
NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCES
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

BSc THESIS

Online Learning-Augmented Algorithms

Konstantinos T. Lakis

Supervisors: Themistoklis Gouleakis, Postdoctoral Researcher, MPI
Panagiotis Stamatopoulos, Assistant Professor, UoA

ATHENS

June 2022

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Άμεσοι Αλγόριθμοι με Προβλέψεις

Κωνσταντίνος Θ. Λάκης

Επιβλέποντες: Θεμιστοκλής Γουλεάκης, Μεταδιδακτορικός Ερευνητής, MPI
Παναγιώτης Σταματόπουλος, Επίκουρος Καθηγητής, ΕΚΠΑ

ΑΘΗΝΑ

Ιούνιος 2022

BSc THESIS

Online Learning-Augmented Algorithms

Konstantinos T. Lakis
S.N.: 1115201700069

SUPERVISORS: Themistoklis Gouleakis, Postdoctoral Researcher, MPI
Panagiotis Stamatopoulos, Assistant Professor, UoA

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Άμεσοι Αλγόριθμοι με Προβλέψεις

Κωνσταντίνος Θ. Λάκης
Α.Μ.: 1115201700069

ΕΠΙΒΛΕΠΟΝΤΕΣ: Θεμιστοκλής Γουλεάκης, Μεταδιδακτορικός Ερευνητής, MPI
Παναγιώτης Σταματόπουλος, Επίκουρος Καθηγητής, ΕΚΠΑ

ABSTRACT

In this thesis we study the emerging field of Online Learning-Augmented Algorithms. These
are Online Algorithms which in addition to the regular input also receive predictions about
their input beforehand. First, a few online problems and their analysis are given to in-
troduce the premise. Then, we give a presentation of some important and representative
results in the area of Learning-Augmented Algorithms, with the goal of explaining the tech-
niques used in their design. Finally, we give some original results regarding the Online
Travelling Salesman Problem on the Line under such a setting.

In the classical TSP on the Line, there is a stream of requests released over time along the
real line. The goal is to minimize the makespan of the algorithm. We distinguish between
the open variant and the closed one, in which we additionally require the algorithm to return
to the origin after serving all requests. The state of the art is a 1.64-competitive algorithm
and a 2.04-competitive algorithm for the closed and open variants, respectively [15]. In
both cases, a tight lower bound is known [8,15].

In both variants, our primary prediction model involves predicted positions of the requests.
We introduce algorithms that (i) obtain a tight 1.5 competitive ratio for the closed variant
and a 1.66 competitive ratio for the open variant in the case of perfect predictions, (ii) are
robust against unbounded prediction error, and (iii) are smooth, i.e., their performance
degrades gracefully as the prediction error increases.

Moreover, we further investigate the learning-augmented setting in the open variant by
additionally considering a prediction for the last request served by the optimal offline al-
gorithm. Our algorithm for this enhanced setting obtains a 1.33 competitive ratio with
perfect predictions while also being smooth and robust, beating the lower bound of 1.44
we show for our original prediction setting for the open variant. Also, we provide a lower
bound of 1.25 for this enhanced setting.

SUBJECT AREA: Online Learning-Augmented Algorithms

KEYWORDS: Online TSP on the Line, Consistency, Smoothness, Robustness, Com-
petitive Ratio

ΠΕΡΙΛΗΨΗ

Σε αυτή την πτυχιακή εργασία μελετάμε το πρόσφατα εκκολαπτόμενο πεδίο των Άμε-
σων Αλγορίθμων με Προβλέψεις (Online Learning-Augmented Algorithms). Αυτοί είναι
άμεσοι αλγόριθμοι οι οποίοι λαμβάνουν και προβλέψεις για την είσοδό τους, προτού αυτή
τους εμφανιστεί. Αρχικά, εξετάζουμε μερικά κλασσικά Προβλήματα με Άμεση Ανταπόκριση
(Online Problems) και την ανάλυσή τους. Έπειτα, παρουσιάζουμε μερικά από τα πιό ση-
μαντικά και αντιπροσωπευτικά πρόσφατα αποτελέσματα στον χώρο των Άμεσων Αλγο-
ρίθμων με Προβλέψεις, με σκοπό να περιγράψουμε τις τεχνικές που χρησιμοποιούνται
στην σχετική βιβλιογραφία. Τέλος, δίνουμε μερικά νέα θεωρητικά αλλά και πειραματικά
αποτελέσματα όσον αφορά το Πρόβλημα του Πλανώδιου Πωλητή στον Άξονα με Άμεση
Ανταπόκριση (Online TSP on the Line) με ύπαρξη προβλέψεων.

Στην κλασσική έκδοση αυτού του προβλήματος, μία σειρά από αιτήματα (requests) εμφα-
νίζονται με το πέρασμα του χρόνου πάνω στον άξονα των πραγματικών αριθμών (real
line). Ο στόχος είναι να ελαχιστοποιηθεί η χρονοκαθυστέρηση (makespan), δηλαδή ο χρό-
νος που χρειάζεται ο αλγόριθμος για να ικανοποιήσει όλα τα αιτήματα. Υπάρχει η ανοιχτή
(open) έκδοση του προβλήματος και η κλειστή (closed), στην οποία επίσης απαιτούμε
από τον αλγόριθμο να επιστρέψει στο αρχικό σημείο (origin). Οι καλύτεροι αλγόριθμοι
που υπάρχουν είναι 1.64- και 2.04-ανταγωνιστικοί (competitive) αντίστοιχα [15]. Και στις
δύο εκδόσεις, υπάρχει εφαπτόμενο κάτω φράγμα (lower bound) [8,15].

Το κύριο μοντέλο προβλέψεων (prediction model) που χρησιμοποιούμε περιέχει προβλέ-
ψεις για τις θέσεις (positions) των αιτημάτων. Δίνουμε αλγόριθμους οι οποίοι (i) έχουν
την ιδιότητα της συνέπειας (consistency), δηλαδή είναι 1.5- και 1.66-ανταγωνιστικοί με τέ-
λειες προβλέψεις για την κλειστή και ανοιχτή έκδοση αντίστοιχα, (ii) είναι εύρωστοι (robust)
ενάντια σε οσοδήποτε λανθασμένες προβλέψεις, και (iii) είναι ομαλοί (smooth), δηλαδή η
απόδοση τους χειροτερεύει ελεγχόμενα ανάλογα με την ποιότητα των προβλέψεων.

Επιπλέον, μελετάμε βαθύτερα την ανοιχτή έκδοση, επαυξάνοντας το μοντέλο προβλέ-
ψεων μας με μία πρόβλεψη για το ποιό είναι το αίτημα το οποίο θα ικανοποιούσε τελευ-
ταίο ένας βέλτιστος Αλγόριθμος με Καθυστερημένη Ανταπόκριση (Offline Algorithm). Ο
αλγόριθμος που δίνουμε για αυτή την περίπτωση είναι 1.33-συνεπής (consistent) χωρίς
να χάνει την ομαλότητα (smoothness) και την ευρωστία (robustness) του, καταρρίπτοντας
το κάτω φράγμα του 1.44 που αποδεικνύουμε για την μη-επαυξημένη περίπτωση. Τέλος,
δείχνουμε ένα κάτω φράγμα του 1.25 για την επαυξημένη περίπτωση.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Άμεσοι Αλγόριθμοι με Προβλέψεις

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Το πρόβλημα του πλανώδιου πωλητή στον άξονα, Συνέπεια,
Ομαλότητα, Ευρωστία, Λόγος Ανταγωνιστικότητας

CONTENTS

1. ONLINE ALGORITHMS 12

1.1 What is an Online Problem and why do we care? . 12

1.2 Examples of Online Problems . 12
1.2.1 The Paging Problem . 12
1.2.2 The Online Travelling Salesman Problem on the Line 13

1.3 The evaluation of Online Algorithms . 14
1.3.1 Competitive analysis . 14
1.3.2 Analysis of the Paging Problem . 14
1.3.3 Analysis of Online TSP on the Line . 16

2. LEARNING-AUGMENTED ALGORITHMS 21

2.1 Ski Rental . 21
2.1.1 The problem . 22
2.1.2 Solving the problem with predictions . 22
2.1.3 Consistency vs. Robustness . 23

2.2 Secretary Problem . 23
2.2.1 The problem . 24
2.2.2 Formal definition . 25
2.2.3 Solving the problem with predictions . 25
2.2.4 The Lambert W -function . 26
2.2.5 The algorithm . 26
2.2.6 Performance . 27

2.3 Speed Scaling Problem . 27
2.3.1 Solving the problem with predictions . 28

3. OUR CONTRIBUTIONS 31

3.1 Introduction . 31
3.1.1 Our setup . 31
3.1.2 Our contributions . 32
3.1.3 Related work . 34

3.2 Preliminaries . 35

3.3 Closed Variant . 37
3.3.1 The FARFIRST algorithm. 38
3.3.2 A 1.5-attack. 45

3.4 Open Variant . 48
3.4.1 The LOCATIONS prediction model . 48
3.4.2 The LOCATIONS+FINAL prediction model . 52

3.5 Experimental Evaluation . 56
3.5.1 FARFIRST . 57
3.5.2 NEARFIRST . 57
3.5.3 PIVOT . 57

4. CONCLUSIONS 60

TABLE OF TERMINOLOGY 61

ABBREVIATIONS - ACRONYMS 62

APPENDICES 62

A. Lemmas for the case of known n 63

B. Omitted proofs from section 3.4 64

REFERENCES 66

LIST OF FIGURES

3.1 FARFIRST ’s competitive ratio for increasing error. 57
3.2 FARFIRST ’s competitive ratio for increasing error and percentage of inputs

considered. 57
3.3 NEARFIRST ’s competitive ratio for increasing error. 58
3.4 NEARFIRST ’s competitive ratio for increasing error and percentage of in-

puts considered. 58
3.5 PIVOT ’s competitive ratio for increasing errors δ and η. 59

LIST OF TABLES

3.1 Summary of results. 34

PREFACE

The main part of this thesis was carried out during a research internship at the Max Planck
Institute for Informatics, where I was fortunate to have Dr. Themistoklis Gouleakis as
my advisor. We also collaborated with Golnoosh Shahkarami, a Ph.D. student at MPI. I
sincerely thank them both for their useful guidance throughout this process.

Additionally, I would like to thank Prof. Panagiotis Stamatopoulos, who has been a great
teacher throughout my undergraduate studies in various courses and is the most adept
user of the Socratic method I have encountered. I owe a substantial part of my motivation
to do research to his patience in giving me essential feedback to countless exploratory
questions I frequently posed to him.

Online Learning-Augmented Algorithms

1. ONLINE ALGORITHMS

1.1 What is an Online Problem and why do we care?

Many problems of significance in today’s world concern themselves with the optimization
of some sort of choice. Choosing which car to buy, where to go for vacation and even
deciding on a life partner all essentially boil down to the maximization of an (implicit) profit
function or equivalently the minimization of an (implicit) cost function. Such problems are
called optimization problems. In many cases, we need to make decisions regarding these
problems without having all the pieces of information necessary. For example, we must
decide whether to buy an electric or a gas-fueled car without knowing that the price of
gas will double in the following years. These types of problems are reffered to as online,
precisely because the algorithm that solves them must act in response to information
arriving partially and over time.

It turns out that many important real-world problems can be modeled by online problems,
making the study of these problems worthwhile even from a practical viewpoint. In order
to get a better feel for this, in the next section we present some of these problems along
with their applications. In some of these problems, we also describe their corresponding
offline version, in which the algorithm can see the entire input in advance.

1.2 Examples of Online Problems

In this section, we give some examples of online problems which we will later analyze in
more detail. We will examine the Paging Problem and Online TSP on the Line.

1.2.1 The Paging Problem

Undoubtedly one of the most well-studied online problems is the Paging Problem. This
problem concerns itself with the management of a computer’s memory. We are supplied
with two types of memory. The cache is small but fast and the main memory is large but
slow. The cache is split into k cells. The main memory consists of N pages. Each cell of
the cache can contain at most one page of the main memory at any time.

We are presented with some page requests over time. If the page requested is contained
in a cell of the cache, we say we have a cache hit. In the opposite case, we have a cache
miss. When this happens, we must bring the requested page into the cache. This may
require the eviction of a page that is currently in one of the cache’s cells. The requirement
in this problem is to decide which page to evict when there is need to, with the goal of
minimizing the number of cache misses.

An obvious application of this problem is the management of actual memory systems
inside computers. As the amount of data is becoming increasingly vast, memory latency
is becoming the bottleneck in many computational problems. An efficient paging algorithm
can limit the number of disk accesses in large databases, which greatly improves the
turnaround time for requests.

In the offline version of this problem, we get to know the entire page request sequence
beforehand. In such a case, the optimal strategy involves evicting the page that will be

K. Lakis 12

Online Learning-Augmented Algorithms

required latest from now on. This strategy is known as Belady’s rule [13]. Obviously, this
cannot directly be mapped to a general real world scenario, since we would need to be
able to predict the future. However, some programs have predictable memory access
patterns that enable us to foresee their page requests. In other cases, we can get a pretty
good estimate of the memory access patterns of a program after we have run it multiple
times.

This realization has led to the development of algorithms that take advantage of this ”pre-
dictability”. This strategy does work well in practice, but theoretically speaking is not guar-
anteed to. It is precisely this ”paradox” that led to the development of beyond-worst case
analysis, one branch of which is the field of learning-augmented algorithms.

1.2.2 The Online Travelling Salesman Problem on the Line

A less known problem, and the one to which we present original contributions, is the Online
TSP on the Line. In this problem, we are presented with requests along the real number
line. These requests are each released at a specific point in time. Only after a request
is released are we informed of its existence and are able to serve it. We are tasked with
managing an agent that is initially on the origin. We can move the agent with up to unit
speed to either direction at any point in time. The agent can serve a request by simply
travelling to it after it has been released. There is no notion of serve time - the agent can
leave the request immediately after reaching it.

There are two versions of the goal in this problem. In the closed version, the goal is to
minimize the time it takes the agent to serve all the requests and return to the origin. In the
open version, the agent need not return to the origin. In this thesis, we concern ourselves
with the closed version.

An application of this problem is the management of robots operating on warehouses.
Suppose we have deployed a robot in a row of storage shelves inside a warehouse of a
company like Amazon. The robot is tasked with retrieving items from the storage shelves,
which are requested by customers. Of course, it only gets to know the details of a request
after it is given by the customer. Also, we can’t know when the final request is released,
since a customer can always make another order. Our (or equivalently, the robot’s) goal
is to bring all the required items to a specific pick-up point (the ”origin”) so they can be
shipped. It is obvious that solving the theoretical version of the problem is equivalent to
managing the robot efficiently. An implicit assumption made here is that the robot will
always be able to carry as many items as necessary.

The offline version of this problem is still useful from a practical viewpoint. As you may
have guessed, the difference is that we know at t = 0 when and where each request will
occur. A real world scenario where this could be used is the delivery of parcels across
a street. We know which parcels should be delivered and where. The release time of
a request corresponds to a time after which the person who expects the parcel will be
available to receive it.

K. Lakis 13

Online Learning-Augmented Algorithms

1.3 The evaluation of Online Algorithms

1.3.1 Competitive analysis

In this subsection, we will give an overview of the framework first presented by Sleator
and Tarjan at [44] that is used to evaluate the performance of online algorithms. We
compare the performance of online algorithms based on what an algorithm that knows
all the input in advance can achieve. We refer to such an algorithm by OPT . We use
OPT (I) to refer to the cost of the solution provided by OPT for input I. To refer to the
algorithm we are examining, we simply swap OPT with ALG in these definitions. For
the formal (mathematical) part, we will always refer to minimization problems and cost
functions. This is not a restriction, since any maximization problem can be transformed to
a minimization problem. We will however discuss situations where the goal may either be
to minimize or maximize the cost.

With this in mind, we are interested in the competitive ratio achieved by ALG.

Definition 1 (Competitive ratio). We say that an online algorithm ALG for a minimization
problem P is c-competitive if for every input I there exists a constant α ≥ 0 such that

ALG(I) ≤ c ·OPT (I) + α

When ALG is c-competitive, we also say that ALG achieves a competitive ratio of c.

When α = 0, we say that ALG is strictly c-competitive. In competitive analysis we essen-
tially try to determine this constant c.

A different and helpful way to look at competitive analysis is to consider the problem as a
game between an online player (whose actions are governed by ALG) and an adversary
ADV that aims to maximize ALG’s competitive ratio. ADV is given ALG’s description,
thus is able to simulate it. Therefore, ADV can design an entire input instance in ad-
vance. Then, since ADV knows the entire input before being asked to solve it, it can do
so optimally. It is only a matter of finding which input I maximizes ALG(I)

ADV (I)
= ALG(I)

OPT (I)
, which

is equivalent to the definition given earlier.

We will make use of this viewpoint mainly when proving lower bounds on the competitive-
ness of some algorithms. In these cases, we will describe the actions of ADV in such a
way that it generates an input Id that is guaranteed to lead to a competitive ratio of at least
d. We will say that we describe a d-attack when doing so.

1.3.2 Analysis of the Paging Problem

Before presenting the main results achieved in the study of this problem, we first provide
more rigorous notation and problem definition.

Problem Definition

The general idea of the problem has been discussed earlier. Recall that we have N pages
in the main memory and k cells in the cache. To formalize things, we give the notation
we will use to describe the problem. We will use pi to refer to page number i in the main

K. Lakis 14

Online Learning-Augmented Algorithms

memory, where 0 ≤ i < N . Also, we will denote the j-th cell of the cache by cj, where
0 ≤ j < k. We say that s(cj) = pi if the page pi is currently stored in the cell cj. If no page
is stored in cj, we have s(cj) = ∅.

A series of pages pr0 , pr1 , · · · , prm is requested. If at the time prx is requested we have
s(cj) = prx for some j, we say we have a cache hit. Else, we have a cache miss. When we
have a cache miss, we are obliged to evict one page from a cell ce and load the requested
page on it. This gives a new function s′ where s′(ce) = prx , while s′ is identical to s for all
other cells.

The objective here is to minimize the number of cache misses by specifying an eviction
strategy. We may now proceed with presenting the most interesting results.

A k-attack

Before we see how we can tackle the problem, let’s take a look at the difficulties that may
arise for an algorithm. In more detail, we will see that no algorithm can be better than
k-competitive by providing a k-attack.

Let’s assume that we have k + 1 pages and pages p1 through pk are initially in the cache.
The adversary ADV makes T requests in the following manner. Simply, ADV asks for
the one page that is currently not in the cache of ALG, i.e. the page pr that satisfies
∄ j s.t. s(cj) = pr. One such page always exists, by virtue of the pigeonhole principle and
the limitation imposed upon the cells of containing at most one page. Thus, ALG will have
to suffer T cache misses.

On the other hand, we shall see thatOPT can get away with T
k
cachemisses. OPT always

evicts the page to be requested the furthest in the future. We claim that the delay of the
request of this page is at least k. Indeed, suppose that for all k pages, their next request
(after the cache miss we are considering) is at most k − 1 requests away. Thus, k pages
must be requested in the following k − 1 requests, a contradiction due to the pigeonhole
principle. We now see that for every cache miss, OPT is ”safe” for at least the next k − 1
requests. Thus, OPT incurs at most T

k
cache misses.

Combining these two observations, we can see that noALG can be better than k-competitive.

Some Algorithms for the Paging Problem

In this subsection we will refer to a few algorithms which are examined in a more detailed
manner in [17].

LRU (Least Recently Used) is arguably the most popular and practically used algorithm
for this problem. As the name suggest, this algorithm chooses to evict the page which
was requested the furthest back in the past (or equivalently, least recently). It turns out to
be k-competitive, because it belongs to a family of algorithms (marking algorithms) which
will later see that is comprised only of k-competitive algorithms.

FIFO (First In First Out) is the next one in popularity. Again as you may have imagined, it
evicts the page which was added to the cache the earliest. Equivalently, it evicts the page
that has stayed in the cache the longest. Similarly to LRU, FIFO belongs to the family of
conservative algorithms, which also contains only k-competitive algorithms.

FWF (Flush When Full) is a naive algorithm that just flushes its entire cache when it is full.

K. Lakis 15

Online Learning-Augmented Algorithms

In other words, when all cells contain a page, it immediately evicts all pages. With a very
slight modification, this algorithm can be shown to belong to the making algorithms family,
thus being k-competitive. This modification involves flushing the cache step by step when
page faults occur, choosing one arbitrary marked page to evict each time.

We now proceed to describe the two families of algorithms we referred to. Their compet-
itiveness is intuitive and the proof is only outlined. The interested reader may find this
information in Chapter 3 of [17].

Marking algorithms

We fix a series σ = pr1 , pr2 , · · · , prm of page requests. We split this series into phases as
follows. The first phase begins with pr1. When the (k + 1)-th distinct page is requested
during a phase -counting the page that initiated this phase- a new phase begins. In other
words, each phase contains requests that correspond to exactly k distinct pages, except
perhaps for the last phase, which may have less than k distinct pages.

Now consider a marking scheme that works as follows. At the start of every phase, we
unmark every page in the cache. When a page is first requested during a phase, we mark
it. Then, an algorithm ALG belongs to the marking algorithms family if it never evicts a
marked page.

We can easily see that any marking algorithm is indeed k-competitive, because it suffers
at most k page faults during any single phase, while OPT incurs at least one page fault
in each phase. The first argument can be seen by the fact that once we mark a page, we
never evict it again. Thus, whenever we have a page fault, the requested page is marked
and cannot be evicted until the next phase. So, each cell can correspond to at most one
page fault during each phase, which proves the claim. Additionally, OPT must suffer a
page fault for every phase, because it also only has k cells.

Conservative algorithms

The definition of a conservative algorithm is pretty straightforward. An algorithm ALG
belongs to the conservative algorithms family if for every input sequence that requests
at most k distinct pages, ALG incurs at most k page faults. These input sequences are
similar to the phases of the marking algorithms.

The proof that all conservative algorithms are k-competitive is a slight modification of the
one used for the marking algorithms.

1.3.3 Analysis of Online TSP on the Line

In order to present the most important results in the study of this problem, we first present
a more rigorous description of the problem, given in [15] by Bjelde et al.

Problem Definition

We have an agent that can move along the real line with at most unit speed. We let
pos(t) denote the position of the agent at time t ≥ 0. We also know that pos(0) = 0.

K. Lakis 16

Online Learning-Augmented Algorithms

With this notation, the speed limitation of the agent can be expressed by the inequality
|pos(t) − pos(t′)| ≤ |t − t′| for all t, t′ ≥ 0. A series of requests σ1, ..., σn arrives over time
with σi = (ai; ri). Here, ai denotes the position of the request and ri is the release time.
We will use pR = maxi{ai} to denote the rightmost point of the input and pL = mini{ai}
to refer to the leftmost point of the input. From here on, we will use the terms positive
and right interchangeably when refering to points on the real line. The same holds for the
terms negative and left.

Initial results

Earlier work by Ausiello et al in [8] has provided some initial results on the competitive
ratio achievable in this problem. In more detail, they give a lower bound of ≈ 1.64 on the
competitive ratio achievable by any algorithm. In our terminology, they give a 1.64-attack.
Additionally, a 7

4
-competitive algorithm is presented. We will summarize the main points

of these results here, since they are relevant to our contributions.

A first lower bound

Before giving the 1.64-attack, we describe a 3
2
-attack. At t = 1, ADV places a request on

−1 if pos(1) ≥ 0. Else, it places a request on 1. It is easy to see that ADV can finish by
t = 2. On the other hand, ALG cannot finish before t = 3. Therefore, the competitive
ratio in this case is at least 3

2
. Hence, no algorithm can be better than 3

2
-competitive. Note

that we will use a similar attack when giving our own lower bound for the case where
predictions are used.

The best lower bound

Now we will describe the general idea of the 1.64-attack. We suppose that an algorithm
ALG has a competitive ratio of ρ < (9+

√
17)

8
. Firstly, we argue that −(2ρ−3) ≤ posALG(1) ≤

(2ρ− 3). To see this, let’s suppose that posALG(1) > (2ρ− 3). In this case, ADV can just
place a request on −1. Then, ALG would need more than 1+ (2ρ− 3)+ 2 = 2ρ time units
to solve the problem, while ADV could do it in exactly 2. Thus, the competitive ratio would
be larger than ρ. The case where posALG(1) < −(2ρ− 3) similarly leads to a contradiction.

Thus, we may proceed under the assumption that indeed−(2ρ−3) ≤ posALG(1) ≤ (2ρ−3).
ADV places two requests at 1 and −1, both at t = 1. At t = 3, ALG cannot have served
both requests. Let’s assume without loss of generality that it has not served −1. With
similar arguments to those of the previous paragraph, we get that posALG(3) is not inside
of the interval [−(7 − 4ρ), (7 − 4ρ)]. Indeed, if this is not true, ADV can place a request at 1
at t = 3. Then, ADV would finish in 4 time units, while ALG would require more than 4ρ.
Because ρ < (9+

√
17)

8
, we can see that [−(7−4ρ), (7−4ρ)] strictly contains [−(2−3ρ), (2−3ρ)].

Now, we are left with only two possible cases.

1. At t = 3, ALG has not yet served 1.

2. At t = 3, ALG has served 1 and also (7− 4ρ) ≤ posALG(3) ≤ 1. We know that posALG(3)
cannot be to the left of −(7 − 4ρ), because posALG(1) was inside [−(2 − 3ρ), (2 − 3ρ)]. In
more detail, 2 time units is just not enough to start within [−(2 − 3ρ), (2 − 3ρ)], go serve the
request at 1 and then reach −(7− 4ρ).

K. Lakis 17

Online Learning-Augmented Algorithms

In both of these cases, we see that ALG is at a distance of at most 1 − (7 − 4ρ) to one
extreme and has not yet served the other. Indeed, this property is sufficient for the rest of
proof. The details are a bit technical and of not great intuitive value, thus are omitted. The
interested reader can find them in Chapter 3 of [8]. The main takeaway is the strategy of
using attacks to obtain properties about an algorithm’s behavior, which then provide the
basis for further attacks, until one has examined all the cases. We also made use of this
strategy in our attempts at providing lower bounds for the learning-augmented setting.

The 7
4
-competitive algorithm (PQR)

As we mentioned, a 7
4
-competitive algorithm is given in [8], going by the name PQR (pos-

sibly queue requests). The algorithm is based on the idea of postponing some requests
that are relatively close to the origin. This set of postponed requests is named Q. Any
other unserved request belongs to the set of (not postponed) requests P . The algorithm
optimally serves all the requests in P first. After that, it optimally serves all the requests in
Q. We will not go into the details of the algorithm, but it is interesting to note the following.
By contstruction, the requests in Q all lay on the same side of the origin at any time. Thus,
the tour-planning of the algorithm is always simple in the sense that it moves to one of the
two extremes straight after the other and then back to the origin.

With this observation, the essence of the algorithm boils down to choosing which extreme
to go for first. Stripping this decision down even more, we only ever need to decide when
to switch extremes. By that we mean that while we previously had planned to go right
first and then left, the release of a new request compels us to instead go left first and then
right. How PQR decides this is not so important, but it gives some insight on possible
algorithmic ideas for the learning-augmented setting. In the following section we will pay
our debt of explicitly presenting an algorithm for the problem.

Newer (and final) results

In their recent paper [15], Bjelde et al manage to match the lower bound given in [8] by
Ausiello et al with the design of a ≈ 1.64-competitive algorithm. We give an overview of
this algorithm in the following section.

The ≈ 1.64 algorithm

While the proof for its competitive ratio is rather complex and long, the algorithm is actually
quite simple. It utilizes a waiting strategy, as opposed to zealously serving the requests
like PQR. When the algorithm has decided to move, it chooses which extreme to serve
first in a simple but insightful way. By examining the possible attacks, the authors have
identified a criterion which governs the choice of the first extreme. Before presenting the
algorithm, we will explain how this criterion was chosen. As a sidenote, we attempted to
use both of these strategies when trying to devise an algorithm for the learning-augmented
setting.

K. Lakis 18

Online Learning-Augmented Algorithms

The extreme choice criterion

In order to describe the criterion, we look at a possible attack that can happen. From
here on, let L(t), R(t) refer to the positions of the leftmost and rightmost requests of the
input respectively, at time t. Also, let rL(t) and rR(t) denote their release times. Then,
σR(t) = (R(t); rR(t)). We define σL(t) in the obvious manner.

Suppose thatALG decides to serve σL(t) before σR(t). However,ADV might have chosen
to serve σR(t) first, possibly (we assume it does for this example) as early as possible, i.e.
at rR(t). Let t0 be the point in time when ALG reaches the origin after serving σL(t). Also,
let t′ be the point in time when ADV reaches L(t) after serving σR(t). We assume for the
sake of explaining the attack that t′ ≤ t0.

With this in mind, let’s think about what happens if ADV moves to the left after t′ up until
t0. There exists the possibility that ADV will place a request at p′ = −|L(t)| − (t0 − t′) =
−t0 + rR(t) + |R(t)|, at time t0.

Then, ADV can finish at time t0 + |p′| = t0 + |L(t)| + (t0 − t′) = 2t0 − rR(t) − |R(t)|.
However, ALG still needs to serve the requests at R(t) and p′. Thus, ALG cannot finish
before t0 + 2|p′| + 2|R(t)| = 3t0 − 2rR(t). For ALG to be ρ-competitive, we must ensure
that:

3t0 − 2rR(t)

2t0 − rR(t)− |R(t)|
≤ ρ⇐⇒ t0 ≥

ρ|R(t)| − (2− ρ)rR(t)

2ρ− 3

If we think about what this tells us, we can see that it practically defines a threshold before
which any ALG should not have served one extreme and returned to the origin, if it is to
be ρ-competitive. At first glance, this seems counterintuitive. After all, we simply took care
of a request quite early. If anything, this should mean that we are on the right track, right?

It turns out, as we saw, that this viewpoint is flawed. To see this more clearly, note that
serving L(t) in the previous example is of no significance, since it would be served later
anyway on the way back from p′. If anything, making an effort to serve it only takes us
away from the ”safe” spot in the origin. The observation of this threshold’s existence leads
to the definition of:

SR(σR(t), t) =
ρ|R(t)| − (2− ρ)rR(t)

2ρ− 3

Similarly, we define SR(σL(t), t) as the earliest an algorithm is allowed to have served
σR(t) and return to the origin. The algorithm takes care to never break these thresholds.
Surprisingly, this simple idea is enough to guarantee that the algorithm is indeed ≈ 1.64-
competitive.

This idea is encapsulated by the extreme choice criterion as follows. If by going to one
extreme first (say σR(t)) we would return to the origin too early (i.e. before SR(σL(t), t)),
we instead go to the other extreme (σL(t)) first. This is only one of the things we consider
when choosing extremes, but is the most important decision the algorithm makes. All the
other criteria are simple and obvious.

Without further ado, we present the algorithm’s definition in the following section.

K. Lakis 19

Online Learning-Augmented Algorithms

Definition of the algorithm

But first, we give some final definitions so the algorithm can make sense. We refer to the
position of the extreme with the largest absolute value by far(t). Obviously, near(t) refers
to the position of the other extreme.

Now consider two possible routes an optimal agent may follow if they only had to serve
σL(t) and σR(t). They may immediately travel to σL(t), wait for it to release and then go
serve σR(t) or do the exact same but with σR(t) first. We call the fastest of these two
routes Tgreedy(t). Note that |TOPT | ≥ |Tgreedy(t)|. Additionally, G1(t) refers to the position of
the first extreme served by Tgreedy(t). G2(t) is defined analogously.

Lastly, we define R(σ, t) as the earliest point in time that ALG can move from pos(t) to α
and then back to the origin, where α is the position of the request σ.

We can finally give the definition of the algorithm. We simply provide a rule through which
the algorithm updates its planned trajectory whenever a new (significant) request is re-
leased, since this is sufficient to fully describe the behavior of the algorithm.

Algorithm 1: UPDATE(t, pos(t), σL(t), σR(t)) for the closed online TSP problem
Input :Current time t

Current position pos(t)
Unserved extreme requests σL(t) and σR(t)

Output :A closed TSP tour serving all remaining requests

twait ← ρ|Tgreedy(t)| − (|pos(t)− far(t)|+ |far(t)|+ 2|near(t)|);

// Safe route because we get to wait
if twait ≥ t then

return waituntil(twait)⊕move(far(t))⊕move(near(t))⊕move(0);
end

// We get to follow the greedy tour
if sign(pos(t)) = sign(G1(t)) or R(G2(t), t) < SR(G1(t), r) then

return move(G1(t))⊕move(G2(t))⊕move(0);
end

// Opposite to greedy tour but we know R(G2(t), t) ≥ SR(G1(t), r)
return move(G2(t))⊕move(G1(t))⊕move(0);

Competitiveness of the algorithm

This algorithm achieves a competitive ratio of (9+
√
17)

8
≈ 1.64. The proof of to this is rather

complex and long (it spans about 15 pages in the paper) and is therefore only outlined.
The main idea is to focus on the last time the algorithm defines its trajectory. If it follows
the safe tour, the competitiveness is obvious. When it gets to follow the greedy tour,
competitiveness derives from the fact that we closely follow the greedy tour. The only
case that is not easy to see is when we serve the extremes in the opposite order to that
of the greedy tour. We only do that when we know that R(G2(t), t) ≥ SR(G1(t), t). This
inequality turns out to be sufficient to prove competitiveness in this case also.

K. Lakis 20

Online Learning-Augmented Algorithms

2. LEARNING-AUGMENTED ALGORITHMS

Properties of learning-augmented algorithms. As we havementioned, the desiderata
for learning-augmented algorithms are the properties of consistency, smoothness and ro-
bustness. In high level, the consistency of an algorithm refers to its provably superior
performance under perfect predictions compared to the best algorithm which does not
use predictions. On the opposite side, the robustness of an algorithm provides worst case
guarantees even for arbitrarily bad predictions. Finally, the smoothness eases out the
transition between the two. That is, the performance of a smooth algorithm gracefully
deteriorates along with the quality of the predictions. We now formalize these properties.
We say that an algorithm is:

1) α-consistent, if it is α-competitive when there is no error.

2) β-robust, if it is β-competitive regardless of prediction error.

3) γ-smooth for a continuous function γ(err), if it is γ(err)-competitive, where err is the
prediction error. Note that err could potentially be a tuple of error types.

In general, if c is the best competitive ratio achievable without predictions, it is desirable
to have α < c, β ≤ k · c for some constant k and also the function γ should increase from
α to β along with the error err. We note that c, α, β and the outputs of γ may be functions
of the input and not constant.

Let us now start examining some problems in this area to better understand it.

2.1 Ski Rental

In this section we will start to examine the field of Online Learning-Augmented Algorithms
by first focusing on a simple problem known as the Ski Rental Problem. This is arguably
one of the most basic and representative rent/buy problems. In these problems, one has
to either keep paying a small fee over and over or instead pay a large fee at any time and
rid themselves of any fees down the line.

One application of the Ski Rental Problem is in caching, where the system decides if it will
read a data block during each pass paying 1 bus cycle, or if it will pass over the block of
data and spend many bus cycles to retrieve the data should it be needed later. This is
referred to as snoopy caching and is examined in [27] by Karlin et al. Another application
is in computer task scheduling, where the system can either serve a task (paying a lot in
processing time) or keep it in ”waiting” (thus paying a little for each time unit in resources).
This is examined by Seiden in [43]. Finally, the problem finds application in TCP acknow-
ledgment [26], where we must acknowledge the reception of packets not much later than
their reception. We can acknowledge multiple packets by sending one package (which
is the large fee in this case). We can also delay acknowledgment of a packet in hopes
that we will do so for many other packets with the same cost (delaying corresponds to the
small fee in this case).

A great deal of generalizations exists for the Ski Rental Problem. Multiple rent options are
considered in the Multislope Ski Rental Problem, which has been studied by Fujiwara et
al. in [20]. Naturally, the case where multiple buy options exist has also been studied [1].

Alongside the addition of options, generalizations such as the Parking Permit Problem
[34] exist. The difference in this problem is that purchases have time-limits regardless of

K. Lakis 21

Online Learning-Augmented Algorithms

whether they are used or not (much like a parking permit is valid for a certain amount of
time). Finally, in [24], the authors consider the problem of deciding which edges of a graph
to rent/buy so that sufficient flow between sources and sinks is attained. The simplest case
where we have one source and one sink with an edge that connects them (that has rent
cost 1 and buy cost b) corresponds to the Ski Rental Problem.

2.1.1 The problem

Imagine that you are planning to go skiing for an unknown number of days. One source
of uncertainty could be the weather (you might want to go back home if it gets too cold).

The skiing resort you’ve chosen offers two options. You may either rent the equipment on
a day-to-day basis or pay a set amount to use it for the whole season.

Depending on the number of days you will stay, one of the options will be better than the
other. If we normalize the cost of renting for one day to be 1€ then we can assume that
the season pass would cost b€. Suppose you would stay for T days in the end.

Then, it is obvious that it is worth it to get the season pass if b < T . However, we are in-
tersted in the optimal strategy of an agent that does not know T beforehand. This strategy
is called the break-even strategy. For the first b− 1 days, we rent the equipment. On day
number b, we get the season pass.

It turns out that this strategy describes a (best possible) 2-competitive algorithm (shown
in [28]). Indeed, if our algorithm does not get the season pass, then neither does the
optimal agent, meaning we have the optimal cost. On the other hand, if we ski for at least
b days, the cost of our algorithm is exactly b− 1+ b = 2b− 1, while the best strategy would
be to get the season pass on the first day with total cost b.

2.1.2 Solving the problem with predictions

As you may have imagined, the only source of difficulty in this problem is that we have no
idea about the value of T before deciding. However, you can imagine that an experienced
skier can make an educated guess on it.

More abstractly, we could have a hint T ′ from an oracle that tries to predict the true value
T . Then, we are able to design an algorithm that is better than 2-competitive when T ′ is
sufficiently close to T , but not very bad when that difference is large.

This difference is captured in the error η of the predictions which is equal to |T ′ − T |. The
smaller this value, the better the performance of an algorithm that uses this prediction is
expected to be.

Kumar et al. presented such an algorithm in [40], which has the desired consistency,
smoothness and robustness properties. Before giving the algorithm, let λ be a trust value
in the range (0, 1). The lower λ is, the more we trust the predictions. Thus, a low λ im-
proves our performance with good predictions but worsens it with bad ones. The algorithm
is similar to the break-even algorithm and also pretty simple:

In essence, the algorithm takes the initial break-even limit b and either multiplies it or
divides it by λ based on if the predicted days are more than b or not.

If the predicted number of days is less than b, the algorithm gets the season pass earlier
than when the break-even algorithm would. On the other hand, if T ′ is larger than b, it gets

K. Lakis 22

Online Learning-Augmented Algorithms

Algorithm 2: Ski Rental with predictions
Input :The prediction T ′,

The season pass cost b,
The trust value λ ∈ (0, 1)

Output :The day on which we get the season pass

if T ′ ≥ b then
return ⌈λb⌉;

end
else

return
⌈
b
λ

⌉
;

end

the season pass later than the break-even algorithm. Howmuch earlier/later the algorithm
gets the season pass is governed by the value of λ.

It turns out that this is algorithm is (1 + λ)-robust and (1 + 1
λ
)-consistent. This is derived

from the more general result that the algorithm’s competitive ratio is at most:

1 +min

(
1

λ
, λ+

η

(1− λ)|OPT |

)

2.1.3 Consistency vs. Robustness

For the previous algorithm, a larger λ improves our robustness guarantee, while a smaller
λ improves our consistency guarantee. Unfortunately, we can’t have both at the same
time with this algorithm. But could we possibly have an algorithm that exhibits a better
consistency-robustenss relationship than this one? Or, more generally, what is the best
such relationship we can hope to achieve? The answer is provided by Alexander Wei et
al. in [49].

In more detail, the following theorem is proved in their paper:

Theorem 1. If λ ∈ (0, 1), any (1 + λ)-consistent algorithm for ski rental with predictions
must be at least (1 + 1

λ
)-robust.

2.2 Secretary Problem

In this section we focus our attention to a different problem known as the Secretary Prob-
lem. Suggesting its level of abstraction, the same problem is also known as the Marriage
Problem, the Sultan’s Dowry Problem, the Fussy Suitor Problem, the Googol Game, and
the Best Choice Problem. In short, the goal of the problem is to maximize the probabil-
ity with which we pick the best out of n candidates assuming we can examine them one
after another and have to irrevocably decide on rejecting or accepting a candidate imme-
diately after seeing them (without knowing anything about the next candidates we would
be presented with).

A possible real-world application of this problem is the (increasingly difficult) task of finding
gas in low prices. When driving on the highway, one passes by a certain number of gas

K. Lakis 23

Online Learning-Augmented Algorithms

stations. Each one has a particular value, which is inversely proportional to the price
offered. We may not return to a gas station after passing by it (rejection). Additionally, we
stop searching when we’ve decided to fill up the tank of our car at a specific gas station
(acceptance).

Many variations and generalizations of this problem are encountered in the literature. In-
stead of aiming for the best candidate, Rose et al. [42] consider the goal of trying to pick
the candidate whose value is the median across all the values. More generally, the goal
of picking the ath best candidate is examined in [45]. An interesting special case of this
problem, namely the one where we try to pick the second-best candidate is presented
in [46] by Vanderbei. It is described as the ”Postdoc Problem”, suggesting that the best
candidate will be accepted to Harvard and go there instead, diminishing our interest in
picking them over the second-best candidate who is actually going to accept our offer.
The optimal competitive ratio in this case is shown to depend on n and to approach 1

4
as

n tends to infinity, showing that this problem is actually harder than the basic version.

Another direction of tweaking the problem is in increasing the number of tries we have.
In this generalization, we are allowed r choices, and we win if any of our choices is the
best candidate. One can imagine that our probability of winning is higher in this case
and scaling with r. Indeed, in [22], the authors show that with r = 2 choices, the optimal
solution yields a competitive ratio of e−1 + e−

3
2 . They also prove similar results for r = 3, 4.

Matsui et al. extend these results in [33] by proving that for any number of choices r, the
probability of winning converges to p1 + p2 + ...+ pr, where each pi is a limit that involves
cutoff thresholds used in an optimal algorithm for the problem (one such threshold is n

e

used in the basic version of the problem).

Finally, the case where multiple different roles to fill exist is studied in [29] by Kesselheim
et al. Here, each candidate has a different value for each possible role. When hiring a
candidate, we also need to specify the role which they will fill. The goal now is to maximize
the sum of values obtained across all roles. This is in fact identical to the problem of finding
a maximum-weight matching in an edge-weighted bipartite graph where the n nodes of
one side arrive in an online fashion. Generalizing the algorithm used in the basic version,
a 1

e
-competitive algorithm has been designed for this problem.

2.2.1 The problem

Suppose you work in the HR department of a major company such as Google. On a
given day, you are expected to fill an open position, let’s say that of a software engineer.
In total n interviews have been scheduled for you to assess the competency and ”fit” of
each candidate. However, you have to decide upon hiring or rejecting a candidate right
after the interview, without seeing the following candidates before deciding. Your goal is
to maximize the expected quality of the hired candidate.

Note that this is slightly different from the classical version of the problem, where instead
we want to maximize the probability with which we pick the best candidate. However, the
optimal solution is the same for both and in the following we focus on the variant which
tries to maximize the expected value.

You would not want to hire a candidate too early, because it is quite possible that another,
much better one would show up later. On the flip side, waiting too much on your decision
may leave you with only a few options towards the end, possibly much worse than the
previous candidates.

K. Lakis 24

Online Learning-Augmented Algorithms

The (best possible) solution to this problem is to simply observe the first n
e
candidates

and note the quality of the best candidate so far. Then, you simply hire the next candidate
which beats the memorized candidate (or the final one if no such candidate appears). With
this strategy, your hired candidate’s expected quality is 1

e
times that of the best possible

candidate.

2.2.2 Formal definition

In the Secretary Problem we have a set {1, ..., n} of secretaries, each one associated with
a value ui ≥ 0. These secretaries are presented to us in a uniformly random order. When
a secretary i arrives, we must irrevocably decide to reject or hire them. If we decide to
hire them, we automatically reject all subsequent candidates. If we reject them, we just
continue with the next secretary.

The goal here is to maximize the expected value of the secretary that we hire. The optimal
solution to this is to observe the first n

e
secretaries and record the maximum value vmax

amongst them. After that, we hire the first secretary whose value surpasses vmax. If no
such secretary arrives up until the last one, we hire the last secretary, since we have to
pick one. This strategy yields a 1

e
-approximation of the problem (compared to the offline

version in which we can simply pick the best secretary).

2.2.3 Solving the problem with predictions

In a real world scenario, one would suppose that at least one of the applicants to Google
will be quite proficient. Therefore, it is quite safe to predict that the maximum value of the
candidates would be let’s say at least about 8/10. It is obvious that such information would
be helpful to the HR employee. In their shoes, you would hardly settle with a candidate
whose value is less than 6/10 for example.

Precisely this prediction scheme is proposed by Antoniadis et al. in [6]. In more detail,
the prediction consists of a value p∗ that attempts to approximate OPT = maxi{ui}. Of
course, this does not give a suggestion regarding which candidate has this value.

They define the prediction error as:

η = |p∗ −OPT |

Additionally, the authors define a parameter λ which attempts to approximate η. This
parameter is used by the algorithm. When λ is close to p∗, the algorithm behaves in a
similar way to the classical 1

e
-approximation. When λ approaches 0, the algorithm relies

more heavily on the prediction. In a sense, λ encapsulates the ”trust” of the algorithm in
the predictions, much like in the Ski Rental Problem.

Finally, a parameter c ≥ 1 is specified which restricts the losses along with the gains of the
algorithm. In general, the algorithm always guarantees 1

ce
-competitiveness. We note that

in this problem we want to maximize the competitiveness value, unlike in the Ski Rental
Problem. Setting c close to 1 makes us safe from bad predictions but also mitigates the
positive effects of good predictions. As we increase c, our safety net is lowered but also
the possible gains are more pronounced. In a sense, the choice of c is like a gamble. Low
c means low-risk, low-reward and high c means high-risk, high-reward.

K. Lakis 25

Online Learning-Augmented Algorithms

2.2.4 The LambertW -function

Before continuing, we present the Lambert W -function, which is utilized in the algorithm.
This function is simply the inverse relation of the function f(w) = wew. For our purposes,
we restrict w to the reals. In this case, the equation yey = x for −1

e
≤ x < 0 has two

solutions denoted by W−1(x) and W0(x). We have W−1(x) ≤ W0(x) with the equality
holding only if x = −1

e
.

2.2.5 The algorithm

Algorithm 3: Online Secretary Problem with predictions
Input :The prediction p∗,

The confidence parameter λ,
The ”gamble” parameter c

Output :The hired secretary a
u′ ← 0;

Phase I:
for i = 1, ..., exp{W−1(− 1

ce
)} · n do

u′ ← max{u′, ui};
end

t← max{u′, p∗ − λ}
Phase II:
for i = exp{W−1(− 1

ce
)} · n+ 1, ..., exp{W0(− 1

ce
)} · n do

if ui > t then
return ai

end
end

t← max{uj : j ∈ {1, ..., exp{W0(− 1
ce
)} · n}}

Phase III:
for i = exp{W0(− 1

ce
)} · n+ 1, ..., n do

if ui > t then
return ai

end
end

We can see that the algorithm is comprised of three phases. Phases I and III are pretty
much the same as the ones in the classical algorithm. In Phase I, the algorithm simply
observes the secretaries and keeps note of the maximum value so far. In Phase III, the
algorithm chooses the first secretary to surpass the maximum value observed so far (in-
cluding the secretaries examined in Phase II).

The real interest is in Phase II. During this phase, a secretary is chosen only if they have
a larger value than all of the previous ones and are also at most λ units worse than the
predicted best value. We can see that setting λ close to p∗ essentially makes this Phase
work in the sameway as Phase III. A low λ on the other hand sets the bar which secretaries
must pass close to the predicted best value.

K. Lakis 26

Online Learning-Augmented Algorithms

2.2.6 Performance

The most important question one has to ask themselves when they’ve designed an al-
gorithm is ”How well does it perform?”. Here, we merely present the authors’ answer to
this question, as the technical aspects are not of particular intuitive value (although quite
digestible).

This answer is given in the form of two lower bounds for the competitiveness of the al-
gorithm. The first bound holds when η < λ, i.e. we have not underestimated the error. In
this case, the competitive ratio of the algorithm for given c, λ and η is at least:

max

{
1

ce
, f(c) ·max

{
1− λ+ η

OPT
, 0

}}
The function f(c) is given in terms of the Lambert W -function, particularly:

f(c) = exp

{
W0

(
− 1

ce

)}
− exp

{
W−1

(
− 1

ce

)}
It should be noted that f(c) vaguely corresponds to the duration of Phase II. Intuitively,
the larger this value, the more likely it is for the best secretary to appear during Phase
II. Probabilistic analysis (such as in [18] and [31]) then extends this high probability to
a higher expected value. Hence, a high f(c) leads to high competitiveness, under the
assumption that λ > η.

In the other case, where η ≥ λ, the lower bound we have is only 1
ce
.

2.3 Speed Scaling Problem

The final problem we will examine in this chapter is the Online Speed Scaling Problem.
The problem we are considering is motivated as in the following scenario. We have a
server (computer) that receives requests in an online manner. For each request some
we have to perform some sort of computation and, as a measure of Quality-of-Service,
we demand that each request is satisfied within some fixed amount of time. In order to
satisfy all the requests in time the server may change its processor speed dynamically at
any point in time. However, the energy consumption may be a super-linear function of
the processing speed (in practice, we assume that the power consumption is sα where
s is the speed of the processor and α > 1). Therefore, the problem of minimizing the
energy consumption is not trivial. This problem can be examined in the online model
where the server does not have any information regarding the future tasks. However,
this assumption is unnecessarily restrictive because these requests tend to exhibit some
patterns that could be predicted. Thus, a good algorithm should be able to utilize some
given predictions about the input.

The real-world applications of this problem are obvious. As power management has be-
come a primary concern in modern data centers, computing resources are being scaled
dynamically to minimize energy consumption. Thus, an efficient solution to this problem
could yields substantial amounts of energy conservation, benefiting both the environment
and the economy.

The original speed scaling problem proposed by Yao et al. in [51] is well understood in both
the offline and online setting. In its fully general version, a set of tasks each with different

K. Lakis 27

Online Learning-Augmented Algorithms

arrival times, workloads, and deadlines has to be carried out in time while the speed of
the processor is dynamically adjusted so as to minimize the energy consumption. For
the offline setting Yao et al. showed that the problem admits a polynomial time solution
through a greedy algorithm. In the online setting, where the jobs are only revealed at
their release times, Yao et al. gave two algorithms: (1) the AVERAGE RATE heuristic
(AVR), for which they gave a bound of 2α−1αα on the competitive ratio. This was later
proved to be asymptotically tight by Bansal et al. [11]. (2) The OPTIMAL AVAILABLE
heuristic (OA), which was proven to be αα-competitive in [12]. In the same work, Bansal
et al. gave a third online algorithm named BKP that exhibits a competitive ratio which is
asymptotically equal to eα. Even though these exponential in α competitive ratios might not
seem very satisfactory, Bansal et al. also demonstrated that the exponential dependency
cannot be lower than eα. A number of versions of the problem have also been examined
in the offline setting (precedence constraints, no preemption allowed, nested jobs and
more described in a recent survey by Gerards et al. [21]) and also under a stochastic
optimization viewpoint (see for example [2]). We should note that, while the problem is
interesting in theory in the general case, i.e. when α is part of the input, in practice we
usually focus our attention to small values such as 2 or 3 since theymodel relevant physical
laws (described by Bansal et al. in [12]). Even though the BKP algorithm provides the best
theoretical asymptotic guarantee, OA or AVR often give better solutions for small α and
therefore remain practically relevant.

2.3.1 Solving the problem with predictions

First of all, we describe the problem definition given in [9]. The authors restrict the problem
to the uniform case, i.e. the one where the difference between deadlines and release times
is the same for every request. This is the Quality-of-Service interval we discussed.

ProblemDefinition. An instance of the problem is formally described as a triple (w,D, T)
where [0, T] is a finite time horizon, each time i ∈ 0, ..., T−D jobs with a total workload wi ∈
Z≥0 arrive, which have to be completed by time i+D. To do so, we can adjust the speed
si(t) at which each workload wi is processed for t ∈ [i, i + D]. Jobs may be processed
in parallel. The overall speed of our processing unit at time t is the sum s(t) =

∑
i si(t),

which yields a power consumption of s(t)α, where α > 1 is a problem specific constant.
Since we want to finish each job on time, we require that the amount of work dedicated to
job i in the interval [i, i+D] should be wi. In other words,

∫ i+D

i
si(t) dt = wi. In the offline

setting, the whole instance is known in advance, i.e., the vector of workloads w is entirely
accessible. In the online problem, at time i, the algorithm is only aware of all workloads wj

with j ≤ i, i.e., the jobs that were released before time i. As noted by Bansal et al. [12], in
the offline setting the problem can be formulated concisely as the following mathematical
program:

Definition 2 (Uniform Speed Scaling Problem). On input (w,D, T) compute the optimal
solution for

min

∫ T

0

s(t)α dt s.t. ∀i
∫ i+D

i

si(t) dt = wi, ∀t
∑
i

si(t) = s(t), ∀i∀t si(t) ≥ 0.

The predictionmodel and error. Given the previous problem definition, we now present
the predicition model used as well as the error measure that comes with it. The prediction

K. Lakis 28

Online Learning-Augmented Algorithms

consists of a vector wpred of workloads that attempts to approximate the true vector of
workloads wreal. Then, the error is defined as

err(wreal, wpred) = ||wreal − wpred||αα =
∑
i

|wreal(i)− wpred(i)|α.

The algorithm. Nowwe are ready to present the algorithm used. This algorithm is called
LEARNING AUGMENTED SCHEDULING (LAS) and its pseudocode is provided below.
But first, it is helpful to look at the theorem which is derived for LAS.

Theorem 2. For any ϵ > 0, the algorithm LAS has a competitive ratio of at most

min
{
(1 + ϵ)OPT +O

(α
ϵ

)α

err, O
(α
ϵ

)α

OPT
}
.

K. Lakis 29

Online Learning-Augmented Algorithms

Algorithm 4: LEARNING AUGMENTED SCHEDULING (LAS)
Input :T,D, and wpred initially and wreal in an online fashion.
Output :A feasible schedule (si)

T−D
i=0

Let δ > 0 with
(
1+δ
1−δ

)α
= 1 + ϵ.

Compute optimal offline schedule for (wpred, T, (1− δ)D) where the jobs wpred(i) are
run at uniform speeds ci and disjoint intervals [ai, bi] as described in [51].

on arrival of wreal(i) do

Let si′(t) =

{
min

{
wreal(i)
bi−ai

, ci

}
t ∈ [ai, bi],

0, otherwise.

Let si′′(t) =
{

1
D
max {0, wreal(i)− wpred(i)} t ∈ [i, i+D],

0, otherwise.

Let si(t) = 1
δD

∫ t

t−δD
si

′(r) + si
′′(r) dr

end on

We will now distill the most important aspects of this algorithm. First of all, note that the
algorithm uses a subroutine for the computation of an optimal offline solution based on the
predictions. This is very common in learning-augmented algorithms. The same strategy
was also used in the Secretary problem. However, the input to to this subroutine is slightly
modified (the term D is changed to (1− δ)D). This is so that we can achieve robustness.
A convolution of two different schedules is used to achieve this.

One of the operands of the convolution is the part of the workload that was predicted (si′(t))
while the other takes care of the case where the actual workload is higher than predicted
(si′′(t)). Note that if the predictions are perfect, the terms si

′′(t) are always equal to zero
and therefore LAS follows exactly the optimal schedule computed in the first lines of the
pseudocode. The competitive ratio (consistency in this case) is then only affected by the
choice of δ, which also defines the robustness value. Thus, the δ term expresses our trust
in the predictions.

Finally, the intution for the smoothness comes from the observation that the terms si
′′(t)

(which may possibly affect our competitive ratio) scale along with the values wreal(i) −
wpred(i), which in turn are related to the error.

Extensions. The authors of [9] also provide a way to utilize an evolving prediction model,
i.e. one that can update predictions for the requests that have not arrived yet. Addition-
ally, they explain how their results can be generalized to the non-uniform case where the
difference between deadlines and release times is not constant.

K. Lakis 30

Online Learning-Augmented Algorithms

3. OUR CONTRIBUTIONS

3.1 Introduction

The Traveling Salesman Problem (TSP) is one of the most fundamental and widely studied
problems in computer science, both in its offline version [50], where the input is known in
advance, and the online version [8] where it arrives sequentially. In this work, we consider
the online Traveling Salesman Problem (TSP) on the real line. This version of the prob-
lem arises in real-world scenarios such as one dimensional delivery/collection tasks. Such
tasks include the operation of elevator systems, robotic screwing/welding, parcel collection
from massive storage facilities and cargo collection along shorelines [7,39]. Furthermore,
one can think of other relevant practical settings such as themovement of emergency evac-
uation vehicles along a perilous highway, where there cannot be knowledge in advance
regarding the time and location of persons requiring assistance. However, the great avail-
ability of data as well as the improved computer processing power and machine learning
algorithms can make it possible for predictions to be made on these locations (e.g com-
bining information from historical data, the weather forecast, etc). In a line of work that
started a few years ago [32] and sparked a huge interest [3, 4, 23, 40, 41, 47, 48], it has
been demonstrated that such prior knowledge about the input of an online algorithm has
the potential to achieve improved performance (i.e competitive ratio) compared to known
algorithms (or even lower bounds) that do not use (resp. assume the absence of) any
kind of prediction. Therefore, it is natural to consider ways to utilize this information in this
problem using a so-called learning-augmented approach.

The input to our online algorithm consists of a set of requests, each associated with a
position on the real line as well as a release time. An algorithm for this problem faces the
task of controlling an agent that starts at the origin and can move with at most unit speed.
The agent may serve a request at any time after it is released. The algorithm’s objective
is to minimize the makespan, which is the total time spent by the agent before serving all
requests. We have two different variants of the problem, depending on whether the agent
is required to return to the origin after serving all the requests or not. This requirement
exists in the closed variant, while it does not in the open variant. The makespan in the
closed variant is the time it takes the agent to serve the requests and return to the origin.

We quantify the performance of an online algorithm by its competitive ratio, i.e., the max-
imum ratio of the algorithm’s cost to that of an optimal offline algorithm OPT , over all
possible inputs. We say that an algorithm with a competitive ratio of c is c-competitive.
Under this scope, the online TSP on the line has been extensively studied and there have
been decisive results regarding lower and upper bounds on the competitive ratio for both
variants of the problem. Namely, a tight bound of ≈ 1.64 was given for the closed variant,
while the corresponding value for the open variant was proven to be ≈ 2.04 [8,15].

3.1.1 Our setup

First of all, to define our prediction model and algorithms, it is necessary to know the num-
ber of requests n 1. This setting shows up in various real world scenarios. For example,

1Since this (slightly) modifies the original problem definition, the previous competitive ratio results for the
classical problem do not necessarily hold for our setup even without predictions. We show in the Appendix
that the bound of 1.64 still holds for the closed variant and that a tight bound of 2 holds for the open variant.

K. Lakis 31

Online Learning-Augmented Algorithms

in the case of item collection from a horizontal/vertical storage facility, the capacity of the
receiving vehicle, which awaits the successful collection of all items in order to deliver
them to customers, dictates the number of items to be collected. We note that since n
is known, we can assume that each prediction corresponds to a specific request determ-
ined by a given labeling, which is shared by both sets (requests and predictions). Under
this assumption, we define the LOCATIONS prediction model. In this model, the predic-
tions are estimates for the positions of the requests. The error η increases along with the
maximum distance of a predicted location to the actual location of the identically labeled
request and is normalized by the length of the smallest interval containing the entire move-
ment of the optimal algorithm. We also define an enhanced prediction model for the open
variant named LOCATIONS+FINAL (LF in short) that additionally specifies a request
which is predicted to be served last by OPT . In this model, we additionally consider the
error metric δ, which increases with the distance of the predicted request to the request
actually served last by OPT . We also normalize δ in the same way as η. These models
and their respective errors are defined formally in Section 3.2.

3.1.2 Our contributions

Throughout this work, we give upper and lower bounds for our three different settings
(closed variant-LOCATIONS, open variant-LOCATIONS, and open variant-LF). The
lower bounds refer to the case of perfect predictions and are established via different
attack strategies. That is, we describe the actions of an adversary ADV , who can control
only the release times of the requests and has the goal ofmaximizing the competitive ratio
of any algorithm ALG. We emphasize that ADV is given the power to observe ALG’s
actions and act accordingly. In more detail, ADV does not need to specify the release
times in advance, but can release a request at time t, taking the actions of ALG until time
t into account. This is, in fact, the most powerful kind of adversary. The upper bounds are
established via our algorithms and are defined for every value of the error(s). Recall that
η and δ refer to the two types of error we consider. Our algorithms and attack strategies
are intuitively described in their respective sections. We now present the main ideas and
our results.

Closed variant under LOCATIONS. We will start by intuitively describing our algorithm
for this setting and then continuewith our lower bound. We design the algorithm FARFIRST .
The main idea is that we first focus entirely on serving the requests on the side with the
furthest extreme, switching to the other side when all such requests are served. When
serving the requests on one side, we prioritize them by order of decreasing amplitude.
The intuition is that we have the least possible amount of leftover work for our second
departure from the origin, which limits the ways in which an adversary may attack us. We
obtain the theorem below. More details are given in Section 3.3.

Theorem 1. The algorithm FARFIRST is min
{

3(1+η)
2

, 3
}
-competitive.

We emphasize that for η = 0, this competitive ratio remarkably matches our lower bound
of 1.5, making FARFIRST optimal.

Our lower bound for this setting is accomplished via an attack strategy that is analogous
to a cunning magician’s trick. Suppose that the magician keeps a coin inside one of their
hands. They then ask a pedestrian to make a guess for which hand contains the coin. If

K. Lakis 32

Online Learning-Augmented Algorithms

the pedestrian succeeds, they get to keep the coin. However, the magician can always
make it so that the pedestrian fails, for example by having a coin up each of their sleeves
and producing the one not chosen by the pedestrian. One can draw an analogy from this
trick to our attack strategy, which is described in Section 3.3 in more detail. In this way,
we obtain the theorem below.
Theorem 2. For any ϵ > 0, no algorithm can be (1.5− ϵ)-competitive for closed online
TSP on the line under the LOCATIONS prediction model.

Open variant under LOCATIONS. The algorithm we present for this setting is named
NEARFIRST . This algorithm first serves the requests on the side opposite to the one
FARFIRST would choose. Another divergence from FARFIRST that should be noted
is that for the side focused on second, NEARFIRST prioritizes requests that are pre-
dicted to be closer to the origin, since there is no requirement to return to it, thus avoiding
unnecessary backtracking. More details about the algorithm and the proof of the following
theorem are given in Section 3.4.1.
Theorem 3. The algorithm NEARFIRST is min {f(η), 3}-competitive, where

f(η) =

{
1 + 2(1+η)

3−2η
, for η < 2

3

3, for η ≥ 2
3

.

As in the previous setting, we utilize the ”magician’s trick” in order to design a similar
attack strategy. We describe exactly how this is done in Section 3.4.1. This leads to the
establishment of a lower bound, as stated below.
Theorem 4. For any ϵ > 0, no algorithm can be

(
1.44− ϵ

)
-competitive for open online

TSP on the line under the LOCATIONS prediction model.

Open variant under LOCATIONS+FINAL. Our algorithmic approach to this setting is
again similar to the one implemented in NEARFIRST . The difference is that instead of
choosing the side with the near extreme first, we choose the side whose extreme is further
away from the predicted endpoint ofOPT . We name this algorithm PIV OT , to emphasize
that the prediction for the last request acts as a pivot for the algorithm to decide the first
side it will serve. A theorem about PIV OT is presented below, the proof of which has
been given in Section 3.4.2.
Theorem 5. The algorithm PIV OT is min {f(η, δ), 3}-competitive, where

f(η, δ) =

{
1 + 1+2(δ+3η)

3−2(δ+2η)
, 3− 2(δ + 2η) > 0

3, 3− 2(δ + 2η) ≤ 0
.

For this setting, we reuse the attack strategy initially designed for the closed variant. The
only difference is that we add another request at the origin with a release time of 4. We
explain how we derive the following theorem in Section 3.4.2.
Theorem 6. For any ϵ > 0, no algorithm can be (1.25− ϵ)-competitive for open online TSP
on the line under the LF prediction model.

We briefly summarize our results in Table 3.1. Note that the lower and upper bound entries
correspond to the no error case. We emphasize that these results are for the case where
the number of requests n is known.

K. Lakis 33

Online Learning-Augmented Algorithms

Table 3.1: Summary of results.

Setting Lower bound Upper bound Best competitive ratio

Closed variant without predictions 1.64 1.64 1.64

Closed variant under LOCATIONS 1.5 1.5 min
{

3(1+η)
2 , 3

}
Open variant without predictions 2 2 2

Open variant under LOCATIONS 1.44 1.66 min
{
1 + 2(1+η)

3−2η , 3
}

Open variant under LF 1.25 1.33 min
{
1 + 1+2(δ+3η)

3−2(δ+2η) , 3
}

3.1.3 Related work

Online TSP. The online TSP for a general class of metric spaces has been studied by
Ausiello et al. in [8], where the authors show lower bounds of 2 for the open variant and
1.64 for the closed variant. These bounds are actually shown on the real line. Additionally,
a 2.5-competitive algorithm and a 2-competitive algorithm are given for the general open
and closed variants respectively. A stronger lower bound of 2.04 was shown for the open
variant in [15] by Bjelde et al., where both bounds are also matched in the real line. For
the restriction of the closed online TSP to the non-negative part of the real line, Blom
et al. [16] give a tight 1.5-competitive algorithm. By imposing a fairness restriction on the
adversary, they also obtain a 1.28-competitive algorithm. Jaillet andWagner [25] introduce
the ”online TSP with disclosure dates”, where each request may also be communicated
to the algorithm before it is released. The authors show improvements to the competitive
ratios of previous algorithms as a function of the difference between disclosure and release
dates.

Learning-augmented algorithms. Learning-Augmented algorithms have received sig-
nificant attention since the seminal work of Lykouris and Vassilvitskii [32], where they in-
troduced the online caching problem. Based on that model, Purohit et al. [40] proposed
algorithms for the ski-rental problem as well as non-clairvoyant scheduling. Subsequently,
Gollapudi and Panigrahi [23], Wang et al. [47], and Angelopoulos et al. [3] improved the
initial ski-rental problem. The latter also proposed algorithmswith predictions for the list up-
date and bin packing problem and demonstrated how to show lower bounds for algorithms
with predictions. Several works, including Rohatgi [41], Antoniadis et al. [4], and Wei [48],
improved the initial results regarding the caching problem.

The scheduling problems with machine-learned advice have been extensively studied in
the literature. Lattanzi et al. [38] considered the makespan minimization problem with
restricted assignments, while Mitzenmacher [36] using predicted job processing times in
different scheduling scenarios. Bamas et al. [9], and Antoniadis et al. [5] focused on the
online speed scaling problem using predictions for workloads and release times/deadlines,
respectively.

There is literature on classical data structures. Examples include the indexing problem,
Kraska et al. [30], bloom filters, Mitzenmacher [35]. Further learning-augmented approaches
on online selection and matching problems [6, 19] and a more general framework of on-
line primal-dual algorithms [10] also emerged, and there is a survey by Mitzenmacher et

K. Lakis 34

Online Learning-Augmented Algorithms

al. [37].

Independent work. Compared to the problem considered in this work, a more general
one, the online metric TSP, as well as a more restricted version in the half-line, have been
studied in [14] under a different setting, concurrently to our work. We note that only the
closed variant is considered in [14]. Since the prediction model is different (predictions for
the positions as well as release times of the requests are given) and also a different error
definition is used, the results are incomparable.

3.2 Preliminaries

The problem definition. In the online TSP on the line, an algorithm controls an agent
that can move on the real line with at most unit speed. We have a set Q = {q1, . . . , qn} of n
requests. The algorithm receives the value n as input. Each request q has an associated
position and release time. To simplify notation, whenever a numerical value is expected
from a request q (for a calculation, finding the minimum of a set, etc.) the term q will refer to
the position of the request. Whenever we need the release time of a request, we will use
rel(q). Additionally, the algorithm receives as input a set P = {p1, . . . , pn} of predictions
regarding the positions of the requests. That is, each pi attempts to approximate qi. We
assume without loss of generality that Q always contains a request q0 at the origin with
release time 0 and P contains a perfect prediction p0 = 0 for this request2.

We use t to quantify time. To describe the position of the agent of an algorithmALG at time
t ≥ 0, we use posALG(t). We may omit this subscript when ALG is clear from context. We
can assume without loss of generality that pos(0) = 0. The speed limitation of the agent is
given formally via |pos(t′)−pos(t)| ≤ |t′− t|, ∀t, t′ ≥ 0. A request q is considered served at
time t if ∃ t′ : pos(t′) = q, rel(q) ≤ t′ ≤ t, i.e., the agent has moved to the request no earlier
than it is released. We will say that a request q is outstanding at time t, if ALG has not
served it by time t, even if rel(q) > t, i.e. q has not been released yet. Let tserve denote the
first point in time when all requests have been served by the agent. Also, let |ALG| denote
the makespan of an algorithm ALG, for either of the two variants. Then, for the open
variant |ALG| = tserve while for the closed one |ALG| = min{t : pos(t) = 0, t ≥ tserve}. For
any sensible algorithm, this is equivalent to tserve + |pos(tserve)|, since the algorithm knows
the number of requests and will immediately return to the origin after serving the last one.
The objective is to minimize the value |ALG|, utilizing the predictions.

Notation. We define L = min(Q) and R = max(Q). Recall that Q contains a request at
the origin and thus L ≤ 0 and R ≥ 0. We refer to each of these requests as an extreme
request. If |L| > |R|, we define Far = L,Near = R. Otherwise, Far = R,Near = L. That
is, Far is the request with the largest distance from the origin out of all requests. Then,
Near is simply the other extreme. We will also refer to the value |q| as the amplitude of
request q.

We denote with O(t) the set of outstanding requests at time t. Then, LO(t) = min(O(t) ∪
{pos(t)}) andRO(t) = max(O(t)∪{pos(t)}). We additionally define L(t) = min(O(t)∪{R})

2This can be seen to be without loss of generality by considering a ”handler” algorithm ALG0 which adds
this request/prediction pair to any input and copies the actions of any of our algorithms ALG for the modified
input. We observe that |OPT | is unchanged and |ALG0| = |ALG|.

K. Lakis 35

Online Learning-Augmented Algorithms

andR(t) = max(O(t)∪{L}). The difference between LO(t), RO(t) and L(t), R(t) is that the
former also consider the position of ALG to determine the interval that must be traveled
to serve all the requests while the latter assume that ALG is already somewhere inside
the interval of outstanding requests (which may not be true due to ALG moving to a bad
prediction).

For technical reasons, we have two different notions (and thus terms) for unreleased re-
quests. We will use the same notation for convenience but the terms we introduce will
slightly differ for the closed and open variant. For the closed variant, we let Llim = 0, Rlim =
0 while Llim = R,Rlim = L for the open variant. Thus, we define

LU [t] = min({q ∈ Q : rel(q) ≥ t} ∪ {Llim}),

RU [t] = max({q ∈ Q : rel(q) ≥ t} ∪ {Rlim}),
while also letting

LU(t) = min({q ∈ Q : rel(q) > t} ∪ {Llim}),
RU(t) = max({q ∈ Q : rel(q) > t} ∪ {Rlim}).

The former will be used to prove the upper bounds while the latter will be used to prove
the lower bounds.

Recall that we assume without loss of generality that 0 ∈ P . We define LP = min(P) and
RP = max(P). We will say that a prediction p is (un)released/outstanding/served if the
associated request q is (un)released/outstanding/served. For a request q ∈ Q matched
with a prediction p ∈ P , we define π(q) = p and π−1(p) = q. That is, the function π takes
us from the requests to the associated predictions and π−1 takes us from the predictions
to the requests.

The LOCATIONS prediction model. We now introduce the LOCATIONS prediction
model. Let q1, ..., qn be a labeling of the requests in Q. The predictions consist of the
values p1, ..., pn, where each pi attempts to predict the position of qi.

Error definition for the LOCATIONS prediction model. To give an intuition for the
metric we will introduce, let us first describe what it means for a prediction to be bad. In any
well-posed definition, the further pi is from qi, the worse it should be graded. However, we
must also take into account the ”scale” of the problem, meaning the length of the interval
[L,R] that must be traveled by any algorithm, including OPT . The larger this interval, the
more lenient our penalty for pi should be. Therefore, we define the error as

η[Q,P] =
maxi{|qi − pi|}
|L|+ |R|

.

Additionally, we define M = η · (|L|+ |R|).

An important lemma for the LOCATIONS predictionmodel. Wenow present a lemma
that gives us some intuition about this prediction model.

Lemma 3. Let LP = min(P), RP = max(P). Then, |LP | ≥ |RP | implies |L| ≥ |R| − 2M ,
and |RP | ≥ |LP | implies |R| ≥ |L| − 2M .

Proof. The following claim constitutes the main part of our proof.

K. Lakis 36

Online Learning-Augmented Algorithms

Claim 3.1. |LP − L| ≤M and |RP −R| ≤M .

Proof. If LP = π(L) =⇒ |LP − L| = |π(L) − L| or L = π−1(LP) =⇒ |LP − L| =
|LP −π−1(LP)| then we see that |LP −L| ≤M . Thus, we assume the contrary for the rest
of the proof.

Since LP is by definition the leftmost prediction, we know that LP < π(L). Additionally,
since L is the leftmost request, we know that L < π−1(LP).

Let X ≤ Y ≤ Z ≤ W represent the values of the set {L, π−1(LP), LP , π(L)} in ascending
order. It should be easy to see that X must be equal to either L or LP . Otherwise, one
of LP < π(L) or L < π−1(LP) is violated, leading to a contradiction. We distinguish two
cases.

Case 1. X = L. In this case, LP comes after L but before π(L) in the X,Y, Z,W ordering.
Therefore, |L− LP | ≤ |L− π(L)| ≤M .

Case 2. X = LP . Similarly, L comes afterLP but before π−1(LP) in theX,Y, Z,W ordering.
Thus, |LP − L| ≤ |LP − π−1(LP)| ≤M .

The inequality |RP −R| ≤M can be seen in a symmetric way.

Using this claim, we can now conclude the proof of Lemma 3. We focus on the case
|LP | ≥ |RP |; the other case is symmetrical. By Claim 3.1, we have

|RP −R| ≤M =⇒ |RP | − |R| ≤M =⇒ |R| ≤ |RP |+M.

Additionally, we have

|LP − L| ≤M =⇒ |LP | − |L| ≤M =⇒ |L| ≥ |LP | −M.

Combining these inequalities with |LP | ≥ |RP | proves the lemma.

Enhanced prediction model for the open variant. Motivated by the performance of
our algorithm under the LOCATIONS prediction model, we enhance it with a prediction
f ′ which attempts to guess the label f of a request on which OPT may finish. We name
this new model LF (short for LOCATIONS + FINAL). The error η is unchanged. We
also introduce a new error metric δ. Let qf ′ be the request associated with the prediction
pf ′ . We then choose qf to be a request on which OPT may finish that minimizes the
distance to qf ′ . We then define the new error as

δ[Q, qf , qf ′] =
|qf ′ − qf |
|L|+ |R|

.

Similarly to before, we define ∆ = δ · (|L|+ |R|).

3.3 Closed Variant

In this section, we consider the closed variant under the LOCATIONS prediction model.
We provide the FARFIRST algorithm, which obtains a competitive ratio of 1.5with perfect
predictions and is also smooth and robust. Additionally, we give an attack strategy that
implies a lower bound of 1.5 for the competitive ratio of any algorithm in this setting, making
FARFIRST optimal.

K. Lakis 37

Online Learning-Augmented Algorithms

3.3.1 The FARFIRST algorithm.

Before giving the algorithm, we define the FARFIRST ordering on the predictions of an
input. For simplicity, we assume that the furthest prediction from the origin is positive. Let
r1, . . . , ra be the positive predictions in descending order of amplitude and l1, . . . , lb be the
negative predictions ordered in the sameway. TheFARFIRST ordering is r1, . . . , ra, l1, . . . , lb.
Any predictions on the origin are placed in the end. Ties are broken via an arbitrary label
ordering.

We present the algorithm through an update function used whenever a request is released.
This update function returns the plan of moves to be executed until the next release of a
request. Note that ext(side, set) returns the extreme element of the input set in the side
specified, where side = true means the right side. Also, the ⊕ symbol is used to join
moves one after another. When all the moves are executed, the agent waits for the next
release. This only happens when waiting on a prediction.

Algorithm 5: FARFIRST update function.
Input :Current position pos, set O of unserved released requests, first unreleased

prediction p in FARFIRST ordering or 0 if none exist, the side farSide with
the furthest prediction from the origin.

Output :A series of (unit speed) moves to carry out until the next request is released.
posSide← (pos > 0);
pSide← (p > 0);
if pos = 0 then posSide← farSide ;
if p = 0 then pSide← posSide ;
return move(ext(posSide,O ∪ {pos}))⊕move(ext(pSide,O ∪ {p}))⊕move(p);

In order to give some further intuition on FARFIRST , we first give the definition of a
phase.

Definition 3. A phase of an algorithmALG is a time interval [ts, te] such that posALG(ts) = 0,
posALG(te) = 0 and posALG(t

′) ̸= 0, ∀ t′ ∈ (ts, te). That is, ALG starts and ends a phase at
the origin and does not cross the origin at any other time during the phase.

In the following, when we refer to the far side, wemean the side with the furthest prediction
from the origin. The near side is the one opposite to that. We see that FARFIRST works
in at most three phases. The first phase ends when all predictions on the far side have
been released and the agent has managed to return to the origin with no released and
outstanding request on the far side. During this phase, any request on the far side is
served as long as FARFIRST does not move closer to the origin than the far side’s
extreme unreleased prediction. Note that some surprise requests may appear, i.e., far
side requests that were predicted to lie on the near side. These requests are also served
in this phase. The second phase lasts while at least one prediction is unreleased. During
this phase, the agent serves any request released on the near side, using the predictions
as guidance, similarly to the first phase. Requests released on the far side are ignored
during this phase. Note that no surprises can occur here, since all far side predictions were
released during the first phase. A third phase may exist if some requests were released
on the far side during the second phase. These requests’ amplitudes are bounded by
M , since they were predicted to be positioned on the near side. This simple algorithm is
consistent, smooth and robust, as implied by the following theorem.

K. Lakis 38

Online Learning-Augmented Algorithms

Theorem 1. The algorithm FARFIRST is min
{

3(1+η)
2

, 3
}
-competitive.

Let us begin with the intuition behind the proof. The 3-robustness is seen using an absolute
worst case scenario in which FARFIRST is |OPT | units away from the origin at time
|OPT | (due to the unit speed limitation), and all the requests to serve are on the opposite
side. For the consistency and smoothness, we note that |OPT | ≥ 2(|Near|+ |Far|). It is
therefore sufficient to prove that

|FARFIRST | − |OPT | ≤ |Near|+ |Far|+ 3η · (|Near|+ |Far|) = |Near|+ |Far|+ 3M.

We refer to the left hand side as the delay of FARFIRST . We now see why this bound
holds intuitively. We first describe a worst case scenario. In this scenario,OPT first serves
the near side completely, and then does the same for the far side, without stopping. Let te
denote the end time of the first phase. We see that te ≤ |OPT |+M , because FARFIRST
follows the fastest possible route serving the requests on the far side, except for a possible
delay ofM attributable to a misleading prediction. Note that in this worst case, all requests
on the near side must have been released by te. Therefore, FARFIRST accumulates an
extra delay of at most 2 times the maximum amplitude of these requests. By Lemma 3,
this value is at most |Near|+ |Far|+2M . There are also other possibilities than this worst
case, but they also can incur a delay of at most |Near|+ |Far|+3M , because |OPT | and
|FARFIRST | both increase when such cases occur.

We now give the formal proof of Theorem 1. We will first prove the robustness part of this
theorem.

Lemma 4. The algorithm FARFIRST is 3-robust.

Proof. Let tf denote the latest release time for a fixed instance of the problem. We assume
w.l.o.g. that posFARFIRST (tf) ≤ 0. Note that after tf , FARFIRST will move to L(tf), then
to R(tf) and then back to the origin. Thus, we observe that

|FARFIRST | = tf + |pos(tf)− L(tf)|+ |L(tf)−R(tf)|+ |R(tf)|. (3.1)

We distinguish two cases based on the position of FARFIRST at time tf . Case 1.
pos(tf) ≥ L(tf). In this case, we see that

(3.1) =⇒ |FARFIRST | = tf + pos(tf)− L(tf) + R(tf)− L(tf) + |R(tf)| ≤

tf + 2(|L(t)|+ |R(tf)|) ≤ tf + 2(|L|+ |R|) ≤ 2|OPT | ≤ 3|OPT |.

Case 2. pos(tf) < L(tf). Similarly, we have

(3.1) =⇒ |FARFIRST | = tf + L(tf)− pos(tf) + R(tf)− L(tf) + |R(tf)| ≤

2tf + 2|R(t)| ≤ 2tf + 2|R| ≤ 3|OPT |.

Now, to prove Theorem 1, it remains to show the consistency/smoothness part, which is
given by the following lemma.

Lemma 5. The algorithm FARFIRST is f(η)-smooth, where f(η) = 3(1+η)
2

.

K. Lakis 39

Online Learning-Augmented Algorithms

To prove this lemma, we will bound FARFIRST ’s delay, i.e. the value |FARFIRST | −
|OPT |, as shown below.

|FARFIRST | − |OPT | ≤ |Near|+ |Far|+ 3M (3.2)

This is sufficient because Equation (3.2) along with the elementary bound of |OPT | ≥
2 (|Near|+ |Far|) prove Lemma 5. Thus, we now state and prove the following claim.

Claim 3.2. For any input, we have |FARFIRST | − |OPT | ≤ |Near|+ |Far|+ 3M .

We assume w.l.o.g. that |LP | ≤ |RP |. Thus, by Lemma 3 we see that

|L| ≤ |R|+ 2M =⇒ 2|L| ≤ |R|+ |L|+ 2M =

|Near|+ |Far|+ 2M =⇒ 2|L|+M ≤ |Near|+ |Far|+ 3M.

Therefore, it also suffices to show that

|FARFIRST | − |OPT | ≤ 2|L|+M (3.3)

We now describe the way in which we will prove Equation (3.3) or Equation (3.2). Recall
the definition of a phase given in Definition 3. We note here that we will also use the
term delay to refer to how much later a phase ends compared to |OPT |. We will use
another claim stating that for a single phase, FARFIRST will serve the requests on the
side of the phase as fast as possible or OPT is seen to finish at mostM time units before
FARFIRST finishes the phase, thus ”resetting” the delay counter. Using this claim for the
(at most) three phases of FARFIRST , we can indeed show Claim 3.2. In the following,
we will consider a phase in the right side of the origin. We now define a term that is similar
to RU [t].

Let RU
′[t] = max({q : q ∈ Q, rel(q) ≥ t, π(q) > 0} ∪ {0}). It should be obvious that

RU
′[t] ≤ RU [t]. Note that when RU

′[t] = 0, this means that all requests associated with
positive predictions have been released by time t, thus promptingFARFIRST to conclude
the phase.

We should explain here that RU [t] works as a block for OPT (since it has to wait for a
request to be released in order to serve it). Similarly RU

′[t] works in the same way for
FARFIRST , which must serve all requests associated with a positive prediction before
ending the phase. We observe a useful relationship between these two blocks, which
implies that if FARFIRST is blocked on a request to the right ofM , then so is OPT . This
relationship is encapsulated in the following claim.

Claim 3.3. If RU [t] > M , then RU
′[t] = RU [t].

Proof. We see that π(RU [t]) ≥ RU [t]−M > 0. Therefore, π(RU [t]) is a positive prediction
and thus RU

′[t] = RU [t].

The next definition is about the time it would take (after t) for FARFIRST to serve all
requests (to the right of RU [t]) and then reach RU [t]. If this is not more than M , we can
see that FARFIRST is not too far behind OPT . If it is more than M , we shall see that
FARFIRST has enough information to progress through the phase as fast as possible.

D(t) denotes the least amount of time necessary to serve all requests to the right of
RU [t] (assuming they have been released) and then move to RU [t], starting at position
posFARFIRST (t). This amounts to

D(t) = |posFARFIRST (t)−RO(t)|+ |RO(t)−RU [t]|.

K. Lakis 40

Online Learning-Augmented Algorithms

This function exhibits a useful bound property. If it drops to M or below at some time t,
it can only increase above M again due to a request release. This property is described
more formally in the following claim. But first, another useful definition is given.

We define RP [t] as the rightmost positive prediction released at time t or later. If no such
prediction exists, then RP [t] = 0. Note that FARFIRST never moves to the left of this
prediction. We now give a relevant claim.

Claim 3.4. |RP [t]−RU [t]| ≤M .

Proof. We can see that |RP [t]−RU
′[t]| ≤M by the definition of these terms. If RU [t] > M ,

the claim immediately follows by Claim 3.3.

Otherwise, RU [t] ≤ M . We have RP [t] ≥ 0 =⇒ RU [t] − RP [t] ≤ M . Additionally, we
know that RU

′[t] ≤ RU [t] and RP [t] ≤ RU
′[t] +M =⇒ RP [t]− RU [t] ≤ M , concluding the

proof.

Claim 3.5. Let tdrop be a time point such that D(tdrop) ≤ M . If tnext is the earliest release
time of a request after tdrop, then

D(t′) ≤M, ∀ t′ ∈ [tdrop, tnext].

Proof. Observe that RU [t] is constant throughout the interval [tdrop, tnext]. Let RU denote
this constant value. The same is true for RP [t], which is always equal to a specific value
p. We split the interval [tdrop, tnext] into three parts.

Part 1. This part lasts while FARFIRST is moving towards a released request to the right
ofmax{p, pos(t)}. This decreases the value |pos(t)−RO(t)| while |RO(t)−RU | is constant
and thus D(t) cannot increase.

Part 2. This part lasts while FARFIRST is moving towards p. No released requests exist
to the right of pos(t) during this time, since that is taken care of in Part 1. Thus, we have
RO(t) = max(pos(t), RU). Either way, we see that D(t) = |RU − pos(t)| during this part.
At the start of this part, we have D(t) ≤ M . When p is reached, we still have D(t) ≤ M ,
because p has a distance of at most M to RU by Claim 3.4. Thus, we have D(t) ≤ M
throughout this part also.

Part 3. This part lasts while pos(t) = p, i.e. FARFIRST is waiting on top of p. It can be
seen that D(t) is constant throughout this part and also not larger than M .

We are now ready to present and prove the main claim we discussed.

Claim 3.6. Assume without loss of generality that FARFIRST is focusing on the right
side during a phase. FARFIRST finishes this phase as fast as possible or does so at
most M time units after OPT finishes. More precisely, if the phase spans the time interval
[ts, te] and the rightmost request served during this phase is Rphase, then

(te − ts = 2|Rphase|) ∨ (te − |OPT | ≤M).

First of all, note that if at least one request is unreleased at time te, then obviously |OPT | ≥
te =⇒ te − |OPT | ≤M . Thus, we can assume in the following that all requests will have
been released before the end of the phase.

We now draw our attention to a point in time that is very central to our proof.

K. Lakis 41

Online Learning-Augmented Algorithms

Let trelease be the latest release time of a positive request associated with a positive pre-
diction. Note that RU

′[t] = 0, ∀ t > trelease. Then, we define

tchase = min{t : ts ≤ t ≤ trelease, (D(t′) > M, ∀ t < t′ ≤ trelease)}.

Intuitively, tchase signifies the start of a series of unit speedmoves executed by FARFIRST
that lead to a final state in which FARFIRST has made sufficient progress through the
phase and is also not too far behind OPT . After it reaches this state, it is easier to prove
Claim 3.6. We now describe what exactly we mean by this state.

Definition 4 (Final state). We say that FARFIRST has reached a final state in a phase
at time tstate if pos(tstate) ≤M and there are no outstanding requests or unreleased predic-
tions to the right of position M .

We see why this final state is important in the following claim.

Claim 3.7. If FARFIRST is in a final state at time tstate with pos(tstate) = xstate ≤M , then

(te − tstate = |xstate|) ∨ (te − |OPT | ≤M).

Proof. If FARFIRST moves straight to the origin after tstate, the first part is true. On the
other hand, there are only two possible ways for FARFIRST not to return straight to the
origin, both of which provide new lower bounds for |OPT |, thus ”resetting” the delay. One
of them is for FARFIRST to wait for a prediction p ≤ M with π−1(p) ≤ 0. Because OPT
also has to wait for this request and since FARFIRST will ignore it for this phase, the
delay is seen to be at most M after such a case. The other case is for a request q on the
right side to be released that was predicted to be on the left side, implying that q ≤ M .
Again, it can take up to 2|q| time units for FARFIRST to serve this request and return but
also OPT needs to spend at least |q| time units to terminate after it is released. Again, the
delay is seen to be at most M .

Now that our goal has been somewhat clarified, we proceed with the main part of the proof.
We now show that after tchase, FARFIRST moves to a final state as soon as possible.

Claim 3.8. Let xstate = min{M,RO(tchase)}. Then, FARFIRST reaches a final state at
time tstate and pos(tstate) = xstate, where

tstate = tchase + |pos(tchase)−RO(tchase)|+ |RO(tchase)− xstate|.

Proof. This can be seen by considering the moves followed by FARFIRST after tchase.
First of all, we show that FARFIRST moves straight to RO(tchase), starting at tchase. If
pos(tchase) = RO(tchase), the claim is obvious. Thus, by the definition of RO(t), we can
assume that pos(tchase) < RO(tchase). It suffices to show that FARFIRST moves to the
right until it reaches RO(tchase). We split this move into two possible parts.

Part 1. This part only applies if pos(tchase) < RO(tchase) −M . In this part, we show that
FARFIRST moves straight to the point RO(tchase) −M . Indeed, if RO(tchase) is released
at some point during this part, then FARFIRST will surely move to RO(tchase) (let alone
RO(tchase) − M) in order to serve it. If RO(tchase) is not released during this part, then
RU [t] = RO(tchase) throughout this part. But because RU [t] = RO(tchase) > M , Claim
3.3 implies that RU [t] = RU

′[t] =⇒ RP [t] ≥ RU
′[t] −M = RO(tchase) −M . Therefore,

FARFIRST will move to RO(tchase)−M because of the predictions in this case.

K. Lakis 42

Online Learning-Augmented Algorithms

Part 2. This part refers to the move from the point x = max{RO(tchase)−M, pos(tchase)} to
RO(tchase). In any case (whether Part 1 applies or not), when pos(tx) = x, RO(tchase) must
have been released. Indeed, assume for the sake of contradiction that rel(RO(tchase)) > tx.
Note then that RU [t] = RO(tchase) until rel(RO(tchase)). We can see that

|pos(t)−RO(tchase)| = |pos(t)−RU [t]| ≤M ∀ t ∈ [tx, rel(RO(tchase))].

If RU [t] ≤ M for such t, the claim can be seen by noting that RU [t] − M ≤ 0 and that
RU [t] +M ≥ RU

′[t] +M and because FARFIRST won’t exit the interval [0, RU
′[t] +M]

due to RP [t].

Otherwise, by Claim 3.3, we have thatRU [t] = RU
′[t] for such t. Thismeans thatFARFIRST

will not move to the left of RO(tchase)−M due to RP [t] and also the rightmost point that may
be travelled to is RO(tchase) +M , again because of RP [t]. But that would mean that there
exists t′ : tchase < t′ ≤ trelease with D(t′) ≤ M , a contradiction. Therefore since RO(tchase)
is released at tx, FARFIRST will move towards it immediately.

It now remains to show that FARFIRST will move to xstate immediately after reaching
RO(tchase). If xstate = RO(tchase), the claim is obvious. Therefore, we can assume that
xstate = M and xstate < RO(tchase). We again split this move into two parts.

Part 1. This part lasts while t ≤ trelease and xstate = M has not yet been reached. This
means that throughout this part, we have

D(t) > M =⇒ RU [t] < pos(t)−M =⇒ RU
′[t] +M < pos(t) =⇒ RP [t] < pos(t).

Thus, since RP [t] and RU [t] are always to the left of pos(t), FARFIRST neither stops to
wait for a prediction nor backtracks to serve a request during this part.

Part 2. This part starts after Part 1 and lasts until xstate = M is reached. Again, FARFIRST
trivially does not stop to wait for a prediction, since all the positive ones are released by
now. Additionally, we can see that RU [t] ≤M for this part, since all unreleased predictions
are not positive. Thus, RU [t] ≤ pos(t) also holds for this part, prohibiting backtracking.

We can see that in both parts FARFIRST moves to the left with unit speed.

Therefore, two unit speed moves are followed after tchase, one to RO(tchase) and one to
xstate = min{M,RO(tchase)}. Also, after these moves, FARFIRST has reached a fi-
nal state, because no outstanding request or unreleased prediction exists to the right of
xstate ≤M . End of proof.

We will now use claims 3.7 and 3.8 along with the definition of tchase to prove Claim 3.6.

Proof of Claim 3.6. We distinguish two cases.

Case 1. tchase = ts. In this case, Claim 3.8 implies that FARFIRST reaches a final state
by time tstate = ts + |Rphase| + |Rphase − xstate|, where xstate = min{Rphase,M}. Then, by
Claim 3.7, we have

(te − tstate = |xstate|) ∨ (te − |OPT | ≤M) =⇒ (te − ts = 2|Rphase|) ∨ (te − |OPT | ≤M).

Thus, Claim 3.6 holds in this case.

Case 2. tchase > ts. In this case, we first show that tstate ≤ |OPT |+max{M−RO(tchase), 0},
where tstate is as described in Claim 3.8. To achieve this, we note that D(tchase) = M .
Indeed, let tprev be the latest release time before tchase, or ts if none exist. If D(t′) > M

K. Lakis 43

Online Learning-Augmented Algorithms

for all t′ : tprev < t′ ≤ tchase, then the definition of tchase is violated. Thus, there exists a
t′ : tprev < t′ ≤ tchase such that D(t′) ≤ M and we have D(tchase) ≤ M by Claim 3.5. We
now distinguish two subcases.

Case 2.1. M ≤ RO(tchase) =⇒ xstate = M . In this case, we see that

D(tchase) ≤M =⇒ |pos(tchase)−RO(tchase)|+ |RO(tchase)−RU [tchase]| ≤M =⇒

RU [tchase] ≥ |pos(tchase)−RO(tchase)|+ |RO(tchase)−M | =⇒
tchase +RU [tchase] ≥ tchase + |pos(tchase)−RO(tchase)|+ |RO(tchase)−M | =⇒

|OPT | ≥ tstate.

Case 2.2. M > RO(tchase) =⇒ xstate = RO(tchase). Because D(tchase) ≤ M , we must
have

|pos(tchase)−RO(tchase)| ≤M −RO(tchase) + RU [tchase] =⇒
tstate ≤ |OPT |+M −RO(tchase).

In both of these subcases, by Claim 3.7 we have

(te− tstate = |xstate|)∨(te−|OPT | ≤M) =⇒ (te = |xstate|+ tstate)∨(te−|OPT | ≤M) =⇒

(te ≤ |OPT |+M) ∨ (te − |OPT | ≤M).

Claim 3.6 is now proved in all cases.

We can finally use Claim 3.6 to prove Claim 3.2 by showing that Equation (3.3) or Equation
(3.2) holds.

Proof of Claim 3.2. Let ts(1), te(1) be the start and end times of the first phase ofFARFIRST
and ts(2), te(2) are similarly defined for the second phase. We can see that ts(1) = 0 and
ts(2) = te(1). We distinguish two cases based on the possible existence of a third phase.

Case 1. No requests are released on the right side after te(1). Thus, we see that |FARFIRST | =
te(2). By Claim 3.6, we see that te(1) ≤ |OPT |+M . Using Claim 3.6 for the second phase
also, we see that

(te(2)− ts(2) = 2|L|) ∨ (te(2)− |OPT | ≤M) =⇒

(te(2)− te(1) = 2|L|) ∨ (te(2)− |OPT | ≤M) =⇒ (3.3) =⇒ (3.2).
Case 2. At least one request is released on the right side after te(1). Let qM be the
rightmost such request. We can see that qM ≤ M , since it is necessarily associated with
a non-positive prediction. We can see that |FARFIRST | = te(2) + 2|qM |. We also know
that |OPT | ≥ rel(qM) + |qM | ≥ te(1) + |qM |. By Claim 3.6 for the second phase, we have

(te(2)− ts(2) = 2|L|) ∨ (te(2)− |OPT | ≤M) =⇒

(te(2)− te(1) = 2|L|) ∨ (te(2)− |OPT | ≤M) =⇒
(te(2) + 2|qM | = 2|L|+ te(1) + 2|qM |) ∨ (te(2) + 2|qM | ≤ |OPT |+M + 2|qM |) =⇒

(|FARFIRST | ≤ |OPT |+ 2|L|+ |qM |) ∨ (|FARFIRST | ≤ |OPT |+M + 2|qM |) =⇒
(|FARFIRST | ≤ |OPT |+ 2|L|+M) ∨ (|FARFIRST | ≤ |OPT |+ 3M) =⇒

(3.3) ∨ (3.2) =⇒ (3.2).

K. Lakis 44

Online Learning-Augmented Algorithms

We can now use Claim 3.2 to prove Lemma 5.

Proof of Lemma 5. We know that |OPT | ≥ 2(|L|+ |R|), since it must at least travel to both
L and R and back. Also, by Claim 3.2, we have |FARFIRST |− |OPT | ≤ |Near|+ |Far|+
3M = |L|+ |R|+ 3M . These inequalities imply

|FARFIRST |
|OPT |

= 1 +
|FARFIRST | − |OPT |

|OPT |
≤ 1 +

|L|+ |R|+ 3M

2(|L|+ |R|)
=

3(1 + η)

2
.

We can finally prove Theorem 1.

Proof of Theorem 1. By Lemma 4, FARFIRST is 3-robust. Additionally, by Lemma 5,
FARFIRST is

(
3(1+η)

2

)
-smooth. Thus, the theorem holds.

3.3.2 A 1.5-attack.

Based on the magician analogy presented in Section 3.1.2, we design an attack strategy
that yields the following theorem.

Theorem 2. For any ϵ > 0, no algorithm can be (1.5− ϵ)-competitive for closed online
TSP on the line under the LOCATIONS prediction model.

We first describe in high level the main ideas in the proof of this theorem. In our attack
strategy, we have arbitrarily many requests evenly placed in the interval [−1, 1]. The more
of these requests we have, the closer the competitive ratio we achieve will be to 1.5.

For a given set QX of request positions, we now describe how the release times of the
requests at these positions are decided. The strategy is that we release requests on both
sides as long as ALG has not yet approached a released request. This is the first phase
of releases and it is structured in such a way that OPT could begin serving either of the
two sides as fast as possible. In the magician analogy we described, this corresponds to
the time before the pedestrian chooses a hand.

When ALG approaches a released request, we ”freeze” the requests on ALG’s side. That
is, if ALG moves close to a released request on the left side, say one placed at −1

2
, all re-

quests in the interval [−1
2
, 0] have their release time delayed such that OPT can still serve

the entire right side and then come back to serve the left side by t = 4. This corresponds
to the magician producing the coin on the right hand while the pedestrian has chosen the
left hand. However, ALG is now faced with a dilemma. Should it wait for these ”frozen”
requests or should it travel all the way to 1 in order to serve the right side first? We will
see that both options are bad, in the sense that |ALG| can be seen to be arbitrarily close
to 6. We now proceed with the formal proof.

We describe a family FC of inputs that is structured as follows. For a given rank n ≥ 2, we
place exactly n requests evenly spaced across the interval [−1, 1]. For an instance f of
the family FC , α(f) is defined as the distance between any consecutive pair of requests
in f .

Claim 3.9. If an instance f of the family FC has rank n, then α(f) = 2
n−1

.

K. Lakis 45

Online Learning-Augmented Algorithms

Proof. There are n requests that delimit an interval of length 2. Thus, there are n − 1
equal subintervals, whose lengths’ sum is equal to 2. Therefore, each subinterval has
length 2

n−1
.

All that is left to determine is the release times of the requests. We split the release times
into two ”phases”. The first phase takes place for as long as LU(t) < posALG(t) < RU(t).
During this phase, ADV releases any request with distance d from the origin at time 2− d.
Note that this release method allows OPT to eagerly start serving any side of the origin
first without waiting for requests to release.

Now for the second phase’s releases, assuming that ALG exits the interval to its left side
(i.e. commits to the left extreme), the requests to the right side are released as during
the first phase. However, for any unreleased request to the left side with distance d from
the origin, its release time is delayed to 4 − d. If ALG exits from the right instead, ADV
releases the left requests as in the first phase and delays the right requests. The input
(positions and release times of requests) is now fully specified. For the following, we will
define tcommit as the start time of the second phase. That is,

tcommit = min({t : ¬(LU(t) < posALG(t) < RU(t))}).

We immediately observe the following inequality, which guarantees that the second phase
of the requests starts in a timely manner.

Claim 3.10. 1 ≤ tcommit ≤ 2.

Proof. For the sake of contradiction, assume that tcommit < 1. Then, |pos(tcommit)| ≥ 1
since [LU(t), RU(t)] = [−1, 1] for t < 1. However, because any algorithm is limited to unit
speed, tcommit < 1 =⇒ |pos(tcommit)| < 1, a contradiction.

On the other hand, assume that tcommit > 2. This means that LU(2) < pos(2) < RU(2).
But, since the first phase has not stopped until t = 2, we have LU(2) ≥ 0, RU(2) ≤ 0, which
clearly leads to a contradiction.

We now state a lemma ensuring that OPT finishes in the absolute least time possible for
any such input. This allows us to maximize the competitive ratio we achieve against ALG.

Lemma 6. For any instance f in the family FC , |OPT | = 4.

Proof. We observe that the requests of one side (the one ALG did not exit from) are
released such that OPT can serve them all and return to the origin by t = 2. Additionally,
the other side’s requests are released such that OPT never has to stop for them either,
i.e. it can serve them all and return to the origin by t = 4. Thus, |OPT | = 4.

However, ALG has commited to one side (by exiting the interval) and we will prove that it
requires at least 6− 2α(f) time units to terminate. This will be our main lemma. We state
it here for reference but will prove it later.

Lemma 7. For any instance f in the family FC and for any ALG, we have that |ALG| ≥
6− 2α(f).

Before proving this lemma, we give some more claims. For the following, we assume
without loss of generality that ALG exits the interval [LU(t), RU(t)] from the left, i.e. it
commits to the left side.

K. Lakis 46

Online Learning-Augmented Algorithms

Claim 3.11. For any instance f in the family FC ,

LU(tcommit)− α(f) ≤ posALG(tcommit) ≤ LU(tcommit).

Proof. The claim can be seen by examining two cases. If ALG exited the unreleased
requests interval itself by moving out of it, then posALG(tcommit) = LU(tcommit). In the other
case, ALG was forced out of the interval by a request release. Thus, right before this
release (which occurs at precisely tcommit), ALG was inside the interval. The previous
interval was [LU(tcommit)− α(f), RU(tcommit) + α(f)]. Thus, the inequality holds.

We now draw attention to one particular value, which constitutes the backbone of our
attack. We define dcommit = |LU(tcommit)|, where tcommit is the start of the second phase of
releases.

We now show some claims that allow us to use this value to get a lower bound for |ALG|.

Claim 3.12. For any instance f in the family FC , tcommit ≥ 2− dcommit − α(f).

Proof. If LU(tcommit) = −1 =⇒ dcommit = 1, then by Claim 3.10, we have tcommit ≥ 1 ≥
2 − dcommit − α(f). Therefore, we can assume that a request Lprev exists with Lprev =
LU(tcommit)− α(f) < LU(tcommit). We see that if t < 2− dcommit− α(f), then LU(t) ≤ Lprev,
because Lprev is unreleased until 2−dcommit−α(f). Therefore, tcommit ≥ 2−dcommit−α(f),
since otherwise we would have LU(tcommit) ≤ Lprev, a contradiction.

The following claim states that ALG has essentially made no progress until tcommit. If
tcommit is close to 2, we can easily see why this is bad for ALG. On the other hand, an
early commit means that dcommit will be large (due to Claim 3.12), posing problems again
for ALG.

Claim 3.13. ALG has not served any request during the first phase, i.e. up to time tcommit.

Proof. This is due to the fact that ALG has not exited the interval of unreleased requests
until tcommit. Therefore, it cannot have moved to a released request. Since ALG has to
move to a request to serve it, the claim holds.

Now we are ready to prove Lemma 7.

Proof of Lemma 7. Let us examine the options that ALG has in order to terminate after
tcommit. By Claim 3.13, we know thatALG has not yet served the requests at−1, LU(tcommit), 1.
We examine cases based on the order in which it chooses to do so from tcommit on.

Case 1. ALG serves 1 before −1. Then, ALG at the very least needs to travel from
posALG(tcommit) to 1, then to −1 and then back to the origin. Using Claims 3.12 and 3.11,
this takes at least

|ALG| ≥ tcommit + |posALG(tcommit)− 1|+ |1− (−1)|+ | − 1− 0| ≥

(2− dcommit − α(f)) + (dcommit + 1) + 2 + 1 = 6− α(f).

Case 2. ALG serves −1, then 1 and then LU(tcommit). Again using Claims 3.12 and 3.11,
this takes

|ALG| ≥ tcommit+|posALG(tcommit)−(−1)|+|(−1)−1|+|1−LU(tcommit)|+|LU(tcommit)−0| ≥

K. Lakis 47

Online Learning-Augmented Algorithms

(2− dcommit − α(f)) + (1− dcommit − α(f)) + 2 + (1 + dcommit) + dcommit = 6− 2α(f).

Case 3. ALG serves LU(tcommit) before 1. In this case, ALG has to first wait for LU(tcommit)
to be released and then go to serve 1. Because LU(tcommit) is a request to the left of the
origin released during the second phase, we have

|ALG| ≥ rel(LU(tcommit))+ |LU(tcommit)− 1|+ |1− 0| ≥ (4−dcommit)+ (1+ dcommit)+1 = 6.

These cases are exhaustive and thus Lemma 7 is proved.

With all the above, we can finally prove Theorem 2.

Proof of Theorem 2. By Lemma 7 and Lemma 6, we have a competitive ratio of at least
6−2α(f)

4
for any algorithm ALG. By Claim 3.9, we can see that α(f) can be arbitrarily small

and thus this competitive ratio can be arbitrarily close to 1.5, proving our claim.

3.4 Open Variant

In this section, we consider the open variant. We have two prediction models for this vari-
ant. The first one is the LOCATIONS prediction model and the second is the enhanced
LOCATIONS + FINAL model (LF in short). For both settings, we give algorithms and
lower bounds.

3.4.1 The LOCATIONS prediction model

Under the LOCATIONS prediction model, we design theNEARFIRST algorithm, which
achieves a competitive ratio of 1.66 with perfect predictions and is also smooth and robust.
We complement this result with a lower bound of 1.44 using a similar attack strategy to the
one used for the closed variant.

The NEARFIRST algorithm. As we mentioned in the introduction, NEARFIRST is
similar to FARFIRST and actually slightly simpler. In essence, NEARFIRST simply
picks a direction in which it will serve the requests. Then, it just serves the requests either
from left to right or from right to left, using the predictions as guidance. The pseudocode
for NEARFIRST is given below. Recall that move(x) ⊕ move(y) is used to indicate a
move to x followed by a move to y.
We present the following theorem regarding the competitive ratio of NEARFIRST .

Theorem 3. The algorithm NEARFIRST is min {f(η), 3}-competitive, where

f(η) =

{
1 + 2(1+η)

3−2η
, for η < 2

3

3, for η ≥ 2
3

.

We first describe the main ideas used in the proof of this theorem. As in the case of
FARFIRST , the 3-robustness holds because at time |OPT |,NEARFIRST has ”leftover
work” of at most 2|OPT | time units (to return to the origin and then copy OPT). For the
consistency/smoothness, we draw our attention to the request qf served last by OPT .
For the following, we assume that NEARFIRST serves the requests left to right. Let

K. Lakis 48

Online Learning-Augmented Algorithms

Algorithm 6: NEARFIRST update function.
Input :Current position pos, set O of unserved released requests, set P of

predictions.
Output :A series of (unit speed) moves to carry out until the next request is released.
P ′ ← the unreleased predictions in P ;
if P ′ is empty then

if pos < max(O)+min(O)
2

then return move(min(O))⊕move(max(O)) ;
else return move(max(O))⊕move(min(O)) ;

end
if |min(P)| < |max(P)| then return move(min(P ′ ∪O))⊕move(min(P ′)) ;
else return move(max(P ′ ∪O))⊕move(max(P ′)) ;

d = |qf − R|. We will show that the delay of NEARFIRST is bounded by M + d. Let tqf
be the time when NEARFIRST has served all requests to the left of qf , including qf . It
turns out that tqf ≤ |OPT |+M , because NEARFIRST serves this subset of requests as
fast as possible, except for a possible delay of M due to a misleading prediction. Then,
in this worst case, NEARFIRST accumulates an extra delay of at most d, proving our
claim.

Finally, we bound OPT from below as a function of d. We see that OPT can either serve
the requests L,R, qf in the order L,R, qf or in the order R,L, qf . The worst case is the
latter, where we see that |OPT | ≥ 2|R| + |L| + (|L| + |R| − d) = 3|R| + 2|L| − d. Since
d ≤ |L|+ |R|, we obtain

|NEARFIRST |
|OPT |

= 1 +
|NEARFIRST | − |OPT |

|OPT |
≤ 1 +

M + |L|+ |R|
2|R|+ |L|

.

Because NEARFIRST considers L the near extreme due to the predictions, by Lemma
3 we find that |R| ≥ 1−2η

2
(|L|+ |R|), which in turn proves our bound.

We now give the formal proof of Theorem 3. First of all, we present two lemmas that are
very important. Their proofs are deferred to the Appendix, since they also refer to the
PIV OT algorithm, which is introduced later.

Lemma 8. Let ALG be either NEARFIRST or PIV OT . Then, ALG is 3-robust.

Lemma 9. LetALG be eitherNEARFIRST or PIV OT . Also, let qf be the request served
last byOPT . Assume without loss of generality that ALG serves requests from left to right.
Let d = |qf −R|. Then, we have |ALG| − |OPT | ≤M + d.

The robustness part of Theorem 3 is implied by Lemma 8.

Now, to prove Theorem 3, it remains to show the consistency/smoothness part, which is
given by the following lemma.

Lemma 10. The algorithm NEARFIRST is f(η)-smooth for η < 2
3
, where f(η) = 1 +

2(1+η)
3−2η

.

Proof. Assume w.l.o.g. that NEARFIRST serves the left extreme first. By Lemma 9, we
see that |NEARFIRST | − |OPT | ≤M + d, where d is the distance of R to the request qf

K. Lakis 49

Online Learning-Augmented Algorithms

served last by OPT . We distinguish two cases based on the order in which OPT serves
the requests in {L,R, qf}. Case 1. OPT serves L,R and then qf . It can be seen then that

|NEARFIRST |
|OPT |

≤ 1 +
M + d

2|L|+ |R|+ d
.

The derivative of the right hand side with respect to d is

|R|+ 2|L| −M

(d+ |R|+ 2|L|)2
.

Because η < 2
3
, it must hold that M < 2

3
(|L| + |R|) =⇒ |R|+ 2|L| −M

(d+ |R|+ 2|L|)2
> 0. Thus, we

maymaximize d to get an upper bound that is valid for any value of d. Because d ≤ |L|+|R|
we see that

|NEARFIRST |
|OPT |

≤ 1 +
M + |L|+ |R|
3|L|+ 2|R|

.

Case 2. OPT serves R,L and then qf . It can be seen then that

|NEARFIRST |
|OPT |

≤ 1 +
M + d

2|R|+ |L|+ (|L|+ |R| − d)
= 1 +

M + d

3|R|+ 2|L| − d
.

We can see that the right hand side is an increasing function of d. Thus, we may again
maximize d to get an upper bound.

|NEARFIRST |
|OPT |

≤ 1 +
M + |L|+ |R|
2|R|+ |L|

. (3.4)

In both cases, the bound of Equation (3.4) is valid. Noting that |LP | ≤ |RP | (because
NEARFIRST chose to go to the left first), we now use Lemma 3 to finalize our proof.

|LP | ≤ |RP | =⇒ |R| ≥ |L| − 2M =⇒ 2|R| ≥ |L|+ |R| − 2M =

(|L|+ |R|)(1− 2η) =⇒ |R| ≥ 1− 2η

2
(|L|+ |R|) =⇒

1 +
M + |L|+ |R|
2|R|+ |L|

≤ 1 +
(1 + η)(|L|+ |R|)

(1 + 1−2η
2

)(|L|+ |R|)
= 1 +

2(1 + η)

3− 2η
=⇒

|NEARFIRST |
|OPT |

≤ 1 +
2(1 + η)

3− 2η
.

We now give the proof of Theorem 3.

Proof of Theorem 3. By Lemma 8, NEARFIRST is 3-robust. Additionally, by Lemma 10,
NEARFIRST is

(
1 + 2(1+η)

3−2η

)
-smooth. Thus, Theorem 3 holds.

K. Lakis 50

Online Learning-Augmented Algorithms

A 1.44-attack. For this setting, we use an attack strategy that is very similar to the one
introduced in Section 3.3. This allows us to obtain the following theorem.

Theorem 4. For any ϵ > 0, no algorithm can be
(
1.44− ϵ

)
-competitive for open online

TSP on the line under the LOCATIONS prediction model.

The logic behind the attack we give here is exactly the same as the one used to prove
Theorem 2. There are two main differences demanded by the nature of the open variant.

One is that the first phase is shorter in this attack. Instead of stopping when ALG exits
[LU(t), RU(t)], the phase now stops when ALG exits the interval [3LU(t) + 2, 3RU(t) − 2].
This is so that both options ofALG (switch to the other side or wait for the ”frozen” requests)
are equally hurtful.

The other difference lies in the release times of the second phase. Each request on the
side chosen by ALG now has its release time delayed to 2 + d (instead of 4− d), where d
is the request’s distance from the origin. This is so OPT can finish by t = 3, which is the
fastest possible even if all requests are released immediately.

In the following, we assume without loss of generality that ALG exits the interval [3LU(t)+
2, 3RU(t)− 2] from the left side. We define the family FO of inputs just like we defined FC

in the proof of Theorem 2. Of course, the release times are different as explained in the
previous paragraphs.

An immediate observation that we have already mentioned is the following lemma.

Lemma 11. For any instance f in the family FO, |OPT | = 3.

Proof. Since ALG exits the interval from the left side, each request qr on the right side is
released at time 2− |qr|. Thus, by moving to 1 and back, OPT serves all the requests on
the right side. Additionally, each request ql on the left side is released no later than 2+ |ql|,
allowing OPT to serve these requests by just moving to −1 after reaching the origin at
t = 2. Therefore, OPT can serve all the requests by time 3, i.e. |OPT | = 3.

The next piece of the puzzle is a lower bound on ALG. This is given by the following
lemma.

Lemma 12. For any instance f in the family FO and any algorithm ALG, |ALG| ≥ 13
3
−

3α(f), where α(f) is the distance between consecutive requests in f .

To prove this lemma, we will use some claims, many of which are very similar to claims
used for Lemma 7. To present these claims, we introduce two important terms.

We denote with tcommit the start time of the second phase, i.e.

tcommit = min({t : ¬(3LU(t) + 2 < posALG(t) < 3RU(t)− 2)}).

Additionally, we draw attention to the value dcommit = |LU(tcommit)|, which is very important
for the attack.

We now present the claims which are very similar to those used for the closed variant.
Claims 3.14, 3.15 and 3.16 can be seen in the same way as Claims 3.10, 3.11 and 3.12,
respectively.

Claim 3.14. 1 ≤ tcommit ≤ 1 + 1
3
.

K. Lakis 51

Online Learning-Augmented Algorithms

Claim 3.15. pos(tcommit) ≤ 3LU(tcommit) + 2.

Claim 3.16. For any instance f in the family FO, tcommit ≥ 2− dcommit − α(f).

Moreover, we also have the following claim.

Claim 3.17. For any instance f of the family FO, dcommit ≥ 2
3
− α(f).

Proof. By Claim 3.16, we have dcommit ≥ 2−tcommit−α(f). Additionally, Claim 3.14 implies
that tcommit ≤ 4

3
. The claim follows.

We are now ready to prove Lemma 12.

Proof of Lemma 12. We distinguish cases based on the order in which ALG chooses to
serve −1, 1, LU(tcommit) after tcommit. Case 1. ALG serves 1 before −1. By Claims 3.16,
3.15 and 3.17, this takes at least

|ALG| ≥ tcommit + |pos(tcommit)|+ 2 + 1 ≥

2− dcommit − α(f) + |3LU(tcommit) + 2|+ 2 + 1 =

2− dcommit − α(f) + 3dcommit − 2 + 2 + 1 = 3 + 2dcommit − α(f) ≥

3 +
4

3
− 3α(f) ≥ 13

3
− 3α(f).

Case 2. ALG serves LU(tcommit) before 1. By the definition of the second phase’s release
times and Claim 3.17, we have

|ALG| ≥ rel(LU(tcommit)) + |LU(tcommit)|+ 1 = 2 + dcommit + dcommit + 1

3 + 2dcommit ≥
13

3
− 2α(f).

Case 3. ALG serves in the order −1, 1, LU(tcommit). By Claim 3.17, we easily obtain

|ALG| ≥ 2 + 2 +
2

3
− α(f) ≥ 13

3
− α(f).

These cases are exhaustive and thus Lemma 12 follows.

We can now use Lemmas 11 and 12 to prove Theorem 4.

Proof of Theorem 4. By Lemma 11, we have |OPT | = 3. On the other hand, by Lemma
12, we see that |ALG| ≥ 13

3
− 3α(f). Thus, we obtain a competitive ratio of at least

13
3
−3α(f)

3
. For arbitrarily small α(f), this value can be arbitrarily close to 1.44, proving the

Theorem.

3.4.2 The LOCATIONS+FINAL prediction model

In our final setting we consider the open variant under the LF prediction model. We
give the PIV OT algorithm, which is 1.33-competitive with perfect predictions and is also
smooth and robust. We also reuse the attack strategy described for the closed variant to
achieve a lower bound of 1.25.

K. Lakis 52

Online Learning-Augmented Algorithms

ThePIV OT algorithm. The final algorithmwe present works in the sameway asNEARFIRST ,
except for the order in which it focuses on the two sides of the origin. Instead of heading to
the near extreme first, PIV OT prioritizes the side whose extreme is further away from the
predicted endpoint of OPT , which is provided by the LF prediction model. The pseudo-
code for PIV OT is given below. Note that Pf ′ refers to the element in P with label f ′.

Algorithm 7: PIV OT update function.
Input :Current position pos, set O of unserved released requests, set P of

predictions, label f ′ of OPT ’s predicted endpoint.
Output :A series of (unit speed) moves to carry out until the next request is released.
P ′ ← the unreleased predictions in P ;
if P ′ is empty then

if pos < max(O)+min(O)
2

then return move(min(O))⊕move(max(O)) ;
else return move(max(O))⊕move(min(O)) ;

end
if Pf ′ > max(P)+min(P)

2
then return move(min(P ′ ∪O))⊕move(min(P ′)) ;

else return move(max(P ′ ∪O))⊕move(max(P ′)) ;

As for the previous algorithms, we show a theorem that pertains to PIV OT ’s competitive
ratio for different values of the η and δ errors.

Theorem 5. The algorithm PIV OT is min {f(η, δ), 3}-competitive, where

f(η, δ) =

{
1 + 1+2(δ+3η)

3−2(δ+2η)
, 3− 2(δ + 2η) > 0

3, 3− 2(δ + 2η) ≤ 0
.

The proof is very similar to the one used for NEARFIRST ’s competitive ratio. In fact, the
robustness is shown in exactly the same way. For the consistency/smoothness, the delay
is bounded byM+d in the same way, where d is the distance of the last request qf served
by OPT to the extreme served second by PIV OT . The same lower bounds for |OPT |
hold as well. We additionally bound d as a function of the error-dependent values ∆ and
M . When there is no error, we can bound d to be at most |L|+|R|

2
instead of |L|+ |R|, which

gives a better competitive ratio than that of NEARFIRST . An important distinction is that
we do not make use of Lemma 3, since the algorithm does not consider the amplitudes of
L and R.

The formal proof of Theorem 5 is given here. The robustness part of Theorem 5 is implied
by Lemma 8. To prove Theorem 5, it remains to show the consistency/smoothness part,
which is given by the following lemma.

Lemma 13. The algorithm PIV OT is f(η, δ)-smooth for 3− 2(δ + 2η) > 0, where

f(η, δ) = 1 +
1 + 2(δ + 3η)

3− 2(δ + 2η)
.

We assume without loss of generality that PIV OT first serves the left extreme. By Lemma
9, we see that |PIV OT | − |OPT | ≤M + d, where d is the distance of R to the request qf
served last by OPT . We now show a bound on the value of d that depends on η and δ.

Claim 3.18. d = |R− qf | ≤ (|L|+ |R|)(1
2
+ δ + 2η).

K. Lakis 53

Online Learning-Augmented Algorithms

Proof. We first show two inequalities that will be used later to prove the claim. Note that
|R−RP | ≤M and |L− LP | ≤M by Claim 3.1. The first inequality is

|R−RP | ≤M =⇒ R−Rp ≤M =⇒ RP − qf ≥ R− qf −M =⇒

RP − qf ≥ |R− qf | −M. (3.5)

Similarly, we see that

|L− LP | ≤M =⇒ LP − L ≥ −M =⇒ qf − L+M ≥ qf − LP

|qf − L|+M ≥ qf − LP . (3.6)

Because of PIV OT ’s choice to go left first, we see that

|RP − pf ′ | ≤ |LP − pf ′ | =⇒ RP − pf ′ ≤ pf ′ − LP =⇒ pf ′ ≥ RP + LP

2
=⇒

qf ′ ≥ RP + LP

2
−M =⇒ qf ≥

RP + LP

2
−M −∆ =⇒

qf − LP +M +∆ ≥ RP − qf −M −∆
(3.5),(3.6)
=⇒

|qf − L|+ 2M +∆ ≥ |R− qf | − 2M −∆ =⇒

|qf − L|+ |R− qf |+ 2M +∆ ≥ 2|R− qf | − 2M −∆ =⇒

d = |R− qf | ≤ (|L|+ |R|)(1
2
+ δ + 2η).

Using Claim 3.18, we can prove Lemma 13.

Proof of Lemma 13. We distinguish two cases based on the order in which OPT serves
the requests of the set {L,R, qf}. Case 1. OPT serves in the order L,R, qf . Thus, we
know that

|PIV OT |
|OPT |

≤ 1 +
M + d

2|L|+ |R|+ d
.

The derivative of the right part with respect to d is

|R|+ 2|L| −M

(d+ |R|+ 2|L|)2
.

Since we have assumed 3−2(δ+2η) > 0 =⇒ η < 1, this value is always positive. There-
fore, we can set d to the maximum value described in Claim 3.18 to obtain the following
bound.

|PIV OT |
|OPT |

≤ 1 +
(|L|+ |R|)(1

2
+ δ + 2η) + η(|L|+ |R|)

2|L|+ |R|+ (|L|+ |R|)(1
2
+ δ + 2η)

≤

1 +
1 + 2δ + 6η

3 + 2δ + 4η
≤ 1 +

1 + 2(δ + 3η)

3− 2(δ + 2η)
.

Case 2. OPT serves in the order R,L, qf . In that case, we have

|PIV OT |
|OPT |

≤ 1 +
d+M

2|R|+ |L|+ (|L|+ |R| − d)

3.18

≤

K. Lakis 54

Online Learning-Augmented Algorithms

1 +
(|L|+ |R|)(1

2
+ δ + 2η) + η(|L|+ |R|)

2|R|+ |L|+ (|L|+ |R|)(1
2
− δ − 2η)

≤ 1 +
1 + 2δ + 6η

3− 2δ − 4η
=

1 +
1 + 2(δ + 3η)

3− 2(δ + 2η)
.

In both cases, we have shown the smoothness bound. Therefore, the proof is complete.

We now give the proof of Theorem 5.

Proof of Theorem 5. By Lemma 8, PIV OT is 3-robust. Also, by Lemma 13, it is
(
1 + 1+2(δ+3η)

3−2(δ+2η)

)
-

smooth. Thus, Theorem 5 follows.

A 1.25-attack. We make use of the original attack strategy of Section 3.3 yet again to
obtain a lower bound for this setting. Our final theorem is presented here.

Theorem 6. For any ϵ > 0, no algorithm can be (1.25− ϵ)-competitive for open online TSP
on the line under the LF prediction model.

To prove this theorem, wewill again utilize the attack strategy given in the proof of Theorem
2. The inputs generated are the same, except for a new request q0 placed at the origin
and released at t = 4. Let FC

′ denote this new family of inputs. We observe the following
lemmas.

Lemma 14. For any instance f in the family FC
′, |OPT | = 4.

Proof. We see that the requests of the side which ALG did not exit from are released such
that OPT can serve them all and return to the origin by t = 2. Additionally, the other side’s
requests are released such that OPT never has to stop for them either, i.e. it can serve
them all and return to the origin by t = 4. The request on the origin is released at exactly
t = 4, so this is also served right as OPT returns to the origin from the second trip. Thus,
|OPT | = 4.

In the following, α(f) will refer to the distance of consecutive requests in f , disregarding
q0.

Lemma 15. For any instance f in the family FC
′, |ALG| ≥ 5− 2α(f).

Proof. Suppose for the sake of contradiction that |ALG| < 5 − 2α(f). We can see that
|posALG(|ALG|)| ≤ 1. Thus, an algorithm ALG′ could copy ALG until it serves all requests
and then return to the origin. That would mean that ALG′ solves the closed variant of f
such that |ALG′| < 6−2α(f). Observe that there exists an instance f ′ ∈ FC that is identical
to f except for q0. We can see that ALG′ also solves f ′ in less than 6− 2α(f) = 6− 2α(f ′)
time units, since f ′ only contains a subset of the requests in f . Therefore, we have a
contradiction to Lemma 7.

We can now prove Theorem 6.

Proof of Theorem 6. By Lemma 14, we see that |OPT | = 4. We also see that |ALG| ≥
5− 2α(f) by Lemma 15. Thus, we get a competitive ratio of at least 5−2α(f)

4
, which can be

arbitrarily close to 1.25, concluding the proof.

K. Lakis 55

Online Learning-Augmented Algorithms

3.5 Experimental Evaluation

We have generated synthetic instances and corresponding predictions and tested our al-
gorithms on them. In this section, we explain how this data was generated and present
the results we acquired.

Note that mirroring of the positions of the requests and/or uniform scaling of the positions
and release times does not affect the competitive ratio of any algorithm. Therefore, we
choose to generate the inputs as explained below.

Generating inputs. In the following, any reference of randomness will correspond to a
uniform distribution. We have a maximum number of requests nmax ≥ 2 and a maximum
release time rmax. Our generator first randomly chooses an integer number of requests
n ∈ [2, nmax]. Then it randomly chooses a value c′ ∈ [1, c]. We then generate the positions
of the requests as follows. We always have a request at −1 and one at c′. The other n− 2
requests are randomly placed in the interval [−1, c′]. The release time of each request is
randomly chosen from [0, rmax].

Generating predictions. Wenow briefly explain how the predictions of theLOCATIONS
model are generated. Each input generated also comes with a prediction ”mould”. This
mould contains n scalars mi ∈ [−1, 1], one for each request. At least one of these scalars
has an absolute value of 1. For a given error η, we calculate M and then add an offset
of mi · M to the position of request qi to get the prediction pi. In this way, at least one
prediction is guaranteed to have a distance of M to its associated request.

For the LF prediction model, we simply try each label of the generated input as a different
prediction. Each label choice corresponds to a different error δ, which is calculated after
choosing the label.

Results. We generated 7500 random input-predictions pairs with at most 20 requests. A
value of c = 2 was chosen, since higher values of c in general only benefit our algorithms.
The maximum release time was set to 6. Again, higher release times in general lead to
better competitive ratios for our algorithms, because they increase |OPT |.

The error η of these predictions varied from 0 to 1. We ran FARFIRST andNEARFIRST
on each of these instances. Additionally, for each of these instances, we ran PIV OT with
each of the instance’s request labels as the prediction of the LF prediction model. Thus,
the PIV OT algorithm was ran approximately 75000 times.

We did not compare the results of our algorithms to the classical algorithms because that
would be unfair. That is because our algorithms have the benefit of knowing the number
of requests n which helps in practice, even if the theoretical lower bounds are almost
identical. In contrast, the theoretically optimal classical online algorithms resort to waiting
techniques, which in turn almost always maximizes their competitive ratio to the theoretical
bound.

The experiments were executed on a typical modern laptop computer (CPU: AMD Ryzen
7 4700U 2.0 Ghz 8 cores, RAM: 16GB). The execution time did not exceed 2minutes. We
present our results via various graphs in the following subsections.

K. Lakis 56

Online Learning-Augmented Algorithms

3.5.1 FARFIRST

Figure 3.1 shows the maximum competitive ratio observed for the FARFIRST algorithm
in all instances with error η up to the value of the x axis. In figure 3.2, we have also
provided a plot that depicts the maximum competitive ratio observed for x % of the best
instances with error η up to the value of the y axis. We note that the grid turns red near
the very edge, which means that high competitive ratios are rare.

0.0 0.2 0.4 0.6 0.8 1.0

Error eta

1.5

1.6

1.7

1.8

1.9

2.0

2.1

M
ax

co
m

p
et

it
iv

e
ra

ti
o

Figure 3.1: FARFIRST ’s competitive ratio for
increasing error. As can be seen in the figure,
the competitive ratio never surpasses ≈ 2.15

for η ≤ 1. Additionally, we find that the
competitive ratio even with zero error is close
to the theoretical upper bound of 1.5. It should
also be noted that the theoretical lower bound
of 1.64 (without predictions) is broken for η

roughly up to 0.2.

20 40 60 80 100

Percentage of inputs considered

0.0

0.2

0.4

0.6

0.8

1.0

E
rr

or
et

a
1.000

1.159

1.318

1.477

1.636

1.795

1.954

2.113

Figure 3.2: FARFIRST ’s competitive ratio for
increasing error and percentage of inputs

considered, sorted by the competitive ratio that
FARFIRST obtains on them. The narrowness
of the red portion of the grid suggests that high
competitive ratios are rare. We note that the
colors of the grid are generally blue, i.e.
FARFIRST exhibits a relatively low
competitive ratio in most cases.

3.5.2 NEARFIRST

The figures presented here are analogous to those of Section 3.5.1. Figure 3.3 shows the
maximum competitive ratio observed for the NEARFIRST algorithm in all instances with
error η up to the value of the x axis. In figure 3.4, a plot analogous to that seen in figure
3.2 is shown for the NEARFIRST algorithm. The red portion of the grid is again quite
limited as in the case for FARFIRST .

3.5.3 PIVOT

In this final subsection we condsider the PIV OT algorithm. In figure 3.5, the color of the
pixel in coordinates (x, y) corresponds to the maximum competitive ratio observed for all
instances with errors δ ≤ x and η ≤ y. We should explain here that the colors change
abruptly in this figure since the δ error does not vary smoothly in the generated predictions.
This is because we only have a discrete set of choices for the label f ′ of the LF prediction
model through which δ is calculated.

K. Lakis 57

Online Learning-Augmented Algorithms

0.0 0.2 0.4 0.6 0.8 1.0

Error eta

1.6

1.7

1.8

1.9

2.0

M
ax

co
m

p
et

it
iv

e
ra

ti
o

Figure 3.3: NEARFIRST ’s competitive ratio for
increasing error. As can be seen in the figure,
the competitive ratio never surpasses ≈ 2.05

for η ≤ 1. Additionally, we find that the
competitive ratio even with zero error is close
to the theoretical upper bound of 1.66. It should
also be noted that the theoretical lower bound
of 2 (without predictions) is broken even for η

very close to 1.

20 40 60 80 100

Percentage of inputs considered

0.0

0.2

0.4

0.6

0.8

1.0

E
rr

or
et

a

1.000

1.150

1.299

1.449

1.598

1.748

1.897

2.047

Figure 3.4: NEARFIRST ’s competitive ratio for
increasing error and percentage of inputs

considered, sorted by the competitive ratio that
NEARFIRST obtains on them. The narrowness
of the red portion of the grid suggests that high
competitive ratios are rare. We note that the
colors of the grid are generally blue, i.e.
NEARFIRST exhibits a relatively low

competitive ratio in most cases.

K. Lakis 58

Online Learning-Augmented Algorithms

Figure 3.5: PIVOT ’s competitive ratio for increasing errors δ and η. The color of the pixel in
coordinates (x, y) corresponds to the maximum competitive ratio observed for all instances with
errors δ ≤ x and η ≤ y. We observe that the competitive ratio is more sensitive to η than to δ, as

was to be expected by the corresponding theoretical bound. With perfect predictions, the
maximum competitive ratio is not greater than ≈ 1.11, which is considerably lower than the

theoretical upper bound of 1.33. In general, the competitive ratio increases smoothly along the
main diagonal of the grid. Finally, PIV OT ’s competitive ratio surpasses the lower bound of 2

(without predictions) only for large values of δ, η.

K. Lakis 59

Online Learning-Augmented Algorithms

4. CONCLUSIONS

Throughout this thesis, we investigated various classical online problems and the algorithms
designed for them. We observe that the worst case guarantees we have for these al-
gorithms are in general very pessimistic, even if they are indeed optimal. This is due to
the fact that a classical online algorithm has to be prepared for every possible input and
thus must implement a global strategy which is bound to have drawbacks in some cases.

We demonstrated that this problem can be overcome with the introduction of learning-
augmented algorithms, since the particularities of the input may be utilized in this case,
given that the predictions are sufficiently accurate. At the same time, we still have global
worst case guarantees, which is not true for artificial intelligence/machine learning in gen-
eral.

Finally, we have examined the online TSP on the line and provided lower bounds as well as
algorithms for three different learning-augmented settings. An immediate extension of our
results would be to bridge the gap between the lower and upper bounds we have shown for
the open variant. Also, it would be interesting to establish error-dependent lower bounds
and/or optimal consistency-robustness tradeoffs. Moreover, an improvement would be
to remove the assumption of knowing the number of requests n. A technique that could
perhaps allow an algorithm to achieve that is to periodically make sure that the algorithm
terminates in case no new requests appear. Finally, more general versions of online TSP
could be investigated like the case of trees.

K. Lakis 60

Online Learning-Augmented Algorithms

TABLE OF TERMINOLOGY

Ξενόγλωσσος όρος Ελληνικός όρος

Online Problems Προβλήματα με Άμεση Ανταπόκριση

Online Learning-Augmented Al-
gorithms

Άμεσοι Αλγόριθμοι με Προβλέψεις

Online TSP on the Line Πρόβλημα του Πλανώδιου Πωλητή
στον Άξονα με Άμεση Ανταπόκριση

Offline Algorithm Αλγόριθμος με Καθυστερημένη
Ανταπόκριση

Request Αίτημα

Real line Άξονας των πραγματικών αριθμών

Origin Αρχικό σημείο

Makespan Χρονοκαθυστέρηση

Open variant Ανοιχτή έκδοση

Closed variant Κλειστή έκδοση

Competitive Ratio Λόγος Ανταγωνιστικότητας

Lower bound Κάτω φράγμα

Prediction model Μοντέλο προβλέψεων

Consistency Συνέπεια

Smoothness Ομαλότητα

Robustness Ευρωστία

x-competitive x-ανταγωνιστικός

x-consistent x-συνεπής

K. Lakis 61

Online Learning-Augmented Algorithms

ABBREVIATIONS - ACRONYMS

TSP Traveling Salesman Problem

LF LOCATIONS+FINAL

LRU Least Recently Used

FIFO First In First Out

FWF Flush When Full

PQR Possibly Queue Requests

AVR AVERAGE RATE

OA OPTIMAL AVAILABLE

LAS LEARNING AUGMENTED SCHEDULING

K. Lakis 62

Online Learning-Augmented Algorithms

APPENDIX A. LEMMAS FOR THE CASE OF KNOWN N

Lemma 16. For any ϵ > 0, no algorithm can be (2 − ϵ)-competitive for open online TSP
on the line without predictions when the number of requests n is known. Also, there exists
an algorithm that matches this lower bound.

Proof. A very simple attack can be used to show the lower bound of 2. If posALG(1) ≤ 0,
we present a request at 1 with a release time of 1. In the other case, the request’s position
is −1. It is easy to see that |OPT | = 1, while |ALG| ≥ 2, proving the bound. There also
exists a very simple algorithm that matches this bound. Such an algorithm need only wait
until all requests have been released and then copy OPT ’s actions, which are at this point
computable. The waiting part does not take more than |OPT | and neither does the moving
part, which implies a competitive ratio of 2 for such an algorithm.

Lemma 17. For any ϵ > 0, no algorithm can be (1.64 − ϵ)-competitive for closed online
TSP on the line without predictions when the number of requests n is known. Also, there
exists an algorithm that matches this lower bound.

Proof. By taking a close look at the attack strategy described in Section 3.3 of [8], we
observe that the number of requests is never higher than a specific value nmax. In fact, it
turns out that nmax = 3, i.e. the attack never uses more than 3 requests. We modify this
attack so that it can also be used when n is known. Any instance of the modified attack
will have exactly nmax requests. Thus, the algorithm will be informed that there will indeed
be nmax requests.

We first give a brief description of the original attack strategy for context. Let ρ = 9+
√
17

8
≈

1.64, I = [−(2ρ− 3), (2ρ− 3)], I ′ = [−(7− 4ρ), (7− 4ρ)]. Note that I is contained in I ′ and
both of them are contained in [−1, 1]. If posALG(1) /∈ I, then a single request at −1 or 1
(released at t = 1) suffices to achieve the competitive ratio. Assuming that posALG(1) ∈ I,
we simultaneously present two requests at −1 and 1 at t = 1. At t = 3, ALG cannot have
possibly served both of these requests. If posALG(3) ∈ I ′, then another request at −1 or 1
(released at t = 3) is sufficient. Therefore, we continue assuming that posALG(3) /∈ I ′. This
means that ALG is close to one extreme and still has not served the other. When ALG
crosses the origin to serve the other extreme at time 3 + x, a request is placed at either
1 + x or −(1 + x) (depending on which extreme ALG has not served). The competitive
ratio turns out to be at least ρ in this (final) case also.

We now describe our modification of this strategy. Initially, the original attack strategy
is followed. Let qwin be the last request released by the original attack strategy, after
the release of which the competitive ratio is guaranteed to be at least 1.64 in case no
new requests appear. Let noriginal be the number of requests released via the original
attack strategy. If noriginal < nmax, then nmax − noriginal extra requests are released at
time rel(qwin), placed arbitrarily between the origin and qwin. These extra requests are
served by OPT on the way back from qwin, without incurring extra cost. In other words,
|OPT | does not increase with the addition of these requests. Also, |ALG| certainly cannot
decrease since we only added requests. Therefore, the same lower bound holds even for
known n.

The algorithm is exactly the same as the one for unknown number of requests, since it
can just ignore the number n and still achieve the same competitive ratio.

K. Lakis 63

Online Learning-Augmented Algorithms

APPENDIX B. OMITTED PROOFS FROM SECTION 3.4

In this subsection, we give the formal proofs of two lemmas which we used to prove The-
orems 3 and 5.

Lemma 8. Let ALG be either NEARFIRST or PIV OT . Then, ALG is 3-robust.

Proof. Let tf denote the latest release time for a fixed instance of the problem. We assume
w.l.o.g. that posALG(tf) ≤ L(tf)+R(tf)

2
. Note that after tf , ALG will move to L(tf) and then

to R(tf). Thus, we observe that

|ALG| = tf + |pos(tf)− L(tf)|+ |L(tf)−R(tf)|. (B.1)

We distinguish two cases based on the position of ALG at time tf .

Case 1. pos(tf) ≥ L(tf). In this case, we see that

(B.1) =⇒ |ALG| = tf + pos(tf)− L(tf) + R(tf)− L(tf) ≤

tf +
L(tf) + R(tf)

2
− L(tf) + R(tf)− L(tf) =

tf +
3(|L(tf)|+ |R(tf)|)

2
≤ 2.5|OPT | ≤ 3|OPT |.

Case 2. pos(tf) < L(tf). Similarly, we have

(B.1) =⇒ |ALG| = tf + L(tf)− pos(tf) + R(tf)− L(tf) ≤

2tf + |R(tf)| ≤ 3|OPT |.

Lemma 9. LetALG be eitherNEARFIRST or PIV OT . Also, let qf be the request served
last byOPT . Assume without loss of generality that ALG serves requests from left to right.
Let d = |qf −R|. Then, we have |ALG| − |OPT | ≤M + d.

To prove this lemma, we first give some definitions. Note first that LU [t] is sort of a ”check-
point” for OPT , meaning that OPT must be located at LU [t] for some point in time on or
after t in order to serve that request. Then, it must move from LU [t] to qf . This idea helps
us keep track of |OPT | so we can compare it with |ALG|.

D(t) denotes the least amount of time necessary to serve all requests to the left of LU [t]
(assuming they have been released) and then move to LU [t], starting at position posALG(t).
This amounts to

D(t) = |posALG(t)− LO(t)|+ |LO(t)− LU [t]|.

This function exhibits a useful bound property. If it drops to M or below at some time t,
it can only increase above M again due to a request release. This property is described
more formally in the following claim. But first, another useful definition is given.

We define LP [t] as the leftmost prediction that is released on or after t. That is, LP [t] =
min({p ∈ P : rel(π(q)) ≥ t}). If this set is empty, then LP [t] = R.

Using this definition, the following claim can be seen in the same way as Claim 3.5.

K. Lakis 64

Online Learning-Augmented Algorithms

Claim B.1. Let tdrop be a time point such that D(tdrop) ≤ M . If tnext is the earliest release
time of a request after tdrop, then

D(t′) ≤M, ∀ t′ ∈ [tdrop, tnext].

We now draw our attention to a point in time that is very central to our proof.

Let trelease be the latest release time of a request. Note that LU [t] = R, ∀ t > trelease. Then,
we define

tchase = min{t : ts ≤ t ≤ trelease, (D(t′) > M, ∀ t < t′ ≤ trelease)}.

In essence, similarly to the definition in the previous section, tchase denotes the time after
whichALG gets to finish as soon as possible without waiting for predictions or backtracking
for requests. In the following, we assume for simplicity and without loss of generality that
ALG always serves the requests left to right, even if at time trelease it is clear that going to
the right first is faster. It is true that our algorithm may indeed make such a decision at
time trelease, but that is a trivial optimization that does not invalidate our proof, since it can
only decrease |ALG| and by extension, the value |ALG| − |OPT |. Under this assumption,
we proceed by showing that after tchase, ALG moves to LO(tchase) and then straight to
LU [tchase], serving all intermediate requests on the way. In fact, it also keeps moving to the
right until it reaches R and finishes. The following claim can be seen in the same way as
Claim 3.8.

Claim B.2. Let t′ = tchase +D(tchase). Then, pos(t′) = LU [tchase].

Also, |ALG| = t′ + |pos(t′)−R|.

We now give the proof of Lemma 9.

Proof of Lemma 9. We distinguish two cases.

Case 1. tchase = ts. This easily implies that |ALG| = 2|L|+ |R| by Claim B.2. It remains to
show that |OPT | ≥ 2|L|+ |R| −M − d.

If OPT follows the order L −→ R −→ qf , then

|OPT | ≥ 2|L|+ |R|+ d ≥ 2|L|+ |R| −M − d.

On the other hand, if OPT follows the order R −→ L −→ qf , then

|OPT | ≥ 2|R|+ |L|+ (|L|+ |R| − d) ≥ 3|R|+ 2|L| − d ≥ 2|L|+ |R| −M − d.

Case 2. tchase > ts. It can be seen then by Claim B.1 that D(tchase) ≤M . It is easy to see
that |OPT | ≥ tchase + |LU [tchase]− qf |. At the same time, by Claim B.2 we see that

|ALG| = tchase +D(tchase) + |LU [tchase]−R| ≤

tchase +M + |LU [tchase]− qf |+ |qf −R| ≤ |OPT |+M + d.

K. Lakis 65

Online Learning-Augmented Algorithms

BIBLIOGRAPHY

[1] Lingqing Ai, Xian Wu, Lingxiao Huang, Longbo Huang, Pingzhong Tang, and Jian Li. The multi-shop
ski rental problem. arXiv, 2014.

[2] Lachlan L.H. Andrew, Minghong Lin, and AdamWierman. Optimality, fairness, and robustness in speed
scaling designs. SIGMETRICS Perform. Eval. Rev., 38(1):37–48, jun 2010.

[3] Spyros Angelopoulos, Christoph Dürr, Shendan Jin, Shahin Kamali, and Marc Renault. Online compu-
tation with untrusted advice. arXiv, 2019.

[4] Antonios Antoniadis, Christian Coester, Marek Elias, Adam Polak, and Bertrand Simon. Online metric
algorithms with untrusted predictions. arXiv, 2020.

[5] Antonios Antoniadis, Peyman Jabbarzade Ganje, and Golnoosh Shahkarami. A novel prediction setup
for online speed-scaling. arXiv, 2021.

[6] Antonios Antoniadis, Themis Gouleakis, Pieter Kleer, and Pavel Kolev. Secretary and online matching
problems with machine learned advice. arXiv, 2020.

[7] N. Ascheuer, M. Grötschel, S. O. Krumke, and J. Rambau. Combinatorial online optimization. In Opera-
tions Research Proceedings 1998, pages 21–37, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

[8] G. Ausiello, M. Demange, L. Laura, and V. Paschos. Algorithms for the on-line quota traveling salesman
problem. Information Processing Letters, 92(2):89–94, 2004.

[9] Etienne Bamas, Andreas Maggiori, Lars Rohwedder, and Ola Svensson. Learning augmented energy
minimization via speed scaling. In Advances in Neural Information Processing Systems, volume 33,
pages 15350–15359. Curran Associates, Inc., 2020.

[10] Étienne Bamas, AndreasMaggiori, and Ola Svensson. The primal-dual method for learning augmented
algorithms. arXiv, 2020.

[11] Nikhil Bansal, David Bunde, Ho-Leung Chan, and Kirk Pruhs. Average rate speed scaling. In Algorith-
mica, volume 60, pages 240–251, 04 2008.

[12] Nikhil Bansal, Tracy Kimbrel, and Kirk Pruhs. Speed scaling to manage energy and temperature. J.
ACM, 54(1), mar 2007.

[13] L. A. Belady. A study of replacement algorithms for a virtual-storage computer. IBM Systems Journal,
5(2):78–101, 1966.

[14] Giulia Bernardini, Alexander Lindermayr, Alberto Marchetti-Spaccamela, Nicole Megow, Leen Stougie,
and Michelle Sweering. A universal error measure for input predictions applied to online graph problems.
arXiv, 2022.

[15] Antje Bjelde, Jan Hackfeld, Yann Disser, Christoph Hansknecht, Maarten Lipmann, Julie Meißner,
Miriam SchlÖter, Kevin Schewior, and Leen Stougie. Tight bounds for online tsp on the line. ACM
Trans. Algorithms, 17(1), dec 2021.

[16] Michiel Blom, Sven O. Krumke, Willem de Paepe, and Leen Stougie. The online-tsp against fair ad-
versaries. In Algorithms and Complexity, pages 137–149, Berlin, Heidelberg, 2000. Springer Berlin
Heidelberg.

[17] Allan Borodin and Ran El-Yaniv. Online Computation and Competitive Analysis. Cambridge University
Press, USA, 1998.

[18] Eugene B. Dynkin. The optimum choice of the instant for stopping a markov process. Soviet Math.
Dokl, 1962.

[19] Paul Dütting, Silvio Lattanzi, Renato Paes Leme, and Sergei Vassilvitskii. Secretaries with advice.
arXiv, 2020.

[20] Hiroshi Fujiwara, Takuma Kitano, and Toshihiro Fujito. On the best possible competitive ratio for multis-
lope ski rental. In Proceedings of the 22nd International Conference on Algorithms and Computation,
ISAAC’11, page 544–553, Berlin, Heidelberg, 2011. Springer-Verlag.

K. Lakis 66

Online Learning-Augmented Algorithms

[21] Marco E. Gerards, Johann L. Hurink, and Philip K. Hölzenspies. A survey of offline algorithms for
energy minimization under deadline constraints. J. of Scheduling, 19(1):3–19, feb 2016.

[22] John P. Gilbert and Frederick Mosteller. Recognizing the maximum of a sequence. Journal of the
American Statistical Association, 61(313):35–73, 1966.

[23] Sreenivas Gollapudi and Debmalya Panigrahi. Online algorithms for rent-or-buy with expert advice. In
Proceedings of the 36th International Conference on Machine Learning, volume 97 of Proceedings of
Machine Learning Research, pages 2319–2327. PMLR, 09–15 Jun 2019.

[24] Anupam Gupta, Amit Kumar, Martin P´al, and Tim Roughgarden. Approximation via cost sharing:
Simpler and better approximation algorithms for network design. J. ACM, 54(3):11–es, jun 2007.

[25] Patrick Jaillet and Michael Wagner. Online routing problems: Value of advanced information as im-
proved competitive ratios. Transportation Science, 40:200–210, 05 2006.

[26] Karlin, Kenyon, Randall, and Dana. Dynamic tcp acknowledgment and other stories about e/(e - 1).
Algorithmica, 36, 07 2003.

[27] Anna R. Karlin, Mark S. Manasse, Lyle A. McGeoch, and Susan Owicki. Competitive randomized
algorithms for non-uniform problems. In Proceedings of the First Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’90, page 301–309, USA, 1990. Society for Industrial and Applied Mathem-
atics.

[28] Anna R. Karlin, Mark S. Manasse, Larry Rudolph, and Daniel D. Sleator. Competitive snoopy caching.
In 27th Annual Symposium on Foundations of Computer Science (sfcs 1986), pages 244–254, 1986.

[29] Thomas Kesselheim, Klaus Radke, Andreas Abels, and Berthold Vöcking. An optimal online algorithm
for weighted bipartite matching and extensions to combinatorial auctions. In ESA, 09 2013.

[30] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. The case for learned index
structures. arXiv, 2017.

[31] D. V. Lindley. Dynamic programming and decision theory. Journal of the Royal Statistical Society.
Series C (Applied Statistics), 10(1):39–51, 1961.

[32] Thodoris Lykouris and Sergei Vassilvitskii. Competitive caching with machine learned advice. arXiv,
2018.

[33] Tomomi Matsui and Katsunori Ano. Lower bounds for bruss’ odds problem with multiple stoppings.
Mathematics of Operations Research, 41(2):700–714, 2016.

[34] A. Meyerson. The parking permit problem. In 46th Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS’05), pages 274–282, 2005.

[35] Michael Mitzenmacher. A model for learned bloom filters and optimizing by sandwiching. In Advances
in Neural Information Processing Systems, volume 31. Curran Associates, Inc., 2018.

[36] Michael Mitzenmacher. Scheduling with predictions and the price of misprediction. arXiv, 2019.

[37] Michael Mitzenmacher and Sergei Vassilvitskii. Algorithms with predictions. arXiv, 2020.

[38] Benjamin Moseley, Sergei Vassilvitskii, Silvio Lattanzi, and Thomas Lavastida. Online scheduling via
learned weights. In SODA 2020, 2020.

[39] Harilaos N. Psaraftis, Marius M. Solomon, Thomas L. Magnanti, and Tai-Up Kim. Routing and schedul-
ing on a shoreline with release times. Management Science, 36(2):212–223, 1990.

[40] Manish Purohit, Zoya Svitkina, and Ravi Kumar. Improving online algorithms via ml predictions. In
Advances in Neural Information Processing Systems, volume 31. Curran Associates, Inc., 2018.

[41] Dhruv Rohatgi. Near-optimal bounds for online caching with machine learned advice. arXiv, 2019.

[42] J. S. Rose. Selection of nonextremal candidates from a random sequence. J. Optim. Theory Appl.,
38(2):207–219, oct 1982.

[43] Steven S. Seiden. A guessing game and randomized online algorithms. In Proceedings of the Thirty-
Second Annual ACM Symposium on Theory of Computing, STOC ’00, page 592–601, New York, NY,
USA, 2000. Association for Computing Machinery.

[44] Daniel D. Sleator and Robert E. Tarjan. Amortized efficiency of list update and paging rules. Commun.
ACM, 28(2):202–208, feb 1985.

K. Lakis 67

Online Learning-Augmented Algorithms

[45] Krzysztof J. Szajowski. Optimal choice of an object with ath rank. Mathematica Applicanda, 10:51–65,
1982.

[46] Robert J. Vanderbei. The postdoc variant of the secretary problem. Mathematica Applicanda, Vol. 49,
no. 1:3–13, 12 2021. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu
”Społeczna odpowiedzialność nauki” - moduł: Popularyzacja nauki i promocja sportu (2021).

[47] Shufan Wang, Jian Li, and Shiqiang Wang. Online algorithms for multi-shop ski rental with machine
learned advice. arXiv, 2020.

[48] Alexander Wei. Better and simpler learning-augmented online caching. arXiv, 2020.

[49] Alexander Wei and Fred Zhang. Optimal robustness-consistency trade-offs for learning-augmented
online algorithms. arXiv, 2020.

[50] Mike Worboys. The travelling salesman problem (a guided tour of combinatorial optimisation). The
Mathematical Gazette, 70(454):327–328, 1986.

[51] F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced cpu energy. In Proceedings of
IEEE 36th Annual Foundations of Computer Science, pages 374–382, 1995.

K. Lakis 68

	CONTENTS
	ONLINE ALGORITHMS
	What is an Online Problem and why do we care?
	Examples of Online Problems
	The Paging Problem
	The Online Travelling Salesman Problem on the Line

	The evaluation of Online Algorithms
	Competitive analysis
	Analysis of the Paging Problem
	Analysis of Online TSP on the Line

	LEARNING-AUGMENTED ALGORITHMS
	Ski Rental
	The problem
	Solving the problem with predictions
	Consistency vs. Robustness

	Secretary Problem
	The problem
	Formal definition
	Solving the problem with predictions
	The Lambert W-function
	The algorithm
	Performance

	Speed Scaling Problem
	Solving the problem with predictions

	OUR CONTRIBUTIONS
	Introduction
	Our setup
	Our contributions
	Related work

	Preliminaries
	Closed Variant
	The FARFIRST algorithm.
	A 1.5-attack.

	Open Variant
	The LOCATIONS prediction model
	The LOCATIONS+FINAL prediction model

	Experimental Evaluation
	FARFIRST
	NEARFIRST
	PIVOT

	CONCLUSIONS
	TABLE OF TERMINOLOGY
	ABBREVIATIONS - ACRONYMS
	APPENDICES
	Lemmas for the case of known n
	Omitted proofs from section 3.4
	REFERENCES

