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ABSTRACT

This Thesis studies a novel LiFi optical communication system, the 3D position and
orientation of users’ devices depending on collected, labelled, and tested dataset by
using kernel-based Artificial Neural Network approaches. Both the collection and
labelling of a dataset and the used models are explained. The ANN algorithms such as
CNN, MLP, and SVM are presented and the results are compared with KNN output in
terms of performance, such as utilized time, bit error rate, accuracy, and average

estimate error.

The whole process was divided into several steps like data collection, training model,
and testing. The data collection process utilizes MATLAB code based on rotation angle
estimation, truncated Laplace distribution considering both LOS and NLOS, while the
training model includes choosing the best mapping model to reach optimal output in
terms of positioning, orientation angles of user equipment, and received SNR vector. In
the testing phase, it is obvious that models are fed by unseen and unexplored data and

then the correctness of results is estimated.

Subject area: Device positioning

Keywords: KNN, CNN, SVM, ANN, Machine Learning



NEPIAHWH

AUt n epyaoia peAETd@ €va vEO OUOTAPA OTITIKWV ETmKoIVwvVIwY LiFi yia tnv
ekTiunon TG TPICdIAOTATNG B£0NG KAl TOU TIPOCAVATOAIOHOU TWwV OUCKEUWV
TWV  XPnoTwv, HE PAaon ouleyuéva, emonuacpéva  Kal  eAeypéva  dedopéva,
XPNOIMOTTOIWVTAG  TTPOOCEVYIOEIG TEXVNTWY VEUPWVIKWY OIKTUWV TTou  PBaacifovTal
oe Trupnva. [lepiypdagovral 1000 N OUAAOYN Kal N ETOHPAVON €VOG OUVOAOU
oedopévwy, 600 KAl T Xpnoigotroloupeva  povréAa.  lapouoidlovral ol
aAyopiBuol ANN, ommwg CNN, MLP kai SVM kai Ta ammoTeEAEOUATO  CUYKpPivovTal
pe autd Tou KNN w¢ 1Tpog TNV atmrdédoon, OTTWG O XPOVOG TTou XPNOIYOTToIEiTal,
0 pPuUBPOG Oo@dAuyatog bit, n  akpiela kar TO  PECO  OQ@AAPO  EKTIUNONG.
H OAn diadikacia xwpiotnke oe O1d@opa oT1adla, OTTWS OUAAoYr OedOUEVWY,
MovTéAo  ekTTaideuong  kal  éAeyxo. 2T Oladikacia  OUAOYAG  dedopEvwyv
xpnoigotroieitalr - kwdikag  MATLAB  mou  PBaoiletal  0€  €KTiynon  ywviag
TTEPIOTPOPNG, TTEPIKOMPEVN KaTavour Laplace pe Paon 1600 10 LOS 600 KaI TO
NLOS, evw T10 povtélo ektraideuong TrepIAaufBavel Tnv €AoY Tou KOAUTEPOU
MovTélou artreikéviong yia Tnv eTiteugn BEATIOTNG amdédoong o6oov agopd TN
Béon, TIC ywvieg TpocavaATOAICHOU  ToUu  €COTTAIOMOU  XPAOTN KAl TO
AauBavépevo SNR didvuopa. Z1n @Aon Tou e€Aeyxou, e€ivalr TTpo@aveég OTI Ta
MovTéAa Tpo@odoTtouvTal atrd  AyvwoTa Kal  avegepelvnta Oedouéva  Kal  OTN

OUVEXEIQ EKTIMATAI N 0pOOTATA TWV ATTOTEAEOUATWV.

OEMATIKH MNMEPIOXH: 11.x. Device positioning

AEZEIZ KAEIAIA: 1.x. KNN, CNN, SVM, ANN, Machine Learning
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Artificial neural network techniques for estimation of indoor user position

1 INTRODUCTION

Over the last decade, network complexity has been under a tremendous growth with a
rapid increase of Internet and telecommunication. According to [1], the percentage of
the compound annual growth rate of wireless traffic was defined by 60% and the
number will double every year for the next twenty years [2]. The integration of industrial
automatization for different fields like smart cars and homes, e-health, virtual reality, and
most importantly the 10T and 5G leads to huge bandwidth demand. Both current and
beyond wireless networks need efficient solutions with high security, low-cost
equipment, reasonable energy consumption, and flexibility. In addition, wide-coverage,
high data rates, and low latency communication are extremely demanded to provide a
significant quality for 10T services, which require immediate response in any location at

any time.

The capability of telecommunications operators to detect the location and data of mobile
terminals at communications stations -- access points (APs) and base stations (BSs)
has become a crucial component in establishing next-generation communication
systems. Such knowledge helps for a more accurate assessment of wireless link
quality, which can improve with resource management and the development of new

location-based applications.

Positioning systems are widely used in last years in wide range of fields likewise
portable devices, aircraft, navigation applications in vehicles, etc. Traditional positioning
techniques like GPS accept inaccuracy in outdoor environment up to meter. Unlike to
this, indoor environment requires high level of accuracy counting millimeters. Moreover,
indoor environments suffer from inaccuracy in data as a result of a vast range of

obstacles since received signals have to overcome clouds, ceilings, walls, etc. [3].

The fact that objects to be located frequently travel through confined areas like
corridors, staircases, aisles, and specialized rooms, or stay in a position with many
surrounding barriers that remain out of sight, and this distinctive aspect make
positioning in indoor environments challenging. Wireless networks like WiFi and
Bluetooth have already provided a solution that is widely integrated. However,
considering the access points limitation and other imperfections these networks are not

enough.

LiFi was mentioned for the first time by Dehghani Soltani et al. in 2011 [4]. While LiFi is
a novel wireless system and an extension of VLC with the prospective of extremely high

speed at low cost, Machine Learning is an essential key booster almost for all modern

D. Ibragimova 13
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systems and spheres. By synthesizing these two components we can receive reliable
positioning data. Unfortunately, most of the works based on this idea use ideal
conditions with knowing all access points and user devices while this thesis utilizes
knowledge of at least one access point. RSS estimation metric was chosen using
experience of previous publications [5] and by calculating the angle at the receiver so

location can be obtained.

Machine Learning is a field of Artificial Intelligence which utilized in most systems
including positioning applications. In [6] several ANN models were tested for indoor
positioning such as CNN and MLP and results were compared with KNN, and
superiority of ANN models was proved. However, there is still algorithms to be

investigated and procedure time to be improved.

Consequently, for accurate positioning and orientation assessment, a new reliable
solution is offered. SVM model with ANN modification was developed and tested on

collected dataset and comparison between all models was pictured.

D. Ibragimova 14
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2 BACKGROUND

This chapter is composed by two main sections: Section 2.1 contains a description of the LiFi
technology whereas in Section 2.1 a state-of-the-art of the machine learning techniques is

presented.

2.1 LiFi Protocol

LiFi stands for Light Fidelity and was first specified by H.Haas in 2011 and promises to
be a disruptive technology that can force traditional I0T to better performance, boost

wireless technologies, and significantly improve the lighting industry.

LiFi conceived as a novel wireless bi-directional communication technology and as an
extension of VLC (visible light communication) to achieve high-speed, secure

communication and illumination. LiFi utilizes infrared and visible light spectrum.

2.1.1LiFi concept

LiFi is a bi-directional, secure, high-speed wireless networking solution that facilitates
user mobility. Multiple access points (APs) are typically required to construct dense
optical attocellular networks. Co-channel interference can be regulated in more accurate
manner than in RF communication systems, thus cell sizes can be ultra-small with radii

in the meter range.

LiFi also gains from a vast volume of free spectrum and allows to drive the small-cell
concept to new heights that are difficult to achieve in radio frequency (RF). In fact, LiFi
system reach three orders of magnitude improvements in terms of area spectrum
efficiency, reaching tens of Gbps/m2. Multiple access points build a wireless network of
very small optical attocells with flawless handover. As a result, LiFi leads to entire user

mobility, forming a new layer within current heterogeneous wireless networks [7].

LiFi exploits light emitting diodes (LED) for high speed wireless communication. LiFi
signals can be contained locally thanks to LEDs' inherent beamformers, and because
the signals are obstructed by opaque walls, CCI can be successfully handled, and
physical layer security can be strengthened. LiFi utilizes IR for uplink and visible light for
downlink, this approach allows avert any effect on the intensity of luminosity and
minimize interference in the indoor environment. It is also worth emphasizing that the
key difference is that VLC is a wireless single point-to-point communication system

while LiFi provides multi-user access and user mobility.

D. Ibragimova 15
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The data rate scales with the obtained signal-to-noise ratio by utilizing an orthogonal
frequency division multiplexing (OFDM)-type intensity modulation (IM)/direct detection
(DD) modulation method [8].

LiFi is an important boost factor for the fusion of two significant sectors like the lightning
industry and wireless communication industry. Consequently, one of the LiFi
advantages is that Access Point can be combined with LED illumination. However, it is
an optional function and while the infrared spectrum is perfect for uplink communication

with LiFi utilization, lightning can be fully separated with no damage quality [9].

The fact that LiFi uses optical resources turns it into a very attractive technology since it
means free-license and plentiful. Also, LiFi leads to shifting the paradigm by changing
cm-wave communication to nm-wave communication. For instance, in [10] the
experiment was created where received data at a speed of 1.1 Gbps over the distance
of 10 m with an LED of only 4.5 mW optical output power.

The following are some of the benefits of LiFi:

three orders of magnitude increased data densities [11];

unique properties to improve physical layer security;
e use in intrinsically safe environments such as petrochemical plants and oil

platforms where RF is often prohibited; and
e with the advent of power-over-ethernet (PoE) and its use in lighting, there
exists the opportunity [12].

2.1.2LED advantages

In recent years, positioning systems based on light emitting diodes (LEDs) have
appeared, which use visible light instead of radio frequency (RF). Previously, LED was
renowned for its promising communication use, specifically visible light communication

(VLC) [13]. LED's numerous vital properties are the key to many applications.

These characteristics are:

¢ Energy efficiency. General and domestic lightning consumption can be reduced by
80%.

e Generate less heat

e Longer service lifetime

D. Ibragimova 16
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e Free from hazardous substances

e Green technology that helps to reduce Co2 emission and electricity consumption
[14,15,16]

2.2 Machine Learning techniques

Machine Learning (ML) is a subcategory of artificial intelligence that describes the process
through which computers gain pattern recognition, or the ability to continuously study from and
predict outcomes based on data, and then make improvements without being explicitly
programmed to do so [17]. ML can be roughly categorized as:

e Supervised

e Unsupervised

2.2.1Supervised Learning

In supervised learning (SL) - the main characteristic is that the model is trained on a
known dataset with labels and as the next step the model is fed with a new unknown
feature to recognize a solution. In these kinds of algorithms, there is a given dataset X
of instances and labels Y. Algorithms aim to build a function that relates dataset x to
labels y [18].

Supervised
learning tasks

et

[ Classification ] [ Fegression ]

Figure 1 Types of SL tasks

As can be seen from the illustration there are two kinds of tasks in SL: classification and
regression. Classification is a task where a labeled class is a recognized solution for a
given dataset [19]. Meanwhile, regression is known as a challenge of predicting
constant quantity output for an existing example [20]. Generalization is the main
problem faced by Supervised Learning where the model should give the correct output

on new data, not only on the given one [21].

D. Ibragimova 17
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Critical aspects of SL are Overfitting and Underfitting. During the training phase, the
type and amount of input data have a significant impact on the machine learning
model's performance. Overfitting or underfitting occurs when the training data is
insufficient. The phenomenon of overfitting occurs when the validation error grows while
the training error decreases. This occurs because, rather than learning the real data
distribution, the model learns the expected output for each input data. Underfitting
issues, on the other hand, occur when a model is unable to learn enough due to a lack

of training data [22]. Figure 2 illustrates each situation clearly.

Underfaiiomg Addequate Capacily Cverliiimg
o
"
/
= N =
L L]
Xn Iy Xy

Figure 2 Examples of Underfitting, Adequate Capacity and Overfitting

With the development of SL, large-scale data - already pre-trained - can be found as an open

source. For example, CNN datasets or GoogleNet [23].

2.2.2Unsupervised Learning

Oppositely to SL algorithms, Unsupervised Learning (UL) ones do not use labeled
dataset. On the contrary UL techniques detect the connection among the elements of a
data set. Algorithms offer solutions without inquiry. The model is trained on an
unlabeled dataset to detect subgroups with similar attributes between variables without
supervision. This kind of methodology is advantageous when it is necessary to discover

patterns in a dataset or it is not feasible to obtain the ground truth labels [24].

Clustering is an unsupervised ML task, which includes the interpretation of input
datasets and detecting clusters. The number of clusters can be indicated in some cases

[25]. The main clustering types can be listed as follows:

¢ Hierarchical clustering
e K-means clustering

e K-NN (k nearest neighbors)

D. Ibragimova 18
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e Principal Component Analysis
e Singular Value Decomposition

e Independent Component Analysis

Unsupervised Learning algorithms have a great potential for LiFi and wireless network
communication. The term anomaly is used when for instance at a certain time and
location an unusual traffic is detected. Hierarchical clustering is one of the most efficient
ways to help to find anomalies [26].

The table is describing the main differences between the 2 levels of supervision and

concludes the information above.

Table 1 Comparison between SL and UL

Basis for comparison Supervised Unsupervised
Training data Labeled data Unlabeled data
Preference Input output mapping Clustering, detecting data

(Routine problem) correlation and new

patterns
Area ML ML
Optimal strategy Depend on learning | Depend on the data and
model and the data its classification

2.2.3Machine Learning Models

With the dramatic expansion of Al utilization, indoor positioning systems witness a
demand. Defining the location of UE with high speed in real-time requests accuracy
which is the basis for indoor environment, service robots, and drones. In [27, 28] KNN,
ANN, multiple classifiers, and clustering algorithm performance are discussed in terms
of efficiency, accuracy, and robustness. In [29, 30] to overcome the disadvantages and
limitations of the KNN algorithm like slow execution time, high error formation was
offered a maximum received signal strength recognition (MRR) technique and weighted
optimum KNN (WOKNN) algorithm, which is a combination of optimum KNN (OKNN)
and weighted KNN (WKNN). In [31, 32] the results of the ELM technique are compared

D. Ibragimova 19
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with KNN and SVM and demonstrate higher accuracy and reasonable speed. Moreover,
Kernel is offered as a way of reducing the size of the fingerprint database and thereby
exponentially reducing training time. However, the parameters are not suitable for real
life. Therefore as an example for the thesis, the paper of H.Haas [33] was chosen. This
research builds a dataset that fits real life and can be used as a base.

KNN model: K-nearest neighbor is a supervised learning algorithm applied for
classification problem or as a benchmark in classification problem. This approach relies

on the nearest neighbors to orientate a receiver. The process includes two phases:

e Offline: The RSS values calculated at the receiver for each LED are used to
determine the fingerprints of each position positions within the network's area.

e Online: The Euclidean distances dE between offline RSS values and online RSS
values calculated at the receiver during its movement are estimated in the online
stage as shown below, where RSS+i — RSS values obtained in the online phase, i
and | are LED index and numbers of LED respectively, and RSSi — values stored

| n
in the previous stage. ||Ze—1[x =y
J &=

I
dE:JZi:l[RSS ~—RSs )°

K-nodes that hold the smallest distance are set as a K nearest neighbor of the receiver.

The location is calculated by averaging the k-NN coordinates as shown below:

k koo
i=1 N 2io Vi

: V
k J ]

ANN model: Artificial Neural Network is one of the most popular ML algorithms
nowadays. The technique is based on collection connected artificial neurons where
each connection is able to transmit the signal to other neurons. The graph below
demonstrates ANN concept as a multilayer and fully connected neural network with

three input nodes, two hidden layers and one output node.
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input layer hidden layer 1 hidden layer 2 output layer

Figure 4: ANN architecture Figure 3: Structure of a node

A given node computes the weighted sum of its inputs, feeds it to an activation function
and the output becomes the input for the next layer. By repeating this procedure for
each node, the final output is computed. Learning the weights associated with all the
edges is what training this deep neural network entails. To apply this scheme for LiFi

positioning system, Figure 5 demonstrates the calculation coordinates as an output
layer

{
T2 11 coordinate
3\ }
¥
b X asssess 4
I )
ads 3 Y
ey 7 coordiante
%
NA 1
/| W4 4
i\ / Output
Input layers Hidden layers

Figure 5: Example of ANN for LiFi positioning system

A state of art review of the field of study, including current developments, controversies
and breakthroughs, previous research and relevant background theory. At Masters level
it must be analytical and summative, covering methodological issues, research
techniqgues and topics. There may possibly two literature-based chapters, one on

methodological issues, which demonstrates knowledge of the advantages and
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disadvantages, and another on theoretical issues relevant to the topic/problem. A short,

logical summing up of the theme(s) developed in the main text.

MLP is a feedforward ANN which means that information flows through all layers
without any backward loops and in one direction, passing through single input, at least
one hidden, and finally single output layers. The next expression describes the output of

each neuron:
n
y=9 (Z Wi X )
k=0

where ¢(x) is an activation function, n — number of neuron inputs, wk — weight of xk —
input value at k-th neuron. Each activation function is given the total of the weighted
inputs with a bias term. The activation function is a mathematical gate that connects a
neuron's inputs and outputs. It can be a step function (the output is active if the input
value is larger than a threshold), a linear function (the output is the input times some
constant factor), or a non-linear function.

Hidden Layer
Input Layer y Output Layer

&—  Qutput 1

e——» Outputn

Single neuron model inside
an MLP neural network

w1
NG mp
N2 A U
s v : Actlva'tlon » Output
. function
- P
Xp @ T

°
Bias©

Figure 6: MLP architecture

The non-linear functions enable the model to map the complex interactions between

inputs and outputs, which is critical for learning and modelling complex real-world data.
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Convolutional Neural Networks (CNN): Data features are extracted via local
connections and layer-by-layer computation in the CNN model. This model includes
convolutional layer (Conv2D), Max pooling and fully connected layer. The construction
of the CNN model is depicted in Figure, where the convolutional layer runs the
convolution process with input data and each convolution kernel extracts input data
features. The weight sharing method in the convolution operation helps to reduce the
number of parameters and the neural network's training difficulty. The weight sharing
mechanism boosts the network's training speed, while the pooling layer in the CNN

model minimizes the dimension and size of the input data.

Convolution Fully-
Layer 1 connected
) Layers
Convolution
Layer 2 (@) ®
@ '
J - P91
Max Pooling ¢ ®
Max pooling Layer 2 0
L 1
oYL Output
Input Layer Layers

Figure 7: CNN architecture [34]

Support Vector Machines (SVM): SVM is a type of supervised learning model that is
widely used to address linear classification problems by maximizing the feature space
margin. Because the constructed sample set is linearly inseparable, a kernel function is
used to convert a nonlinear problem into a linear problem capable of translating the
SVM training samples from the original space to the high-dimensional space where the

samples are linearly separable.

This classification is exclusively based on the perception of a collection of the form (xi,

yi), I:1, n, where xi represents the i-th input and yi represents the matching output.

The optimization problem for the linear case is expressed as:

Mink|w|*+CYL, €
Vi, yi(w. z; +b) > 1 —¢

The optimization problem for non-linear classification is expressed as:

Vi,0<a; < C

{ Maz¥ " o, —1/2 > ciogyiy; K (i, 5)
iy =0
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Where K represents a kernel function that calculates the distance or similarity between
the input vector xi and the stored vector x;. The Gaussian kernel and the Polynomial
kernel are two examples of kernel functions. The SVM's kernel is in charge of
converting the input data into the appropriate format. SVM kernels include linear,
polynomial, and radial basis functions (RBF). We utilize RBF and the Polynomial
function to create a non-linear hyperplane. To distinguish nonlinear classes in
complicated applications, more powerful kernels should be used. This transformation

can provide accurate classifiers [35].

Bias b
K(x, x,)
K(x, x,)
Input vector x K(x, x;) Output y
K(X' me

Weights
(Lagrange Multipliers)

Hidden Nodes
(Support Vectors)

Figure 8: SVM architecture

2.3 Tools

The Golden Rule is that there should be no surprises here and this section should be
kept fairly short. Present the conclusions one by one in a logical order. each should be
brief and self-contained. Each conclusion must be drawn in a logical order from what
has gone before: fact, fact, fact therefore conclusion based on your analysis and

discussion.

2.3.1ReLu activation functions

ReLU activation functions frequently utilized in ANN networks. The ReLU function
reduces computation demand, but at the expense of accuracy. The RelLU function is
used because it provides great accuracy at a minimal computational cost. The

conventional ReLU function is a piecewise function:

y =0, if x<0
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y =X, if x>=0

It retains positive values and returns zero for negative inputs. This behaviour can be
troublesome depending on the range of inputs. If the majority of the numbers in a batch
are positive, too much redundant information is maintained, resulting in greater bit-width
computations or overflow for subsequent calculations. If, on the other hand, the majority
of the numbers are negative, zero is output for them, and a lot of essential information is
lost. This would prevent the network from learning and could even result in the
network's death [36].

2.3.2Batch Normalization

Batch normalization allows us to employ considerably greater learning rates while being
less conscientious about initialization. It is also mentioned that Batch Normalization has
a regularization function and can eliminate the need for Dropout in some cases.
Because the outputs of the previous layer are influenced by changes in the parameters
in the previous layer, the distribution of inputs of each layer varies during the learning
process. This is referred to as internal covariate shift. The internal covariate shift is
known to slow down learning speed because we have to set a lower learning rate when
such sift grows big. In addition, proper parameter initialization is required. This makes
training models with saturating nonlinearities infamously difficult. We must lower the
internal covariate shift in order to increase learning. We can increase learning speed by
maintaining the input distribution of each layer constant throughout the learning
process. Whitening the inputs of each layer makes the changes in the inputs of each
layer uniform and can reduce the negative impacts of the internal covariate shift.
Nevertheless, whitening the inputs of each layer is costly since the whitening requires
calculating the covariance matrix of the inputs and solving the eigenvalue problem of
the covariance matrix. Instead of whitening using the covariance matrix of the whole
training set, Batch Normalizing conducts dimension-wise normalization on the training

samples in the mini-batch.

2.3.3Adam optimizer

The Adam optimizer is a technique for effective stochastic optimization which only
involves first-order gradients and consumes little memory. The approach computes
individual adaptive learning rates for distinct parameters based on estimations of the
first and second moments of the gradients; the name Adam is derived from adaptive

moment estimation. The Adam optimizer is being developed to combine the benefits of
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two recently popular methods: ADAGRAD, which works well with sparse gradients, and
RMSProp [37], which works well in online and non-stationary settings. Adam has
several benefits, including the fact that the magnitudes of parameter updates are
invariant to gradient rescaling, that its step sizes are roughly constrained by the step
size hyperparameter, that it does not need a stationary goal, that it works with sparse

gradients, and that it naturally conducts a type of step size annealing.

2.4 Existing solutions

Positioning systems became widely implemented in a vast range of industries, the main
goal of this technology is to estimate user location, and navigation-based services rely
on it. The most famous example of this system is GPS. However, in an indoor
environment, it cannot provide a satisfying positioning performance. Meanwhile,
wireless solutions like WiFi, Locata, and Bluetooth offer a satisfying outcome they still
do not meet tremendously growing requirements. In comparison with these technologies
LiFi has shown to be more accurate results in terms of a positioning error, for instance:
for WiFi, it is 1-7m, for Bluetooth 2-5m, while LiFi reaches 0.1-0.35 m [38].

Currently and during the last few years, LiFi has been a hot topic. Many investigations
were related to positioning and orientation issues since device orientation is a crucial
factor for indoor positioning systems. Among positioning metrics, the best outcome
offers RSS, TOA, AOA [39].

In the RSS estimation of position can be detected by a signal received a power which is
fit channel model. AOA calculates the angle at the receiver and hence location can be
obtained. Finally, TOA characterized by time measuring between signals was sent from

transmitter to receiver.

Despite the fact that for the last few years, a lot of research were devoted to LiFi indoor
positioning systems, most of them are not suitable for real-life cases. For example, in
[40] AOA and RSS techniques were used for single transmitters and multiple optical
receivers, and in this solution, the angles between receivers are given. Moreover in [41]
the angles of both user equipment receiver and LED transmitter are known as 90
degrees in relation to the ceiling, also the parameters of the room are established. In the
physical realm user device is not perfectly aligned to access points and the angles and

parameters are usually unknown. In addition, the devices mostly are not in a stable
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position and users hold them in the most convenient position and tend to move them. In
[42] was proposed a solution that uses tilt angle measuring to define UE position with
help of IMU. the disadvantage of this technique is that the accuracy cannot be
guaranteed. The mentioned publications were focused on UE positions while UE
orientation is a crucial moment. This is a result of using non-linear metrics like RSS and
it creates an optimization problem. However, the correct estimation of uncertain
orientation parameters is an important aspect that leads to BER reduction. In [43] the
uncertain permission power of orientation and position of user devices were
investigated, SPAO localization algorithms were proposed as a solution to this non-
convex problem based on RSS metrics. Unfortunately, this approach is not realistic for
life utilization since it requires six known parameters for the same number of unknown

ones.

Another drawback that was identified in the previous solutions is the lack of NLOS
consideration in estimating both UE orientation and UE position and count it as a
performance diminishing factor. The main reason for this circumstance is the complexity
of channel gain in relation to the device orientation and as a result, since the influence
of NLOS propagation is not fully comprehended on the LiFi performance it cannot be
addressed directly in the optimization approach. In [44] by using Fisher's information
analysis the boundaries of performance of light-based systems in NLOS environments
are investigated and showed that systems can gain knowledge about user device
location through the NLOS channel. Moreover, it was shown that NLOS can lead to
improvements for indoor LiFi position systems, however, the way of implying NLOS
component for light-based indoor environments was not covered. [45] research
answered this question by using deep learning techniques. The main idea is to create
offline and online phases. In the first one, the collecting dataset and mapping it ANN
models is processed while online is testing these models. This thesis is based on the
[46] research and as a contribution, ML algorithms were used to reach high-level

analysis.
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3 PROCEDURE

In this chapter the whole procedure is described started with room equipment models,

expressions that was implicated for data generation, solution parameters and ANN models.

3.1 System and channel model

The work in [33] proposed a system model that was used for this research. The parameters
contain room measurements H, W, and L; down-faced Access Points located on the ceiling,
where photodiodes are used for data acquisition while LED is responsible for illumination and
data transmission. User devices are located randomly and utilize IR-LED (Infrared LED) and PD
(Photodiodes). This system supports downlink and uplink at the same time and does not lead to

interference and communication between access points and user devices is bidirectional.

-
LED

-

\

\
downlhnk |

:. = . i —
/'/ |
’ w

Figure 9: Indoor Environment with established LiFi network [33]

For the signal model the next expression is Y = AHz +n chosen:

A =TRyn where (T: trans-impedance amplifier of gain, Ry — PDs
responsivity of APs, n — User Equipment IR-LED current to power conversion
efficiency), n — [n1, ..., nnv]" — noise vector on at the hip - hin,

photodiodes on the access points, H - channel matrix: H=

hy 1 o hn o,
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3.2 Data Generation

The Golden Rule is that there should be no surprises here and this section should be
kept fairly short. Present the conclusions one by one in a logical order. each should be
brief and self-contained. Each conclusion must be drawn in a logical order from what
has gone before: fact, fact, fact therefore conclusion based on your analysis and

discussion.
Following we describe the steps of data collection:

¢ A collection of 3D positions (X, y,) is built. Assuming randomly located inside the
observed environment user device that communicates with access points on the
ceiling. Samples are generated by using the next mechanism: for each random
variable x, the PDF is defined by fx. Moreover, the probability density function for

user device 3D position is denoted by:

felz) = %H[  z(z),

. 1 )

f:(z) = Uo, Hyeoroo] (2) 5

Hyevice

e Considering Q as a movement direction angle, uniformly build a sample from [0,
360] while user equipment is in static or changing position. Calculations have
been done from the East direction.

e Generating three orientation angles. By using data from experiments [44,45] the
orientation information of yaw a, pitch B, roll y are measured and recorded. The
final output build utilizing truncated Laplace distribution and specification like
standard and mean deviation (la, Oa) for a, (Mg, op) for B and (uy, oy) fory.

cx a8 y
Mean 0200 40.78 -00.84
Standard deviation 3.67 2.39 2.21

Figure 10: Mean and Standard Deviation for rotation angles
[33]
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mu alpha = omega-pi/fi;

alphal = laprnd(ma_alpha,sigma alpha,l,l);

alpha = _fo2%( -sign(alphal))*(2%pi-abs(alphald)) + _fi%({ +sign(alphal))*alphal;
beta = laprnd(mu_keta,sigma beta,’,l);

gamma = laprnd(mu gamma,sSigma gamma, ., 1)’

UE corientation = [alpha;beta;gamma] ;

e The computation of the resulting H-matrix.
Channel gain h both of NLOS and LOS calculations described as:
hi,j = hi,j LOS 4 hi,j NLOS ,

where i € [1, Nif — PD of AP, j € [1, N{ - IR-LED. The values of each hijare based on
the user equipment IR-LED orientation and corresponding access point location. Hence
by using expressions in [47-48-49] the channel gain for LOS and NLOS are illustrated
below: (m+1)A

- af PY! alf af
i 08, Gen. Lasnib. = { o " PL(W)g() sy, 09 <
0, 6>,

hiFO% = TG (I - EG,) 't
where the vectors t and r denote the LOS link between the jth IR-LEDs and all of the
room's surface elements, and from all of the room's surface elements to the ith AP,
respectively. The reflectivity matrix of all K reflectors is G = diag(1,...,K); E is the LOS
transfer function of size K for the linkages between all surface elements, and IK is the
unity matrix of order K.

H LO5(i) = LOS5_channel gain Single LED(UE_position,UE orientation,PD position,Psi Fov,Phi Fov,HO,m):
H NLOS (i) = NLOS_channel gain Single LED(UE position,UE_orientation,PD position,dimension,Psi Fov,Phi Fov,rho,HO,m);
H total(i) = H LOS(i) + H NLOS(i):

e a power of random electrical emission Pelec is created uniformly between [O,
PMa%elec], Where PM#giec is the UE'S maximum possible electrical emission power.

¢ By applying the next expression with using calculations above the corresponding

SNR vector is computed:

N 2
—_— (}L ZI;I h E._.{) R.‘]{::-

Pi =

2
T

e Finally, the resulting SNR vector is recorded as a feature vector in the dataset,
together with the matching 3Dposition and orientation angles (x,y, z, a, B, y) as a
label vector [46].
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3.3 Learning Models

Machine Learning techniques, especially artificial neural network algorithms are the
most suitable solution for nonlinear and complicated optimization problems in wireless
communication. Generally, it is applied in the physical layer. In this thesis, the goal is to
define a correct g(P; ), parametric mapping between created features and labels,
between received SNR vector and user device position and orientation respectively.
This can be achieved by picking the optimal set of P that yields the best mapping for a
given EE metric.

{"]'.'. .z, 0 "j’:‘} =4 (P*P}l

Four models were chosen: KNN and SVM, CNN, and MLP. Since the three last

Input Layer 1" Hidden 2"7 Hidden D" Hidden
Layer Layer Layer
’/"‘\.\ /.-"‘\\ TN

@\ @ . @Gk
\ \
bl M A\ N\ N 4 ".,.. ’ ~

~ (Mo X

\\\/
(a2

- ‘ y- — _\\ 'jl \\_\ /,»’“\'
»\ a”,.,l// %lez)‘ AT R [a“p_,;} ~ s
W, @ W, O &
l*l l—r—l

Figure 11: ANN architecture

algorithms were modified to be presented as ANN, the architecture is developed from
the multiple layers: input, D-hidden, and output layers where D — depth of NN. Each

layer consists of artificial neurons and their connections [47].
In the next steps each layer is described:

1.Input layer: the SNR vector that represents feature b bias is given to NN as input
data

2.D-hidden layer: this layer includes M- artificial neurons and their relation. Each
artificial neuron can perform a mathematical operation on its inputs before
implementing an activation function to generate a signal that is being sent to the

next layer. The expression describes the propagation
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vij = @iy [t (Wi-1, Wi, bi ;)]

where je[1,D], i€[1,M]], bij — scalar bias, and the a is activation function, u — input, w —
vector of weights, and t linear transformation that based on the type of chosen artificial

neural network and bias.

3.Output layer. This part is composed of six neurons and each of them is held to
account for the estimation of parameters in (x, y, z, a, B, y). Following the logic

that this layer is (D+1), the output vector is denoted as:
Uj = Vj =[va, V2, ..., Wwmijj]"

While propagation rules defined in this level like:

I =y 4 [t |::I.ID. Wi.a: ‘I)E.U:I] ? = flyq g [t (“.D" Wio, ‘I"E.U}] ?
=z, [t |::I.ID. W2 o, E)E.{Jj] . g = 5.0 [t (“ﬂ" Ws.on bi.()}] 3
2 =030 [t {“D- Wia. !I!e_ujl] . V= g0 [t (up. W o, !Ife.c:l}]-

Where the weights vector wko, activation function axo of the k-neuron.

The choice of a linear transformation is based on the type of utilized algorithm. For CNN
the 2D transformation was employed, while activation functions were set as Linear and
rectified linear unit, RELU, which is the default way to solve non-linear optimization

problems. By using convolutional operator ® the transformation is expressed as:

{t [uj_l, Wi bj} =w,; @ u_, +b
t(”ﬂrwk,mba) = Wy, @ up + b,
Where j € [1,D],i€[1, Mj]and k € [1, 3].

On the other hand, for MLP was used the weighted sum as t with the same linear ReLu

activation function.
The expression is defined as:

_ T
{t(uj—lr W:‘J’b}') = Wy Uiy + b}'
_ T
t[-_uﬂ,wkﬂ, bﬂ) = w,, up + bm,

KNN algorithm was chosen as the one of typical algorithms that gave reasonable results
for VLC indoor positioning according to [48,49] for comparing results. The architecture

does not use Ann and denotes standard code.
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Support Vector Machine is one of machine learning method. RBF kernel is a popular
kernel function used in various kernel learning algorithm. In particular, it is commonly
used in SVM [50]. In this paper, the SVM is used to localize the position of AP and
classify it. The input data which is used are RSS and the vector location of each AP.
The kernel function which is used in the localization is RBF (radial basis function). The

RBF calculation is showed in equation

K(x,x") = exp (||x—xf||2)

2a2

Here, lIx — x’ll> may be recognized as the squared Euclidean distance between the two

feature vectors. o is the variance and our hyperparameter.

3.4 Training process

Once the selected Ann models are set the next stage is to train the model. To map
between feature and label, received SNR vector and UD orientation angle and 3D-
position the correct obtaining parameter set is required. The following expression is
characterizing this set: P = W U B, where W = {Wo, W; |j € [1, D]}, such that Wo = [wjo,
W2,0, ..., Wvmo,0], and for all j € [1, D], W = wa,j, w2, ..., wvj j, and B = {bo, bj |j € [1, D]},
such that bo = [bj0, b20, ..., bMo,o] T, and for all j € [1, D], bj = [b1,, b2j, ..., bmj,j]"

In this thesis, the mean square error (MSE) loss function was utilized in metrics MSE
and MAE as a solution to the regression problem and was optimal parameter set P* was
obtained according to [33] in the way as:

-."'.Elull:l.
P —Pi(P.p) 3,

Nirain
i =1

P* = argmin La(P), = argmin
F F

where L2 — selected MSE loss, Nwain — the dataset size (N=3, N = 5, N =6), P7is
derived from the selected Ann concerning the set of parameters P by estimating label
vectors associated with the Ith feature vector | of the dataset, respectively. The gradient
descent approach can be used to solve the optimization problem. In reality, by
iteratively advancing in the direction of steepest descent, as defined by the negative of
the gradient, gradient descent can be utilized to minimize the loss function MSE. Hence
standard Adam optimizer was implicated for each utilized ANN:

optimizer = Adam(learning rate=08.881, beta_1=8.9, beta_2=8.%

599, amsgrad=False)
model.compile{optimizer=optimizer, loss='mse', metrics=['mae

D
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3.5 Testing phase

The evaluation of new unseen data, in this case, a new vector of received SNR was developed
in the given chapter. The testing criteria were chosen according to [50] and can be denoted as:
e The average EE (estimation error): illustrates the average difference between the correct
label vector and the estimated one.
¢ Precision: it denotes an EE that exceeds 90% of the total number of possible EE.
e The computational time: it is the average time required to estimate the label vector of a

certain feature vector during a single online prediction session [51].

3.6 Simulation parameters

This section contains parameters that were used to run the simulation. Physical parameters
were chosen based on the previous works [33,51]. Table 1 and Table 2 consider physical
parameters and Ann specifications respectively. Two different typical rooms were considered
with dimensions 5mx5mx3m and 7mx7mx3m equipped with 16 AP placed downwards on the
ceiling. Standard smartphones are used as UD, one IR-LED placed on the screen. UE has a

random location.

For an accurate result, the size of the dataset was set as Nb. Each Ann technique
consists of an input layer, four hidden layers, and an output layer. Adam optimizer was
used and kernel size equals 16 parameters. For SVM and CNN the number of filters is

32 and 64 respectively, and 256 neurons for MLP.

Table 2: Parameters for simulation [33]

Name of the Parameter Symbol Value
Number of AP Nr 16
Dimensions of theroom1 |LxW xH 5mx5mx3m
Dimensions of theroom 2 | LxW x H 7mMmx7mx3m
LED half-power semi | @1 60

angle

PD responsivity Ry 0.6 A/W

PD geometric area Ag lcm2
Optical concentrator | nc 1

refractive index

Maximum UE’s height Haevice 1.5m
Maximum UE’s power P ™ glec 0.01 W
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Reflection coefficient of | C 0.7

the walls

Field of view of the IR-| ® 90-

LEDs

Field of view of the PDs P 90
System Bandwidth B 10 MHz
Noise power spectral | No 1072 W/Hz
density

Table 3: ANN specifications

Epoch 30
Kernel for SVM Linear, rbf
Trained dataset size Ne1 N6

Number of D hidden layers or depth of utilized Ann | 4

Number of filters for SVM and CNN 64

Number of neurons for MLP 256

Kernel size for CNN and MLP 16
Optimizer for Ann Adam
Partition (test, train) (0.9,0.1)*N

The architecture of hidden layers for SVM, MLP, CNN is described in Figure 12.

| Dense/Convolutional layer |

4
4

Dropout layer

U

Mormalization layer

Figure 12: Hidden Layers

Each input and output are linked to each other by weight is the dense layer in MLP.
Moreover, it is worth mentioning that it is a completely connected layer. The CNN and
SVM use a convolutional layer that uses convolution between filter and kernel. On the
second layer, the RELU activation function is implicated. As a next step, the prevention

of Ann overfitting a dropout layer reduces a network with a certain probability. Batch
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Normalization achieves fast and smooth and accurate training, by standardizing input,
hence the output is supposed to have a value near zero mean and unit variance. On the
other hand, chosen KNN has only a Dense and linear activation layer which is set a
connection between input and output [33, 52].

Dense/Convolutional layer

U

Relu layer

¢

Dropout layer

¢

Normalization layer

.

SVM with RBF Kemel

Figure 13: SVM architecture

The output is calculated by multiplying RSSI and the random input weight. The activated
function is obtained using Relu function. Estimated location is calculated with multiplying
vector y[j] and output weight.
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4 RESULTS

4.1 Evaluation of learning models and performance estimation

Three different ANN models and KNN models were tested on generated for 2 rooms different
datasets which were grouped into batches. Each epoch represents a single pass through the
complete training set. Figures 7, 8, 9 represent a mse loss against epoch for NLOS+LOS
generated dataset. For CNN, MLP and SVM total of 30 numbers of the epoch were utilized for
the training phase. Each graph illustrates the absence of overfitting, which means that each
model is able to generalize new unseen data. Moreover, both types of losses decline with

incrementing epoch number

In the employed ANN models, each hidden layer includes a dropout layer, which is a
fundamental stage to prevent outfitting. Dropout regularization drop each individual
neuron with certain probability which leads to reduction of ANN network. Figures 14, 15,
16 show the number of trainable and non-trainable parameters for each model.

Total params: 798,342
Trainable params: 798,886
Mon-trainable params: 256

Figure 14: SVM number of parameters

Total params: 285,852
Trainable params: 284,558
Mon-trainable params: 512

Figure 15: CNN number of parameters

Total params: 54,534
Trainable params: 53,518
Mon-trainable params: 1,824

Figure 16: MLP number of parameters

Figures 17,18,19 show the training and validation losses of the MLP, SVM and CNN
models assessed in terms of mean squared-error (MSE), versus the epoch index for the
two datasets investigated. In particular, the data proposed for training ANN models is
split into two subsets: one for training the models to obtain the weights P, and the other
for confirming the generalization error of the obtained weights on unknown data. As a
result, each epoch represents a single pass through the full training set. Moreover,
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training models with higher number of epochs performs better than 15 epochs. The

training and validation losses decrease as the epoch index grows, as shown in Figures

17,18,19, indicating that the resulting ANN models are not overfitting and can generalize

well over unknown data during online phase.
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Figure 17 MLP model
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Figure 19 SVM model

In total Figures 17, 18 and 19 demonstrate four cases for each model:

e Dataset N°
e Dataset N°®
e Epochs number 30

e Epochs number 15

Graphs 17,18,19 illustrate that enhancing the dataset size improves the ANN models’
learning efficiency. This is mostly because having more data points allows the ANNs to
gain a better understanding the random behaviour of the environment, which is
expressed in terms of the effects of the UE's random position and orientation on the

instantaneous received SNR.
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Table 4 Comparison between ANN techniques and KNN in terms of average error in cm and

degree
CNN SVM MLP KNN
5x5x3me | 7x7x3m® | 5x5x3m?3 7X7x3m3 | 5x5x3me® | 7x7x3m?3 5x5x3m3 | 7x7x3m?3
3.1 2.7 4.10 3.07 7.05 6.08 10.31 11.01
Location
6.01 5.25 3.46 2.03 5.03 8.021 9.03 9.001
5.04 4.94 6.89 7.29 6.73 9.74 8.42 10.92
7.29 7.27 7.04 5.90 7.70 6.73 7.53 5.70
Orientation
2.30 2.26 3.18 3.14 3.20 3.15 11.78 11.73
2.87 2.44 1.44 1.01 1.05 1.047 3.92 3.18
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Table 4 illustrates the average estimation
error for each predicted parameter set P’(x,
Yy, z, 4, B, y). The data gained by ANN
models outperform KNN in each parameter.
For location and estimation, CNN and SVM
demonstrate higher precision than MLP.
However, each CNN technique shows a
similar trend for orientation angles, for
instance, the a-angle showing the worst
results in comparison with B and y. This
phenomenon is a consequence of the fact
the last two rotation angles have fixed
means while yaw a uses Q-90° which leads
to slight fluctuations. Hence this parameter

suffers from higher estimation error.

loss mae val loss wval_mae epoch

0 2473910 1.207828 0.963299 0.801861 0
1 1.921540 1.051481 0554409 0.7973809 1
2 1.708724 0965532 0946167 0.791876 2
3 1.351763 0.B65T12 0934445 0.788033 3
4 1.336540 0.855027 0931489 0.787081 4
5 1.264224 0816453 0922535 0.781640 5
6 1.190055 0.804528 0927446 0.78M77 6
T 1.212483 0.787T962 0.918963 0.778211 T
8 1.103619 0.768318 0917457 0.777685 a8
9 1.129435 0.770881 05914803 0.776371 g
10 1.090829 0.756926 0917970 0.776623 10
11 1.062627 0.7426T78 0915114 0.775797 11
12 1.019445 0.720598 0.919085 0.777233 12
13 1.033938 0.729115 0.910060 0.772604 13

Figure 20: Loss parameters after each epoch

Figure 20 proofs that, as the epochs increase, the gap between validation and training

data is decreasing as well as both types of losses.

4.2 Evaluation of computational time

In terms of computation, MLP shows the fastest results among all applied Ann models.

For each epoch step, it takes approximately 40 seconds and 20 minutes in total, while

CNN used 12 hours for 30 epochs. On each epoch SVM spent 1.30 hours and 8 hours

18 min only for 15 of the epochs. Figures 21, 22, 23 demonstrate the examples in terms

of time consumption.

Epoch 15/15

52?4; 52?4 l:==============================
al mas: @.2979 - val mse: 8.3244

Wall time: 8h 18min 58s

Figure 21: Wall time for SVM
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Epoch 38/38
52?4;52?4 l:==============================] - 435 8m5;‘r5tep
ae: 8.2669 - val mse: 8.2814
Wall time: 19min 56s
Figure 22: Wall time for MLP
Epoch 30/30

1 - val_lﬁss: 0.2412 - wval mae: 0.2318
Wall time: Bh 4min 10s

Figure 23: Wall time for CNN

Table 5 Overall computation time for each case

Model Testing 15 epochs Testing 30 epochs
Dataset N° Dataset N° Dataset N° Dataset N°
CNN 5h 3 min 5h 16 min 8 h 4 min 8 h 16 min
MLP 9 min 10 min 19 min 21 min
SVM 8 h 16 min 8 h 21 min 12 h 8 min 12 h 34 min

4.3 Discussion

Figures 17,18,19 demonstrate clearly that the training and validation losses decrease as
the epoch index grows indicating thus that the resulting ANN models are not overfitting
and can generalize well over unknown datasets in online testing. Furthermore, the
training loss is greater than the validation loss and the reason is dropout utilization.
Dropout is used throughout the training phase, like any similar regularization strategy,
but not during the validation phase [47]. In other words, at validation time, regularization
processes such as dropout are disabled, resulting in a training loss higher than the

validation loss.

It is observed that SVM algorithm gives low accuracy compared to CNN. SVM algorithm
is generally used to solve classification problems in which the dataset is divided into
minimum number of classes and for dataset which is of a lower dimension. SVM uses a
linear decision boundary to separate the datapoints into different classes. In SVM it is
possible to make the decision boundary soft using slack variable and box constraint.

This fails when the number of classes become high and when the datapoints become
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skewed or imbalanced, like for the given problem statement. SVM requires the longest
time to process neither CNN nor MLP. However, location estimation results for SVM
are better than MLP.

Positioning systems using ANN and DNN algorithms is a hot topic today. It can be
utilized for different needs such as easing the navigation for blind people for or in case
of emergency to localize people to be survived. Despite the fact that systems need

developments and improvement it can be used in these days.
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5 CONCLUSION

Finally, for indoor location systems using LiFi, this thesis investigated, analysed, developed, and
evaluated three ANN models such as SVM, CNN, and MLP, and compared results with the KNN
approach by using Python and Keras library. Each model has the goal obtain an efficient
mapping between receiver SNR vector and corresponding UE position and orientation. User
device was placed randomly. The RSS fingerprinting metric was implicated to generate the
dataset. Moreover, all prediction models have used LOS+NLOS components. To achieve high
training results the epoch index was utilized. Moreover, the dataset was divided into several
batches, and the normalization layer standardize the data.
Additionally, the obtained results were compared with KNN and each other, the superiority of
Ann models was illustrated in terms of performance. The differences between computational
time and estimation error were considered.
Finally, in this thesis the following tasks have been performed.

e Multiple Ann and ML techniques have been investigated and analyzed.

e The modern knowledge about LiFi approaches have been utilized.

¢ SVM, CNN, and MLP models have been chosen to represent ANN.

¢ KNN has been used for comparison with deep learning techniques.

e The supremacy of Ann models was illustrated.

e The dataset generation was analyzed and developed for 2 rooms in size of N°®

o Different channel matrixes have been decompounded and the modern ones have

been applied.
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ABBREVIATIONS - ACRONYMS

ANN Artificial Neural Network
AOA Angle of Arrival

AP Access Point

CNN Convolutional Neural Network
DD Direct Detection

IM Intensity Modulation

EE Estimation Error

IR-LED Infrared Light Emitting Diode
KNN K-nearest Neighbours Algorithm
LED Light Emitting Diode

LiFi Light Fidelity

LOS Line of sight

MAE Mean absolute error

ML Machine learning

MLP Multilayer perceptron

MSE Mean square error

NLOS Non-Line of Sight

PD Photodiode

PDF Probability Density Function
RELU Rectified Linear Unit

RSS Received signal strength
SNR Signal-to-noise ratio

SVM Support Vector Machine
TOA Time of Arrival

uD User Device

UE User Equipment
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