

NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE

DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

PROGRAM OF POSTGRADUATE STUDIES
"Computing Systems: Software and Hardware"

Master Thesis

 Management of Scientific Analysis and Simulation Workflows
over High Performance Computing Systems

Sofia N. Karvounari

Supervisor Yannis Ioannidis, Professor

Athens

 MAY 2022

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ

"ΥΠΟΛΟΓΙΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ: ΛΟΓΙΣΜΙΚΟ ΚΑΙ ΥΛΙΚΟ"

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Διαχείριση Επιστημονικών Ροών Εργασίας Ανάλυσης και
Εξομοίωσης Υπερυπολογιστικών Υποδομών

Σοφία Ν. Καρβουνάρη

Eπιβλέπων Ιωάννης Ιωαννίδης, Καθηγητής

ΑΘΗΝΑ

ΜΑΙΟΣ 2022

Master Thesis

Management of Scientific Analysis and Simulation Workflows over High Performance

Computing Systems

Sofia N. Karvounari

Α.Μ.: M1531

Supervisor Yannis Ioannidis, Professor

May 2022

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Διαχείριση Επιστημονικών Ροών Εργασίας Ανάλυσης και Εξομοίωσης
Υπερυπολογιστικών Υποδομών

Σοφία Ν. Καρβουνάρη

Α.Μ.: M1531

Eπιβλέπων Ιωάννης Ιωαννίδης, Καθηγητής

Μάιος 2022

ABSTRACT

During the last decade, research communities had been seeking ways for addressing
complex scientific problems by harnessing the power of high-performant and scalable
computing infrastructures. Many of these communities belong in the area of Life Sciences,
from bioinformatics and medicine, up to neuroscience and brain research. Most modern
scientific problems require powerful underlying computing infrastructures that can handle
the load, the complexity, the execution of time consuming tasks and the big data that are
produced. These powerful infrastructures consist of High Performance Computing systems
with scalable computing, storage and network resources for analysis, simulation and
execution of high-intense and complex computing tasks. European Research
Infrastructures offer such High Performance Computing systems to European scientists
and researchers in order to adhere to Open Science, research and innovation.

More and more scientific communities create, manage and share complex scientific
workflows in an automated and user friendly way while using High Performance
Computing systems in order to execute them. Moving towards an Open Science,
automation of scientific workflows is not enough. In order to have reproducible scientific
workflows, it is mandatory for scientists to describe workflows in a standard and common
format. This offers characteristics such as portability, scalability and accessibility. In
addition, it allows the immediate use of methods and data as-is or as inputs to other
scientific workflows, creating important scientific value chains.

In the current thesis, we focus on EBRAINS, a digital European Research Infrastructure,
which specializes in brain neuroscience, one of the most ambitious, promising, and
important fields of research that has been a priority for Europe for over a decade, offering
tools, services and data to its users. FENIX ICEI, which is the EBRAINS underlying
infrastructure, provides a plethora of High Performance Computing services, ranging from
scalable and interactive computing, up to virtual machines and containerization services,
as well as highly performant data storage services.

After an extensive research, we recorded the state of the art High Performance Computing
systems while focusing on their architecture. Also, we collected different ways of
describing scientific workflows which are coupled with the different software in which they
are executed. Last but not least, we collected different ways in which research
communities describe scientific workflows focusing on Life Science. We also analysed and
assessed the EBRAINS users’ needs while understanding what is the current state, what
are EBRAINS users’ requirements and how to full fill those.

The current thesis’ goal is the establishment of a pilot workflow management system for
EBRAINS. Our approach based in four pillars:

• First, we chose Common Workflow Language (CWL), an open, common and
emerging standard format, as a way for describing both workflows and EBRAINS
tools. CWL offers portability and decouples the description of scientific workflows
from the execution of them. EBRAINS users will use CWL for authoring workflows
and EBRAINS tools.

• Second, we packaged EBRAINS tools with their required libraries, dependencies
and binaries via containerisation method. In that way these bundled EBRAINS tools
can be used as workflow steps, significantly enhancing their interoperability and
portability. EBRAINS users will also package their tools in the same way, in order to
be used as workflow steps by others.

• Third, we deployed a variety of workflow engines for workflow submission and
monitoring on top of the EBRAINS underlying infrastructure and chose those that

best fit the scientific and interoperability requirements of EBRAINS. EBRAINS users
will use Command Line Interfaces (CLI) for workflow submission and monitoring.

• We proposed an EBRAINS Hub for scientists to easily find, access and store their
scientific workflows. In the current thesis, we designed how this Hub will look like
taking into consideration the already available EBRAINS Knowledge Graph (KG)
service. As a future step, integrating such a feature with EBRAINS KG will take
place.

• Finally, we proposed an EBRAINS central place, a graphical user interface (GUI) in
which scientists can submit, monitor and parametrize workflows. The proposed GUI
has been fully designed but not implemented in the scope of the current thesis. The
design process is based on high fidelity mock-ups. EBRAINS users will use this GUI
instead of a CLI for a more user friendly experience. The real execution takes place
in the FENIX ICEI underlying infrastructure in an opaque way, in the same way as
using the CLI.

SUBJECT AREA: Workflow management

KEYWORDS: Workflows, Big data, High Performance Computing systems

ΠΕΡΙΛΗΨΗ

Την τελευταία δεκαετία, οι ερευνητικές κοινότητες αναζητούν τρόπους αντιμετώπισης
πολύπλοκων επιστημονικών προβλημάτων αξιοποιώντας τη δύναμη των Υπολογιστικών
υποδομών Υψηλής Απόδοσης (ΥΥΑ). Πολλές από αυτές τις κοινότητες ανήκουν στον
τομέα των Επιστημών Ζωής, από τη βιοπληροφορική και την ιατρική, μέχρι τη
νευροεπιστήμη και την έρευνα του εγκεφάλου. Τα περισσότερα σύγχρονα επιστημονικά
προβλήματα απαιτούν ισχυρές υπολογιστικές υποδομές που μπορούν να χειριστούν το
φορτίο, την πολυπλοκότητα, τη χρονοβόρα εκτέλεση υπολογιστικών εργασιών και τα
μεγάλα δεδομένα που παράγονται. Αυτές οι ισχυρές υποδομές αποτελούνται από
συστήματα ΥΥΑ με κλιμακωτούς υπολογιστικούς, δικτυακούς πόρους και αποθήκευση
που επιτρέπουν την ανάλυση, προσομοίωση και εκτέλεση πολύπλοκων εργασιών. Οι ΥΥΑ
προσφέρονται από Ευρωπαϊκές Ερευνητικές Υποδομές σε Ευρωπαίους επιστήμονες και
ερευνητές ώστε να συνδράμουν στην Ανοιχτή έρευνα, επιστήμη και καινοτομία.

Όλο και περισσότερες ερευνητικές κοινότητες δημιουργούν, διαχειρίζονται και μοιράζονται
πολύπλοκες επιστημονικές ροές εργασίας με αυτοματοποιημένο, φιλικό προς το χρήστη
τρόπο, ενώ χρησιμοποιούν συστήματα ΥΥΑ για την εκτέλεσή τους. Προχωρώντας προς
την Ανοικτή Επιστήμη, η αυτοματοποίηση των επιστημονικών ροών εργασίας δεν είναι
αρκετή. Προκειμένου να υπάρχουν αναπαράξιμες επιστημονικές ροές, οι επιστήμονες
πρέπει να περιγράφουν ροές εργασίας με μια κοινή και τυπική μορφή. Αυτό προσφέρει
χαρακτηριστικά όπως φορητότητα, επεκτασιμότητα και προσβασιμότητα. Επιπλέον,
επιτρέπεται η άμεση χρήση μεθόδων και δεδομένων ως έχουν ή ως είσοδος σε άλλες
επιστημονικές ροές εργασίας.

Στην παρούσα διπλωματική εργασία, εστιάζουμε στην ψηφιακή Ευρωπαϊκή Ερευνητική
Υποδομή EBRAINS, που ειδικεύεται στη νευροεπιστήμη του εγκεφάλου, ένα από τα πιο
φιλόδοξα και σημαντικά πεδία έρευνας που αποτελεί προτεραιότητα για την Ευρώπη
πάνω από μια δεκαετία, προσφέροντας εργαλεία, υπηρεσίες και δεδομένα στους χρήστες
της. Η υποκείμενη υπολογιστική υποδομή, το FENIX ICEI, παρέχει μια πληθώρα
υπηρεσιών ΥΥΑ, που κυμαίνονται από κλιμακώσιμη και διαδραστική υπολογιστική, έως
εικονικές μηχανές και υπηρεσίες αποθήκευσης δεδομένων υψηλής απόδοσης.

Μέσα από μια εκτενή έρευνα, καταγράψαμε τεχνολογίες αιχμής συστημάτων ΥΥΑ,
επικεντρώνοντας την προσοχή μας στην παρούσα αρχιτεκτονική τους. Επίσης,
συγκεντρώσαμε διαφορετικούς τρόπους αναπαράστασης επιστημονικών ροών εργασίας
που είναι άρρηκτα συνδεδεμένοι με τα λογισμικά στα οποία εκτελούνται. Τέλος,
παρουσιάσαμε τρόπους προτυποποιημένης μοντελοποίησης και εκτέλεσης συγγραφής
επιστημονικών ροών εργασιών επικεντρώνοντας το ενδιαφέρον μας σε ερευνητικές
κοινότητες γύρω από τις Επιστήμη Ζωής. Στη συνέχεια, αναλύσαμε και αξιολογήσαμε τις
ειδικές ανάγκες των χρηστών της υποδομής EBRAINS. Συγκεντρώσαμε τι μπορούν να
κάνουν οι χρήστες στην παρούσα χρονική στιγμή, ποιες είναι οι απαιτήσεις τους και πως
αυτές μπορούν να ικανοποιηθούν.

Η παρούσα διπλωματική εργασία έχει στόχο την δημιουργία ενός πιλοτικού συστήματος
διαχείρισης ροής εργασιών για την υποδομή EBRAINS. Η προσέγγισή μας στην
διπλωματική εργασία αυτή βασίστηκε σε τέσσερις πυλώνες:

• Αρχικά, επιλέξαμε την Common Workflow Language (CWL), ένα ανοικτό πρότυπο
για τον ορισμό τόσο των ροών εργασίας, όσο και των EBRAINS εργαλείων. Η CWL
προσφέρει φορητότητα και αποσυνδέει την περιγραφή ροών εργασίας από τα
περιβάλλοντα εκτέλεσης. Οι χρήστες της EBRAINS υποδομής θα χρησιμοποιούν
την CWL για την συγγραφή των επιστημονικών ροών εργασιών και των EBRAINS
εργαλείων.

• Στη συνέχεια, πακετάραμε (containarised) EBRAINS εργαλεία με τις απαιτούμενες
βιβλιοθήκες, εξαρτήσεις και δυαδικά αρχεία. Με τον τρόπο αυτό τα EBRAINS
εργαλεία μπορούν να χρησιμοποιηθούν ως βήματα σε ροές εργασιών, ενισχύοντας
σημαντικά τη διαλειτουργικότητα και τη φορητότητα. Οι χρήστες της EBRAINS
υποδομής θα πακετάρουν με τον ίδιο τρόπο τα δικά τους εργαλεία, ώστε αυτά να
μπορούν να χρησιμοποιηθούν από άλλους στη συγγραφή δικών τους
επιστημονικών ροών.

• Επιπλέον, εγκαταστήσαμε ένα πλήθος διαφορετικών μηχανών για υποβολή και
παρακολούθηση ροών δεδομένων στις ΥΥΑ του EBRAINS και επιλέξαμε αυτές που
ικανοποιούν με το βέλτιστο τρόπο τις επιστημονικές και τεχνικές απαιτήσεις του
EBRAINS. Οι χρήστες της EBRAINS υποδομής θα χρησιμοποιούν τη Διεπαφή
Γραμμής Εντολών (ΔΓΕ) για την υποβολή και παρακολούθηση των επιστημονικών
ροών εργασίας τους.

• Επίσης, προτείναμε να υπάρξει ένα αποθετήριο στην EBRAINS υποδομή ώστε οι
επιστήμονες της υποδομής να βρίσκουν και αποθηκεύουν εύκολα τις επιστημονικές
ροές δεδομένων. Στα πλαίσια της παρούσας διπλωματικής εργασία σχεδιάσαμε τον
τρόπο απεικόνισης ενός τέτοιου αποθετηρίου έχοντας ως βάση την ήδη υπάρχουσα
EBRAINS υπηρεσία (Knowledge Graph). Επόμενο βήμα και εκτός της παρούσας
διπλωματικής εργασίας θα είναι η ενσωμάτωση του αποθετηρίου με το EBRAINS
Knowledge Graph σύμφωνα με τις τεχνικές απαιτήσεις που θα υπάρχουν για ένα
ολοκληρωμένο σύστημα διαχείρισης ροών εργασίας.

• Τέλος, προτείναμε να δημιουργηθεί ένα γραφικό περιβάλλον διεπαφής χρήστη
(ΠΔΧ) στο οποίο οι χρήστες της υποδομής να μπορούν να υποβάλλουν,
παρακολουθούν και παραμετροποιούν τις επιστημονικές ροές δεδομένων. Σε αυτή
τη διπλωματική σχεδιάσαμε πως θα απεικονίζεται η διεπαφή με τεχνικές υψηλής
πιστότητας. Στο μέλλον και εκτός του πλαισίου της παρούσας διπλωματικής, θα
πραγματοποιηθεί η υλοποίηση μιας τέτοιας διεπαφής. Οι χρήστες της EBRAINS
υποδομής θα χρησιμοποιούν την διεπαφή αυτή αντί της ΔΓΕ για ένα πιο εύχρηστο
και φιλικό προς εκείνους περιβάλλον. Η πραγματική εκτέλεση των επιστημονικών
ροών γίνεται στην υποκείμενη ΥΥΑ υποδομή FENIX ICEI με εναν διάφανο για τους
EBRAINS χρήστες όπως ακριβώς και με τη χρήση της ΔΓΕ.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Διαχείριση Επιστημονικών Ροών Εργασίας

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Ροές εργασίας, Μεγάλα Δεδομένα, Υπολογιστές Υψηλής Απόδοσης

To my loving family

Maria & Nektarios, Konstantinos & Antonis.

ACKNOWLEDGEMENTS

I would first like to acknowledge my supervisor, Professor Ioannis Ioannidis for his support,
and trust to me to complete the current thesis. His inspiration all those years, from
undergraduate to graduate tutor as well as leader in projects I was participating, is
precious.

I would also like to express my gratitude to Spiros Athanasiou for his feedback, corrections
and for making this work possible. I am glad you guided and assisted me in the correct
direction.

I wish to thank all my colleagues at Athena Research Center participating in the Human
Brain Project (HBP) for their patience, advice and generous help given at any time.
Specifically, I would like to thank Eleni Mathioulaki for her valuable work and insights
which helped concluding the current thesis.

I would also like to thank Roleplay1 for the available mock ups used under the current
thesis.

My sincere appreciation to my dear friend, Aristotelis Kasomoulis, for his help in designing
a number of figures included in the current thesis. Thank you for your devoted time and
support to me.

Last but not least, my warmest regards to my beloved family for simply believing in me.

1 https://www.roleplay.gr/

https://www.roleplay.gr/

CONTENTS

1. INTRODUCTION ... 1

2. STATE OF THE ART .. 3

 2.1 Workflows ... 3

 2.1.1 Workflow terminology .. 3

 2.1.2 Workflow engines .. 6

 2.1.2.1 Snakemake .. 7

 2.1.2.2 Nextflow ... 8

 2.1.2.3 Airflow .. 8

 2.1.2.4 Pegasus ... 9

 2.1.2.5 UNICORE .. 9

 2.1.2.6 Toil ... 10

 2.1.3 Workflow authoring .. 10

 2.2 High Performance Computing .. 13

 2.2.1 Brief History ... 13

 2.2.2 Architecture .. 16

 2.2.3 Batch Systems ... 17

 2.2.3.1 Schedulers / Resource managers ... 17

 2.2.3.1.1 SLURM .. 18

 2.2.3.1.2 Torque .. 20

 2.2.4 Message Performance Interface ... 21

 2.2.5 Modules ... 21

 2.2.6 Storage .. 22

 2.2.6.1 Hot storages near HPC systems ... 22

 2.2.6.2 Cold storages ... 24

 2.2.6.3 Warm storages... 24

 2.2.7 Containerization ... 25

3. EBRAINS RESEARCH INFRASTRUCTURE ... 27

 3.1 European Research Infrastructure .. 27

 3.2 Introducing EBRAINS RI ... 28

 3.3 EBRAINS Architecture .. 29

 3.3.1 Bottom Layer: Fenix Research Infrastructure .. 30

 3.2.1.1. Representation... 30

 3.2.1.2 Scalable Computing ... 34

 3.2.1.3 Interactive Computing .. 35

 3.2.1.4 Active Data Repository .. 35

 3.2.1.5 Archival Data Repository ... 36

 3.2.1.6. Virtual Machines .. 36

 3.2.1.7 Data movement.. 36

 3.3.2 Middle Layer: Complementary EBRAINS services ... 38

 3.3.2.1 Collaboratory.. 38
 3.3.2.2 Collaboratory.. 38

 3.3.2.3 JupyterLab ... 39

 3.3.2.4 Authentication/ Authorization ... 39

 3.3.2.5 UNICORE .. 39

 3.3.2.6 Container registry .. 40

 3.3.2.7 Knowledge Graph .. 41

 3.3.3 Upper Layer: Entry point for scientists ... 42

 3.3.3.1 Services ... 42

 3.3.3.2 Tools .. 43

 3.3.3.3 Data ... 43

 3.3.3.4 Collaboration .. 44

 3.3.3.5 Representation... 44

 3.4 Scientific Computational workflow at EBRAINS .. 47

 3.4.1 Getting data near the compute nodes ... 47

 3.4.2 Find tools for analysis and simulation .. 48

 3.4.3 Use HPC to run experiments ... 48

 3.4.3.1 SLURM job ... 48

 3.4.3.2 Jupyter notebooks ... 51

 3.4.3.3 Snakemake .. 52

 3.4.4 Move output back to Archival Data Repository.. 52

4. PILOT WORKFLOW SYSTEM AT EBRAINS .. 53

 4.1 Current Limitations at EBRAINS .. 55

 4.2 Why standardization is important? .. 56

 4.3 Introducing standardized workflows ... 58

 4.3.1 Common Workflow Language ... 62

 4.3.1.1 CWL Workflow example .. 64

 4.4 Introducing standardized non interactive EBRAINS tools .. 67

 4.4.1Packaging EBRAINS tools with Docker containerization method .. 68

 4.4.1.1 Dockerfile ... 69

 4.4.1.2 Docker registries .. 70

 4.4.2 CWL EBRAINS tool example... 72

 4.5 Workflow management system .. 76

 4.5.1 CWLtool ... 78

 4.5.2 Toil ... 79

 4.6 Scientific computational workflows at EBRAINS via Pilot Workflow Management System 79

 4.6.1 Getting data near the compute nodes ... 79

 4.6.2 Find tools for analysis and simulation .. 80

 4.6.3 Use HPC systems to run experiments ... 82

 4.6.4 Move output back to Archival Data Repository.. 82

 4.7 EBRAINS Graphical User Interface / EBRAINS HUB .. 85

 4.8 User story ... 88

5. RELATED WORK ... 96

6. CONCUSION .. 99

LIST OF FIGURES

Figure 1: Graphical User Interface (GUI) provided by Taverna workflow management
system. In this GUI, users are able to visually describe scientific workflows. The execution
is strictly associated to Taverna. [https://launchpad.net/taverna]
Figure 2: Simple text editor for Snakefile descriptions. Snakefiles are strictly associative
with Snakemake executing the different rules.
[https://gwu-omics2019.readthedocs.io/en/latest/snakemake_basic.html]
Figure 3: Workflows written in DSL that Nextflow workflow engine is able to understand
and execute. [https://www.researchgate.net/publication/266661846_A_Domain-
Specific_Language_for_Building_Self-Optimizing_AST_Interpreters/figures?lo=1]
Figure 4: JUWELS Booster Module - located in Forschungszentrum Juelich (FZJ)
Figure 5: PIZ DAINT CRAY XC50, XEON E5-2690V3 12C 2.6GHZ, ARIES
INTERCONNECT, NVIDIA TESLA P100 located in Swiss National Supercomputing Center
Figure 6: PIZ DAINT - located in Swiss National Supercomputing Center
Figure 7: Users entering login nodes of an HPC system via secure shells. The login nodes
are only meant to submit jobs in the workload manager / scheduler. Scheduler is
responsible to start jobs when resources are available in the different compute nodes.
Figure 8: Slurm consists of two components. A centralized manager called controller
deamon to monitor resources. And daemon compute nodes that wait execute work, return
status and become idle. Although users can interact with either the controller or the
compute nodes, it is better to interact with the controller for Slurm to have a better control
overall. [https://slurm.schedmd.com/quickstart.html]
Figure 9: TORQUE consists of a head node and compute nodes. pbs_server scheduler is
running in the head node while pbs_mom are daemons running on the compute nodes
Figure 10: All 5 FENIX sites consist of services related to Scalable, Interactive computing,
Active Data Repositories (ACD), Archival Data Repositories (ARD) as well as Virtual
Machines (VM).
Figure 11: High Performance Computing systems consist of services related to Scalable
and Interactive computing as well as Active Data Repositories.
Figure 12: Swift Object Storage is a federated, scalable, reliable cloud storage for storing
and archiving unstructured data.
Figure 13:OpenShift is used as a Container Orchestration Platform and is an open-source
cloud development Platform as a service (PaaS), which enables the developers to develop
and deploy applications on cloud infrastructure.
Figure 14: Harbor is a dedicated EBRAINS container registry for storing, finding and
accessing containers built from EBRAINS users
Figure 15:There are different tools, services as well as FAIR data that can be found under
EBRAINS for its users’ to use. As a main goal, collaboration at EBRAINS between
different teams and communities is ensured.
Figure 16: EBRAINS Knowledge Graph as a multi-modal metadata store that combines
information from different fields on brain research, data, models and software existing at
EBRAINS
Figure 17: User executes a batch job from a login node inside an HPC system via Slurm
batch system. An email notifies the user when the job is executed. The user needs to
come back to check for results and move the outcome to the Archival Data Repository.
Figure 18: Output provided by the sbatch job executed via Slurm batch system.
Figure 19: User enters a Jupyter notebook in order to launch SLURM jobs in HPC system
for executing the experiment. Jupyter notebook consists of a Graphical User Interface for
easier interaction between user and underlying infrastructure.

Figure 20:SBATCH job is pre described in a the appropriate format and will be transferred
by PyUNICORE inside the HPC system that scientist has already selected.
Figure 21: Standardized workflows as a middle layer for scientists to properly interact with
both the upper as well as the bottom layer (Abstract). After introducing standardized
workflows at EBRAINS.
Figure 22 Before standardisation was introduced at EBRAINS via the pilot workflow
management system. Jupyter Notebooks were used and direct access to HPC systems via
different Command Line Interfaces was happening. Unstructured formats of defining
scientific workflows was taking place by the scientists at EBRAINS.
Figure 23: After standardisation introduced to EBRAINS RI via the pilot workflow
management system. Standardised workflows filled in the gap between Services, Data,
Tools and Collaboration (Upper Layer) and the HPC systems provided by the Bottom
Layer of EBRAINS.
Figure 24:Scientific workflow part of SOFA/Ambix Binaural Rendering toolkit defined via
Common Workflow Language format.
Figure 25: Harbor docker registry available for all EBRAINS users. Non-interactive
EBRAINS tools are already packaged via Docker containers and stored here for future
reference in the workflow descriptions.
Figure 26 An EBRAINS tool defined via Common Workflow Language. The definition
consists of 4 main sections. The tool is already packaged via Docker for reusability and
reproducibility reasons and stored inside Harbor EBRAINS Docker registry for easy
accessibility by EBRAINS users.
Figure 27: A YAML file consisting of the parameter inputs of the EBRAINS tool defined via
Common Workflow Language.
Figure 28: EBRAINS user must define the type of input data (inputs) in the CWL workflow
specification (mandatory field).
Figure 29: The actual values of the input data are provided by another file (YAML input
file). For the specific example, a URL of the File is provided.
Figure 30: After pilot workflow management system is introduced to EBRAINS, users need
to wrap analysis code into Docker containers and store them inside Harbor
(reproducibility).
Figure 31 After proposing the pilot workflow management system, EBRAINS tools are
described via CWL format adhering to specifications. Code previously written in sbatch
jobs for scheduler in HPC systems to execute it, now is wrapped inside a Docker container
and stored in Harbor.
Figure 32: Exactly like the input data (inputs), the output data (outputs) are also defined in
the CWL specification from EBRAINS users.
Figure 33: CWL workflow with input data, different workflow steps also defined via CWL
specification with code wrapped inside Docker containers and stored into Harbor, as well
as pre-defined output data for retrieving it back once ready.
Figure 34:EBRAINS graphical user interface - Overview of the available workflows
Figure 35:EBRAINS graphical user interface - On going, completed and failed executions
are shown to the users. Logs for every workflow submitted may be available. Users will get
notified once a workflow is completed.
Figure 36: EBRAINS Knowledge Graph as the central HUB for CWL workflows and Tools.
Scientists at EBRAINS and externals can browse, search and find standardized scientific
workflows and tools defined via CWL in the scope of EBRAINS RI.
Figure 37: Rabix composer for composing CWL workflows by drag and drop EBRAINS
tools already described via CWL
Figure 38: Users can browse “Workflows” categories for finding standardized scientific
workflows that are publicly available.

Figure 39 Preview of the standardized scientific workflow as a directed acyclic graphs
provided by CWLViewer, where EBRAINS tools are the nodes of the graph, and data
flowing between steps are the edges.
Figure 40: Additional information for standardized scientific workflows, such as the Digital
Object Identifier (DOI), as well as the CWL definition. Users will be able to execute
workflows in a dedicated endpoint (graphical user interface) by pressing the Play button
Figure 41: Graphic User Interface, Rabix, for visually describing workflows. Users simply
drag and drop already defined tools and connects the inputs as well as outputs of one tool
to the other. In that way a graph is created where with tools as nodes and data flowing
between them as edges.
Figure 42:Users provides the input parameters and the input data for the scientific
workflow recipe to be submitted.
Figure 43:EBRAINS users can get notified and check the status, logs and outputs of the
submitted scientific workflows.
Figure 44:Logs and output provided to the user in an opaque way via the dedicated
endpoint.

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 1

1. INTRODUCTION

Nowadays more than ever, more people understand the scientific impact in humans’ life.
Now more than ever, many people understand how scientists, genetics, epidemiologists,
can benefit from science and how they are able to solve problems that humanity suffers
from. People today are more capable of understanding how epidemiologists, genetics, and
biologist's scientific work can lead to objectives with valuable impacts in human life, like
offering vaccines for viruses to end a pandemic. But how many of these people
understand what are the means that these scientists have so they can succeed in their
goals? How many of these know what is the computational power that is needed in order
to run simulations, models and tests to achieve their scientific objectives? How many of
them know the amount of data that is produced, how much time simulations run and how
much power is consumed?

For many people in the last decades, personal computers are a critical part of their
everyday life routine, their education, their work, even their entertainment. Even though
personal computers play an integral role in human life, it is also true that they do not have
enough power or capacity for data intensive and time-consuming simulations, models and
testing scenarios like the ones scientists would like to execute. In Europe, research
infrastructures with cutting edge technologies are provided to scientists from scientific
fields, like neuroscience, medical, and health to accomplish scientific objectives. These
research infrastructures often consist of High Performance Computing systems that allow
scientists to execute scalable and interactive jobs while providing reliable storages for
archiving produced big data. In the current thesis, we delve into High Performance
Computing systems to better understand in which cases they are used by the
neuroscientists and the state-of-the-art capabilities that they offer. Architecture diagrams
are also included to better understand the construction and organization of these systems.

From the early beginning, scientists from different scientific fields created chains of
processes with data flowing from one process to another for the sake of scientific impact
and research innovation. Typically these processes were computational steps that
manipulated data by analysing, simulating or visualizing it. These chains of computational
steps are often known as workflows. Up until now, the description of the workflows was
strictly associated with the underlying software that handled the execution. This coupling of
defining scientific work with executing it, made standardisation an important asset that
needed to be explored. Nowadays, there are technologies and means for scientists to
describe their scientific work in a common, standard, open and widely acceptable way for
other scientific communities to understand as well as for compatible underlying software to
execute. In the current thesis, we introduce these ways and technologies of defining
computational workflows in a standard way.

In this thesis, we focus on EBRAINS, which is a European research infrastructure for
neuroscientists dedicated to brain related research. EBRAINS provides a powerful
underlying infrastructure to its users consisting of High Performance Computing systems
for large scale jobs that need to run for a long time, for interactive jobs that need enormous
memory and large computing machines, as well as for enormous produced data to be
safely stored after their creation. Neuroscientists at EBRAINS have a large set of tools and
services at their disposal, ranging from analysing to simulating big data and brain atlases
that can broadcast 2-dimensional and 3-dimensional fractions of a brain, up to mapping
neural networks of different levels. Furthermore, EBRAINS users have access to highly
valuable data related to the brain, in order to associate it with their scientific work.

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 2

After we assessed and summarized the current limitations that EBRAINS users face, we
propose the establishment of an EBRAINS pilot workflow management system for
neuroscientists to combine services, tools and data found under EBRAINS in order to
create standardised scientific computational workflows that will be easily reproducible,
reusable, findable and accessible by other scientific communities. These standardised
workflows will be submitted in the EBRAINS’ underlying powerful infrastructure on top of
compatible software (workflow engines) installed and deployed for execution and
monitoring purposes for the sake of the current thesis. With this pilot workflow
management system approach, neuroscientists at EBRAINS can easily associate their
practical work with their theoretical work in different open repositories, publications and
papers and can have all the needed components of their work (data, tools and services) in
place under the same format. As a last step, we proposed ways of having an EBRAINS
Hub and a Graphical User Interface for EBRAINS users to store, access find and for
submitting, monitoring and parametrizing workflows respectively. We used high fidelity
interactive mock-ups for designing these two new features. The real integration and
implementation of these, are out of the scope of the thesis.

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 3

2. STATE OF THE ART

In this section we present some of the cutting-edge and state of the art technologies with
respect to workflows, as well as High Performance Computing systems. We firstly try to
separate terms that have to do with workflows terminology, alleviating any misconceptions
that may arise. We briefly explain the differences between business and scientific
workflows as well as some of the similarities that both share.

The focus of the current thesis is scientific computational workflows, which are
associated with computational steps accomplishing data analysis and data simulation, or
in general data manipulation tasks, for achieving scientific objectives [2]. After the clear
separation between different types of workflows, we present the different ways of
executing them used by different scientific fields in order to offer automation, handling
errors, failures, without the need of manual interventions. Even though there are many
workflow engines that are capable of these specific attributes, we mostly focus on a small
number of them which can run on top of High Performance Computing systems. We do not
intend to make an extensive list of features and capabilities related to different engines,
but to familiarize the readers with the different technologies that already exist. Our
intentions lay in the fact that every workflow engine has its own ways of describing
workflows, thus making the learning curve long enough for scientists who want to dive into
more than one workflow engines.

2.1 Workflows

In this subsection we provide aspects on defining and executing workflows. We will try to
properly and strictly define different terminologies related to workflows, since they are
broadly used terms that have different meanings under different concepts. Briefly, under
this thesis we are mostly interested in scientific computational workflows where steps are
computing tasks that manipulate data and are executed on top of HPC systems. Further,
we present different management systems that take care of the execution and monitoring
of workflows. Workflow management systems provide automation to the scientists using
them; prior to them, users would need to do a lot of manual preparation tasks, such as
data manipulation, invoke different steps in the appropriate order, as well as deal with
errors and failures. This obviously is time consuming and can entail in a lot of errors that
again users would need to handle manually.

2.1.1 Workflow terminology

In general, a workflow “is a sequence of industrial, administrative, or other processes
through which a piece of work passes from initiation to completion”2. With respect to the
Cambridge Dictionary3, workflow “is the way that a particular type of work is organised, or
the order of the stages in a particular work process”. Processes in a workflow can be
linked together to create directed acyclic graphs (DAGs), loops or branches [21]. If there
are no dependencies between them, processes can run simultaneously. This is the main
difference with the synonym term “pipeline”, which is a linear sequence of processes to be

2 https://www.lexico.com/definition/workflow

3 https://dictionary.cambridge.org/dictionary/english/workflow

https://www.lexico.com/definition/workflow
https://dictionary.cambridge.org/dictionary/english/workflow

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 4

executed in a precise order, such as from left to right, once the previous process has
ended. Understandably, pipelines can be referenced as workflows where processes are
executed in an exact order. Workflows are not one-time tasks or a list of tasks to be
addressed in order to have a one-time output. Workflows have to do with repetition, so in
principle, if someone follows the same sequences of processes with the same rules,
dependencies, cycles, then they would get the same output. In order to make workflows
reusable and reproducible, this sequence of processes, as well as all additional
information, must be able to be repeated. Concepts, such as reusability and reproducibility
are inextricably linked to workflows.

There is a great variety of workflows in different fields, from business to scientific ones. In
business, workflow terminology is widely understood and applied in practice. The idea of
business workflows was firstly introduced a hundred years back in the United States by
two engineers, Frederick Winslow Taylor and Henry Gannt [43]. Frederick Winslow Taylor
was an American mechanical engineer who was interested in industrial efficiency. He was
influenced by how the workplace changed after the Industrial Revolution, introducing large
factories, with a lot of employees working there. He had ideas about how productivity
would have been increased if jobs were optimized and simplified. He proposed matching a
worker to a specific type of job that suited the person’s skill level and train them to have
the maximum efficiency. Taylor authored a book, The Principles of Scientific Management,
in which presented his ideas about efficiency. The Taylorism Principles that were
thoroughly described in the same book [23], still have validity in today's management
environment. Henry Gantt on the other hand, was an American mechanical engineer and
management consultant who had contributed to the classical management theory by
introducing the Gantt chart, the task and bonus system. He created the Gantt Chart in the
1910’s which was a bar chart used to visually track tasks. Gantt charts are used until this
time, not only for tracking individual tasks, but also scheduled milestones of a project.
Taylor’s and Gantt’s work led to time and motion studies, which measure the time it takes
for employees to complete a task or a series of tasks in order to find ways to eliminate
redundant or wasteful motion. In that sense, processes were defined in a way where
employees should follow to perform their jobs as efficiently as possible. In those times,
tasks were executed by humans or machinery that again needed humans to interact with.
Therefore, it was a necessity to have tasks to be completed in a specific order and in an
efficient way. Concepts from earlier in the days, such as efficiency, mechanics and
automation were major features, introduced business workflows as we know them today.
As the industry and manufacturing grew, so was the necessity of managers and owners to
have ways to figure out the best way of streamlining the work that needed to be done in an
efficient way while at the same time ensuring the right people oversaw the right tasks.
Nowadays, a business workflow is the definition, execution, and automation of business
processes where tasks, information and documents are passed from one person to
another for action according to a set of procedural rules4. Industries today want to save
time and make reproducibility easily in sequences of tasks that need repetition. There are
great benefits for using workflows in projects for managing tasks. Currently, organizations
from large to smaller ones are familiar with the terminology of workflows and workflow
management systems and do business using that approach.

In the current thesis, we are interested in defining terms associated with scientific
computational workflows. Specifically, a scientific computational workflow is the description
of processes for accomplishing a scientific objective, usually expressed in terms of tasks

4 https://www.projectmanager.com/training/define-workflow-process

https://www.projectmanager.com/training/define-workflow-process

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 5

and their dependencies5. Scientific workflows are linked to scientific processes such as
modelling, automation of computational experiments, data analysis and data management.
Common stages in scientific workflows are acquisition, integration, reduction, visualization,
and publication of scientific data. Scientific workflows allow users to describe directed
acyclic graphs where the nodes form the computational tasks, and the edges form the
dependencies between those nodes [21]. Since we are talking about computational
workflows, dependencies are usually data produced and flown by the different tasks. The
computational tasks can be anything related to data manipulation, from analysis to
simulation [42]. The simplest computational tasks in scientific workflows are scripts that
have some input data and produce outputs that might involve visualization and analytical
results. In that sense, scientific workflows manage flows of data, whilst running tasks can
vary from very large ones to smaller individual parallel or sequential tasks [5]. Scientific
computational workflows, in contrast to business workflows, are dedicated to supporting
data and compute-intensive scientific experiments. Workflow tasks are organized during
design time by the graphical or textual representation of a workflow and orchestrated
during runtime according to dataflow and dependencies [28] as specified by the workflow
designer. Tasks of a scientific computational workflow could be atomic, or a composition of
more, creating a sub-workflow. As in [2], a step in a scientific workflow specifies a process
or computation to be executed, for example a software program to be executed, a web
service to be invoked, an analysis of data, or a simulation of a whole brain. The steps are
linked according to the data flow and the dependencies among them. The representation
of these computational workflows contains many details required to carry out each
analysis step, including the use of specific execution and storage resources in distributed
environments.

Scientific computational workflows are also associated with provenance6. Provenance has
traditionally been used to denote the record of ownership of a work of art or an antique,
used as a guide to authenticity or quality [20]. More recently, the term has been used in
new ways, mostly related to the origin, context, and history of data. Data provenance is
defined differently based on the context where it is applied. In data centric areas such as
databases, data provenance is defined as the description of the origins of a piece of data
and the process by which it arrives at the database. In workflow-centric areas, data
provenance is largely regarded as the automatically and systematically captured and
recorded information that helps users or computing systems to determine the derivation
history of a data product, starting from its original sources and ending at a given repository
[3]. Other than data provenance, workflow provenance is also used as a term. Workflow
provenance refers to recording of changes in the description of a workflow as well as
information during the execution of one. All provenance types are relevant in the
reproducibility of scientific workflows and their output.

One of the main similarities of business and scientific workflows is that both intend to
create repeatable, reproduced, and replicated procedures. This means that in addition to
provenance information, whilst following the same steps, the same output will be provided.
Specifically, business workflows are intended to facilitate project management by creating
a repeatable procedure in a way where it is highly efficient and reproducible. Scientific
workflows introduce ways where scientists can create their workflows, execute them with
minimum interactions when errors and restarts of tasks must occur, and have a
reproducible way of expected output.

5 https://link.springer.com/referenceworkentry/10.1007/978-0-387-39940-9_1471

6 https://www.lexico.com/definition/provenance

https://link.springer.com/referenceworkentry/10.1007/978-0-387-39940-9_1471
https://www.lexico.com/definition/provenance

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 6

These flows of data can be defined as workflows with data manipulation steps combined
to produce graphs, in which steps are considered as nodes and data as edges. Such data
manipulation steps comprise software packaged together with all required dependencies
and libraries for different hardware targets and with no configuration needed. Such
packaged software is defined in a common and structured way, facilitating reusability and
reproducibility, since the workflows themselves and the individual software can be reused
as is. [35]

2.1.2 Workflow engines

Workflows required specific engines in order to be executed. The term workflow execution
refers to the record of performing a sequence of steps using an engine, a system, a
human operator, or a combination of them. Retrospective workflow [17] is associated with
provenance information [2] which entails the details of every executed process together
with comprehensive information about input data, the exact workflow recipe, known also
as prospective workflow, the execution environment used to derive a specific data product,
the data product as well as different association with studies or evaluations. Information is
observed by the workflow management system or by the computational task itself [2]. The
term semi-automated workflow execution can be used when a step in a workflow requires
human intervention. By human intervention, we refer to any manual configuration during
the workflow execution. In the same context, the term automated workflow execution can
be used when a sequence of processes in a workflow can be made entirely automated.

Over the past years, execution of scientific workflows was done using scripting languages
such as Bash and Python. However, these often lack the necessary flexibility, as workflow
execution must be automated and monitored carefully so that it can handle program
failures and avoid the unnecessary re-execution of tasks. Workflow management systems
or workflow engines are designed to alleviate these problems by allowing workflows to be
expressed formally in their own syntax and are deployed over a computing infrastructure to
set up, execute, and monitor them. While there are significant differences between the
features of different systems, most of available solutions include components responsible
for executing tasks, data management (e.g., input/output data staging), task scheduling
and parallelisation, as well as capturing provenance metadata [3]. There are numerous
benefits of using workflow management systems [4]. For starters, execution of complicated
analysis involving many tools can be automated and executed with just a single command.
Also, many workflow management systems provide a graphical interface to the users in
order for them to graphically design their workflows. Workflow management systems also
support the description of a process in a way that is easy to control and orchestrate. They
also provide rapid design, re-design, implementation, as well as re-implementation of the
processes [5]. The main feature they provide is the automation of procedures previously
done manually by developers [20], scientists, or simple users. In addition to automation,
workflows can provide the necessary information for scientific reproducibility and sharing
of results. They also exploit the explicit representations of computational processes at
various levels of abstraction to manage their lifecycle. By providing automation and
enabling reproducibility, they can accelerate and transform the scientific analysis process
[6]. Scientific workflows are routinely used in many data-driven research disciplines today,
often exploiting rich and diverse data resources and parallel and distributed computing
platforms [2]. Thus, workflow management systems provide a systematic way of
describing the methods needed and provide the interface between domain specialists and

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 7

computing infrastructures [4]. There are many commercial and free workflow management
systems that use their own format to describe such execution of workflows7. Workflow
engines can be installed in a variety of different underlying infrastructures, providing a level
of abstraction, and ensuring workflow portability. Another important benefit is scalability,
meaning that workflow execution can be scaled across a local machine, many nodes,
cluster or HPC systems by using the same workflow engines in all infrastructures. In that
sense, workflow execution of a locally executed script is more likely to run on High
Performance Computing systems or the cloud with only some modifications, as these
underlying systems often have specific configuration and authentication requirements that
workflow engines can take care of. Thus, workflow engines that can run in different
hardware and underlying infrastructures, can provide both scalability and portability.

Although there is a large variety of different workflow systems that can execute and
monitor workflows, next we briefly present a small number of them, that share an active
developer and user community, frequent releases, and support for HPC systems.

2.1.2.1 Snakemake

Snakemake [18] is a workflow management system that provides a python-like
specification language together with an easy-to-use yet elaborate execution environment,
to reduce the complexity of defining and executing a workflow. Snakemake follows the
GNU Make paradigm, where a workflow is essentially a python script extended by
declarative code to define rules that describe how to create output files from input files.
Dependencies between the rules are determined automatically, creating a directed acyclic
graph (DAG) of jobs that can be automatically parallelized. Commonly, rules consist of a
name, input, output files and a shell command or a pure python code. Snakemake
therefore offers a definition language that is an extension of Python with syntax to define
rules and workflow specific properties [33]. This allows the flexibility of a plain scripting
language with a pythonic workflow definition. The Python language is known to be concise
yet readable and can appear almost like pseudo-code. The syntactic extensions provided
by Snakemake maintain this property for the definition of the workflow. Snakemake’s
scheduling algorithm can be constrained by priorities, provided cores and customizable
resources and it provides generic support for distributed computing for example cluster or
batch systems in HPC systems. Hence, a Snakemake workflow scales without
modification from single core workstations and multi-core servers to cluster or batch
systems. In other words, Snakemake can manage a workflow that is executed in a
standalone computer, or a clustered HPC system with the same ease from the user’s
perspective. Further, Snakemake only executes jobs under specific circumstances; a job is
executed only if the output file is target and does not exist yet, or the output file is needed
by another executed job and does not exist yet, or input file is newer than the output file, or
execution is enforced by the scientist. Finally, Snakemake integrates with the package
manager Conda and the container engine Singularity [46] such that defining the software
stack becomes part of the workflow itself. As such, tools packaged via Conda or wrapped
in a container like Singularity, can be used as workflow steps in Snakemake seamlessly,
by only providing the right input to achieve the correct output.

7 https://github.com/meirwah/awesome-workflow-engines

https://github.com/meirwah/awesome-workflow-engines

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 8

2.1.2.2 Nextflow

Nextflow [30],[41] is a workflow engine designed for the development of data-driven
computational workflows using software containers. Nextflow workflows are written using
its own custom programming language Domain Specific Language (DSL), an extension of
the Groovy programming language. Unlike Snakemake, Nextflow is based on the dataflow
programming model that simplifies the definition of distributed parallel workflows by
describing the flow of data rather than execution details. A Nextflow pipeline script is made
by combining different processes, written in any scripting language. Those processes
communicate via Nextflow channels, that are asynchronous FIFO queues that can be used
as either process input or output, and are otherwise executed independently. The way the
processes interact through their input and output channels determines the workflow
execution flow. One of the most important features of Nextflow is that it provides an
abstraction between the workflow definition and the underlying execution platform. There
are different executors for different target systems (local, Kubernetes, AWS, HPC) that
determine the execution parameters for each environment. As a result, it is possible to
define a workflow and run it without any modification locally, on the cloud or on an HPC
cluster simply by specifying the corresponding target execution system in the configuration
file. Nextflow supports Docker [45] and Singularity [46] containerization methods for
defining processes. It has also built-in support for Conda that allows the configuration of
workflow dependencies using Conda recipes and environment files. Bioconda, which is a
very popular tool collection for Bioinformatics, has successfully adopted Nextflow as the
engine to orchestrate the execution and monitoring of workflows.

2.1.2.3 Airflow

Apache [37] is an open source platform capable of executing, scheduling, authoring,
monitoring and handling events for data analysis pipelines. In Airflow, workflows are
divided into one or more tasks and are represented as DAGs in which each task gets
executed either parallel or one after another, depending on the dependency's the tasks
have. Workflows are written in Python scripts. Scheduling of each task is the responsibility
of Apache Airflow, while orchestration of workflows is the responsibility of users writing the
scripts. Some of the Apache Airflow advantages are the easy monitoring of workflow
orchestration while it is running. Airflow provides all necessary logs, outputs and details for
each task that is executed. Apache Airflow provides a very simple and easy to use GUI for
users in order for them to check logs, details, task duration and task execution time. A very
important feature is that it is compatible with Google offerings, like Cloud composer, GCP,
Google BigQuery, Dataproc and Dataflow. Airflow’s approach is more pipeline-oriented
than data streaming-oriented. Airflow is not responsible for moving data from one task to
another, but tasks exchange metadata. Finally, it offers scalability, since workflows can run
locally in a computer, or in a cluster or in an HPC system by changing only the installation
part of Airflow and not changing the definition of a workflow. Especially in HPC systems,
Airflow is not highly recommended nor popular because there are some restrictions and
absence of built-in mechanisms for scaling up and down workers on HPC clusters.

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 9

2.1.2.4 Pegasus

Pegasus [6] is funded by The National Science Foundation under Office of Advanced
Cyberinfrastructure (OAC) SI2-SSI program and is used for executing data intensive
workflows. It handles possible workflow errors when they occur by providing workflow-level
endpoints and by retrying part of the workflow or the workflow itself in order to be correctly
executed. Pegasus offers the right level of portability with respect to the underlying
infrastructure, executing in an easy way workflows that run on top of Amazon, Google
Cloud, many HPC clusters as well as different hardware from a single system or across a
heterogeneous set of hardware resources. Pegasus can scale in the size of the workflow
as well as in the available resources that are needed for the workflow to be executed.
Pegasus captures data provenance at the time of execution; provenance information is
stored in a database and can be queried with Pegasus-statistics, Pegasus-plot or directly
via SQL. One of the most interesting and important features that Pegasus provides is the
“on-the-fly” computation of data. If data is not currently available, Pegasus can produce the
data on demand if a workflow describes the location of the necessary data and the number
of resources that are needed for the computational steps to run. Pegasus is designed to
manage workflows executed over potentially distributed data and compute resources.
Workflows are represented as DAGs where nodes are the computational steps to be
executed and edges are the data flowing between different computational steps. A variety
of different scientific fields have already adopted Pegasus for their different scientific
workflows, including astronomy, bioinformatics, earthquake science and more, proving that
Pegasus is a reliable and active workflow engine.

2.1.2.5 UNICORE

Uniform Interface to Computing Resources (UNICORE) [40] is an open source project
under BSD license. It can operate through various operating systems like Linux, UNIX,
MacOS and different batch systems such as SLURM, Torque, LSF on top of HPC
systems. UNICORE comes with a web portal, a GUI, a command line interface and an API
to facilitate users. JSON is used as the workflow description language for defining
workflows. From the official documentation8: “The Workflow engine allows to run arbitrarily
complex cross-site workflows. It offers a wide range of control constructs and other
workflow features such as variables, hold points and more. Execution tasks will be
submitted to UNICORE/X servers. The Workflow engine includes a per-workflow file
catalogue, allowing powerful and flexible data management during workflow execution.
The Workflow engine shares its security features with UNICORE/X and allows flexible user
authentication. Using delegation based on tokens, the user only needs to authenticate
once to run cross-site workflows.” UNICORE/X service is the central component of a
UNICORE installation. It is responsible to accept client requests transmitted by the
Gateway, authenticated requests, authorization, and invokes the appropriate service, like
the Workflow System. Other than the Workflow System, services include tasks submission
and tasks management, storage access and file transfers.

8 https://www.unicore.eu/docstore/workflow-8.0.0/workflow-manual.html

https://www.unicore.eu/docstore/workflow-8.0.0/workflow-manual.html

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 10

2.1.2.6 Toil

Toil [49] is an open source, portable, scalable pure Python workflow engine that supports
pipeline and workflow definitions. Toil can run in a variety of different underlying
infrastructures from locally to cloud like AWS and Google Compute Services. There are
three different configurable pieces that let the execution and monitoring of a workflow take
place. The first is the Job store, that centralizes all files used by different jobs and the
details of the processes to run. In a crash or failure, all information is stored there to
ensure the minimal repetition of the work during a resume or retry. There are two types of
this Job store, the File Job store and a Cloud job store. The file job is for local use only and
keeps the workflow information in a directory in the machine where the workflow is
launched. The Cloud Job store can be either an AWS Job store which is a backend that
supports AWS S3 bucket, or a Google job store that supports a Google Cloud storage.
There is also compatibility with batch systems supported by different HPC workload
managers like SLURM and Torque. Under these environments, a leader and workers are
responsible to coordinate all tasks and files through the centralized Job store. Finally, the
Provisioner provides tools set for running Toil workflows in a particular cloud platform.

2.1.3 Workflow authoring

In scientific computational workflows, definitions refer to workflow recipes which define
and/ or describe in which order and by what dependencies the sequences of processes
will be executed. Workflow recipes or else prospective workflows can be referred to as the
right amount of information gathered that can explain the workflows’ sequence in order to
be reusable and replicable by others, as well as by the author of the workflows itself. In
general, in order to have steps that can be repeated, so to have reproducible workflows
[17], it is very important to describe every step of the workflow with clear instructions. Even
in the case of semi-automated workflows, where human interaction is needed, it is crucial
to describe the human intervention process in a concrete way for the workflow to be
reproducible. There are different ways to describe a workflow. In some cases, the
description of a workflow is strictly associated with the workflow engine or the workflow
management system that will run upon. In other cases, there are some standard ways to
describe workflows that are engine independent. For the latter case, we will thoroughly
provide more information in the next sections.

Where definitions of workflows are strictly associated with the workflow engines that will
run upon, there are two ways of describing workflows. First, scientists can either have
GUIs provided by the workflow engines in which they can visualize their scientific
workflows, or they can define them textually by composing recipes using standard formats
that workflow engines can understand [4]. In GUIs, scientific computational workflows can
be designed visually, using block diagrams, links, cycles, branches by simple dragging,
dropping and drawing lines and different schemes. Further, workflows can be represented
in charts using the conventional symbolism, such as cylinders for storage, rectangular
boxes for processes, rhomboids for decisions, parallelograms for data records [35].

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 11

As for textual definitions of workflows associated with the workflow engines that run upon,
there are different domain specific languages that exist. From the aforementioned list of
different workflow engines, Snakemake follows the GNU Make paradigm, where a
workflow is essentially a python script extended by declarative code to define rules that
describe how to create output files from input files. As a simple example Figure [Figure],
we can see a workflow defined via Snakemake. In that same way, definitions of different
workflows are associated by different workflow engines previously presented.

Figure 1: Graphical User Interface (GUI) provided by Taverna workflow management system. In this
GUI, users are able to visually describe scientific workflows. The execution is strictly associated to

Taverna. [https://launchpad.net/taverna]

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 12

As another example, as we see in Figure [Figure] when users use Nextflow for workflow
execution, workflows must be written by its own custom programming language Domain
Specific Language (DSL), which is an extension of the Groovy programming language.
This means that user will have to experience themselves each time with a specific way of
describing workflows depending on the workflow engine that is used in the underlying
infrastructure. This often takes quite some time and the learning curve can be
exponentially high.

Figure 3: Workflows written in DSL that Nextflow workflow engine is able to understand and
execute. [https://www.researchgate.net/publication/266661846_A_Domain-

Specific_Language_for_Building_Self-Optimizing_AST_Interpreters/figures?lo=1]

Figure 2: Simple text editor for Snakefile descriptions. Snakefiles are strictly associative with
Snakemake executing the different rules.

[https://gwu-omics2019.readthedocs.io/en/latest/snakemake_basic.html]

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 13

2.2 High Performance Computing

The last couple of decades, PCs have taken an enormous technological leap making their
use an essential part of our everyday lives, from education to entertainment. However,
they have a limit on what they can offer to their users; the data that can be manipulated,
the parallel execution that they can provide while solving a problem, and the speed in
which they can generate some valid output. Other than data, the nature of problems that
scientists, deal with, have shifted to more complex ones, needing powerful and strong
underlying infrastructures [44]. Users often need access to dedicated hardware, such as
GPUs to visualize results. There are also cases where software can be executed faster in
parallel using OpenMP or MPI technologies. Therefore, in the last decades HPC systems
are used by more and more by scientific communities to take advantage of the great
capabilities the offer. HPC systems consist of hundreds of thousands of computer servers
connected via a network, called nodes, which can work in parallel, boosting processing
speed.

HPC refers to extremely high computation power, large storage and powerful infrastructure
for solving complex and demanding problems that may need an exceptional amount of
power or large capacity for enormous data. HPC systems are associated with domains like
climate change, astrophysics, financials, medicine, genome sequencing, and many more.
Recently, HPC systems were involved in different ways in providing therapies for COVID-
19, supporting the development of vaccines to end the pandemic, or even simulating the
virus itself to better understand its genome.

Next, we present some of the key aspects of High Performance Computing systems.

2.2.1 Brief History

In this subsection we take a step back and understand how the concept of High
Performance Computing systems came to be. HPC systems are strictly associated with
supercomputers [32], but they are not just that. ‘Computer’ back in the early 17th century,
was a term used to mean “one who computes''. In the 1800’s9,10 specialists (which were
mostly women), performed repetitive calculations to compute navigational tables, tide
charts and planetary positions before electronic computers were available. Back in 1922,
an estimated 64.000 human computers could forecast the weather for the whole globe by
solving differential primitive equations numerically [7]. Also, during the two World Wars,
human computing became a profession. Since men joined the army, it was again women
who took over these responsibilities. During World War I, women computers were involved
in calculating ballistic tables [8], producing map grids and navigation tables [9]. During
World War II, women computers examined the nuclear and particle tracks left on
photographic emulsions and played an integral role in the Manhattan Project where they
were working with different mechanical aids to assist in numerical studies of complex
formulas related to nuclear fission [10]. In 1945, the Electronic Numerical IntegrAtor and
Computer (ENIAC) was created, a programmable computer designed to compute ballistic
tables. ENIAC has a significant role in the end of World War II by deciphering the Nazi’s

9 https://blog.quantinsti.com/journey-computing/

10 https://www.livescience.com/20718-computer-history.html

https://blog.quantinsti.com/journey-computing/
https://www.livescience.com/20718-computer-history.html

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 14

code. It was women whose job transitioned from analogue calculations by hand, to digital
computing at ENIAC [32].

Other honourable mentions of first-generation computers11 are Standards Eastern
Automatic Computer (SEAC) built for the United States National Bureau of Standards and
ERA 101 that later renamed to UNIVAC 1101, built for the predecessor to the National
Security Agency [32]. It is considered that the terminology supercomputer was firstly
introduced in the 1960 where Seymour Cray co-founded the Control Data Corporation [12],
[11], which designed computers like the CDC 1604, the first-generation computer with
transistors in a period where vacuum tubes [13] were found. They also designed CDC
6600, which was the fastest computer at that time with performance up to three
megaFLOPS [14]. From that point in time, a new era of computing systems was
introduced, shaking the foundation of the development of large computers with high
performance. Seymour Cray after some more experimentation started the Cray Research
company. Until today, CRAY is strictly associated with HPC and supercomputers, with
several CRAY supercomputers listed in the top 500 ranking.

Some honourable supercomputers of the year 2020, which are accessible to EBRAINS
scientists are JUWELS (rank #7) and PIZ DAINT (rank #12).

11 https://www.computerhistory.org/timeline/1953/

https://www.computerhistory.org/timeline/1953/

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 15

⚫ JUWELS (rank #7)

⚫ PIZ DAINT (rank #7)

Figure 5: PIZ DAINT CRAY XC50, XEON E5-2690V3 12C 2.6GHZ, ARIES INTERCONNECT, NVIDIA
TESLA P100 located in Swiss National Supercomputing Center

Figure 6: PIZ DAINT - located in Swiss National Supercomputing Center

Figure 4: JUWELS Booster Module - located in Forschungszentrum Juelich (FZJ)

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 16

2.2.2 Architecture

In this subsection we will provide a more in-depth analysis of High Performance
Computing systems. In Europe, HPC systems are divided into Tiers. Tier-0 consists of
facilities like European centres with enormous capacity (Petaflops), Tier-1 consists of
National Centers and Tier-2 Regional and University centres.

To better understand the difference of magnitude between personal computers and HPC
systems, consider the following. PCs can have up to 64 CPU cores, while Fugaku, the top
supercomputer12 currently has 7,630,848 CPUs. Further, a typical PC has a processing
power of 3 GigaFLOPS, while a supercomputer like the one mentioned above has a
processing power of 537,212 TeraFLOPS.

HPC systems no longer consist of one massive machine. An HPC system can have up to
hundreds of cabinets in which the hardware exists, taking up considerable amounts of
space for safely them. HPC systems consist of a large number of clusters of nodes [26]. A
node has a CPU, memory, and networking to communicate with other nodes. Nodes can
vary in focus (e.g., computing nodes, login nodes). Regarding computing nodes, nodes of
the same and different clusters inside an HPC system are connected through a network
that offers high throughput (up to 100GB/s) as well as high performance. With respect to
the login nodes, these are just meant for users to login and submit jobs to a batch system.
Users are not supposed to do any other action in the login nodes other than submitting
jobs in the batch system. Usually, a workload manager like Slurm and Torque will take
care of the submitted jobs to the batch system, will queue the jobs, and will be responsible
to provide the output.

A user can access login nodes through Secure SHell (ssh) to submit their tasks. Further,
users must for allocate resources on compute nodes. Different supercomputing centres
provide a different user experience when intensive jobs must run on computing nodes.
Some HPC systems let the users interactively work on computing resources, or directly
work on computing nodes by creating yet another terminal.

12 https://www.top500.org/lists/top500/2021/11/

Figure 7: Users entering login nodes of an HPC system via secure shells. The login nodes are only
meant to submit jobs in the workload manager / scheduler. Scheduler is responsible to start jobs
when resources are available in the different compute nodes. [https://docs.hpc.qmul.ac.uk/intro/]

https://www.top500.org/lists/top500/2021/11/
https://docs.hpc.qmul.ac.uk/intro/

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 17

2.2.3 Batch Systems

High Performance Computing systems mostly use batch operating systems for users to
interact with the computing nodes, as previously mentioned. In most HPC systems, users
will not interact directly with the compute nodes, but they will write their commands off-line
in a file, called batch file, which will be submitted by the scheduler into the batch system
and will run as soon as the resources are available by the resource manager. Overall,
batch systems receive job scripts that users provided, schedules them and manages the
execution. Users will only need to specify the minimum number of resources that the job
will need in order to run properly, and they will not need to know anything about the batch
system and its components overall. With this abstraction of information from the users,
batch systems can run thousands of jobs simultaneously.

Batch systems consist of 3 types of nodes, the master nodes, the submit / interactive
nodes and the compute nodes. The master nodes are usually responsible for overseeing
the creation, submission, execution and finalization of a job. The submit / interactive nodes
are the ones in which users manage their workload, meaning that users can monitor their
jobs execution by receiving the status. Finally, compute nodes are responsible for
executing the jobs. These nodes either communicate with the master nodes or also play
the role of the master node themselves.

From the user perspective, they should always use the workload manager system, or else
batch system, to submit jobs in an HPC system. They must not use the login nodes to run
their batch jobs because there is a risk of exhausting computing resources and this will
slow down every other user that is logged in the login nodes, since resources there are
shared. Also, users may not have direct access to the compute nodes, which often are not
connected to the internet at all. Users cannot interact with the batch system by themselves
for scheduling, queuing, or resource management. Therefore it is important that users
submit their jobs to a workload manager for fair scheduling and resource management.

2.2.3.1 Schedulers / Resource managers

Overall, cluster batch control systems are used by users to schedule and manage jobs on
the system. This is because there are multiple users, each of them can neither interact
directly with the compute nodes nor know which compute nodes exist and how much
resources (like CPU) overall are currently available for them to use. Two important
components exist under a batch system, the scheduler, and the resource manager.

Schedulers’ capabilities are sequentially queuing jobs, assigning priorities to them,
parallelizing whatever jobs can be parallelized, and overall controlling jobs. When the job
is scheduled to run, thus the resources are available, resources are allocated for this job
only and no other job can use them in order to also run. Briefly, the scheduler of a batch
system is responsible for queuing jobs submitted in a batch system. Different algorithms
for scheduling the execution of jobs in a queue exist. On the other hand, resource
managers in a batch system must exist in order to control and monitor the execution of a
job itself once resources are available and the job is scheduled to be executed. It is
possible that multiple tasks in a job are launched across multiple cores, GPUs and
different nodes and must be taken care of by the resource manager. A scheduler cannot
provide these capabilities, so both schedulers and workload managers need to exist in an
HPC system, either under the same software or in different integrated software.

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 18

As for the schedulers, different types exist in the batch systems. With respect to the
algorithms, First come first served (FCFS), makes the scheduler execute the first job that
arrives in the queue. The last job submitted will be added to the bottom of the queue. Once
resources for the first job of the queue are available, the job will be executed. In that
approach, no other jobs that are of lower priority from the one job on top of the queue will
run out of order. This can give many delays in the execution of the queue and sometimes
make resources become idle. Also, this is not a fair scheduling approach, since jobs with
lower priority but also needing less resources, will have to wait in the queue in order to be
executed. Another type of scheduling algorithm which tries to solve the problem described
above, is the back-fill algorithm. It comes to solve the problem of executing jobs with lower
resources when resources are idle and available but not enough in order for the job with
higher priority to be executed. What that means is that a job with lower priorities may start
first only if it does not delay any other job with higher priority. In that sense, when
resources are not available for larger jobs with higher priorities, they can be allocated for
jobs with fewer resource needs and a smaller runtime limit.

Modern schedulers overall provide in even more ways of fairness, when it comes to
serving execution of jobs, because already provided solutions like FCFS or back-fill are
still not always fair. Some components for fair prioritization are the wall clock, the
importance and the size of the job. Fair share also comes with respect to the different
resources consumed by whole projects overall. For example, projects that over consume
resources for a long period of time, they will get notified for getting lower priorities to their
jobs in order to not constantly over consume resources. On the other hand, projects that
consume less resources for a long period of time, will get higher priorities for their tasks to
be executed

As for the resource managers or else workload managers, they are responsible for
providing the low-level functionality to control (start, cancel) and monitor the jobs once they
are scheduled for execution, as well as for collecting statistics of all processes running
tasks of a job. All statistics of a certain batch job and batch job's steps are aggregated and
saved in a database for future reference by individual users or groups. Different types of
workload managers run in HPC systems, like Slurm and Torque. Sometimes, schedulers
also are also workload managers and vice versa.

2.2.3.1.1 SLURM

Simple Linux Utility for Resource Management (SLURM) [50] is “an open source, fault-
tolerant, and highly scalable cluster management and job scheduling system for large and
small Linux clusters” as stated in the official site13. Slurm is responsible for allocating
exclusive or no-exclusive resources to HPC systems for some period of time so users can
run intense, time and memory consuming jobs. Slurm schedules jobs with respect to their
different priorities taking into consideration different job parameters. The Slurm scheduler
distributes jobs that are gathered from the login nodes into computing nodes of the HPC
system in which the computational tasks run. It also acts as a resource manager since it is
responsible for starting, executing and monitoring jobs on allocated resources, which were
submitted in the batch system queue by different users. Finally, SLURM is responsible to
resolve contentions for resources by managing the queue of jobs that are to be executed
by running specific algorithms that take into consideration the wall clock, the size of each
job, the resources available and more.

13 https://slurm.schedmd.com/documentation.html

https://slurm.schedmd.com/documentation.html

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 19

Slurm workload manager consists of one primary centralized manager (slurmctld) which is
responsible to monitor resources and work. For high availability and fault tolerance
reasons, there is also a backup manager (secondary slurmctld) to take over in case the
primar manager fails or it is unable to manage monitoring of works and resources. Every
compute node in the HPC system has a Slurm demon (slurmd) that waits for work,
executes it, returns status and waits to re-do the same procedure.

From the user perspective, they launch jobs by submitting batch scripts to the scheduler
via SLURM. The job enters the queue after the scheduler gives a certain amount of priority
to the job. When resources are available and after a fair share, the job is launched to the
allocated nodes. As seen in [Figure 8] , users’ commands like squeue for reporting status
of jobs as well as sbatch for submitting a job script are controlled by the primare Slurm
manager. User commands like srun that is used to submit jobs for execution in real time,
can either communicate directly with the slurm demon in one of the compute nodes or the
primar slurm manager itself. In many HPC systems it is not advisable for users to use srun
in order to submit jobs in real time. It is better to use sbatch in order for jobs to be queued
for all the reasons we have presented in the previous sections. Optionally, Slurm’s plugins
can be used for accounting, back-fill scheduler, job prioritization algorithms and more.

Figure 8: Slurm consists of two components. A centralized manager called controller deamon
to monitor resources. And daemon compute nodes that wait execute work, return status and

become idle. Although users can interact with either the controller or the compute nodes, it is
better to interact with the controller for Slurm to have a better control overall.

[https://slurm.schedmd.com/quickstart.html]

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 20

2.2.3.1.2 Torque

Tera-scale Open-source Resource and QUEue manager (Torque) [51] is a resource
management system that is responsible for providing control over batch jobs and
distributed compute nodes. Torque is based in openPBS and freely available to be
downloaded and used. It manages batch jobs that users submit in HPC systems and by
using a very basic default scheduler, schedules the batch jobs to be executed. This default
scheduler will not provide very good utilization for the HPC resources since it is based on a
simple scheduling First In First Out (FIFO) algorithm. Overall, this gives no fair share to the
computational resources. This is why a specific scheduler needs to be integrated with
Torque. Most Torque users choose to use a packaged, advanced scheduler such as Maui
or Moab. Torque provides accounting records for batch jobs in a predefined directory.
Some of its advantages is the remote submission, launching and managing parallel and
serial batch jobs. It also scales up to very large clusters and is currently in use in systems
with tens of thousands of nodes.

Diving into the architecture of Torque, a Torque cluster consists of one head node and
many compute nodes. The head node runs the server daemon and the compute nodes run
the client daemon. The head node also runs a scheduler daemon. The scheduler interacts
with the server to make policy decisions for resource usage and allocate nodes to jobs.
Users’ commands for submitting and managing jobs can be installed on any host. Users

Figure 9: TORQUE consists of a head node and compute nodes. pbs_server scheduler
is running in the head node while pbs_mom are daemons running on the compute

nodes[19]

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 21

submit jobs to the host by using the qsub command. When the server receives a new job,
it informs the scheduler. When the scheduler finds available nodes and thus resources for
the job, it sends instructions to run the job with the node list to the server in the head node.
Then, the server sends the new job to the first node in the node list and instructs it to
launch the job [19].

2.2.4 Message Performance Interface

As previously described, from an architectural point of view, HPC consist of a large
number of clusters that each consist of nodes with CPUs and memory. These computing
nodes take care of the simulations running that need an enormous amount of memory that
only one node alone could not handle. They also take care of how faster the simulations
will run by combining more processors of different nodes in order to get the output. For
those reasons, there is a need to access more processors and more memory than is
feasible to find in one node alone. Message passing has proven to be very useful for
arranging computations on multiple nodes. Architecturally, each node has its own data that
other nodes do not have access to. Only when there is a need to exchange data one node
can inform the rest of the nodes by sending or receiving messages to and from the others.
Message Performance Interface is a standard library for message passing between
different nodes in the same cluster, as well as in different clusters. It is based on open
standards and is the most widely used interface for that matter.

With respect to HPC systems, MPI is a standard specification for parallel computing
architectures allowing message passing between various nodes and clusters. In other
words, MPI standard is an API for processes that need to send, wait or receive messages.
It is already installed and ready to use in large HPC systems, but it can also be installed
and run in local machines like desktop or personal computers. Every small or larger cluster
of nodes that deal with data analysis and data simulation that uses many nodes
simultaneously, uses MPI. MPI method is designed for high performance, portability and
scalability and thus is the most common protocol used in HPC systems. MPI allows writing
portable parallel programs for all types of parallel systems from small, shared memory
nodes to large ones. There is a vast variety of MPI implementations globally known and
used by different HPC systems like Open MPI and MPICH.

Some of the advantages of MPI comes with the fact that the MPI interface was designed
and implemented with good performance as a primary goal. In its core development, MPI
standard will take advantage of the fastest network transport currently available, without
developers implementing the different interfaces and protocols that exist in different cases.
MPI overall gives a high-level way of programming since all network alleviations and
configurations are taken care of by itself.

2.2.5 Modules

HPC systems typically have a large number of software already installed along with their
different version numbers. There are times when users would like to package software
with different versions into one specific environment, for debugging, testing, or deployment
reasons. Combinations of different software versions simultaneously installed in the user's
HPC environment could lead to misconceptions, conflicts and misconfigurations. For users
of the HPC systems, it would be important and critical if they could save that environment
configured with all the software versions packaged and easily switch at any point in time.

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 22

The Environment Modules project implemented Modules for the purposes of dynamically
managing environments inside HPC systems. Prior to that, editing the bashrc file was the
only way of managing software in a system. This of course was an error prone procedure
leading not only to errors but also to misconfigurations and misalignments between
different systems that needed the same software, but also for different versions that might
not work with each other.

Module is a user interface for dynamic modification of the HPC environment which allows
easy changes between shell HPC environments by initializing, modifying and unsetting
environment variables. In that way, taking care of software and different versions of it can
be simplified in a precise and controlled manner. Finally, the user can save the created
environment for later use by saving the current state of the environment with all the
software and versions in a modulefile collection. In that way, modulefiles make easier
transactions between production, development, and debugging environments.

2.2.6 Storage

There are various kinds of storage associated with HPC systems. Near the compute nodes
usually exist file systems capable of high throughput and low latency, called hot storages.
These hot storages are capable of good performance when it comes to Input/Output
operations. They overall give high performance but have a low amount of capacity and
they will not supply backing up policies for data and with low amount of capacity. All data
spaces under this hot storage are reachable from both HPC login nodes as well as
computing nodes. When simulations, analysis and data manipulation tasks in general, are
executed inside an HPC system, they will provide some output in one of the existing hot
storages. Since, hot storages are not meant for actually storing data, users will have to
move data to another location for archiving it, like the warm or cold storages.

Other storages like the warm ones, are usually located outside of the HPC systems and
are capable of archiving and backing up data that will not change very often. These
storages, like the Swift Object storage, often store objects, have enormous capacity with
high latency but minimum throughput when there is time to move data back to the HPC
systems. Last but not least, cold storages exist which are usually used for archiving cold
data in a magnetic tape. Exchanges of data between cold storages and every other
storage that exist is time consuming since they do not provide high throughput and thus
making them not the best primary storages when it comes to running data intensive jobs in
HPC systems.

With respect to transferring data from different hot storages to other hot storages inside an
HPC system, there are known ways for users to transfer it. Such ways are scp with
authentication, rsync for synchronizing data across the internet where only differences are
sent between source and destination as well as sftp connections on remote hosts that can
transfer files in both directions. With respect to warm storages, usually these are
graphically distributed storages providing high availability, that offer REST API methods of
getting or storing data there. Finally, for the cold magnetic storages backup methods and
specific libraries exist in order for data to be archived periodically in those storages.

2.2.6.1 Hot storages near HPC systems

The hot storages refer to POSIX - like file systems existing near compute nodes in an HPC
system. Extreme bandwidths, high semantics (POSIX), high concurrency as well as high
throughput are some of the features that these hot storages have. Term data locality refers

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 23

to the fact where computation is shifted to where data is stored, rather than transferring
chunks of enormous data to where the computation will take place. Data locality arises
from the usage of these hot storages which are geographically located near the computing
nodes. Jobs and processes run into the same computing node use the hot storages as
shared memory for inter communication too. The most common hot storages are file
systems like Lustre, General Parallel File System (GPFS) and Network File System (NFS).

Lustre file system14 is an open source parallel file system that supports a lot of
requirements of HPC environments and is commonly used for large scale cluster
computing. It is designed to offer scalability, high-performance and high-availability. Some
of the specifications are being POSIX compliant and supporting hundreds of petabytes of
data storage and hundreds of gigabytes per second in simultaneous aggregate
throughput. POSIX file systems have POSIX-type libraries for access that also give good
performance. Two major components are Metadata Server (MDS) which stores metadata
such as filenames, access permissions and directories and the Object Storage Servers
(OSS) which are the locations where data is actually stored. One single file can be stored
on several OSSs making high availability and fault tolerance two of the benefits offered by
Lustre.

GPFS is a high performance clustered file system developed by IBM. Many HPC systems
are using GPFS type for managing files. As specifications we can identify that GPFS
provides high-speed file access that can be done simultaneously by applications executing
on multiple nodes of HPC clusters.

Many HPC systems also use Network File System (NFS) to have storage systems
accessible to all computing and head nodes. But some HPC systems also have dedicated
local storage for each compute node. This is to help offload I/O from major storage drives
when users are running jobs with intensive I/O. [31]

These hot storages consist of file systems with different types, quota, expiration days,
backup policies, access speed and capacity. Typical examples of those file systems are
$SCRATCH, $HOME and $PROJECT which are based on either the LUSTRE type file
system or the NFS. Some of them do not back up data automatically but instead purge the
file system like the $SCRATCH which is a very fast, low latency, high throughput file
system. Data transfers can be up to 300GB/s in that file system. In general, only copies of
data must exist there, and the original ones must be placed in a long-term repository
because typically this filesystem automatically deletes chunks of data after some period of
time. These long-term repositories can be either the warm or cold storages that will be
presented later on. Data must live in a more concrete environment where backup policies
exist, like the $PROJECT filesystem which is usually laying on the GPFS file system,
which provides backup of data and easy recovery from problems.

It is important that users make use of these hot storages that exist near the computing
nodes, as well as clean up their temporary files from file systems that get purged, when
running jobs in an HPC system.

14 https://www.lustre.org/getting-started-with-lustre/

https://www.lustre.org/getting-started-with-lustre/

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 24

2.2.6.2 Cold storages

Cold storages usually refer to magnetic tape storage software. In this kind of storage,
magnetic tape is used as a recording media to store data. This kind of storage is mainly
used for archiving cold data that are immutable and secure but at the same time very
difficult to retrieve. Tapes are used for periodically backing up data as well as archiving
long-term data. High Performance Computing systems have procedures for periodically
storing data in tapes from different repositories for backing up policies. Tapes are not used
as the primary storage for everyday use because of the low performance they give, since
having data to / from magnetic tapes from / to other storages means high costs in terms of
money as well as in size.

2.2.6.3 Warm storages

In order to minimize the gap between hot and cold storages, warm tier storages come to
the frontline. These object storages cost lower than the cold (tape) storages and often
provide great capacity, scalability and reliability. Storing long-term cold immutable data in a
cost-effective and efficient way is much cheaper than having data stored in magnetic
tapes. Object storage is a data storage architecture in which data is managed like objects
inside containers, in contrast with file systems where data is managed as file hierarchies
as well as block storages in which data is managed as blocks within sectors and tracks.
Each object in a container typically includes the data itself, a variety of metadata and a
unique identifier. Usually, objects in containers can be retrieved by REST API requests.

As far as industry is concerned, Amazon Simple Storage Service (S3) is an object storage
service that offers scalability, data availability and performance to its customers. S3 is
used for storing structure as well as unstructured data, making it a viable choice for certain
data lakes.

As far as HPC systems are concerned, there is a vast variety of object storages like Ceph,
Swift, OpenIO and MinIO that are used. Ceph [53] is an open source distributed object
storage that has an associated file system used in distributing computing. Ceph has a
worldwide large and active community for support and development efforts. Under this
community members of major HPC systems and storage vendors are also participating.

OpenIO15 is a software defined object storage that supports S3 and it is also optimized for
HPC systems. In an architectural point of view, OpenIO stored objects in a flat structure
within a distributed directory with indirections, making query paths to be independent of the
number of nodes and also leaving performance unaffected by the growth of capacity. This
will make archived data visible giving maximum parallelism on requests for immutable
data.

Finally, OpenStack Object storage, Swift, offers cloud storage software for storing and
retrieving data. From the official documentation16, “Swift is used for redundant, scalable
data storage using clusters of standardized servers to store petabytes of accessible data.
It is a long-term storage system for large amounts of static data which can be retrieved
and updated. Object Storage uses a distributed architecture with no central point of
control, providing greater scalability, redundancy, and permanence.” It is ideal for cost

15 https://www.openio.io/

16 https://docs.openstack.org/swift/pike/admin/objectstorage-intro.html

https://www.openio.io/
https://docs.openstack.org/swift/pike/admin/objectstorage-intro.html

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 25

effective scale out storages with the concept of containers and objects and provides a fully
distributed API-accessible platform. Swift can be integrated to applications directly or
indirectly as backup, archiving and data retention.

2.2.7 Containerization

Executable code can be deployed to the HPC systems, either as self-contained
applications to be launched by service or user-workloads, or as libraries for providing
functionality to other HPC applications. They can be packaged in the form of natively
compiled modules appropriate for the HPC system’s runtime environment or containerised
in one of several HPC appropriate container technologies. Encapsulating an application
into a container image can be easier than providing all dependencies for the application
via operating system packages.

In general, there is a great variety of containerization methods that can be used in all HPC
systems. Some of them are Sarus [47], Singularity [46] and Shifter which a developer can
use in High Performance Computing (HPC) systems.

The most frequently used tool is Sarus, due to security-oriented methods on HPC
systems, the compatibility with Open Container Initiative (OCI) standards and the
compatibility with Slurm workload manager, that is usually used in HPC systems. Even
though Docker is a most known containerization tool that is globally used in a lot of cases,
it is not the preferred tool to be used under an HPC system because of some security
concerns. The main concerns have to do with the fact that Docker in order to run
containers requires root privileges, but HPC systems are by default multi-user
environments where users have restricted access to their own data. Another problem that
makes Docker not the primal candidate is the lack of support with the scheduling workload
manager like Slurm. Finally, Docker in an HPC system offers a high level of isolation in
terms of namespace and filesystem that makes it unnecessary. In HPC systems usually
users want easy access to the host file system and most of the work needs to run as the
current user.

Singularity is also a well-known containerization method under HPC systems developed by
Lawrence Berkeley National Lab. Singularity as well as Sarus provides the correct amount
of security on HPC systems and are both compatible with the Open Container Initiative
(OCI) standards. This means that both can pull images from registries that are OCI
compatible. They both can import and convert images adopting the OCI Image Format.
With Sarus and Singularity, developers can run images in HPC systems that include
libraries or services that will run directly to HPC environments. Specifically, Singularity
images are files (SIF) saved in the filesystem, that the user can simply run. Singularity
containers run in user space, which makes the permissions of the user identical inside and
outside the container and eliminates the security concerns that arise when using Docker.
Additionally, the containers automatically have access to the host filesystem, since
$HOME, $PWD and $TEMP are always mounted. Singularity is ideal for HPC systems
[19], as it favors integration rather than isolation, while still preserving security restrictions
on the container, and providing reproducible images. While Docker is not supported by
different HPC systems, Singularity is compatible with all Docker images and allows
running Docker containers natively on those HPC environments. Singularity can pull
images from DockerHub as well as Singularity Hub17. This is the containerization way that

17 https://singularity-hub.org//

https://singularity-hub.org/

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 26

most HPC systems use to run Docker containers that do not need root privileges in HPC
systems.

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 27

3. EBRAINS RESEARCH INFRASTRUCTURE

3.1 European Research Infrastructure

As stated in [52] “Research Infrastructures (RIs) are facilities, resources or services that
constitute large sets of research equipment or instruments and represent or complement
knowledge resources such as collections, archives and databases.” They are used by a
large majority of research communities to conduct research and foster innovation.
Research Infrastructures supply the necessary data, services and tools to scientists to
explore and lead to state-of-the-art inventions, innovations, cutting edge technologies in a
variety of scientific fields, from health, medical to neuroscience, from bioinformatics to
marine research and more18.

Research Infrastructures can be single-sited, distributed, or virtual by enabling services
electronically. They may consist of instruments, archives, scientific data, computing
systems and communication networks. They often require a structured information system
for data management and for enabling information and communication [52]. They support
top-level research and can be organised at the national and regional level, at European
Union Member State, European and global level.

Across Europe, there is a great number of research infrastructures that can be used by
scientists to make their scientific innovations happen. To avoid duplication of different
research infrastructures in the European area, European Strategy Forum on Research
Infrastructure (ESFRI) was established in early 2002. Currently, the policy on Research
Infrastructures mainly involves the activities of ESFRI, including ESFRI Roadmap, projects
and landmarks. Different working groups coordinate the different projects that exist,
monitoring and assessing the implementation of existing research infrastructures related to
the different categories.

Specifically, in the context of Health and Food, there are thirteen (13) research
infrastructures associated with Life Science currently providing cutting edge technology for
Healthcare. Namely, Biobanking and BioMolecular Resources Research Infrastructure
(BBMRI-ERIC)19 is a gateway for access to biobanks and biomolecular resources for
health research. European Advanced Translational Research Infrastructure in Medicine
(EATRIS)20 is a new development pathway for translating novel biological insights into
effective solutions. European Clinical Research Infrastructure Network (ECRIN)21 is a
network for multinational, high-quality, clinical trials for top-level medical research.
ELIXIR22 is a sustainable infrastructure for interoperability of public biological and
biomedical data resources. European Marine Biological Resource Centre (EMBRC)23 is a
world-class platform for fundamental and applied research on marine bioresources and
marine ecosystems. European Infrastructure for Multi-scale Plant Phenomics and
Simulation (EMPHASIS)24 is a multi-scale phenotyping platform for food security in

18 https://www.s4d4c.eu/topic/4-3-3-european-scientific-infrastructures-and-organisations/

19 https://www.bbmri-eric.eu/

20 https://eatris.eu/

21 https://ecrin.org/

22 elixir-europe.org

23 https://www.embrc.eu/

24 https://emphasis.plant-phenotyping.eu/

https://www.s4d4c.eu/topic/4-3-3-european-scientific-infrastructures-and-organisations/
https://www.bbmri-eric.eu/
https://eatris.eu/
https://ecrin.org/
http://elixir-europe.org/
https://www.embrc.eu/
https://emphasis.plant-phenotyping.eu/

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 28

different agro-climatic scenarios. European Research Infrastructure on Highly Pathogenic
Agents (ERIHNA)25 is the a pan-European distributed Infrastructure dedicated to study
high-consequence emerging and re-emerging pathogens. European Infrastructure of Open
Screening Platforms for Chemical Biology (EU-OPENSCREEN)26 is the high-throughput
screening platforms and chemistry resources for Life Sciences. European Research
Infrastructure for Imaging Technologies in Biological and Biomedical Sciences (Euro-
Bioimaging)27 is the large-scale open physical user access to state-of-the-art biological
and biomedical imaging technologies. INFRAFRONTIER28 is a European Research
Infrastructure for the generation, phenotyping, archiving and distribution of mouse disease
models to unravel the role of gene function in human health and disease. Integrated
Structural Biology Infrastructure (INSTRUCT ERIC)29 is a peer-reviewed access to a
broad range of technology, expertise and training in structural biology. Infrastructure for
System Biology Europe (ISBE)30 is a coordination effort to interconnect the best
experimental and modelling facilities for Systems Biology. Microbial Resource Research
Infrastructure (MIRRI)31 is a coordinated platform to manage microbial resources to
support research in biotechnology. In the context of Data and Computing research
infrastructure, Partnership for Advanced Computing in Europe (PRACE)32 is the top level
of the European High Performance Computing ecosystem.

In the context of brain research in Healthcare, European Brain ReseArch InfrastructureS
(EBRAINS)33 was accepted in early 2021 as an ESFRI European research infrastructure.
EBRAINS is a digital research infrastructure built by Human Brain Project (HBP) and is
filling a gap in the landscape of different research infrastructures in Health and Food by
providing research related to Brain. EBRAINS as an open research infrastructure will
supply European scientists with FAIR data, services, tools and technologies in order to
conduct their research and at the same time will connect EBRAINS with other research
infrastructures to achieve Open and Fair science overall.

3.2 Introducing EBRAINS RI

European Brain ReseArch INfrastructureS (EBRAINS) is a digital research infrastructure

built by Human Brain Project (HBP). The Human Brain Project (HBP)34 is one of the three
Future and Emerging Technology (FET) Flagship projects. EBRAINS started in 2013 and it
is one of the largest brain research projects in the world. A lot of individual scientists,
engineers, and groups like research centres and teaching hospitals throughout Europe
have joined forces for better understanding the human brain, with the help of the EBRAINS

25 https://www.erinha.eu/

26 https://www.eu-openscreen.eu/

27 https://www.eurobioimaging.eu/

28 https://www.infrafrontier.eu/

29 https://instruct-eric.eu/

30 https://cordis.europa.eu/project/id/312455

31 https://www.mirri.org/

32 https://prace-ri.eu/

33 https://ebrains.eu/

34 https://www.humanbrainproject.eu/en/

https://www.erinha.eu/
https://www.eu-openscreen.eu/
https://www.eurobioimaging.eu/
https://www.infrafrontier.eu/
https://instruct-eric.eu/
https://cordis.europa.eu/project/id/312455
https://www.mirri.org/
https://prace-ri.eu/
https://ebrains.eu/
https://www.humanbrainproject.eu/en/

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 29

Research Infrastructure. EBRAINS aims to serve brain research, brain medicine and
development in Artificial Intelligence (AI), computing and data science. EBRAINS is
powering a new era in Brain research. It gathers an extensive range of data and tools for
brain related research. Its ambition is to provide the scientific community with an open,
state of the art, environment that fosters collaborative brain science, while opening the way
to ground breaking discovery, and securing Europe’s leading position in the dynamically
growing field of multidisciplinary brain research and its exploitation.

The EBRAINS infrastructure is shaped by the principle of co-design, which means that (a)
the needs of the scientists serve as the basis for the development of tools and services,
and (b) the insight and expertise of scientists flow into the conception and realisation of the
infrastructure. EBRAINS takes great care to ensure that data, models, and software
available through EBRAINS conform to the European Union’s high ethical standards and
respects the FAIR35 principles, thus providing Openness to the EBRAINS researchers.
EBRAINS shares data, models as well as tools that adhere to the FAIR [54],[27] data
principles for scientific data management. Thus data, models and tools under the
EBRAINS RI meet the four foundational principles of Findability, Accessibility,
Interoperability and Reproducibility. In that way FAIR-ness is provided to scientific
communities and individual scientists and researchers of the EBRAINS. Currently, no
research infrastructure for brain activities is available in Europe, which makes EBRAINS
unique and important. EBRAINS is a research platform that can be used by European
countries and it is extending also to countries outside Europe. It provides tools and
services that each user can use while composing complex workflows.

3.3 EBRAINS Architecture

In this subsection we will depict what EBRAINS looks like from an architectural point of
view, after we divide it into three concrete layers. First in the bottom layer, which is
focused on the powerful underlying infrastructure, FENIX ICEI supplies EBRAINS with
High Performance Computing services like scalable and interactive systems, virtual
machines and different types of data repositories, in order for scientists to use them for
executing their analysis and simulation experiments providing valuable outputs. The
middle layer presents some of the complementary EBRAINS services which can be used
by the scientists of EBRAINS for easing their everyday work. In the upper layer, we will
depict show some tools and services that can be combined in order for scientists to
facilitate their scientific work. Other than the tools and services, scientists have a plethora
of FAIR data which can be used in the different experiments. Also, a collaborative platform
is available and can be used for collaboration between different teams, for sharing code
via Jupyter notebooks and for sharing data between your team members as well as for
knowledge exchange via dedicated wiki pages.

35 Findable, Accessible, Interoperable, Reproducible

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 30

3.3.1 Bottom Layer: Fenix Research Infrastructure

In this subsection we will present the bottom layer of the EBRAINS architecture.
Partnership for Advanced Computing in Europe (PRACE), teamed up with ICEI Project
and Fenix Research Infrastructure to deliver advanced computing services to Europe. The
Interactive Computing E-Infrastructure (ICEI)36 is funded by the European commission
under the framework partnership agreement of the Human Brain Project (HPB). In the
project, five (5) leading European supercomputing centres are working together to develop
a set of e-infrastructure services that will be federated to form the FENIX Infrastructure.
The abovementioned centres consist of:

• BSC (Barcelona Supercomputing Centre - Spain)

• CEA (Commissariat à l’Energie Atomique - Franche)

• CINECA (Consorzio Interuniversitario del Nord Est italiano per il Calcolo Automatico
- Italy)

• CSCS (Centro Svizzero di Calcolo Scientifico/Swiss National Supercomputing
Centre - Switzerland)

• JSC (Jülich Supercomputing Centre - Germany)

All 5 sites agreed to align their services to facilitate the creation of the FENIX Infrastructure
which supplies EBRAINS with very powerful underlying infrastructure services.
Researchers from or associated with the Human Brain Project are the prime users of the
e-Infrastructure.

Under this subsection we will briefly list the underlying services that are provided for
research communities and users of FENIX research infrastructure, extended also to
EBRAINS.

In the next subsections, a visual representation sketching the current status of the
powerful underlying infrastructure will be presented as well as a more in depth analysis of
the different FENIX services, namely Scalable Computing, Interactive Computing, Active
Data Repository, Archival Data Repository, Virtual Machines.

3.2.1.1. Representation

There is a large number of services that FENIX offers with Scalable Computing services,
Interactive Computing services, Archival Data Repositories, Active Data Repositories and
Virtual Machines being the most important ones. A representation of the bottom layer in
the EBRAINS architecture is presented below in the image below:

36 https://cordis.europa.eu/project/id/800858

https://cordis.europa.eu/project/id/800858

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 31

From the above representation, some more abstractions of the bottom layer can be
examined to make their use easier in a scalable and fault tolerant way. Firstly, Scalable
Computing Services, Interactive Computing Services and Active Data Repositories are
closely combined together. This sub- layer can be associated with HPC systems where
scalable and interactive services are delivered to the users for high intense and time
consuming jobs. Active data repositories are close to these powerful computational
resources and offer good performance and high bandwidth.

Figure 10: All 5 FENIX sites consist of services related to Scalable, Interactive computing, Active
Data Repositories (ACD), Archival Data Repositories (ARD) as well as Virtual Machines (VM).

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 32

As far as the Archival Data Repositories, an abstraction of object storages can be made
possible in order to have federated object storages all combined for archiving long term,
cold data providing data locality with different HPC systems as well as scalability and fault
tolerance. Transfers of bulk data can be easily made by the API functionalities that the
Object storages offer.

Figure 11: High Performance Computing systems consist of services related to Scalable and
Interactive computing as well as Active Data Repositories.

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 33

Last but not least, we can abstract a layer of Virtual Machines services by adding
OpenShift as an upper layer. OpenShift is used as a Container Orchestration Platform and
is an open-source cloud development Platform as a service (PaaS), which enables the
developers to develop and deploy applications on cloud infrastructure. It leverages the
Kubernetes concept of pods which are one or more containers deployed in one host.
OpenShift offers load balancing methods and configuration of applications in a way that
under exceptional circumstances like high CPU, or high memory usage or even many
requests, the application load can be distributed in more than one pod. Usually, containers
hosting long running services run on top of OpenShift due to the added-values it offers.

Figure 12: Swift Object Storage is a federated, scalable, reliable cloud storage for storing and
archiving unstructured data.

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 34

3.2.1.2. Scalable Computing

Scalable Computing systems pare provided by FENIX ICEI and accommodate usability of
massive parallel HPC systems that are suitable for highly parallel simulation or high
throughput data analysis tasks. Services like these are the perfect candidates for
computational data analysis and simulations that require high compute performance, high
memory bandwidth and large capacity offered by a large set of high end computing
servers. Since resources are not unlimited even in these enormous supercomputing
systems, there is a need for scheduling and managing tasks in order for maximum
utilization to be offered. Schedulers and workload managers are capable of scheduling
and managing resources for batch jobs in a way where expensive computational
resources are dynamically allocated periodically for accomplishing the respective outcome.
Batch jobs that use scalable compute services, will use parallel file systems as data
repositories allocated near to compute resources for high-bandwidth and low latency
accessing to data. One key aspect that scalable computing services provide is the
Message Passing Interface (MPI) communication protocol that is capable of high
performance, scalability and portability.

Figure 13:OpenShift is used as a Container Orchestration Platform and is an open-source cloud
development Platform as a service (PaaS), which enables the developers to develop and deploy

applications on cloud infrastructure.

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 35

3.2.1.3. Interactive Computing

Interactive computing services, which are also provided by FENIX underlying
infrastructure, give access to computational resources via interactive sessions for
visualizing large data sets, for computing via Jupyter notebooks, for data manipulating and
post processing. In general, there is a need for real time interaction with a program during
runtime that is motivated by the need of estimating the state of the program, its future
tendency, accessing intermediate results without waiting and steering the computation by
modifying input parameters or boundary conditions. These services refer to the capability
of a system to support distributed computing workloads while permitting on the fly
interruption by a user. Components of interactive computing are front-end systems for
users to interact with the program during the runtime, while in the meantime running
applications consume HPC resources like CPU, memory and GPU accelerated compute
nodes for heavy visualization of large outcomes. Usage scenarios of interactive computing
is visualization, processing, reduction of large amounts of data especially when processing
cannot be standardized or implemented in a static workflow. Scientists perform interactive
processes like reduction and production of data views that may include even complex
processing like convolution, filtering, clustering. All those processing steps can be
parallelized in order to take advantage of HPC resources but this could become a
bottleneck for users to open sessions into separate interactive steps by batch jobs as their
scheduling would delay the entire execution. In general, scientific communities started to
use R, Stata, Matlab/Actava and Jupyter notebooks as interactive frameworks and
scripting languages to integrate the compute and data processing applications running in
batch systems. Remote visualization (VirtualGL, paraview), Rstudio and Matlab are also
often used. Some of the Interactive computing services’ characteristics are the high end
volatile memory configuration, high bandwidth access to data repositories, tight integration
with scalable computing service, scale- out or connection to running scalable compute
jobs, access to GPU for visualization, JupyterHUb service for interactive computing and
support of different containerization methods like Singularity, Shifter, Docker. There is a
great support for efficient handling of interactive sessions, maximizing resource utilization
while executing different workloads. Also, there is support for staging of data quickly
across multiple memory and attached storage tiers, and improving energy consumption.
With respect to combining interactive computing services with scalable computing
services, a balance between batch jobs and interactive sessions is taking place overall.

3.2.1.4. Active Data Repository

Active Data Repositories can be associated with high performance parallel file systems for
storing data for a short period of time. These repositories are close to the scalable and
interactive computing services for faster exploration and data manipulation. Good
performance is achieved, since repositories accommodate high bandwidth and high
Input/output Operations Per Second (IOPS) rates. The repositories are implemented as file
systems based on LUSTRE, GPFS as well as IBM Spectrum Scale and are associated via
a POSIX interface for fast data access. Data in Active Data Repositories are not federated
in any way and it is mandatory for users to move it to other types of data repositories (like
Archival Data Repositories) in order to keep them backed up, archived and safe. Data
inside these repositories is typically replicas of data and objects, with master copies of
them being located in other storages.

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 36

3.2.1.5. Archival Data Repository

Another type of repository that FENIX offers to its users, is called Archival data repository.
Archival Data Repositories are repositories optimal for providing capacity, reliability and
availability of data and objects stored in them that are usually used to share data outside
of the HPC centres. Data in these repositories can be federated providing access to
geographically distributed data storages. Data stored there, are called cold, since it cannot
be easily regenerated and their storage mandates long-term accessibility. The most known
interface for storing data in that repository type is OpenStack Swift Object storage. Swift is
a highly fault-tolerant object storage service that stores and retrieves unstructured data
objects living inside containers. Archival Data Repositories in contrast with Active Data
Repositories do not provide high-bandwidth and low-latency access that HPC systems
require. Thus, movements of data from the different kinds of repositories are mandatory.

3.2.1.6. Virtual Machines

FENIX offers services for deploying virtual machines in a stable and controlled
environment to its users. Some of the features that Virtual Machines provide are virtual
CPUs, virtual GPUs, SSD that are performance-optimised storage, HDD for capacity
optimised storage, and large amounts of memory. Users can fully customize their Virtual
machines by selecting different flavors of machines in specifications as well as in the
software itself. They can use predefined images for launching the machines or use
customized ones. Some Virtual Machines also provide integration with GPUs for
supporting visualization and interactive sessions. Even though there are a lot of providers
who support resource oversubscription, FENIX deals with a more strict plan where there is
no elasticity in resources like CPU, GPU and memory.

3.2.1.7. Data movement

As previously presented, different kinds of repositories are used for different facilities, from
reliable storing of master copies of long-term data to having replicas of data near the
compute resources for high bandwidth, low latency and good performance while analysis
and simulation experiments are taking place. Since, FENIX offers a number of Active and
Archival Data Repositories, there is a need to also provide ways of moving data between
one and the other when it is mandatory.

As a first reliable way for moving data between the different types of data repositories,
Active and Archival, users can make use of the Swift Object storage Command Line
Interface in order to upload and download objects from buckets, into POSIX file systems
and vice versa. In that way data can be transferred near the computational resources
when it is needed and back to the long-term, reliable, with the large amount of capacity
repository once the data manipulation task is finished and the output is provided.

As previously described, Active Data Repositories offer a great variety of different POSIX
file systems existing in a FENIX site. When users need to run batch jobs for scalable and
compute services, replicas of data need to exist in the SCRATCH file system that is
located near to scalable and interactive resources for high bandwidth and low latency. If
master copies of data are stored in other POSIX file systems like the PROJECT or the
HOME, transferring of data from one POSIX file system to the other needs to take place.
For this transfer, users can use batch jobs that take advantage of the SLURM workload
manager system which offers high availability and will overcome hardware or software

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 37

failures in case they occur. In these jobs, rsync-ing can be possible to be completed since
SLURM will be responsible for taking care of any corruptions between the transferring. A
job will be submitted in SLURM in order for data to be moved inside two Active Data
Repositories. This feature will offer restarts in case when network misconfiguration takes
place as well as assurance that all needed data is moved.

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 38

3.3.2 Middle Layer: Complementary EBRAINS services

In this subsection, we will provide some complementary EBRAINS services that can be
referred to as the middle layer of EBRAINS architectural diagrams. These services exist
for easing the everyday life of scientists and users of EBRAINS.

3.3.2.1 Collaboratory

One of the complementary EBRAINS services that is delivered to EBRAINS users is the
Collaboratory. Inside Collaboratory, collabs exist as the entry points of collaboration
between different users. A collab extends across multiple services to share its content with
a team of users who have a specific set permissions. From this page, users can create,
edit, and browse wiki pages. They are a convenient way of publishing content in a specific
target group by choosing if the collab will be public or private and by managing
permissions for people inside the EBRAINS consortium. Collab also gives the opportunity
to users to interactively work on Office documents via OnlyOffice and store them inside a
dedicated collab’s Drive. All files inside Drive are version controlled and users can roll
back to a previous one quite easily. The most critical aspect that Collaboratory offers is the
JupyterHub service. EBRAINS users, thus researchers of the EBRAINS, can access
Jupyter notebooks in order to work together with other users, sharing code, documentation
and data. Inside collab users can access JupyterLab notebooks and spawn instances of
them on a hosted JupyterHub, in a reliable and fast way. Not only are JupyterLab
notebooks one of the most promising interfaces for interactive work among developers and
neuroscientists but they also provide great benefits like an easy way for a user to run large
jobs in an HPC system or Neuromorphic hardware.

3.3.2.2 Collaboratory

Another complementary EBRAINS service that can be used by EBRAINS users is data
proxy. Data proxy is responsible to act like a middleware application where a user with an
EBRAINS account can access SWIFT Object storages that the ICEI FENIX underlying
infrastructure provides as the Archival Data Repository, without the need to have a
dedicated FENIX user account. Data proxy authenticates users with the EBRAINS
authentication and authorization service. It also provides a service account, where data is
tracked by whom can access it. A Swift Object container, namely bucket, can be
associated with each and every researcher workspaces’. Buckets are used for large but
cold data, data that does not change that often, like brain scans and EEG files. Data inside
a Bucket are called objects. As currently architectured, researchers’ workspaces and
buckets are strictly associated, meaning that users’ permissions define what actions can
do to the specific bucket. A correlation follows:

a) User that has a Viewer permission in a collab - can Read data in a collab’s bucket

b) User that has an Editor permission in a collan - can Create, Read, Update, Delete
data in a collab’s bucket

c) User that has an Admin permission in a collan - can Create, Read, Update, Delete
data in a collab’s bucket

d) Users with no permissions in a collab - can do no Actions in a collab’s Buckets

e) Data proxy provides an API endpoint for programmatic access as well as an
interface for users to manually manage permissions of different objects in a bucket
inside a workspace.

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 39

3.3.2.3 JupyterLab

In general, JupyterLab [22] is a web-based interactive development environment for
Jupyter notebooks, code and data. JupyterLab configures and arranges the user interface
to support a wide range of workflows in data science, scientific computing and machine
learning. Jupyter notebook is an open-source web application that allows users to create
and share documents that contain live code, equations, visualizations and narrative text.
At EBRAINS, JupyterLab installation on top of OpenShift makes Jupyter notebooks one of
the most promising tools for interactive computing between developers of EBRAINS,
researchers and/or neuroscientists. Members of EBRAINS that access the Collaboratory,
can share their work via Jupyter notebooks to other members, groups or units of the
Consortium. Jupyter notebooks via EBRAINS Collaboratory make integration with HPC
systems and Neuromorphic hardware quite easy. A load balancing functionality needs to
be in place so JupyterLab instances can be spawned at different FENIX sites transparently
from the viewpoint of developers.

3.3.2.4 Authentication/ Authorization

Authentication and authorisation are critical when it comes to security. In general,
authentication is the procedure where the system identifies a user. Authorisation on the
other hand is the act of granting or denying the right of a user to complete an action. The
centrally provided Identification and Access Management (IAM) service for EBRAINS runs
on Keycloak, which acts as Identity Provider Broker (IdP Broker) to independently supplied
IdPs and also provides an OpenID Connect (OIDC) IdP itself for authentication and
authorization (based on OAuth2.0 authorization). Practically, it authenticates EBRAINS
users and authorises them for the different services. A powerful aspect of the IAM service
is that it provides Single-Sign-On across all integrated services. In that sense, users can
login into different tools and services by providing the same EBRAINS credentials. Finally,
the IAM service provides means for services to connect to each other.

3.3.2.5 UNICORE

UNICORE (Uniform Interface to Computing Resources [40]) offers a ready-to-run system
including client and server software. UNICORE makes distributed computing and data
resources available in a seamless and secure way in intranets and the internet. UNICORE
consists of four components. The UNICORE/X server is the central component of a
UNICORE site. It hosts the services such as job submission, job management, storage
access, and provides the bridge to the functionality of the target resources, e.g. batch
systems or file systems. UNICORE/X is deployed in each FENIX site. UNICORE TSI is a
daemon running on the frontend of the target resource (e.g. a cluster login node). It
provides a remote interface to the operating system, the batch system and the file system
of the target resource. It is used by the UNICORE/X server to perform tasks on the target
resource, such as submitting and monitoring jobs, handling data, managing directories etc.
The TSI, which is also deployed in all FENIX sites, performs the work on behalf of
UNICORE users. The UNICORE Registry server provides information about available
services to clients and other services. It is deployed only in one FENIX site. Last but not
least, the UNICORE Workflow service provides advanced workflow processing capabilities
using UNICORE resources. The Workflow service provides graphs of activities, submits
and manages the execution of single UNICORE jobs. The Workflow service offers a REST
API for workflow submission and management and uses an easy-to-understand workflow

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 40

description syntax in JSON format. EBRAINS users may configure a UNICORE/X server
to run High Performance Computing (HPC) jobs or they can run Jupyter Notebooks that
use UNICORE to submit HPC jobs. With that approach, authentication is taken care of and
a mapping between users' credentials and HPC accounts is taking place, so only users or
service accounts with HPC quotas can run HPC jobs in an HPC system.

3.3.2.6 Container registry

Containerization is one of the most promising ways of packaging tools with their
dependencies, libraries and binaries. EBRAINS provides a dedicated docker registry in
order for EBRAINS users to store, find and access container images associated with tools
and services of the different service categories from the upper layer of EBRAINS. The
EBRAINS Docker registry is based on Harbor, an open-source registry. EBRAINS users
log into the registry and can push and pull public images as well as images with specific
permissions, like ones existing under a project in which they are members.

Figure 14: Harbor is a dedicated EBRAINS container registry for storing, finding and accessing
containers built from EBRAINS users

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 41

3.3.2.7 Knowledge Graph

Knowledge Graph is a metadata management system built for EBRAINS. Specifically, it is
used as a multi-modal metadata store that combines information from different fields on
brain research, data / models, software existing in EBRAINS. Neuroscientists that wish to
share their data in Findable, Accessible, Interoperable and Re-usable (FAIR) ways can
apply for user support to have their data and models curated by a group of specialized
curators. In that way they can make their data and models easy to be discovered and
reused by other researchers. Knowledge Graph also offers rich metadata annotation, an
important aspect of finding, using and re-using actual data and models. One feature of
great importance is the new metadata models that are already released under the
umbrella of the open Metadata Initiative for Neuroscience Data Structures (openMINDS)
and are adopted by the EBRAINS Knowledge Graph. openMINDS gathers a set of
metadata models describing heterogeneous neuroscience data. With respect to (re)-using
data and models found in Knowledge Graph at EBRAINS a comprehensive collection of
metadata is captured in full detail for provenance reasons. Data assets, methods and
models, created within EBRAINS capture metadata that pertains to input/output files,
software version, environment at which computation runs, started by agent or person,
hardware system, configuration files. Different use cases within EBRAINS may need
further information to be captured, so the overall process could be reproduced. EBRAINS
by providing Knowledge Graph gives programmatic ways for users for finding and (re-
)using dataset and models as well as graphical user interfaces for making the procedure
more applicable to researchers with no prior programmatic knowledge. Comprehensive
tools and services for publishing FAIR data and computational models. The services
provide long term data storage, citable DOIs, defined conditions and licenses for use of
data, and tags to make the data discoverable, interpretable, and re-usable. The actual
storage of datasets is provided by ICEI Fenix. Connection between the Knowledge Graph
registry with the Archival data repositories is user oriented in the sense that the user
should associate data with Digital Object Identifiers existing in Archival data repository.

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 42

3.3.3 Upper Layer: Entry point for scientists

Under this subsection, the upper level of EBRAINS architectural representation will be
depicted. In this upper layer, scientists and researchers at EBRAINS have plenty of
service categories and tools in their disposal that can use in a collaboratively way with
other communities while at the same time can access data related to brain for scientific
objectives and research purposes.

3.3.3.1 Services

There are five Service categories that are the foundations of the EBRAINS community and
portray the scientific work at EBRAINS. Each of these services provide a plethora of tools
that can be used in data simulation, data analysis, sharing and finding data, as well as in
brain related research like atlases. In this subsection we are briefly going through each of
the Service categories emphasizing how EBRAINS users from the neuroscientific
community can benefit from by using these for their research.

Data and Knowledge is the most important and key element in the EBRAINS research
infrastructure. An important element is the open and shared knowledge that all research
communities need to adhere to and provide for the sake of open science. Researchers
often make publications and associate their practical with their theoretical work for papers,
symposiums and scientific magazines. One of the appealing features that EBRAINS
provides to the journal researchers is the ability to associate datasets with a publication.
Different stages exist where they can choose between either allowing public visibility and
accessibility to the dataset before the paper has been published or allowing the public to
check only the metadata but not the data itself before the paper has been submitted. In the
latter, researchers will be able to provide public temporar links for the reviewers to be
granted access to the data. In both cases a Digital Object Identifier (DOI) is associated
with the dataset that is or will be associated with the publications.

Brain inspired technologies at EBRAINS leverages the understanding of computational
capabilities of spiking neural networks. Brain is a very complex, huge and structured organ
in such a way where simulating a whole unique brain is hard. This is why different ways of
exploring layers of the brain need to be enhanced. Spiking neural networks do not require
large amounts of energy and data, unlike standard deep neural networks require, thus it is
the key point for neuroscientists to understand how the brain functions, and how to
implement higher cognitive functions.

Medical data analytics services provide two platforms that cover key areas in clinical
neuroscience research. Medical Informatics Platform federates large clinical datasets to
process them in a privacy manner. These processes have to do with machine learning
algorithms for data exploration, modelling and statics. Another platform called, Human
Intracerebral EEG Platform, is designed to collect, store in a central clace, curate, share
and analyze Intracranial electroencephalogram (iEEG) data focusing on investigating
cognition, consciousness, connectomics and related disorders.

Simulation and Analysis service offer tools for simulation studies related to brain research.
These services provide integrated workflows for model creation, simulation and validation
including data analysis and visualization. Simulation is divided into different levels of the
brain, from cellular to network level to whole brain ones. High performance libraries for
simulations ranges from single-cell models to large networks. Simulators which simulate
spiking neural network models of any size exist as well as whole platforms which create
personalized brain models and simulate multi-scale networks.

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 43

EBRAINS provides and develops open access to 3D atlases for human, rat and mouse
brain analysis. Atlases allow users to explore the brain, various facets, navigate,
characterize and analyse the data on the basis of anatomical location within the brain. For
EBRAINS, ATLAS related services can support neuroscience research in neuroanatomy,
in experimental neuroscience, neuroimaging, computational neuroscience, brain - inspired
Artificial Intelligence research, neuro synergy and medicine. With Atlases in neuroanatomy
someone can explore brain architecture in 3D and in different spatial resolutions, they can
study the shape and spatial relationships of brain regions as well as functional modules
and their connections. Co-display experimental data in a 3D high resolution reference
brain space, find spatially relevant features to interpret data and confirm support user
studies in experimental neuroscience. Atlases combine whole brain imaging data with
multimodal features at the cellular level.

3.3.3.2 Tools

Tools developed in the context of Service Categories from the upper layer of the EBRAINS
architectural representation will take advantage of the bottom layer of EBRAINS which will
be delivered by FENIX ICEI. High Performance Computing services from the underlying
infrastructure will facilitate the scientific work and give the state of the art and cutting edge
technologies for scientific communities to produce a significant impact to brain research
while using tools associated to EBRAINS.

There are two different kind of tools (interactive vs non-interactive) that exist at EBRAINS.
In general,

• Interactive tools: software that allow user interaction during runtime.

• Non-interactive tools: software, with well-defined inputs and outputs, that do not
allow user interaction during the runtime. It is possible for the user to provide all
parameters needed for the software to run prior to the execution. In this way,
parameterisation of the results can happen on-the-fly.

For EBRAINS and for the current thesis, we are focusing on non interactive EBRAINS
tools.

• Non-interactive EBRAINS tools: scientific data simulation or analysis tools bundled
together with dependencies, binaries and libraries, capable of resolving
misconfigurations of software, as well as of reusing and versioning purposes. These
tools will have a strict input and output format that will be well documented in order
to make EBRAINS tools interoperable.

3.3.3.3 Data

Another important asset of the upper layer in the EBRAINS architectural diagram is Data.
Data at EBRAINS are FAIR and can be shared, found and (re)-used through Knowledge
Graph which is a metadata repository holding information and links to where data are
actually stored. All types of neuroscience data from imaging data, to electrophysiology,
omics and informatics can be shared and found via the EBRAINS platform in order to be
aligned and registered with brain atlases. It will be possible for data to be searched by
Knowledge Graph as well as different atlases, to be used in analytical workflows and to
extract features for simulation and robotics parts. Understandably, all these kinds of data
from raw to derived, to models are by definition multimodal, heterogeneous and differently
organized. Thus, a process needs to exist in order to transform the data to a standardized
manner so that they can be effectively searched, compared and analysed via tools existing
in the EBRAINS RI. EBRAINS provides a curation process in order to make data properly

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 44

documented and organised by using metadata management standards and formats and
integrating them with EBRAINS Knowledge Graph and Interactive Atlas Viewer by using
standard interoperable schemas. All neuroscientists can integrate their data with EBRAINS
by mapping the data with a persistent identifier, for example a Digital Object Identifier
(DOI).

3.3.3.4 Collaboration

The last asset of the Upper Layer of EBRAINS architectural representation is
Collaboration. EBRAINS offers a central point of collaboration between different groups of
researchers, the Collaboratory. It is a community platform for creating an environment
where scientists can identify fellow researchers and developers, form teams, coordinate,
develop live code via Jupyter Notebooks, document methodology and results in pages and
files, store data, and publish work in a safe environment which is entirely self-hosted. It is
built upon an integration of JupyterHub providing notebooks, OnlyOffice for collaborative
editing, Seafile as a shared drive, and XWiki for documentation in wiki pages. In that
sense, collaboration has become easy between individual people and teams.
Collaboratory is also a way to do interactive work and share data with EBRAINS users.

3.3.3.5 Representation

As previously described, the upper level can be represented as:

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 45

Figure 15:There are different tools, services as well as FAIR data that can be found under
EBRAINS for its users’ to use. As a main goal, collaboration at EBRAINS between different teams

and communities is ensured.

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 46

Briefly, researchers and scientists at EBRAINS can associate FAIR data delivered by the
Data and Knowledge service category with a plethora of EBRAINS non interactive tools
delivered by one of the service categories in order to create their flow of work which is
associated with data manipulation, either analysis or simulation. Scientists also have the
opportunity to share, work, collaborate with more groups of scientists and researchers via
the Collaboratory in order to introduce an Open and FAIR science and research focused,
but not dedicated to the brain related scientific communities. Practical work could be
associated with theoretical work in order to publish them in symposiums, journals as well
as papers.

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 47

3.4 Scientific Computational workflow at EBRAINS

After describing the different architectural layers of EBRAINS we will present how
scientists use EBRAINS tools, data, supplementary services as well as the underlying
infrastructure in order to run their simulations, analysis and data manipulation processes,
combining all three, bottom, middle and upper layer at once. We will introduce a real life
example of scientists at EBRAINS finding tools and data from Knowledge Graph, copying
data to where the analysis or simulation will take place, running their tasks in one of the
HPC systems that FENIX ICEI underlying infrastructure offers to EBRAINS users’, and
getting data back to store it in the Archival Data Repository.

3.4.1 Getting data near the compute nodes

In order for scientists and researchers to associate their experiments with data related to
brain, they need to find or use their own appropriate set. Knowledge Graph is the
metadata management system that is used for finding data at EBRAINS. Data inside
Knowledge Graph is either free, or under embargo which means that specific permissions
are needed in order for scientists to access it. As previously stated, Knowledge Graph is
just a metadata catalogue, thus data is associated with only metadata. Once scientists find
the information of the data that they want to use, they will have to find where the real
location of data is. Data is usually stored in one of the Archival Data repositories that offers
reliable, federated and long term storage which FENIX ICEI underlying infrastructure
supplies. Scientists will have to move data near the computation nodes in one of the
reliable ways (scp or rsync), in order to run their analysis, simulations or any data
manipulation process at either HOME or PROJECT filesystems. Once they are ready to
launch their simulation, data need to be manually transferred (cp) to the SCRATCH
filesystem which stands as the Active Data Repository that has good performance and it is
closer to the HPC systems.

Figure 16: EBRAINS Knowledge Graph as a multi-modal metadata store that combines
information from different fields on brain research, data, models and software existing at

EBRAINS

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 48

3.4.2 Find tools for analysis and simulation

Other than data, scientists and researchers could search for tools provided by EBRAINS in
order to use in their experiments. Different tools from the service categories are also
accessible and findable inside the Knowledge Graph. Since in the current thesis, we are
focusing on non interactive EBRAINS tools, scientists can search for software that has a
specific type of input and output format and scientists can not interact with during the
execution. There is a large variety of non interactive EBRAINS tools that exist, from either
static services, libraries, applications or just API endpoints that can be used by EBRAINS
users. Under the current thesis, we are mostly interested in software, libraries, APIs and
tools that can be executed inside an HPC system. The heterogeneity of having non
interactive tools in such different ways of representation from services to APIs, make it
hard for scientists to know which of them is appropriate to be used and some times make
the learning curve exponentially high. There are times where no documentation exists or
times where email exchange and support between different teams need to be made in
order for scientists to know how to use a tool found under EBRAINS Knowledge Graph.

3.4.3 Use HPC to run experiments

HPC systems are offered through the bottom layer of EBRAINS and are often used by the
scientists because they have a good performance when it comes to big data produced and
used and when time consuming jobs need to be executed. There are different ways for
scientists to use HPC systems in order to run their experiments.

3.4.3.1 SLURM job

One of the available and reliable ways to connect via HPC systems is ssh-ing into a login
node. As stated in a previous section, users must not run large, intensive and time
consuming tasks in the login nodes since they are shared to all users and their purpose is
to be used for submitting jobs in the batch system. After scientists ssh-ed into the the login
nodes they can make use of the SLURM workload manager and scheduler that runs on
top of the computing nodes of the HPC systems in order to submit their experiments.

In this first example, scientists need to write a batch job in a clear format using the
appropriate syntax and command and use SLURM in order to submit the job. The job will
be queued and executed once the resources needed are available. Once the job is
executed, the output of the job is written in the SCRATCH filesystm wich is close to the
computational resources and acts as the Active Data Repository. Scientists must copy the
produced data in an Archival Data Repository where long term data are safely stored as
soon as possible since the SCRATCH filesystem is purged within the next 30 days.

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 49

Figure 17: User executes a batch job from a login node inside an HPC system via Slurm batch
system. An email notifies the user when the job is executed. The user needs to come back to

check for results and move the outcome to the Archival Data Repository.

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 50

Figure 18: Output provided by the sbatch job executed via
Slurm batch system.

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 51

3.4.3.2 Jupyter notebooks

In this second example, EBRAINS offers ways for fewer interactions between scientists
and the SLURM workload manager and scheduler. After getting the data near the HPC
systems (scp or rsync), scientists may open a pre-defined Jupyter notebook Figure [
Figure] provided by JupyterHub inside the Collaboratory that offers a Graphical User
Interface in order for scientists to send jobs in the HPC system in an opaque way. This
notebook uses PyUnicore which is a python library for seamlessly interacting with HPC
systems. Users can send jobs in HPC systems, request status, receive results back and
more. As in the previous real example, SLURM again takes care of the real execution of
the job itself as well as of sending the results and status back to the users. Scientists can
choose one of the available HPC sites to run their experiment that again needs to be
written in a clear and appropriate format for SLURM to understand. The job itself is also
sent by PyUnicore to the HPC system that scientist has already chose.

Figure 19: User enters a Jupyter notebook in order to launch SLURM jobs in HPC system for
executing the experiment. Jupyter notebook consists of a Graphical User Interface for easier

interaction between user and underlying infrastructure.

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 52

3.4.3.3 Snakemake

As a last example, a number of scientists have identified the importance of using workflow
engines which can automate the execution, as well as properly describe different tasks
that can be executed one after the another as a pipeline on top the HPC systems. For that
matter, scientists often use Snakemake, a system that works well with SLURM in the HPC
systems and is a friendlier way for scientists to describe their tasks via Snakefiles in
addition to sbatch jobs. Snakefiles consist of rules with input, output fields as well as shell
command line tools to be executed in a specific order. In that example, scientists should
also interact in a way with the HPC systems in order to launch the Snakefiles, either via
ssh-ing into the login nodes, or launching the Snakefile via PyUnicore inside a Jupyter
notebook.

3.4.4 Move output back to Archival Data Repository

As the last part of the scientists’ real example, a movement of the produced outcome from
the Active Data Repository (SCRATCH) to the Archival Data Repository is needed in order
for data to be safely stored in the long term storage. Since Active Data Repository only
holds replicas of data and is purged periodically, it is important that scientists move data
(scp or rsync) as appropriate as soon as the result is produced. If users would like to make
results publicly available, a Digital Object Identifier (DOI) associated with the data, as well
as a request for curation of data to a dedicated EBRAINS team are needed. Curation team
decides if data adhere to specific attributes and then is shared inside the Knowledge
Graph.

Figure 20:SBATCH job is pre described in a the appropriate format and will be transferred by
PyUNICORE inside the HPC system that scientist has already selected.

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 53

4. PILOT WORKFLOW SYSTEM AT EBRAINS

After exploring different Research Infrastructures associated with communities dedicated
to Life Science, and assessing the current state in which scientists of EBRAINS are using
tools, data and the underlying infrastructure, it is apparent that several features regarding
standardization are missing. Standardized workflows provide accessibility, shareability,
automation, reproducibility, portability to scientists’ work, and FAIRness, OPENness and
interoperability to EBRAINS.

There is a need to fill in the gap that exists between the bottom layer, where FENIX
infrastructure provides services and the upper layer that EBRAINS researchers interact
with. While adhering to the new technologies, researchers will be able to decouple the
description of scientific computational workflows from the different adaptations and
configurations needed to execute them in different infrastructures, systems or hardware.
Scientists at EBRAINS will not need to strictly interact with the bottom layer in the extend
that they are currently doing by ssh-ing into HPC systems or describing their experiments
in batch formats.

In the current thesis we propose ways of authoring scientific computational workflows in a
common, standard, widely known, and acceptable way that harnesses the needed level of
automation, scalability, portability, reproducibility.

In this section we propose the establishment of a pilot workflow management system for
EBRAINS focusing on the below mentioned topics:

• We introduce the Common Workflow Language open standard.

• We package non-interactive EBRAINS tools with dependencies, libraries and
binaries via Docker.

• In addition, we define those packaged tools along with their inputs and outputs
types in the CWL format. These tools described in open, common and standard
ways can become workflow steps in scientific computational workflows also
described in CWL format.

• Furthermore, we deploy a primary workflow engine on top of HPC underlying
infrastructure system at EBRAINS in order to automatically execute, monitor and
retrieve results of scientific workflows defined in CWL. EBRAINS users will use a
Command Line Interfaces (CLI) in order to submit and monitor their scientific
computational workflows.

• We propose a central point of reference, an EBRAINS Hub, for finding, storing
and accessing the already described tools and workflows in EBRAINS
Knowledge Graph, a metadata management system that EBRAINS offers.

• We also propose a Graphical User Interface that will replace the use of CLIs for
submitting and monitoring scientific computational workflows. The proposed GUI
has been fully designed but not implemented in the scope of the current thesis. The
design process is based on high fidelity mock-ups.

• Finally, we provide a real user story taking advantage of all three- bottom, middle
and upper- layers of EBRAINS, as previously described, along with the introduced
standardized workflows.

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 54

In the scope of the current thesis:

• Scientific Computational Workflows can refer to series of non interactive
EBRAINS tools linked in order to create graphs, loops or branches for
accomplishing scientific objectives. Data flowing between the different tools
depict the order of execution of the EBRAINS tools.

• Non interactive EBRAINS tools can refer to data manipulation, simulation or
analysis tools packaged with dependencies, libraries, binaries and software via
Docker. EBRAINS tools are defined via CWL Command Line Tool Description
Specification [1] and scientists can not interact with them during the execution.

• Standardized workflows can refer to chains of EBRAINS tools as workflow steps
connected in a specific way to create directed acyclic graphs (DAGs) of operations.
CWL Workflow Description Specification [1] is used in order to define standardized
scientific workflows as structured recipes along with all the steps, inputs and output
data files and the execution details in a YAML format file. Standardized scientific
workflows defined via CWL can be executed by CWL- compatible workflow engines,
which are responsible for executing, monitoring and retrieving logs and outputs,
running on top of a variety of computing platforms, ranging from individual
workstations to cluster, grid, cloud, and High Performance Computing systems.

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 55

4.1 Current Limitations at EBRAINS

Taking into consideration how EBRAINS users interact with EBRAINS, we understand that
from the scientists’ point of view there are some limitations with respect to how different
EBRAINS tools are described, how tools can be combined in order for scientists to create
flows of data manipulations that are not executed necessarily in a specific order as
pipelines, how users can execute and monitor these data flows in an opaque way, as well
as how to automate some of the procedures that they often do manually.

With respect to defining data manipulation flows, Snakemake is currently a way that some
scientists at EBRAINS use. This way encounters some limitations with respect to
describing flows in order to be executed in a specific order, as a pipeline. The way of
describing workflows executed by Snakemake, is not structured and common, and for
scientists that are not already familiar with Snakemake or Python, the learning curve will
be overwhelmed. As we previously described in another chapter, there are a lot of different
workflow engines that exist in general for different kinds of data flows, and support
different ways of describing flows of data manipulation tasks, thus a lot of different ways to
define workflows.

Currently at EBRAINS, there is no standard way of monitoring large tasks that run in HPC
systems and take a lot of time. Scientists often have to make requests in order to get the
status and logs of the executed tasks, and restart them in case they have failed. There is
also no known and standard way of pausing an execution of a task while running in an
HPC system.

With respect to EBRAINS tools and services currently available inside Knowledge Graph,
it is difficult for scientists to combine them together for creating acyclic graphs of data
analysis and simulation tasks since tools are not always defined in an interoperable,
standard and easy to be used as well as reused way. In other words, it is not
straightforward for a scientist of EBRAINS to combine tools together in order to create
workflows with data manipulation tasks as workflow steps.

Other than the definition, execution and monitoring of different workflows and tools,
scientists would also like an easy way to combine their practical work with their theoretical
work in a structured, well documented way for delivering their work to other groups of
researchers from inside or outside EBRAINS Research Infrastructure. Currently, there is
no way for workflows created by scientists in the scope of EBRAINS to be easily found,
accessible, replicable or reproducible. Usually, data and models are the ones that can be
shared inside the Knowledge Graph in order to be publicly associated with scientists’ work,
but often this takes time due to the curation procedures that need to be made. It would be
easier and make much more sense for scientists to associate their analysis and simulation
structured recipes as workflows inside the Knowledge Graph in order to be easily findable,
accessible and replicable to other groups of scientists from the neuroscience community.

Last but not least, an important limitation that EBRAINS has, is the need for configuration
adjustments in the description of workflows in order for them to run in different underlying
infrastructures. Thus, scientists from other scientific communities need to especially
configure their already defined workflows in order to be executed at EBRAINS whilst at the
same time, scientists of EBRAINS would have to reconfigure their workflows if they would
like to use another underlying infrastructure for testing purposes.

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 56

4.2 Why standardization is important?

Under the current subsection, we are going through why standardization is the answer to
the needs of EBRAINS scientists, what the term means and what are the benefits of
having technologies and tools in order to make it happen.

In general, scientists would like to use straightforward data manipulation tasks with specific
inputs and output in order to reuse them in different work. Thus, tools need to be described
in a standard and interoperable way as well as stored somewhere where they can be
easily findable and accessible. Having tools described in a standard and interoperable
way, makes definition of workflows easier for scientists. Workflows can be defined as
recipes where inputs, outputs and steps are combined together in order to achieve a
scientific objective. With respect to standardized workflows, it is important to be defined in
a structured and common way by describing a recipe and have packaged tools as
workflow steps in order to be easily combined to create directed acyclic graphs where
nodes are the tasks to be executed and edges are the data flows. Standardized workflows
also provide scalability to scientists, since defining a small or a very complicated workflow
as a structure recipe with standard format will not increase exponentially the learning curve
that scientists will have to familiarize with. In that way they will be easily findable,
accessible, stored in a registry for different scientists to explore.

Also, scientists often need to restart or re-adapt parameters in their scientific work in order
to achieve the correct output. For that, a tool that automates as many procedures as
possible will help scientists not to be prone to errors because of the manual configurations,
and will save time from automatically restarting tasks that have failed. Workflow
management systems are the kind of tools that automate many procedures previously
done manually, restart failed tasks [24] and take care of the logs of executed tasks [25].
The limitation comes from the fact that each workflow engine has its specific way of
describing workflows, thus making the learning curve exponentially high with respect to the
different engine that is currently used. There is a large list of workflow engines37 existing
already. Also in that sense, a lot of scientists do not want to have knowledge with respect
to the underlying infrastructure in which some analysis or experiment of theirs will run and
the different capabilities that it offers. They would like to describe their work without the
need to intervene at any level with possible configurations or adaptations of their work with
the underlying system or hardware. In that sense, tools are needed to create portable
experiments that could run in different underlying systems that scientists need not to worry
about configurations and capabilities. In that way the description of a scientific work will be
decoupled by every technical detail that is needed in order to be executed. Standardization
in that sense comes from the fact that this universal, structured and standard way of
describing workflows also makes sense to be compatible with different workflow
management systems already existing.

With that in mind, having a standardized way of defining workflows that are not strictly
associated with specific workflow engines, gives the right amount of portability when it
comes to different underlying infrastructures. In that way, the description of a workflow is
completely decoupled from the execution of one, making scientists worry about the nature
of the scientific problems and not how to execute them. This common way of describing
workflows together with the portability that standardization offers, will make other scientists
reproduce workflows in order to have the same results, or re-execute them in different
infrastructures while getting the same results.

37 https://github.com/meirwah/awesome-workflow-engines

https://github.com/meirwah/awesome-workflow-engines

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 57

Last but not least, scientists in general want to publish their work and write papers that are
associated with the experiments conducted by them. In other words, they would like to
associate their practical with theoretical work. It would make more sense to them, if this
work was well structured, documented and easily understandable by other scientists not
only from the neuroscience community, but also from different research communities. In
that sense, their research could be easily reproducible and replicable by others, facilitating
Open and FAIR science. Thus, ways of introducing a standard, common and structured
representation of their work is needed. In that sense, the necessary inputs, the steps that
need to be executed to achieve a specific output, the output provided are all described in
structured recipes that many can understand. Standardization in that matter comes from
the fact that there is a need for a universal, common and known way of describing
structured recipes as well as for a single point of reference where scientists of EBRAINS
can store these structured recipes for future reference, for easier findability, accessibility
and reproducibility. Scientists from different research fields, outside of EBRAINS, can also
search for related work and even store their structured recipes for others to find.

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 58

4.3 Introducing standardized workflows

Due to the current limitations that EBRAINS has and after exploring different research
infrastructures that already solved similar issues that were identified under the scope of
EBRAINS, we introduce standardized computational workflows at EBRAINS. Standardized
computational workflows play an important role since they are the connecting link between
scientists’ work conducted by the toolsets provided from the upper layer of EBRAINS,
data, tools and services for data analysis, simulation, brain related tasks in general, as well
as the powerful underlying infrastructure, FENIX ICEI, which is described as the bottom
layer of EBRAINS.

Workflows for analysis and simulations created by scientists should be defined in a
common, structured and standard way in order to supply well documented recipes for
easier accessibility, collaboration and shareability with other researchers and communities
inside as well as outside the EBRAINS.

With respect to different non-interactive EBRAINS tools found under the Knowledge
Graph, a common and structured way of definition with specific input and output is also
mandatory. In that way, non-interactive tools can be used as workflow steps in more than
one workflows providing re usability and interoperability.

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 59

Figure 21: Standardized workflows as a middle layer for scientists to properly interact
with both the upper as well as the bottom layer (Abstract). After introducing

standardized workflows at EBRAINS.

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 60

Under the current thesis, we introduce standardized workflows in the middle layer of
EBRAINS in order to fill in the gap that is created between the upper -where data, tools
and services can be used for creating flows of data- and bottom layer – where these flows
are executed via the powerful underlying infrastructure - of EBRAINS for collaborating,
sharing, re-using work with other scientific communities. Researchers at EBRAINS can
create workflows in a standardized way for offering outputs and outcomes valuable to the
brain research, thus, making EBRAINS Open and FAIR.

Before introducing standardised workflows, EBRAINS tools were strictly associated with
the EBRAINS services while at the same time they did not provide any ways for
reproducibility or re usability in defining new workflows. The learning curve for a scientist
could be exponentially high, since some tools were lacking the right documentation, the
correct type of input as well as output data. Jupyter notebooks were used as the entry
point of level for executing and monitoring workflows at HPC systems. Programmatic
access via different Command Line Interface was also the case when scientists would like
to access HPC for submitting, executing batch jobs strictly associated with the scheduler
that was running underneath.

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 61

Figure 22 Before standardisation was introduced at EBRAINS via the pilot workflow management
system. Jupyter Notebooks were used and direct access to HPC systems via different Command
Line Interfaces was happening. Unstructured formats of defining scientific workflows was taking

place by the scientists at EBRAINS.

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 62

4.3.1 Common Workflow Language

Common Workflow Language (CWL) [1] is an emerging open standard designed to define
tools and workflows for data analysis and simulation with specific input and output types,
parameters and available resources needed in order to be executed for accomplishing a
specific output. In that way, execution can be portable and scalable across a variety of
software such as scientific workflow engines, and hardware environments, such as the
cloud or HPC systems. CWL provides a standardized way to describe tools and combine
them in order to create graphs, using groups of structured texts as YAML files.

Common Workflow Language is not a piece of software, but rather a specification that
defines a set of standards that different implementations must conform to. It is designed to
meet the needs of data intensive science, like Bioinformatics, Medical Imaging,
Astronomy, Physics, Chemistry as well as Neuroscience. The vast majority of different
scientific communities already use Common Workflow Language as a common and
standard format because it is a common declarative format for describing tools and
workflows, it can be very extensible since the development effort is laying in its large active
community, and it supports containerization technologies like Singularity and Docker. In
particular, Common Workflow Language is used by the European Union’s BioExcel [55]
Centre of Excellence for Biomolecular modelling, and by the Industrial biotechnology
innovation and synthetic biology accelerator (IBISBA)38 ESFRI for Industrial Biotechnology.

38 https://hub.ibisba.eu/

Figure 23: After standardisation introduced to EBRAINS RI via the pilot workflow management
system. Standardised workflows filled in the gap between Services, Data, Tools and Collaboration

(Upper Layer) and the HPC systems provided by the Bottom Layer of EBRAINS.

https://hub.ibisba.eu/

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 63

CWL is also participating in both Global Alliance for Genomics and Health (GA4GH39)
Task Execution API40 and GA4GH Workflow Execution API41 projects.

CWL is compatible with a plethora of workflow engines [4] for executing and monitoring
these common structured workflows and tools and work by their active community is on-
going for making it compatible with even more. It also provides data locality where input
and output files of a CWL workflow are modelled as rich objects with metadata and
Uniform Resource Identifier(URI)/ Internationalized Resource Identifier (IRI) association.
Also platforms like workflow engines that are compatible with CWL can use these URI/IRIs
to send compute near the location of data or can fetch data from a remote location.

The most important asset of CWL to the scientific communities is the fact that descriptions
of workflows and tools are decoupled from the execution, making definitions purely
associated with scientific objectives and not with technical burdens, configurations,
requirements and dependencies with different underlying infrastructures. This gives a
certain amount of freedom and portability to scientists since they will not have to
parameterize scientific workflows according to the different infrastructures they will run
upon. Finally, describing workflows with a standard and common format offers scalability in
the sense that definitions can vary from small to very complicated ones, with data
manipulation steps combined to create graphs, branches or loops.

In this section we introduce ways for scientists to create structured recipes via CWL
entailing data, tools and software for scientific work to be easily findable, reusable as well
as associated with publications and citations. A common and standard way of describing
data manipulation scientific tasks along with the data flows, offers portability, findability,
accessibility and reproducibility. Portability is the sense that scientists will not need to
adapt their work according to different configurations needed with respect to the underlying
infrastructure, that can be a local cluster, an HPC system or a personal computer.
Otherwise, miss configurations and configurations need to be taken care of by them
explicitly. This makes process of defining and executing scientific work difficult, error prone
and time consuming. Thus, a unified and homogeneous way of describing data
manipulation workflows that can be executed effortlessly in different hardware and
underlying infrastructure is needed. With respect to findability, accessibility and
reproducibility, it is true that scientists wish to associate their scientific work with
publications, papers and scientific magazines. By having a structured, well documented
way of introducing their work to familiar as well as other scientific fields and communities,
they can make their work able to be reproduced in a seamless and feasible way.

39 https://www.ga4gh.org/

40 https://github.com/ga4gh/task-execution-schemas

41 https://github.com/ga4gh/workflow-execution-service-schemas

https://www.ga4gh.org/
https://github.com/ga4gh/task-execution-schemas
https://github.com/ga4gh/workflow-execution-service-schemas

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 64

4.3.1.1 CWL Workflow example

Below we present a simple example of a workflow described via CWL formatting. The
workflow used in this example is part of the SOFA/AmbiX Binaural Rendering (SABER)42
toolkit. SABRE toolkit is a collection of MATLAB functions that allows users to create
custom binaural decoder presets for Matthias Kronlachner’s ambiX binaural plug-in. This
workflow43 is used to perform segmentation and cell detection in X-ray volumes.

42 https://github.com/PrincetonUniversity/3D3A-SABRE-Toolkit

43 https://github.com/aplbrain/saber/blob/master/saber/xbrain/workflows/xbrain.cwl

Figure 24:Scientific workflow part of SOFA/Ambix Binaural Rendering
toolkit defined via Common Workflow Language format.

https://github.com/PrincetonUniversity/3D3A-SABRE-Toolkit
https://github.com/aplbrain/saber/blob/master/saber/xbrain/workflows/xbrain.cwl

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 65

First, a general script information section is provided:

cwlVersion: v1.0
class: Workflow ..

These fields are mandatory for the description of workflows as well as tools described in
the previous section. They provide the class of the file, which in this case is Workflow, as
well as the version of CWL so that the CWL compatible engine used for the tool execution
can check for compliance. A short description of the workflow is an optional choice in order
for other users to know basic information about the workflow, such as what are the inputs
and the provided output.

With respects to parameters:

inputs:
 data: File
 membrane_classify_output_name: string
 cell_detect_output_name: string
 vessel_segment_output_name: string
 bucket: string
 (..)

The input parameters of the workflow are defined. Each input parameter definition includes
the parameter name as well as the input type like string, number, boolean, File, Directory.

As for the outputs,

outputs:
 membrane_classify_output:
 type: File
 outputSource: membrane_classify/membrane_probability_map
 cell_detect_output:
 type: File
 outputSource: cell_detect/cell_detect_results
 (…)

In this format, the outputs that should be produced by the workflow are listed. Each output
object definition includes the parameter name, the output type and, in the case of Files, the
output file path.

With respect to the different workflow steps, a graph is constructed where nodes are the
tasks that need to be executed and the edges are the data flowing from one node to
another.

steps:
 membrane_classify:
 run: ../tools/membrane_classify.cwl
 in:
 bucket: bucket
input: data
output_name: membrane_classify_output_name
classifier: classifier
ram_amount: ram_amount
num_threads: num_threads
 out: [membrane_probability_map]
 cell_detect:

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 66

 run: ../tools/cell_detect.cwl
 in:
 bucket: bucket
input: membrane_classify/membrane_probability_map
output_name: cell_detect_output_name
 threshold: detect_threshold
 stop: stop
 initial_template_size: initial_template_size
 dilation: detect_dilation
 max_cells: max_cells
 out: [cell_detect_results]
 (..)

All tools that are used as steps of the workflow are defined via a CWL tool description.
Each input or output entry is essentially a mapping from the workflow inputs/outputs fields
to the tool input/output names values. Having all the information on each workflow step’s
inputs and outputs, makes it possible for the different execution engines to deduce the
directed acyclic graph (DAG) of tasks that the workflow represents, and thus execute the
steps in the correct order, or even in parallel when no dependencies exist between them.

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 67

4.4 Introducing standardized non interactive EBRAINS tools

In the scope of this thesis, we introduce non-interactive EBRAINS tools that are associated
with data manipulation processes like analysis and simulation and can be used as steps in
scientific workflows defined via CWL format. It is critical for each EBRAINS tools,
described via CWL, to provide a concrete description of what it accomplishes, what are the
input parameters and the type of the expected output.

Non-interactive tools can be defined as pieces of software that run programs in which
users will interact with before the runtime. In that way, users will parameterize the inputs
before the execution of the tool. On the other hand, interactive tools can be defined as
pieces of software where users interact with the programs during the runtime in order to
parameterize parameters on-the-fly. For the sake of standardization, we are mostly
interested in non-interactive tools in the scope of EBRAINS RI.

Tools are usually associated with their dependencies, libraries and binaries, so it is
important to have a packaging method in order to be easily (re-)used as workflow steps in
scientific workflows in a flexible and resistant way. In the next subsections, we propose
packaging EBRAINS non-interactive tools via Docker containerization method, pushing
them into Harbor EBRAINS docker registry and storing them under EBRAINS Knowledge
Graph for easy findability, accessibility and reusability.

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 68

4.4.1 Packaging EBRAINS tools with Docker containerization method

For the current pilot workflow system in the context of EBRAINS, we propose Docker as
the method for non-interactive EBRAINS tools to be packaged together with
dependencies, libraries and binaries needed in order for tools to be easily executable [38].

In general, software dependencies management and project isolation can be solved by
deploying EBRAINS tools inside an isolated environment, such as a container. Container
technologies utilize the host’s kernel and thus have the ability to run contained applications
with the same performance characteristics as native applications. The initial inception of
containers shares a direct lineage from virtual machine technology, but is sometimes
considered more efficient than the latter. Containers are isolated processes, with their own
resources, network and file system hierarchy and are widely used for packaging
applications together with all configurations needed in order to run. Containerized
applications are portable with respect to the underlying infrastructure, which can be a local
machine, a virtual machine, a supercomputing cluster or a cloud, providing the right levels
of portability.

Specifically, Docker [45] is an open platform for developing and running applications
isolated from the underlying infrastructure by using container technology. Docker, as well
as every other containerization technology, offers versioning of different software, thus,
making it possible to roll back to previous versions of the same software in order to deliver
a previous output.

With respect to combining containerization methods with CWL, non-interactive EBRAINS
tools packaged via Docker can be executed individually by CWL compatible workflow
engines or can be used as workflow steps when workflows are described. This ensures
software portability as well as software reusability, and thus, it is considered the best
practice among scientific fields focusing on FAIRness and Openness.

As stated above, Docker containers can significantly simplify software installation and
version control by providing a complete and pre-tested runtime environment for software
and its dependencies. In CWL in particular, Docker containers are used for individual
executions of tools that exchange files. EBRAINS tools wrapped in containers create a
new temporary space that is removed after the execution of each tool or when the whole
workflow is finished. In that space, bind mounts expose only the required working directory
of that particular tool, having read only permissions on the host input files. CWL
compatible workflow engines can handle automatically that input files will exist inside a
Docker container for software to properly run, as well as output files will be mounted to the
local filesystem and be removed from the container once the tool or the whole workflow
runs. Since CWL takes care of input and output files, developers only need to wrap tools
with their dependencies as separate containers. In that way, the complexity of invoking
and managing Docker containers is avoided while tools or workflows with combined tools
as steps are to be executed44.

Although Docker is supported by a plethora of infrastructures, it is not supported by the
HPC systems existing in the underlying infrastructure at EBRAINS. On top of HPC
systems, Singularity takes over and support the execution of Docker containerized
EBRAINS tools. From a developer’s point of view, no changes are needed with respect to
defining tools or workflows via CWL format. The primary workflow engine responsible for
executing and monitoring the execution of workflows and tools, need to be compatible with

44 https://www.commonwl.org/user_guide/07-containers/index.html

https://www.commonwl.org/user_guide/07-containers/index.html

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 69

Singularity containerization method. In that way, workflow engines compatible with Docker
or Singularity running in different underlying infrastructures, can execute effortlessly the
defined scientific workflows having as steps packaged EBRAINS tools via Docker.

4.4.1.1 Dockerfile

In order to package a tool, a simple Dockerfile is needed. Dockerfile is a read only text
document template with instructions that contains all the commands a user should run to
assemble a Docker image. A Docker image is a lightweight, standalone executable
package of software that includes everything needed to run an application from the code,
libraries, binaries, and other packages. This Docker image will be built and pushed into the
Harbor EBRAINS docker registry and will become a container at runtime. All the following
instructions can be applied to systems that have Docker already installed. A simple
example is presented:

FROM python:3

install dependencies
RUN pip install argparse numpy pandas matplotlib

copy python script, make executable and add to path
COPY visualization.py /home/tool/visualization.py
RUN chmod +x /home/tool/visualization.py
ENV PATH="/home/tool:$PATH"

CMD ["/bin/bash"]

All Dockerfiles must start FROM a base image, like Ubuntu, Linux distribution or even more
specifically made images for Python or Java and usually ends with the CMD (command)
that will run the application itself. In the example above, the tool that needs to be
containerized is a single python executable script. The base image used is python:3. The
first step is the installation of all software dependencies which in this case are some
python packages. Then, the tool needs to be installed in the new isolated environment by
copying the file to the new filesystem, making it executable and adding its location to the
$PATH environment variable.

Once the Docker image is ready, it can be built by using the following command:

docker build -t <name[:tag]> -f </path/to/Dockerfile> <PATH|URL|>

In our specific example, we will build the psd_workflow_fetching_data container image that
will used later on in the Example [0] subsection.

docker build -t psd_workflow_fetching_data:latest

 -f </path/to/Dockerfile> <PATH|URL|>

The docker build command takes as input the image name and tag, the location of the
Dockerfile and a PATH, which can be a local directory or a URL like a Git repository
location that defines the build context. The Docker build context refers to the files and
directories that will be available to the Docker engine.

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 70

4.4.1.2 Docker registries

As a last step, the already build Docker image needs to be pushed in one of the available
Docker registries. DockerHub, is a public hub that works as a service for finding, storing,
sharing and accessing container images publicly or privately between teams.

Users first need to log into DockerHub with their credentials, tag their container images
and then push container images to DockerHub. At this point, only the specification of the
images is pushed and not the container itself.

docker login
docker tag <old_name> <new_name:tag>
docker push <new_name:tag>

In our example, the command will look like:

docker push psd_workflow_fetching_data:latest

Specifically, for EBRAINS RI, a dedicated docker registry hub, Harbor, for registering,
finding and accessing Docker images already exists. An EBRAINS user can login from the
command line interface using the following docker command:

docker login docker-registry.ebrains.eu

In order to push an image to the registry, the user first has to tag it appropriately so that
the new name corresponds to its location inside the registry.

docker tag <old_name:tag>
<docker-registry.ebrains.eu/project_name/new_name:tag>

In our example, the commands will look like:

docker tag psd_workflow_fetching_data:latest
docker-registry.ebrains.eu/tc/cwl-workflows/psd_workflow_fetching_data:
latest

Finally, pushing an image to the registry can be done using the docker push command:

docker push <new_name:tag>

In our example, the command will look like:

docker push docker-registry.ebrains.eu/tc/cwl-workflows/psd_workflow_fetching_data: latest

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 71

Figure 25: Harbor docker registry available for all EBRAINS users. Non-interactive EBRAINS tools
are already packaged via Docker containers and stored here for future reference in the workflow

descriptions.

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 72

4.4.2 CWL EBRAINS tool example

In this subsection, we present a real example of a definition of a non-interactive EBRAINS
tool via CWL previously packaged via Docker. As previously stated, a command-line tool is
defined as a piece of software that carries out a specific computational task and runs as a
non-interactive program that terminates upon task completion. The CWL Command Line
Tool description specification provides a common layer for describing the syntax and
semantics of programs. Each tool is documented, along with all its parameters, inputs and
output files, software dependencies and execution details in a YAML format file so that
they can be shared across platforms and linked with public registries and hubs to form
publications. This way, CWL tool descriptions can essentially turn POSIX command-line
data analysis tools into user-defined functions with explicitly specified inputs and outputs.
All the information necessary to run the tool is encoded in a single file, so that even users
with no knowledge or understanding of its structure and functionality can use it for their
computations. When it comes to the execution part, all tool software dependencies and
runtime requirements are listed and known a priory. Each tool will be executed
independently in a well-defined, isolated environment via Docker or Singularity method.

First, as seen in the Figure above, a general script information section is provided:

Figure 26 An EBRAINS tool defined via Common Workflow Language. The definition consists of 4
main sections. The tool is already packaged via Docker for reusability and reproducibility

reasons and stored inside Harbor EBRAINS Docker registry for easy accessibility by EBRAINS
users.

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 73

cwlVersion: v1.0
class: CommandLineTool
description: “This tool fetched data from Data Proxy by providing the name of bucket (string), the
name of the file as an object (object_name), and the user token. The output file is the desired
datafile.”

This section is mandatory for all CWL files and should include the script class which is
CommandLineTool in case of a tool description. A short description of the tool is an optional
choice for other users to know basic information of the tool, such as what are the inputs
and the provided output. The version of the CWL specification (v1.0) should also be
labelled, so that the CWL compatible engine used for the tool execution can check for
compliance.

Then, a base command information is provided:

baseCommand: fetching_data.py
hints:
 DockerRequirement:
 dockerPull: psd_workflow_fetching_
 ResourceRequirements:
 ramMin: 2048
 outdirMin: 4096

This section contains the base command and hints connecting to the execution
environment of the tool in order to run. The hints have to do with specific requirements like
Docker image and Resources that are needed in order for the tool to be executed.
Specifically, DockerRequirement is used to define the Docker image that is necessary for
running the specific tool and should be pulled from the URL specified by the dockerPull tag.
The dockerPull parameter takes as value the name of the container image as well as a
specific tag.

In this example, we have already created the workflow_fetching_data Docker container
image and pushed it into the Harbor EBRAINS docker registry, for future reference as well
as for accessibility and findability by other users. There are also some fields dedicated to
ResourceRequirements in order for the CWL compatible engine to know beforehand how
many resources are needed in order for the tool to run. This is not a mandatory field, but
will make the execution faster since workflow engines will typically use the minimum
resources available and will keep increasing them until the execution has ended properly.

As a next step, inputs of the command line tool are provided:

inputs:
 bucket_id:
 type: string
 inputBinding:
 position: 1
 object_name:
 type: string
 inputBinding:
 position: 2
 token:
 type: string
 inputBinding:
 position: 3

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 74

For the tool to run, all required input parameters must be associated with specific values.
Each input parameter definition should include the input type such as string, number,
boolean, file, directory as well as its inputBinding which describe how to turn the input
parameter into a command line argument. This can be described as the definition of the
input types. Another YAML file stores the actual input fields that are used in order for the
tool to be executed.

Scientists wishing to use this packaged tool defined via CWL as a step in another scientific
workflow, will only need to care about adhering to different types of the inputs and provide
the YAML file with the exact parameters needed.

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 75

Lastly, output of the tool is defined as:

outputs:
 fetched_file:
 type: File
 outputBinding:
 glob: $(inputs.object_name)

In the Outputs section, the names and types of the tool’s outputs are defined, similarly to
the input parameters. If the tool’s standard output or standard error needs to be captured,
this can be done by specifying the stdout or stderr object as an output respectively.

Figure 27: A YAML file consisting of the parameter inputs of the EBRAINS tool defined via
Common Workflow Language.

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 76

4.5 Workflow management system

With respect to executing standardized scientific workflows, a workflow management
system is needed in order to monitor workflow steps, handle possible failures when they
occur, retrieve logs and outputs and overall make procedures automatic.

In this subsection, we will propose a small number of workflow management systems that
could be installed on top of HPC systems which offered by the EBRAINS underlying
infrastructure. Since there are a lot of workflow engines that exist, we narrowed down the
list to a fewer number of systems taking into consideration some critical aspects:

• First, a key point for selection was the level of compatibility with CWL that is used
as standard and common way to describe scientific workflows.

• Second, workflow management systems must be easily installed on top of HPC
systems and make use of the underlying workload manager running for scheduling
of the tasks. In the current thesis, Slurm is used as the workload manager in the
majority of the HPC systems existing in the EBRAINS underlying infrastructure.

• Third point, workflow management systems need to be compatible with different
containerization methods such as Docker and Singularity, since Singularity is used
as the containerized method on top os HPC systems.

In the table below, we conclude our metrics for choosing the most suitable workflow
management system for our purpose [33].Under Underlying infrastructure column, we
provide infrastructures in which workflow management systems can run upon. Under
Compatibility with CWL column we present if workflow management systems are
compatible with Common Workflow Language formatting, and lastly under
Containerization method we provide which of the containerization methods, Docker,
Singularity or both are supported during the execution of different steps in workflows.

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 77

Underlying
Infrastructure

Compatibility
CWL

Containerization
method

Nextflow

GridEngine, SLURM,
LSF, PBS, HTCondor,
Moab, Kubernetes, GCP,
AWS, Azure, locally

no -

Snakemake
Containers, HPC, cloud,
locally

no Docker, Singularity

CWL-Airflow Linux yes Docker, Singularity

Toil

GridEngine, SLURM,
LSF, PBS, HTCondor,
Mesos, GCP, AWS,
Azure, OpenStack,
locally

yes Docker, Singularity

CWL-TES
AWS, GCP, Alicloud,
HPC, Spark, TES, locally

yes Docker

CWLTool locally, cluster, HPC yes Docker, Singularity

As seen in the table, Nextflow provides the minimum compatibility with CWL and thus it is
not a candidate for becoming the primary workflow management system in the context of
EBRAINS RI. Snakemake also provides small compatibility with CWL in the sense that
users need to shift the workflow description in such a way that Snakemake can execute.
On the other hand, CWL-Airflow [15], although compatible with CWL, is not supported on
top of HPC systems. Lastly, CWL-TES client does not support Singularity as the primary
containerization method.

By eliminating some of the workflow engines, we narrowed the candidates into two
workflow engines, CWLTool and Toil, which adhere to all three (3) aspects for selecting a
management system for the pilot EBRAINS workflow system. Both workflow management
systems run on top of HPC systems and can take care of the workload manager that runs
underneath (Slurm workload manager). They are compatible with Common Workflow
Language in the level where no configurations are needed neither on the workflow
definition nor during the execution of the workflow. Last but not least, both support Docker
and Singularity as containerization methods in order to execute tasks of the workflow as
packaged isolated steps.

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 78

4.5.1 CWLtool

Cwltool is the reference implementation of the Common Workflow Language, created and
maintained by the CWL team. It is the most feature-complete and lightweight
implementation of CWL. All workflow inputs in the specific execution of the workflow recipe
must be specified in a YAML or JSON file. The command syntax to run a workflow is very
simple:

cwltool <workflow_descr> <inputs_obj>

where <workflow_descr> is the CWL workflow or the command line tool description and
<inputs_obj> is the file with the inputs parameters as previously described.

While there is a wide range of options that can configure the way the workflows are
executed, we chose to mention some of the available options.

In order to run a workflow without any containerized method, in case all software and file
requirements are met in the local environment, the --no-container flag can be used:

cwltool –-no-container <workflow_descr> <inputs_obj>

As previously mentioned, most HPC systems provide Singularity as a containerized
method, that can be used to build Docker containers. In order to use Singularity runtime for
running containers, we can use the --singularity flag:

cwltool –-singularity <workflow_descr> <inputs_obj>

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 79

4.5.2 Toil

Toil [34],[29] is an open-source, portable, scalable workflow engine that supports many
different contemporary workflow definition languages, including CWL, and can be used to
run scientific workflows at large-scale efficiently, securely and reproducibly. It can run on
Amazon Web Services (AWS), Google Compute Engine (CGE) and Kubernetes, and also
supports various batch systems (SLURM, Torque, LSF).

The Toil runner command provides cwl-parsing functionality using cwltool and leverages
the job scheduling and batch system support of Toil. To run in local mode, the user needs
to provide the CWL file and the input object file:

toil-cwl-runner <workflow_descr> <inputs_obj>

To use Singularity runtime for running containers, we can use the --singularity flag:

toil-cwl-runner --singularity <workflow_descr> <inputs_obj>

To use Slurm workload manager on top of HPC systems, we can use the –-batchSystem
flag:

toil-cwl-runner –-batchSystem slurm <workflow_descr> <inputs_obj>

4.6 Scientific computational workflows at EBRAINS via Pilot Workflow Management
System

Using the same real example as was used in chapter [3.4], we will prove how standardised
workflows introduced at EBRAINS RI throughout the pilot workflow management system,
reduced the number of steps that the EBRAINS users would have to do manually, as well
as centralizing all actions into a single point of truth, which were previously done by a
number of different terminals and HPC endpoints. Currently, the scientific computational
workflows as well as EBRAINS tools used as workflow steps are described in an open,
common, broadly understandable way via Common workflow Language.

4.6.1 Getting data near the compute nodes

Before introducing the pilot workflow management system at EBRAINS, an EBRAINS user
would have to manually ssh and copy (rsync, cp, mv) the data inside the HPC system in
which the analysis or simulation will run. Now the only thing that is needed is an IRI/ URL
of the remote location of where the data is stored. The workflow engine that is responsible
for the execution of the scientific workflow inside the HPC system will be responsible to
fetch the data prior the workflow execution into the right location. The EBRAINS user will
only need to define the type of different input data needed and associate them with the
appropriate values located in a separate file (YAML input file).

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 80

4.6.2 Find tools for analysis and simulation

With respect to Finding Tools, while tools are authored via CWL they will adhere to some
specifications in order to be added in EBRAINS Knowledge Graph by the curation team.
There will be a documentation, description of what the tool is and how it is used. The type
of the input data will be explicitly defined and maybe some test data can be associated
with it in order to be easily used.

Figure 29: The actual values of the input data are provided by another file (YAML input file). For the
specific example, a URL of the File is provided.

Figure 28: EBRAINS user must define the type of
input data (inputs) in the CWL workflow

specification (mandatory field).

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 81

In the previous example, EBRAINS users would need to write sbatch jobs in a specific way
or use Jupyter notebooks in order to better communicate with the HPC systems or even
direct ssh into them to submit analysis and simulation tasks. Now, EBRAINS users would
only need to package their code (python code for this example) in a Docker container and
use the URL of the container that is pushed to the Harbor, the EBRAINS docker registry.
Workflow engine will be responsible to fetch the Docker image to where the data analysis /
simulation will take place. No slurm job specifications such as sbatch jobs is needed to be
provided from the EBRAINS users.

EBRAINS tools defined via CWL will look like this:

Figure 30: After pilot workflow management system is introduced to EBRAINS, users
need to wrap analysis code into Docker containers and store them inside Harbor

(reproducibility).

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 82

4.6.3 Use HPC systems to run experiments

From a dedicated Command Line Interface (CLI), EBRAINS users will only need to
execute:

toil-cwl-runner --setEnv PATH=$PATH --disableCaching --batchSystem=slurm --singularity
workflow.cwl workflow_info.yml

There is no need for Jupyter Notebooks to be used for executing and monitoring workflows
after the introduction with the pilot workflow management system. Also, different
programmatic access via terminals to different HPC systems is limited to one CLI for
submitting the scientific computational workflows while at the same time observing logs
and outputs.

4.6.4 Move output back to Archival Data Repository

Once the output is ready, an easy way to retrieve the data back is by explicitly defining the
type in the workflow description, once again done by the CWL specification format.

Figure 31 After proposing the pilot workflow management system, EBRAINS tools
are described via CWL format adhering to specifications. Code previously written

in sbatch jobs for scheduler in HPC systems to execute it, now is wrapped inside a
Docker container and stored in Harbor.

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 83

After introducing the pilot workflow management system to EBRAINS, the whole workflow
will look like this:

Figure 32: Exactly like the input data
(inputs), the output data (outputs) are
also defined in the CWL specification

from EBRAINS users.

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 84

Figure 33: CWL workflow with input data, different workflow
steps also defined via CWL specification with code wrapped
inside Docker containers and stored into Harbor, as well as

pre-defined output data for retrieving it back once ready.

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 85

4.7 EBRAINS Graphical User Interface / EBRAINS HUB

In the previous sections we introduced means for scientists to describe standardized
scientific workflows by using Common Workflow Language (CWL) format and execute
them via appropriate compatible workflow management systems. In this section, we
propose ways for scientists to submit the already described CWL workflows into a
dedicated entry point in order to monitor the execution, have access to logs and outputs.
Thus, an EBRAINS graphical user interface dedicated to users is proposed. Furtherer
more, a central place for storing, accessing and sharing scientific workflows among
scientists and different scientific communities is mandatory.

For the pilot EBRAINS workflow management system, we propose a user dedicated
workspace to be created in order for scientists to have an overview of the different
workflows that can be executed, submit the ones that they would like to execute on top of
the underlying infrastructure, check for logs and the available outputs. It will also be
possible for them to parameterize the input fields of the workflows for the sake of their
scientific objectives.

Scientists will be able to check for current and previous executions of scientific workflows
submitted and they will get notified once outputs are available. Logs for submitted
workflows will be available for users to check.

Figure 34:EBRAINS graphical user interface - Overview of the available workflows

.

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 86

EBRAINS Research Infrastructure already offers the EBRAINS Knowledge Graph, which
is a multi modal metadata store that combines information from different fields on brain
research, such as data, models and software existing at EBRAINS. Everything shared
publicly in Knowledge Graph is annotated with standardized metadata tailored for
neuroscience, facilitating discovery and reused by the broader research community.
Therefore, for the pilot EBRAINS workflow management system we propose Knowledge
Graph to be the central place for scientists to find, access and share standardised
workflows and tools described via CWL. With the initialization of this scientific workflow
and tool hub, OPENness, FAIRness, findability, shareability and reproducibility aspects are
introduced to EBRAINS, such as in every other scientific related research [41]. The
EBRAINS packaged non-interactive tools as well as the scientific computational workflows
should be well defined in Common Workflow Language with all the documentation, inputs
and outputs and should be publicly available. In that way, browsing and finding different
tools to be used as workflow steps should be possible for scientists at EBRAINS as well as
to external users and scientists, in order to conduct their own workflow definitions
accomplishing scientific objectives using tools and data provided by EBRAINS. Thus,
EBRAINS is introduced as a research infrastructure in which findable and accessible
aspects are met.

Figure 35:EBRAINS graphical user interface - On going, completed and failed executions are
shown to the users. Logs for every workflow submitted may be available. Users will get notified

once a workflow is completed.

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 87

Both workflows and tools when stored in Knowledge Graph as digital objects are
associated with unique identifiers. This makes it easier for scientists to refer their work with
citations and publications so they can connect their practical with theoretical work.
Especially for journal EBRAINS users, a dedicated page45 describes the procedure of a
pre-reviewed journal publication from which they can choose the level of metadata or data
information to be made publicly available.

Specifically for EBRAINS users, they can store their workflow structured recipes in either
their own private spaces in EBRAINS Knowledge Graph or in a public space. In the
former, only a small number of EBRAINS users with specific permissions can have access
to workflow recipes and tools. In the latter, users would need to share the CWL definitions
with all EBRAINS users as well as external ones, after submitted the descriptions to the
curated team for approving or denying them. EBRAINS users can submit and execute the
available workflows in the EBRAINS underlying infrastructure in accordance with the
available resources that are needed and are available. EBRAINS users could compose
workflows by using EBRAINS tools found inside the EBRAINS Knowledge Graph via the
Rabix composer.

45 https://ebrains.eu/service/share-data

Figure 36: EBRAINS Knowledge Graph as the central HUB for CWL workflows and Tools. Scientists
at EBRAINS and externals can browse, search and find standardized scientific workflows and tools

defined via CWL in the scope of EBRAINS RI.

https://ebrains.eu/service/share-data

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 88

External users will only be able to navigate through the different publicly available CWL
workflows and tools. They will be able to download publicly available workflow recipes, but
they can only execute them in their local machines since they will not have access to the
underlying infrastructure that EBRAINS offers. In that way external users can explore the
capabilities that EBRAINS pilot workflow management system provides to the different
scientific communities.

4.8 User story

In this last sub section, we combine all three layers of the EBRAINS architectural diagram,
FENIX ICEI as the bottom layer, supplementary services and standardised workflows as
the middle layer and data and EBRAINS tools from the upper layer in order to present the
proposed EBRAINS pilot workflow management system by describing an EBRAINS user
story.

Typically, a scientist at EBRAINS will have to find a scientific workflow via EBRAINS
Knowledge Graph or compose one by using EBRAINS tools found at EBRAINS
Knowledge Graph. In the first case:

• Browse EBRAINS Knowledge Graph by selecting the “Workflows” Category

EBRAINS Knowledge Graph is the central hub for finding and accessing scientific
workflows. By navigating into the Workflows categories, a variety of public scientific
workflows described via CWL appear. By selecting one, the user will access related
metadata information such as a short description of the workflow, what type of input is
needed, which is the provided output, how many resources are needed in order to run as
well as a graphical representation of the workflow as a graph provided by CWLViewer [16].

Figure 37: Rabix composer for composing CWL workflows by drag and drop EBRAINS tools already
described via CWL

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 89

Figure 39 Preview of the standardized scientific workflow as a directed acyclic graphs provided
by CWLViewer, where EBRAINS tools are the nodes of the graph, and data flowing between steps

are the edges.

Figure 38: Users can browse “Workflows” categories for finding standardized scientific
workflows that are publicly available.

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 90

In the second case:

• Browse EBRAINS Knowledge Graph by selecting the “Tools” Category

As previously presented, a “Tools” Category under EBRAINS Knowledge Graph exists in
which EBRAINS packaged non-interactive tools can be found, accessed and used in order
to compose workflows. These tools are also defined via Common Workflow Language,
thus, they are well documented, with a proper description of input and output types. The
EBRAINS user can:

• Use the Rabix composer [48], which can be an embedded self-hosted environment
inside the Knowledge Graph, to graphically compose scientific workflows by using
CWL EBRAINS tools available

Scientists can drag and drop available EBRAINS tools and connect the different inputs
and outputs of the workflow steps to creating directed acyclic graphs, in which tools
are the nodes and data flowing acts as the edges.

Figure 40: Additional information for standardized scientific workflows, such as the Digital Object
Identifier (DOI), as well as the CWL definition. Users will be able to execute workflows in a

dedicated endpoint (graphical user interface) by pressing the Play button

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 91

Once the user has either found or composed its own CWL scientific workflow from the
EBRAINS Knowledge Graph then:

• Selects and submits scientific workflow for execution in the powerful underlying
infrastructure.

In order for the EBRAINS user to submit the workflow to the underlying infrastructure, user
needs to select the “Play” button. User will be redirected to a dedicated endpoint, the
EBRAINS graphical user interface, in which the workflow will be imported. The user can
use the default input parameters for the workflow to be executed. Another option is for the
user to upload a specific type of file with all the input parameters or use a drop-down
menu. The type of the input must be followed and only the input values can be changed.
Once input parameters are in place, the workflow will be submitted and executed by the
workflow management system, in an opaque from the user way, on top of the HPC
system.

Figure 41: Graphic User Interface, Rabix, for visually describing workflows. Users simply drag and
drop already defined tools and connects the inputs as well as outputs of one tool to the other. In
that way a graph is created where with tools as nodes and data flowing between them as edges.

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 92

Once the workflow is submitted, the user can

• Check the status and logs of the executed scientific workflow.

The EBRAINS user will be able to check for logs and status for previous, future as well as
current workflow executions. Once the scientific workflow is completed, the user will be
notified in order to check the logs of the workflow, the different workflow steps as well as
the produced output.

Figure 42:Users provides the input parameters and the input data for the scientific workflow
recipe to be submitted.

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 93

The real execution of the submitted scientific workflow takes place in the underlying
infrastructure on top of the HPC system.

• Execution is taking care of by the EBRAINS underlying infrastructure

A workflow management system (Toil) runs on top of HPC system in the underlying
EBRAINS infrastructure and takes care of the workflow execution in an opaque from the
users way. The command that triggered the execution when the user pressed “Play”:

toil-cwl-runner –-batchSystem slurm workflow_descr.cwl inputs_obj.yaml

where the workflow_descr.cwl is the CWL description of the workflow and the
inputs_obj.yaml the input parameters.

Figure 43:EBRAINS users can get notified and check the status, logs and outputs of the submitted
scientific workflows.

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 94

Figure 44:Logs and output provided to the user in an opaque way via the dedicated endpoint.

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 95

Once the scientific workflow is completed, the user gets notified and must move the data
out of the Active Data Repository to the reliable Archival Data Repository.

• Move the scientific output produced to a dedicated data repository for long term
stotage.

As a last step, the user must transfer output to a dedicated data repository for long term
storage, since the data repositories associated with HPC systems will be purged soon
enough, and the data will be lost. A dedicated CWL workflow can be composed and used
by the EBRAINS users in order to move the data out of the HPC systems and associate
the outputs with unique persistent identifiers.

Having all scientific assets available in EBRAINS Knowledge Graph from input data, to
CWL workflows and tools to produced output data, scientists at EBRAINS make steps
towards an Open and FAIR research infrastructure where different representations of the
same scientific work will be linked together.

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 96

5. RELATED WORK

In this sub-section, we present work from other scientific fields, related to our thesis, that
cover aspects of standardization of workflows and non-interactive tools. These aspects
include the definition in a structured and common way of workflows and tools used as
workflow steps, the execution via different workflow management systems that run on top
of software and hardware systems, such as High Performance Computing, hiding the
configuration and adjustments that are needed. With respect to storing different tools and
workflows, central places for shareability, accessibility, findability and future reference
have developed and are currently used by different scientific fields. Last but not least,
different ways to visualize already described workflows as well as visualize the description
of a created workflow on the fly exist.

There are numerous European Research Infrastructures (RIs) associated with Life
Science that adhere to some of the practices of providing wrapped tools, describing
workflows in a common standard way, executing them via different workflow engines and
storing them in Hubs, providing Findability, Accessibility, Interoperability and
Reproducibility. Some of the RIs and projects associated with Life Science are EOSC-
Life46 that “brings together the 13 Life Science ESFRI research infrastructures to create
an open, digital and collaborative space for biological and medical research”, Elixir47
which is “one of the 13 Life Science ESFRI research infrastructures and a coordinator of
EOSC-Life" and Global Alliance for Genomics and Health (GA4GH)48 which is “a policy-
framing and technical standards-setting organization, seeking to enable responsible
genomic data sharing within human rights framework”. From the related work that each of
the above mentioned infrastructures and projects provided, the concept of wrapping tools
and the technologies of describing, executing and storing scientific computational
workflows have been examined and adapted as a pilot workflow management system for
EBRAINS RI.

The first interesting point emphasized in most relevant work is the importance of
packaging tools in a standardized way that handles all their dependencies and
configurations, so that they can be executed in different underlying infrastructures with
minimum overhead. There are means to wrap tools by using either Docker [45] or
Singularity [46], that fall under the containerization methods. The fact that wrapped tools
can be executed in different underlying infrastructures provides portability in the sense that
the execution details of the tool are decoupled from its description. Those wrapped tools
can then be easily used in workflow steps in order to compose directed acyclic graphs
(DAGs), loops or branches. As a real example in the bioinformatics field, BioContainers
[34] is an open-source and community driven framework that provides platform
independent executable environments for bioinformatics software. The project provides
ways of installing bioinformatics software, maintaining different versions of the same
software and combining tools creating analysis pipelines. It is based in Docker and RKT
frameworks and has also been integrated with the BioConda [29] project that enables the
automatic generation of containers from BioConda and Dockerfiles recipes.

With respect to having a common standard way of describing workflows using wrapped
tools as workflow steps, RIs and projects associated with bioinformatics have already

46 https://www.eosc-life.eu/

47 https://elixir-europe.org/

48 https://www.ga4gh.org/

https://www.eosc-life.eu/
https://elixir-europe.org/
https://www.ga4gh.org/

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 97

concluded in using common open standards like Common Workflow Language or
Workflow Description Language [29]. Common Workflow Language [1] (CWL) is an
emerging open standard designed to define analysis tools and workflows with specific
input, parameters and resources needed in order to be executed in a portable, scalable
way across a variety of software like workflow engines and hardware locally, in the cloud
or in HPC environments for accomplishing a specific output. Common Workflow Language
is not a piece of software but rather a specification that defines a set of standards that
different implementations must conform to. It is compatible with a lot of workflow engines
already and supports containerization methods like Docker and Singularity. Common
Workflow Language is used by the European Union’s BioExcel [55] Centre of Excellence
for Biomolecular modelling, and by the IBISBA ESFRI for Industrial Biotechnology. CWL is
also participating in GA4GH Task Execution API14 and GA4GH Workflow Execution
API15 projects. In general, CWL aims to provide interoperability, extensibility, portability
and reproducibility by open source standards for workflow based research. It provides
declarative constructs for workflows and command line tool definitions and makes minimal
assumptions about base software dependencies, configuration settings, software versions,
parameters or execution environment. Defining a command line tool via common standard
format that CWL provides, encourages reuse of steps across workflows, researchers as
well as communities.

Workflow Description Language (WDL)49 is another way to specify data processing
workflows with a human-readable and writable syntax. WDL makes it straightforward to
define complex analysis tasks, chain them together in workflows, and parallelize their
execution when this is feasible due to lack of dependencies. A variety of bioinformatics
workflows and tasks written in WDL can be found in BioWDL50, which is a collection of
workflows related to sequencing analyses and is developed at the Leiden University
Medical Center by the Sequencing Analysis Support Core (SASC) team. WDL is mostly
used in scientific fields like Bioinformatics but is a general-purpose workflow language able
to help different fields in defining workflows in a structured way.

As far as the execution of workflows is concerned, and although numerous workflow
management systems51 exist and can automate the execution of steps in workflows, can
handle failures and can monitor workflows overall, each of these systems use their own
syntax or method of describing workflows and infrastructure requirements. This approach
inflicts limitations in computational reuse and portability, as well as in publication reuse and
research collaboration. That is why there is the mandatory need to have standard ways of
describing and executing workflows. In that same approach, many publications have
proposed different metrics in order to choose what is the best workflow management
system for different aspects. Taking the bioinformatics field as a reference, it is commonly
accepted that CWL is more compatible with different workflow engines than WDL.
Compatibility of CWL or WDL with different workflow engines is a critical point for choosing
which open standard for describing a computational workflow will be used, since there are
a lot of different infrastructures and workflow engines exist.

With respect to storing different tools and workflows created by the different Research
Infrastructures and projects, aspects like accessibility, findability and shareability played an
important role in the way different scientific communities introduced solutions. Biotools18,

49 https://openwdl.org/

50 https://biowdl.github.io/

51 https://github.com/meirwah/awesome-workflow-engines

https://www.lumc.nl/
https://www.lumc.nl/
https://openwdl.org/
https://biowdl.github.io/
https://github.com/meirwah/awesome-workflow-engines

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 98

developed and supported by Elixir, is a comprehensive registry of software and databases
that facilitate bioinformatics researchers to find, access, and cite resources needed for
their research. In Biotools, tools consist of a single command line from online services, to
databases and complex analysis workflows too. WorkflowHub [57] is a new FAIR workflow
registry [27] sponsored by the European RI Cluster EOSC-Life and the European
Research Infrastructure Elixir. Although currently in Beta, WorkflowHub is a registry for
describing, sharing and publishing scientific computational workflows. At the time of the
writing, externals can browse up to fifty (50) workflows. With this registry, workflows can be
accessed in an interoperable and accessible way due to the usage of open standards and
tools like CWL, Research Object-Create, FAIR principles and more. Dockerstore52
provides a place where users can share tools encapsulated in Docker and described with
CWL or WDL. myExperiment [56] is an attempt to create a workflow repository, for finding,
sharing and publishing workflows with licenses. It credits authors when workflow designs
were reused or repurposed, and packages workflows into collections as well as with other
digital objects such as associated data files and publications. This work laid the
foundations for workflow-based Research Objects that allows bundling of all the artefacts
associated with an investigation or piece of research into one whole that can also be cited.

With respect to visualizing workflows, CWL Viewer is a richly featured web visualization
suite for workflows written in CWL with the aim of facilitating sharing, understanding and
discovery as well as encouraging best practices when writing workflows and their tooling
[16]. CWL workflow developers can use the CWL viewer web application that fetches CWL
files from remote locations and creates a page with relative information about the workflow
itself, the steps, inputs and outputs. CWL viewer also creates visual diagrams of the
respective workflows. As an example, the diagram below has been produced by CWL
Viewer.

As for the on-the-fly visualization while creating workflows, Rabix Composer [48], created
by Seven Bridges, allows users to create and edit CWL workflows in an intuitive way,
either through a drag-and-drop Graphic User Interface or a CWL code editor. The workflow
recipes produced can then be executed locally or uploaded to any other machine, local or
remote, to be executed there using any CWL-compatible workflow engine. While creating
a workflow, the user can switch between the visual editor and the CWL code view, and all
changes are automatically synced between the two views. Tools that are already defined
via CWL can be dragged and dropped into the editor in order to be steps in a workflow.
Connections between step inputs and outputs can be created by hovering over the output
port on the first step and dragging it to the input port the user wants to connect it to on the
second step. Inputs of a step can be whole workflows, the sub workflows, too.

52 https://dockstore.org/

https://dockstore.org/

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 99

6. CONCUSION

Many research communities had been seeking ways for addressing complex scientific
problems by harnessing the power of high-performant and scalable computing
infrastructures. These complex scientific problems demand the execution of time-
consuming computational tasks, such as analysis and simulation based on big-data and
complex models.

In the current thesis, we presented the EBRAINS Research Infrastructure, which is
dedicated to brain related research across Europe. EBRAINS aims to serve brain research
and brain medicine, research and development in Artificial Intelligence (AI), as well as
computing and data science. Its underlying computing infrastructure, FENIX ICEI,
provides a plethora of High Performance Computing services, ranging from scalable
and interactive computing, up to virtual machines and containerization services, as well
as highly performant data storage services.

In the scope of the thesis, we define:

• Scientific Computational Workflows as series of non interactive EBRAINS tools
linked in order to create graphs, loops or branches for accomplishing scientific
objectives. Data flowing between the different tools depict the order of execution of
the EBRAINS tools.

• Non interactive EBRAINS tools as data manipulation, simulation or analysis tools
wrapped with dependencies, libraries, binaries and software via Docker. EBRAINS
tools are defined via CWL Command Line Tool Description Specification [1].
EBRAINS users can not interact with these tools during the runtime.

• Standardized workflows as chains of EBRAINS tools used as workflow steps
connected in a specific way to create directed acyclic graphs (DAGs) of operations.
CWL Workflow Description Specification [1] is used in order to define standardized
scientific workflows as structured recipes along with all the steps, inputs and output
data files and the execution details in a YAML format file. Standardized scientific
workflows defined via CWL can be executed by CWL- compatible workflow engines,
which are responsible for executing, monitoring and retrieving logs and outputs,
running on top of a variety of computing platforms, ranging from individual
workstations to cluster, grid, cloud, and High Performance Computing systems.

We introduced standardisation methods and technologies (Common Workflow Language)
in the already important work that has been done in brain-related research fields,
enhancing FAIR, Open and knowledge exchanging aspects of EBRAINS RI.
Standardisation entails clear, structured and well documented definitions of flows of data
manipulation tasks running in different underlying infrastructures, from local machines to
HPC systems, without parametrization. In the current thesis, we focused on HPC systems
provided by the EBRAINS underlying infrastructure.

The pilot workflow management system that we propose to be introduced with EBRAINS
RI, enables EBRAINS scientists to execute their CWL workflows in a single dedicated
endpoint, in which workflows and their input parameters are submitted and monitored.
Further, Knowledge exchange in a well-documented, easily understandable cross-
scientific manner is an important aspect for making science FAIR. Thus, our goal was to
enhance the findability, accessibility, and reproducibility of CWL scientific workflows
introducing EBRAINS Knowledge Graph as the central point of reference, for EBRAINS
and external users to find and access workflows and EBRAINS tools. In that way, scientific

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 100

work with all its components ranging from data, models produced to workflows and tools
executed can be coupled together in order to be easily reproducible by EBRAINS
scientists, as well as other scientific communities.

Our approach for introducing the pilot workflow management system at EBRAINS RI was
based on four pillars:

• First, we chose Common Workflow Language, an open, common and emerging
standard format, as a way for describing both workflows and tools for data
manipulation. These structured workflow definitions are also portable and
decoupled from runtime environments, i.e., executed across different infrastructures
without the need to reconfigure or adapt them in any way.

• Second, we packaged EBRAINS tools with their required libraries, dependencies
and binaries via Docker containers. We proposed containerization for packaging
tools with their dependencies, that work well with CWL format for description, as
well as with CWL-compatible execution engines. These tools can be used as
workflow steps, significantly enhancing their interoperability and portability.

• Third, we deployed and applied CWL-compatible workflow engines, enabling
scientists to harness the HPC underlying computing resources of the EBRAINS RI.
Workflow execution in general is performed by workflow engines that automatically
handle all execution complexity, such us automated restarts, monitoring, or fetching
output. A plethora of workflow engines exist, which we assessed to select those that
best fit the scientific and interoperability requirements of EBRAINS. Our evaluation
criteria related to the degree of compatibility with the latest CWL standard, the
support of containerization technologies, as well as the need to execute CWL
workflows over HPC systems.

• Moreover, we proposed an EBRAINS Hub for scientists to easily find, access and
store their scientific workflows. In the current thesis, this proposed EBRAINS Hub
was designed taking into consideration the already available EBRAINS Knowledge
Graph (KG) service. As a future step, integrating such a feature with the EBRAINS
service (Knowledge Graph) will take place.

• Finally, we proposed an EBRAINS central place, a Graphical User Interface (GUI)
in which scientists can submit, monitor and parametrize workflows. The
proposed GUI has been fully designed but not implemented in the scope of the
current thesis. The design process is based on high fidelity mock-ups. EBRAINS
users will use this GUI instead of a dedicated CLI for a more user friendly
experience. The real execution takes place in the FENIX ICEI underlying
infrastructure in an opaque way, in the same way as using the CLI.

This pilot workflow management system was a test case for the real upcoming workflow
management system, which will integrate features such as the EBRAINS Hub via
Knowledge Graph and the Graphical User Interface (GUI) for a more user friendly
experience. After assessing the EBRAINS users’ requirements and making a thorough
analysis of the state-of-the-art technologies and means that are used by other
communities associated with Life Science, we were able to introduce that kind of pilot
workflow management system to EBRAINS RI and suggest it to its users in order to
provide means and technologies to their valuable scientific work.

The current thesis was partially supported by the European Union’s Horizon 2020
Framework Programme for Research and Innovation under the Framework Partnership
Agreement No. 650003 (HBP FPA).

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 101

ABBREVIATIONS

FAIR Findable, Accessible, Interoperable, Reproducible

API Application Program Interface

I/O Input/Output

EBRAINS European Brain Research Infrastructure

GPU Graphical Process Unit

CPU Central Processing Unit

CWL Common Workflow Language

RI Research Infrastructure

ICEI Interactive Computing E-Infrastructure

HPC High Performance Computing

DAG Directed Acyclic Graph

POSIX Portable Operating System Interfase

AWS Amazon Web Services

SQL Structured Query Language

S3 Simple Storage Service

PC Personal Computer

OpenMP Open Multiprocessing

MPI Message Passing Interface

GB GigaBytes

FENIX Federated Exascale Network for data Integration and
eXchange

VM Virtual Machine

URL Uniform Resource Locator

IRI Internationalized Resource Identifier

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 102

REFERENCES

[1] Michael R. Crusoe, Sanne Abeln, Alexandru Iosup, Peter Amstutz, John Chilton, Nebojša Tijanić, Hervé
Ménager, Stian Soiland-Reyes, Bogdan Gavrilovic, (for the CWL Community). Methods Included:
Standardizing Computational Reuse and Portability with the Common Workflow Language [cs.DC], 4
Aug 2021

[2] Y. Gil et al., "Examining the Challenges of Scientific Workflows," in Computer, vol. 40, no. 12, pp. 24-32,
Dec. 2007, doi: 10.1109/MC.2007.421.

[3] Y. S. Tan, R. K. L. Ko and G. Holmes, "Security and Data Accountability in Distributed Systems: A
Provenance Survey," 2013 IEEE 10th International Conference on High Performance Computing and
Communications & 2013 IEEE International Conference on Embedded and Ubiquitous Computing, 2013,
pp. 1571-1578, doi: 10.1109/HPCC.and.EUC.2013.221.

[4] Georgakopoulos, D., Hornick, M. & Sheth, A. An overview of workflow management: From process
modeling to workflow automation infrastructure. Distrib Parallel Databases 3, 119–153 (1995).

[5] Malcolm Atkinson, Sandra Gesing, Johan Montagnat, Ian Taylor, Scientific workflows: Past, present and
future, Future Generation Computer Systems, Volume 75, 2017, Pages 216-227, ISSN 0167-739X, .

[6] Ewa Deelman, Karan Vahi, Gideon Juve, Mats Rynge, Scott Callaghan, Philip J. Maechling, Rajiv
Mayani, Weiwei Chen, Rafael Ferreira da Silva, Miron Livny, Kent Wenger, Pegasus, a workflow
management system for science automation, Future Generation Computer Systems, Volume 46, 2015,
Pages 17-35, ISSN 0167-739X, .

[7] Hunt, J. C. R. (1998). "Lewis Fry Richardson and His Contribution to Mathematics, Meteorology and
Models of Conflict". Annual Review of Fluid Mechanics. 30 (1): xiii–xxxvi.
Bibcode:1998AnRFM..30D..13H. doi:10.1146/annurev.fluid.30.1.0

[8] Grier, David Alan (2005). When Computers Were Human. Princeton University Press. ISBN 978-0-691-
09157-0. Archived from the original on August 21, 2006. Retrieved January 24, 2006.

[9] Grier, David Alan (March 1, 2001). "Human Computers: The First Pioneers of the Information Age".
Endeavour. 25 (1): 28–32. doi:10.1016/S0160-9327(00)01338-7.

[10] Kean, Sam (2010). The Disappearing Spoon – and other true tales from the Periodic Table. London:
Black Swan. p. 108. ISBN 978-0-552-77750-6.

[11] Cayton, Andrew R. L.; Sisson, Richard; Zacher, Chris (2006). The American Midwest: An Interpretive
Encyclopedia. ISBN 0253003490.

[12] "CDC 6600 – Historical Interlude: From the Mainframe to the Minicomputer Part 2, IBM and the Seven
Dwarfs – They Create Worlds". November 8, 2014.

[13] Hannan, Caryn (2008). Wisconsin Biographical Dictionary. pp. 83–84. ISBN 978-1-878592-63-7.
Retrieved 20 February 2018.

[14] Anthony, Sebastian (April 10, 2012). "The History of Supercomputers". ExtremeTech. Retrieved 2015-
02-02.

[15] Michael Kotliar, Andrey V Kartashov, Artem Barski, CWL-Airflow: a lightweight pipeline manager
supporting Common Workflow Language, GigaScience, Volume 8, Issue 7, July 2019, giz084,

[16] Robinson M, Soiland-Reyes S, Crusoe MR, et al. CWLViewer: The Common Workflow Language Viewer
18thAnnual Bioinformatics Open Source Conference (BOSC2017), F1000Research, 6(ISCB Comm
J):1075 (poster). 2017,10.7490/f1000research.1114375.1.

[17] (PDF) Sharing interoperable workflow provenance: A review of best practices and their practical
application in CWLProv. Available from: [accessed Dec 07 2021]

[18] Mölder, F., Jablonski, K.P., Letcher, B., Hall, M.B., Tomkins-Tinch, C.H., Sochat, V., Forster, J., Lee, S.,
Twardziok, S.O., Kanitz, A., Wilm, A., Holtgrewe, M., Rahmann, S., Nahnsen, S., Köster, J., 2021.
Sustainable data analysis with Snakemake. F1000Res 10, 33.

[19] Zhou, N., Georgiou, Y., Pospieszny, M. et al. Container orchestration on HPC systems through
Kubernetes. J Cloud Comp 10, 16 (2021).

[20] Bartusch, Felix, Maximilian Hanussek and Jens Krüger. “Automatic Generation of Provenance Metadata
during Execution of Scientific Workflows.” IWSG (2018).

[21] Ji Liu. Multisite Management of Scientific Workflows in the Cloud. Distributed, Parallel, and Cluster
Computing [cs.DC]. Université de Montpellier, 2016. English. fftel-01400625v2f

[22] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. Granger, M. Bussonnier, J. Frederic, K. Kelley, J. Hamrick, J.
Grout, S. Corlay, P. Ivanov, D. Avila, S. Abdalla, and C. Willing. 2016. Jupyter Notebooks -- a publishing
format for reproducible computational workflows. Positioning and Power in Academic Publishing:
Players, Agents and Agendas. 87-90.

[23] (1911), The Principles of Scientific Management, New York, NY, USA and London, UK: Harper &
Brothers, , . Also available from Project Gutenberg. (1911), The Principles of Scientific Management,
New York, NY, USA and London, UK: Harper & Brothers, , . Also available from Project Gutenberg.

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 103

[24] Deepak Poola, Mohsen Amini Salehi, Kotagiri Ramamohanarao, Rajkumar Buyya, Chapter 15 - A
Taxonomy and Survey of Fault-Tolerant Workflow Management Systems in Cloud and Distributed
Computing Environments, Editor(s): Ivan Mistrik, Rami Bahsoon, Nour Ali, Maritta Heisel, Bruce Maxim,
Software Architecture for Big Data and the Cloud, Morgan Kaufmann, 2017, Pages 285-320, ISBN
9780128054673, .

[25] Maria A. Rodriguez, Rajkumar Buyya, Chapter 18 - Scientific Workflow Management System for Clouds,
Editor(s): Ivan Mistrik, Rami Bahsoon, Nour Ali, Maritta Heisel, Bruce Maxim, Software Architecture for
Big Data and the Cloud, Morgan Kaufmann, 2017, Pages 367-387, ISBN 9780128054673, .

[26] Seinstra F.J. et al. (2011) Jungle Computing: Distributed Supercomputing Beyond Clusters, Grids, and
Clouds. In: Cafaro M., Aloisio G. (eds) Grids, Clouds and Virtualization. Computer Communications and
Networks. Springer, London.

[27] Carole Goble, Sarah Cohen-Boulakia, Stian Soiland-Reyes, Daniel Garijo, Yolanda Gil, Michael R.
Crusoe, Kristian Peters, Daniel Schober; FAIR Computational Workflows. Data Intelligence 2020; 2 (1-
2): 108–121. doi:

[28] Ludäscher B., Bowers S., McPhillips T. (2009) Scientific Workflows. In: LIU L., ÖZSU M.T. (eds)
Encyclopedia of Database Systems. Springer, Boston, MA.

[29] Fjukstad, B., Bongo, L.A. A Review of Scalable Bioinformatics Pipelines. Data Sci. Eng. 2, 245–251
(2017).

[30] Di Tommaso, P., Chatzou, M., Floden, E. W., Barja, P. P., Palumbo, E., & Notredame, C. (2017).
Nextflow enables reproducible computational workflows. Nature Biotechnology, 35(4), 316–319.

[31] N. Liu et al., "On the role of burst buffers in leadership-class storage systems," 2012 IEEE 28th
Symposium on Mass Storage Systems and Technologies (MSST), 2012, pp. 1-11, doi:
10.1109/MSST.2012.6232369.

[32] "10 The Future of Supercomputing--Conclusions and Recommendations." National Research Council.
2005. Getting Up to Speed: The Future of Supercomputing. Washington, DC: The National Academies
Press. doi: 10.17226/11148.

[33] Jackson M, Kavoussanakis K, Wallace EWJ (2021) Using prototyping to choose a bioinformatics
workflow management system. PLoS Comput Biol 17(2): e1008622.

[34] Felipe da Veiga Leprevost, Björn A Grüning, Saulo Alves Aflitos, Hannes L Röst, Julian Uszkoreit,
Harald Barsnes, Marc Vaudel, Pablo Moreno, Laurent Gatto, Jonas Weber, Mingze Bai, Rafael C
Jimenez, Timo Sachsenberg, Julianus Pfeuffer, Roberto Vera Alvarez, Johannes Griss, Alexey I
Nesvizhskii, Yasset Perez-Riverol, BioContainers: an open-source and community-driven framework for
software standardization, Bioinformatics, Volume 33, Issue 16, 15 August 2017, Pages 2580–2582,

[35] Starlinger J., Cohen-Boulakia S., Leser U. (2012) (Re)Use in Public Scientific Workflow Repositories. In:
Ailamaki A., Bowers S. (eds) Scientific and Statistical Database Management. SSDBM 2012. Lecture
Notes in Computer Science, vol 7338. Springer, Berlin, Heidelberg.

[36] Herschel, M., Diestelkämper, R. & Ben Lahmar, H. A survey on provenance: What for? What form? What
from?. The VLDB Journal 26, 881–906 (2017).

[37] Singh P. (2019) Airflow. In: Learn PySpark. Apress, Berkeley, CA.
[38] Hung et al., 2019, Cell Systems 9, 508–514 November 27, 2019 ª 2019 The Authors. Published by

Elsevier Inc.
[39] Ling-Hong Hung, Jiaming Hu, Trevor Meiss, Alyssa Ingersoll, Wes Lloyd, Daniel Kristiyanto, Yuguang

Xiong, Eric Sobie, Ka Yee Yeung, Building Containerized Workflows Using the BioDepot-Workflow-
Builder, Cell Systems, Volume 9, Issue 5, 2019, Pages 508-514.e3, ISSN 2405-4712,

[40] Valentina Huber. 2001. UNICORE: A Grid Computing Environment for Distributed and Parallel
Computing. In Proceedings of the 6th International Conference on Parallel Computing Technologies
(PaCT '01). Springer-Verlag, Berlin, Heidelberg, 258–265.

[41] Sarah Cohen-Boulakia, Khalid Belhajjame, Olivier Collin, Jérôme Chopard, Christine Froidevaux, et al..
Scientific workflows for computational reproducibility in the life sciences: Status, challenges and
opportunities. Future Generation Computer Systems, Elsevier, 2017, 75, pp.284-298.
ff10.1016/j.future.2017.01.012ff. ffhal-01516082f

[42] Ludäscher B., Weske M., McPhillips T., Bowers S. (2009) Scientific Workflows: Business as Usual?. In:
Dayal U., Eder J., Koehler J., Reijers H.A. (eds) Business Process Management. BPM 2009. Lecture
Notes in Computer Science, vol 5701. Springer, Berlin, Heidelberg.

[43] Darmody, P.. “Henry L. Gantt and Frederick Taylor: The Pioneers of Scientific Management.” (2007).
[44] R. Ferreira da Silva, H. Casanova, K. Chard, T. Coleman, D. Laney, D. Ahn, S. Jha, D. Howell, S.

Soiland-Reys, I. Altintas, D. Thain, R. Filgueira, Y. Babuji, R. M. Badia, B. Balis, S. Caino-Lores, S.
Callaghan, F. Coppens, M. R. Crusoe, K. De, F. Di Natale, T. M. A. Do, B. Enders, T. Fahringer, A.
Fouilloux, G. Fursin, A. Gaignard, A. Ganose, D. Garijo, S. Gesing, C. Goble, A. Hasan, S. Huber, D. S.
Katz, U. Leser, D. Lowe, B. Ludaescher, K. Maheshwari, M. Malawski, R. Mayani, K. Mehta, A. Merzky,
T. Munson, J. Ozik, L. Pottier, S. Ristov, M. Roozmeh, R. Souza, F. Suter, B. Tovar, M. Turilli, K. Vahi,

Management of Scientific Analysis and Simulation workflows over High Performance Computing systems

S. Karvounari 104

A. Vidal-Torreira, W. Whitcup, M. Wilde, A. Williams, M. Wolf, J. Wozniak, “Workflows Community
Summit: Advancing the State-of-the-art of Scientific Workflows Management Systems Research and
Development”, Technical Report, June 2021, DOI: 10.5281/zenodo.4915801.

[45] Merkel, D. (2014). Docker: lightweight linux containers for consistent development and deployment.
Linux Journal, 2014(239), 2.

[46] Kurtzer GM, Sochat V, Bauer MW (2017) Singularity: Scientific containers for mobility of compute. PLoS
ONE 12(5): e0177459. https://doi.org/10.1371/journal.pone.0177459

[47] Benedicic L., Cruz F.A., Madonna A., Mariotti K. (2019) Sarus: Highly Scalable Docker Containers for
HPC Systems. In: Weiland M., Juckeland G., Alam S., Jagode H. (eds) High Performance Computing.
ISC High Performance 2019. Lecture Notes in Computer Science, vol 11887. Springer, Cham.
https://doi.org/10.1007/978-3-030-34356-9_5

[48] Kaushik G, Ivkovic S, Simonovic J, Tijanic N, Davis-Dusenbery B, Kural D. RABIX: AN OPEN-SOURCE
WORKFLOW EXECUTOR SUPPORTING RECOMPUTABILITY AND INTEROPERABILITY OF
WORKFLOW DESCRIPTIONS. Pac Symp Biocomput. 2017;22:154-165.
doi:10.1142/9789813207813_0016

[49] Vivian, J., Rao, A. A., Nothaft, F. A., Ketchum, C., Armstrong, J., Novak, A., … Paten, B. (2017). Toil
enables reproducible, open source, big biomedical data analyses. Nature Biotechnology, 35(4), 314–
316.

[50] Yoo A.B., Jette M.A., Grondona M. (2003) SLURM: Simple Linux Utility for Resource Management. In:
Feitelson D., Rudolph L., Schwiegelshohn U. (eds) Job Scheduling Strategies for Parallel Processing.
JSSPP 2003. Lecture Notes in Computer Science, vol 2862. Springer, Berlin, Heidelberg.

[51] Garrick Staples. 2006. TORQUE resource manager. In Proceedings of the 2006 ACM/IEEE conference
on Supercomputing (SC '06). Association for Computing Machinery, New York, NY, USA, 8–es.
DOI:https://doi.org/10.1145/1188455.1188464

[52] Calzolari A, Valerio A, Capone F, Napolitano M, Villa M, Pricci F, Bravo E, Belardelli F. The European
Research Infrastructures of the ESFRI Roadmap in Biological and Medical Sciences: status and
perspectives. Ann Ist Super Sanita. 2014;50(2):178-85. doi: 10.4415/ANN_14_02_12. PMID: 24968918.

[53] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long, and Carlos Maltzahn. 2006. Ceph: a
scalable, high-performance distributed file system. In <i>Proceedings of the 7th symposium on
Operating systems design and implementation</i> (<i>OSDI '06</i>). USENIX Association, USA, 307–
320.

[54] Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci.
Data 3:160018 doi: 10.1038/sdata.2016.18 (2016).

[55] Andrio, P., Hospital, A., Conejero, J. et al. BioExcel Building Blocks, a software library for interoperable
biomolecular simulation workflows. Sci Data 6, 169 (2019).

[56] Goble CA, Bhagat J, Aleksejevs S, et al. myExperiment: a repository and social network for the sharing
of bioinformatics workflows. Nucleic Acids Res. 2010;38(Web Server issue):W677-W682.
doi:10.1093/nar/gkq429

[57] R. F. d. Silva, L. Pottier, T. Coleman, E. Deelman and H. Casanova, "WorkflowHub: Community
Framework for Enabling Scientific Workflow Research and Development," 2020 IEEE/ACM Workflows in
Support of Large-Scale Science (WORKS), 2020, pp. 49-56, doi: 10.1109/WORKS51914.2020.00012.

	move91410188
	move914101881
	tw-target-text
	LC4
	LC4
	LC5

