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ΠΕΡΙΛΗΨΗ 

Αν και η πρώτη ερευνητική δραστηριότητα σχετικά με την Ανάλυση Συνιστωσών 
(Component Analysis - CA) εμφανίστηκε αρκετές δεκαετίες πριν, ο τομέας αυτός είναι 
ακόμη αρκετά ενεργός. Δοσμένου ενός συνόλου δεδομένων, μία μέθοδος CA  
υπολογίζει μια απεικόνιση (mapping) των αρχικών δεδομένων, στην οποία τα 
χαρακτηριστικά κάθε δείγματος θα εξυπηρετούν καλύτερα τα διαθέσιμα εργαλεία και τον 
εκάστοτε σκοπό. Συνήθως, η προκύπτουσα προβολή έχει λιγότερα χαρακτηριστικά από 
το σύνολο εισόδου και συνεπώς η προσέγγιση αυτή ειναι γνωστή και ως Μείωση 
Διαστάσεων (Dimensionality Reduction). Παρόλο που αυτοί οι μέθοδοι ήταν αρχικά 
σχεδιασμένοι για διανυσματικά δεδομένα, η ανάγκη για ανάλυση πολυδιάστατων 
δεδομένων αποτέλεσε όχημα για την επέκταση τους σε τανυστές. Σε αυτήν την 
διπλωματική εργασία, θα εστιάσουμε σε δύο τέτοιες επεκτάσεις: την Πολυγραμμική 
Ανάλυση Κύριων Συνιστωσών (Multilinear Principal Component Analysis – MPCA) και 
την Ανάλυση Διάκρισης με Αναπαράσταση Τανυστή (Discriminant Analysis with Tensor 
Representation – DATER) και θα παρουσιάσουμε πώς διατυπώνονται ως προβλήματα 
εύρεσης ιδιοτιμών και ιδιοδιανυσμάτων. Μια τέτοια διατύπωση, ωστόσο, εμπεριέχει τα 
εξής προβλήματα: (1) δεν απαγορεύει την επίλυση προβλημάτων εύρεσης ιδιοτιμών και 
ιδιοδιανυσμάτων σε πίνακες κακής κατάστασης (ill-conditioned matrices), πράγμα που 
ισχύει αρκετά συχνά σε δεδομένα τανυστών [1] και (2) οι εμπλεκόμενοι πίνακες έχουν 
μεγάλες διαστάσεις και η επίλυση τέτοιων προβλημάτων απαιτεί αρκετό χρόνο. Για το 
σκοπό αυτό, προτείνουμε έναν τρόπο διατύπωσης των MPCA και DATER ως 
προβλήματα Παλινδρόμησης Τανυστών, έτσι ώστε να μπορούν να εφαρμοστούν 
περισσότερο αριθμητικά ευσταθείς και υπολογιστικά απλούστερες προσεγγίσεις (π.χ. 
Gradient Descent). Κατόπιν, εξετάζουμε την ποιότητα της πρότασης μας σε πραγματικά 
δεδομένα με πείραματα Αφαίρεσης Θορύβου (Image denoising) και Αναγνώρισης 
Προσώπου (Face recognition). 
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ABSTRACT 

Although the first works relevant to Component Analysis (CA) date many decades ago, 
it still remains a very active research area. Given a dataset, CA methods aim to find a 
mapping of it, the features of which are ideal for the available tools or the assigned task. 
Typically, the produced mapping has fewer features than the original data, therefore this 
approach is also known as Dimensionality Reduction. While these methods were 
designed to work on vectors, the need to analyze multidimensional datasets with an 
abundance of features, fueled their extension to tensors. In this thesis, we will 
investigate two such extensions, Multilinear Principal Component Analysis (MPCA) and 
Discriminant Analysis with Tensor Representation (DATER) and present how they are 
formulated as generalized eigenproblems. Such formulation, however, conceals several 
drawbacks: (1) it may require solving eigenproblems on ill-conditioned matrices, which 
is more than often the case when it comes to tensor data [1], and (2) the matrices 
involved are commonly highly dimensional and solving for their eigenvalues requires 
significant computation time. To this end, we will propose a Least Squares (LS) Tensor 
Regression formulation for MPCA and DATER, which makes applicable more 
numerically stable and computationally simpler approaches (e.g., Gradient Descent) 
and evaluate it in practice with an Image denoising and Face recognition task. 
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“We must know. We will know.” 

- David Hilbert 
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1. INTRODUCTION 

1.1 Component analysis 

With the ability to capture and store datasets with abundant features nowadays, 
Component Analysis (CA) methods are becoming more and more widely used. In their 
essence, these methods produce a mapping of the input data to a more “meaningful” 
subspace. Of course, the exact interpretation of “meaningful” depends on the method 
used and the task at hand. 

Principal Component Analysis (PCA) [2, 3], for example, creates uncorrelated features 
that capture as much variance from the input points as possible. Mathematically, PCA 
aims to find an orthogonal transformation such that this criterion is satisfied. From a 
geometric point of view, PCA can be seen as a transformation of the axis, so that each 
direction captures the most possible variation, and each axis is perpendicular to each 
other. The new axes are referred to as Principal Axes, while the projection of the 
features on these axes as Principal Components. A visual intuition is presented in 
Figure 1. We note that PCA does not discard feature per se, but instead it creates new 
features from linear combinations of the original. 

 

Figure 1: Finding the optimal 1D Principal Axis on sample 2D Data. Blue and red dots denote 
samples and projection, respectively. PCA computes the Principal Axis (black line) so that it 

captures as much as variance as possible, therefore the optimal solution is the rightmost.         
The gray line denotes the second Principal Axis [4]. 

 

On the other hand, Linear Discriminant Analysis (LDA) [5] takes a supervised approach. 
More specifically, this method projects the input data to the subspace that maximizes 
the distance between (the means of) the classes, while keeping the distance between 
samples of a class (and the respective class mean) at minimum. For the binary case, 
this objective is famously known as “Fisher’s Discrimination Criterion” and computing 
the respective linear transformation is typically a trace quotient problem, as we will 
investigate in the following. 

Independent Component Analysis (ICA) [3, 6] is an unsupervised approach that aims to 
represent the data in statistically independent features. While this approach may seem 
similar to PCA, we should note that ICA has a generative approach, in the sense that it 
estimates a linear combination of random variables that produces the input data. ICA is 
famously associated with the “Cocktail Party Problem”, according to which one is tasked 
with distinguishing between speakers in a party, where supposedly multiple people talk 
simultaneously. Furthermore, the required statistical independency of the produced 
features is a stricter constraint that the uncorrelatedness of PCA. In other words, ICA 
prohibits any kind of relationship between produced features while PCA just linear ones. 
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Canonical Correlation Analysis (CCA) [7] is useful when the task at hand reduces in in 
modeling the interactions between two sets of data. Specifically, CCA receives two input 
data sets and projects them in the subspace, that maximizes the correlation between 
them. In practice, CCA attempts to produce features that represent both datasets as 
best as possible. These features, in a similar fashion to PCA, are referred to as 
Canonical Variables, while the bases of the constructed subspace as Canonical Axes. 

It is not uncommon that data may hold a more complex structure and linear methods, 
such as the aforementioned, have poor performance. Consequently, kernel extensions 
have been proposed including KPCA [8], KLDA [9], KICA [10] and KCCA [11]. 
Moreover, non-linear embedding approaches are also frequently used, such as 
Laplacian Eigenmaps (LE) [12], Local Linear Embedding (LLE) [13], and ISOMAP [14]. 
These methods share a common rationale: if two samples are “close” (as in similar) to 
each other, their projections should be “close” too. 

Evidently, incorporating such methods yields many benefits. To begin with, they can be 
used as a feature extraction technique, in order to avoid the computational burden of 
highly correlated features or produce more meaningful ones when the input is sparse 
(i.e., lots of zeros) or when discrimination is important (e.g., LDA). What’s more, the 
hardware prerequisites for storing and working on the downsized dataset are 
decreased, as less memory and computations are required. All these, along with the 
fact that these methods typically involve only a small number of parameters make them 
all the more appealing. 

1.2 Extending to tensors 

Lately, there has been a lot of focus on developing effective component analysis 
methods on data that evolves or is produced “naturally” over multiple axis. Indicative 
examples of such data are videos, with the axes being width, height and time and 
functional Magnetic Resonance Images (fMRI) with the addition of depth. Tensors, or 
multi-dimensional arrays, are becoming steadily an indispensable tool when dealing 
with such data, because not only they possess intuitive structure (spontaneous 
extension of matrices), but also many operations used by modern Machine Learning 
approaches extend naturally to them [15]. For example, if we model each frame of a 
video as 2D array, with each entry denoting pixel intensity, we end up with a 3D tensor. 
These dimensions/axes are known as tensor modes and their quantity denotes the 
order of the tensor. 

 

 

Figure 2: Representing frames of a sequence as a 3rd order tensor.                                                           
Notice the three modes of such dataset [1]. 
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One could easily notice that the tremendous increase in the number of features per 
tensor sample, so feature selection or dimensionality reduction is naturally advised. 
Moreover, the Small Sample Size problem (SSS)1, which is usually the case when it 
comes to tensor data, contributes to ill-conditioning [1]. We could use one of the 
approaches mentioned in Section 1.1, after a vectorization operation. Albeit valid, this is 
approach is questionable. By doing so, we naively ignore the negative effects of SSS, 
amplify the consequences of the curse of dimensionality and additionally disregard 
information on how each part of the sample changes over all of the modalities. Tensor 
Component Analysis methods, on the other hand, such as those presented in the 
following, leverage this information, and produce more interpretable and numerically 
stable results. 

Many approaches have been proposed on extending PCA for tensor data. Multilinear 
PCA (MPCA) [16] performs the PCA procedure mode-wise. Hence, the resulting 
projection consists of uncorrelated features in each mode. Uncorrelated MPCA 
(UMPCA) [17] projects each tensor sample to a vector while keeping the produced 
features (components of produced vectors) uncorrelated. Similarly, Tensor Rank-One 
Decomposition (TROD) [18] also produces  a vector for each sample, but it does so by 
minimizing the reconstruction2 error. Depending on the type of data, Non-negative 
MPCA (NMPCA) [19] may be also of interest. This method performs the same task as 
MPCA, while also enforcing non-negativity constraints. When outliers hinder the quality 
of the projection, Robust MPCA (RMPCA) [20] or the 𝑙1-norm [21] have been proved as 
valuable countermeasures. 

Many multilinear extensions for LDA have been suggested as well. Discriminant 
Analysis with Tensor Representation (DATER) [22] can be seen as applying LDA to 
each mode of the data. General Tensor Discriminant Analysis (GTDA) [23] has the 
same goal as DATER. However, the formulation of the GTDA is based on difference 
rather than a ratio. Uncorrelated Multilinear Discriminant Analysis (UMLDA) [24] and 
Tensor Rank-One Discriminant Analysis (TR1DA) [25] can be seen as the counterparts 
of UMPCA and TROD for LDA. Both methods project each tensor sample of the input to 
a vector with discriminative features, but UMLDA additionally employs uncorrelatedness 
constraints. The authors of [24] also propose R-UMLDA, which incorporates 
regularization, thus enhancing the method’s robustness. 

Tensor-compatible ICA and CCA approaches have also been presented. Multilinear 
Mode-wise ICA (MMICA) [26] aims to uncover the mode-wise sources that produce the 
input data. 2D-CCA [27] and 3D-CCA [28] are the 2D and 3D extensions of the classical 
linear method. Contrary to the later proposed MCCA [29], however, they do not ensure 
uncorrelatedness of the projected features. 

The Graph Embedding Framework [30] has also contributed to the development of TCA 
methods. According to the authors, input data shall be modeled in two weighted graphs: 
the “intrinsic” graph, which captures the similarity between data samples and the 
“penalty” graph, which describes the appropriate constraints. Any TCA method could be 
formulated under this framework as a generalized eigenvalue problem involving the 
Laplacian and adjacency matrices of these graphs. In addition to making the similarities 
and differences of TCA methods distinct, this work became the foundation for novel 
methods such as [31], [32] and [33].  

 

1 The SSS scenario is when the data contains more features than samples. 

2 Distance between original data and data after we apply the projection along with its inverse. We will 
thoroughly explore this notion throughout this work.  
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Before the end of this subsection, we should also mention the “Linear Subspace 
Learning” framework [1]. The authors, apart from providing an extensive survey, present 
a thorough categorization and in-detail technical review of the relevant methods. 

1.3 Notation and preliminaries 

From this point forward, scalars are denoted as lowercase letters (e.g., 𝑎, 𝑏). Vectors 

are denoted as lowercase bold letters (e.g., 𝒂, 𝒃), matrices as uppercase letters (e.g., 
𝐴, 𝐵) and tensors as uppercase bold letters (e.g., 𝑨,𝑩). The transpose and the inverse 

of a matrix 𝐴 are denoted as 𝐴𝑇 and 𝐴−1  respectively. Operators 𝑡𝑟(𝐴) and ‖𝑩‖𝐹 are 

used to denote the trace of matrix 𝐴 and Frobenius norm of tensor 𝑩. 

The number of indexes required to access a single entry in a tensor defines its order. 
For example, vectors are of order 1, matrices are of order 2 and 3D tensors are of order 
3. According to this, for tensor 𝑨 of order 3, 𝑨𝑖1𝑖2𝑖3 denotes the element at position 

(𝑖1, 𝑖2, 𝑖3). For higher order tensors (at least 3 modalities) we can obtain its mode-𝑛 

fibers by fixing all indices except the 𝑛-st. Slices can be obtained similarly by fixing the 
index of an additional mode. A visual illustration of fibers and slices for a 3D tensor is 
shown on Figures 2 and 3. 

 

 

Figure 3: Fibers of 3D tensor [34]. 

 

 

Figure 4: Slices of a 3D tensor [34]. 
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It is often we require tensors in a matrix form. An organized way to do so is by tensor 
unfolding. Specifically, for a tensor 𝑨 ∈ 𝑅𝑝1×𝑝2…×𝑝𝑛 we can define the mode-𝑖 unfolding, 

where the 𝑛-mode fibers are used in order form a matrix 𝑨(𝑖) ∈ 𝑅
𝑝𝑖×𝑝1...𝑝𝑖−1𝑝𝑖+1...𝑝𝑛. More 

specifically, the element in position (𝑖1, 𝑖2, … , 𝑖𝑛) is mapped to the matrix’s (𝑖𝑖, 𝑗), where   
𝑗 = 1 + ∑ (𝑖𝑘 − 1) × ∏ 𝑝𝑚

𝑛
𝑚=𝑘+1,𝑚≠𝑖

𝑛
𝑘=1,𝑘≠𝑛 . In the following, we will follow the definition of 

tensor unfolding given by [15]. Similarly, tensor vectorization for 𝑨 ∈ 𝑅𝑝1×𝑝2…×𝑝𝑛 

(𝑣𝑒𝑐(𝑨)), results in a vector of size 𝑅𝑝1𝑝2...𝑝𝑛 . 

We can now define the 𝑛-mode product between a matrix 𝑀 ∈ 𝑅𝑞×𝑝𝑚 and a tensor 𝑨: 

𝑨 ×𝑛 𝑀 = 𝑀𝑨(𝑛) ∈ 𝑅
𝑝𝑛×𝑝1...𝑝𝑛−1𝑞𝑝𝑛+1...𝑝𝑚 (1.1) 

We note two important properties of the 𝑛-mode product that will be of use: 

𝑨 ×𝑛 𝑀 ×𝑛 𝑁 = 𝑨 ×𝑛 𝑁𝑀 (1.2) 

𝑨 ×𝑛 𝑁 ×𝑚 𝑀 = 𝑨 ×𝑚 𝑀 ×𝑛 𝑁 (1.3) 

The inner product between tensors 𝑨 ∈ 𝑅𝑝1×𝑝2…×𝑝𝑁 and 𝑩 ∈ 𝑅𝑝1×𝑝2…×𝑝𝑛 is defined as: 

< 𝑨,𝑩 >= ∑ ∑…

𝑝2

𝑖2=1

𝑝1

𝑖1=1

∑ 𝑨𝑖1𝑖2⋯𝑖𝑛

𝑝𝑛

𝑖𝑛=1

𝑩𝑖1𝑖2⋯𝑖𝑛 (1.4) 

Likewise, the Generalized tensor inner product between tensors 𝑨 ∈ 𝑅𝑝𝑥×𝑝1×𝑝2…×𝑝𝑛 and 
𝑩 ∈ 𝑅𝑝1×𝑝2…×𝑝𝑛×𝑝𝑌 is: 

< 𝑨,𝑩 >𝑛= ∑ ∑…

𝑝2

𝑖2=1

𝑝1

𝑖1=1

∑ 𝑨:𝑖1𝑖2⋯𝑖𝑁

𝑝𝑛

𝑖𝑛=1

𝑩𝑖1𝑖2⋯𝑖𝑛: (1.5) 

Notice that < 𝑨,𝑩 >𝑛∈ 𝑅
𝑝𝑥×𝑝𝑌. In Table 1, we sum up the notation for various tensor 

related products that will be used throughout. 

 

Table 1: Notation used for various tensor related products. 

Symbol Operation 

∘ Outer product 

⨂ Kronecker product 

⊙ Khatri-Rao product 

<⋅,⋅> Inner product 

<⋅,⋅>𝑁 Generalized inner product 

⋅×𝑛⋅ 𝑛-mode product 

 

A tensor of 𝑛-th order that can be produced by the outer product of  𝑛 vectors is referred 

to as a rank-1 tensor. In general, the rank of a 𝑛-th order tensor 𝑿 is the minimum 
number of rank-1 tensors (also 𝑛-th order) that sum up to 𝑿. 
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Finally, as a measure of variation for Tensors, we kindly remind readers of the total 
(1.6) and total 𝑖-mode scatter (1.7) matrix for a Tensor 𝑿 with 𝑚 samples: 

𝛹𝑨 = 𝑆𝑇𝑋 =∑‖𝑿𝑗 − 𝑿̅‖𝐹
2

𝑚

𝑗=1

(1.6) 

𝛹𝑨(𝑖) = 𝑆𝑇𝑋(𝑖) =∑‖𝑿𝑗(𝑖) − 𝑿(𝑖)̅̅ ̅̅ ̅‖
𝐹

2
𝑚

𝑗=1

(1.7) 

where  𝑨𝑖 and 𝑨𝑖(𝑛) denote the 𝑖-th tensor sample and its mode-𝑛 unfolding respectively 

and 𝑨(𝑛)̅̅ ̅̅ ̅̅  denotes the mean mode-𝑛 unfolded sample:  

𝑨(𝑛)̅̅ ̅̅ ̅̅ =
1

𝑚
∑𝑨𝑖(𝑛)

𝑚

𝑖=1

(1.8) 

Because ‖𝑨‖𝐹 = ‖𝑨(𝑖)‖𝐹
, (1.6) and (1.7) are equal. 

For supervised approaches, we define the between-class and within-class scatter: 

𝑆𝐵𝑋 =∑𝑚𝑐‖𝑿𝑐̅̅̅̅ − 𝑿̅‖𝐹
2

𝑘

𝑐=1

(1.9) 

𝑆𝑊𝑋
=∑‖𝑿𝑗 − 𝑿𝑐𝑗

̅̅ ̅̅ ‖
𝐹

2
𝑚

𝑗=1

(1.10) 

Where 𝑚𝑐 denotes the number of samples in class 𝑐. 𝑿𝑐̅̅̅̅  and 𝑿𝑐𝑖
̅̅ ̅̅  denote the mean of 

class 𝑐 and the mean of the class of sample 𝑖 respectively.  

Tensor decompositions, just like their equivalents for matrices, “break down” tensors 
into simpler building blocks that may be easier to interpret, require less storage and can 
help save up computational resources. 

The CP/PARAFAC decomposition  expresses a 𝑛-th order tensor 𝑿 ∈ 𝑅𝑝1×…×𝑝𝑛 as a 
sum of rank-1 tensors: 

𝑿 =∑𝑎(1)
𝑟

𝑖=1

∘ 𝑎(2)⋯∘ 𝑎(𝑛) (1.11) 

If 𝑟 in (1.11) is equal to the rank of tensor 𝑿, this can be seen as the higher order 
extension rank decomposition. However, it has been proved [35] that computing the 
Tensor rank is an NP-Complete problem in the general case. The most well-known way 
of computing the CP/PARAFAC decomposition is with Alternating Least Squares (ALS). 
First, for a tensor 𝑿 we formulate the objective as: 

𝑿̂ = 𝑚𝑖𝑛𝑿̂‖𝑿 − 𝑿̂‖
2
, 𝑨̂ = ⟦𝐴(1), 𝐴(2), … , 𝐴(𝑛)⟧ (1.12)  

Where 𝐴(𝑖) ∈ 𝑅𝑝𝑖×𝑟  ∀𝑖 = 1, . . . 𝑛. In (2) we have “stacked” the vectors corresponding to 

the first mode in matrix 𝐴(1), the vectors corresponding to the second mode in 𝐴(2)  and 
so on. Then, after initialization, we gradually solve for each component matrix while 
fixing the rest until a stopping criterion is met (max iterations, convergence or “good 
enough” approximation). Nonetheless, ALS is always “in danger” of being stuck at local 
minima. 
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The Tucker decomposition expresses a tensor as another tensor multiplied by a matrix 
at each mode: 

𝑿 = 𝑮 ×1 𝐴
(1) ×2 𝐴

(2)…×𝑛 𝐴
(𝑛) = ⟦𝑮; 𝛢(1), … , 𝛢(𝑛)⟧ (1.13) 

Where 𝐴(𝑖) ∈ 𝑅𝑝𝑖×𝑞𝑖  ∀𝑖 = 1,…𝑛 and 𝑮 ∈ 𝑅𝑝𝑥×𝑝1×𝑝2…×𝑝𝑛 is referred to as the core tensor. 
While an ALS approach is also applicable here, the Higher Order Singular Value 
Decomposition (HOSVD) [36] procedure can also be used to compute a Tucker 
decomposition. In short, we perform SVD on each mode-𝑖 unfolding of the given tensor 

and set matrix 𝐴(𝑖) equal to the most significant singular vectors. Then, we compute the 
core tensor using: 

𝑮 = 𝑿 ×1 𝐴
(1)𝑇 ×2 𝐴

(2)𝑇…×𝑛 𝐴
(𝑛)𝑇 (1.14) 

We note the matricized version of (1.14) that will be used extensively later: 

𝑿(𝑘) = 𝐴
(𝑘)𝑮(𝑘)(𝐴

(𝑛)⨂𝐴(𝑛−1)⨂…⨂𝐴(𝑘−1)⨂𝐴(𝑘+1)⨂…⨂𝐴(1))𝑇 (1.15) 

[34] is a great resource regarding the aforementioned decompositions and their 
applications. 

1.4 Thesis outline 

In Section 2, literature and formulations related to ours are presented. In Section 3, we 
present our proposed least squares formulation for MPCA and DATER. Lastly, in 
Section 4, we experimentally evaluate our proposed formulation on an Image Denoising 
and a Face Recognition (Classification) task and present the relevant results. 
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2. RELATED WORK 

In this section, we will present various formulation of the relevant tensor CA methods. 
For the following, assume that we are given 𝑚 tensor samples with 𝑛 modalities (i.e., 
each sample 𝑿𝒋 ∈ 𝑅

𝑝1×𝑝2…×𝑝𝑛  ∀𝑗 = 1, . . . , 𝑚). We use 𝑿 ∈ 𝑅𝑝1×𝑝2…×𝑝𝑛×𝑚 as a more 

‘compact’ notation for the entirety of samples, with the additional mode of 𝑿 indexing the 
samples themselves. 

2.1 MPCA 

MPCA, originally proposed by Lu et al. [16], is an unsupervised method that aims to 

determine a set of 𝑛 projection matrices 𝑈(1), 𝑈(2)… ,𝑈(𝑛), 𝑈(𝑖) ∈ 𝑅𝑞𝑖×𝑝𝑖 , 𝑞𝑖 < 𝑝𝑖, ∀𝑖 =
1, … , 𝑛, such that the features of the projected samples 𝒀 =

𝑿 ×1 𝑈
(1) ×2 𝑈

(2)…×𝑛 𝑈
(𝑛) ×𝑛+1 𝑰𝑚  present as much variation as possible. Following 

the definition of scatter (1.4) This objective can be formulated as: 

{𝑈(1), … , 𝑈(𝑛)} = 𝑎𝑟𝑔 𝑚𝑎𝑥𝑈(1),…,𝑈(𝑛)∑‖𝒀𝒋 − 𝒀̅‖𝐹
2

𝑚

𝑗=1

 

𝑠. 𝑡 𝑈(𝑖)
𝑇
𝑈(𝑖) = 𝐼𝑝𝑖∀𝑖 = 1,… , 𝑛 (2.1) 

with 𝒀𝒋 denoting the 𝑗-th sample and 𝒀̅ =
𝟏

𝒎
∑ 𝒀𝒋
𝑚
𝑗=1  denoting the mean projected sample. 

(2.1) is known as the scatter maximization objective for MPCA. As the authors point out, 

replacing 𝒀𝒋 as 𝑿𝒋 ×1 𝑈
(1) ×2 𝑈

(2)…×𝑛 𝑈
(𝑛) and leveraging the fact that the data is 

centered3 (both means 𝒀̅ and 𝑿̅ are tensors of zeros), results in: 

{𝑈(1), … , 𝑈(𝑛)} = 𝑎𝑟𝑔 𝑚𝑎𝑥𝑈(1),…,𝑈(𝑛)∑‖𝑿𝒋 ×1 𝑈
(1) ×2 𝑈

(2)…×𝑛 𝑈
(𝑛)‖

𝐹

2
𝑚

𝑗=1

(2.2) 

Assume we are solving in an ALS fashion for 𝑈(𝑖). This means all projection matrices 

𝑈(1), … , 𝑈(𝑖−1), 𝑈(𝑖+1), … , 𝑈(𝑛) are fixed and the unknown we are solving for is 𝑈(𝑖). The 

constraint of (2.1) still applies. Using (1.15) and ‖𝐴‖𝐹
2 = 𝑡𝑟(𝐴𝐴𝑇): 

{𝑈(𝑖)} = 𝑎𝑟𝑔 𝑚𝑎𝑥𝑈(𝑖)∑𝑡𝑟 ((𝑈(𝑖)𝑋𝑗(𝑖)𝑈𝛷𝑖
𝑇 )(𝑈(𝑖)𝑋𝑗(𝑖)𝑈𝛷𝑖

𝑇 )
𝑇
)

𝑚

𝑗=1

(2.3) 

{𝑈(𝑖)} = 𝑎𝑟𝑔 𝑚𝑎𝑥𝑈(𝑖)∑𝑡𝑟(𝑈(𝑖) 𝑋𝑗(𝑖)𝑈𝛷(𝑖)
𝑇 𝑈𝛷(𝑖)𝑋𝑗(𝑖)

𝑇
⏟            𝑈

(𝑖)𝑇)

𝑚

𝑗=1

(2.4) 

Where 𝑈𝛷(𝑖) = 𝑈
(𝑛)⨂…⨂𝑈(𝑖−1)⨂𝑈(𝑖−1)⨂…𝑈(1). The underlined product can be 

interpreted as the 𝑖-mode scatter (1.7) of the data after being multiplied in each mode 
with the respective matrix except the 𝑖-th. This is referred to as a partial projection. We 

can solve (2.4) by setting 𝑈(𝑖) equal to the 𝑞𝑖 eigenvectors corresponding to the most 

significant eigenvalues of 𝑋𝑗(𝑖)𝑈𝛷(𝑖)
𝑇 𝑈𝛷(𝑖)𝑋𝑗(𝑖)

𝑇 . 

The algorithm to compute the relevant multilinear transformation receives the data and 
the max number of iterations as input. Then, in an iterative fashion the projection 
matrices are updated by finding the eigenvalues of the respective scatter matrix. The 
pseudocode of the method can be found at Algorithm 1. 

 

3 We have subtracted the mean sample from all samples of the train/input set. 
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Algorithm 1: MPCA 

INPUT: Tensor samples 𝑿𝒋 ∈ 𝑅
𝑝1×𝑝2…×𝑝𝑛  ∀𝑗 = 1, . . . , 𝑚, 𝑘̂ (max iterations) 

OUTPUT: MPCA Projection matrices 𝑈(1), … , 𝑈(𝑛), 𝑈(𝑖) ∈ 𝑅𝑞𝑖×𝑝𝑖 , 𝑞𝑖 < 𝑝𝑖, ∀𝑖 = 1,… , 𝑛 

BEGIN 

for 𝒋 = 𝟏:𝒎 do 

    𝑿𝒋 ← 𝑿𝒋 −𝑚𝑒𝑎𝑛(𝑿)  # Center input data 

Initialize 𝑼(𝟏), … , 𝑼(𝒏) # Initialize projection matrices 

for 𝒊𝒕𝒆𝒓 = 𝟏: 𝒌̂  do 
    for 𝒊 = 𝟏:𝒏 do 

        𝒀(𝒊)̂ ← 𝑿 ×1 𝑈
(1) ×2 𝑈

(2)…×𝑖−1 𝑈
(𝑖−1) ×𝑖+1 𝑈

(𝑖+1)…×𝑛 𝑈
(𝑛) # Partial projection 

        𝑆𝑌(𝑖)
(𝑖)̂
← ∑ 𝑋𝑗(𝑖)𝑈𝛷(𝑖)

𝑇 𝑈𝛷(𝑖)𝑋𝑗(𝑖)
𝑇𝑚

𝑗=1   # Compute 𝒊-mode partial scatter 

        𝑈(𝑖) ← 𝑞𝑖 eigenvectors of most significant eigenvalues of 𝑆𝑌(𝑖)
(𝑖)̂
 . # Update 

return 𝑈(1), … , 𝑈(𝑛) 

END 

The authors of [16] claim that in each iteration, the objective function is non-decreasing 
and additionally it is upper bound by the scatter of the input data. As a result, good 
convergence behavior of the algorithm can be expected.  

An additional issue to bear in mind is the initialization method for the projection 
matrices. Specifically, in [16], the following approaches are presented: 

• Random initialization generates the elements of the projection matrices following 
a gaussian distribution in with 𝜇 = 0 and 𝜎 = 0.5, followed by normalization4. 

• Pseudo-identity initialization truncates the last 𝑝𝑖 − 𝑞𝑖 columns of the identity 
matrix of size 𝑝𝑖. 

• Full Projection Truncation (FPT) performs HOSVD and initializes each matrix 
using the chosen number of components. 

The first two methods are easier to implement, but that latter expresses better results 
regarding convergence and its error can be tightly bound [16]. 

One additional issue that needs to be addressed is selecting the number of components 
in each mode (i.e., 𝑝𝑖 ∀𝑖 = 1, . . . , 𝑛). As the number of modalities (and features) grow, 
exhaustive search becomes prohibitive. One approach would be to incorporate the 
following ratio constraint in (2.1) or (2.6): 

∏ 𝑞𝑖
𝑛
𝑖=1

∏ 𝑝𝑖
𝑛
𝑖=1

< 𝛺 (2.7) 

 

4 Each resulting matrix should have unit norm. 
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with 𝛺 being the user-defined ratio of required dimensionality reduction. Lu et. al. [16] 
propose the Sequential Mode Truncation (SMT) method. In short, this method starts 
with 𝑝𝑘 = 𝑞𝑘, ∀𝑖 = 1, . . . , 𝑛 and computes the amount of scatter lost if we discard the last 
feature of each mode. Then it discards the one with the minimum scatter loss and 
repeats this procedure until a specific scatter threshold is met. The Q-based method 
[16], on the other hand, is more straightforward: For each mode, truncate features as 
long a scatter requirement is met. 

2.2 DATER 

DATER, first published by Yan et al. [22], is a supervised method for Tensor 
Component Analysis and can be seen as tensor extension for LDA. DATER aims to 
maximize the ratio of between-class variation (scatter) while minimizing the within-class 
variation (scatter). As an intuition, we want samples of the same class to be projected 
as close as possible, while the sets of the classes should be distant and easily 
distinguishable. Assuming we have 𝑘 classes with 𝑛𝑐 ∀𝑐 = 1,… , 𝑘 samples each. 

DATER aims to find projection matrices 𝑈(1), … , 𝑈(𝑛) that satisfy the above criteria: 

{𝑈(1), … , 𝑈(𝑛)} = 𝑎𝑟𝑔 𝑚𝑎𝑥𝑈(1),…,𝑈(𝑛)
∑ 𝑛𝑐‖𝒀𝒄̅̅ ̅ − 𝒀̅‖𝐹

2𝑘
𝑐=1

∑ ‖𝒀𝒋 − 𝒀𝒄𝒋
̅̅ ̅̅ ‖

𝐹

2
𝑚
𝑗=1

(2.8) 

where 𝒀𝒄̅̅ ̅ denotes the mean of samples in class 𝑐, 𝒀𝒄𝒋
̅̅ ̅̅  denotes the mean of the class 

that sample 𝑗 belongs to and 𝒀̅ denotes the mean of the data. If we use an ALS 

approach in this problem, fixing all projection matrices except the 𝑖-th then we obtain the 
following optimization problem from (2.8): 

{𝑈(𝑖)} = 𝑎𝑟𝑔𝑚𝑎𝑥𝑈(𝑖)
𝑡𝑟 (𝑈(𝑖)

𝑇
𝑆𝐵𝑦
(𝑖)𝑈(𝑖))

𝑡𝑟 (𝑈(𝑖)
𝑇
𝑆𝑊𝑦
(𝑖)𝑈(𝑖))

(2.9) 

where 𝑆𝐵𝑦
(𝑖)

 and 𝑆𝑊𝑦
(𝑖)

 denote the between-class and within-class scatter of the partially 

projected data respectively: 

𝑆𝐵𝑦(𝑖)
(𝑖) =∑𝑛𝑐 ‖𝑌𝑐(𝑖)

(𝑖)̃̅̅ ̅̅ ̅
− 𝑌(𝑖)

(𝑖)̅̃̅ ̅̅ ̅
‖
𝐹

2𝑘

𝑐=1

(2.10) 

𝑆𝑊𝑦(𝑖)

(𝑖) =∑‖𝑌
𝑗(𝑖)
(𝑖)̃ − 𝑌

𝑐𝑗(𝑖)
(𝑖)̃̅̅ ̅̅ ̅̅
‖
𝐹

2𝑚

𝑗=1

(2.11) 

where 𝑌
𝑐(𝑖)

(𝑖)̃̅̅ ̅̅ ̅
 denotes the mode-𝑖 unfolding of the 𝑐-th class mean of the partially projected 

data (all modes except the 𝑖-th), 𝑌
(𝑖)

(𝑖)̅̃̅ ̅̅ ̅
 denotes the mode-𝑖 unfolding mean of all the 

partially projected input data, 𝑌
𝑗(𝑖)

(𝑖)̃
 denotes mode-𝑖 unfolding of 𝑗-th partially projected 

sample and 𝑌
𝑐𝑗(𝑖)

(𝑖)̃̅̅ ̅̅ ̅̅
 denotes the mode-𝑛 unfolding mean of the class that the 𝑗-th is 

assigned. The solution to (2.8) is given by solving the following generalized 
eigenproblem: 

𝑆𝐵𝑦
(𝑖)𝑢 = 𝜆𝑆𝑊𝑦

(𝑖)𝑢 (2.12) 
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Algorithm 2: DATER 

INPUT: Tensor samples 𝑿𝒊 ∈ 𝑅
𝑝1×𝑝2…×𝑝𝑛  ∀𝑖 = 1, … ,𝑚, 𝑘̂ (max iterations) and class 

labels 𝑐 ∈ Rm 

OUTPUT: DATER Projection matrices 𝑈(1), … , 𝑈(𝑛), 𝑈(𝑖) ∈ 𝑅𝑝𝑖×𝑞𝑖 , 𝑞𝑖 < 𝑝𝑖, ∀𝑖 = 1,… , 𝑛 

BEGIN 

Initialize 𝑈(1), 𝑈(2)… ,𝑈(𝑛) # Initialize projection matrices 

for 𝒊𝒕𝒆𝒓 = 𝟏: 𝒌̂  do 

    for 𝒊 = 𝟏:𝒏 do 

        𝒀(𝒊)̂ ← 𝑿 ×1 𝑈
(1) ×2 𝑈

(2)…×𝑖−1 𝑈
(𝑖−1) ×𝑖+1 𝑈

(𝑖+1)…×𝑛 𝑈
(𝑛) # Partial projection 

        𝑆𝐵𝑦(𝑖)
(𝑖) ← ∑ 𝑛𝑐 ‖𝑌𝑐(𝑖)

(𝑖)̃̅̅ ̅̅ ̅
− 𝑌

(𝑖)

(𝑖)̅̃̅ ̅̅ ̅
‖
𝐹

2
𝑘
𝑐=1  # Compute 𝒊-mode between-class scatter 

          𝑆𝑊𝑦(𝑖)

(𝑖)
← ∑ ‖𝑌

𝑗(𝑖)

(𝑖)̃
− 𝑌

𝑐𝑗(𝑖)

(𝑖)̃̅̅ ̅̅ ̅̅
‖
𝐹

2
𝑚
𝑗=1 # Compute 𝒊-mode within-class scatter 

        𝑈(𝑖) ← 𝑞𝑖 eigenvectors of most significant eigenvalues of (2.12)  # Update  

return 𝑈(1), … , 𝑈(𝑛) 

END 

and setting 𝑈(𝑖) equal to the 𝑞𝑖 generalized eigenvectors corresponding to largest 
eigenvalues. This procedure iterates over all of the modalities. The pseudocode for this 
method is presented in Algorithm 2. It has been shown that even for the simple case of 
2 modalities, DATER may fail to converge [37]. Thus, stopping criteria such as 
maximum iterations or little change in projection matrices are invoked. Additionally, 
either of the initialization methods used for MPCA is also applicable here. 

One key limitation of LDA was the fact that it could only produce at most 𝑘 − 1 features, 

where 𝑘 is the number of classes. The authors of [22] prove that the maximum number 
of features (per mode) for DATER is: 

𝑚𝑖𝑛{𝑝𝑖, (𝑘 − 1)∏ 𝑝𝑙
𝑖≠𝑙

} (2.13) 

 
2.3 A least squares framework for component analysis 

De la Torre [38] proposed a unified parametric objective function that can be used to 
formulate CA methods: 

𝐸(𝐴, 𝐵) = ‖𝑊𝑟(𝛤 − 𝐵𝐴
𝑇𝑌)𝑊𝑐‖𝐹

2 (2.14) 

𝑊𝑟 and 𝑊𝑐 can be used as weight matrices for various methods that incorporate weight 
(e.g., weighted PCA). 𝛤 and 𝑌 are commonly associated with the input or may be the 

input data matrix themselves. The matrix product 𝐵𝐴𝑇 is the transformation we are 
solving for. Depending on the values we chose for the parameters of (3.1) we can form 

different objectives. Differentiating with respect to 𝐴 and 𝐵 yields: 
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∂E

∂A
= 2Wr

2BATYWc
2YTA − 2Wr

2ΓWc
2YTA (2.15) 

𝜕𝐸

𝜕𝐵
= 2𝑌𝑊𝑐

2𝛤𝑇𝑊𝑟
2𝐵 − 2𝑌𝑊𝑐

2𝑌𝑇𝐴𝐵𝑇𝑊𝑟
2𝐵 (2.16) 

A way to minimize the objective (2.14) is to find minima by setting both derivatives 
equal to zero. If we do this for (2.15) the optimal 𝐵 is given by: 

𝐵 = 𝛤Wc
2ΥΤΑ(ΑΤΥWc

2ΥΤΑ)−1 (2.17) 

Viewing (2.14) as a minimization problem and substituting 𝐵 with the right side of (2.17) 
results in the following maximization objective: 

𝐸(𝐴) = 𝑡𝑟((𝐴𝑇𝑌𝑊𝑐
2𝑌𝑇𝐴)−1(𝐴𝑇𝑌𝑊𝑐

2𝛤𝑇𝑊𝑟
2𝛤𝑊𝑐

2𝑌𝑇𝐴)) (2.18) 

 

which is an eigenproblem similar to (2.9). Similarly, we can do this for (2.16): 

𝐸(𝐵) = 𝑡𝑟((𝐵𝑇𝑊𝑟
2𝐵)−1(𝐵𝑇𝑊𝑟

2𝛤𝑊𝑐
2𝑌𝑇(𝑌𝑊𝑐

2𝑌𝑇)−1𝑌𝑊𝑐
2𝛤𝑇𝑊𝑟

2𝐵)) (2.19) 

Typical eigensolvers may be unable to solve this problem due to ill-conditioning, 
stemming from the SSS problem or from receiving highly correlated input. Therefore, 
the author of this work proposes efficient numerical methods to tackle this difficulty. A 
straightforward approach would be to solve for 𝐴 and 𝐵 in an ALS fashion: 

𝐴(𝑘+1) = (𝑌Wc
2𝑌𝑇)−1𝑌Wc

2𝛤𝛵W𝑟
2𝐵(𝑘) (𝐵(𝑘)

𝑇
Wr
2𝐵(𝑘))

−1
(2.20) 

𝐵(𝑘+1) = 𝛤Wc
2𝑌𝛵𝐴(𝑘+1)(𝐴(𝑘+1)

𝑇
𝑌Wc

2𝑌𝑇𝐴(𝑘+1))
−1

(2.21) 

Alternatively, subspace iteration [39, 40] is a numerically stable option that can be very 
fast with the appropriate initialization. Lastly, the author mentions that Gradient 
Descent-based and second order approaches are also applicable. For instance, a 
simple Gradient Descent approach would be utilizing the following: 

𝐴(𝑘+1) = 𝐴(𝑘) − 𝜂𝛢
∂E(A(k))

∂A
(2.22) 

𝐵(𝑘+1) = 𝐵(𝑘) − 𝜂𝛣
∂E(B(k))

∂B
(2.23) 

where 𝜂𝛣 and 𝜂𝛣 denote the learning rate parameter for each factor matrix. Assuming 
our data is given in a vectorized format in a 2D matrix 𝑋, Table 2 sums up how relevant 
linear methods are formulated according to this framework. 

Formulating CA methods according to this framework is beneficial. To begin with, 
having a common objective makes the similarities and differences between the methods 
transparent. Moreover, such formulation may improve the numerical stability when 
solving for the appropriate projection. That is because the LS Regression environment 
is well-studied and many efficient and numerically stable methods are applicable, such 
as those mentioned above. In addition, the formulation proposed may be the foundation 
for the development of novel CA methods or improvements to existing. 
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Table 2: Formulating PCA and LDA according to [38]. 

Method 𝑊𝑟/𝑊𝑐 𝛤 𝑌 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (3.5) 

PCA 𝐼/𝐼 𝑋 𝐼 𝐸𝑃𝐶𝐴(𝐴) = 𝑡𝑟((𝐴
𝑇𝐴)−1(𝐴𝑇𝑋𝑇𝑋𝐴)) 

LDA5 (𝐺𝐺𝑇)−
1

2/𝐼  𝐺𝑇 𝑋 𝐸𝐿𝐷𝐴(𝐴) = 𝑡𝑟((𝐴
𝑇𝑋𝑋𝑇𝐴)−1(𝐴𝑇𝑋𝐺(𝐺𝑇𝐺)−1𝐺𝑇𝑋𝑇𝐴)) 

 

De La Torre’s work was an inspiration to ours. Like the formulation proposed by [38], 
Least Square Regression is incorporated to our work. Even further, as will be discussed 
in Section 4, a Gradient Descent scheme, such as that presented in this section, was 
used for implementation. However, De La Torre’s work includes many other methods 
and even non-linear graph-embedding ones, whereas ours is solely based on 
(multilinear extensions of) PCA and LDA. Albeit mentioning tensors in the last Section, 
TCA methods are not touched upon further. 

2.4 The graph embedding framework 

Yan et al. [30] contributions are two-fold. First, their work presents a common way to 
formulate and solve for the parameters of various CA methods. According to the 
authors, input data shall be modeled in two weighted graphs: the “intrinsic” graph, which 
captures the similarity between data samples and the “penalty” graph, which describes 
the appropriate constraints. These graphs are defined by their adjacency matrices (𝑊 
and 𝐵 respectively) or their Laplacians6, depending on which method is formulated. All 
methods culminate in the following generalized eigenvalue problem:  

𝐿̃𝑢 = 𝜆𝐵̃𝑢  (2.24) 

𝐿̃ and 𝐵̃ are chosen with regard to the method. The solution is obtained by keeping the 
appropriate number of eigenvectors corresponding to the most significant eigenvalues. 
The authors also explain how this formulation can be extended in the non-linear and 
multi-modal case as well. Table 3 presents the relevant methods accordingly. For linear 

methods, assume we are given the input in matrix 𝑋 ∈ 𝑅𝑑×𝑚 where 𝑚 denotes the 
number of samples. For Tensor methods assume we are given 𝑚 tensor samples with 𝑛 
modalities and we have grouped them, in a single tensor 𝑿 ∈ 𝑅𝑝1×𝑝2…×𝑝𝑛×𝑚, similarly to 
Section 2. Furthermore, this work presents “Marginal Fisher Analysis”, an LDA-based 
method for dimensionality reduction which allows more than 𝑘 − 1 projected features, 
where 𝑘 denotes the number of classes. 

A few clarifications regarding Table 3 follow. Columns 𝑊 and 𝐵 denote the adjacency 

matrices for the intrinsic and penalty graph, respectively. Columns 𝐿̃ and 𝐵̃ denote the 
matrices that will be used in (2.24) to solve this problem. Moreover, we kindly remind 
readers that the adjacency matrix of the constraint graph for LDA and DATER is known 

 

5 We will denote as 𝐺 ∈ 𝑅𝑚×𝑘 (𝑚: number of samples, 𝑘: number of classes) the indicator matrix with 
entries following: 

𝐺𝑖𝑗 = {
1, 𝑐𝑖 = 𝑗
0, 𝑒𝑙𝑠𝑒

 

6 For a graph with adjacency matrix 𝑊, the graph Laplacian is defined as: 𝐿 = 𝐷 −𝑊,Dij = {
∑ 𝑊𝑖𝑗𝑗≠𝑖 , 𝑖 = 𝑗

0, 𝑒𝑙𝑠𝑒
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as the centering matrix. The product 𝑋𝐵 performs centering of the data, while 𝑋𝐵𝑋𝑇 is  
the total scatter tensor or, for 1D/vector data, the covariance matrix.   

Table 3: Formulating relevant methods to our work according to [30]. 

Method 𝑊 𝐵 𝐿̃ 𝐵̃ 

PCA7 𝑊𝑖𝑗 = {
1

𝑚
 , 𝑖 ≠ 𝑗 

0 , 𝑖 = 𝑗  
  𝐼 

1

𝑚
𝑋 (𝐼 −

1

𝑚
1𝑚1𝑚

𝑇 )𝑋𝑇 𝑋𝐵𝑋𝑇 

MPCA      
(𝑖-th mode, 

𝑋 = 𝑿(𝒏+𝟏)
(𝒊)̂

) 

𝑊𝑖𝑗 = {
1

𝑚
 , 𝑖 ≠ 𝑗 

0 , 𝑖 = 𝑗  
  𝐼 

1

𝑚
𝑿(𝐼 −

1

𝑚
1𝑚1𝑚

𝑇 )𝑿  𝑋𝐵𝑋𝑇 

LDA8 𝑊𝑖𝑗 = {

1

𝑛𝑐𝑖
, 𝑐𝑖 = 𝑗

0 , 𝑒𝑙𝑠𝑒  
  𝐼 −

1

𝑚
1𝑚1𝑚

𝑇  𝑋 (𝐼 −∑
1

𝑛𝑐
𝑒𝑐𝑒𝑐

𝑇

𝑘

𝑐=1

)𝑋𝑇 𝑋𝐵𝑋𝑇 

DATER     
(𝑖-th mode, 

𝑋 = 𝑿(𝒏+𝟏)
(𝒊)̂

) 

𝑊𝑖𝑗 = {

1

𝑛𝑐𝑖
, 𝑐𝑖 = 𝑗

0 , 𝑒𝑙𝑠𝑒  
  𝐼 −

1

𝑚
1𝑚1𝑚

𝑇  𝑿(𝐼 −∑
1

𝑛𝑐
𝑒𝑐𝑒𝑐

𝑇

𝑘

𝑐=1

)𝑋𝑇 𝑿𝐵𝑋𝑇 

Furthermore, we denote with 𝑿(𝒏+𝟏)
(𝒊)̂

 the partially projected data to all modes except the 

𝑖-th, unfolded at the last mode, which indexes the samples. According to this and the 

definition of unfolding given at section 1.3, 𝑿(𝒏+𝟏)
(𝒊)̂ ∈ 𝑹𝒎×∏ 𝒑𝒋

𝒏
𝒋=𝟏  and each row of it 

contains a sample in a vectorized form. 

The graph-embedding framework provides a way to unify CA methods. To begin with, it 
provides an intuitive approach for interpretation of the input by modeling the data as 
weighted graphs. Moreover, the weights given to each graph can be used to compare 
and contrast CA methods. Parallel to this, such framework can be used in order to 
create new methods, even in the multilinear case. 

The graph-embedding framework also provided us with another point of view for the 
methods of interest. The problems and their solutions were mathematically the same as 
those presented in 2.1 and 2.2. However, the matrices used in the eigenproblems had a 
different interpretation. While this is an equally valid approach, we state that numerical 
instability problems (e.g., SSS problem) often emerge when dealing with real-world 
tensor data [1]. In that case, eigensolvers may fail to converge and this may lead to 
problematic results. Our approach, albeit less interpretable, uses more efficient 
numerical procedures and manages to overcome such problems.  

 

7 1𝑚 denotes a vector of 𝑚 ones. 𝑛𝑐 denotes the number of samples belonging in class 𝑐. 

8 𝑒𝑐 denotes the 𝑚-dimensional vector of all zeros except and 𝑒𝑐(𝑗) = 1 when the 𝑗-th sample belongs in 
the 𝑐-th class. 
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3. PROPOSED FORMULATION 

In this section we will present our proposed formulation for MPCA and DATER. We 
begin this section with a review of LS Tensor Regression. Like before, assume we are 
given 𝑚 tensor samples with 𝑛 modalities, grouped in a single tensor 𝑿 ∈ 𝑅𝑝1×𝑝2…×𝑝𝑛×𝑚 
with 𝑛 + 1 modalities. The additional mode indexes the samples. 

3.1 Least squares tensor Regression 

In the Tensor Regression problem, we are given an input tensor 𝑿 ∈ 𝑅𝑝1×𝑝2…×𝑝𝑛×𝑚 , the 
observed (scalar) output 𝑦 ∈ 𝑅 and the bias 𝑏 ∈ 𝑅 and our goal is to solve for the Tensor 

Regression coefficient 𝑾 ∈ 𝑅𝑝1×𝑝2…×𝑝𝑛×𝑚 so: 

𝑦 =< 𝑾,𝑿 > +𝑏 (3.1) 

One way to estimate 𝑾 is solving the respective LS problem: 

𝑾 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑾‖𝑦−< 𝑾,𝑿 >‖𝐹
2 (3.2) 

This model can be generalized for matrix or tensor output. For example, the simpler 
matrix case can be produced by replacing the inner product with the generalized inner 
product: 

𝑌 =< 𝑾,𝑿 >𝑛+ 𝑩 

𝑾 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑾‖𝑌−< 𝑾,𝑿 >𝑛‖𝐹
2 (3.3) 

where 𝑌 ∈ Ro×𝑚,𝑾 ∈ Ro×𝑝1×𝑝2…×𝑝𝑛 and 𝐵 ∈ Ro×𝑚. 

Several low-rank approaches suggest efficient solutions to the above problem. For 
example, Guo et al. [41] suggest replacing tensor 𝑾 with its CP/PARAFAC 
decomposition. More specifically, the above objective can be formulated as: 

𝑌 =< 𝑾,𝑿 >𝑛+ 𝐵 

{𝑾} = 𝑎𝑟𝑔 𝑚𝑖𝑛𝑾‖𝑌−< 𝑾,𝑿 >𝑛‖𝐹
2  

𝑠. 𝑡.  𝑾 = ⟦𝑉(0), 𝑉(1), … , 𝑈(𝑛)⟧ (3.4) 

where 𝑉(0) ∈ 𝑅𝑟×𝑜 and 𝑉(𝑘) ∈ 𝑅𝑟×𝑝𝑘  ∀𝑘 = 1,… , 𝑛. Kossaifi et al. [42] propose a Tucker 

structure for 𝑾. Accordingly, the above Tensor Regression problem can be formulated 
as: 

𝑌 =< 𝑾,𝑿 >𝑛+ 𝐵 

{𝑾} = 𝑎𝑟𝑔 𝑚𝑖𝑛𝑾‖𝑌−< 𝑾,𝑿 >𝑛‖𝐹
2  

𝑠. 𝑡.  𝑾 = ⟦𝑮;𝑈(0), 𝑈(1), … , 𝑈(𝑛)⟧ (3.5) 

where 𝑮 ∈ 𝑅𝑞0×𝑞1…×𝑞𝑛 , 𝑞𝑘 < 𝑝𝑘 ∀𝑘 = 0,… , 𝑛, 𝑈
(0) ∈ R𝑞0×𝑜 and 𝑈(𝑘) ∈ 𝑅𝑞𝑘×𝑝𝑘  ∀𝑘 = 1,… , 𝑛. 

The key benefit of the low-rank formulations is the reduction of regression parameters 
(as can be seen on Table 4 below. However, we are more interested in formulation 
(3.5) because it offers the freedom of using a different number of components per 
mode. 
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Table 4: Number of parameters in Tensor Regression formulations. 

Method Full 𝑾 (3.3) 
CP/PARAFAC of 𝑾 

(3.4) [41] 
Tucker of 𝑾 (3.5) [42] 

Regression 
parameters 

𝑜 × ∏ 𝑝𝑖
𝑛
𝑖=1   𝑟 × 𝑜 + ∑ 𝑟 × 𝑝𝑖

𝑛
𝑖=1   

∏ 𝑝𝑖
𝑛
𝑖=1 + 𝑝0 × 𝑜 +
∑ 𝑞𝑖 × 𝑝𝑖
𝑛
𝑖=1   

 

3.2 MPCA as a LS Tensor Regression problem  

In order to formulate MPCA as a LS Tensor Regression problem, firstly we need to 
express it as a minimization problem. Indeed, it can be proved that, just like its linear 
counterpart, MPCA can be formulated as minimization problem. The reconstruction 
error minimization objective for MPCA can be expressed as: 

{𝑈(1), … , 𝑈(𝑛)} = 𝑎𝑟𝑔𝑚𝑖𝑛𝑈(1),...,𝑈(𝑛)∑‖𝑿𝒋 − 𝒀𝒋 ×1 𝑈
(1)𝑇…×𝑛 𝑈

(𝑛)𝑇‖
𝐹

2
𝑚

𝑗=1

 

𝑠. 𝑡 𝑈(𝑖) ∈ 𝑅𝑞𝑖×𝑝𝑖 , 𝑈(𝑖)
𝑇
 𝑈(𝑖) = 𝐼𝑝𝑖 , 𝑞𝑖 < 𝑝𝑖, ∀i = 1,… , n (3.6) 

Substituting 𝒀𝒊 as 𝑿𝒊 ×1 𝑈
(1) ×2 𝑈

(2)…×𝑛 𝑈
(𝑛) and using (1.2) gives us the 

reconstruction error minimization objective for MPCA:  

{𝑈(1), … , 𝑈(𝑛)} = 𝑎𝑟𝑔 𝑚𝑖𝑛𝑈(1),...,𝑈(𝑛)∑‖𝑿𝒋 − 𝑿𝒋 ×1 𝑈
(1)𝑈(1)

𝑇
…×𝑛 𝑈

(𝑛)𝑈(𝑛)
𝑇
‖
𝐹

2
𝑚

𝑗=1

 

                   = 𝑎𝑟𝑔 𝑚𝑖𝑛𝑈(1),...,𝑈(𝑛)‖𝑿 − 𝑿 ×1 𝑈
(1)𝑈(1)

𝑇
…×𝑛 𝑈

(𝑛)𝑈(𝑛)
𝑇
‖
𝐹

2
 

𝑠. 𝑡 𝑈(𝑖) ∈ 𝑅𝑞𝑖×𝑝𝑖 , 𝑈(𝑖)
𝑇
 𝑈(𝑖) = 𝐼𝑝𝑖 , 𝑞𝑖 < 𝑝𝑖, ∀i = 1,… , n (3.7) 

We will now prove the equivalence of (2.1) and (3.6), following the methodology of Lu et 
al. [1]. For ease of presentation, we will use the more compact notation for both input 
and projected samples in (4.6): 

{𝑈(1), … , 𝑈(𝑛)} = 𝑎𝑟𝑔𝑚𝑎𝑥𝑈(1),...,𝑈(𝑛)‖𝑿 − 𝒀 ×1 𝑈
(1)𝑇 …×𝑛 𝑈

(𝑛)𝑇‖
𝐹

2
(3.8) 

Assume we are following an ALS approach and we are solving for the 𝑖-th projection 

matrix. Therefore, all the projection matrices except 𝑈(𝑖) are known. Leveraging (1.15) 

and ‖𝐴‖𝐹
2 = ‖𝐴(𝑖)‖𝐹

2
: 

{𝑈(𝑖)} = 𝑎𝑟𝑔𝑚𝑖𝑛𝑈(𝑖) ‖𝑋(𝑖) − 𝑈
(𝑖)𝑇𝑌(𝑖)𝑈𝛷(𝑖)‖𝐹

2

 

𝑈𝛷(𝑖) = (𝑈
(𝑛)⨂…⨂𝑈(𝑖+1)⨂𝑈(𝑖−1)⨂…𝑈(1)) (3.9) 

Using ‖𝐴‖𝐹
2 = 𝑡𝑟(𝐴𝐴𝑇) results in: 

{𝑈(𝑖)} = 𝑎𝑟𝑔𝑚𝑖𝑛𝑈(𝑖)𝑡𝑟 ((𝑋(𝑖) − 𝑈
(𝑖)𝑇𝑌(𝑖)𝑈𝛷(𝑖)) (𝑋(𝑖) − 𝑈

(𝑖)𝑇𝑌(𝑖)𝑈𝛷(𝑖))
𝑇

)  

= 𝑎𝑟𝑔𝑚𝑖𝑛𝑈(𝑖)𝑡𝑟 ((𝑋(𝑖) − 𝑈
(𝑖)𝑇𝑌(𝑖)𝑈𝛷(𝑖)) (𝑋(𝑖)

𝑇 − 𝑈𝛷(𝑖)
𝑇 𝑌(𝑖)

𝑇𝑈(𝑖))) (3.10) 
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It is true that 𝑡𝑟(𝐴𝐵𝐶𝐷) = 𝑡𝑟(𝐷𝐴𝐵𝐶) and 𝑡𝑟(𝐴) = 𝑡𝑟(𝐴𝑇). Applying the distributive 

property in (4.11) yields: 

𝑈(𝑖) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑈(𝑖)𝑡𝑟(𝑋(𝑖)𝑋(𝑖)
𝑇) − 2𝑡𝑟 (𝑋(𝑖)𝑈𝛷(𝑖)

𝑇 𝑌(𝑖)
𝑇𝑈(𝑖)) + 𝑡𝑟(𝑌(𝑖)𝑌(𝑖)

𝑇) (3.11) 

Plugging in 𝒀(𝒊) = 𝑈
(𝑖)𝑿(𝒊)𝑈𝛷(𝑖)

𝑇 : 

{𝑈(𝑖)} = 𝑎𝑟𝑔 𝑚𝑖𝑛𝑈(𝑖)𝑡𝑟(𝑋(𝑖)𝑋(𝑖)
𝑇) − 2𝑡𝑟(𝑌(𝑖)𝑌(𝑖)

𝑇) + 𝑡𝑟(𝑌(𝑖)𝑌(𝑖)
𝑇) 

= 𝑎𝑟𝑔𝑚𝑖𝑛𝑈(𝑖)𝑡𝑟(𝑋(𝑖)𝑋(𝑖)
𝑇) − 𝑡𝑟(𝑌(𝑖)𝑌(𝑖)

𝑇) (3.12) 

𝑿(𝒊) refers to the unfolding of the input data that cannot be changed, therefore the 

objective is equal to: 

{𝑈(𝑖)} = 𝑎𝑟𝑔 𝑚𝑖𝑛𝑈(𝑖) − 𝑡𝑟(𝑌(𝑖)𝑌(𝑖)
𝑇) 

        = 𝑎𝑟𝑔 𝑚𝑎𝑥𝑈(𝑖)𝑡𝑟(𝑌(𝑖)𝑌(𝑖)
𝑇) 

= 𝑎𝑟𝑔 𝑚𝑎𝑥𝑈(𝑖)‖𝒀‖𝐹
2  

= 𝑎𝑟𝑔𝑚𝑎𝑥𝑈(𝑖)∑‖𝒀𝒊 − 𝒀̅‖𝐹
2

𝑁

𝑖=1

(3.13) 

where the last equality holds because the data is centered and the mean of the samples 
(both input and projected) is zero. Notice that (3.13) is indeed the scatter maximization 

objective for MPCA, therefore the two objectives are interchangeable. ∎ 

An intuition on the equality of the two objectives for linear PCA can be seen by 
reviewing Figure 1. Notice that the same black line (Principal Axis) that maximizes the 
variation of the projection “forces” the reconstruction error (red lines) to be minimum, 
according to Pythagorean Theorem. Assuming we are solving in an ALS fashion for the 
𝑖-th projection matrices, (3.7) via (1.15) becomes: 

{𝑈(𝑖)} = 𝑎𝑟𝑔𝑚𝑖𝑛𝑈(𝑖)∑‖𝑋𝑗(𝑖) − 𝑈
(𝑖)𝑈(𝑖)

𝑇
𝑋𝑗(𝑖)𝑈𝛷(𝑖)

𝑇 ‖
𝐹

2
𝑚

𝑗=1

 

𝑤𝑖𝑡ℎ 𝑈𝛷(𝑖) = 𝑈
(𝑛)𝑇𝑈(𝑛)⨂…⨂𝑈(𝑖−1)

𝑇
𝑈(𝑖−1)⨂𝑈(𝑖+1)

𝑇
𝑈(𝑖+1)⨂…⨂𝑈(1)

𝑇
𝑈(1) 

𝑠. 𝑡 𝑈(𝑖) ∈ 𝑅𝑞𝑖×𝑝𝑖 , 𝑈(𝑖)
𝑇
 𝑈(𝑖) = 𝐼𝑝𝑖 , 𝑞𝑖 < 𝑝𝑖, ∀i = 1,… , n (3.14) 

Alternatively, if we group all the samples in tensor 𝑿: 

{𝑈(𝑖)} = 𝑎𝑟𝑔𝑚𝑖𝑛𝑈(𝑖) ‖𝑋(𝑖) − 𝑈
(𝑖)𝑈(𝑖)

𝑇
𝑋(𝑖) 𝑈𝛷(𝑖)+

𝑇 ‖
𝐹

2

 

𝑤𝑖𝑡ℎ 𝑈𝛷(𝑖)+ = 𝐼𝑛+1
𝑇𝐼𝑛+1⨂𝑈

(𝑛)𝑇𝑈(𝑛)⨂…⨂𝑈(𝑖−1)
𝑇
𝑈(𝑖−1)⨂𝑈(𝑖+1)

𝑇
𝑈(𝑖+1)⨂…⨂𝑈(1)

𝑇
𝑈(1) 

𝑠. 𝑡 𝑈(𝑖) ∈ 𝑅𝑞𝑖×𝑝𝑖 , 𝑈(𝑖)
𝑇
 𝑈(𝑖) = 𝐼𝑝𝑖 , 𝑞𝑖 < 𝑝𝑖, ∀i = 1,… , n (3.15) 
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Algorithm 3: LS-MPCA (GD) 

INPUT: Tensor samples 𝑿𝒊 ∈ 𝑅
𝑝1×𝑝2…×𝑝𝑛  ∀𝑖 = 1, . . . , 𝑚, 𝑘̂ (max iterations) 

OUTPUT: MPCA Projection matrices 𝑈(1), … , 𝑈(𝑛), 𝑈(𝑖) ∈ 𝑅𝑞𝑖×𝑝𝑖 , 𝑞𝑖 < 𝑝𝑖, ∀𝑖 = 1,… , 𝑛 

BEGIN 

for 𝒊 = 𝟏:𝒎 do 

    𝑿𝒊 ← 𝑿𝒊 −𝑚𝑒𝑎𝑛(𝑿)  # Center input data 

Initialize 𝑼(𝟏), … , 𝑼(𝒏) # Initialize projection matrices 

for 𝒊𝒕𝒆𝒓 = 𝟏: 𝒌̂  do 
    for 𝒊 = 𝟏:𝒏 do 

        𝑈(𝑖) ← 𝑈(𝑖) − 𝜂
∂E(U(i))

∂𝑈(𝑖)
 # 𝐸(𝑈(𝑖)) is the objective function of (3.15) or (3.16) 

    if little change in objective 𝑬: break 

return 𝑼(𝟏), … , 𝑼(𝒏) 

END 

We may now formulate Problem (4.7) as a LS Tensor Regression problem: 

𝑿 =< 𝑾,𝑿 >𝑛+ 𝑩 

{𝑾} = 𝑎𝑟𝑔𝑚𝑖𝑛𝑾‖𝑿−< 𝑾,𝑿 >𝑛‖𝐹
2  

𝑠. 𝑡.𝑾 = ⟦𝑮; 𝑉(1), 𝑉(2), … , 𝑉(𝑛+1)⟧ ∈ R𝑝1𝑝2…𝑝𝑛×𝑝1×𝑝2…×𝑝𝑛 , 

𝑉(𝑙) = {
𝐼, 𝑙 = 1

𝑈(𝑙−1)𝑈(𝑙−1)
𝑇
, 1 < 𝑙 ≤ 𝑛 + 1 

, 

𝑮(1) = 𝐼𝑝1𝑝2…𝑝𝑛 , 𝑈
(𝑖) ∈ 𝑅𝑞𝑖×𝑝𝑖 , 𝑈(𝑖)

𝑇
 𝑈(𝑖) = 𝐼𝑝𝑖 , 𝑞𝑖 < 𝑝𝑖, ∀i = 1,… , n (3.16) 

It straightforward to prove that the two objectives are equivalent by leveraging 

< 𝑾,𝑿 >𝑛= 𝑊(1)𝑋(𝑛+1)
𝑇 (3.17) 

and (1.15) (𝑾 and 𝑿 as defined previously). Pseudocode on solving MPCA with 
Gradient Descent on the respective LS problem is shown in Algorithm 3. 
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3.3 DATER as a LS Regression problem 

Before formulation DATER, we will briefly discuss the work of Ye [43], which will be 
used. The author of this work proposes a Least Squares regression formulation for LDA, 
so that more efficient and stable methods are applicable for solving, similarly to this 

work. Assuming we are given a data matrix 𝑋 ∈ 𝑅𝑑×𝑚 and an indicator matrix 𝑌 ∈ 𝑅𝑘×𝑚, 

multiclass LDA can be expressed as finding 𝑊 ∈ 𝑅𝑘×𝑑 (𝑘 denotes the number of 
classes): 

𝑊 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑊‖𝑌̈ −𝑊𝑋
𝑇‖
𝐹

2
, 𝑌̈ =

{
 
 

 
 
√
𝑚

𝑛𝑗
−√

𝑛𝑗

𝑚
, 𝑐𝑖 = 𝑗

−√
𝑛𝑗

𝑚
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(3.18) 

where 𝑛𝑗 denotes the number of samples belonging in class 𝑗 and 𝑚 is the total number 

of samples. Solving this LS problem yields the same solution as solving the 
eigenproblem formulation for LDA, such as the one presented in Table 3, under the mild 
condition: 

𝑟𝑎𝑛𝑘(𝑆𝑇𝑋) = 𝑟𝑎𝑛𝑘(𝑆𝐵𝑋) + 𝑟𝑎𝑛𝑘(𝑆𝑊𝑋
) (3.19) 

which is usually true in high-dimensional datasets, according to this work. 

We have stated that DATER can be seen as mode-wise LDA, therefore we may adopt 
this formulation to achieve our goal. Specifically, we may formulate DATER as: 

𝒀 =< 𝑾,𝑿 >𝑛+ 𝑩 

{𝑾} = 𝑎𝑟𝑔𝑚𝑖𝑛𝑾‖𝒀−< 𝑾,𝑿 >𝑛‖𝐹
2  

𝑠. 𝑡.𝑾 = ⟦𝑮; 𝑉(1), 𝑉(2), … , 𝑉(𝑛+1)⟧ ∈ R𝑘×𝑝1×𝑝2…×𝑝𝑛 , 

𝑉(𝑙) = {
𝐼, 𝑙 = 1

𝑈(𝑙−1), 1 < 𝑙 ≤ 𝑛 + 1 
, 

𝑌 = 𝑌̈, 𝑈(𝑖) ∈ 𝑅𝑞𝑖×𝑝𝑖 , 𝑞𝑖 < 𝑝𝑖, ∀i = 1,… , n (3.20) 

A more concise view on this objective can be seen by replacing 𝑾 with its 
decomposition: 

{𝑾} = 𝑎𝑟𝑔𝑚𝑖𝑛𝑾‖𝒀−< 𝑾,𝑿 >𝑛‖𝐹
2  

            = 𝑎𝑟𝑔𝑚𝑖𝑛𝑾‖𝒀 −𝑾(1)𝑿(𝑛+1)
𝑇 ‖

𝐹

2
 

= 𝑎𝑟𝑔𝑚𝑖𝑛𝑮,𝑈(1),…,𝑈(𝑛)‖𝒀 − 𝑮(1)(𝑈
(𝑛)𝑇⨂…⨂𝑈(1)

𝑇
)𝑿(𝑛+1)

𝑇 ‖
𝐹

2
(3.21) 

One difference between (3.20) and (3.16) is the fact that the core tensor 𝑮 does not 
have a fixed value in the current objective and has to be re-calculated in each iteration. 
The steps of a Gradient Descent approach to this problem are presented in Algorithm 4. 
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Algorithm 4: LS-DATER (GD) 

INPUT: Tensor samples 𝑿𝒊 ∈ 𝑅
𝑝1×𝑝2…×𝑝𝑛  ∀𝑖 = 1, … ,𝑚, 𝑘̂ (max iterations) and class 

labels 𝑐 ∈ Rm 

OUTPUT: DATER Projection matrices 𝑈(1), … , 𝑈(𝑛), 𝑈(𝑖) ∈ 𝑅𝑞𝑖×𝑝𝑖 , 𝑞𝑖 < 𝑝𝑖, ∀𝑖 = 1,… , 𝑛 

BEGIN 

Initialize 𝑼(𝟏), 𝑼(𝟐)… ,𝑼(𝒏) # Initialize projection matrices 

for 𝒊𝒕𝒆𝒓 = 𝟏: 𝒌̂  do 

    for 𝒊 = 𝟏:𝒏 do 

        𝑈(𝑖) ← 𝑈(𝑖) − 𝜂
∂E(U(i))

∂𝑈(𝑖)
 # 𝐸(𝑈(𝑖)) is the objective function of (3.20) or (3.21) 

        𝐺(1) ← 𝐺(1) − 𝜂
∂E(𝐺(1))

∂𝐺(1)
 # 𝐸(𝐺(1)) is the objective function of (3.20) or (3.21) 

return 𝑈(1), … , 𝑈(𝑛) 

END 
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4. EXPERIMENTAL EVALUATION 

We implemented the methods mentioned in Section 2 and 4 and in this we evaluate 
their performance on real-world data. Specifically, we consider the image denoising task 
on the cropped Extended Yale Face Database B [44, 45] and the face recognition 
(classification) task on the ORL dataset [46]. NumPy [47], PyTorch [48] and Tensorly 
[49] were used extensively for representing and performing operations on the data. 
SciPy [50] and Python Image Library (PIL) [51] were also used for reading the data. 
Matplotlib [52] was used for plotting. For methods that required solving eigenproblems, 
the eig function9 of [47] was used, while the autograd package10 of [48] was used for 
differentiation in the implemented Gradient Descent approaches. 

4.1 Image denoising 

The Extended Yale Face Database B consists of 64 images of 38 people, summing to a 
total of 2414 images. For this experiment, we considered only the frontal pose (Pose 
01) of each person with frontal illumination. Therefore, the data used contained a total of 
38 images (one for each person). 

4.1.1 Dividing the dataset 

Our goal in this experiment is to compare the performance of the relevant methods on 
unseen data. We begin this experiment by dividing the available data in the train (30 
images) and test set (8 images) at random. We further divided the train set in 3 folds (10 
images in each) and added Gaussian noise (using scikit-image [53]) with deviations 
𝜎𝑡𝑒𝑠𝑡 = 0.007,0.01,0.02,0.05 to the test set. We performed Hyperparameter selection on 
the methods used (Gaussian Filter, Total Variation (TV) Filter [53, 54], Vectorization + 
Linear PCA [55], MPCA [16] and the (proposed) LS-MPCA by 3-fold Cross validation by 
adding gaussian noise on each validation test with deviations 𝜎𝑣𝑎𝑙𝑖𝑑 =
0.005,0.008,0.015,0.03,0.06. Using the obtained best performing hyperparameters, we 
execute all algorithms on the test set. The results are validated with the following criteria 
(Assume we are given 𝑋(𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙), 𝑋(𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑) ∈ 𝑅

𝑛𝑗×𝑛𝑖): 

• Mean Squared Error (MSE): A straightforward mathematical way to compute the 
difference between the denoised image and the original. MSE is given by: 

𝑀𝑆𝐸 =
1

𝑚
∑∑(𝑋(𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙)𝑖𝑗 − 𝑋(𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑)𝑖𝑗)

𝑛𝑖

𝑖=1

𝑛𝑗

𝑗=1

(4.1) 

• Peak Signal-to-Noise Ratio (PSNR): A well-known reconstruction assessment 
metric that can be defined relatively to MSE: 

𝑃𝑆𝑁𝑅 = 10𝑙𝑜𝑔10 (
𝑚𝑎𝑥2{𝑋(𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙)}

𝑀𝑆𝐸
) (4.2) 

where 𝑚𝑎𝑥{𝑋} returns the largest possible value for 𝑋. 

• Absolute Relative Error (ARE): is defined as: 

𝐴𝑅𝐸 =
‖𝑋(𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙) − 𝑋(𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑)‖

‖𝑋(𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙)‖
(4.3) 

 

9 https://numpy.org/doc/stable/reference/generated/numpy.linalg.eig.html 

10 https://pytorch.org/docs/stable/autograd.html 
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• Execution time (s) 

• Qualitative assessment of resulting denoised images 

A high-level overview of this task is presented in Figure 5. Figure 6 presents visual 
results for each of the 8 images of the test set and Table 5 presents relevant metrics. 

 

Figure 5: Overview of the Image Denoising experiment                                                               
(Methods with * do not require any training) 

Table 5: Numerical results of relevant methods on test set. 

Method Average 
PSNR 

Average     
MSE 

Average     
Time (s) 

Average   
ARE 

Gaussian    
Filtering 

23.828 0.005 0.00019 0.132 

TV Filtering 21.927 0.008 0.00011 0.169 

PCA 22.388 0.007 0.00537 0.158 

MPCA 22.520 0.007 0.36706 0.159 

LS-MPCA 22.375 0.007 0.03149 0.160 

 
Metric-wise, Gaussian Filtering seems to outperform the rest of the methods, yielding 
the highest PSNR and the lowest MSE and ARE. However, the denoised images 
produced by this method show blurriness, which makes the detection of edges by eye 
sometimes harder. PCA seems to produce the sharpest images, but some details on 
each face sample seem to be lost in the projection, which of course has a toll on the 
quality of the result. MPCA and LS-MPCA have similar behavior, with the effect of the 
denoising being especially visible at lower settings of variance of the noise. Lastly, 
regarding the execution time, we notice that Gaussian and TV Filtering perform best, 
which is to be expected as these methods are applied directly to the images without 
requiring any training. PCA performs the fastest out of the rest of the methods, and we 
note the advantage of LS-MPCA on execution time (one order of magnitude less) over 
the standard MPCA. 
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Figure 6: Visual results of implemented methods on the test set. The numbers in the parentheses 

denote number of components. 

4.1.2 Execution on full set 

In order to get another view at how each method performs, we added gaussian noise to 
all of the available data (38 images) with deviations 𝜎𝑓𝑢𝑙𝑙 = 0.007,0.01,0.05,0.075 and 

used all of the methods to perform denoising. Like we did in section 5.1.1, we begin with 
a gridsearch approach to determine -among other parameters- the number of 
components for PCA-based methods. The results of this procedure are presented in 
Figures 7 and 8. Numerical results for all methods (with the best performing 
parameters) can be found on Table 6.  

Similarly to the previous experiment, Gaussian Filtering seems to yield the best metrics. 
Regarding PCA, we observe that increasing the number of components used, results in 
deteriorating denoising quality. This seems also to be the case with MPCA and LS-
MPCA, but we notice that using 4-6 componets in the first mode and at least 8 and no 
more than 12 components in the second results in rise of the relevant metrics. Methods 
that require no training, as expected, provide results more quickly. PCA uses less 
components, so less computations are generally required than its tensor extensions. As 
also noted in the previous experiment, LS-MPCA’s execution time is less than that of 
MPCA, which can easily be seen at the legend-colorbar of Figures 7 and 8. In this 
experiment, we also measured the orthogonality of the produced projection matrices 

using the distance ‖𝑈𝑈𝑇 − 𝐼‖𝐹
2 . Both MPCA and LS-MPCA presented similar behavior in 

this aspect. 
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Figure 7: Numerical results of MPCA for various number of components per mode (Full Dataset). 
Red triangles denote the global maxima-minima. 

 
Figure 8: Numerical results of LS-MPCA for various number of components per mode (Full 

Dataset). Red triangles denote the global maxima-minima. 
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Figure 9: Orthogonality of computed projection matrices (Full Dataset). 

 

Table 6:  Results on Full Dataset denoising.                                                                                        
Bold values indicate best metrics of the respective method. 

Method 
Average 
PSNR 

Average     
MSE 

Average     
Time (s) 

Average      
ARE 

Gaussian 
Filtering 

𝟐𝟑. 𝟓𝟎𝟓 𝟎. 𝟎𝟎𝟓 0.0002 𝟎. 𝟏𝟓𝟕 

TV (𝑤 = 2.0) 𝟐𝟐. 𝟒𝟔𝟗 𝟎. 𝟎𝟎𝟕 0.0002 𝟎. 𝟏𝟖𝟐 

TV (𝑤 = 5.0) 21.084 0.011 0.0002 0.222 

PCA (2) 𝟐𝟎. 𝟑𝟗𝟐 𝟎. 𝟎𝟏 0.011 𝟎. 𝟐𝟐 

PCA (4) 19.861 0.011 0.012 0.236 

PCA (6) 19.349 0.014 0.015 0.256 

PCA (8) 18.896 0.017 0.014 0.275 

PCA (10) 18.579 0.019 0.019 0.291 

PCA (12) 18.255 0.022 0.02 0.306 

PCA (14) 17.947 0.024 0.02 0.318 
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PCA (16) 17.651 0.026 0.008 0.331 

PCA (18) 17.482 0.027 0.009 0.341 

PCA (20) 17.6 0.028 0.009 0.343 

PCA (22) 17.809 0.028 0.121 0.34 

PCA (24) 17.891 0.028 0.025 0.339 

PCA (26) 17.868 0.028 0.01 0.34 

PCA (28) 17.825 0.028 0.011 0.34 

PCA (30) 17.689 0.028 0.014 0.344 

MPCA (10,10) 22.25 0.007 0.608 0.182 

MPCA (12,12) 21.664 0.008 1.630 0.198 

MPCA (15,15) 20.9 0.011 0.810 0.221 

MPCA (20,20) 19.680 0.015 0.977 0.262 

MPCA (25,25) 18.524 0.021 0.536 0.303 

MPCA (30,30) 17.475 0.027 0.159 0.342 

MPCA (6,8) 𝟐𝟐. 𝟗𝟑𝟒 𝟎. 𝟎𝟎𝟓 0.248 𝟎. 𝟏𝟔𝟒 

MPCA (4.10) 22.914 0.005 0.153 0.164 

LS-MPCA 
(10,10) 

22.007 0.007 0.027 0.186 

LS-MPCA 
(12,12) 

21.507 0.008 0.0238 0.2 

LS-MPCA 
(15,15) 

20.82 0.011 0.0238 0.221 

LS-MPCA 
(20,20) 

19.624 0.015 0.025 0.262 

LS-MPCA 
(25,25) 

18.572 0.0207 0.025 0.301 

LS-MPCA 
(30,30) 

17.474 0.027 0.024 0.342 

LS-MPCA 
(4,10) 

𝟐𝟐. 𝟔𝟑𝟏 𝟎. 𝟎𝟎𝟔 0.024 𝟎. 𝟏𝟕 
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4.2 Face recognition 

Our Database of Faces (ORL) [46] is dataset with 400 images of 40 subjects. The 
datasets contain multiple images of each subject, varying the light and facial 
expression. Our goal in this experiment would be to obtain the most discriminative 
features using LDA-based methods and assess their quality by using these features as 
input to baseline classifiers (Nearest Neighbor and Linear Support Vector Machines). 

We begin this experiment  by dividing the data in the train (300 samples) and test set 
(100 samples). Then, we perform stratified 5-fold Cross Validation to determine the best 
performing parameters  for each method. The methods we will compare are vec+LDA 
(vectorization prior to applying LDA), DATER (Section 2), LS-DATER (proposed method 
at Section 4) and PCA+LDA (vectorization and PCA prior to LDA). An overview to this 
experiment is presented in Figure 10. 

Having obtained the best performing hyperparameters, we present the results for each 
method in Figure 11. From the perspective of accuracy, we notice that all methods 
predict the correct label for more than 90% of the test samples, with DATER even 

reaching 100%. Nonetheless, all the methods have comparable results. By viewing the 
lower part of Figure 9, however, we see where the methods differ: their execution time. 
vec+LDA and PCA+LDA present the lowest times. Regarding DATER and LS-DATER, 
we once again notice the advantage the latter has when it comes to computation time 
over the former. 

Figure 12 shows heatmaps of the orthogonality of each of the produced projection 
matrices for DATER and our proposed LS-DATER for any combination of components 
per mode. One can easily see that our proposed formulation is able to retain the 
orthogonality regardless the components used, whereas the DATER fails to do so when 
a increasing the number of components (especially in modality 1). We kindly remind 
readers that orthogonality is not a strict requirement for DATER. However, using LS-
DATER in this case results in less correlated features. 

 

 

Figure 10: Overview of Face Recognition task. 
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Figure 11: Classification results for Face Recognition Task (test set). 

 

Figure 12: Orthogonality of produced projection matrices (Face Recognition)
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5. CONCLUSION 

In this thesis, we have presented various CA methods and their extensions for tensor 
data. More specifically, we have investigated MPCA and DATER and presented how 
these methods can be formulated as generalized eigenproblems. Such approach may 
lead to problematic results in quality because the involved matrices may be near-
singular (e.g., highly correlated data). Additionally, tensor data is typically highly 
dimensional, and this may result in surge in the execution time of eigensolvers. As a 
remedy, we proposed a LS Tensor Regression formulation for MPCA and DATER, thus 
making more numerically stable and less computationally demanding methods usable. 
In the last section, we implemented and experimentally assessed our proposition and 
noticed competitive results. Moreover, the results of our formulation were similar to the 
eigen-formulation, but the former had the advantage of a smaller (by one order of 
magnitude) execution time. Furthermore, in the case of LS-DATER, the resulting 
mapping contained features that were more uncorrelated, which of course is an extra 
benefit. 

As mentioned at the start of this work, PCA and LDA are the most well-known but not 
the only CA methods in the literature. Many of those methods have been extended to 
tensor data as well, such as MMICA [26] and MCCA [29]. For future work, we are 
planning to investigate formulations of more methods in the LS Tensor Regression 
setting. The end goal of this investigation would be to create a unified framework for 
Tensor CA methods. 



A Least Squares formulation for Multilinear PCA and LDA 

C. Chatzis   30 

ABBREVIATIONS – ACRONYMS 

ALS Alternating Least Squares 

CCA Canonical Correlation Analysis 

DATER Discriminant Analysis with tensor representation 

fMRI functional Magnetic Resonance Imaging 

FPT Full projection truncation 

GTDA General Tensor Discriminant Analysis 

HOSVD Higher Order Singular Value Decomposition 

ICA Independent Component Analysis 

LDA Linear Discriminant Analysis 

LS Least Squares 

MSE Mean Squared Error 

NMPCA Non-negative Multilinear Principal Component Analysis 

PCA Principal Component Analysis 

PSNR Peak Signal-to-noise Ratio 

RMPCA Robust Multilinear Principal Component Analysis 

SMT Sequential Mode Truncation 

SSS Small Sample Size problem 

TR1DA Tensor Rank-one Discriminant Analysis 

TROD Tensor Rank-one Decomposition 

TTP Tensor-to-Tensor projection 

TV Total Variation 

TVP Tensor-to-Vector projection 

UMLDA Uncorrelated Multilinear Discriminant Analysis 

UMPCA Uncorrelated Multilinear Principal Component Analysis 
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