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NEPIAHWYH

Av Kal n TPWTN €PEUVNTIKA OpaoTnNPIOTNTA OXETIKA ME TNV AvAAuCn ZuviIOTWOWV
(Component Analysis - CA) eu@avioTnKe APKETEC OEKAETIEG TTPIV, O TOUEAG AUTOG Eival
OKOUN apKeTa evepydg. Aoopévou €vOoG ouvolou Oedopévwy, pia pEBodog CA
uttoAoyiel pia  atreikovion (mapping) Twv apxIKwv Oedouévwy, OTnV OTToia  Ta
XOPOAKTNPIOTIKA KABE deiyuaTog Ba £EUTTNPETOUV KAAUTEPA Ta BIABECINA EpYAAEia KAl TOV
EKAOTOTE OKOTTO. ZUVABWG, N TTPOKUTITOUCA TTPOROAN €XEl AlyOTEPA XAPOAKTNPIOTIKA ATTO
TO OUVOAO €10000U KOl CUVETTWG N TIPOCEYYION QUTA €ival yvwoTh Kal wg Meiwon
AlaoTtdoewv (Dimensionality Reduction). MNMapdAo 1Tou autoi o1 péBodol ATav apxIKda
oxedlaopévol yia dlavuopaTtika dedopéva, n avaykn yia avadluon TToAudidoTatwyv
OedopévwV aTTOTEAECE OXNUA VIO TNV ETTEKTACN TOUG O€ TAVUOTEG. 2Z€ QUTAV TNV
OITTAWWATIKN €pyacia, Ba €OTIGOOUPE O€ QUO TETOIEG ETTEKTACEIG: TNV [MoAuypauuiki
AvdAuon Kupiwv ZuviotTwowv (Multilinear Principal Component Analysis — MPCA) kai
TNV AvaAuon Aidkpiong pe Avatrapaotaon TavuoTth (Discriminant Analysis with Tensor
Representation — DATER) kai 8a TTapousIACOUNE TTWG SIATUTTWVOVTAl WG TTPORAANATA
eupeong 1I01I0TIHWY Kal 1IB10d1avuopaTwy. Mia T€Tola dIaTUTTWON, WOTOCO, EUTTEPIEXEI TA
€€Ng TTpoBANuara: (1) dev atrayopeuel TNV €TTIAUCT TTPORANUATWY EUPECNG IBIOTILWY KAl
1I0108IaVUCPATWY O€ TTiVOKESG KaKAG kataoTaong (ill-conditioned matrices), Trpdyua TTou
IOXUElI APKETA oUXVa o€ Oedopéva TavUoTWY [1] Kal (2) o1 EUTTAEKOUEVOI TTIVOKEG €XOUV
MeyAAeg dlaoTdoelg Kal N eTTIAuoN TETOIWY TTPORBANPATWY aTTaITEl APKETO Xpovo. MNa To
OKOTTO QuTd, TrpoTeivoupe évav Tpotro dlatummwong Twv MPCA kai DATER wg
TTpoBARpara MaAivopdéunong TavuoTwy, €101 WOTE VA PTTOPOUV va EQAPPOCTOUV
TTEPICCOTEPO APIOUNTIKA €UOTABEIC Kal UTTOAOYIOTIKA QTTAOUCTEPEG TTPOCEYYIOEIG (TT.X.
Gradient Descent). KatoTv, €¢eTdloupe Tnv TOI0TNTA TNG TTPOTACNG OGS OE TTPAYUATIKA
oedopéva pe Teipapara Agaipeong OopuBou (Image denoising) kal Avayvwpiong
MpoowTrou (Face recognition).

OEMATIKH MNMEPIOXH: Mnxaviki Maénon

AE=EIZ KAEIAIA: MoAuypappuiky AvaAuon Kopiwv ZuviotTwowv, AvaAuong Aidkpiong
bMe Avamapdaotacn TavuoTh, AtmroouvBéoeligc TavuoTtwy, MEBodol

TavuoTwy, MaAivépdéunon TavuoTwyv






ABSTRACT

Although the first works relevant to Component Analysis (CA) date many decades ago,
it still remains a very active research area. Given a dataset, CA methods aim to find a
mapping of it, the features of which are ideal for the available tools or the assigned task.
Typically, the produced mapping has fewer features than the original data, therefore this
approach is also known as Dimensionality Reduction. While these methods were
designed to work on vectors, the need to analyze multidimensional datasets with an
abundance of features, fueled their extension to tensors. In this thesis, we will
investigate two such extensions, Multilinear Principal Component Analysis (MPCA) and
Discriminant Analysis with Tensor Representation (DATER) and present how they are
formulated as generalized eigenproblems. Such formulation, however, conceals several
drawbacks: (1) it may require solving eigenproblems on ill-conditioned matrices, which
is more than often the case when it comes to tensor data [1], and (2) the matrices
involved are commonly highly dimensional and solving for their eigenvalues requires
significant computation time. To this end, we will propose a Least Squares (LS) Tensor
Regression formulation for MPCA and DATER, which makes applicable more
numerically stable and computationally simpler approaches (e.g., Gradient Descent)
and evaluate it in practice with an Image denoising and Face recognition task.

SUBJECT AREA: Machine Learning

KEYWORDS: Multilinear Principal Component Analysis, Discriminant Analysis with
Tensor Representation, Tensor Decompositions, Tensor Methods,

Tensor Regression






“We must know. We will know.”

- David Hilbert
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A Least Squares formulation for Multilinear PCA and LDA

1. INTRODUCTION

1.1 Component analysis

With the ability to capture and store datasets with abundant features nowadays,
Component Analysis (CA) methods are becoming more and more widely used. In their
essence, these methods produce a mapping of the input data to a more “meaningful”
subspace. Of course, the exact interpretation of “meaningful” depends on the method
used and the task at hand.

Principal Component Analysis (PCA) [2, 3], for example, creates uncorrelated features
that capture as much variance from the input points as possible. Mathematically, PCA
aims to find an orthogonal transformation such that this criterion is satisfied. From a
geometric point of view, PCA can be seen as a transformation of the axis, so that each
direction captures the most possible variation, and each axis is perpendicular to each
other. The new axes are referred to as Principal Axes, while the projection of the
features on these axes as Principal Components. A visual intuition is presented in
Figure 1. We note that PCA does not discard feature per se, but instead it creates new
features from linear combinations of the original.

Figure 1. Finding the optimal 1D Principal Axis on sample 2D Data. Blue and red dots denote
samples and projection, respectively. PCA computes the Principal Axis (black line) so that it
captures as much as variance as possible, therefore the optimal solution is the rightmost.
The gray line denotes the second Principal Axis [4].

On the other hand, Linear Discriminant Analysis (LDA) [5] takes a supervised approach.
More specifically, this method projects the input data to the subspace that maximizes
the distance between (the means of) the classes, while keeping the distance between
samples of a class (and the respective class mean) at minimum. For the binary case,
this objective is famously known as “Fisher’s Discrimination Criterion” and computing
the respective linear transformation is typically a trace quotient problem, as we will
investigate in the following.

Independent Component Analysis (ICA) [3, 6] is an unsupervised approach that aims to
represent the data in statistically independent features. While this approach may seem
similar to PCA, we should note that ICA has a generative approach, in the sense that it
estimates a linear combination of random variables that produces the input data. ICA is
famously associated with the “Cocktail Party Problem”, according to which one is tasked
with distinguishing between speakers in a party, where supposedly multiple people talk
simultaneously. Furthermore, the required statistical independency of the produced
features is a stricter constraint that the uncorrelatedness of PCA. In other words, ICA
prohibits any kind of relationship between produced features while PCA just linear ones.

C. Chatzis 1
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Canonical Correlation Analysis (CCA) [7] is useful when the task at hand reduces in in
modeling the interactions between two sets of data. Specifically, CCA receives two input
data sets and projects them in the subspace, that maximizes the correlation between
them. In practice, CCA attempts to produce features that represent both datasets as
best as possible. These features, in a similar fashion to PCA, are referred to as
Canonical Variables, while the bases of the constructed subspace as Canonical Axes.

It is not uncommon that data may hold a more complex structure and linear methods,
such as the aforementioned, have poor performance. Consequently, kernel extensions
have been proposed including KPCA [8], KLDA [9], KICA [10] and KCCA [11].
Moreover, non-linear embedding approaches are also frequently used, such as
Laplacian Eigenmaps (LE) [12], Local Linear Embedding (LLE) [13], and ISOMAP [14].
These methods share a common rationale: if two samples are “close” (as in similar) to
each other, their projections should be “close” too.

Evidently, incorporating such methods yields many benefits. To begin with, they can be
used as a feature extraction technique, in order to avoid the computational burden of
highly correlated features or produce more meaningful ones when the input is sparse
(i.e., lots of zeros) or when discrimination is important (e.g., LDA). What’s more, the
hardware prerequisites for storing and working on the downsized dataset are
decreased, as less memory and computations are required. All these, along with the
fact that these methods typically involve only a small number of parameters make them
all the more appealing.

1.2 Extending to tensors

Lately, there has been a lot of focus on developing effective component analysis
methods on data that evolves or is produced “naturally” over multiple axis. Indicative
examples of such data are videos, with the axes being width, height and time and
functional Magnetic Resonance Images (fMRI) with the addition of depth. Tensors, or
multi-dimensional arrays, are becoming steadily an indispensable tool when dealing
with such data, because not only they possess intuitive structure (spontaneous
extension of matrices), but also many operations used by modern Machine Learning
approaches extend naturally to them [15]. For example, if we model each frame of a
video as 2D array, with each entry denoting pixel intensity, we end up with a 3D tensor.
These dimensions/axes are known as tensor modes and their quantity denotes the
order of the tensor.

. Mode 3 (time)

Mode 1 (spatial column)

Mode 2 (spatial row)

Figure 2: Representing frames of a sequence as a 3rd order tensor.
Notice the three modes of such dataset [1].
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One could easily notice that the tremendous increase in the number of features per
tensor sample, so feature selection or dimensionality reduction is naturally advised.
Moreover, the Small Sample Size problem (SSS)?!, which is usually the case when it
comes to tensor data, contributes to ill-conditioning [1]. We could use one of the
approaches mentioned in Section 1.1, after a vectorization operation. Albeit valid, this is
approach is questionable. By doing so, we naively ignore the negative effects of SSS,
amplify the consequences of the curse of dimensionality and additionally disregard
information on how each part of the sample changes over all of the modalities. Tensor
Component Analysis methods, on the other hand, such as those presented in the
following, leverage this information, and produce more interpretable and numerically
stable results.

Many approaches have been proposed on extending PCA for tensor data. Multilinear
PCA (MPCA) [16] performs the PCA procedure mode-wise. Hence, the resulting
projection consists of uncorrelated features in each mode. Uncorrelated MPCA
(UMPCA) [17] projects each tensor sample to a vector while keeping the produced
features (components of produced vectors) uncorrelated. Similarly, Tensor Rank-One
Decomposition (TROD) [18] also produces a vector for each sample, but it does so by
minimizing the reconstruction? error. Depending on the type of data, Non-negative
MPCA (NMPCA) [19] may be also of interest. This method performs the same task as
MPCA, while also enforcing non-negativity constraints. When outliers hinder the quality
of the projection, Robust MPCA (RMPCA) [20] or the [;-norm [21] have been proved as
valuable countermeasures.

Many multilinear extensions for LDA have been suggested as well. Discriminant
Analysis with Tensor Representation (DATER) [22] can be seen as applying LDA to
each mode of the data. General Tensor Discriminant Analysis (GTDA) [23] has the
same goal as DATER. However, the formulation of the GTDA is based on difference
rather than a ratio. Uncorrelated Multilinear Discriminant Analysis (UMLDA) [24] and
Tensor Rank-One Discriminant Analysis (TR1DA) [25] can be seen as the counterparts
of UMPCA and TROD for LDA. Both methods project each tensor sample of the input to
a vector with discriminative features, but UMLDA additionally employs uncorrelatedness
constraints. The authors of [24] also propose R-UMLDA, which incorporates
regularization, thus enhancing the method’s robustness.

Tensor-compatible ICA and CCA approaches have also been presented. Multilinear
Mode-wise ICA (MMICA) [26] aims to uncover the mode-wise sources that produce the
input data. 2D-CCA [27] and 3D-CCA [28] are the 2D and 3D extensions of the classical
linear method. Contrary to the later proposed MCCA [29], however, they do not ensure
uncorrelatedness of the projected features.

The Graph Embedding Framework [30] has also contributed to the development of TCA
methods. According to the authors, input data shall be modeled in two weighted graphs:
the “intrinsic” graph, which captures the similarity between data samples and the
“penalty” graph, which describes the appropriate constraints. Any TCA method could be
formulated under this framework as a generalized eigenvalue problem involving the
Laplacian and adjacency matrices of these graphs. In addition to making the similarities
and differences of TCA methods distinct, this work became the foundation for novel
methods such as [31], [32] and [33].

1 The SSS scenario is when the data contains more features than samples.

2 Distance between original data and data after we apply the projection along with its inverse. We will
thoroughly explore this notion throughout this work.
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Before the end of this subsection, we should also mention the “Linear Subspace
Learning” framework [1]. The authors, apart from providing an extensive survey, present
a thorough categorization and in-detail technical review of the relevant methods.

1.3 Notation and preliminaries

From this point forward, scalars are denoted as lowercase letters (e.g., a,b). Vectors
are denoted as lowercase bold letters (e.g., a, b), matrices as uppercase letters (e.g.,
A, B) and tensors as uppercase bold letters (e.g., 4, B). The transpose and the inverse
of a matrix A are denoted as AT and A™! respectively. Operators tr(A) and ||B||; are
used to denote the trace of matrix A and Frobenius norm of tensor B.

The number of indexes required to access a single entry in a tensor defines its order.
For example, vectors are of order 1, matrices are of order 2 and 3D tensors are of order
3. According to this, for tensor A of order 3, A4, ;,;, denotes the element at position
(i1, 15, i3). For higher order tensors (at least 3 modalities) we can obtain its mode-n
fibers by fixing all indices except the n-st. Slices can be obtained similarly by fixing the
index of an additional mode. A visual illustration of fibers and slices for a 3D tensor is
shown on Figures 2 and 3.

- Vi
L/ L
L1/ [’
| o T
PR P I PR B I Y [
(a) Mode-1 (column) fibers: x5, (b) Mode-2 (row) fibers: x;. (c) Mode-3 (tube) fibers: x;;
Figure 3: Fibers of 3D tensor [34].
f
f
[
¢ f
¢
£
I/
&
I// | -
& 112117l :
(a) Horizontal slices: X .. (b) Lateral slices: X ;. (¢) Frontal slices: X, (or X, )

Figure 4: Slices of a 3D tensor [34].
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It is often we require tensors in a matrix form. An organized way to do so is by tensor
unfolding. Specifically, for a tensor A € RP1*Pz-*Pn we can define the mode-i unfolding,
where the n-mode fibers are used in order form a matrix A, € RPi*P1-Pi-1Pir1-Pn_More
specifically, the element in position (iy, i, ..., i) IS mapped to the matrix’s (i;,j), where
Jj =1+ XRo1kzn(ic — 1) X [Im=k+1,m=i Pm- In the following, we will follow the definition of
tensor unfolding given by [15]. Similarly, tensor vectorization for A € RP1*P2-XPn
(vec(A)), results in a vector of size RP1Pz-Pn

We can now define the n-mode product between a matrix M € R7*Pm and a tensor A:

A X, M = MA(y € RPr*P1-Pr-1dPn+1-Pm (1.1)

We note two important properties of the n-mode product that will be of use:
Ax,Mx,N=Ax,NM (1.2)
AX, NX;y M =AXp, M X, N (1.3)

The inner product between tensors A € RP1*Pz-*PN and B € RP1*Pz2-*Pn s defined as:
P1 D2
<AB>= Z z z Aiiyiy Bijiyiy (1.4)
11—1 l2—1 n—1

Likewise, the Generalized tensor inner product between tensors A € RPx*P1*P2-*Pn gnd
B € RP1XP2--XPnXPy jg:

D1 D2
< A B > - z Z z A l1l2 lN l1l2 ln (15)
l1 1 12 ln_l

Notice that < A, B >, € RPx*Pr_ In Table 1, we sum up the notation for various tensor
related products that will be used throughout.

Table 1: Notation used for various tensor related products.

Symbol Operation
o Outer product
® Kronecker product
©) Khatri-Rao product
<> Inner product
<>y Generalized inner product
Xy n-mode product

A tensor of n-th order that can be produced by the outer product of n vectors is referred
to as a rank-1 tensor. In general, the rank of a n-th order tensor X is the minimum
number of rank-1 tensors (also n-th order) that sum up to X.
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Finally, as a measure of variation for Tensors, we kindly remind readers of the total
(1.6) and total i-mode scatter (1.7) matrix for a Tensor X with m samples:

m
Wa=Sr, = ) |1 - XII! (16)
j=1
m
—112
Pag = Sty = Ellxj(i) - X(l)”F (1.7)
j=1

where A; and A4;q,y denote the i-th tensor sample and its mode-n unfolding respectively
and A, denotes the mean mode-n unfolded sample:

1 m
A(n) = %ZAl(n) (1.8)
i=1

Because ||A||r = ||A(i)||F, (1.6) and (1.7) are equal.

For supervised approaches, we define the between-class and within-class scatter:

k
Say = Y melX; - X1 (1.9)
c=1

m
Swy = Z |x; - X,
=1

Where m, denotes the number of samples in class c. X, and X, denote the mean of
class ¢ and the mean of the class of sample i respectively.

(1.10)

2
F

Tensor decompositions, just like their equivalents for matrices, “break down” tensors
into simpler building blocks that may be easier to interpret, require less storage and can
help save up computational resources.

The CP/PARAFAC decomposition expresses a n-th order tensor X € RP1*+*Pn as a
sum of rank-1 tensors:

r

X = Z a® o qg@ ..o g (1.11)
i=1
If r in (1.11) is equal to the rank of tensor X, this can be seen as the higher order
extension rank decomposition. However, it has been proved [35] that computing the
Tensor rank is an NP-Complete problem in the general case. The most well-known way
of computing the CP/PARAFAC decomposition is with Alternating Least Squares (ALS).
First, for a tensor X we formulate the objective as:

X = ming||x — X||*,4 = [AD, 4@, .., a™] (1.12)

Where A® € RP*" vi = 1,...n. In (2) we have “stacked” the vectors corresponding to
the first mode in matrix A®, the vectors corresponding to the second mode in A® and
so on. Then, after initialization, we gradually solve for each component matrix while
fixing the rest until a stopping criterion is met (max iterations, convergence or “good
enough” approximation). Nonetheless, ALS is always “in danger” of being stuck at local
minima.
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The Tucker decomposition expresses a tensor as another tensor multiplied by a matrix
at each mode:

X=G6x%x AW x, AP x, A®W =[6; AW, ..., AM] (1.13)

Where A® € RPX4iyj = 1,..n and G € RPx*P1xP2-XPn s referred to as the core tensor.
While an ALS approach is also applicable here, the Higher Order Singular Value
Decomposition (HOSVD) [36] procedure can also be used to compute a Tucker
decomposition. In short, we perform SVD on each mode-i unfolding of the given tensor
and set matrix A®) equal to the most significant singular vectors. Then, we compute the
core tensor using:

G=Xx, AW x, AD"  x A" (1.14)
We note the matricized version of (1.14) that will be used extensively later:
X = APG(AMWRAM VR ...@AKVRAKR ...@AW)T (1.15)

[34] is a great resource regarding the aforementioned decompositions and their
applications.

1.4 Thesis outline

In Section 2, literature and formulations related to ours are presented. In Section 3, we
present our proposed least squares formulation for MPCA and DATER. Lastly, in
Section 4, we experimentally evaluate our proposed formulation on an Image Denoising
and a Face Recognition (Classification) task and present the relevant results.
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2. RELATED WORK

In this section, we will present various formulation of the relevant tensor CA methods.
For the following, assume that we are given m tensor samples with n modalities (i.e.,
each sample X; € RPvP2-*Pryj=1,...,m). We use X € RP1*P2-*PnXM as a more
‘compact’ notation for the entirety of samples, with the additional mode of X indexing the
samples themselves.

2.1 MPCA

MPCA, originally proposed by Lu et al. [16], is an unsupervised method that aims to
determine a set of n projection matrices UM, U@ .., U™ U® e RI>Pi g, < p,, Vi =
1,..,n, such that the features of the projected samplesY =
Xx, UV %, U@ x, U™ x,. . I, present as much variation as possible. Following
the definition of scatter (1.4) This objective can be formulated as:

m
{U(l); . U(n)} = a‘]"g maxU(1)'_.'U(n) Z”Y] - Y”i‘
j=1

stUOYUO = vi=1,..,n (2.1)
pPi

with ¥; denoting the j-th sample and ¥ = izﬁl Y; denoting the mean projected sample.
(2.1) is known as the scatter maximization objective for MPCA. As the authors point out,
replacing Y; as X; x; UY x, U® . x, U™ and leveraging the fact that the data is
centered? (both means Y and X are tensors of zeros), results in:

m
WO, ., UM} = arg maryw,_yo K% UD %, UP x, UP|E @22)
j=1
Assume we are solving in an ALS fashion for U®. This means all projection matrices

v, .. oD g+ g™ gre fixed and the unknown we are solving for is U®. The
constraint of (2.1) still applies. Using (1.15) and ||A||%2 = tr(AAT):

m
. . . T
(UD} = arg max,w Z tr ((U@Xj(i) U3, ) (UDX;US,) ) (2.3)
j=1
m
{UD} = arg max,w Z tr(UD XUl UpoXin UP) (2.4)
j=1

Where U, =UM®..@U YUV ..UM, The underlined product can be
interpreted as the i-mode scatter (1.7) of the data after being multiplied in each mode
with the respective matrix except the i-th. This is referred to as a partial projection. We
can solve (2.4) by setting U® equal to the g; eigenvectors corresponding to the most
significant eigenvalues of X;,UJ o U o X -

The algorithm to compute the relevant multilinear transformation receives the data and
the max number of iterations as input. Then, in an iterative fashion the projection
matrices are updated by finding the eigenvalues of the respective scatter matrix. The
pseudocode of the method can be found at Algorithm 1.

8 We have subtracted the mean sample from all samples of the train/input set.
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Algorithm 1: MPCA

INPUT: Tensor samples X; € RP1*Pz->Prnyj = 1,...,m, k (max iterations)
OUTPUT: MPCA Projection matrices U, ..., U™, U® g R1>Pi g, < p,,Vi=1,...,n
BEGIN
for j=1:mdo

Xj < X; —mean(X) # Center input data
Initialize UM, ..., U™ # Initialize projection matrices

for iter = 1: k do
fori=1:ndo

YO « X x, UD x, UD | x;_, UED x,,, UG+ s U™ # Partial projection

Ség) <Y XUl wUgywXjy # Compute i-mode partial scatter

U® « g; eigenvectors of most significant eigenvalues of Ség) . # Update
return U, ..., U™

END

The authors of [16] claim that in each iteration, the objective function is non-decreasing
and additionally it is upper bound by the scatter of the input data. As a result, good
convergence behavior of the algorithm can be expected.

An additional issue to bear in mind is the initialization method for the projection
matrices. Specifically, in [16], the following approaches are presented:

e Random initialization generates the elements of the projection matrices following
a gaussian distribution in with ¢ = 0 and ¢ = 0.5, followed by normalization®.

e Pseudo-identity initialization truncates the last p; — q; columns of the identity
matrix of size p;.

e Full Projection Truncation (FPT) performs HOSVD and initializes each matrix
using the chosen number of components.

The first two methods are easier to implement, but that latter expresses better results
regarding convergence and its error can be tightly bound [16].

One additional issue that needs to be addressed is selecting the number of components
in each mode (i.e., p; Vi = 1,...,n). As the number of modalities (and features) grow,
exhaustive search becomes prohibitive. One approach would be to incorporate the
following ratio constraint in (2.1) or (2.6):

H?:l qi

n
i=1Di

<0 (2.7)

4 Each resulting matrix should have unit norm.
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with 2 being the user-defined ratio of required dimensionality reduction. Lu et. al. [16]
propose the Sequential Mode Truncation (SMT) method. In short, this method starts
with p, = qi, Vi = 1,...,n and computes the amount of scatter lost if we discard the last
feature of each mode. Then it discards the one with the minimum scatter loss and
repeats this procedure until a specific scatter threshold is met. The Q-based method
[16], on the other hand, is more straightforward: For each mode, truncate features as
long a scatter requirement is met.

2.2 DATER

DATER, first published by Yan et al. [22], is a supervised method for Tensor
Component Analysis and can be seen as tensor extension for LDA. DATER aims to
maximize the ratio of between-class variation (scatter) while minimizing the within-class
variation (scatter). As an intuition, we want samples of the same class to be projected
as close as possible, while the sets of the classes should be distant and easily
distinguishable. Assuming we have k classes with n.Vc=1,..,k samples each.
DATER aims to find projection matrices U™, ..., U™ that satisfy the above criteria:

Y. — Y||2
c 1 c” ”5 (2.8)

’ F

{UW, ., U™}y =arg max,w, ym ”
Y; -

where Y, denotes the mean of samples in class c, Yc] denotes the mean of the class

that sample j belongs to and Y denotes the mean of the data. If we use an ALS
approach in this problem, fixing all projection matrices except the i-th then we obtain the
following optimization problem from (2.8):

tr (VO sPU®)
tr (U(i)ng;';ua))

{UD} = argmax, o (2.9)

where Sgy) and S,flg denote the between-class and within-class scatter of the partially
projected data respectively:
k
g Z
y(t)

(l) (1) (l)
Wy Z| IO c}(1)|| (2.11)

where Y(l) denotes the mode-i unfolding of the c-th class mean of the partially projected

(l)
Yc(l)

(2.10)

)]

data (all modes except the zth) Y() denotes the mode-i unfolding mean of all the

partially projected input data, Y(l) denotes mode-i unfolding of j-th partially projected

sample and Y(l) denotes the mode-n unfolding mean of the class that the j-th is

assigned. The solutlon to (2.8) is given by solving the following generalized
eigenproblem:

Spyu = ASy)u (2.12)

C. Chatzis 10
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Algorithm 2: DATER

INPUT: Tensor samples X; € RP1*Pz-*Pnyi =1,..,m, k (max iterations) and class
labels ¢ € R™

OUTPUT: DATER Projection matrices U, ..., U™, y® € RP*4i q; < p;, Vi =1, ...,n
BEGIN

Initialize UMW, U@ ..., U™ # Initialize projection matrices

for iter = 1: k do
fori=1:ndo

YO « X x, UD x, UD | x;_, UGD x,., UG+D . U™ # Partial projection

— — 2
é‘y)a) Yk n, YC((?) — Y((‘;)”p # Compute i-mode between-class scatter
() o _ o |
l m y _ vy . TSN
Wy i=1||Y) ch(l)”F# Compute i-mode within-class scatter

U® « g; eigenvectors of most significant eigenvalues of (2.12) # Update
return U, .., U™

END

and setting U®Y) equal to the g; generalized eigenvectors corresponding to largest
eigenvalues. This procedure iterates over all of the modalities. The pseudocode for this
method is presented in Algorithm 2. It has been shown that even for the simple case of
2 modalities, DATER may fail to converge [37]. Thus, stopping criteria such as
maximum iterations or little change in projection matrices are invoked. Additionally,
either of the initialization methods used for MPCA is also applicable here.

One key limitation of LDA was the fact that it could only produce at most k — 1 features,
where k is the number of classes. The authors of [22] prove that the maximum number
of features (per mode) for DATER is:

min{p;, (k — 1) ﬂ,ﬂpl} (2.13)

2.3 A least squares framework for component analysis

De la Torre [38] proposed a unified parametric objective function that can be used to
formulate CA methods:

E(A,B) = W, (I' = BATY)W,|I} (2.14)

W, and W, can be used as weight matrices for various methods that incorporate weight
(e.g., weighted PCA). I' and Y are commonly associated with the input or may be the
input data matrix themselves. The matrix product BAT is the transformation we are
solving for. Depending on the values we chose for the parameters of (3.1) we can form
different objectives. Differentiating with respect to A and B yields:

C. Chatzis 11
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OE

A 2W2ZBATYWZYTA — 2W2TW2YTA (2.15)
aE 2rT 2 2yT Typ72
55 = ZYWETTW?2B — 2YWZYTABTW,?B (2.16)

A way to minimize the objective (2.14) is to find minima by setting both derivatives
equal to zero. If we do this for (2.15) the optimal B is given by:

B = TW2YTA(ATYWZYTA)? (2.17)

Viewing (2.14) as a minimization problem and substituting B with the right side of (2.17)
results in the following maximization objective:

E(A) = tr((ATYW2YT A~ (ATYW2T TWATW2YT A)) (2.18)

which is an eigenproblem similar to (2.9). Similarly, we can do this for (2.16):
E(B) = tr((BTsz)‘l(BTWTZI"WCZYT(YVI/CZYT)‘lYWCZFTVI/TZB)) (2.19)

Typical eigensolvers may be unable to solve this problem due to ill-conditioning,
stemming from the SSS problem or from receiving highly correlated input. Therefore,
the author of this work proposes efficient numerical methods to tackle this difficulty. A
straightforward approach would be to solve for A and B in an ALS fashion:

-1
AU+ = (yw2yT)-1yw2rTw2g®) (B(")TWEB(")) (2.20)

-1
BU+D = PW2yT AU+ (4k+ )Ty w2y T 4(k+D) (2.21)

Alternatively, subspace iteration [39, 40] is a numerically stable option that can be very
fast with the appropriate initialization. Lastly, the author mentions that Gradient
Descent-based and second order approaches are also applicable. For instance, a
simple Gradient Descent approach would be utilizing the following:

IE(A®

AGFD — 400 _ % (2.22)
9E(B®

B+ = p) _p % (2.23)

where ng and np denote the learning rate parameter for each factor matrix. Assuming
our data is given in a vectorized format in a 2D matrix X, Table 2 sums up how relevant
linear methods are formulated according to this framework.

Formulating CA methods according to this framework is beneficial. To begin with,
having a common objective makes the similarities and differences between the methods
transparent. Moreover, such formulation may improve the numerical stability when
solving for the appropriate projection. That is because the LS Regression environment
is well-studied and many efficient and numerically stable methods are applicable, such
as those mentioned above. In addition, the formulation proposed may be the foundation
for the development of novel CA methods or improvements to existing.

C. Chatzis 12
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Table 2: Formulating PCA and LDA according to [38].

Method W, /W, r Y Equation (3.5)

PCA 1/1 X I Epca(A) = tr((ATA)"H(ATXTXA))

LDAS | (G6™)z/1 | G | X | Ewpa(A) = tr((A"XXTA)TH(ATXG(GTG)T'GTXT A))

De La Torre’s work was an inspiration to ours. Like the formulation proposed by [38],
Least Square Regression is incorporated to our work. Even further, as will be discussed
in Section 4, a Gradient Descent scheme, such as that presented in this section, was
used for implementation. However, De La Torre’s work includes many other methods
and even non-linear graph-embedding ones, whereas ours is solely based on
(multilinear extensions of) PCA and LDA. Albeit mentioning tensors in the last Section,
TCA methods are not touched upon further.

2.4 The graph embedding framework

Yan et al. [30] contributions are two-fold. First, their work presents a common way to
formulate and solve for the parameters of various CA methods. According to the
authors, input data shall be modeled in two weighted graphs: the “intrinsic” graph, which
captures the similarity between data samples and the “penalty” graph, which describes
the appropriate constraints. These graphs are defined by their adjacency matrices (W
and B respectively) or their Laplacians®, depending on which method is formulated. All
methods culminate in the following generalized eigenvalue problem:

Lu = ABu (2.24)

L and B are chosen with regard to the method. The solution is obtained by keeping the
appropriate number of eigenvectors corresponding to the most significant eigenvalues.
The authors also explain how this formulation can be extended in the non-linear and
multi-modal case as well. Table 3 presents the relevant methods accordingly. For linear
methods, assume we are given the input in matrix X € RY*™ where m denotes the
number of samples. For Tensor methods assume we are given m tensor samples with n
modalities and we have grouped them, in a single tensor X € RP1*Pz--*PnX™ gimilarly to
Section 2. Furthermore, this work presents “Marginal Fisher Analysis”, an LDA-based
method for dimensionality reduction which allows more than k — 1 projected features,
where k denotes the number of classes.

A few clarifications regarding Table 3 follow. Columns W and B denote the adjacency
matrices for the intrinsic and penalty graph, respectively. Columns L and B denote the
matrices that will be used in (2.24) to solve this problem. Moreover, we kindly remind
readers that the adjacency matrix of the constraint graph for LDA and DATER is known

5 We will denote as G € R™* (m: number of samples, k: number of classes) the indicator matrix with
entries following:

_ 1! Ci =j
Gyj = { 0, else

Dz Wij, i =]

¢ For a graph with adjacency matrix W, the graph Laplacian is defined as: L = D — W, D;; = { 0. else
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as the centering matrix. The product XB performs centering of the data, while XBXT is
the total scatter tensor or, for 1D/vector data, the covariance matrix.

Table 3: Formulating relevant methods to our work according to [30].

Method w B L B
o 1 1
pCAT | Wy = {m» J I —x(1=—1,15)x7 | xBXT
0,i=j m m
MPCA 1.
R I (R P
_ yG =
X = X(n+1)) J
Loe=j 1 51
LDAS | W ={me I —=1,1% X<1—Z—eceZ>XT XBX"
0,else m =i e

DATER 1 . 1 k 1

, —,C; =

(i-th mode, Wi = {ne J [—=1,17, X <1 - Z —eCeCT) XT XBXT
¥ = x® ) 0,else m

(n+1)

J—

Furthermore, we denote with ng 1) the partially projected data to all modes except the

i-th, unfolded at the last mode, which indexes the samples. According to this and the

JEE———

definition of unfolding given at section 1.3, ngu) e R™IU=1% and each row of it
contains a sample in a vectorized form.

The graph-embedding framework provides a way to unify CA methods. To begin with, it
provides an intuitive approach for interpretation of the input by modeling the data as
weighted graphs. Moreover, the weights given to each graph can be used to compare
and contrast CA methods. Parallel to this, such framework can be used in order to
create new methods, even in the multilinear case.

The graph-embedding framework also provided us with another point of view for the
methods of interest. The problems and their solutions were mathematically the same as
those presented in 2.1 and 2.2. However, the matrices used in the eigenproblems had a
different interpretation. While this is an equally valid approach, we state that numerical
instability problems (e.g., SSS problem) often emerge when dealing with real-world
tensor data [1]. In that case, eigensolvers may fail to converge and this may lead to
problematic results. Our approach, albeit less interpretable, uses more efficient
numerical procedures and manages to overcome such problems.

7 1,, denotes a vector of m ones. n, denotes the number of samples belonging in class c.

8 e¢ denotes the m-dimensional vector of all zeros except and e¢(j) = 1 when the j-th sample belongs in
the c-th class.
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3. PROPOSED FORMULATION

In this section we will present our proposed formulation for MPCA and DATER. We
begin this section with a review of LS Tensor Regression. Like before, assume we are
given m tensor samples with n modalities, grouped in a single tensor X € RP1*Pz--XPnXM
with n + 1 modalities. The additional mode indexes the samples.

3.1 Least squares tensor Regression

In the Tensor Regression problem, we are given an input tensor X € RP1*P2-XPnX ' the
observed (scalar) output y € R and the bias b € R and our goal is to solve for the Tensor
Regression coefficient W € RP1*P2-XPnXM gq:

y=<W,X>+b (3.1)
One way to estimate W is solving the respective LS problem:
W = argminy|ly—< W, X >||% (3.2)

This model can be generalized for matrix or tensor output. For example, the simpler
matrix case can be produced by replacing the inner product with the generalized inner
product:

Y =<W,X >,+ B
W = argming||[Y-< W, X >, ||% (3.3)
where Y € Ro*™ W € RO*P1*P2--XPn gnd B € RO*™,

Several low-rank approaches suggest efficient solutions to the above problem. For
example, Guo et al. [41] suggest replacing tensor W with its CP/PARAFAC
decomposition. More specifically, the above objective can be formulated as:

Y =<W,X >,+B
(W} = arg miny ||[Y—< W, X >,||2
s.t. W=[vOv® y®] (3.4)

where V(© g R™° and V®) € R™Pr vk = 1, ..,n. Kossaifi et al. [42] propose a Tucker
structure for W. Accordingly, the above Tensor Regression problem can be formulated
as:

Y =< W,X >,+ B
(W} = arg ming||Y-< W, X >,||%
s.t. W=[GUu®um, um] (3.5)

where G € R10X41-Xan g < p, Vk = 0,...,n,U©® € R%*° and U® € RI>Pr vk = 1,...,n.
The key benefit of the low-rank formulations is the reduction of regression parameters
(as can be seen on Table 4 below. However, we are more interested in formulation
(3.5) because it offers the freedom of using a different number of components per
mode.
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Table 4: Number of parameters in Tensor Regression formulations.

Method Fulw 33) | ©/ Pg’igi’:f] OF W | Tucker of W (3.5) [42]
Regression n n nopi+poxo+
parameters 0 X Ili=1p: TXOF LT X Py i=19i X i

3.2 MPCA as a LS Tensor Regression problem

In order to formulate MPCA as a LS Tensor Regression problem, firstly we need to
express it as a minimization problem. Indeed, it can be proved that, just like its linear
counterpart, MPCA can be formulated as minimization problem. The reconstruction
error minimization objective for MPCA can be expressed as:

m
) T T2
(o, .., UM} = argminga ,m ZHX]- —Y; %, U ox, U™ ||F
j=1
s.tUD € RIPLyO" YD = g, <p,Vi=1,..,n (3.6)
Substituting ¥; as X;x; UM x, U® . x, U™ and using (1.2) gives us the
reconstruction error minimization objective for MPCA:

m

2

(U, .., U™} = arg mingw,_ym Z”X,- — X; X UDUDT e, ymy @
j=1

2
= arg minya,_ym||X = X x; UDUDOT i, @y
5.t € RIPLUDT YO =1, <pVi=1,...n (3.7)

We will now prove the equivalence of (2.1) and (3.6), following the methodology of Lu et
al. [1]. For ease of presentation, we will use the more compact notation for both input
and projected samples in (4.6):

2
WW,.., UM} = argmaxyw_ywl|X —¥ x, UDT Lx, U™ (3.8)

Assume we are following an ALS approach and we are solving for the i-th projection
matrix. Therefore, all the projection matrices except U® are known. Leveraging (1.15)

2
2
; . T
(U0} = argming ”X(l-) —u® YoUs, ”F
Upy = (UM®..@UHIRUITYR .. UW) (3.9)
Using ||A]|2 = tr(AAT) results in:
{U(l)} = argmmu(i)tr ((X(l) — U(l) Y(i)UCD(i)) (X(l) - U(l) Y(i)U‘;”(i)) )

= argmin mtr ((X(i) - U(i)TY(i)Udb(i)) (X(i)T - Ug(i)Y(i)TU(i)» (3.10)
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It is true that tr(ABCD) = tr(DABC) and tr(A) = tr(AT). Applying the distributive
property in (4.11) yields:

i) — . T T ] T
U9 = argmin,otr(XpXo') — 2tr (X(i) Ug, Y U(l)) +tr(Yp Yo' (3.11)
Plugging in ¥ = UVX U3 .
{U(l)} =arg minU(i)tr(X(i)X(l-)T) - ZtT(Y(l)Y(l)T) + tT(Y(l)Y(l)T)
= argminU(i)tr(X(i)X(i)T) — tT'(Y(i)Y(i)T) (3.12)
X refers to the unfolding of the input data that cannot be changed, therefore the
objective is equal to:
{U(l)} =arg minU(i) - tT(Y(l)Y(l)T)
= arg max,atr(Y Yo"

= arg max, oY |7

N
= argmax;q ZIIYi —Y||2 (3.13)
i=1
where the last equality holds because the data is centered and the mean of the samples

(both input and projected) is zero. Notice that (3.13) is indeed the scatter maximization
objective for MPCA, therefore the two objectives are interchangeable. m

An intuition on the equality of the two objectives for linear PCA can be seen by
reviewing Figure 1. Notice that the same black line (Principal Axis) that maximizes the
variation of the projection “forces” the reconstruction error (red lines) to be minimum,
according to Pythagorean Theorem. Assuming we are solving in an ALS fashion for the
i-th projection matrices, (3.7) via (1.15) becomes:

m
2
. . ; AT
(U0} = argmingw Z ”Xj(i) —yWOy® Xj(i)Ug(i) ”F
j=1

with Ud’(i) = U(n)TU(n)® ___®U(i—1)TU(i—1)®U(i+1)TU(i+1)® ...®U(1)TU(1)

5.t UD € RIPL, D" YD = [ g, < p,¥i=1,..,n (3.14)

Alternatively, if we group all the samples in tensor X:

2
) . . T
Wy = argminy || X - vOUD Xy U

F

Wlth U(p(i)+ — In+1TIn+1®U(n)TU(n)® ®U(i—1)TU(i—1)®U(i+1)TU(i+1)® ®U(1)TU(1)

s.tUD € RIxPLyO" YO = [ g, <p,Vi=1,..,n (3.15)
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Algorithm 3: LS-MPCA (GD)

INPUT: Tensor samples X; € RP1*P2-*Pnyj = 1,...,m, k (max iterations)
OUTPUT: MPCA Projection matrices U®D, ..., U™, U® € R1>Pi g, < p,,Vi=1,..,n

BEGIN
fori=1:mdo
X; « X; — mean(X) # Center input data
Initialize UW, ..., U™ # Initialize projection matrices

for iter = 1: k do
fori=1:ndo

%®UY) 4 £ (WD) is the objective function of (3.15) or (3.16
0@ (U') is the objective function of (3.15) or (3.16)

UD « y® — n
if little change in objective E: break
return UW, ..., U™

END

We may now formulate Problem (4.7) as a LS Tensor Regression problem:

X=<WX>,+B
(W} = argminy || X—< W, X >, ||?
S.tW = [[G; vy y@) ...,V(”“)]] € RP1P2-PnXP1XP2--XPn

O :{ I,Tl =1
yt-Dyt-0" 1 <i<n+1’

Gty = by p,.pyy UD €RIWPLUDT YD = g, <p;,Vi=1,..,n (3.16)

It straightforward to prove that the two objectives are equivalent by leveraging
<W,X >,=Wi)X(nio (3.17)

and (1.15) (W and X as defined previously). Pseudocode on solving MPCA with
Gradient Descent on the respective LS problem is shown in Algorithm 3.
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3.3 DATER as a LS Regression problem

Before formulation DATER, we will briefly discuss the work of Ye [43], which will be
used. The author of this work proposes a Least Squares regression formulation for LDA,
so that more efficient and stable methods are applicable for solving, similarly to this
work. Assuming we are given a data matrix X € R™ and an indicator matrix Y € R¥*™,
multiclass LDA can be expressed as finding W € R*¥*¢ (k denotes the number of

classes):
\/: - f ¢ = ]
= argminy ||V - WXT|| Y = (3.18)
—\/7 otherwise
m

where n; denotes the number of samples belonging in class j and m is the total number
of samples. Solving this LS problem yields the same solution as solving the
eigenproblem formulation for LDA, such as the one presented in Table 3, under the mild
condition:

rank(Sr,) = rank(Sg, ) + rank(Sy, ) (3.19)
which is usually true in high-dimensional datasets, according to this work.

We have stated that DATER can be seen as mode-wise LDA, therefore we may adopt
this formulation to achieve our goal. Specifically, we may formulate DATER as:

Y=<W,X >,+B
(W} = argminy ||[Y—-< W, X >, |2
s.t.W = HG; V(l), V(Z)' . V(n+1)ﬂ € Rk><p1xp2.._><pn'

v 1<i<n+1’
Y=Y, U® € R%¥Pi g, <p;,Vi=1,..,n (3.20)

A more concise view on this objective can be seen by replacing W with its
decomposition:

(W} = argminy ||[Y—-< W, X >, |2
: 2
= argminy||Y — W(l)anH)”F

T T
= argming o ywl||¥ = 6,(U™ @ ..UM )X(n+1)|| (3.21)

One difference between (3.20) and (3.16) is the fact that the core tensor G does not
have a fixed value in the current objective and has to be re-calculated in each iteration.
The steps of a Gradient Descent approach to this problem are presented in Algorithm 4.
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Algorithm 4: LS-DATER (GD)

INPUT: Tensor samples X; € RP1*Pz-*Pnyj =1,..,m, k (max iterations) and class
labels ¢ € R™

OUTPUT: DATER Projection matrices U, ..., U™, u® € RI*Pi q; < p;, Vi =1, ...,n
BEGIN

Initialize UMW, U@ ..., U™ # Initialize projection matrices

for iter = 1: k do
fori=1:ndo

. . 0 .
UD <y _p % # E(UW) is the objective function of (3.20) or (3.21)

n 6E(G(1))
66(1)

return U, .., um™

Gy < Gy — # E(Gyy) is the objective function of (3.20) or (3.21)

END

C. Chatzis
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4. EXPERIMENTAL EVALUATION

We implemented the methods mentioned in Section 2 and 4 and in this we evaluate
their performance on real-world data. Specifically, we consider the image denoising task
on the cropped Extended Yale Face Database B [44, 45] and the face recognition
(classification) task on the ORL dataset [46]. NumPy [47], PyTorch [48] and Tensorly
[49] were used extensively for representing and performing operations on the data.
SciPy [50] and Python Image Library (PIL) [51] were also used for reading the data.
Matplotlib [52] was used for plotting. For methods that required solving eigenproblems,
the eig function® of [47] was used, while the autograd package!® of [48] was used for
differentiation in the implemented Gradient Descent approaches.

4.1 Image denoising

The Extended Yale Face Database B consists of 64 images of 38 people, summing to a
total of 2414 images. For this experiment, we considered only the frontal pose (Pose
01) of each person with frontal illumination. Therefore, the data used contained a total of
38 images (one for each person).

4.1.1Dividing the dataset

Our goal in this experiment is to compare the performance of the relevant methods on
unseen data. We begin this experiment by dividing the available data in the train (30
images) and test set (8 images) at random. We further divided the train set in 3 folds (10
images in each) and added Gaussian noise (using scikit-image [53]) with deviations
Otest = 0.007,0.01,0.02,0.05 to the test set. We performed Hyperparameter selection on
the methods used (Gaussian Filter, Total Variation (TV) Filter [53, 54], Vectorization +
Linear PCA [55], MPCA [16] and the (proposed) LS-MPCA by 3-fold Cross validation by
adding gaussian noise on each validation test with deviations 6,44 =
0.005,0.008,0.015,0.03,0.06. Using the obtained best performing hyperparameters, we
execute all algorithms on the test set. The results are validated with the following criteria
(Assume we are given X (origina) X (denoised) € R™™):

e Mean Squared Error (MSE): A straightforward mathematical way to compute the
difference between the denoised image and the original. MSE is given by:
n; n;
1 ]
MSE = EZ Z(X(original)ij - X(denoised)ij) (4.1)
j=1i=1
e Peak Signal-to-Noise Ratio (PSNR): A well-known reconstruction assessment
metric that can be defined relatively to MSE:

maxz{X(ori inal)}
PSNR =1 g 4.2
S 0logs0 < MSE > (4.2)
where max{X} returns the largest possible value for X.
e Absolute Relative Error (ARE): is defined as:
ARE = ”X(original) - X(denoised)” (4.3)

| X originan

9 https://numpy.org/doc/stable/reference/generated/numpy.linalg.eig.htmi

10 https://pytorch.org/docs/stable/autograd.html
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A high-level overview of this task is presented in Figure 5. Figure 6 presents visual

Execution time (s)

Qualitative assessment of resulting denoised images

results for each of the 8 images of the test set and Table 5 presents relevant metrics.

Pre-processing Hyperparameter Selection Experimental Evalation
Hyperparameters
3-fold Cross _| Gaussian |sigma | Gaussian |
YaleB Validation "| Filtering * | mode | Filtering *
Extented
Database — weight o A —
l»| TV Filtering * | isotropic -] »| TV Filtering * |— <
Keep frontals L % § - ) §
only @ g =
\ S vectorization | components, % 5 vectorization | | _| &
- + svd_solver, L 2 > + - ©
YaleB Frontals PCA tol ‘_% 3 PCA =
] L (=3  ——— 2
— P Z o ==
Divide in folds oo v
Resize MPCA components, : ;:3—' > MPCA
\J _._ g |tronll_melh0d, > —
0, O |
YaleB (80%)
32x32 | Lsmpca | Comeonents (] Lsupca |
Frontals _'t’;‘,,—l[“e ° J"'Ilest Set20%)] |
Figure 5. Overview of the Image Denoising experiment
(Methods with * do not require any training)
Table 5: Numerical results of relevant methods on test set.
Method Average Average Average Average
PSNR MSE Time () ARE
Gaussian
o 23.828 0.005 0.00019 0.132
Filtering
TV Filtering 21.927 0.008 0.00011 0.169
PCA 22.388 0.007 0.00537 0.158
MPCA 22.520 0.007 0.36706 0.159
LS-MPCA 22.375 0.007 0.03149 0.160

Metric-wise, Gaussian Filtering seems to outperform the rest of the methods, yielding
the highest PSNR and the lowest MSE and ARE. However, the denoised images
produced by this method show blurriness, which makes the detection of edges by eye
sometimes harder. PCA seems to produce the sharpest images, but some details on
each face sample seem to be lost in the projection, which of course has a toll on the
guality of the result. MPCA and LS-MPCA have similar behavior, with the effect of the
denoising being especially visible at lower settings of variance of the noise. Lastly,
regarding the execution time, we notice that Gaussian and TV Filtering perform best,
which is to be expected as these methods are applied directly to the images without
requiring any training. PCA performs the fastest out of the rest of the methods, and we
note the advantage of LS-MPCA on execution time (one order of magnitude less) over
the standard MPCA.
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Original Images w/ noise  Gaussian filter MPCA ([12,22]) LS-MPCA ([12,22])

20.29/0.009/0.14

24.42/0.004/0.12

Y A - - T -y .
20.78/0.008/0.16 17.94/0.016/0.22 20.97/0.008/0.15 18.62/0.014/0.20 18.45/0.014/0.21

”
P

. e

Figure 6: Visual results of implemented methods on the test set. The numbers in the parentheses
denote number of components.

4.1.2 Execution on full set

In order to get another view at how each method performs, we added gaussian noise to
all of the available data (38 images) with deviations of,; = 0.007,0.01,0.05,0.075 and
used all of the methods to perform denoising. Like we did in section 5.1.1, we begin with
a gridsearch approach to determine -among other parameters- the number of
components for PCA-based methods. The results of this procedure are presented in
Figures 7 and 8. Numerical results for all methods (with the best performing
parameters) can be found on Table 6.

Similarly to the previous experiment, Gaussian Filtering seems to yield the best metrics.
Regarding PCA, we observe that increasing the number of components used, results in
deteriorating denoising quality. This seems also to be the case with MPCA and LS-
MPCA, but we notice that using 4-6 componets in the first mode and at least 8 and no
more than 12 components in the second results in rise of the relevant metrics. Methods
that require no training, as expected, provide results more quickly. PCA uses less
components, so less computations are generally required than its tensor extensions. As
also noted in the previous experiment, LS-MPCA'’s execution time is less than that of
MPCA, which can easily be seen at the legend-colorbar of Figures 7 and 8. In this
experiment, we also measured the orthogonality of the produced projection matrices
using the distance ||[UUT — I]|2. Both MPCA and LS-MPCA presented similar behavior in
this aspect.
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Figure 7: Numerical results of MPCA for various number of components per mode (Full Dataset).
Red triangles denote the global maxima-minima.
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Figure 8: Numerical results of LS-MPCA for various number of components per mode (Full
Dataset). Red triangles denote the global maxima-minima.
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Figure 9: Orthogonality of computed projection matrices (Full Dataset).

Table 6: Results on Full Dataset denoising.
Bold values indicate best metrics of the respective method.

Method Average Average Ayerage Average

PSNR MSE Time (s) ARE

?:";}‘tj:r?ri%” 23.505 0.005 0.0002 0.157
TV (w = 2.0) 22.469 0.007 0.0002 0.182
TV (w = 5.0) 21.084 0.011 0.0002 0.222
PCA (2) 20.392 0.01 0.011 0.22
PCA (4) 19.861 0.011 0.012 0.236
PCA (6) 19.349 0.014 0.015 0.256
PCA (8) 18.896 0.017 0.014 0.275
PCA (10) 18.579 0.019 0.019 0.291
PCA (12) 18.255 0.022 0.02 0.306
PCA (14) 17.947 0.024 0.02 0.318
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PCA (16) 17.651 0.026 0.008 0.331
PCA (18) 17.482 0.027 0.009 0.341
PCA (20) 17.6 0.028 0.009 0.343
PCA (22) 17.809 0.028 0.121 0.34
PCA (24) 17.891 0.028 0.025 0.339
PCA (26) 17.868 0.028 0.01 0.34
PCA (28) 17.825 0.028 0.011 0.34
PCA (30) 17.689 0.028 0.014 0.344
MPCA (10,10) 22.25 0.007 0.608 0.182
MPCA (12,12) 21.664 0.008 1.630 0.198
MPCA (15,15) 20.9 0.011 0.810 0.221
MPCA (20,20) 19.680 0.015 0.977 0.262
MPCA (25,25) 18.524 0.021 0.536 0.303
MPCA (30,30) 17.475 0.027 0.159 0.342
MPCA (6,8) 22.934 0.005 0.248 0.164
MPCA (4.10) 22.914 0.005 0.153 0.164
LS-MPCA
(10.10) 22.007 0.007 0.027 0.186
LS-MPCA
(12.12) 21.507 0.008 0.0238 0.2
LS-MPCA
(15.15) 20.82 0.011 0.0238 0.221
LS-MPCA
(20.20) 19.624 0.015 0.025 0.262
LS-MPCA
(25.25) 18.572 0.0207 0.025 0.301
LS-MPCA
(30.30) 17.474 0.027 0.024 0.342
LS-MPCA 22.631 0.006 0.024 0.17

(4,10)
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4.2 Face recognition

Our Database of Faces (ORL) [46] is dataset with 400 images of 40 subjects. The
datasets contain multiple images of each subject, varying the light and facial
expression. Our goal in this experiment would be to obtain the most discriminative
features using LDA-based methods and assess their quality by using these features as
input to baseline classifiers (Nearest Neighbor and Linear Support Vector Machines).

We begin this experiment by dividing the data in the train (300 samples) and test set
(100 samples). Then, we perform stratified 5-fold Cross Validation to determine the best
performing parameters for each method. The methods we will compare are vec+LDA
(vectorization prior to applying LDA), DATER (Section 2), LS-DATER (proposed method
at Section 4) and PCA+LDA (vectorization and PCA prior to LDA). An overview to this
experiment is presented in Figure 10.

Having obtained the best performing hyperparameters, we present the results for each
method in Figure 11. From the perspective of accuracy, we notice that all methods
predict the correct label for more than 90% of the test samples, with DATER even
reaching 100%. Nonetheless, all the methods have comparable results. By viewing the
lower part of Figure 9, however, we see where the methods differ: their execution time.
vec+LDA and PCA+LDA present the lowest times. Regarding DATER and LS-DATER,
we once again notice the advantage the latter has when it comes to computation time
over the former.

Figure 12 shows heatmaps of the orthogonality of each of the produced projection
matrices for DATER and our proposed LS-DATER for any combination of components
per mode. One can easily see that our proposed formulation is able to retain the
orthogonality regardless the components used, whereas the DATER fails to do so when
a increasing the number of components (especially in modality 1). We kindly remind
readers that orthogonality is not a strict requirement for DATER. However, using LS-
DATER in this case results in less correlated features.

Pre-processing Hyperparameter Selection Experimental Evalation

Hyperparameters

Train Set
~—»| vectLDA | components > +
(75%) p »| vect+LDA
—
Divide in folds Q
o &
> @®
2 o
Fold 1 components, NN = % DATER NN i
l»| DATER init_method, —a-| oo ccifier| |€ o = > |Classifier| | @
Fold 2 tol o 2 ]
Ly <.
o 3 g
ORL 32x32 Fold 3 g o
Database S3 -
=
Fold 4 PCA 2 < 2
| »| PCA+LDA | componenss, — —p] Lg\‘f;’ <3 »| PCA+LDA | %TG’ ®
Fold5 LDA components E g
> o
| ’ 5
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Stratified components, |
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Figure 10: Overview of Face Recognition task.
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5. CONCLUSION

In this thesis, we have presented various CA methods and their extensions for tensor
data. More specifically, we have investigated MPCA and DATER and presented how
these methods can be formulated as generalized eigenproblems. Such approach may
lead to problematic results in quality because the involved matrices may be near-
singular (e.g., highly correlated data). Additionally, tensor data is typically highly
dimensional, and this may result in surge in the execution time of eigensolvers. As a
remedy, we proposed a LS Tensor Regression formulation for MPCA and DATER, thus
making more numerically stable and less computationally demanding methods usable.
In the last section, we implemented and experimentally assessed our proposition and
noticed competitive results. Moreover, the results of our formulation were similar to the
eigen-formulation, but the former had the advantage of a smaller (by one order of
magnitude) execution time. Furthermore, in the case of LS-DATER, the resulting
mapping contained features that were more uncorrelated, which of course is an extra
benefit.

As mentioned at the start of this work, PCA and LDA are the most well-known but not
the only CA methods in the literature. Many of those methods have been extended to
tensor data as well, such as MMICA [26] and MCCA [29]. For future work, we are
planning to investigate formulations of more methods in the LS Tensor Regression
setting. The end goal of this investigation would be to create a unified framework for
Tensor CA methods.
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ABBREVIATIONS — ACRONYMS

ALS Alternating Least Squares

CCA Canonical Correlation Analysis

DATER Discriminant Analysis with tensor representation
fMRI functional Magnetic Resonance Imaging

FPT Full projection truncation

GTDA General Tensor Discriminant Analysis

HOSVD Higher Order Singular Value Decomposition

ICA Independent Component Analysis

LDA Linear Discriminant Analysis

LS Least Squares

MSE Mean Squared Error

NMPCA Non-negative Multilinear Principal Component Analysis
PCA Principal Component Analysis

PSNR Peak Signal-to-noise Ratio

RMPCA Robust Multilinear Principal Component Analysis
SMT Sequential Mode Truncation

SSS Small Sample Size problem

TR1DA Tensor Rank-one Discriminant Analysis

TROD Tensor Rank-one Decomposition

TTP Tensor-to-Tensor projection

TV Total Variation

TVP Tensor-to-Vector projection

UMLDA Uncorrelated Multilinear Discriminant Analysis
UMPCA Uncorrelated Multilinear Principal Component Analysis
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