prediction scheme for V2X communications, namely PreQoS, which is able to accu-
rately predict predefined QoS metrics, such as ul/dl delay or data rate, ultimately enabling 
the network and involved applications to perform the required adaptations for avoiding ser-
vice interruption. In the context of the present work, the proposed system has been imple-
mented using SUMO and NS3 for the Software-Defined-Networking (SDN) scenario and 
Jupyter along with Python for the related algorithms and methods, as well as for the visual-
ization of the experimental results. The choice of this topic is due to my interest in the field 
of 5G Networks, Machine Learning and its numerous applications. 
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1. INTRODUCTION 

Beyond 5G network intelligence is already considered as one of the cornerstones for the 
next generation of wireless and mobile systems. Architecture enhancements for 5G System 
(5GS) to support network data analytics services in recent releases [1], already pave the 
way for the implementation of diverse Machine Learning (ML) and Artificial Intelligence (AI)-
based resource management, security-related and application-/service-oriented enhance-
ments. The Network Data Analytics Function (NWDAF) introduced by 3GPP and ETSI [2], 
is able to interact with different network entities for different purposes, such as data collec-
tion based on subscription to events, retrieval of information from data repositories, on de-
mand provision of analytics to consumers, etc. In parallel, the extreme service requirements 
introduced already by 5G are further defined and standardized in 3GPP Release 16 [3]. In 
this specification, 5G Quality of Service (QoS) Identifiers (5QIs) are mapped to specific QoS 
characteristics, in relation to the respective resource type, such as Guaranteed Bit 
Rate/Non-Guaranteed Bit Rate, priority level, packet error rate thresholds, etc. 

One of the most challenging and at the same time broadly investigated use cases for 5G 
networks and beyond, i.e., Connected and Automated Mobility (CAM), along with its respec-
tive communication services, namely Vehicle-to-Everything (V2X) and Cellular V2X (C-
V2X), is already progressing via several architectural and service-oriented enhancements 
from the standardization organizations, such as 3GPP and ETSI, both from the 5G Core 
(5GC), as well as the Radio Access Network (RAN) and Edge aspects [4] [5] [6] [7] [8]. 
3GPP has defined the main use cases (UCs) for V2X scenarios, namely Vehicles Platoon-
ing, Advanced Driving, Extended Sensors, Remote Driving and Vehicle QoS Support. The 
5G Automotive Association (5GAA) has also defined a number of more fine-grained CAM 
use cases [9], namely Tele-operated driving (ToD), Anticipated Cooperative Collision Avoid-
ance, High-density platooning, Hazardous location warning, lane merge, Software update 
and Infotainment. In [10], the use cases, requirements, and design considerations for vehi-
cle-to- everything communications are presented. Also, the authors in [11] describe the cur-
rent challenges, focusing on the 5G crossborder V2X operations for CAM, providing also an 
overview of the proposed technologies and solutions. 

CAM applications rely on the network reliability and QoS in order to address requirements 
expressed in terms of ubiquitous coverage, minimum uplink/downlink and sidelink data 
rates, acceptable packet loss ratio, maximum allowed packet delay, etc. Towards this direc-
tion, 5GAA has very recently introduced the concept of predictive QoS [12] that refers to the 
mechanisms enabling mobile networks to provide notifications about predicted QoS 
changes to interested consumers in advance. Mobile/Multiple Access Edge Computing 
(MEC), -which is considered one of the essential technologies for 5G-, is also a key enabler 
for CAM and V2X. In [13], the automotive use cases that are relevant for MEC are show-
cased, providing insights into the technologies specified and investigated by the ETSI MEC 
ISG. ETSI, -in the context of MEC- has also very recently introduced the notion of predictive 
QoS support in the context of the MEC framework [8]. In this context, the prediction of po-
tential handovers leading to the estimated QoS performance is described as the key solu-
tion. This will enable the UEs/vehicles to proactively identify the MEC hosts and base sta-
tions, which will be able to support the relevant V2X application requirements without any 
service interruption. Also, in [14] ETSI specification, the API resource, along with the detailed 
data model for the QoS prediction of a vehicular UE are provided. 

Based on the above, it becomes thus obvious that network intelligence, based on state-of-
the-art AI and ML algorithms, towards the enhancement of V2X services can prove of utmost 
importance. The stringent requirements of the majority of the CAM use cases ask for proac-
tive resource allocation approaches in order to ensure that the V2X communications are 
adequately supported and satisfy the specific reliability, end-to-end (E2E) delay and data 
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rate (both in the downlink, as well as the uplink) requirements. On top of that, the promising 
network edge capabilities may prove valuable for bringing network intelligence closer to the 
network nodes and in a distributed manner, enabling thus even more efficient and low la-
tency proactive network management operations to apply. 

1.1 Primary Contributions 

Inspired by the above-mentioned challenges and topics, for the current thesis, I focus on 
QoS prediction for V2X services and the modeling of the overall V2X network and environ-
ment towards an efficient and viable predictive QoS solution. My primary contributions are 
summarized as follows: 

• A predictive QoS algorithm is presented, namely PreQoS, which processes contextual in-
formation such as vehicle mobility information, radio and network parameters and load con-
ditions, as well as application-specific information and generates predicted QoS-related val-
ues, such as uplink/downlink end-to-end delay, data rate, etc. Towards proactive service 
adaptation for service continuity in stringent V2X services. 

• The overall problem is thoroughly analyzed in terms of spatial, temporal and system model-
ing; a novel approach is presented, namely Map-as-a-Grid (MaaG), which offers higher per-
formance of the QoS prediction in terms of computing and memory requirements, highlight-
ing the potential of the proposed mechanism from the scalability perspective. 

• The capability of the proposed mechanism to integrate and operate via exploiting diverse 
machine learning algorithms is demonstrated, such as Deep Neural Networks, Random For-
ests, Distributed Gradient Boosting schemes, etc., on top of the spatio-temporal modeling 
of the MaaG approach. A detailed evaluation procedure is presented, which demonstrates 
the gains of the MaaG approach, correlates the accuracy error and coefficient determination 
metrics in relation to the spatial modeling options and volume of training data, while also 
provides insights in terms of the performance of different ML models, which are exploited by 
the PreQoS framework. 

1.2 What is 5G 

5G is a new global wireless standard for broadband cellular networks and is the successor 
to the 4G networks.  5G enables a new kind of network that is designed to connect virtually 
everyone and everything together including machines, objects, and devices [15]. Like its 
predecessors, 5G networks are cellular networks, in which the service area is divided into 
small geographical areas called cells. All 5G wireless devices in a cell are connected to 
the internet and telephone networks by radio waves through a local antenna in the cell. The 
main advantage of the new networks is that they will have greater bandwidth, giving 
higher download speeds, eventually up to 10 gigabits per second (Gbit/s). In addition to 5G 
being faster than existing networks, 5G has higher bandwidth and can thus connect more 
different devices, improving the quality of Internet services in crowded areas. Due to the 
increased bandwidth, it is expected the networks will increasingly be used as general inter-
net service providers (ISPs) for laptops and desktop computers, competing with existing 
ISPs such as cable internet, and also will make possible new applications in internet-of-
things (IoT) and machine-to-machine areas. Cellphones with 4G capability alone are not 
able to use the new networks, which require 5G-enabled wireless devices. 

Since 5G started being deployed worldwide autonomous driving stopped being just a vision 
in a science fiction movie. Autonomous driving means that the car is fully Autonomous 
means that the car is fully independent in making decisions and responding to situations, 
including emergencies; no driver and no external intervention are needed. Enabling an even 
faster connection between transport systems, the 5G network will offer new application op-
tions advancing the development of autonomous cars. Not only will they be able to make 
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autonomous decisions in the future, they will also communicate and cooperate with each 
other. Automated driving is the term used to describe a scenario where a fully interconnected 
and intelligent road transport system is created as a result of these capabilities. 

Thanks to wireless technology and internet connection, connected cars with their digital and 
location-related services can greatly improve our driving comfort. The car relies on regular 
data updates for navigation, e.g., detailed road maps, plus updates in unexpected traffic 
situations, such as congestion, rain, or black ice. In combination with apps for the driver 
and cloud systems, information for maintenance or other status reports can be retrieved and 
sent. Thanks to mobile edge computing, these functions are already realized today, based 
on (LTE) at a transmission rate of up to 300 megabit per second and latencies of less than 
100 milliseconds, even in emergencies or remote-controlled driving at low speeds. 5G will 
offer even higher quality for many digital in-car services in the future. 

 

 
Image 1: 5G Visualization 

One huge benefit of 5G is what is known as network slicing. The wireless network is subdi-
vided into virtual network levels. One network level is then used only for automated driving, 
for instance.  This ensures that safety-relevant notifications to self-driving cars will not end 
up in a traffic jam on the data highway and will be given priority over other infotainment 
services used in parallel. 
 
Humans, in general, use automated functions in their everyday life mainly in order to save 
time. It is obvious that making use of mobile networks will be life-changing and a great im-
provement in the driving aspect. 

1.3 VoX 

V2X stands for ‘Vehicle-to-Everything and refers to passing information from a vehicle to 
any other entity that may affect the vehicle and vice versa.[17] 

Table 1: V2X technology includes: 

Vehicle to Infrastructure (V2I) The exchange of data between a car and 
equipment installed alongside roads. 
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Vehicle to Network (V2N) Vehicle’s access of the network for cloud-
based services. 

Vehicle to Vehicle (V2V) The exchange of data between vehicles. 

Vehicle to Pedestrian (V2P) The exchange of data between the car and 
pedestrians 

 

 
Image 2: All vehicle communication categories 

The main motivations for V2X are road safety, traffic efficiency and energy savings. The U.S 
National Highway Traffic Safety Administration estimates a minimum of 13% reduction in a 
year [18]. 
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2. RELATED WORK 

The notion of QoS prediction has been studied in the literature in different contexts and 
focusing on different segments of the end-to-end communication. Numerous works have 
been proposed that attempt to predict the QoS –from diverse perspectives-, as well as sev-
eral QoS-aware schemes, especially for V2X communications [19] [20] [21], but also in the 
domain of mobile networks, from a broader perspective [22] [23] [24] [25]. 

In [17], the authors focus on a MEC-enabled architecture for evaluating two V2X applica-
tions, namely, Advanced Driving (safety-related application) and Emergency Brake Light. 
Based on collected measurements, they focus on a classification problem, targeting to pre-
dict threshold-driven QoS classes. A Neural Network (NN)-based approach is proposed, 
combined with a Maximum Dependency (MD) algorithm for feature selection. The authors 
focus on predicting the expected end-to-end delay and the results are compared to other 
ML solutions, namely a Recurrent Neural Network with Long Short-Term Memory neurons, 
a Random Forest, and a Support Vector Machine. According to the authors, no significant 
prediction accuracy gains are observed in the alternative solutions, able to justify the notice-
able increased cost of training, compared to the much simpler NN. 

In [20], the authors employ supervised learning, as well as the auto-regressive integrated 
moving average (ARIMA) models. The specific work considers a typical urban scenario for 
C-V2X communication, namely Manhattan Grid [26]. The authors collect numerous radio-
related measurements such as the reference-signal-received-quality/power (RSRQ/RSRP), 
the signal-to-noise ratio (SINR), the channel quality indicator (CQI), the user past averages 
throughput, delay, etc. and use them as inputs towards calculating the prediction accuracy 
and f1-score metrics. Although in most scenarios the ARIMA model performs relatively sat-
isfactory, for a high number of UEs, the accuracy of the model drops considerably. 

In [21], a latency-prediction framework is described, tailored for delay-sensitive V2X appli-
cations. The proposed scheme integrates ML, i.e., a Long short-term memory (LSTM) net-
work, along with a k-medoids clustering algorithm to predict data that follow a trackable trend 
over time, with statistical approaches, i.e., a combination of Epanechnikov Kernel and mov-
ing average functions for predicting data that behave like random noise. The evaluation 
shows that the specific approach reduces the prediction error to half of a standard deviation 
of the raw data. 

In [22], a predictive energy-efficient scheduling scheme is proposed, that optimizes the user 
equipment (UE)’s bits/joule metric subject to QoS constraints in downlink orthogonal fre-
quency-division multiple access (OFDMA) systems. Hammad et al. were able to achieve 
that by minimizing the number of wake-up transmission time intervals, where the UE receiver 
circuit is ON, in a long-time horizon. The proposed predictive scheduler is supported by a 
ray-tracing (RT) engine that increases the scheduler’s knowledge on users’ characteristics 
long-term information. Authors in [23] studied the problem of application rate allocation over 
different radio interfaces, and addressed the issue of different delay requirements of appli-
cations using the discounted-rate framework. They propose two online predictive algorithms 
in order to handle the intermittence of secondary interface(s). The proposed algorithms’ per-
formance is presented consistently near-optimal using small prediction windows. Another 
work [24] performs prediction-based resource allocation focusing on application data rate; 
the specific work proposes the Threshold Percentage Dependent Interference Graph 
(TPDIG) using a Deep Learning-based resource allocation algorithm for city buses mounted 
with moving small cells. A comparative analysis of resource allocation approaches is pre-
sented, using TPDIG, Time Interval Dependent Interference Graph, and Global Positioning 
System Dependent Interference Graph, in terms of Resource Block (RB) usage and average 
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achievable data rate of mIoT-mSC network. Performance evaluation evidence is presented 
in order to confirm the gains achieved by the proposed contribution. In [25], a Cognitive 
Neural Network Delay Predictor for high-speed mobility in 5G C-RAN cellular networks is 
proposed, for compensating the transmission and acquisition delay of the Channel State 
Information working simultaneously, along with the conventional prediction technique for 
predicting the time variations of the communication channel. The results demonstrate a sig-
nificant enhancement in the data rate of the network with the proposed approach. 

Apart from the application of QoS prediction on mobile networks, extended research has 
taken place as well on other network service and application perspectives, highlighting the 
use of neural networks [27] [28] [29] [30]. In [27], a probability distribution detection-based 
hybrid ensemble approach is proposed, in order to achieve high prediction accuracy for 
QoS-Aware web service recommendations. Specifically, Li et al. propose an enhanced col-
laborative filtering (CF) based approach as the basis of the prediction model. The authors 
propose a distribution detection algorithm in order to calculate the probability confidence 
weights, based on the results of a set of other basic prediction models. Zhou et al. in [28] 
propose two neural models for the task of spatio-temporal context-aware QoS prediction, by 
considering invocation time and multiple spatial features both on the service-side and the 
user-side. The presented evaluation indicates that the models achieve a performance im-
provement by 10.9–21.0% in terms of Mean Absolute Error (MAE) and Normalised MAE in 
comparison with the baseline methods. The work in [29] presents a deep neural model, 
intended to achieve multiple QoS predictions based on context. It provides a framework to 
realize multi-attribute QoS prediction, and it manages to achieve high prediction accuracy 
in terms of MAE; the specific work also includes strategies that achieve substantial results 
in making use of contextual information. In [30], Yin et al. propose a method of combining 
an auto-encoder with CF, model-based CF and neighborhood-based CF approaches. The 
proposed auto-encoder deals with sparse inputs by pre-computing an estimate of the miss-
ing QoS values and obtains the effective hidden features by capturing the complex structure 
of the QoS records. In addition, authors propose a novel computation method, based on 
Euclidean distance, that aims to address the overestimation problem, to further improve 
prediction accuracy. Finally, they propose two models to produce the final QoS prediction 
results from user side and service side respectively, based on a real-world dataset that ver-
ifies the effectiveness of their method. Due to the high impact of cloud computing in the field 
of scientific and business technology domains, QoS Prediction has drawn the attention of 
researchers in this domain as well [31] [32] [33] [34] [35] [36]. In [31] Li et al. collect real 
cloud computing environment data, obtain the correlation between the hardware/software 
resource data and QoS attributes of the Cloud service and propose a novel QoS prediction 
approach based on Bayesian Network Model. In [32], Chen et al. propose a self-adaptive 
resource allocation framework composed of feedback loops, each of which goes through a 
designed iterative QoS prediction model and a Particle Swarm Optimization based run time 
decision algorithm. The work in [33] proposes a model for predicting end-to-end QoS values 
of cloud-based software solutions composed of services from multiple cloud layers. It relies 
on the internal features of services and end users such as location, network configuration 
and user profiles, in order to calculate service similarity. In [34], the authors attempt to pre-
dict the QoS by utilizing the historical QoS records of similar users on the Internet. A novel 
approach that combines a clustering-based algorithm and trust-aware collaborative filtering 
(CF) is proposed, aiming to predict the accuracy and recommendation quality. In [35][34], 
the authors propose a Matrix Factorization based approach for making context-aware QoS-
prediction of specific cloud services. Luo et al. in [36] present a novel data-driven QoS pre-
diction scheme using Kernel Mean Least Square (KLMS) for the purpose of achieving a 
higher accuracy. Via the trained KLMS they can predict the unknown QoS entries with their 
corresponding relevant QoS values. 
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As network management and QoS support are becoming more and more challenging with 
the increase in network traffic, size, and service requirements, a lot of research has taken 
place in order to develop ML-based models to meet these challenges [37] [38]. In [37], Va-
silev et al. utilize ML in order to demonstrate how QoS metrics can be exploited to accurately 
estimate and predict key QoE factors. They propose a Bayesian Network model to predict 
the re-buffering ratio and then they derive their own novel Neural Network search method 
to prove that the Bayesian Network correctly captures the discovered stalling data patterns. 
They show that hidden variable models based and context information boost performance 
for all QoE related measures. Lastly, in [38], Lekhala et al. propose a software-defined and 
ML-based intelligent QoS framework called PIQoS, which pushes link failure recovery at the 
data plane in order to improve the delay and throughput. The proposed work offers two 
supervised ML models for efficient network state diagnosis and respective management 
policies selection. 

As it can be inferred from the above state of the art analysis, a plethora of existing proposals 
on QoS prediction is already present, that focuses on diverse network aspects. The pro-
posed work primarily relates to [17] [20] [21], and secondarily to [22] [23] [24] [25], which 
although tackle similar research questions, do not focus on V2X and/or CAM scenarios, 
which is the key use case of our work. 

The work in [17] firstly tackles the problem as a classification problem; in our case, we at-
tempt to avoid handling the Key Performance Indicator (KPI) metrics as discretized variables 
(QoS classes), but rather as a regression problem, in order to retain a more fire-grained 
approach. In [20], the authors employ a simple moving ARIMA, which fails to cope with 
complex scenarios, high number of UEs, etc. The proposed scheme in [21] is the closer 
work in terms of design decisions, combining LSTM with clustering approaches; neverthe-
less, complexity analysis - which is tackled in the current paper- is completely missing, while 
the evaluation scenario makes at no point any links to any realistic V2X application or use 
case, contrary to the proposed work, which provides a detailed simulation environment for 
the ToD use-case. 

Furthermore, the work in [22] is limited by the selection of the RT-based prediction tech-
nique, which relies solely on the physical layer, and more specifically on the wireless com-
munication channel propagation characteristics. The work in [23] focuses on the rate allo-
cation problem as a convex optimization problem. It does not employ or validate any ML 
algorithms and focuses on the optimization of rate allocation from the scheduler’s perspec-
tive. The specific work focuses on the management and offloading of flows with different 
delay and rate requirements among different radio interfaces of a user device. Also, the 
predictability of wireless connectivity is realized for a small look-ahead window, while our 
work is capable of extending the prediction window ahead, as the volume of the training 
data increases over time. The work in [24] does not attempt to directly predict QoS-related 
metrics, which may exhibit considerably unexpected behavior, but locations of vehicles 
(road segments), which are afterwards correlated to determine the experienced interfer-
ence. Moreover, only physical layer aspects are taken into account. Last but not least, the 
work in [25] does not perform direct QoS metric predictions; instead, it focuses on the ac-
quisition delay in the Channel State Indicator metric, which is indirectly linked to the variation 
of the communication channel conditions. 

In this work, we extend the current state of the art, by proposing a novel predictive QoS 
scheme, tailored for 5G CAM use cases. To our knowledge, predictive QoS in CAM and 
V2X scenarios is still in a very primitive stage, with very limited prior work that attempts to 
exploit AI and ML approaches towards predicting the QoS for vehicles in 5G and beyond 
scenarios. As a result, this is the first predictive QoS scheme for V2X communications, that 
takes into account the latest 5G standardization guidelines and implements an end-to-end 
solution towards the proactive notification of connected vehicles, in a realistic CAM scenario. 
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Most importantly, this is the first work that provides in detail a computational complexity and 
network overhead analysis, assessing the viability of the proposed framework. Additionally, 
this is the first QoS prediction scheme that relies on a dynamic and flexible map grid/cell 
clustering technique, - which takes into account the correlation of QoS behavior among cell 
clusters -, towards minimizing the computing resources’ utilization. The last feature is real-
ized via a novel Map-as-a-Grid model, which is presented in the following section, along 
with the rest of the framework details and algorithmic aspects. Also, no inputs from other 
network segments that affect the end-to-end QoS are taken into account. Last but not least, 
this work attempts to explore the prediction performance and application-specific capabilities 
of a considerable number of ML algorithms and approaches, with and without deploying the 
proposed map-as-a-grid approach. 
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3. THE PREDICTIVE QoS MECHANISM 

This work follows the concepts and terminology introduced by [15][13]. As already discussed 
in the introduction of this work, the ultimate goal of predictive QoS for CAM is to exploit in-
network intelligence for the proactive calculation of the relevant QoS aspects for the specific 
V2X services that are each time active. The prediction is realized in a proactive manner and 
ultimately aims towards the generation and transmission of the QoS-related notifications 
messages to the involved vehicles, for taking the needed application-layer actions (service 
parameters adaptation, switching between automated-manual operation, etc.). The last part, 
related to the vehicle-side application adaptation aspects, is out of context of this particular 
work. 

3.1  Input Parameters 

The proposed predictive QoS scheme, namely PreQoS, is based on a Fusion Machine 
Learning approach, which is able to process contextual information from diverse data 
sources and different layers of the network (Table I), in order to predict with high accuracy, 
the expected QoS for different V2X services with diverse requirements; the QoS that is pro-
vided to the vehicles depends on different factors, namely the availability of radio and net-
work resources, the environment characteristics (e.g., physical obstacles such as buildings, 
blind spots, etc.), as well as the mobility characteristics of the vehicles (e.g., a high velocity 
vehicle will potentially require consecutive handovers from the network, which will impact 
the QoS). The QoS metric that is studied each time is tailored in accordance with the specific 
V2X application requirements, namely uplink or downlink data rate, end-to-end delay, relia-
bility, packet loss, etc. 

On the one hand, in order to adequately assess the provided QoS for the respective V2X 
service and be able to accurately predict it for future time windows, the mechanism needs 
to correlate information from the different network segments, which comprise the end-to-
end communication path. As also described in the respective 3GPP’s study on application 
layer support for V2X services [31], this end-to-end communication path depends on the 
type of the V2X application/service, i.e., V2V, V2I, V2N or V2P. On the other hand, besides 
the air/link propagation aspects, additional delay-introducing components contribute to the 
E2E network performance, such as device buffers, computing Virtual-Network-Functions / 
Physical-Network-Functions (VNFs/PNFs), backhaul link capacities, as well as core network 
components processing resources and load. The input context parameters, which can be 
utilized to train the ML model the proposed scheme is grouped in five main categories, as 
illustrated in the following table (Table I): 

 

Table 2 The five categories of input context parameters of PreQoS 

Category Description Input Metrics 

Mobility Information Vehicle/UE mobility-related 
data. The optional mobility 
information is only required 
in the case of Trajectory pre-
diction of the UE. 

Required: latitude, longitude 
and timestamp for each loca-
tion. 
Optional: velocity and accel-
eration vectors, heading, pre-
dicted path, trajectory con-
strains (e.g., road limits), etc. 

Radio Parameters Radio-related, passive meas-
urements provided via the 
UE-based measurement 

Received Signal Strength In-
dicator, RSRP, RSRQ, CQI, 
SINR, client (Global Position 
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reporting to the gNB/eNB. 
These metrics are comple-
mentary, in order to enhance 
the prediction. 

System, velocity, heading), 
geolocation map. 

RAN / facilities layer Latency-introducing network 
components related to 
queues, computing re-
sources’ capacity, etc. 

Roadside unit (RSU)-related 
network load, RSU-queues 
load, Number of UEs associ-
ated to Base Station, availa-
bility of MEC/cloud compu-
ting resources. 

E2E network performance Network measurements re-
lated to the E2E service, in-
cluding transport and core 
network measurement infor-
mation. 

Transmission/queueing de-
lays, backhaul link capaci-
ties, VNF processing delays, 
etc. 

Application- specific infor-
mation 

Tailored, application-oriented 
information that influences 
the performance of V2X ser-
vice (e.g., V2X group- based 
communications, such as 
platooning). 

Service priorities group / 
cluster-based communication 
type, cluster head nodes, 
etc. 

 

It is highlighted that the above table illustrates the information item types that can be pro-
cessed during the offline training process, if available. The operation of the described algo-
rithm follows this flexible approach enabling the processing of the data and the generation 
of the respective prediction, depending each time on the specific network deployment, in-
terfaces, and available real-time data sources, which often comprise only a sub-set of the 
afore-presented information items. 

3.2 System Model 

We consider a prediction communication system, in which a number of u ∈ U mobile users 
(i.e., vehicles) are consuming a number of different V2X services s ∈ S and are notified by 
the network about a predefined set of QoS-related KPIs k ∈ K such as uplink/downlink data 
rate, packet error rate, or end-to-end delay. Hence, each time the system must perform a 
prediction for u x k KPIs, which are then processed by the respective V2X applications for 
possible required adaptations.  

The prediction approach can be defined to be performed in two possible ways: a) in a pre-
defined (according to the V2X service specific requirements) periodic manner, b) upon 
change of the predicted QoS values/value classes (i.e., as the user moves along a path with 
heterogeneous radio propagation characteristics, or the network conditions change -for ex-
ample a high number of new vehicles enter the specified area). 

We assume that the actual computation tasks are performed by the 5G Core Network’s 
Prediction Function (PF), which is assumed to be a module, part of the wider NWDAF [2]; 
the PF can be deployed either at a MEC server or a cloud center, as part of the rest of the 
Core Network functions and entities. In the case of a MEC system, the delays and packet 
losses in backhauls and core networks are considered equal to zero, according to the input 
parameters modelling presented in the previous subsection. 

1. Geographical space as a grid: The considered geographical space (map) is modelled based 
on grid-tile approach, namely Map-as-a-Grid (MaaG), comprising rectangular cells towards 
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applying the prediction in a discrete manner (Figures 1a and 1b). It should be highlighted 
that from now on, the term grid cell is not to be confused with the base station notion of cells, 
in the context of cellular networks; grid cells will refer to the geographical grid-based model 
of the proposed algorithm. Based on a recursive QoS metric assessment (i.e., SINR, ul/dl 
average delay or data rate, etc.), mapped to the discrete map grid cells, the second step is 
the clustering of grid cells, in a way that the clusters demonstrate similar behavior in terms 
of QoS metrics for all the vehicles/UEs’ QoS measurements in the specific clustered cell. 
The detailed algorithmic steps are presented in the next subsection. 

 

Figure 1. (a) MaaG – Step 1: Initial grid modeling. 

 

 
(b) 

Figure 1. (b) MaaG – Step 2: Grid after the QoS-based correlation clustering. 
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The major advantage of this approach is the minimization of the computational overhead, 
as the prediction is applied in a discrete manner, i.e., per cluster, rather than for the contin-
uous coordinate system’s space or single users. In other words, the geolocation information 
(i.e., latitude, longitude) of each measurement is transformed via the MaaG mapping to one 
specific grid cell or grid cell cluster. This results in a reduction of the required computing 
tasks from u x k predicted values, to c x k, where c ∈ C, the defined clusters of the system 
and c ≤ u. 

2. Time-based modeling: The time is modeled using periodicity features based on the rationale 
that -besides the network resources’ availability or the radio propagation characteristics- the 
QoS is also radically influenced by the actual users’ load, i.e., the road traffic volume and 
density characteristics, which in turn relate to specific weekly vehicle mobility patterns (i.e., 
weekdays, weekends, etc.). This approach relies on the intuition that the service traffic-re-
lated data follow a seasonal pattern on a weekly interval and therefore during training (Fig-
ure 3) it is able to capture that seasonality. Moreover, the model can be flexibly adapted in 
order to perceive other types of seasonality characteristics, such as annual or monthly, 
which can be taken into account (e.g., different road traffic patterns during Holidays). Fur-
thermore, specific vehicle volume/mobility characteristics can be identified on single day-
basis, meaning that the traffic follows specific patterns on a daily basis (rush hours during 
morning, lower traffic during night, etc.). To this end, the time dimension of the prediction 
horizon is discretized into T slots of a predefined duration, namely QoS window, for which 
the QoS metrics of a specific grid cell exhibit a low to near-zero variance; the QoS window 
is considered as the prediction horizon for each single prediction. An example value with fair 
granularity for the QoS window for a single cell/cluster could be defined at 1 minute with a 
weekly seasonality; this translates to 60 min x 24 hours x 7 days = 10,080 slots for a weekly-
based prediction model. The second step is to normalize the time dimension, depending on 
the periodicity of the model to be generated (e.g., time is normalized from 0 to 1 for one-
week duration using min/max normalization or standardization). It should be highlighted that 
the described prediction horizon refers to the temporal length of a specific prediction model 
for a specific Grid Cell and is different from the prediction granularity, which is at the level of 
ms. 

 
Based on the aforementioned analysis, regarding the seasonality of the data, the interval 
could be daily, weekly, monthly, annual, etc. In order to choose the appropriate interval, 
during data pre-processing i) the interval that suggests a cyclic pattern should be chosen 
and ii) the training data must be sufficient for each timestamp. 

 

Figure 2 Prediction validity duration via calculation of traversed cells 
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According to the validity duration requested by each specific V2X application, the predicted 
data rate/latency/packet error rate values are extracted based on a one-to-one mapping, 
depending on the cluster cells that are traversed during this time duration. The traversed 
cells are computed based on the vehicle’s position and mobility characteristics (i.e., velocity 
and heading). Figure 2 illustrates an example of the afore-described concept. Let us denote 
prediction validity duration, for which the vehicle path comprises three adjacent cells and 
where d = d1 + d2 + d3. 

3.3 PreQoS Algorithmic Framework 

The workflow of the PreQoS algorithm is described in Figure 3. The main algorithmic steps 
comprise the training of the data, the application of the regression model, the cell clustering 
and the extraction of the respective ML model 

 

 
Figure 3. Overview of PreQoS Algorithmic Framework 
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Figure 4. Algorithm 1 Latitude and Longitude to Grid Cell Id 

As illustrated in Figures 3 and 4, the first steps of the algorithm comprise i) the aggregation 
of the different input data types, as presented in Table I, as well as ii) the pre-processing of 
the input data, where a geospatial and a data seasonality analysis is performed, towards 
determining the Grid Size (num. of grid cells) and the time interval respectively. 

As a part of the PreQoS workflow, Algorithm 1 presents the steps for determining the grid 
cell ID of a sample, given its latitude and longitude. The grid cell ID follows a two-dimensional 
array-modeled indexing [row, column] in ascending order [top to bottom, left to right]. Each 
unique identifier of a geographical cell is used in order to intuitively perceive the location of 
a Grid Cell in the Geographical space, as well as, generate a Regression model for each 
cell and save it to memory. At this point, the samples contained within a single Grid Cell are 
used as input for the ML model of this specific Cell, as shown in Figure 5. Given that the 
spatial aspect of the data has already been captured, by the MaaG scheme, the timestamp 
of each sample is used as the independent variable input for each Regression Model, with 
each QoS metric being the dependent variable. 

Figure 5. Regression Model for each Grid Cell 
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As it is described in higher detail in the Evaluation Section, a set of different well established 
regression ML models have been considered and compared. A confidence interval in the 
prediction is considered, in order to capture the uncertainty in our predictions (e.g., upper 
bound of an end-to-end delay prediction, lower bound of a data rate prediction, etc.). For the 
definition of the prediction confidence interval, the Quantile Loss Function (QLF) is em-
ployed (Equation 1), where Quantile-based regression aims to estimate the conditional 
“quantile” of a response variable given certain values of predictor variables. For example, if 
the requested Confidence Interval is 90\%, then the $\alpha$ (alpha) of the QLF in the ML 
model will be set equal to 0.1, in order to estimate the 10- and 90-quantiles. 

 

, where ξi is each sample’s real y value. 

The last step of the algorithm is the Optimization of the Prediction Model in terms of Grid 
Cell Clustering and Partitioning (Figure \ref{ml1}). Intuitively, a larger number of Grid Cells 
results in higher granularity and higher prediction accuracy; at the same time, this results in 
a larger number of Grid Cell models, which must be accommodated in memory, leading to 
performance deterioration. Cell Clustering is performed, as a final step of the proposed al-
gorithm in order to evaluate the afore-described trade-off; detailed results are presented in 
the Evaluation section. This means that cells with correlated QoS behavior over time are 
clustered together into a Grid Cluster. Pearson correlation is used (Equation 2), in order to 
measure the linear correlation between two time series, where if the absolute value of the 
Pearson correlation coefficient (PCC) is greater than a predefined threshold (e.g., 0.85, 
0.90, 0.95 etc.), the cells now reference to the same ML model, thus forming a cluster. The 
choice of the correlation threshold value, is determined during analysis, requiring that the 
average accuracy error doesn't increase significantly, given the trade-off with the memory 
and CPU consumption. 

 

, where we calculate the PCC between two different Grid Cell Regression models a) and b). 
Moreover, the sample size value n is an equidistant sequence in the x axis, derived from the 
predefined time interval, with each yi being the QoS metric prediction for the specific xi. 

The Grid Cell Partitioning is also illustrated in the context of the Prediction Model Optimiza-
tion step in Figure 3. In the same rational with the Grid Cell Clustering, if a Grid Cell is not 
able to fully capture the spatial aspect of the Data, the Variance in the QoS features within 
the Cell will be very high. Therefore, the coefficient of determination (R2) for each ML model 
is calculated, and if R2 is lower than 0.5, the cell is further partitioned into 4 sub-cells, in 
order to increase the robustness of the input data to the respective ML models. 
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4. EVALUATION 

In order to evaluate the performance of the proposed mechanism, we implemented a real-
world simulated mobility scenario using Simulation of Urban Mobility (SUMO) [39], which is 
an open source, highly portable, microscopic and continuous traffic simulation package de-
signed to handle large networks. It allows for intermodal simulation including pedestrians 
and comes with a large set of tools for scenario creation. It is mainly developed by employ-
ees of the Institute of Transportation Systems at the German Aerospace Center.; afterwards, 
the extracted mobility patterns were imported into NS-3 discrete-event Network Simulator 
[40], which is a discrete-event network simulator for Internet systems, targeted primarily for 
research and educational use. NS-3 is free software, licensed under the GNU GPLv2 li-
cense, and is publicly available for research, development, and use. NS-3 was used for 
performing a complete, end-to-end communication scenario for a specified time duration, 
exploiting the 5G mmWave module, introduced in [41]. The simulated geographical area 
that was selected for the performed evaluations is located in Munich, Germany near the 
Huawei Munich Research Center. 

In Figure 6a, we present the real location in Munich as it has been retrieved via Google 
Maps, along with the specific deployment location of the two Base Stations (BSs), while in 
Figure 6b the SUMO-based transformation into the virtual scenario is illustrated. Overall, 
Table 3 presents a summary for all the parameters used in the mobility simulation. 

Table 3. Parameters Used in the Mobility Simulation Environment 

Number of UEs Velocity Range 
(km/h) 

Acceleration 
(m/s) 

Deceleration 
(m/s) 

Scenario 
Duration (s) 

50 [0,20] 0.8 0.8 200 

 

 
Figure 6. (a) Geographical Location as it has been retrieved from Google 
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Figure 6. (b) The Geographical Location converted in SUMO mobility simulation tool 

 

ToD is the V2X use case that has been modeled in the specified simulation scenario. The 
goal of the ToD use case is to enable a remote driver to remotely control a vehicle in the 
case that the driver of the vehicle cannot drive in an efficient and safe manner e.g., due to 
a health issue or in the case that an autonomous vehicle may detect a situation that’s un-
certainty is high and cannot make the appropriate decision for a safe and efficient maneuver. 
At the uplink interface the vehicle provides to the remote driver video streams of high quality 
and status information of the HV. The Remote Driver based on the received information 
builds her situation awareness and taking into account the destination point selects the ma-
neuver instructions. The vehicle receives from the Remote Driver (downlink) the maneuver 
instructions and adjusts its trajectory, speed, acceleration. Feedback is provided to the Re-
mote Driver in parallel with the execution of the maneuver. The uplink and downlink data 
rate of each remote-driven vehicle (UE) is 50Mbps and 500kbps, respectively. 

The simulation scenario comprises of 50 different moving ToD UEs, with variable speeds in 
the range [0, 20km/h] with 0.8m/s of acceleration and 0.8m/s of deceleration. The duration 
of each executed simulation is 200 seconds and the sampling frequency of QoS data is 1 
Hz. The UEs experience different channel conditions according to their line-of-sight/non-
line-of-sight (LOS/NLOS) positions and respective distance from the BSs, while each mo-
ment being associated to a single BS. Horizontal, X2-based handover is enabled in the sce-
nario, based on the RSRQ measurement reporting of the UEs. Overall, Table 4 presents a 
summary of the simulation configuration parameters. 
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Table 4. Parameters Used in the NS-3 Simulation Scenario 

Parameter Description Default Value 

5G NR / LTE Scheduler Propotional Fair Scheduler 

5G NR / LTE eNBs’ Height 24m 

UEs’ Height 1.6m 

Uplink Data Rate 50 mbps 

Uplink Packet Size 1400 bits 

Downlink Data Rate 500 kbps 

Downlink Packet Size 1400 bits 

5G NR Frequency Used 28 GHz 

LTE Uplink Frequency 1920 MHz 

LTE Downlink Frequency 2110 Mhz 

Service Level Latency 40 ms 

LTE Transmission Power 46 dBm 

5G New Radio (NR) Transmission Power 30 dBm 

UEs’ Transmission Power  20 dBm 

LTE Downlink and Uplink Bandwidh 20 MHz 

5G NR Downlink and Uplink Bandwidth 1 GHz 

 

The metric that was selected for the evaluation of the proposed algorithm is the downlink 
end-to-end delay, which is a crucial QoS KPI for the successful realization of the ToD use 
case [41]. Initially, a comparison was performed between a low and a high network load 
scenario-in terms of associated vehicles/UEs-, in order to assess the relative load for the 
particular environment and network set up, and how each selection influences the downlink 
delay KPI. As it is shown in Figure 7, in the case of a low load scenario with 5 ToD UEs low 
and stable downlink end-to-end delay is observed due to the system's abundance of re-
sources. In the case of a high load scenario, where 50 ToD UEs are driving there is an 
increase of the observed downlink delay. An accurate and early prediction of an expected 
increase of the downlink delay is important for the efficiency of the ToD service, since this 
will enable an efficient adaptation of the ToD application and/or of the network side. The 
high load scenario is used for the rest of the evaluation section to show the prediction per-
formance in as much realistic and challenging conditions as possible. 
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Figure 7. Average system downlink end-to-end delay (ms) for the two scenarios (5 and 50 UEs re-

spectively) 

In the rest of the section, we present the outcomes of the evaluation of the aforepresented 
prediction scheme, differentiating between two main ML algorithm groups: the one is de-
scribed as non-MaaG, i.e., an approach, in which we do not employ the Map-as-a-Grid 

spatiotemporal algorithm presented earlier, and which comprises two different ML models, 
namely a Random Forest Regressor Model (RF-R) and a K-Nearest Neighbor Regressor 

(KNN-R); in this first group, the spatial input follows a simple map coordinates format 
(timestamp, longitude, latitude). The second approach follows the MaaG model, and three 
different ML algorithms are applied on top, namely a Deep Neural Network (DNN), a Gra-
dient Boosting Machine (XGBoost), as well as a Support Vector Regression (SVR) model. 

Table 5 presents an overview of the training parameters that were used for each one of 
the above ML models. 

Table 5. ML Algorithms Configuration 

Algorithm Training Parameters 

RF-R Number of Trees (Estimators): 300, Features per split: 3 (latitude, longitude, 
timestamp), Maximum Depth of a Tree: 110 

KNN-R Number of Neighbors: 5, Weight function: Distance 

DNN Layers 64x64x32x1, Activation Function Relu, Loss: Quantile Loss function, 
Training Parameters: Optimization Adam, Initial Learning Rate: 0.01, Epochs: 
150, Bath size: 150 

XGBoost Estimators: 1550, Depth: 7, Learning Rate: 0.001, Sample Threshold: 100, 
Loss: Least Squares 

SVR Polynomial Transformation of data: Degree 7, Kernel: RBF, C penalty: 0.01 

The Accuracy Error, which is illustrated as the primary evaluation metric in the following 
figures refers to the prediction accuracy of the downlink delay KPI, using the Quantile Loss 
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Function with alpha = 0.5, which we define employing the Mean Absolute Error (MAE) met-
ric: 

 

, where n is the number of samples in the testing dataset, yi is the actual value of the metric 
(e.g., DL delay) and yi is the predicted value from the ML Regression model. The Accuracy 
Error is calculated as the average of the total Grid Cell MAEs for a specific Grid. 

Towards evaluation, -and for all the results that are presented henceforth- we apply a 10-
fold cross-validation method for each grid cell's ML Regression Model; the results from the 
folds are then averaged, to produce a single estimation for evaluation metrics such as pre-
diction accuracy (error), F-test and the coefficient of multiple correlation R2, which is ex-
plained in higher detail in the following paragraphs. The prediction accuracy from the 10-
fold cross-validation of each model is used, in order to find the optimal parameters of each 
ML Model, as shown in Table 5. Moreover, the accuracy error of the following figures refers 
to the prediction accuracy of the downlink delay KPI, measured in milliseconds (ms), using 
the aforementioned MAE loss function. Finally, the dataset is shuffled between each fold, in 
order to test points spanned across the various time interval, given that the model has to be 
fitted adequately for Interpolation, with no need for adequate extrapolation capabilities. 

The data used for the testing of each model, consist of a chunk of data that the model had 
never seen before during the training phase. Using the 10-fold cross-validation method, the 
testing data was different in each of the ten iterations, having the overall error calculated by 
taking the average error (measured by the MAE loss function) of all iterations. This process 
is then repeated for every Grid Cell's ML Regression model, where finally, the average of all 
the trained models' errors results in the final evaluation value. 

In order to assess the behavior of the map grid modeling, we perform as a proof-of-concept 
six different grid cell models (i.e., number of correlated prediction location cells), applying 
different spatial granularity of the prediction models. 

Figure 8 illustrates the average DL Delay prediction accuracy error, based on the averaged 
MAE values, calculated for each Grid Cell, for each MaaG-enabled ML regression model, 
for different Grid size options. The dataset size of this experiment is 50.000 samples. The 
number of Grid Cells is initialized with 1 (meaning no grid at all in this case) and it is in-
creased gradually to a 6x6 Grid (i.e., 36 Grid Cells); accordingly, it can be observed that the 
average error value decreases in an exponential manner from ~ 9 ms (due the high variance 
in the data, by not capturing any geo-spatial information within the data) down to ~ 2 ms for 
Grid size = 36. This is the direct result of the geospatial aspect of the samples being taken 
into account, mitigating the overall prediction error. All three ML models exhibit an almost 
identical performance. 
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Figure 8. Absolute Accuracy Error based on the number of Grid Cell 

Figure 9 illustrates the evaluation results for the aforementioned five different algorithms 
(non-MaaG- and MaaG-based), indicating the mean absolute error (MAE) of the DL delay 
QoS metric, in ms. The Grid size for the MaaG-featured experiment is 16x16, hence gen-
erating 256 Grid Cells and regression models respectively (each one per single Grid Cell); 
the Error illustrated in the y axis is calculated as the average of the 256 MAE values of the 

afore described Grid configuration.  

For smaller training data volumes available from the network, the non-MaaG algorithms ex-
hibit a better performance; for very small samples of the order of 1k raw measurements, the 
MAE of the non-MaaG algorithms is 2.2, while the MaaG-enabled schemes exhibit an almost 
double MAE of 3.9-4.6 (mean 4.1); on the contrary, as the input training data volume in-
creases, the MaaG algorithms' performance gradually increases; for sample sizes of 100k 
measurements or more, MaaG algorithms outperform the non-Maag, reaching an optimal 
MAE of 2.2 down to 1.6, for the MaaG-enabled DNN algorithm. 



Prediction Quality of Service in 5G Networks 

A.Kalamari     35 

 
Figure 9. Absolute Accuracy Error per Sample Size 

As mentioned earlier, the superiority of the MaaG model is exhibited, when applied on a 
sufficiently extensive sample size, in order to fully capture the spatial, as well as, the tem-
poral aspects of the available dataset. The size of the dataset required, in order to minimize 
the error, is directly proportional to the size of the geographical space examined, as well as, 
the time interval chosen, based on the seasonality the model is trained to capture. Moreover, 
it is worth noting that the time interval chosen in this evaluation, is a daily interval, thus, in 
the absence of adequate samples in the temporal domain, the model needs to extrapolate 
to a considerable extent, whereas the model performs better for interpolation. 

 
Figure 10. Coefficient of Determination based on the number of Grid Cells 
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The gains obtained by the MaaG model are shown when evaluating the coefficient of deter-
mination (Equation 4), or the coefficient of multiple correlation R2 (Figure 9). 

 

, where “n” is the number of samples, with each sum including the whole dataset size [0, n]. 

The specific figure illustrates how the R2 metric increases, as the spatial granularity of the 
MaaG model increases as well, leading to more accurate prediction results. It should be 
highlighted that the specific values result without the last step of the grid cell clustering. The 
coefficient of determination is the correlation between the variable's values and the best 
predictions that can be computed linearly from the predictive variables, or more simply, it's 
a statistical measure of how close the data are to the fitted regression line. Moreover, R2 
values lie in the [0,1] range, where a higher value translates to better correlation and indi-
cates that the model explains the variability of the response data around its mean more 
accurately. Figure 10 illustrates how increasing the number of the grid cells, increases the 
R2 score, hence, the robustness of the prediction. This is due to the fact that the spatial 
aspect of the data is further captured by the algorithm, thus, outliers in the temporal domain 
are eliminated. As illustrated, without using MaaG (grid size = 1), the R2 score is significantly 
low, due to the large data dispersion caused by the geospatial variance of the samples. 
Thus, the fitted line of the tested models, although trained to provide the prediction with the 
optimal error, will provide a poor prediction accuracy, given the direct correlation between 
the prediction error and the R2 score. 

Figure 11. Absolute Accuracy Error per Cluster Size 

For the evaluation of the last algorithmic step, i.e., the Grid Cell clustering using the Pearson 
Correlation method, Figure 11 illustrates the average prediction accuracy error for different 
clustering parameters. In more detail, the Pearson Correlation Coefficient (PCC) threshold 
(Equation 2) is evaluated for different values, namely ranging from 0.80 to 1. Higher PCC 
threshold values translate to higher ("strict") correlation between different Grid Cells, as well 
as higher number of Grid Cells (i.e., higher granularity of the Grid model). Accordingly, for 
lower PCC threshold values, the correlation between Grid Cells becomes "looser", hence, 
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more Grid Cells are clustered together, resulting in fewer Grid Clusters. As already dis-
cussed in the previous section, a trade-off is created between the model granularity/accu-
racy error, and the memory consumption -and as a result the overall performance- of the 
predictive QoS scheme. 

As it is intuitively expected according to the above, all three algorithms exhibit optimal pre-
diction accuracy for the highest granularity (no clustering performed), however, the number 
of the models that have to be accommodated is maximum (i.e., 1000 in the specific sce-
nario), resulting in a low performance in terms of prediction execution time. The DNN and 
XGBoost algorithms exhibit a very similar performance, while the SVR algorithm exhibits 
slightly inferior performance (0.2 to 0.8 ms of accuracy error in absolute values). All in all, 
as it is can be inferred by Figure \ref{eval8}, significant gains are reported by performing a 
controlled Cell Clustering approach: For example, a $PCC$ value selection equal to $0.9$, 
can result in a 93\% reduction in the overall number of Grid Clusters (leading thus, to a 
significantly higher execution performance), while the cost in the Accuracy Error will be less 
than 1 ms in absolute values, which is negligible for the specific ToD use case. 
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5. CONCLUSION 

This thesis paper presented a QoS prediction scheme for V2X communications, namely 
PreQoS, is able to accurately predict predefined QoS metrics, such as uplink / downlink 
delay or data rate, ultimately enabling the network and involved applications to perform the 
required adaptations for avoiding service interruption. A detailed system model was pre-
sented, describing the spatial and temporal modeling of the solution. Additionally, an exten-
sive analysis of the machine learning methods that were applied was presented. Last but 
not least, an extensive evaluation was performed via a real world-based simulated network 
deployment that proves the viability and validity of the proposed scheme for the foreseen 
challenging V2X and CAM use cases. 
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ABBREVIATIONS – ACRONYMS 

QoS Quality of Service 

V2X Vehicle to Everything 

PreQoS Prediction Quality of Service 

ul uplink 

dl downlink 

SUMO Simulation of Urban Mobility 

NS3 Network Simulation 3 

SDN Software-Defined-Networking 

ML Machine Learning 

AI Artificial Intelligence 

NWDAF Network Data Analytics Function 

5QIs 5G Quality of Service Identifiers 

CAM Connected and Automated Mobility 

C-V2X Cellular – Vehicle to Everything 

5GC 5G Core 

RAN Radio Access Network 

UC Use Case 

ToD Tele-operated driving 

MEC Mobile/Multiple Access Edge Computing 

E2E End-to-End 

MaaG Map-as-a-Grid 

Gbit/s Gigabits per Second 

ISP Internet Service Provider 

IoT Internet-of-Things 

LTE Long Term Evolution 

V2I Vehicle to Infrastructure 

V2N Vehicle to Network 

V2V Vehicle to Vehicle 

V2P Vehicle to Pedestrian 

NN Neural Network 

MD Maximum Dependency 

ARIMA Auto-Regressive Integrated Moving Average 

RSRQ/RSRP Reference-Signal-Received-Quality/Power 

SINR Signal-to-Noise Ratio 
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LSTM Long Short-Term Memory 

CQI Channel Quality Indicator 

OFDMA Orthogonal Frequency-Division Multiple Access 

RT Ray-Tracing 

TPDIG Threshold Percentage Dependent Interference Graph 

mSC Moving Small Cell 

RB Resource Block 

CF Collaborative Filtering 

KLMS Kernel Mean Least Square 

KPI Key Performance Indicator 

VNF Virtual-Network-Function 

PNF Physical-Network-Function 

RSU Roadside Unit 

PF Prediction Function 

QLF Quantile Loss Function 

PCC Pearson Correlation Coefficient 

BS Base Station 

NR New Radio 

RF-R Random Forest Regressor Model 

KNN-R K-Nearest Neighbor Regressor 

DNN Deep Neural Network 

XGBoost Gradient Boosting Machine 

SVR Support Vector Regression 

MAE Mean Absolute Error 

 



Prediction Quality of Service in 5G Networks 

A.Kalamari     41 

ΑΝΝΕΧ Ι 

In order to take advantage of the functions that NS3 – version 27 - can provide us, there is 

a list of packages that needed to be installed [40]. 

 

• Minimal requirements for C++ users:  
 

 

apt install g++ python3 
 
 

• Additional minimal requirements for Python:  
 

 

apt install python3-setuptools git 
 
 

• Netanim animator: qt5 development tools are needed for Netanim animator; qt4 will 

also work but we have migrated to qt5: 
 
 
 

apt install qtbase5-dev qtchooser qt5-qmake qtbase5-dev-tools 
 
 

• Support for ns-3-pyviz visualizer: 
For Ubuntu 18.04 and later, python-pygoocanvas is no longer provided. The ns-3.29 
release and later upgrades the support to GTK+ version 3, and requires these pack-
ages:  

 

 
apt install gir1.2-goocanvas-2.0 python3-gi python3-gi-cairo python3-

pygraphviz gir1.2-gtk-3.0 ipython3 

 

• Support for MPI-based distributed emulation  
 

 

apt install openmpi-bin openmpi-common openmpi-doc libopenmpi-dev 
 
 

• Support for bake build tool:  
 

 

apt install autoconf cvs bzr unrar 
 
 

• Debugging:  
 

 

apt install gdb valgrind 

 

• Support for utils/check-style.py code style check program  
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apt install uncrustify 
 
 

• Doxygen and related inline documentation:  
 

 

apt install doxygen graphviz imagemagick 
 

apt install texlive texlive-extra-utils texlive-latex-extra texlive- 
 

font-utils dvipng latexmk 
 
 

• The ns-3 manual and tutorial are written in reStructuredText for Sphinx (doc/tutorial, 

doc/manual, doc/models), and figures typically in dia (also needs the texlive pack-

ages above): 
 
 
 

apt install python3-sphinx dia 
 
 

• To read pcap packet traces:  
 

 

apt install tcpdump 
 
 

• Database support for statistics framework  
 

 

apt install sqlite sqlite3 libsqlite3-dev 
 
 

• Xml-based version of the config store (requires libxml2 >= version 2.7)  
 

 

apt install libxml2 libxml2-dev 
 
 

• Support for generating modified python bindings  
 

 

apt install cmake libc6-dev libc6-dev-i386 libclang-dev llvm-dev au- 
 

tomake python3-pip 
 

python3 -m pip install --user cxxfilt 
 
 

Note: Ubuntu versions (through 19.04) and systems based on it (e.g., Linux Mint 18) default 

to an old version of clang and llvm (3.8), when simply 'libclang-dev' and 'llvm-dev' are spec-

ified. The packaging on these 3.8 versions is broken.  

Users of Ubuntu will want to explicitly install a newer version by specifying 'libclang-6.0-dev' 

and 'llvm-6.0-dev'. Other versions newer than 6.0 may work (not tested). 
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ΑΝΝΕΧ ΙΙ 

Build and installation for SUMO tool for MS Windows [39]: 

 

By default, SUMO provides pre-compiled binaries and CMake files to generate Visual Studio 

projects and can supply the dependent libraries using: 

 

    git clone --recursive https://github.com/DLR-TS/SUMOLibraries 

 

Prerequisites: 

• A Visual Studio Community, Professional or Enterprise 2015 or later installation. 
 

• CMake for Windows. 
 

• Python 3.X. 
 

• SUMO sources (either an unpacked src zip or a git clone, see Getting the source 

code). 

 
• Installed Libraries (Xerces-C, Proj, Fox) preferably by cloning the aforementioned 

repository. 

 
• Make sure that the SUMO_LIBRARIES environment variable points to your cloned 

directory. 
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