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Abstract

This thesis considers a multidimensional family of problems in mathematics. Moreover,
one of the three topics which we cover here deals with the diffusion process on dynamical
networks in finance. Those graphs are connected, directed and weighted networks of banks,
(nodes), where their initial capital and the amount of transfer loans from one bank, (node),
to another are given. In other words, we try to treat problems in the financial sector where
initially we have dynamical banking networks with different initial leverages and we conclude
to have a stable banking network thanks to the diffusion process. Moreover, we present
enough toy examples which our theory validates and are confirmed by practical examples.
Last but not least, we speculate that this work can be extended by introducing tools from
mathematical control theory in order to make the network more controllable.

In addition, another problem that we present in this thesis is the notion of almost zeros
of polynomial vectors and matrices. Our motivation in this topic was to understand and to
present how the notion of almost zero depends of randomness. To make it more clear we
study and present the statistical characteristics of the almost zero and its value in a given
random ensemble of polynomials. Furthermore, toy examples are presented in order to make
our study more clear as well.

Finally, the last problem that we study is the linear, time-invariant multivariable system
described by a system of equations. Moreover, we focus on random systems with the
parameters having been replaced by random matrices. In addition, we define the concept of
ε-controllability of a random system for a given positive number ε . Furthermore, we consider
the fundamental Gaussian orthogonal ensemble of random matrices and we calculate that
the ε-uncontrollability of such a random system depends on the distribution of the entries.
Finally, in this case ε-uncontrollability is calculated.
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Chapter 1

Introduction

‘As you set out for Ithaka hope your road is a long one, full of adventure, full of discovery.‘
— K. P. Cavafis, 1863 - 1933, Greek Poet

1.1 Motivation and structure of the thesis

The aim of this thesis is multiple. Initially we study the diffusion process on dynamical
financial networks. To be more precise, we study the effect of diffusion method to interbank
networks in relation to connected, directed and weighted networks. We consider networks of
n different banks which exchange funds (loans) and the main feature is how the leverages
of banks can be chosen to improve the financial stability of the network. This is done by
considering differential equations of diffusion type.

Furthermore, we investigate the problem of almost zeros of polynomial matrices as used
in the system theory. It is related to the controllability and observability notion of systems as
well as the determination of Macmillan degree and complexity of systems. We also present
some new results in this important invariant in the light of randomness and we prove an
uncertainty type relation appearing in such ensembles of operators.

In addition, we introduce the concept of ε-uncontrollability for random linear systems,
i.e. a linear system in which the usual matrices have been replaced by random matrices. We
also estimate the ε-uncontrollability in the case where the matrices come from the Gaussian
orthogonal ensemble. Our proof utilizes tools from systems theory, probability theory and
convex geometry.

This thesis is divided into three parts: Introduction and literature review material in Part
I, methodological tools which were used in this thesis in Part II, and the rest consists of three
research papers among which the first one has been published in a collected volume under
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Spinger publications and the other two have been published in Institute of Mathematics and
its Applications journal (IMA), in Part III.

In Part I and especially in Chapter 1 we present an introduction and we provide informa-
tion related to the motivation and the structure of this thesis. In addition in Chapter 2 we have
a literature review about what other scientists have done so far on topics like mathematical
control theory, diffusion process, graphs/networks and random matrix theory.

The methodological tools needed for the derivation of the main research results presented
in Part III are given in Part II, Chapter 3. Furthermore, in this part, topics and notions from
mathematical control theory, like controllability/observability, are presented. Moreover, we
describe not only the meaning of RMT but also the the given examples of what a random
matrix is and what makes it so special. Another topic that is covered in this Chapter is graph
theory and examples about connected, directed and weighted graphs/networks and algebraic
properties of graphs are given. Finally, the topic of diffusion process is presented as well.

Part III constitutes the most important part of this research study which is presented in
this thesis. Thus, in Chapter 4, we describe the diffusion process on connected, directed and
weighted interbank loan networks. We prove that diffusion can drive the bank network to its
steady state where the leverages of all the banks of the network are equal. Diffusion in the
bank network is modelled with a system of coupled ordinary linear differential equations. The
last argument, we ended up with two different methods to the same results and a great success.
In Chapter 5, we present the notion of almost zero of polynomial vectors and matrices in terms
of a minimization problem. The purpose of this chapter is twofold: (a) Firstly, to explore
further the algebraic properties and computations of almost zeroes of polynomial vectors or
matrices and present new results of higher order almost zeros; (b) Secondly, to relate the
notion of almost zero to that of randomness i.e. what are the statistical characteristics of
the almost zero and its norm polynomial value in a given random ensemble of polynomials.
In Chapter 6, we consider random systems where the parameters which are matrices have
been replaced with random matrices. Moreover, we define the ε-uncontrollability for random
systems and we also describe the GOE. In addition, we give the detailed calculation of the
ε-uncontrollability of a random system where the matrix A comes from the GOE.



Chapter 2

Literature and Historical Review

‘Imagination is more important than knowledge‘."
— Albert Einstein, 1879-1955, German-born Theoretical Physicist.

2.1 Mathematical control theory

Mathematical control theory is the area of mathematical science which deals with the analysis
and control of complex systems. The main idea behind control is to act to on an object in
order to manipulate its behavior so as to achieve the desired goal. There are two main key
points in mathematical control theory that someone should take into account. The first one is
that we have such a proper model of the object that we want it to be controlled e.g. a satellite
and the goal is the optimization of its behavior, and the second is the existence of uncertainty
about the model or the environment under which the object operates. Furthermore, a very
important role in the whole procedure of mathematical control is the notion of feedback
which gives the user the opportunity to check out the output of the model if it is the desirable
goal and if not, to try to make some changes in the input in order to get the behavior of the
object.

In 1868 Maxwell in his unique paper [45] brought great attention to engineers and
mathematicians by the exhibition of the notion of governors to the theory of dynamics. The
author in his work avoiding many details described four different cases which correspond to
the motion of a machine under its governors and disturbance. According to him these cases
about disturbance term are:

1. More and more the disturbance may be increasing.

2. It may constantly be reduced.
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3. An oscillation of continually increasing amplitude.

4. An oscillation of continually decreasing amplitude.

Where the first and third option are signs of unstable motion while the remaining cases show
the other side of a coin viz the stability of the motion.

A very special paper about the roots with negative real part of an equation [30] was
written by A. Hurwitz in 1895. The author tried and gave answers related to the design
of mechanical and electrical systems. His main goal was to determine the location of the
roots a polynomial n degree and got the coefficients without solving an equation numerically.
Furthermore, Hurwitz used the techniques of Cauchy and Hermite in order to determine
criteria which could be applied.

In 1932 H. Nyquist published a superb paper [56] of great importance. He realized
the semantic role of the roots and poles of meromorphic function in the stability of linear
systems. Furthermore, the aim of his paper was to describe not only the notion of stability of
linear feedback or "regeneration" systems but also the meaning of steady-state and transient
behavior. He proposed as a dominant result of his research the Nyquist criterion for stability
which is a very helpful tool and it is used by control engineers.

Approximately 30 years later (1959) another important paper was published by LaSalle
[42]. In his days there was an intuitive assumption that a control system could be moved
between two states in the shortest time by consuming all available energy. A name to this
hypothesis was given which was called "bang-bang principle". LaSalle has chosen linear
time to control systems and a "steering" function in order to control the system. Moreover,
in case of a more general control system he has shown that anything that can be done by a
proper steering function is possible to be done by using bang-bang steering. In addition, he
has clarified that it was not essential that all optimal steering functions are bang-bang and
one of the key results of his research work was to establish the bang-bang principle for all
control systems where the controlled elements are linear.

One year after LaSalle publication (1960) a very pioneering research work was published
by R. Bellman and R. Kabala [9] where the first one is considered as the applied mathemati-
cian who introduced dynamic programming in 1953. The aim of their paper was to establish
a keystone in the area of mathematical theory about an important class of decision processes
which have not been studied in general. These processes have a name and they are called
adaptive. Furthermore, these processes focus on and play a significant role in areas like
statistics, operations research and stochastic control. In addition, the authors brought to our
attention how the theory of dynamic programming could be used in these areas and gave
answers to complex and galling questions.
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In 1976 Sontag and Rouchaleau[61] in their paper worked on a more general procedure
to systems which have algebraic constraints on their state set and the state transitions are
given by the polynomial functions of the inputs and state variables. Furthermore, one of the
key points of their research was to obtain finiteness conditions due to finite computational
procedures which are very important in the area of applied algebra. Moreover, in their work
they gave answers to interesting questions like reachability in bounded time and they worked
under the problem of recognition of external behavior between two systems by applying
finitely many inputs.

In 1979 Sontag in his paper [60] mentioned not only the important meaning of observabil-
ity but also the special role of it in systems defined by polynomial difference equations. An
intuitive meaning of observability was given by him according to which a system is observ-
able if for any two states it is possible to be distinguished by some input/output experiment.
According to him observability plays a vital system property role for a few reasons some of
which are the following ones:

• the state-variable plays the role of feeding back a function of the state which should
get through "observers".

• In stochastic case the beneficial well known solution of the Kalman filter contains
with high accuracy an efficient observer construction with parameters being optimized
according to the disposable statistical data.

• Observability is one of the best key ideas in realization theory.

Another novel paper which is noteworthy to be mentioned was written by Baillieul [7]
in 1980. The author in his work presented a class of controlled dynamical systems which
are related to finitely many differential equations having specific polynomial nonlinearities.
His main aim was to study in depth such systems in the light of algebraic and differential
geometry. Furthermore, one of the most important results which the author presented in his
article about the study of nonlinear systems is that they provide alternatives to conventional
approximation such as the Lie theory does. In the same year the former author published a
very interesting paper [6] about the controllability and observability of polynomial dynamical
system. The key idea in his work was the Hilbert basis theorem and elimination theory in
order to bring a remarkable attention and give answers like integrability, stability, etc for
polynomial systems. In other words, he applied the notions of Hilbert basis theorem to a
wide class of systems in order to describe controllability and observability through some
finitely conditions.

In 1986 a remarkable article about local feedback stabilization and bifurcation control
was presented by E.H. Abed and J-H Fu [3]. The writers of this work demonstrated two main



8 Literature and Historical Review

issues. The first one was the demonstration of the link between local stabilization in critical
cases and the problem to (local) bifurcation control. In addition, they pointed out that it is
not rare the fact that the results on stabilization in critical cases are possible to be applied
in cases of control of bifurcations. The other goal of the authors was to get the results on
simple and pure imaginary eigenvalues from a state dynamical matrix of a linearised system.
Finally, the approach they followed in their research was to produce more general and valid
analytical criteria not only for stabilizability but also stabilizing feedback controls. This
can be achieved by using the bifurcation formula which contains Taylor series of the vector
field and calculation of eigenvectors. In the field of control theory there are areas which are
mature such as

1. algebraic system theory

2. optimal control

3. H∞ control

4. adaptive control etc.

not only theoretic but also applied areas which make mathematical control theory, after
almost 50 years, to be a complete field of mechanics and mathematical science.

2.2 Random matrix theory

The first time we met random matrices was in 1930 but in that moment, because it was not
such a popular method, it was not given the necessary importance until the next decade when
the method was studied by many scientists. The big question imposed by scientists at that
time was what we can say about the eigenvalues of a very large matrix if we suppose that the
elements of a matrix are random variables with known distribution. To give an answer to
this question we have to go back in 1950 when physicists studied the motion of neutron in
nuclear physics.

According to quantum mechanics, the energy levels of a system can be described by the
properties of a Hermitian operator H which is called Hamiltonian. This Hamiltonian system
should have the same structure, regarding to eigenvalues, thus it should be worked as an
infinite Hilbert space and according to the H operator the aim was to collect information
about the eigenvalues.

The first scientist who worked in this sector was the Austrian-Hungarian physicist
Eugene Wigner who supposed that the statistical behavior of energy levels is identical to the
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eigenvalues of a random matrix. Some decades later in 1960 when random matrices were
recognised by many famous physicists and through Monte Carlo simulation they concluded
that the hypothesis that Wigner first made about random matrices was correct.

It was in 1953 when F. Dyson [17] worked on theoretical physics and his research focused
on dynamical behavior of a disorder linear chain system. By a disordered chain he meant
that chain which consists of harmonic oscillators in one dimension. The main goal of his
paper was to present a method in order to determine the exact spectrum or the distribution
function of characteristic frequency of the chain as the size of the masses becomes very large.
In his paper Dyson described his analysis and presented an exact solution of models in one
dimension clarifying that those results which were produced by him could not say that it
could be applied on a corresponding 3 dimensional problem. Furthermore, Dyson gave a
more theoretical approach, in other words, from a group theoretical analysis concept and he
concluded that an irreducible ensemble of matrices which are invariant under a symmetry
group G should belong to one of three classes, which he then named orthogonal, unitary and
symplectic.

There was a great necessity to find a new analysis method due to failure of classical
methods on prediction of a macroeconomic-model by economists. Ormerod and Mounfield
[58] in 2000 tried to describe how the economists failed to forecast a system of macroeco-
nomic model with classical methods and they proposed the approach of RMT. By classical
method they meant that the model which was constructed by economists is a combination
of economic theory and statistical regression in order to specify the relationships and to
place values on the parameters in the relationships. The importance of such models was
the short-term forecasting factors for the economy like inflation, unemployment, consumer
spending and the overall level of output in the economy. According to them, the results of
the forecasting were very helpful because they played a very important role in policy makers
like setting interest rates and monetary policy.

In the last 30 years, even though the economists had disagreements about how the
economy works, this situation drove them to study the relationships of macroeconomic-
models, no single method was better than any other about the forecasts and their accuracy.
Indeed, the forecasting record of macroeconomic-models was very poor and as other scientists
studied and they concluded that no evidence exists where the accuracy was improving over
the time. Another step to their research was to compare the eigenvalues of the empirical
correlation matrix with the range of eigenvalues of the correlation matrix of a purely random
matrix. The reason why they did this step to their research was that if the computed
eigenvalues are between the theoretical limits of a random matrix they come to the conclusion



10 Literature and Historical Review

that any correlations which exist between the rate of growth of GDP at time t and any lagged
values of itself are essential random and have no real significance.

Finally, they concluded that the reasons that the economists got poor forecasting record
of GDP growth was due to the inherent characteristics of data and furthermore they said that
the forecasting cannot be improved in a better way independently what economic theory or
statistical technique used to generate them.

On the other side Plerou, Gropikrishnan and Rosenow [59] on their paper point out the
importance of quantification of correlations between the returns of different stocks which
is very important due to quantifying the risk of portfolios of stocks, pricing of options and
forecasting. They mention that the idea of the problem to identify stocks that are correlated
are not far away from a more complex problem like connectivity of gas molecules. On the
one hand they calculate the correlation matrix with elements the correlations between any
two stocks and on the other hand, they meet a few difficulties which they tried to overcome,
such as the following:

• there is no "algorithm" to show us what the "interaction strength" between two firms
i, j is.

• correlations should involve clusters of stocks.

• the correlations between any pair of firm i, j of stocks change in time.

• for any stock i they estimate an average correlation from given finite records.

Moreover, the authors wondered for what reasons should someone manipulate with
matrices with random elements. To answer that query, we need to look back in time, in 1950
when the famous Houngarian-American theoretical physicist Eugene Wigner and later on the
British-American theoretical and mathematical physicist Freeman Dyson and of Indian origin
theoretical physicist Madan Lal Mehta worked on nuclear physics and tried to understand the
energy levels of complex nuclei when experimental data failed to be described by theoretical
models.

The treatment to this problem was done by E. Wigner [62] who had the superb idea to
think of the behaviour of nucleus components as random and furthermore, he assumed the
elements of the Hamiltonian matrix H, Hi j, as mutually independent numbers. According
to the last assumption he derived all the statistical properties of the eigenvalues of the
Hamiltonian (H) matrix which were very close to the results from the experimental model.
In addition, E. Wigner worked on real symmetric matrices whose elements follow Gaussian
distribution and he called such a class of matrices as GOE. Moreover, Plerou et al. in order to
quantify and understand the correlations between different stocks started by the calculation
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of the eigenvalues and then they compared the spacing distribution to the Wigner distribution.
The authors came with very interesting results and confirmed that the cross-correlation
matrix is perfectly aligned with the predictions of random matrix theory. Furthermore, what
came out by the authors from the last results according to the comparison of eigenvalues
between the cross-correlated matrix and the RMT, was that the elements of cross-correlated
matrix have a considerable degree of randomness. A hypothesis made by authors about the
randomness is due to either nonstationary correlations or the worked with the finite time
series.

Ormerod [57] in 2008 worked on RMT with application to Macro-Economic Time Series.
He studied the application of RMT by analyzing the synchronization of international business
cycles from 1880 up to 2008. Furthermore, Ormerod worked onto correlation matrix of
annual real GDP growth rates in a discrete set of countries. According to his research, he
found that there is a trend towards great synchronization over time. Moreover, he illustrated
that the results under RMT technique are not so differently compared to results taken with
other, more close to economists, techniques. In addition, what he did was to compare the
eigenvalues of the correlation matrix versus the theoretical maximum and minimum values
of a random matrix of similar dimension.

Ormerod has investigated through comparison of the eigenspectra properties of the
empirical matrix versus the theoretical eigenspectra properties of a random matrix in order to
determine the degree to which an empirical correlation matrix is dominated by noise. After
that, what he proved, was to identify those eigenstate of the empirical matrix which contain
authentic information content and the remaining eigenstates will be noise dominated and
thus unstable.

In addition, after the comparison of the eigenvalues distribution of the correlation matrices
he found that the empirical formed matrix will not have random elements but there will be a
structure in correlation matrix. Finally, for Ormerod so as to study and analyze this structure
of eigenvectors, the IPR should have been calculated.

Next we not only have an application of RMT on Finance but also on cleaning correlation
matrices through the approach of empirical eigenvalue distribution. Bouchard and Potters,
in 2009, relied on the work of Marchenko and Pastur [44] (1967) in order to describe the
application of RMT in finance. The main aim of their research as a new statistical tool
was the analysis of multidimensional data sets which had a very good impact on almost all
scientific research fields like physics, image analysis, mechanics economics, finance, etc.
Moreover, the authors thought that they could investigate and interpret the dynamic of N
return stocks. Thus, the easiest way to interpret the correlations among those quantities was
to calculate the Pearson estimator of the correlation matrix.
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Furthermore, they linked the calculation of eigenvalues of a correlation matrix to the risk
of investment of a portfolio and they have observed that large eigenvalues correspond to
more risky mix of assets in contrast with the lower eigenvalues. In addition, they mention
that in financial markets the large eigenvalues correspond to the trend of investing in almost
all stocks by the same manner and the last is the so called "market mode" which is correlated
to the market index.

In addition, the authors not only present their results about the comparison between the
empirical spectrum and RMT but also the comparison of different approximation schemes
for the risk control. Thus, they compare the empirical spectrum with the equivalent as
presented to the paper of Marchenko-Pastur and they observed that several eigenvalues take
values which extend the proposed bound by Marchenko-Pastur. Moreover, they show that
eigenvectors with less structure follow Gaussian distribution. Furthermore, they conclude
that not only eigenvectors with large values but also those with small values are not random
and they mention that such large eigenvalues correspond to economic sectors in contrast with
the small values which correspond to long-short portfolios that correspond to investments
with low volatility.

2.3 Graph theory

In 1956 an innovative paper was published by L. R. Ford [22] where he presented appropriate
algorithms for the solution of the maximal network flow problem and its application to a
numerous of different type of problems. In his article, he briefly described the definition
and the notion of a network and its characteristics, like nodes, arcs and gave some special
features to arcs like the length and the capacity, respectively. In addition, in his paper he
stated and gave solution to three problems. The first one was on what the maximal steady
state flow is in case of sending an item, say a good, from the origin to the terminal, say a rail
network, by avoiding to take account the cost of this procedure viz the length of this flow.
The second problem was starting from an origin to terminal node which is the cheapest route
without considering any capacity constraints. Finally, the last problem which was considered
by L. R. Ford was to give a solution on what the maximal amount of items is, say goods,
that could be transferred from the initial, origin node to the final in a given time. Moreover,
according to him, he stated the Minimal Cut Theorem which says that "In any network the
maximal steady state flow is equal to the minimal cut value", where cut value according to
the definition of a cut in a network is the sum of capacities of its arcs. The answer the author
gave to the three previous problems was to present them as a linear programming and he
concluded that the problems could be tackled by the simplex method.
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In the same year a very interesting paper about network theory was published by L.
R. Ford and D. R. Fulkerson [41]. The authors in their paper tried to give an answer to a
connected network between two cities and their intermediates where they assigned a number
to each link of the network which construed as the capacity. According to them, such a
problem could be set up as a linear programming problem and could be solved by the simplex
method but they observed that in the case of the network being planar, then a more efficient
and simpler computing procedure should be followed. Furthermore, in their paper they gave a
non-constructive proof of the minimal cut theorem and they concluded to the ability of giving
an upper bound for flows over an arbitrary network. Finally, they pointed out a network
where by giving any two points, they noticed the duality between the capacity problem and
that of finding the shortest path.

Three years after the superb research work by L. R. Ford and D. R. Fulkerson we have
another great paper by Dijkstra which was published in 1959 [15]. In his paper the author
worked on two problems which are related to the connection of graphs. More precisely
his initial idea was to consider n points (nodes) which are connected by a branch where
the length of each one is given. Furthermore, he focused on the case where between any
two nodes there exists at least one path and according to the last one he studied those two
problems. Thus the first problem he studied was a given set of n nodes which make a tree
with the characteristic of a minimum total length among those n nodes. He argued that his
solution to this problem was better than the solution given by J. B. Kruskal [40] and those
given by H. Loberman and A. Weinberger [43]. Dijkstra claimed that the solution which
was given by the last authors was much more complex than his own approach because his
method produced the right answer to the problem taking account only the requirement of
simultaneous storing of the data for the majority of n branches, while the other authors not
only sorted all the branches according to their length but also they stored simultaneously
all data for all branches. Moreover, the second problem that had been studied by Dijkstra
within the same article was to find a path of minimum total length between two nodes. In
addition, the solution to the second problem which was given by Dijkstra again as in the first
problem, was much less complex than the given answer by L. R. Ford [22] as described by C.
Berge [10]. The reason was that Dijkstra’s approach didn’t store all the data for all branches
simultaneously but he stored a sufficient number of them which was much less than n, where
n was the cardinality of nodes.

For more than a hundred years, one of the most popular ideas in graph theory literature is
the idea that every map requires at most four colors or to draw a map five colors are required.
A solution to this problem was proposed in 1977 by a joint superb work of Kenneth Appel
and Wolfgang Haken [5]. Travelling back in time and more specifically in 1852, Francis
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Guthrie after his graduation from the University College of London sent a letter to his brother
who was a student of the very famous mathematician Augustus De Morgan. Francis was
curious about an idea that he had and wanted to share it with his brother. His concept was that
in order to draw a map on a sheet of paper, you should do it by filling up those countries in
four only different colors in such a way that none of those countries share the same color with
their neighbours. Although his brother Frederick was a mathematician student he couldn’t
prove his brother proposal mathematically and in turn, he asked for help by his professor De
Morgan but without a success either. So, Francis Guthrie was the mathematician who posed
the four color problem which remained unsolved though for 124 years approximately with
many curious problem solvers from high school students to professor mathematicians trying
to solve it unsuccessfully. Moreover, in 1976 Kenneth Appel and Wolfgang Haken solved the
four-color problem and Guthrie’s conjecture was proved in a different mathematical way than
the ones former researchers tried all those years without any success. The authors pointed out
that they successfully proved this difficult problem thanks to the power of computers and that
was the main difference that they used as a method against the other researchers who tried to
prove the conjecture through more classical methods of the mathematical science. Also, they
mentioned that even though there are some theorems of great interest from a mathematical
point of view, they believed that it could only be proved by computer methods. The last
is true because according to their results they concluded that despite of their proof of the
four-color theorem, there are limits to those researchers who try to treat difficult problems in
mathematical science by theoretical methods only.

2.4 Diffusion

The word diffusion derived from the Latin word ’diffundere’ which means ’to spread out’. If
we want to think about it, we should bring in our minds a glass of water and deposit a droplet
of ink without stirring it and then we get a demonstration of the process. The how it works
part is due to Brownian motion of atoms or molecules that lead to full mixing.

This motion of diffusion process occurs in many states like gases, liquids and more
difficult to a solid state. The scientific community had the belief that the diffusion process
could occur only in liquids and gases and this idea was considered truthful until the end of the
19th century. Due to the paramount work of William Roberts-Austen and Georg von Hevesy
the previous belief was rejected. Furthermore, scientists realized that due to the density of
such materials, like solid, a different approach needed to be followed in order to understand
the motion of atoms in such materials, i.e. the diffusion process. In other words, scientists
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should focus on two key points which are the position and the motion of atoms in solids in
order to get a better understanding in a diffusion process.

The first scientific work on diffusion in gases was studied in detail by Thomas Graham
in 1828 [24]. In addition, he studied in depth the diffusion in gases from a quantitative
point of view. Graham, in his research, realized that when different types of gases came into
contact the result was that they diffused through each other and did not separate themselves
according to their density, as it was initially believed.

In addition, a very interesting paper was published in 1855 by A. Fick [18] and the main
topic of his research was a mathematical accomplishment about salt movement in liquids as
a diffusion process, something very closed to heat diffusion. Fick was so genius that he was
the scientist who published the first book on medical physics. In addition, in his book, he
mentioned the applications of optics, solid mechanics, gas and heat diffusion to biological
systems. Moreover, his ideas about molecular diffusion could be described by mathematical
formulas in a more difficult way than he had imagined as a concept. Furthermore, his paper
was divided into two main parts. The first one was a description of his experimental results
after the applicability of Fourier’s equation to liquid diffusion and the second one was a full
description with every detail of the diffusion through a membrane.

Closer to today and more specifically in 2015 we have a very promising paper by N.
Meghanathan. The author in his research work [46] introduced a probabilistic type of
diffusion process in random network graphs. In his work the author has as the main idea a
network with nodes and links which he called the initial set of node as early adopters and
along the links of the network he tried to understand how the information from the starting
point of a set of nodes diffuse to the remaining nodes of the network. Furthermore, he gave
probabilities to links and diffusion process or in other words, he assigned a probability (plink)
if there exists a link between any two nodes and a certain probability (pdi f f ) assigned to
information where it spreads along the links. Furthermore, according to him, we can think
the process of diffusion in rounds where the initial set of nodes, i.e. early adapters, is the
first round of this procedure. In addition, those nodes which get the information are said
to be covered, and after that, those nodes are candidates which diffuse the information to
other nodes which have not been covered yet and so on. This procedure continues until all
the remaining uncovered nodes get the information or in other words there is no uncovered
node in the network. Thus the main aim of his paper was to analyze the speed of information
from one or more nodes, referred to as early adopters, to spread out to other nodes of the
network. Finally, the author was interested in studying such random networks from the point
of view that if the number of that initial set of nodes increases what the impact on the success
of diffusion process is.
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Chapter 3

Methodological Tools

‘If I have seen further it is by standing on the shoulders of giants. To R. Hook‘, February
1676.
— Sir Isaac Newton, 1643-1727, English Mathematician.

3.1 An introduction to the Laplace Transform method

In this chapter we present some methodological tools that are necessary in order to get a better
perception on the chapters that are following. Tools like the Laplace transform, fundamental
matrix and how they are involved in order to solve systems of linear ordinary differential
equations are given. In addition, we introduce useful tools and basic theory concerning linear
systems like controllability, observability, stability, poles and zeros. Last but not least tools
from graph theory are presented as well.

Suppose that we have a first order differential equation which is given by the following
equation

dy
dt

+ p(t)y = f (t) (3.1)

where p(t), f (t) are given functions. In order to solve Eq.(3.1) we should multiply it by an
integrating factor µ so that the resulting equation is integrable. More precisely we have

µ(t)
dy
dt

+µ(t)p(t)y = µ(t) f (t) (3.2)

(µ(t)y)′ = µ(t)y′+µ(t)′y = µ(t)
dy
dt

+
dµ(t)

dt
y = µ(t) f (t) (3.3)



20 Methodological Tools

Comparing the last two equations we conclude that the next relation must be satisfied

dµ(t)
dt

y = µ(t)p(t) (3.4)

From the last equation we get

ln µ(t) =
∫

p(t)dt +ρ (3.5)

By choosing ρ , which is an arbitrary constant, as zero we obtain the following equation
which is the simplest possible function for µ(t), and it is called integrating factori.e.

µ(t) = exp
∫

p(t)dt (3.6)

Furthermore in order to give a general solution to (3.1) we start from (3.3) and we have

(µ(t)y)′ = µ(t) f (t) (3.7)

and we get

y =
1

µ(t)

∫ t

t0
µ(t) f (t)dt + c

where µ(t) is given by (3.6).

Theorem 3.1.1. [12] If f is piecewise continuous for t ≥ α , if | f (t)| ≤ g(t) when t ≥ M for
some positive constant M, and if

∫
∞

M g(t)dt converges, then
∫

∞

α
f (t)dt also converges. On

the other hand, if f (t)≥ g(t)≥ 0 for t ≥ M, and if
∫

∞

M g(t)dt diverges, then
∫

∞

α
f (t)dt also

diverges.

Unfortunately we can’t find an appropriate integrating factor for ordinary linear equations
of higher degree than Eq.(3.1). There is another tool that we can use to tackle this problem
and solve nth order constant coefficient linear differential equation. The procedure is to
multiply by e−st the following equation

y(n)+an−1y(n−1)+an−2y(n−2)+ · · ·+a1y′+a0y = f (t) (3.9)

where ai, i = 0,1, . . . ,n−1 are constants and then taking the integral from 0 to ∞ we get:

∫
∞

0
e−st(y(n)+an−1y(n−1)+an−2y(n−2)+ · · ·+a1y′+a0y)dt =

∫
∞

0
e−st f (t)dt (3.10)
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We can rewrite (3.10) as

L { f (t)}= F(s) =
∫

β

α

L(s, t) f (t)dt (3.11)

where L(s, t) = e−st is a given function and it’s called kernel of the transformation and we
call this procedure integral transforms. The key idea behind this procedure, is because
there is a case that we don’t know f thus we use (3.11) in order to make the problem more
simple and we work the problem with F and then we go back from F to f . This is known as
"inverting the transform".

Example 1: Integrating factor

▶ Solution Let’s find the Laplace transform of the function f (t) = teat , where a is a real
constant.

In order to find the Laplace transform we use the Eq.(3.11):

L { f (t)}= F(s) =
∫

∞

0
e−stteatdt =

∫
∞

0
te−(s−a)tdt

= lim
x→∞

(
te(a−s)t

a− s

∣∣∣∣∣
x

0

−
∫ x

0

e(a−s)t

a− s
dt

)

= lim
x→∞

[
te(a−s)t

a− s
− e(a−s)t

(a− s)2

]x

0

=
1

(s−a)2

■

where s > a.

A very useful property of the Laplace transform is that suppose we have two functions g and
h and the Laplace transform exist for s > a1 and s > a2, respectively. Then we say that the
Laplace transform is a linear operator and we write

L {c1g(t)+ c2h(t)}=
∫

∞

0
e−st [c1g(t)+ c2h(t)]dt

= c1

∫
∞

0
e−stg(t)dt + c2

∫
∞

0
e−sth(t)dt

Thus, we get the following equation-property

L {c1g(t)+ c2h(t)}= c1L {g(t)}+ c2L {h(t)} (3.12)
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Table 3.1 Useful Laplace Transform properties.

f (t) = L −1{F(s)} F(s) = L { f (t)}

1. Linearity L {k1 f (t)+ k2g(t)}= k1L { f}+ k2L {g}

2. First derivative principle L { f ′(t)}(s) = sL { f (t)}− f (0)

3. Second derivative principle L { f ′′(t)}(s) = s2L { f (t)}− s f (0)− f ′(0)

4. Transform derivative principle L {−t f (t)}(s) = d
dsF(s)

3.2 How to solve an Initial Value Problem

In this new section we describe the method of Laplace transform in order to show how to
solve an initial value problem of linear differential equations with constant coefficients. We
mention the following theorem without a proof wich says

Theorem 3.2.1. [12] Suppose that f is continuous and f ′ is piecewise continuous on any
interval 0 ≤ t ≤ A. Suppose further that there exist constants K,a,M such that | f (t)| ≤ Keat

for t ≥ M. Then L { f ′(t)} exists for s > a and moreover

L { f ′(t)}= sL { f (t)}− f (0)

Furthermore, from theorem 3.2.1 we have a useful corollary which says the following

Corollary 3.2.1.1. [12] Let f , f ′, . . . , f (n−1) are continuous and that f (n) is piecwise con-
tinuous on any interval 0 ≤ t ≤ A. Suppose that there exist constants K,a,M such that
| f (t)| ≤ Keat , | f ′(t)| ≤ Keat , . . . , | f (n−1)(t)| ≤ Keat for t ≥ M. Then L { f (n)(t)} exists for
s > a and is given by

L { f (t)}= snL { f (t)}− s(n−1) f (0)−·· ·− s f (n−2)(0)− f (n−1)(0)
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Example 2: Use the Laplace transform method to solve the following differential
equation. Give both Y (s) and y(t).

1. y′′−3y′+2y = 4, y(0) = 2, y′(0) = 3

▶ Solution We suppose that there exists a solution y = φ(t) with its first two derivatives
satisfying the conditions of Corollary 3.2.1.1. Taking the Laplace transform of equation
we obtain

L {y′′}−3L {y′}+2L {y}= 0 (3.13)

What we did up to now is that we used the linearity property of Laplace transform as it
was given by Eq.(3.12). Using the Corollary 3.2.1.1 we find that Eq.(3.13) becomes

s2L {y}− sy(0)− y′(0)−3 [sL {y}− y(0)]+2L {y}= 0 (3.14)

(s2 −3s+2)Y (s)− (s−3)y(0)− y′(0) = 0 (3.15)

where Y (s) = L {y}. Next, substituting initial conditions in the last equation and in
addition we substitute the Laplacian transform which corresponds to the nonhomogeneous
part of initial equation i.e. f (t) = 4 corresponds to L { f (t)}= F(s) = 4

s as mentioned in
the Table 3.2 and then solving for Y (s), we obtain

Y (s) =
2s−3

(s−1)(s−2)
+

4
s(s−1)(s−2)

(3.16)

Next we find the partial fraction decomposition of Eq.(3.16). More analytically we have

• 2s−3
(s−1)(s−2)

A1

s−1
, A1 =

2s−3
s−2

∣∣∣∣∣
s=1

⇒ A1 = 1

A2

s−2
, A2 =

2s−3
s−1

∣∣∣∣∣
s=2

⇒ A2 = 1

Thus, the first part of Eq.(3.16) can be rewritten as

2s−3
(s−1)(s−2)

=
A1

s−1
+

A2

s−2
=

1
s−1

+
1

s−2
(3.17)

We are working in the same way as before in order to decompose the second part of
Eq.(3.16) and more specifically we obtain
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• 4
s(s−1)(s−2)

A1

s−0
, A1 =

4
(s−1)(s−2)

∣∣∣∣∣
s=0

⇒ A1 = 2

A2

s−1
, A2 =

4
(s−0)(s−2)

∣∣∣∣∣
s=1

⇒ A2 =−4

A3

s−2
, A3 =

4
(s−0)(s−1)

∣∣∣∣∣
s=2

⇒ A3 = 2

Thus, the second part of Eq.(3.16) can be rewritten as

4
s(s−1)(s−2)

=
A1

s−0
+

A2

s−1
+

A3

s−2
=

2
s
− 4

s−1
+

2
s−2

(3.18)

Finally, if we substitute the results of Eq.(3.18) and Eq.(3.17) in Eq.(3.16) we obtain

Y (s) =
2
s
− 3

s−1
+

3
s−2

(3.19)

Furthermore, consulting the Table 3.2 we obtain

y(t) = φ(t) = 2−3et +32t (3.20)

■

In this point we can mention various features of Laplace transform method. Some of them
are

(i) a linear ODE, can be reduced from a differential to an algebraic equation

(ii) first we solve an algebraic equation and then by inverse Laplacian transform we find
the solution in the time domain

(iii) it is not necessary to first solve for the homogeneous part

(iv) the same method can be applied to higher order equations taking account the conditions
of Corollary 3.2.1.1.

(v) if f is a continuous function then there is a one-to-one correspondence to Laplace
function, viz the Laplace transform corresponds to f is unique.
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Table 3.2 Basic Laplace Transforms where n is a nonnegative integer and a, b are real.

f (t) = L −1{F(s)} F(s) = L { f (t)}

1. 1 1
s

2. eat 1
s−a , s > a

3. tn n!
sn+1 , s > 0

4. sinat a
s2+a2 , s > 0

5. cosat s
s2+a2 , s > 0

6. eat sinbt b
(s−a)2+b2 , s > a

7. eat cosbt s−a
(s−a)2+b2 , s > a

8. uc(t) e−cs

s , s > 0

9. uc(t) f (t − c) e−csF(s)

10. ect f (t) F(s− c)

3.2.1 Fundamental theory of ODE Linear Systems

In this section we will present basic knowledge on homogeneous systems with constant
coefficients. More specifically, we call a system of equations of the form

y′1(t) = k11(t)y1(t)+ · · ·+ k1n(t)yn(t)+h1(t)

y′2(t) = k21(t)y1(t)+ · · ·+ k2n(t)yn(t)+h2(t)
...

y′n(t) = kn1(t)y1(t)+ · · ·+ knn(t)yn(t)+hn(t)

(3.21)

a first order linear system of ordinary differential equations or a vector differential
equation. From Eq.(3.21) we can extract matrices which are

y(t) =

y1(t)
...

yn(t)

 , A(t) =

k11(t) . . . k1n
... . . . ...

kn1(t) . . . knn(t)

 , and h(t) =

h1(t)
...

hn(t)
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and then Eq.(3.21) can be rewritten in a more compact way as

y′(t) = A(t)y(t)+h(t) (3.22)

where the matrix A contains the constants and such a linear differential system is called
constant coefficient. Furthermore, if h(t) is equal to zero then we say that we have a homo-
geneous linear differential system otherwise we call it nonhomogeneous. Thus substituting
h(t) = 0 in Eq.(3.22) we get the homogeneous equation in matrix form for the system which
is given by Eq.(3.21). In addition if we assign to Eq.(3.22) an initial value y(t0) = y0 then
we say that we have an initial value problem.

Theorem 3.2.2. Suppose that we have a linear differential system which is given by Eq.(3.22)
then

1. Let y1 and y2 are solutions to the homogeneous part of linear differential system i.e. for
h(t) = 0 in Eq.(3.22) then c1y1 + c2y2 is also a solution where c1,c2 are constants.

2. Let yps is a particular solution to Eq.(3.22) viz h(t) ̸= 0 and yhs is solution to homogeneous
case then ygs = yps + yhs is also a solution to Eq.(3.22).

3.2.2 The role of Diagonalizable Matrices

When we work with systems of ordinary differential equations we face the difficulty of more
than one unknown variables which are involved in some or all of the equations. Thus a good
idea to treat this problem is to transform the coefficient matrix A into a diagonal matrix.
Let An×n be a matrix of n linearly independent eigenvectors or in other words the matrix A
has all the eigenvalues different or A is Hermitian. Moreover, suppose (e(1), . . . ,e(n)) and
(λ1,λ2, . . . ,λn) are the eigenvectors and eigenvalues of matrix A, respectively. Next we form
the matrix P whose columns are the eigenvectors of A, that is

P =


e(1)1 . . . e(n)1

... . . . ...

e(1)n . . . e(n)n


The columns of P are linearly independent vectors that is the matrix P is non-singular. In
addition, if we calculate the product of AP and take into account that Ae(r) = λre(r) we can
write the following
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AP =


λ1e(1)1 . . . λne(n)1

... . . . ...

λ1e(1)n . . . λne(n)n

 = PD

where

D =


λ1 0 . . . 0
0 λ2 . . . 0
...

... . . . ...
0 0 . . . λn


is a diagonal matrix whose elements in the main diagonal are the eigenvalues of matrix A.
Thus we have the following equation

D = P−1AP (3.23)

We call this procedure a similarity transformation and we say about matrix A that it is
diagonalizable. If a transformation P applied on a differential equation then the diagonal-
ization means that we get n independent differential equations of one variable which can be
solved one by one, separately.

3.2.3 The notion of Matrix Exponential and its Laplace Transform

A very powerful tool for solving linear differential equations with constant coefficients of
order n is the Laplace transform formula as it was mentioned in the second row of the Table
3.2 is

L {eat}= 1
s−a

(3.24)

In this subsection we present a case where the Eq.(3.24) can be used as a superb tool in order
to solve a system of differential equations with constant coefficients with the only exception
now that we substitute the constant a by a matrix An×n. Furthermore, the scalar exponential
function exp(at) can be represented by the power series

exp(at) = 1+
∞

∑
n=1

antn

n!
(3.25)

which converges on R for all t. If we substitute the scalar a by the matrix An×n the former
equation can be written as

eAt = I+
∞

∑
n=1

Antn

n!
= I+At +

A2t2

2!
+

A3t3

3!
+ · · ·+ Antn

n!
+ . . . (3.26)
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where I is a n×n matrix. By differentiating Eq.(3.26) we obtain

d
dt

(
eAt
)
=

d
dt

(
I+At +

A2t2

2!
+

A3t3

3!
+ · · ·+ Antn

n!
+ . . .

)
= A+

A2t
1!

+
A3t2

2!
+ · · ·+ Antn−1

(n−1)!
+ . . .

= A
(

I+At +
A2t2

2!
+

A3t3

3!
+ · · ·+ Antn

n!
+ . . .

)
= AeAt (3.27)

Now in the following lines we derive an extension of the Eq.(3.24) so that it can be applied
in a linear system of differential equations. More precisely, supposing f (t) = exp(At) and
(d/dt) f (t) = Aexp(At) and taking into account the first derivative principle as given in the
second line of Table 3.1 we obtain

L{ d
dt

eAt}= AL {eAt}

sL { f (t)}− f (0) = AL {eAt}
− f (0) = AL {eAt}− sL { f (t)}

I = (sI−A)L {eAt}

L {eAt}= I
sI−A

= (sI−A)−1 (3.28)

The matrix (sI−A) is called the characteristic matrix and (sI−A)−1 is called the resol-
vent matrix of A, respectively. Furthermore, we write cA = det(sI−A) = sn + a1sn−1 +

· · ·+an−1s+an = (s−λ1)(s−λ2) . . .(s−λn) and we call it the characteristic polynomial
of A and the roots of cA are called characteristic values or eigenvalues of A.

Example 3: For the matrix A compute the resolvent matrix (sI−A)−1 and the matrix
exponential eAt .

A =

[
1 −1
−2 2

]
▶ Solution We calculate the characteristic polynomial and we obtain

cA(s) = det(sI−A)

= s(s−3) (3.29)
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Next we compute the resolvent matrix and we get

(sI−A)−1 =
1

s(s−3)

[
s−1 −1
−2 s−1

]

=


s−2

s(s−3)
−1

s(s−3)

−2
s(s−3)

s−1
s(s−3)



=


2
3s +

1
3(s−3)

1
3s −

1
3(s−3)

2
3s −

2
3(s−3)

1
3s +

2
3(s−3)



=
1
s

2
3

1
3

2
3

1
3

+ 1
s−3

[
1
3

−1
3

−2
3

2
3

]
(3.30)

The matrix exponential can be computed by using the Laplace inversion equation that is

eAt = L −1{(sI−A)−1}

= 1

2
3

1
3

2
3

1
3

+ e3t

 1
3

−1
3

−2
3

2
3



=

 2
3 +

e3t

3
1
3 −

e3t

3

2
3 −

2e3t

3
1
3 +

2e3t

3

 (3.31)

■

3.2.4 Homogeneous Linear Systems with Constants Coefficients

In this subsection we give a description of the solution of a homogeneous linear system with
constant coefficients. Such a system has the form

y′ = Ay (3.32)

where A is a constant n× n matrix, or in other words if we set h(t) = 0 in Eq.(3.22) we
get the same system. Furthermore, we suppose that A is different from zero thus y = 0 is
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the only equilibrium solution. In addition we are interested in finding if there are any other
solutions that are very close to this equilibrium or depart from it as t increases. This interest
translated in more technical notion that whether y = 0 is stable or unstable solution. Systems
which are described by Eq.(3.32) we can get a qualitative information by drawing a direction
field which shows us the behavior of solutions or we can draw a sample of drajectories for a
given system which is called a phase portrait.

Theorem 3.2.3. Let An×n be a constant matrix and h(t) an Rn-valued continuous function
defined on an interval I. Suppose t0 ∈ I and y(0) ∈Rn. Then the unique solution to the initial
value problem

y′(t) = Ay(t)+h(t), y(t0) = y0 (3.33)

is the function y(t) defined for t ∈ I by

y(t) = eA(t−t0)y0 +
∫ t

t0
eA(t−u)h(u)du (3.34)

Corollary 3.2.3.1. Let An×n be a constant matrix and h(t) an Rn-valued continuous function
defined on an interval I containing the origin. Suppose y0 ∈ Rn. Then the unique solution to

y′(t) = Ay(t)+h(t), y(0) = y0 (3.35)

is the function defined for t ∈ I by

y(t) = eAty0 + eAt ∗h(t) (3.36)

Example 4: Find the general solution of the following system of equations, draw a
direction field and find the fundamental matrix Φ(t) of the system.

y′ =

[
3 −2
2 −2

]
y

▶ Solution Let A =

[
3 −2
2 −2

]
. We assume that y = keλ t and substitute for y in the given

system. Then we have a system of algebraic equations[
3−λ1 −2

2 −2−λ2

][
k1

k2

]
=

[
0
0

]
(3.37)

In order to get a nontrivial solution for the determinant of coefficients in the former
equation should be zero that is det(A−λ I) = 0. Solving the determinant we obtain the
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characteristic polynomial which is equal to

cA = λ
2 −λ −2 (3.38)

Eq.(3.38) has the roots λ1 = −1, λ2 = 2 and k1 = (1,2), k2 = (2,1) are the eigenvalues
and eigenvectors, respectively. The corresponding solutions are

y(1)(t) =

[
1
2

]
e−t , y(2)(t) =

[
2
1

]
e(2t) (3.39)

We compute the Wronskian determinant of this solution

W
(

y(1),y(2)
)
(t) =

∣∣∣∣∣ e−t 2e2t

2e−t e2t

∣∣∣∣∣=−et ̸= 0 (3.40)

Since W
(

y(1),y(2)
)
(t) ̸= 0 for t > 0 we conclude that y(1) and y(2) form a fundamental

set and a general solution of the given initial system of Example 4 is

y = c1

[
1
2

]
e−t + c2

[
2
1

]
e2t (3.41)

where c1,c2 are arbitrary constants.
In order to compute the fundamental matrix Φ(t) we concentrate in Eq.(3.41) where the

columns of Φ are solutions that satisfy the initial conditions y(1)(0) =

[
1
0

]
, y(2)(0) =

[
0
1

]
.

Next we substitute the initial conditions in Eq.(3.41) and solve for c1,c2. Finally, taking
into account the first initial condition we obtain (c1,c2) = (−1/3,2/3) and the second
initial condition we get (c1,c2) = (3/2,−3/4). Hence the fundamental matrix is given by

Φ(t) =

−1
3 e−t + 4

3e2t 2
3e−t − 2

3e2t

−2
3 e−t + 2

3e2t 4
3e−t − 1

3e2t

 (3.42)

■

The direction field for the system in Figure 1 (see Appendix) shows clearly that all solutions
depart from the origin or in other words y = 0 is a saddle point due to the fact that the
eigenvalues of the given system are real and have opposite signs.
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3.2.5 Nonhomogeneous Linear Systems with Constant Coefficients

Example 5: Solve y′ = Ay+h for the given matrix A, forcing function h and initial
conditions y(0).

A =

[
5 2
−8 −3

]
, h(t) =

[
t

−2t

]
, y(0) =

[
0
1

]
▶ Solution We solve this problem with Laplace transform method.

L {y′}= AL {y}+L {h(t)}
sY(s)−AY(s) = y(0)+H(s)

∴ Y(s) =
(
(sI−A)−1)y(0)+H(s) (3.43)

By Table 3.2 we obtain

H(s) =

[
1/s2

−2/s2

]
Moreover we compute (sI−A) and its determinant

(sI−A) =

[
s−5 −2

8 s+3

]

det(sI−A) = s2 −2s+1 = (s−1)2

∴ (sI−A)−1 =


s+3

(s−1)2
2

(s−1)2

−8
(s−1)2

s−5
(s−1)2

 (3.44)

Next we find the partial fraction decomposition of the matrix above and we obtain
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(sI−A)−1 =


4

(s−1)2 +
1

(s−1)
2

(s−1)2

−8
(s−1)2

−4
(s−1)2 +

1
(s−1)


=

1
(s−1)2

[
4 2
−8 −4

]
+

1
(s−1)

[
1 0
0 1

]

= tet

[
4 2
−8 −4

]
+ et

[
1 0
0 1

]
(3.45)

By Corollary 3.2.3.1 the solution to homogeneous system is given by

• Homogeneous solution

yh(t) = eAty0 =

(
tet

[
4 2
−8 −4

]
+ et

[
1 0
0 1

])[
0
1

]

=

[
2tet

−4tet + et

]
(3.46)

• Partial Solution

yp = eAth(t) =

(
tet

[
4 2
−8 −4

]
+ et

[
1 0
0 1

])[
t

−2t

]

= tet

[
1
−2

]
(3.47)

Finally, as Corollary 3.2.3.1 shows, the general solution of the system is given by

• General solution

ygs(t) = yh +yp =

[
2tet + tet

−4tet + et −2tet

]
(3.48)

■
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3.3 Basic Mathematical Theory of Linear Systems

Suppose that we have a phenomenon that we want to study and to model. In addition we can
give to a phenomenon two special features. More specifically we observe a phenomenon and
concentrate on the outcomes that it produces, which is a set U and we call it the universum.
In such a set U there exists a subset B which contains all the possible outcomes produced by
a phenomenon and we call it behavior of the model.

Definition 3.3.1. We call a mathematical model a pair (U,B), U is the universum set with
the elements that contains are called outcomes and B is a subset of U which we call it the
behavior.

Furthermore, when we focus on a mathematical model we try to establish the outcomes
and the behavior of the phenomenon. However, in most cases in order to extract more
information from our model and get a better conception of the phenomenon and how it works
except for the initial declared variables we need some other, auxiliary, variables which are
called latent variables. In other words an auxiliary variable of particular importance is the
state which is a combination of the past information that is relevant for the future progress of
the system.

Definition 3.3.2. A dynamical system Σ is defined as a triple

Σ = (T,W,B)

with T a subset of R called the time axis, W a set called the signal space and B a subset of
WT called the behavior (WT is a standard mathematical notation for the collection of all
maps from T to W).

Furthermore, a well-known, special and important class of latent variables are the state
variables. The property of state variables is that they divide the behavior in two parts
which are the past and the future. A very popular method to describe linear systems is
input/state/output systems. Such systems are presented as

d
dt

x = Ax+Bu

y = Cx+Du (3.49)

where u,x,y are the input, the state and the output, respectively. An×n, is sometimes called
the state-feedback matrix and if A is zero then we can not talk about feedback loops in the
realization, Bn×m, is called the input matrix, Cp×n is called the output matrix and Dp×m,
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is called the feedthrough term and the representation given by Eq.(3.49) is a state space
representation. Moreover, according to the first line of Eq.(3.49) x is the state and u is an
auxiliary variable which drives the evolution of the first one and y is the trajectory of observed
system and it is a static equation. Finally, Eq.(3.49) plays a central role in system theory as it
forms the backbone in linear control theory.

3.3.1 The Behavior of Input, State, Output Models

In the next lines we describe the trajectories of the Eq.(3.49) and how they look like. In order
to study such a system we pay attention to the input/state equation which is given by

d
dt

x = Ax+Bu (3.50)

and the main reason is that due to the presentation of the derivative in the left hand side of
Eq.(3.50). We split and focus on behavior of Eq.(3.50) in two main steps

1. By setting u = 0. Then Eq.(3.50) reduces to the autonomous differential equation viz
d
dt x = Ax and can be solved as described in Eq.(3.32)

2. The more general case, i.e. u ̸= 0.

Definition 3.3.3. The unique function Φ : R→ Rn×n with the properties

1. ∀t0, t ∈ R : d
dt Φ(t, t0) = AΦ(t, t0)

2. ∀t0 ∈ R : Φ(t0, t0) = I

is called the state transition matrix or transition matrix or fundamental matrix (see Exam-
ple 4) of the autonomous system, i.e. for u = 0 in Eq.(3.50).

3.3.2 Controllability, Observability, Stability, Poles and Zeros

It is very common in some scientific areas where the main research activity involves dy-
namical systems to estimate an input that causes the states of a system in finite time. For
instance we can think of an aircraft where a pilot is trying to control it and must change its
orientation. Another useful property in linear dynamical systems that scientists need to know
is to determine the state by taking into account measurements that come from the output of
the system. All those legitimate concerns of scientists lead to the concepts not only of state
reachability (or controllability-from-the-origin) and controllability (or controllability-
to-the-origin) but also of state observability and constructibillity. The last notions are of
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particular importance in order for someone to study the relationships between state-space and
input-output realizations of a linear system. Furthermore, it is worth mentioning that notions
like controllability and observability are extremely important in the case of state feedback
controllers and state observers, respectively. On the one hand by state controllability we
mean the capability to manipulate the state by changing the inputs in an appropriate manner.
In addition the last notion is a necessary and sufficient condition for the eigenvalues of a
matrix A of a given system. On the other hand by state observability we call the capability to
define the initial state vector of the system taking into account the knowledge of the input and
the corresponding information from outputs over time. In other words suppose that we have
a set of measurements and we want to know how well can we determine the initial state of a
system. Both reachability and observability play a central role in order for us to understand
feedback control of systems.

3.3.3 Reachability and Controllability

Suppose we have a time-invariant system then we say that a state x1 is reachable if there
exists an input that transfer the state x(t) from zero to x1 in a finite time T . In addition,
by reachability we mean that suppose we have a system starting from the origin we can
reach x1 in some finite time. At this point we have to say that reachability doesn’t share any
information about the specific time that is needed to reach x1 and in addition it doesn’t show
us the trajectory to be followed. Furthermore, similarly we can say that by controllability
we mean that a system is capable of transfering the state from x0 to the zero state in finite
time. As in the case of reachability again here we don’t have any information about time
or the trajectory to be followed. It is worth pointing out that reachability always implies
controllability but the vice versa is true only when the state transition matrix (or fundamental
matrix) Φ of the system has an inverse. Moreover, in the case of continuous time systems,
it is always true but in the case of discrete-time systems the same holds true but with the
particularity the matrix A of the system is nonsingular.

I. Continuous-Time Time-Varying Systems Let the following state equation

ẋ = A(t)x+B(t)u (3.51)

where A(t) ∈ Rn×n, B(t) ∈ Rn×m and u(t) ∈ Rm are defined and continuous on some open
interval I = (a,b) with a,b ∈ R. The following equation gives the state at time t

x(t, t0,x0)≜ x(t) = Φ(t, t0)x(t0)+
∫ t

t0
Φ(t,τ)B(τ)u(τ)dτ (3.52)
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with Φ(t,τ) being the state transition or fundamental matrix of the systems and t0, t ∈ I and
x(t0) = x0 being the initial state at initial time. We want to transfer the state from x0 to some
other value, say x1, in a finite time t1 > t0, hence we can rewrite Eq.(3.52) and obtain

x1 = Φ(t1, t0)x0 +
∫ t1

t0
Φ(t1,τ)B(τ)u(τ)dτ

x1 −Φ(t1, t0)x0 =
∫ t1

t0
Φ(t1,τ)B(τ)u(τ)dτ (3.53)

We have the following definition

Definition 3.3.4. A state x1 is reachable at time t1 if for some time t0 < t1 there exists an
input ut , t ∈ [t0, t1] that transfers the state x(t) from the origin at t0 to x1 at time t1. Hence by
the first relation of Eq.(3.53) there exists an input u such that

x1 =
∫ t1

t0
Φ(t1,τ)B(τ)u(τ)dτ (3.54)

Definition 3.3.5. A state x0 is controllable at time t0 if for some finite t1 > t0 there exists an
input u(t), t ∈ [t0, t1] that transfers the state x(t) from x0 at t0 to the origin at time t1

By the second relation and by the last definition we substitute x(t1) = 0 into Eq.(3.53)
and we obtain

−Φ(t1, t0)x0 =
∫ t1

t0
Φ(t1,τ)B(τ)u(τ)dτ

−x0 =
∫ t1

t0
Φ(t1,τ)B(τ)u(τ)dτ (3.55)

where we obtained the last equation by multiplying the first relation of Eq.(3.55) by
Φ−1(t1, t0) = Φ(t0, t1) and taking into account the property Φ(t0, t1)Φ(t1,τ) = Φ(t0,τ).
Suppose that there exists a system as described by Eq.(3.54) then the reachability space Rr is
given by

L ≜ L(u, t0, t1)≜
∫ t1

t0
Φ(t1,τ)B(t)u(τ)dτ (3.56)

where u(t), t ∈ [t0, t1] and t0 ≤ t1. Eq.(3.56) holds true since x1 is reachable if there exists a t0
and u such x1 ∈ R(L). In addition if the system (3.51) holds then we can say that the system
is reachable if and only if it is controllable. The last holds true only for continuous-time
systems and not for discrete-time. For discrete-time systems, if a system is reachable then it
is controllable but we can’t say with full of confidence the same for the opposite case. To
put in other words controllability implies reachability if the state transition matrix Φ(q,q0)
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has full column rank which does not always hold true in discrete-time systems. Hence,
under other conditions viz in continuous-time systems the transition matrix Φ(t,τ) is always
nonsingular. Next we give the Gramian matrix definition

Definition 3.3.6. By Wr(t0, t1) we mean the n×n reachability Gramian of the system given
by Eq.(3.51) which is given by

Wr(t0, t1)≜
∫ t1

t0
Φ(t1,τ)B(τ)B⊤(τ)Φ⊤(t1,τ)dτ (3.57)

with Φ(t,τ) is the state transition matrix.

At this point we should mention that Wr(t0, t1) is symmetric and positive semidefinite i.e.
the property Wr(t0, t1) = Wr(t0, t1)⊤ it holds true.

Corollary 3.3.0.1. We say a system which is given by Eq.(3.51) is reachable at t1 or the pair
(A(t),B(t)) is reachable at t1 if and only if there exists finite t0 < t1 such that

rankWr(t0, t1) = n (3.58)

Theorem 3.3.1. Let a system that is given by Eq.(3.51) then there exists an input u that
transfers the state of the system from x0 at time t0 to x1 at time t1 > t0 if and only if

x1 −Φ(t1, t0)x0 ∈ R(Wr(t0, t1)) (3.59)

u(t) = B⊤(t)Φ⊤(t1, t)η1,where η1 is the solution of (3.60)

Wr(t0, t1)η1 = x1 −Φ(t1, t0)x0 (3.61)

Example 6: Consider ẋ=A(t)x+B(t)u. Find the state transition matrix of the system
where

A(t) =

[
t −1
1 t

]
▶ Solution We start by decomposing the matrix A as follows

A(t) = t

[
1 0
0 1

]
︸ ︷︷ ︸

M1

+

[
0 −1
1 0

]
︸ ︷︷ ︸

M2

(3.62)

with f1(t) = t and f2(t) = 1. We use the next formula in order to obtain the transition
matrix Φ

Φ(t,τ) = eM1
∫ t

τ
θdθ eM2

∫ t
τ

dθ (3.63)
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Substituting M1,M2 we obtain

Φ(t,τ) = e

1 0
0 1

 1
2
∫ t

τ
(θ 2)′dθ

e

0 −1
1 0

∫ t
τ
(θ)′dθ

= e

1 0
0 1

 1
2 (t

2−τ2)

e

0 −1
1 0

(t−τ)

= e

1
2

t2 − τ2 0
0 t2 − τ2


e

 0 −(t − τ)

t − τ 0


(3.64)

We are working with the second term on the RHS of Eq.(3.64) and we rewriting in the
following form

e

[
0 −1
1 0

]
︸ ︷︷ ︸

T

(t−τ)

(3.65)

In the sequel as we have done in the previous examples in this chapter we continue in the
same way, i.e. to calculate (sI−T) and (sI−T)−1, respectively. Hence

(sI−T) =

[
s 1
−1 s

]

det(sI−T) = s2 +1

(sI−T)−1 =
1

s2 +1

[
s −1
1 s

]

eTt = L −1 ((sI−T)−1) =

[
cos[t] −sin[t]
sin[t] cos[t]

]
(3.66)

Hence, by Eq.(3.66) and Eq.(3.65) we obtain the final solution

Φ(t,τ) =

[
e

1
2 (t

2−τ2) cos(t − τ) −e
1
2 (t

2−τ2) sin(t − τ)

e
1
2 (t

2−τ2) sin(t − τ) e
1
2 (t

2−τ2) cos(t − τ)

]
(3.67)

■
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II. Continuous-Time Time-Invariant Systems In this case fortunately we can explicitly
determine the transition matrix against the previous case where we couldn’t define it as a
simple exponential. Hence the transition matrix is given by Φ(t,τ) = eA(t−T ). Moreover, the
definitions that were mentioned before in the case of time-variant systems are remaining true
in this case as well and we should have in our mind that always t0 = 0 and t1 = T. In addition
we write again the reachability Gramian for this case which says

Definition 3.3.7. The n×n reachability Gramian of the time-invariant system ẋ = Ax+Bu
is given by

Wr(0,T )≜
∫ T

0
e(T−τ)ABB⊤e(T−τ)A⊤

dτ (3.68)

Definition 3.3.8. We call the n×nm controllability (from-the-origin) matrix

L ≜
[
B,AB, . . . ,An−1B

]
(3.69)

Theorem 3.3.2. The system ẋ = Ax+Bu is reachable (controllable-from-the-origin)

1. if and only if
rankWr(0,T ) = n, for some finite T > 0 (3.70)

where Wr(0,T ) is the reachability Gramian as given by Eq.(3.68) or

2. if and only if the n rows of eAtB are linearly independent on [0,∞] over C or (sI−A)−1B
are linearly independent over C

3. if and only if rankL = n, where L is the controllability matrix as given by Eq.(3.69) or

4. if and only if rank[siI−A,B] = n for all complex numbers si or the eigenvalues of A.

Example 7: For the system ẋ = Ax+Bu

1. check for reachability where

A =

[
1 −1
−2 2

]
, B =

[
0
1

]

▶ Solution According to the theorem 3.3.2 we compute the rank of L = [B,AB]. Thus,

L =

[
0 −1
1 2

]
where the rankL = 2 = n. Hence, the system is reachable. ■
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3.3.4 Observability and Constructibility

In this subsection we are briefly describing the notion of observability and constructibility
but this time we focus on continuous-time time-invariant systems. Now, we are interested in
knowing if it is possible to determine the state by observing the response of a system over a
period of time and the system is equipped by some input. By observability we express the
efficacy to determine the present state x(t0) from knowledge taken by the system output y(t)
and system inputs ut , t ≥ t0. On the other hand by constructibility we mean the ability of
determining the present state x(t0) taking into account the knowledge of past system outputs
y(t) and system inputs u(t), t ≤ t0.

Let the following continuous-time time-invariant system of the form

ẋ = Ax+Bu

y = Cx+Du (3.71)

where A ∈ Rn×n,B ∈ Rn×m,C ∈ Rp×n,D ∈ Rp×m,u(t) ∈ Rm is continuous. In addition the
output of the system is given by

y(t) = CeAtx(0)+
∫ t

0
CeA(t−τ)Bu(τ)dτ +Du(t) (3.72)

In this type of systems it holds that in the present case Φ(t,τ) = Φ(t − τ,0) = eA(t−τ) with
initial time being t0 = 0. Moreover, we can deduce state x from u and y. That is, we can
compute the derivative of y

y = Cx+Du

ẏ = Cẋ+Du̇ = C(Ax+Bu)+Du̇ = CAx+CBu+Du̇

ÿ = CA2x+CABu+(CB+D)u̇
... (3.73)
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Thus we can write the last system in matrix form as
y
ẏ
ÿ
...

y(n−1)


︸ ︷︷ ︸

y

=


C

CA
CA2

...
CA(n−1)


︸ ︷︷ ︸

O(C,A)

x+


D 0 . . . 0 0

CB D . . . 0 0
CAB CB+D 0 . . . 0

...
CA(n−2)B CA(n−3)B . . . CB D


︸ ︷︷ ︸

T

+


u
u̇
ü
...

u(n−1)


︸ ︷︷ ︸

u

(3.74)

where T is a Toeplitz matrix and if O(C,A) is invertible, then we obtain

x(0) = O−1


y(0)
ẏ(0)
ÿ(0)

...
y(n−1)

−T


u(0)
u̇(0)
ü(0)

...
u(n−1)

 (3.75)

and the observability matrix pn×n is given by

O =


C

CA
CA2

...
CAn−1

 (3.76)

Finally we say that {C,A} is an observable pair for the system given by Eq.(3.71) if O is
nonsingular, viz is invertible.

Definition 3.3.9. We call a state x as unobservable if the zero-input response of the system
given by Eq.(3.71) is zero for every t ≥ 0

CeAtx = 0,∀t ≥ 0 (3.77)

Definition 3.3.10. Suppose we have a system given by Eq.(3.71), then the observability
Gramian is the n×n matrix

W0(0,T )≜
∫ T

0
eA⊤τC⊤CeAτdτ (3.78)

which is nonsingular for any T > 0.
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Corollary 3.3.2.1. We say that a system like (3.71) is observable or the pair (A,C) is
observable if and only if

rankO = n, or (3.79)

rankW0(0,T ) = n (3.80)

for all T > 0. If the system is observable then the state at x0 at t = 0 is given by

x0 = W−1
0 (0,T )

[∫ T

0
eA⊤τC⊤CeAtdτ

]
(3.81)

Theorem 3.3.3. Suppose a system as given by Eq.(3.71). Then the system is observable

1. if and only if
rankW0(0,T ) = n, for some finite T > 0 (3.82)

where W0(0,T ) is the observability Gramian as given by Eq.(3.78) or

2. if and only if the n columns of CeAt are linearly independent on [0,∞] over C or
C(sI−A)−1 are linearly independent over C

3. if and only if rankO = n, where O is the observability matrix as given by Eq.(3.76) or

4. if and only if rank

[
siI−A

C

]
= n, for all complex numbers si or the eigenvalues of A.

Example 8: Let a system of the form ẋ = Ax, y = Cx. Check for the observability
where

A =

[
1 0
0 0

]
, C =

[
1 0

]

▶ Solution We can check the observability of the system taking into account the third
option of the theorem 3.3.3. More specifically CA =

[
0 1

]
. Hence the observability

matrix is given by

O =

[
C

CA

]
=

[
1 0
1 0

]
(3.83)

The rankO = 1 < 2. Thus, we conclude that the above system is not observable. ■
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3.3.5 Fundamental of Stability Theory

A very important part of linear systems study is to investigate the stability. We give the notion
of external or bounded-input, bounded-output stability for linear time-invariant systems and
in addition we describe what we call internal stability. Furthermore, we briefly present a few
stability criteria like

1. algebraic criteria

(a) Routh criterion

(b) Hurwitz criterion

2. Lyapunov criterion

I. External Stability We call a causal system that is externally stable if a bounded input
u(t)< K1,−∞ <−T ≤ t < ∞ gives a bounded output y(t)< K2,−T ≤ t < ∞. In addition,
for BIBO stability a necessary and sufficient condition is∫

∞

0
∥h(t)∥dt < K < ∞ (3.84)

where h(t) is the impulse response.

II. Internal Stability Suppose that we have a realization

ẋ(t) = Ax(t)+Bu(t)

y(t) = Cx(t) (3.85)

it is internal stable or stable in the sense of Lyapunov if the solution of

ẋ(t) = Ax(t),x(t0) = x0, t ≥ t0 (3.86)

goes to zero as t →∞ for any arbitrary x0. In other words internal stability has the requirement
that all the roots λi of the characteristic polynomial which is produced by A must be negative
if λi ∈ R or if λi ∈ C then ℜ(λi)< 0.

Algebraic Crieteria
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1. Routh criterion
Some of the very well known and very useful algebraic criteria for stability are the
Routh and Hurwitz criteria, respectively. Their main feature is that they can define the
stability of a system by calculating the roots of a characteristic polynomial. Hence,
suppose we have a polynomial which is given by

p(s) = ansn +an−1sn−1 + · · ·+a1s+a0 (3.87)

where a0,a1, . . . ,an ∈ R, constant coeficients.

Theorem 3.3.4. The polynomial given by Eq.(3.87) has on or more roots on the right
complex plane when at least one coefficient is zero or (and) the coefficients have
different signs.

Routh Matrix
sn an an−2 an−4 . . .

sn−1 an−1 an−3 an−5 . . .

sn−2 b1 b2 b3 . . .

sn−3 c1 c2 c3 . . .
...

...
...

...
...

where an,an−1, . . . ,a0 are the polynomial coefficients while b1,b2, . . . ,c1,c2, . . . can
be computed by

b1 =

−

∣∣∣∣∣ an an−2

an−1 an−3

∣∣∣∣∣
an−1

, b2 =

−

∣∣∣∣∣ an an−4

an−1 an−5

∣∣∣∣∣
an−1

, · · ·

c1 =

−

∣∣∣∣∣an−1 an−3

b1 b2

∣∣∣∣∣
b1

, c2 =

−

∣∣∣∣∣an−1 an−5

b1 b3

∣∣∣∣∣
b1

, · · · (3.88)

Theorem 3.3.5. Let λi are the roots of the characteristic polynomial p(s). The nec-
essary and sufficient conditions in order to holds true that ℜ(λ1 < 0) is that the first
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column of Routh array must have the same sign. In other way we say that the system is
unstable and the number of roots that have positive real part is equal to the number of
sign changes.

Example 9: Let the polynomial characteristic of a system is given by p(s) =
s3 +10s2 +11s+6. Is it stable or unstable?

▶ Solution We write down the Routh array as

s3 1 11
s2 10 6
s1 52/5 0
s0 6 0

where b1 =
52
5 ,b2 = 0,c1 = 6,c2 = 0 are calculated by (3.88). We observe that the

first column of the Routh array doesn’t change sign hence the system is stable. ■

2. Hurwitz Criterion
Hurwitz criterion defines if the characteristic polynomial has the roots on the right
complex plane or on the imaginary axis. Comparable with the Routh criterion, this one
has a drawback, that is the amount of such roots can not be determined. The criterion
is based on the Hurwitz determinants which are
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Do = an

D1 = an−1

D2 =

∣∣∣∣∣an−1 an−3

an an−2

∣∣∣∣∣
D3 =

∣∣∣∣∣∣∣
an−1 an−3 an−5

an an−2 an−4

0 an−1 an−3

∣∣∣∣∣∣∣
...

Dn =

∣∣∣∣∣∣∣∣∣∣∣∣

an−1 an−3 · · · a0, if n is odd,a1, if n is even 0 . . . 0
an an−2 · · · a1, if n is odd,a0, if n is even 0 . . . 0
0 an−1 an−3 . . . 0
...

...
...

...
...

...
0 0 0 · · · 0 an

∣∣∣∣∣∣∣∣∣∣∣∣
(3.89)

Theorem 3.3.6. The necessary and sufficient conditions in order ℜ(λi) < 0 holds
true are Di > 0, i = 0,1, . . . ,n, where λi, i = 0,1, . . . ,n are the eigenvalues of the
characteristic polynomial.

Example 10: Let the polynomial characteristic of a system is given by p(s) =
s3 +10s2 +11s+6. Is it stable or unstable?

▶ Solution According to Hurwitz criterion we compute the determinants as given
by (3.89). More specifically
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Do = an = 1

D1 = an−1 = 10

D2 =

∣∣∣∣∣an−1 = 10 an−3 = 6
an = 1 an−2 = 11

∣∣∣∣∣= 104

D3 =

∣∣∣∣∣∣∣
an−1 = 10 an−3 = 6 an−5 = 0

an = 1 an−2 = 11 an−4 = 0
0 an−1 = 10 an−3 = 6

∣∣∣∣∣∣∣= 564 (3.90)

(3.91)

As all the determinants Di, i = 0,1,2,3 are positive hence by Hurwitz criterion we
have that the system is stable. ■

The Lyapunov Criterion for Stability

Theorem 3.3.7 (Lyapunov). A matrix A is a stability matrix, i.e. ℜ(λi)< 0 for all eigen-
values λi of A, if and only if for any given positive-definite symmetric matrix Q there exists a
positive-definite (symmetric) matrix P that satisfies

A′P+PA =−Q (3.92)

Corollary 3.3.7.1. If A is a stability matrix, then the Lyapunov equation

A′P+PA+Q = 0 (3.93)

has a unique solution for every Q.

3.3.6 Poles and Zeros

The concept of poles and zeros of a time-invariant system is very closed to the eigenvalues
of A. Quite enough we call the eigenvalues of A as poles of the system {A,B,C,D}. First
we briefly describe the Smith and Smith-McMillan forms.

Smith and Smith-McMillan forms Let first introduce the Smith and the Smith-McMillan
form of polynomial P(s) and rational matrix H(s), respectively. We define the Smith form of
p×m polynomial matrix as
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Sp(s) =

[
Π(s) 0

0 0

]
(3.94)

where Π(s) = diag[k1(s), . . . ,kz(s)], where z = rankP(s) and ki(s) are the invariant fac-
tors of P(s). In addition ki(s) is given by ki(s) = Gi(s)/Gi−1(s), i = 1, . . . ,z, where Gi(s) is
the monic greatest divisor of all the nonzero ith-order minors of P(s) with G0(s) = 1 and
Gi(s) are the determinant divisors of P(s). Furthermore, every ki+1(s) can be divided by
ki, i = 1,2, . . . ,z−1.

Now lets turn to the Smith-McMillan form and suppose that there exists a p×m rational
matrix H(s). We write

H(s) =
N(s)
d(s)

(3.95)

where N(s) is a polynomial matrix. Let SN(s) = diag[n1(s),n2(s), . . . ,nz(s),0p−z,m−z)]. In
order to obtain Smith-McMillan form we have to divide each ni(s) by d(s) and exclude all
those common factors of a transfer function matrix H(s), hence we obtain

SMH(s) =

[
Π̄(s) 0

0 0

]
(3.96)

where Π̄(s) = diag[k1(s)/ψ1(s),k2(s)/ψ2(s), . . . ,kz(s)/ψz(s)] and z = rankH(s). As in the
Smith form the same holds true here that is every ki+1(s) can be divided by ki, i = 1,2, . . . ,z−
1 and ψi(s) divided by ψi+1.

Poles

Definition 3.3.11. Let pH(s) be the characteristic polynomial or pole polynomial of a given
p×m rational matrix H(s). We call poles of H(s) the roots of the pole polynomial pH(s).

By mH(s) we call the minimal polynomial of all nonzero first order minors of H(s). At
this point it is important to highlight that the minimal polynomial of H(s), i.e. mH(s) divides
the pole or characteristic polynomial pH(s) and if the roots of pole polynomial are distinct
then it holds that mH(s) = pH(s). It should be noted that, we observe the poles in the transfer
function H(s) only to those eigenvalues of A that are controllable and observable.

Zeros Suppose that we have a scalar transfer function H(s) then the roots of its numerator
polynomial are the zeros of H(s). To put it another way some or all of the characteristic
values of the system matrix P(s), are called the zeros of the system. Suppose rankP(s) = r.
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Then computing all those rth order nonzero minors of the system matrix P(s) the zero
polynomial of the system zP(s) is the monic greatest common divisor of all these minors.

Definition 3.3.12. We call the zeros of the system {A,B,C,D} or the system zeros the roots
of the zero polynomial of the system zP(s). Moreover, by invariant zeros we call the roots of
the invariant polynomials P(s).

More analytically suppose that we have a system matrix P(s)(p+n)×(m+n) and its Smith
form is given by

SP =

[
Π(s) 0

0 0

]
Π(s) = diag[k1(s),k2(s), . . . ,kr(s)] (3.97)

Then the invariant zero polynomial of the system A,B,C,D is given by

zI
P(s) = k1(s),k2(s), . . . ,kr(s) (3.98)

and its roots are the invariant zeros of the system. It should be mentioned that it holds true
the fact that zI

P(s) ⊂ zP(s). Moreover there exists a relation between the zeros of the system
and the zeros of H(s) which is given by

P(s) =

[
sI −A B

−C D

]
=

[
sI −A 0

−C I

][
I (sI−A)−1B
0 H(s)

]
(3.99)

where P(s) is a square and nonsingular matrix.

3.4 Random matrix theory

Nowadays in societies people exchange a very big amount of goods and services under
different type of markets. All those exchanges are numbers which are translated to data and
can arise to useful and rational decisions by public or private authorities. The difficulty of
this type of data is that they have a stochastic structure and high complexity. Those two
reasons are enough to point out that not only economic but also finance science are difficult
to make predictions about an economy or the capitals in general, respectively.

The answer and understanding of randomness and complexity can be given only by the
mathematical science. It is common knowledge for many experts and scientists that if there
is no evolution in mathematical science then there is no possibility for any other science to
make a progress.
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The branch of mathematics that studies the randomness is called stochastic analysis. One
of the mathematical tools that is very useful, valuable, efficient and very promising to study
such problems mentioned above is the RMT.

3.4.1 What is random matrix theory

In random matrix theory the keypoint is the study of matrices whose entries are random
variables. Thus, probability theory is the backbone in this subject. What follows is a few
examples of RMT.

One of those cases is random operator. There are several cases where someone has been
interested in spectral properties of an operator, like Hamilton or Dirac or more generally in a
matrix describing correlation of some kind but unfortunately such type of operators are too
complicated and thus are not always possible to be analyzed explicitly. On the other hand,
RMT approaches the former operators by finite-dimensional matrices whose elements are
random variables. By doing this we are driven not only to a more straightforward solution
but also we keep some of its important stimulus. Furthermore, another point of view is that
the entries of random matrix itself can be considered as data. In this case in multivariate
statistics, a random matrix represents a sample covariant matrix. In this case the study of
eigenvalues and eigenvectors of an arbitrary size becomes important.

Another aspect where we can view RMT and its applications as counting device which is
a very powerful tool in order to perform enumerative combinatorics either the matrices are
of finite or infinite size. For instance the GUE generates Catalan numbers by simply taking
moments of the semi-circular density.

3.4.2 Importance of random matrix theory

There are some reasons why RMT is so important to mathematicians, physicists and other
scientists. Such a few reasons are flexibility, universality and predictivity.

Flexibility means that it gives us the ability to build in extra global (anti-unitary) symme-
tries, such as time reversal, spin, chiral or particle-hole symmetry while maintaining its exact
solvability for all correlation functions of eigenvalues.

In addition by universality the precise choice of probability distribution is not so impor-
tant because the correlation functions depend on this choice only through a few universal
paramaeters.

Moreover predictivity means that the correlation functions typically depend on few
paramaters and RMT is not able to know the physical scale of the problem in question. The
last can be answered by being compared to the effective theory.
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3.4.3 Distribution of eigenvalues of random matrices

The first study about the distribution of random matrices go back to the work of I. M. Lifsic
and F. Dyson in 1947 and 1953, respectively. In his paper Dyson presented a method on how
to determine accurately the spectrum or distribution function of the characteristic frequencies
of a chain N masses which are all connected by elastic spring obeying the Hooke’s law as the
number of masses N becomes very large.

One of the aspects of his methods was the case of a disordered chain i.e. an infinite chain
whose elements are distributed in a random way according to some known probability law.
Furthermore, he considered three types to rely on the property of time-reversal invariance.
Those types of random matrices ensembles have elements that are complex, real or self-dual
quaternion. Moreover, he introduced two types of disordered chain and he called them type I
and Type II with the first one being more simple from mathematical point of view where the
second type he worked in a real chain of randomly arranged atoms. At the Type I, each of the
parameters is an independent random variable with probability distribution function G(λ ) and
at the Type II he assigned to each mass m j an independent random variable with distribution
function G(m), the spring-constants K j being fixed and equal. Additionaly Dayson said that
it could be possible to go beyond the two Types and suppose a more general type of chain
that the masses m j are independent random variables while the spring power K j is a known
function of the two adjoining masses m j and m j+1. Under this consideration it would be
possible to have a model for a chain composed by different kinds of atoms characterizing by
randomness and the only thing that matters in strength of the bond between two atoms is the
chemical substance of those atoms. Thus, the systems that he considered were models of one
dimensional glass, a disordered array of atoms in one dimension. He pointed out that the
results of his paper couldn’t be generalized in 3-dimensions but it was very important that a
1-dimensional problem could be solved.

In 1950 RMT gained attention due to the work of E. Wegner in mathematical physics. E.
Wigner in 1957 had labored to study the distribution of the latent roots (characteristic values)
of certain sets of real symmetric matrices of very high dimensionality. More specifically
Wigner wished to describe a general concept of properties about the properties of nucleui as
measured in nuclear reaction. He tried to describe a nuclear system with high complexity
by an unknown Hermitian operator H in an infinite-dimensional Hilbert space governed by
physical laws.

On the other hand even if the Hermetian operator H was known, due to high complexity
it was not possible to solve eigenequation Hv = λv (the so called Schrödinger equation of
the physical system, where v and λ are the eigenvectors and eigenvalues of H). Furthermore,
Wigner claimed as an alternative to Hamiltonian H to choose a large random matrix that is a
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member of large class (ensemble) of Hamiltonians but all they have approximately the same
properties in general. In such a case the energy levels of the physical system will be able to
be approximated by the eigenvaleus of a large random matrix.

In addition Marchenko and Pastur in 1967 studied the distribution of eigenvalues for two
sets of random Hermitian matrices and one set of random unitary matrices, where unitary is
a complex square matrix if its conjugate transpose U∗ is also its inverse, that is, it satisfies
U∗U = UU∗ = I, where I is the identity matrix. He proposed a unitary operator HN and a
selfadjoint operator BN(n) which is given by the next formula:

BN(n) = AN +
n

∑
i=1

τiq(i)(·,q(i)) (3.100)

where AN is a nonrandom selfadjoint operator, n is nonrandom number, τi is i.i.d. random
variable ∈ R and qi are mutually independent random vectors in HN . He also supposed
that the operator BN(n) is a sum of not only a nonrandom operator but also of a number
of independent random 1-dimensional operators. τi,q(i) give a realization of the random
operator BN . They are interested in the function ν(λ ;BN(n)) which is showing the ratio of
those eigenvalues of BN(n) which are lying to the left of λ .

They found that for fixed λ the function ν(λ ;BN(n)) is giving a random quantity deter-
mined by the random numbers τi and random vectors q(i). Moreover, the calculation of such
probability of this random quantity is one of the most groundwork problems in the spectral
analysis of random operators.

In the recent past there had been existed a general interest in RMT. One of the best
and most important research areas in RMT was its connection to quantum chaos (Bohigas,
Giannoni and Schmit, 1984) which lead to a random matrix theory of quantum transport
(Beenakker, 1997). Then RMT has become a major tool in many scientific areas like number
theory and combinatorics, wireless communications (Tulino and Verdu, 2004), in multivariate
statistical analysis and PCA (Johnstone, 2001) and economics/finance (Potters, Bouchard,
Laloux, 2005) and biology (Wolte, Kohane, Butte, 2005).

In addition the recent work on random matrices has lead to a conjecture which is called
univerality conjecture. The conjecture states that if we have large random matrices then
its eigenvalues have limits that are independent of the probability distribution of the matrix
ensembles.

Yet, this conjecture is not true in general and this is the reason why the researchers
have focused on showing that the conjecture is true under specific families of probability
distributions.
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3.4.4 Terminology

We call ensemble of random matrices a set of random matrices assigned with a probability
density p and show us the probability of realization of any member belonging to the set.

Wigner and Dyson were interested in how to approximate Hermitian matrix H by an
ensemble of finite but very large dimension Hermitian matrices Hn where the probability
density function is given by:

p(Hn) ∝ e−β tr[V (Hn)] (3.101)

where V is some function or in other words a finite polynomial function, for instance:
V (Hn) = x1H2

n+x2Hn+x3 where xi, i= {1,2,3},∈R and x1 > 0. Furthermore, the elements
of Hn belonging to real or complex or real-quaternion and values of β are equal to β = 1,β =

2,β = 4, respectively. In addition and a special case that we can get is that if V (Hn) ∝ H2
n

then Eq.(4.2) reduces and we have a Gaussian ensemble.

3.4.5 Gaussian Ensembles

As it was mentioned above F. Dyson introduced three types of Gaussian ensembles i.e
Gaussian orthogonal ensemble (GOE), Gaussian unitary ensemble (GUE) and Gaussian
symplectic ensemble (GSE).

1. Gaussian Orthogonal Ensemble (GOE)
Suppose P is a square n×n matrix with each elements being iid as N(0, 1). Moreover,
a symmetric Hermitian square matrix n× n is given by: Hn = (P+PT)/

√
2 with

elements [Hi j]∼ N(0,1) and the off-diagonal being iid as N(0, 1/2).

2. Gaussian Unitary Ensemble (GUE)
Suppose P is a asquare n×n matrix with each element being complex iii as NC(0,1).
Furthermore, Hn is a Hermitian matrix which is given by: Hn = (P+P∗)/2 where P∗

is the Hermitian transpose of the complex matrix P. In addition the diagonal elements
of Hermitian matrix are distributed by iid N(0, 1) and the off-diagonal elements are
distributed as N2(0,1/2).

3. Gaussian Symplectic Ensemble (GSE)
Let P is a n×n matrix whose elements one by one are real - quaternian and distributed
as iid NQ(0,1) and a self - dual (n× n) matrix is given by Hn = (P+PD)/2 where
PD describes the dual transpose of the quaternian matrix P. Moreover, the diagonal
elements of Hn are distributed as iid N4(0,1/2).
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Furthermore, F. Dyson and as presented by Table 3.3 proved that GOE is more suitable
for systems that are time-reversal invariant in contradiction with GUE which is not. GSE are
appropriate for those systems that are time-reversal invariant but do not have spin-rotational
symmetry. Moreover, Porter and Rosenzweig in 1960 proved that if all the above ensembles
are time-reversal invariant and all the entries of Hn are statistically independent then the
probability of Hn is given by:

V (Hn) = x1H2 + x2Hn + x3 (3.102)

where x1,x2,x3 ∈ R and x1 > 0

Table 3.3 Dayson’s classification of Gaussian ensembles.

β Ensemble TRI SRS Hi j U

1 GOE Yes Yes real orthogonal
2 GUE No NA complex unitary
4 GSE Yes No real-quaternion symplectic

The three types of random matrices as given by Dyson above have some special char-
acteristics. One of them and the most important is the repulsion, in other words if we have
any two correlated eigenvalues from GOE or GUE or GSE, they are unlikely to be closer
together, i.e. the probability that adjacent eigenvalues are close together is small and the
probability goes to zero more quickly, as a power of the distance between them.

3.4.6 Random matrices in Finance

Let a portfolio of N assets with a weight wi where i index is the ith asset. According to
Potters, Bouchard and Laloux (2005) the variance of the portfolio return is given by:

R2 = ∑
i j

wiσiCi jσ jw j (3.103)

where σ2
i is the daily variance of asset i and Ci j is the correlation matrix. Suppose that

gi is the expected gains then the expected gain of portfolio is given by G = ∑wigi. The
measure and optimization of this portfolio can be done by estimating the correlation matrix
Ci j. But the last is very difficult as Bouchard, Laloux, Cizeau et al have shown due to the
determination of order N2/2 coefficients out of N time series of length T, where T is very
close to N. An accurate determination of true correlation matrix is given by q = N/T , where
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q << 1. Furthermore the empirical variance of each stock is given by:

σ
2
i =

1
T

T

∑
t
(ri

t)
2 (3.104)

They define an empirical correlation matrix as:

Ei j =
1
T

T

∑
t

xi
tx

j
t (3.105)

where xi
t ≡ ri

t/σi If T < N then E has rank T < N and N - T zero eigenvalues. Moreover they
assumed a "true" correlation matrix C from which past and future xi

t are drawn. Thus the risk
of a portfolio is given by:

< R2
E >=

1
T ∑

i jt
wiσi < xi

tx
j
t > w jσ j ≈ ∑

i j
wiσiCi jσ jw j (3.106)

In addition Bouchard et al mentioned that due to the fact that the portfolio is not constructed
by E, this estimate is unbiased and the relative mean square-error is small approximately to 1
/ T.

3.4.7 Matrix cleaning and RMT

Bouchard et al in 2005 thought that how could someone "clean" the empirical correlation
matrix in order to avoid any biased estimation of future risk? In order to answer this question
they had to refer to to the Markowitz solution of the eigenvalues λk and eigenvectors V k

i of
the correlation matrix which is given by:

wi ∝ ∑
k j

λ
−1
k V k

i V k
j g j ≡ gi +∑

k j
(λ−1

k −1)V k
i V k

j g j (3.107)

By correlation term meaning that if the weights of eigenvectors with λ > 1 are suppressed and
if the weights of eigenvectors has λ < 1 are enhanced. The optimal solution by Markowitz
is to allocate a very large weight to small eigenvalues but this kind of solution may contain
noise which leads to be unstable. To avoid this situation they proposed to go for the naive
solution i.e.

wi ∝ gi − ∑
k≤k∗; j

V k
i V k

j g j (3.108)

this result leads that the portfolio is market neutral.
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Moreover one way to clean all eigenvalues and eigenvectors is the shrinkage estima-
tor which is a Bayesian method that assigns a prior empirical matrix to identity matrix.
Analytically:

Ec = aE+(1−a)1 (3.109)

so λ k
c = 1+ a(λ k − 1) where index c is the cleaned objects. Another way to eigenvalue

cleaning was introduced again by Laloux, Cizeau, Bouchaud, Potters in 1999. What they
did was to replace all low lying eigenvalues with a unique value and keep the rest of high
eigenvalues corresponding to economical information:

λ
k
c = 1−δ i f k > k∗, λ

k
c = λ

k
E i f k ≤ k∗ (3.110)

where k∗ is the important number of sectors. Furthermore, they introduced a way to
choose k∗ and they proposed to use RMT in order to determine the randomness part of the
eigenvalue distribution.

3.5 Introduction to Graph Theory

Fundamentals A basic introduction to graph theory is presented in this subsection. We
call graph an order pair G = (V,E), where V (G) = {v1,v2, . . . ,vn} it is a finite and a non
empty set of veritices or nodes and E(G) = {e1,e2, . . . ,en} is a finite and non-empty set
of edges. For the empty set which is the trivial G( /0, /0) graph we write just /0. Moreover
some graphs are finite but some others are infinite depending on their order, but in this
thesis we focus only to finite graphs. Each element of E contains two elements of V that
is ei = {vi,v j} ∈ E, i ̸= j, i, j = 1, . . . ,n. In addition we define the cardinality of those sets
as n(G) = |V (G)| and m(G) = |E(G)|, correspondingly. Moreover, we call a vertex vi as
incident with an edge e if vi ∈ e, then e is an edge at vi. Let G be a graph; we say that
vi,v j, i ̸= j are adjacent or neighbours, if viv j is an edge of G and denoted by NG(Vi). On
top of that we say two edges ei,e j, i ̸= j are adjacent if they have an end point in common.
Additionally we call a graph G complete if all the vertices are pairwise adjacent. Hence, we
define Kn a complete graph on n vertices and for instance if n = 3 we call it triangle.

Definition 3.5.1. Let G = (V,E) and G′ = (V ′,E ′) be two graphs. We call G and G′ isomor-
phic and write G ≃ G′ if there exists a bijection φ : V →V ′ with viv j,∈ E ⇔ φ(vi)φ(v j) ∈ E ′

for all vi,v j ∈V . Such a map φ is called an isomorphism; if G = G′, it is called an automor-
phism.



58 Methodological Tools

Between two graphs G and G′ we say that they are disjoint if G∩G′ = /0, where G∩G′ :=
(V ∩V ′,E ∩E ′). On top of that if V ′ ⊆ V and E ′ ⊆ E then G′ is a subgraph of G, or G
is a supergraph of G′, viz G′ ⊆ G. A graph G′ is a spanning subgraph of G, i.e. G′ ⊆ G
if V ′ spans all of G that is if V ′ = V . A very important meaning of graph theory is the
notion of the degree of a graph G. Let G be a graph, we call the degree (or valency) of a
vertex v the cardinality of edges at v which is equal to the number of neighbours of v and
denoted by dG(v) = d(v). On top of that if a vertex is isoleted then the degree of that vertex
is equal to zero. Furthermore, by δ (G) := min{d(v)|v ∈ V} is the minimum degree of G
and by ∆(G) := max{d(v)|v ∈ V} we denote the maximum degree, as well. In case that
all the vertices of graph G have the same degree k then we call it k-regular; for instance a
3− regular graph is called cubic.

Theorem 3.5.1. Let G be a graph. Then, the following holds

∑
v∈V (G)

degG(v) = 2|E|= 2m(G)

d(G) : =
1
|V | ∑

v∈V
d(v)

δ (G)≤ d(G)≤ ∆(G)

ε(G) =
d(G)

2

ε(G) =
|E|
|V |

(3.111)

where d(G) and ε(G) are the average degree of G and the number of edges of G per
vertex, correspondingly. The last equation can be obtained by substituting the first and the
second line of Eq.(3.111) into the third equation, respectively. Let G(V,E) a non-empty
graph, then a path is a finite or infinite sequence of distinct vertices V = (v0,v1, . . . ,vk)

where the vertices v0,vk are called end points and v1,v2, . . . ,vk−1 are called inner vertices.
Moreover, we call the length of a graph G the total number of edges of a path and denoted
by pk. In addition we call distance dG(vi,v j) of graph G the length of a shortest viv j path
in G and if we take the greatest distance between two vertices in G we obtain the diameter
of G. A very important characteristic of a graph is the notion of connectivity. Let G be a
non-empty graph, we say that G is connected if any two of its vertices are linked by a path
in G. In addition to undirected graphs we have another category as well those of directed.
We call a graph G as directed graph if the set of vertices are connected by directed edges



3.5 Introduction to Graph Theory 59

often called arcs. Between any two vertices we say a vertex vi as initial vertex and v j the
terminal vertex, if an arc starts from vi and ends at v j.

Adjacency and Incidence Matrix Linear algebra plays an important role in graph theory.
Let G(V,E) be a graph. Then we can extract the adjacency and incident matrix and we can
obtain very important features of the graph.

Definition 3.5.2. The adjacency matrix An×n of G(V,E) is defined by

A ≜

{
1 i f viv j ∈ E
0 otherwise

Remark 3.5.1. Every adjacency matrix is symmetric, that is (ai j) = (a ji), for al i, j. The
adjacency of a simple graph has 0s on the main diagonal. On top of that, the degree of vi is
the row sum of adjacency matrix Aad j.

Definition 3.5.3 (Undirected graph). The incidence matrix of a graph G(V,E) defined as
Bn×m, where n,m are the number of vertices and edges, respectively is given by

B ≜

{
1 i f vi ∈ e j

0 otherwise

Definition 3.5.4 (Directed graph). The incidence matrix of a loopless directed graph (or
digraph) G, we set (bi j) = +1 if vi is the tail of e j and (bi j) =−1 if vi is the head of e j and
0, otherwise. That is

Bn×m = (bi j)≜

{+1 i f vi tail of e j

−1 i f vi head of e j

0 otherwise
(3.112)

Proposition 3.5.1. Let Dn×n be a diagonal matrix ∈ Rn×n

D = (di j) =

{
dii = d(vi)

di j = 0

Then it holds true
BB⊤ = A+D (3.113)

Definition 3.5.5 (In-degree and Out-degree). Let v be a vertex in a directed graph (or
digraph). Then by d+(v) we define the outdegree as the number of edges with tail v. In the
same way, by d−(v) we define the indegree as the number of edges with head of v.
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Example 11: Extract the adjacency and incidence matrix of G(4, 6).

φ12

φ41 φ24

φ13 φ32

φ34

4

3

1 2

Graph 1, G(4, 6)

▶ Solution The adjacency matrix of Graph 1 according to the Definition 3.5.2 is given by

Aad j =


0 1 1 0
0 0 0 1
0 1 0 1
1 0 0 0


The incidence matrix of Graph 1 according to the Definition 3.5.4 is given by

Binc =


vi φ12 φ13 φ24 φ32 φ34 φ41

1 −1 −1 0 0 0 1
2 1 0 −1 1 0 0
3 0 1 0 −1 −1 0
4 0 0 1 0 1 −1


Finally, we can compute the outdegree and indegree of the graph taking in account the
Definition 3.5.5 

vi d− d+

1 1 2
2 2 1
3 1 2
4 2 1


■
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Chapter 4

Diffusion on Dynamical Interbank Loan
Networks

‘Wise men speak because they have something to say; fools because they have to say some-
thing.‘
— Plato, 427-347 B.C., Greek Philosopher

4.1 Introduction

Diffusion is the study of motion of atom, molecules, etc. from a region of higher concentration
to a region of lower concentration. The idea behind the diffusion has roots primarily in physics
(particle diffusion) but we can find it in chemistry, biology, geology, economics/finance and
others scientific areas. A few examples are molecular diffusion, Brownian motion and heat
diffusion.

The word diffusion derives from the latin word diffundere, which means "to spread out".
The first systematic study of diffusion (in gases) as we looking back to the past was given by
Thomas Graham from 1831 to 1833. Moreover, a mathematical description of diffusion and
Brownian motion was elaborated by Joseph Fourier in 1822, Robert Brown in 1827, Adolf
Fick in 1855 and by Albert Einstein in 1905.

In this study we consider a connected, directed and weighted dynamic network G(V,E)
with V = {1,2, . . . ,n} and E = {ei j}, i ̸= j, where V denotes the nodes (banks) with |V |= n
and E are the edges |E|= e, respectively. The edges represent the fund flow from bank i to
bank j, characterized by a positive weight φi j and a direction. Furthermore, to each bank we
assign a leverage index (li), which is the sum of all outgoing fund flows φi j over the own
capital of bank i, (ki), as described by (1) with i ̸= j i.e. self loops are not allowed (no capital
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increase).

li =
∑ j φi j

ki
(4.1)

Moreover, we extract from the graph G(V,E) the adjacency operator A ∈ Rn×n, where
the main diagonal has all the elements equal to zero and off diagonal are zero or one, zero if
there is no connection between two nodes and 1 otherwise, respectively. Φ(0) is an n×n
graph matrix of the initial loans of the network and Φ(t) is the evolution of this matrix in
time. We assume that Φ(t) is governed by a diffusion law transfering funds from banks
of heigher leverages to those of lower. Thus is described by the following set of matrix
differential equations:

Φ̇ = [A,L] = Adiag(li)−diag(li)A (4.2)

where li is the leverage of bank i. In equilibrium we have Φ̇ = 0 and in a conected network
all the leverages of banks will be equal i.e. li = l j ⇒ li − l j = 0, for any (i, j) ∈ V . In
addition if Φ̇ = 0 then (4.2) gives a homogeneous system with e the number of unknowns
and n−1 equations. Thus the dimension of the solution space of the system (Σ) is dim(Σ) =

e− rank(Ik) = e− (n−1) = e−n+1 where Ik is a non rectangular operator and in order to
have a unique solution should be: e−n+1 = 0 ⇒ e = n−1. Therefore if the dimension of
e is n−1 then there exist a unique solution and Φ̇ = 0.

Equation (4.2) may be rewritten as a vector differential equation of all loans φ(t) ∈Re as:

˜
φ̇(t) = ∆

˜
φ(t) (4.3)

where φ(t) is the vector of loans of network with the solution, described by:

˜
φ(t) = e∆t

˜
φ(0) (4.4)

where
˜
φ(0) is the vector of initial loans (t = 0). Moreover the operator ∆ contains information

from the interconnections and capital of banks and can be written in the form ∆ = PLP−1

where P,L ∈ Rn×n are the operators of eigenvectors and eigenvalues of ∆, respectively. In
order to have a stable equilibrium on our system the eigenvalues zi which are derived from ∆

operator should have negative real parts and at least one equal to zero. The eigenvector of 0
corresponds to an atractor of the system or equilibrium and leads to a minimum dispersion of
levereges.

In equilibrium the final solution of differential equation as described by (4.3) and given by
(4.4), will be a vector

˜
φ(+∞) ∈ Re×1 describing all those directed flows φ i j which all banks

in our network should have at t →+∞. The leverage of any bank in equilibrium will be given
again by (4.1) but now we replace in the numerator the steady state φ i j which corresponding
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to the vector
˜
φ(+∞). Both the solution of (4.3) and the equilibrium solution depends on the

properties of operator ∆ and the final equilibrium flows calculated by applying an appropriate
projection operator on the initial values

˜
φ(0).

4.2 Diffusion equations and equilibrium points

Let a network of n-banks exchanging funds (loans), forming a graph (V, E) V are the nodes
of graph i.e. banks and E are the edges denoted by φ i j (i bank lends to j bank amount φ i j).
On every node (bank) the leverage is defined as in (4.1) and the aim of this paper is to provide
means to minimize the dispersion of leverages in the network making it more stable. We
propose the diffusion method i.e. funds are transfered from those banks of high leverage to
those of low this is written as:

φ̇ i j = l j − li

where φ i j is a function of time t and with initial condition φ i j(0). These equations can be
written in matrix form as (4.2). We may rewrite them in matrix form by introducing the
following notation:

1. Φ is the matrix of loans.

2. Vec(Φ) is the column vector of all columns of Φ superimposed.

3. D(0)
n2−e (Vec(Φ)) is the vector taken from Vec(Φ) by deleting the fixed n2 − e zeros

appearing in Φ and D(0)
n2−e is the corresponding selection matrix.

4. D(0)
n2−n(Vec(diag(li))) is the n×1 vector [l1, l2, . . . , ln]T and D(0)

n2−n is the corresponding
selection matrix.

5. The above two operators will be also applied to matrices as induced by matrix multi-
plication on Vec(Φ) and we will loosely apply the same notation to them.

6. ⊗ is the matrix tensor product.
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Theorem 4.2.1. The diffusion equation (4.2) may be written in vector form as

φ̇(t) = ∆φ(t) (4.5)

which is a system of homogeneous linear differential equations

Theorem 4.2.2 (General approach). For any connected, directed and weighted network in
the equillibrium all the leverages li, i = {1,2, . . . ,n} are equal, i.e. li = l j, i ̸= j.

Proof. Let the following equation:

Φ̇ = Adiag(li)−diag(li)A (4.6)

Taking the transpose of (4.6) we get:

Φ̇
T = diag(li)AT −AT diag(li)⇒ Φ̇

T = Indiag(li)AT −AT diag(li)In (4.7)

From linear algebra and more precisely from Kronecker product we know a property which
says that:

Vec(AXB) = (BT ⊗A)Vec(X) (4.8)

Apply the Vec(·) operator to (4.7) and taking in account (4.8) we get:

Vec(Φ̇T ) = (A⊗ In)Vec(diag(li))− (In ⊗AT )Vec(diag(li))

Vec(Φ̇T ) = [(A⊗ In)− (In ⊗AT )]Vec(diag(li))

D(0)
n2−e(Vec(Φ̇T )) = D(0)

n2−e{[(A⊗ In)− (In ⊗AT )]Vec(diag(li))}

φ̇(t) = D(0)
n2−e[(A⊗ In)− (In ⊗AT )][D(0)

n2−n]
T D(0)

n2−n[Vec(diag(li))]︸ ︷︷ ︸
A

(4.9)

The part (A) of (4.9) is just the vector of levereges li after canceling out all the zeros. This
can be further expressed as:
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l1
l2
...
ln

= diag(1/ki)(In ⊗1n)Vec(ΦT ) = diag(1/ki)(In ⊗1n)D
(0)
n2−eφ(t)

where ki is the initial capital per bank i. Plug in the last equation to (4.9) we get:

φ̇(t) = D(0)
f ,n2−e{[(A⊗ In)− (In ⊗AT )]}D(0)T

f ,n2−n︸ ︷︷ ︸
∆1∈Re×n

diag(1/ki)︸ ︷︷ ︸
∈Rn×n

(In ⊗1n)D
(0)
f ,n2−e︸ ︷︷ ︸

∆2∈Rn×e

φ(t)

φ̇(t) = ∆1diag(1/ki)∆2︸ ︷︷ ︸
∆∈Re×e

φ(t)

φ̇(t) = ∆φ(t) (4.10)

■

Equation (4.10) define a set of diffusion differential equations describing the evolution
of interbank loans. The state space of this dynamical system is Re with dimension equal to
the number of loans, and the state matrix ∆ ∈ Re×e. The matrix ∆ contains information of
the structure of the network and the capitals of banks. Thus defines an operator semigroup
e∆t

t>0 which acts on the initial vector of loans
˜
φ(0) and the equilibrium is reached at t =+∞

provided ∆ is such that lim
t→+∞

e∆t exists. Similarly we may define evolution equations for the

leverages
˜
l = (li)n

i=1 as follows:

Theorem 4.2.3. The vector l of leverages is governed by a set of linear differential equations
˙
˜
l = L

˜
l where L is an appropriate Laplacian.

Proof. Consider the set of matrix diffusion equations

Φ̇ = Adiag(li)−diag(li)A (4.11)

then as
˜
l = diag(1/ki)Φ1n we get

˙
˜
l = diag(1/ki)A

˜
l −diag(1/ki)diag(ai)

˜
l (4.12)

where
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A1n =


a1

a2
...

an


and ai, i ∈ {1,2, . . . ,n} are the column degrees of the graph. Thus

˙
˜
l = L

˜
l (4.13)

where L = diag(1/ki)(A−diag(ai))

■

Thus (4.13) describes the evolution of leverages, L ∈ Rn×n is the Laplacian for the
network and the equilibrium leverages are given by:

˜
l(+∞) = lim

t→+∞
eL t

˜
l(0) (4.14)

The equilibria for both (4.13) and (4.10) depends on the spectral structure of the operatrors
∆ and L . We seak for both there are systems to lead to an equilibrium in which case the
eqilibrium loans and leverages are the ones we require.

Theorem 4.2.4. When a network G(V, E) is connected then in the equilibrium the leverages
li, i = {1,2, . . . ,n} are all equal, i.e. l1 = l2 = · · ·= ln or in other words li = l j with i ̸= j.

Proof. Let the following equation:

Φ̇ = Adiag(li)−diag(li)A (4.15)

At the point of steady-state we have Φ̇ = 0 and (4.15) gives:

Adiag(li) = diag(li)A (4.16)

Therefore at equilibrium we have that li = l j∀(i, j) ∈ E. Consider now a connected
network with adjacency matrix A. Then for every pair i, j ∈V there is a path which connect i
and j, this means that there are pairs in the graph, i.e. (i1, j1),(i2, j2),(i3, j3), . . . ,(ik, jk) that
connect i and j such that satisfy:
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{ik, jk}
⋂
{ik+1, jk+1}= {rk}.

Hence li = lr1 = lr2 = · · ·= lrk = l j and thus for every pair i, j ∈V at equilibrium we have that
li = l j. Therefore when the network is connected at equilibrium we must have all leverages
equal. ■

4.2.1 Connectivity and equilibria

It is worth noting that, from an operator we can understand if our network is connected.
Suppose that we have an adjacency operator A with all the elements ai j = 0, for all i = j.

Definition 4.2.1. [45] A directed graph is called weakly connected if replacing all of its
directed edges with undirected edges produces a connected (undirected) graph. It is con-
nected if it contains a directed path from u to v or a directed path from v to u for every pair
of vertices u, v. It is strongly connected or simply strong if it contains a directed path from u
to v and a directed path from v to u for every pair of vertices u, v. The strong components are
the maximal strongly connected subgraphs.

Connected and unconnected network

Suppose we have a connected, directed and weighted network. In order to characterize it as
connected it must satisfy the following four cases-theorems.

Theorem 4.2.5. [32] Suppose that a network G(V,E) is directed. Let A be the adjacency
operator of G(V,E). We convert the number of ones from A as a new nodes and connecting
them in such a way in order to get triangles. Moreover, let XE(G) be the Euler characteristic
of graph G. If the graph is (weakly) connected then the Euler characteristic is equal to 1 or
XE(G) = 1, i.e.:

XE(G) = |V |− |E|+ |F |= 1 (4.17)

where |V |, |E| and |F |, are the number of vertices, edges and faces, respectively.

Theorem 4.2.6. Let A be the adjacency operator of a graph G(V,E) and f2 : {0,1,2} →
{0,1}. We call that the graph G is unconnected if and only if:

S(A+AT )i j = f2(ai j +a ji) where f2 =

{
x i f x ∈ {0,1}
1 i f x = 2

has at least n−1 elements equal to one at symmetric positions based on the main diagonal
and more than n−2 secondary diagonal with zeros.



70 Diffusion on Dynamical Interbank Loan Networks

Theorem 4.2.7. Let A be the adjacency operator of a network. The network is connected if
there are n−1 ones in such a way that the pairs of the network compose a connection.

Theorem 4.2.8. Let A be an adjacency operator of a connected, directed and weighted
network. If there is no way to make A block diagonal by permutating rows and columns by
the same permutation matrix Q, then the graph is connected.

Theorem 4.2.9. Let G(V, E) be a graph with n vertices and at least n−1 edges. Then we
can say that:

If there are connected components then the leverages are all equals only in the connected
components of the network and not among them.

Proof. We define a connected component network G with n nodes and at least n−1 edges.
By (4.2) we have

Φ̇ = [A,L] = Adiag(li)−diag(li)A (4.18)

In the equilibrium Φ̇ = 0. Thus (4.18) gives:

[A,L] = Adiag(li)−diag(li)A = 0 (4.19)

We have proved from Theorem 2.2 that when we have a connected network G the leverages
are all equal, i.e. li = l j or li − l j = 0,∀(i, j) ∈ V with i ̸= j. Thus we have the following
system (Σ)


1
k1

1a1
−1
k2

1a2 0a3 . . . 0 0 0
0 1

k2
1a2

−1
k3

1a3 . . . 0 0 0
...

...
... . . .

...
...

...
0 0 0 . . . 0 1

kn−1
1an−1

−1
kn

1an


︸ ︷︷ ︸

Ik

˜
φ = 0n−1,1

which is equivalent to ∆φ =
˜
0.

This is a homogeneous system of n−1 equations in n unknowns. For n banks to form a
connected graph, with no self loops, we must have n−1 ≤ e ≤ n2 −n. The solution space of
the homogeneous system (Σ) is as linear space of dimension dim(Σ) which is equal to the
dimension dim(KerIk). Hence:

dim(Σ) = e− rank(Ik) = e− (n−1) = e−n+1 (4.20)
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If we further impose conservation of the total volume of loans in the system i.e. ∑i φ = c
and V is a positive (e−n+1)e bases matrix for (Σ) then a solution for φeq for equilibrium is
given by:

φ eq =
1T Σ

1T Σ1
c (4.21)

■

Thus, from one hand if the operator Ik has at least one element per line not equal to zero
then all the leverages in equilibrium are equal, i.e. l1 = l2 = · · · = ln = l but on the other
hand if there exists one line with no outgoing flows, then it’s true that the leverages are all
equal and more precisely equals to zero, i.e. l1 = l2 = · · ·= ln = 0.

Suppose that we have a connected, directed and weighted network of banks where they
exchange loans at some unit of time. By (4.10) we have:

φ̇˜(t) = ∆φ˜(t) (4.22)

with solution:
φ˜(t) = ∆φ˜(0) (4.23)

where φ˜(0) is the n× 1 vector of initial values of loans (t = 0), and at the same time the
leverages (li) of banks, are not all equal or in other words the banking system is not in
balance. Then through the proposed diffusion process the network will approach balance, as
t →+∞. Furthermore, at equilibrium all the loan flows, φ , are describing a vector space, as
the next formula says:

Vb = {φ : ∆φ = 0} (4.24)

In addition this imbalance in the network can be described by the norm of ||∆φ(t)|| and if
this measure increases then we can say that the leverages among banks diverge and on the
other hand if this measure is equal to zero then we have an equilibrium in the network. Our
main target is to make a projection of the initial flows φ(0) on Vb produces a row required
vector of flow φ b. This is done by taking an orthonormal basis of Vb and φ b is given by:

φ b = BbBT
b φ(0) (4.25)

where BbBT
b = PVb ∈ Re×e is a projection operator to that vector space Vb so that ||∆φb|| is

minimal and Bb is an orthonormal basis of Vb. Pb also can be alternatively calculated as:

1. by difussion:
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lim
t→+∞

e∆t = Pb

2. by operational calculus:

lim
ε→0

ε(εIe −∆)−1 = Pb

4.3 The basic two structural cases by toy-examples - calcu-
lations of equilibrium points

4.3.1 Case 1: At least one non-zero element per line to the adjacency
operator

The reason that we are study next two cases is that we want to mention that those graphs they
have something special according to their connections. As we can observe that both graphs 1
and 2 are connected in a such a way that in spite of diffusion process don’t works properly
for every node finally we get a solution that all the vertices in equilibrium will have the same
leverage.

Let the following graph G(V, E), with the set of vertices as V = {1,2,3,4,5}, |V |= 5 and
edges, E = {e12,e25,e31,e35,e41,e54}, |E|= 6.

φ12

φ25

φ31

φ35

φ54

φ41

1 2

3

4 5

Graph 1, G(5, 6)

Every vertex on Graph 1 represented by a number which is a bank. The arrows shows
us the direction of the loans which means which bank gives a loan to another and we
denoted by φi j. Furthermore, every bank is associated with a capital ki and we calculate the
initial leverages for any bank-vertex i. Thus, let’s say that the initial per bank capitals are:
k1 = 81,k2 = 9,k3 = 27,k4 = 4,k5 = 3. Thus, the leverages are:

l1 =
φ12

k1
, l2 =

φ25

k2
, l3 =

φ31 +φ35

k3
, l4 =

φ41

k4
, l5 =

φ54

k5
(4.26)

The adjacency operator which coresponds to Graph 1 is:
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Aad j =


0 1 0 0 0
0 0 0 0 1
1 0 0 0 1
1 0 0 0 0
0 0 0 1 0


According to the Theorem 2.2, in the equilibrium we have that: l1 = l2 = l3 = l4 = l5 and
from the last expression we get:

l1 − l2 = l2 − l3 = l3 − l4 = l4 − l5 = 0

Due to (4.26) if we replace li to the above equations and then write them in matrix form
we get an m×n,n > m operator, A1 which is a special type of incident operator. Thus we
get:


1/k1 −1/k2 0 0 0 0

0 1/k2 −1/k3 −1/k3 0 0
0 0 1/k3 1/k3 −1/k4 0
0 0 0 0 1/k4 −1/k5


︸ ︷︷ ︸

A1



φ12

φ25

φ31

φ35

φ41

φ54


=


0
0
0
0

(Σ)

If we replace ki to the operator A1 and do some algebraic operations, finaly we get:

A1 =


1/81 −1/9 0 0 0 0

0 1/9 0 0 −1/4 0
0 0 1/27 1/27 −1/4 0
0 0 0 0 1/4 −1/3


For those values of operator A1 the system (Σ) gives: φ12 =(81/4)φ41,φ25 =(9/4)φ41,φ31 =

(27/4)φ41 −φ35,φ54 = (3/4)φ41 and the right kernel corresponding to equilibrium is:

φ12

φ25

φ31

φ35

φ41

φ54


= φ41



81/4
9/4

27/4
0
1

3/4


︸ ︷︷ ︸

a˜1

+φ35



0
0
−1
1
0
0


︸ ︷︷ ︸

a˜2
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Consequently we have found a set of two elements - vectors, a˜1,a˜2 which are compose the
basis V and φ45,φ35,∈ R. Suppose that λ ≡ φ41, µ ≡ φ35 and if we want the total, current
number of loans into the interbank system to be for instance 93 monetary units then we
have: (81/4)λ +(9/4)λ +(27/4)λ +λ +(3/4)λ −µ +µ = 93 ⇒ λ = 3. This gives rise
to equilibrium flows as:

φ12 = (81/4)×3 = 243/4

φ25 = (9/4)×3 = 27/4

φ31 = (27/4)×3 = 81/4

φ35 = 0

φ41 = 1×3 = 3

φ54 = (3/4)×3 = 9/4 (4.27)

By (4.26) the initial leverages was: l1 = 1/4, l2 = 27/16, l3 = 27/16, l4 = 1/4, l5 = 3/16.
But now, if we replace in (4.26) the new flows which are given by (27) we get the final
leverages which are: l1 = l2 = l3 = l4 = l5 = 3/4.

Conclusion

Equilibrium is achieved by transferring funds from banks of higher leverage to those of
lower.

4.3.2 Case 2: Adjacency operator with two lines equals to zero

Let the following network G(V, E) with a set of vertices V = {1,2,3,4,5}, |V |= 5 and edges
E = {e12,e32,e34,e45},|E|= 4.

φ12

φ32

φ34

φ45

1 2

3

4 5

Graph 2, G(5, 4)
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Suppose that the initial per bank capitals are k1 = 81,k2 = 9,k3 = 27,k4 = 3,k5 = 3. More-
over, the initial leverages for those banks which are given from Graph 2 are:

l1 =
φ12

k1
, l2 = 0, l3 =

φ32 +φ34

k3
, l4 =

φ45

k4
, l5 = 0 (4.28)

The adjacency operator which can be extracted from the Graph 2 is the following:

Aad j =


0 1 0 0 0
0 0 0 0 0
0 1 0 1 0
0 0 0 0 1
0 0 0 0 0


In the equilibrium as we already mentioned at Theorem 2.2, all the leverages are equall,

thus we have: l1 = l2 = l3 = l4 = l5 or equivalently:

l1 = 0, l3 = 0, l3 − l4 = 0, l4 = 0

By (4.28) if we replace li to the above equations and write them in matrix form we get an
m×n,n > m operator A2, which is a special type of incident operator:

1/81 0 0 0
0 1/27 1/27 0
0 1/27 1/27 −1/3
0 0 0 1/3


︸ ︷︷ ︸

A2


φ12

φ32

φ34

φ45

=


0
0
0
0

(Σ)

We can observe that A2 is an operator with rank = 3, i.e. as the number of non-zero rows.
Thus, from the system (Σ) above we get: φ12 = 0,φ32 =−φ34,φ45 = 0 or

φ12

φ32

φ34

φ45

=


0

−φ34

φ34

0

= φ34


0
−1
1
0


︸ ︷︷ ︸

v˜

(Σ)

Any vector from Λ(Σ) always gives rise to zero equilibrium leverages for all banks.
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Conclusion

If we have a connected, directed and weighted Graph G(V, E) and the adjacency operator of
the graph has at least one row with all the elements equals to zero, then the vertices (banks)
of the graph at equilibrium will have all the leverages equal to zero.

4.4 Differential equation and its solution

In what it follows we do an approach of a more general solution in matrix form of the
equation:

Φ̇ = [A,L]⇔ φ̇i j = l j − li (4.29)

The incident operator should has at least one non-zero element in every row. Furthermore,
we are study connected, directed and weight networks. Thus we have:

φ̇ = ∆φ

with solution is given by:

φ(t) = e∆tφ(0).

Next we are working on the rectangular operator A and we diagonalize it in order to get as a
resault the eigenvalues and eigenvectors, respectively. In our analysis we are interested to
those cases where on the one hand the operator A has all the eigenvalues λi negative and at
least one equal to zero, i.e. {λi ∈R− : λi ≤ 0} and on the other hand, if it has complex eigen-
values the real part should be negative, i.e. {λi ∈C : Re(λi)≤ 0}. Thus let, λ1,λ2, . . . ,λn and
e1,e2, . . . ,en are the eigenvalues and eigenvectors, respectively. Furthermore, the solution of
the system will be of the form:

φ̇˜(t) = e∆t
φ˜(0) (4.30)

where φ˜i j(0) are the initial conditions. As we know the rectangular operator can be written
in the form as:

∆ = PΛP−1 (4.31)

where P, Λ are the eigenvectors and eigenvalues matrices, respectively. Then we have:

φ̇˜(t) = PeΛtP−1
φ˜(0) (4.32)
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and provided Λ has simple structure with only zero eigenvalues or eigenvalues with negative

real part. Thus lim
t→∞

eΛt can be calculated as:

lim
t→+∞

eΛt =


lim

t→+∞
eλ1t 0 . . . 0

0 lim
t→+∞

eλ2t . . . 0
...

... . . . ...
0 0 . . . lim

t→+∞
eλet





0
0

. . .

0

0

0
1

1
. . .

1


︸ ︷︷ ︸

diag(λi)

and hence φ(+∞) = Pbφ(0) where Pb is the required projection operator.

4.5 Solution by diffusion three structural examples

4.5.1 Case 1: Two real negatives eigenvalues and one zero

The operator ∆ of differential equation as well as the Laplacian of this problem are not
symmetric hence their eigenvalues may be complex and also it is possible that ∆ has no zero
eigenvalues. This is demonstrated in the following examples.

Suppose next graph, which describes an interbank loan system among three banks as V
= {1,2,3} and the exchange transfer loans among them as E = {e12,e23,e32}, respectively.
Furthermore, each bank has an initial capital ki, i= {1,2,3} and more precisely k1 = 2,k2 = 4
and k3 = 3. Moreover, suppose the initial leverage, i.e. φ˜i j(0) = 10 for all those three banks.
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φ12

φ32

φ23

1 2

3

Graph 1, G(3, 3)

The adjacency operator from Graph 1 is given by:

Aad j =

 0 1 0
0 0 1
0 1 0


According to (4.29) we can write the differential equations for Graph 1 as follows:

φ̇12 =
φ23

k2
− φ12

k1

φ̇23 =
φ32

k3
− φ23

k2

φ̇32 =
φ23

k2
− φ32

k3

or in matrix form:

 φ̇12

φ̇23

φ̇32

=

 (−1)/k1 1/k2 0
0 (−1)/k2 1/k3

0 1/k2 (−1)/k3


︸ ︷︷ ︸

∆

 φ12

φ23

φ32

 (4.33)

and the solution as given by (4.30). Replacing all ki as given into the above operator ∆

we get:
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∆ =

 −1/2 1/4 0
0 −1/4 1/3
0 1/4 −1/3


The eigenvalues of operator ∆ are:

λ1 =
−7
12

,λ2 =
−1
12

,λ3 = 0

we rewrite the operator ∆ in the form of (4.31) as:

∆ =

 3 1 2/3
−1 0 4/3
1 0 1


︸ ︷︷ ︸

P

 −7/12 0 0
0 −1/12 0
0 0 0


︸ ︷︷ ︸

Λ

 0 −3/7 4/7
1 1 −2
0 3/7 3/7


︸ ︷︷ ︸

P−1

(4.34)

and we are studying the system of differential equations given by (4.32) in the equilibrium,
i.e. for time t → +∞. Thus we calculate the lim

t→+∞
e∆t = lim

t→+∞
PeΛtP−1, where Λ is the

eigenvalues operator of the system and P,P−1 are the operator and inverse operator of
eigenvectors, respectively.

Taking the limit to infinity of eΛt we get:

lim
t→+∞

eΛt =

 0 0 0
0 0 0
0 0 1

 (4.35)

Finally to find the solution we replace (35) to φ̇˜(t) = e∆tφ˜(0) which is the solution to the
system as was mentioned in (4.30) to get:

φ˜(+∞) = lim
t→+∞

e∆t
φ˜(0) =

 0 2/7 2/7
0 4/7 4/7
0 3/7 3/7


 10

10
10

=

 40/7
80/7
60/7

 (4.36)
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The initial leverages li, i = {1,2,3} for any of those three vertices-banks Vi and the final
leverages after replacing the final φ̇˜(t) by (36) are presented in Table 4.1.

Table 4.1 Initial and final leverages (li) per bank.

li ∑ j φi j/ki initial values equilibrium values

l1
φ12
k1

10
2

20
7

l2
φ23
k2

10
4

20
7

l3
φ32
k3

10
3

20
7

To sum up we can say that the diffusion acting up at our system and the result is that in
equilibrium all leverages from the three banks are equal. In other words in our system as
t →+∞ all banks will have equal leverages.

4.5.2 Case 2: Two complex eigenvalues with negative real part and one
zero

Suppose next graph which depicts 3 vertices-banks and three edges i.e. loans flows from one
bank to another. Furthermore, all those banks in the graph they have an initial capital per
bank ki, i = {1,2,3}, which is given by k1 = 2,k2 = 4,k3 = 3, respectively.

φ12

φ23φ31

1 2

3

Graph 1, G(3, 3)

The adjacency operator of the Graph 1 above is:

Aad j =

 0 1 0
0 0 1
1 0 0
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We apply (4.29) to write down the differential equations of the Graph 1 which are:

φ̇12 =
φ23

k2
− φ12

k1

φ̇23 =
φ31

k3
− φ23

k2

φ̇31 =
φ12

k1
− φ31

k3

or we can rewrite in matrix form as φ̇˜ = ∆φ˜ where ∆ ∈ R3×3:

 φ̇12

φ̇23

φ̇31

=

 −1/k1 1/k2 0
0 −1/k2 1/k3

1/k1 0 −1/k3


︸ ︷︷ ︸

∆

 φ12

φ23

φ31

 (4.37)

If we replace the ki into the operator ∆ we get:

∆ =

 −1/2 1/4 0
0 −1/4 1/3

1/2 0 −1/3


The eigenvalues of operator ∆ are:

λ1 =
1

24
(−13+ i

√
47),λ2 =

1
24

(−13− i
√

47),λ3 = 0 (4.38)

We write down the operator P,∈ R3×3 with elements the eigenvectors of above operator ∆.

P =

 1/12(−5+ i
√

47) 1/12(−5− i
√

47) 2/3
1/12(−7− i

√
47) 1/12(−7+ i

√
47) 4/3

1 1 1
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Thus as we already know by (4.31), we can rewrite the operator ∆ in the form of:

∆ = P

 1/24(−13+ i
√

47) 0 0
0 1/24(−13− i

√
47) 0

0 0 0


︸ ︷︷ ︸

Λ=diag(λi)

P−1

As in the previous case 1, we calculate eΛt as t →+∞:

eΛt =


lim

t→+∞
e1/24(−13+i

√
47)t 0 0

0 lim
t→+∞

e1/24(−13−i
√

47)t 0

0 0 1

 (4.39)

Thus, we have:

lim
tß+∞

e∆t = P lim
tß+∞

eΛtP−1 =

 188/3 188/3 188/3
376/3 376/3 376/3

94 94 94

 (4.40)

The solution to the system is given by (4.30) and in our case we have:

φ̇˜(+∞) =

 94/423 94/423 94/423
188/423 188/423 188/423

1/3 1/3 1/3


 10

10
10

=

 20/3
40/3
10

 (4.41)

To sum up the initial leverages li, i = {1,2,3} for any of those vertices-banks Vi and the final
leverages after replacing the final φ̇˜(t) by (41) are presented in Table 4.2.

Again as in the previous case, the diffusion works in a sense of stabilizer. In other words
comparing the results in Table 4.2, we can observe that at t = 0 the leverage was different for
every Vi, i = {1,2,3} bank and as t →+∞, i.e. in the equilibrium, all banks will have equal
leverages. The main idea is that a bank which has a small amount of loans it can absorbs
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Table 4.2 Initial and final leverages (li) per bank.

li ∑ j φi j/ki initial values equilibrium values

l1
φ12
k1

10
2

10
3

l2
φ23
k2

10
4

10
3

l3
φ31
k3

10
3

10
3

that quantity of the over loaned banks in order the banking network-system to converge in an
equilibrium and all of them to have the same leverage ratio.

4.5.3 Case 3: Three real negative eigenvalues

Suppose next network where we have four nodes (banks) Vi, i = {1,2,3,4} and three edges
ei j with i ̸= j as the loans flows, E = {e12,e32,e24} as shown in the following Graph 1.
Furthermore, all those four banks they have an initial capital i.e. k1 = 2,k2 = 4,k3 = 3,k4 = 5,
respectively.

φ12

φ32 φ24

1

2

3 4

Graph 1, G(4, 3)

The adjacency operator of the Graph 1 above is:

Aad j =


0 1 0 0
0 0 0 1
0 1 0 0
0 0 0 0
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By (4.29) we can get the system of differential equations which is:

˙φ12 =
φ24

k2
− φ12

k1

˙φ32 =
φ24

k2
− φ32

k3

˙φ24 =
−φ24

k2
(4.42)

or equivalence the former system of differential equations (42) we can rewrite in matrix
form as:

ż˜= ∆z˜ (4.43)

 φ̇12

φ̇32

φ̇24

=

 −1/k1 0 1/k2

0 −1/k3 1/k2

0 0 −1/k2


︸ ︷︷ ︸

∆

 φ12

φ32

φ24

 (4.44)

If we replace the initial capital to the operator ∆ we get:

∆ =

 −1/2 0 1/4
0 −1/3 1/4
0 0 −1/4


The operator ∆ has the following eigenvalues:

λ1 =
−1
2
,λ2 =

−1
3
,λ3 =

−1
4

(4.45)

Taking the lim
t→+∞

(e∆t) then we get the zero operator, i.e.:
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lim
t→+∞

(e∆t) =

 0 0 0
0 0 0
0 0 0

 (4.46)

Thus taking in account (4.30) we get:

φ̇˜(+∞) =

 0 0 0
0 0 0
0 0 0


 10

10
10

=

 0
0
0

 (4.47)

Table 4.3 Initial and final leverages (li) per bank.

li ∑ j φi j/ki initial values equilibrium values

l1
φ12
k1

10
2 0

l2
φ23
k2

10
4 0

l3
φ32
k3

10
3 0

To sum up the observation we can do as we compare the results in Table 4.3 is that the new
leverages are all equal to zero due to the fact that the eigenvalues of the related operator are
all negative (none of them is zero) and the final projection operator at infinity is identically
zero i.e. Λ = diag(λi) goes to zero.

Conclusion

In all of these three cases study presented at section 5 we can point out a general observation.
First of all in this framework we consider a connected, directed and weighted network which
is not necessarily symmetric and hence general theorems on operators or Laplacians on
symmetric graphs do not apply. To achieve the goal for equilibrium in banking leverages of
the network we must have the real parts of all the operator eigenvalues to be negative and
at least one equal to zero. Furthermore, this observation can be true only within connected
components in the network i.e. the steady state values may be different in every connected
component.
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4.5.4 Solutions to the former three cases without solving differential
equations

Review case 5.1

We are trying to find the leverages in equilibrium without solve any differential equation as
we did in 5.1 up to 5.3 sections. Suppose we have the same graph (Graph 1) as was described
in section 5.1. According to the Theorem 2.4 in equilibrium all the leverages are equal or in
other words: l1 = l2 = l3 or we get: l1− l2 = 0, l2− l3 = 0 and we have the following system:

φ23 = 2φ12

φ23 = 4/3φ32

φ12 = 2/3φ32

or in matrix form we get:  φ12

φ23

φ32

= φ32

 2/3
4/3
1


︸ ︷︷ ︸

v˜
Thus, the solution to the system is: Λ(Σ) = {(2/3,4/3,1)T |φ32 ∈ R}. Next, let λ ≡ φ32 and
the total amount of transactions into bank network suppose that is equal to 90 monetary

units. Then we have: λ

 2/3
4/3
1

 =

 90
0
0

 ⇒ λ = 30. The new loan flows now are:

φ32 = 30,φ23 = 40,φ12 = 20. We wrap them up all the results into next table. In Table 4.4

Table 4.4 Final leverages (li) in equilibrium, taking account the new φ i j per bank.

li ∑ j φi j/ki initial values equilibrium values

l1 φ12/k1 5 20/2 = 10
l2 φ23/k2 10/4 40/4 = 10
l3 φ32/k3 10/3 30/3 = 10

we conclude that in equilibrium all banks will have the same leverage and equals to 10.

Review case 5.2

Here we are try to resolve the case 5.3 without any use of the tools of differential equations.
As was described in last subsection again here we have a particularity about the diffusion
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process. If we look closely on the Graph 1 in case 5.3 we can see that the node 1, 3 and 4
are nodes that only gives and takes from and to the node 2, respectively. This is somehow
paradox because if we look more closely on the graph we observe that the nodes 1, 3
provide with loans to the node 2 but on the other hand they can’t absorb any amount of
loans from this node. More analytically and taking account the Theorem 2.4 suppose that:
l1 = l2 = l3 = l4 ⇒ l1 − l2 = 0, l2 − l3 = 0, l3 − l4 = 0.

φ12/k1 −φ24/k2 = 0 ⇒ φ12 = 0
φ24/k2 −φ32/k3 = 0 ⇒ φ24 = 0

φ32/k3 = 0 ⇒ φ32 = 0

Table 4.5 Final leverages (li) in equilibrium, taking account the new φ i j per bank.

li ∑ j φ⃗i j/ki initial values equilibrium values

l1 φ12/k1 1/2 0
l2 φ23/k2 10/4 0
l3 φ32/k3 10/3 0
l4 0 0 0

According to Table 4.5 we conclude that in equilibrium all the banks will have the same
leverage and equals to 0.
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4.6 Case study in a banking network

In this last section we study G(10, 13), which has the characteristics of directed, connected
and weighted network. Any node, vi from the set V = {1,2, . . . ,10} represents a bank.
Furthermore we have a set E of directed edges, with elements ei j, i.e. E = {e12,e23, . . . ,e109}
, and weights φ i j which are showing to us the loan(s) transfer of bank i to bank j, (with i ̸= j)
as depicted in the following network. Finally, the initial capital per bank are: k1 = 20,k2 =

30,k3 = 20,k4 = 20,k5 = 50,k6 = 100,k7 = 30,k8 = 40,k9 = 30,k10 = 100.

φ12 φ23

φ28

φ34

φ45

φ510

φ56

φ67 φ69

φ71

φ87

φ91

φ109

1 2 3 4

6 5

7 8 9 10

Graph 1, G(10, 13)

So from the Graph 1, we can find the initial leverages, li, i = {1,2, . . . ,10} per bank
(Table 4.6) and sort them in a descending order as Figure 2 shows.

Table 4.6 Initial leverages (li) per bank.

li ∑ j φi j/ki Results

l1 φ12/k1 1 / 2
l2 (φ28 +φ23)/k2 4 / 3
l3 φ34/k3 3 / 2
l4 φ45/k4 1 / 2
l5 (φ510 +φ56)/k5 3 / 5
l6 (φ69 +φ67)/k7 3 / 5
l7 φ71/k7 1 / 3
l8 φ87/k8 1
l9 φ91/k9 1
l10 φ109/k10 1 / 2
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Next step is to write down the differential equations as the differences amongst leverages.
In other words, we take the difference between two nodes which are connected by a directed
edge as the final point minus the initial point as given by (48).

φ̇12 = l2 − l1 = (φ28 +φ23)/k2 −φ12/k1

φ̇23 = l3 − l2 = φ34/k3 − (φ28 +φ23)/k2

φ̇28 = l8 − l2 = φ87/k8 − (φ28 +φ23)/k2

φ̇34 = l4 − l3 = φ45/k4 −φ34/k3

φ̇45 = l5 − l4 = (φ510 +φ56)/k5 −φ45/k4

φ̇510 = l10 − l5 = φ109/k10 − (φ510 +φ56)/k5

φ̇56 = l6 − l5 = (φ69 +φ67)/k6 − (φ510 +φ56)/k5

φ̇69 = l9 − l6 = φ91/k9 − (φ69 +φ67)/k6

φ̇67 = l7 − l6 = φ71/k7 − (φ69 +φ67)/k6

φ̇71 = l1 − l7 = φ12/k1 −φ71/k7

φ̇87 = l7 − l8 = φ71/k7 −φ87/k8

φ̇91 = l1 − l9 = φ12/k1 −φ91/k9

φ̇109 = l9 − l10 = φ91/k9 −φ109/k10 (4.48)

The adjacency operator of Graph 1 is given by Aad j:

Aad j =



0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 1 0 1 0
1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0
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In the equilibrium, as the Theorem 2.2 says, we have all the leverages li equals, i.e.
l1 = l2 = · · ·= l10 and we can write:

l1 − l2 = l2 − l3 = l3 − l4 = l4 − l5 = l5 − l6 = l6 − l7 = l7 − l8 = l8 − l9 = l9 − l10 = 0
(4.49)

If we replace every leverage into (49), as described by (1) and rewrite them as operators
we have:



1/k1 0 0 −1/k3 0 · · · 0 0
0 1/k2 1/k2 −1/k3 0 · · · 0 0
0 0 0 1/k3 −1/k4 · · · 0 0
0 0 0 0 1/k4 · · · 0 0

0 0 0 0 0 . . . 0 0
0 0 0 0 0 · · · 0 0
0 0 0 0 0 · · · 0 0
0 0 0 0 0 · · · −1/k9 0
0 0 0 0 0 · · · 1/k9 −1/k10


︸ ︷︷ ︸

A1∈R9×13



φ12

φ23

φ28

φ34

φ45

φ56

φ510
...

φ109


︸ ︷︷ ︸

Φ∈R1×13

= 0

By the above system we have the following equations-solutions for unknowns φ˜i j
.

φ12 = φ34

φ23 = φ91 −φ28

φ34 = φ45

φ45 = (2/3)φ91

φ67 = (10/3)φ91 −φ69

φ71 = φ91

φ109 = (10/3)φ91 (4.50)

Moreover the base V with elements the vectors which are taken from the solution of the
system (50) is:
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V(13×4) =



2/3 0 0 0
1 −1 0 0
0 1 0 0

2/3 0 0 0
2/3 0 0 0
5/3 0 −1 0
0 0 1 0

10/3 0 0 −1
0 0 0 1
1 0 0 0

4/3 0 0 0
1 0 0 0
1 0 0 0



(4.51)

Suppose that we have φ91 ≡ k,φ28 ≡ λ ,φ510 ≡ µ and φ69 ≡ ν . Furthermore, we make a
hypothesis that the total amount of courent loans in the interbank system must not exceed the
value of 296 monetary units. Thus we found that k = 24. Therefore, now we are ready to
calculate the new φ˜i j i.e. in equilibrium.



φ12

φ23

φ28

φ34

φ45

φ56

φ510

φ67

φ69

φ71

φ87

φ91

φ109



= 24



2/3
1
0

2/3
2/3
5/3
0

10/3
0
1

4/3
1

10/3



=



16
24
0

16
16
40
0

80
0

24
32
24
80



(4.52)
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Therfore, the new, (final), leverages in the equilibrium to our interbank loan network are
given by Table 4.7.

Table 4.7 Final leverages (li) in equilibrium, taking account the new φ i j(t) per bank.

li ∑ j φi j/ki equilibrium results

l1 φ12/k1 4 / 5
l2 (φ28 +φ23)/k2 4 / 5
l3 φ34/k3 4 / 5
l4 φ45/k4 4 / 5
l5 (φ510 +φ56)/k5 4 / 5
l6 (φ69 +φ67)/k7 4 / 5
l7 φ71/k7 4 / 5
l8 φ87/k8 4 / 5
l9 φ91/k9 4 / 5
l10 φ109/k10 4 / 5

We can present all the previous analysis of leverages in next Figure 3, in order to compare
the initial, mean and final value of leverage of our interbank network.

In Figure 4 our goal is twofold. The first one is to order the nodes taking account the
initial leverage per bank and the second one is to order the edges of the interbank network
taking acount the weights of any edge.



Chapter 5

The Notion of Almost Zeros and
Randomness

‘There is no royal road to geometry‘.
— Euclides, 4th-3rd Centrury B.C., Greek Mathematician.

5.1 Introduction

We examine the notion of almost zero of polynomial vectors and matrices in terms of a
minimization problem. The present work originates in the seminal paper [37] where the
almost zeros were first defined as minima of a norm function of the polynomial vector p(s).
In this paper basic properties such as the region of the complex plane which contains the
prime almost zero (global minimum) were defined, and necessary and sufficient conditions
characterizing the set of almost zeros were given. The role of almost zeros of p(s) in the
zero assignment problem of the combinants of p(s) were also investigated. Finally location
properties of almost zeros were given in terms of discs in the complex plane as well as how
some of the properties of a zero extend naturally to the almost zero case.

From then on there is extended literature that relates almost zeros to coprimness and
GCD of polynomials [34], [28] and other applications in system theory and control.

The purpose of the present chapter is twofold: (a) Firstly, to explore further the algebraic
properties and computations of almost zeroes of polynomial vectors or matrices and present
new results of higher order almost zeros; (b) Secondly, to relate the notion of almost zero to
that of randomness i.e. what are the statistical characteristics of the almost zero and its norm
polynomial value in a given random ensemble of polynomials. To this end we will consider
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random ensembles of polynomial vectors and calculate various statistics related to the prime
almost zeroes and present the findings.

5.2 Almost zeros of polynomial matrix

The notion of almost zero arises from the study of coprimeness properties of polynomial
vectors and matrices. The zeros of polynomial matrices of composite MFD’s of transfer func-
tions as well as of the composite penciles of the type [sI−A,B] are related to controllability
observability and feedback pole assignability or stabilization. The notion of almost zero is a
generalization of the notion of zero of polynomial matrices. To define this concept we need
to construct an indicator that captures the ordinary zero when this exists or returns a value
that shows how close the polynomial matrix is to having such a zero. This can be done in
many ways i.e. this indicator is not uniquely defined.

To define this indicator in a natural way we consider a static feedback scheme designed
to change the dynamics of a system by pole placement. The closed loop polynomial can then
be written as:

PK(s) =< K,p(s)>

where K is the controller vector and p(s) is a polynomial vector arising from an MFD. Then
the almost zero may ne defined by the following minmax problem:

min
s∈C

max
||K||=1

|< K,p(s)> |
(

or equivalently min
s∈C

||p(s)||
)

The almost zero can then be defined as: s0 = argmins∈C ||p(s)|| and by definition we have
that the closed loop polynomial pK(s) satisfies:

||pK(s0)|| ≤ ||p(s0)||

In other words the almost zero imposes an obstacle in pole placement by any feeback
controller K. In case that s0 is an ordinary zero then this frequence is fixed and cannot be
removed by feedback. On account of this fact, we call ∥p(s0)∥ the power-index or p-index
of the almost zero s0. We also refer to ∥p(s0)∥2 as the p-index2. Finally, we define ∥s0∥2

as the size of the almost zero s0. Consider a polynomial matrix M(s) ∈ R[s]m×p,m >

p of rank p, assume also that the column degrees of M(s) are n1 ≤ n2 ≤ ·· · ≤ np with
n1 + n2 + · · ·+ np = n where n is the total degree of this matrix denoted by deg(M(s)). A
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zero s0 ∈C is defined to be a complex number such that:

rank(M(s0))< p.

Furthermore, if we denote by M(∞) the coefficient matrix corresponded to the highest degree
monomials of the columns if

rank(M(∞))< p

then we have zeros at infinity.
If s1,s2, . . . ,sr are all the (finite) zeros of M(s) then M(s) can be written as:

M(s) = M′(s)Q(s),Q(s) ∈Rp×p[s]

det(Q(s)) = (s− s1)
λ1(s− s2)

λ2 . . .(s− sr)
λr = p0(s)

and λ1,λ2, . . . ,λr are the multiplicities of the corresponding zeros s1,s2, . . . ,sr. Furthermore,
if M(s),M′(s) have no zeros at infinity we have that:

deg(M(s)) = deg(M′(s))+∑
i

λi.

Additionally we have that:

∥p0(s)∥2 divides the det(MT (s)M(s))

where ||p0(s)||2 = p0(s̄)po(s), (i.e. || · || is the Euclidean norm in C) or

det(MT (s̄i)M(si)) = 0 or

||det(MT (s̄i)M(si))||= 0

If si is a zero of M(s). In the case that there are no finite zeros then ||det(MT (s̄)M(s))|| ≠
0,∀s ∈C and in this case we define the notion of almost zero.

Definition 5.2.1. The prime almost zero s0 is a complex number such that |PM(s̄0,s0)| =
min
s∈C

|PM(s̄,s)| where PM(s̄,s) = det(MT (s̄)M(s)).

The existence of an exact zero i.e. a complex number such that PM(s̄,s) = 0 significe
the fact that the polynomial matrix M(s) is not coprime. We define as GCD variety, the
variety of all M(s) that are not coprime. If s0 is the prime almost zero then |PM(s̄0,s0)| is
a characteristic of M(s) that defines the distance from the GCD variety i.e. the smaller the
PM(s̄0,s0) the closer to GCD variety is.
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For a fixed M(s) the function PM(s̄,s) is a positive function fromC→R
+ which acquires

a global minimum. We can also write equivalently:

PM(s̄,s) =
p

∏
i=1

σ
2
i (M(s))

where σi(M(s)) are the singular values of the matrix M(s). If we also define by Cp(M(s)) =
(pM

1 (s), pM
2 (s), . . . , pM

k (s)) where k =
(m

p

)
and Cp denotes the p-th compound of M(s) then:

PM(s̄,s) = ∑
i
||pM

i (s)||2

by the Cauchy-Binet expansion of det(MT (s)M(s)).

Theorem 5.2.1. If rank(M(∞)) = p then deg(Cp(M)(s)) = n1 +n2 + · · ·+np and also

PM(s̄,s) = ∑
i
[1, s̄, · · · , s̄n]aiat

i


1
s
...

sn

= [1, s̄, · · · , s̄n]T


1
s
...

sn


where at

i is the coefficient vector of pM
i (s) and T is an induced (n+1)× (n+1) self-adjoint

matrix.

Theorem 5.2.2. If T = BtΛB is the Jordan decomposition of T where B is orthogonal and
Λ real diagonal Λ = diag(λi),λi ≥ 0 and bi are rows of B. Then PM(s̄,s) = ∑

n
i=1 λi|bi(s)|2

where bi(s) = bi

(
1,s, · · · ,sn

)t

Hence the coprimenes of a polynomial matrix M(s) ∈R[s]n×p of degree n is equivalent
to the coprimeness of at most n-polynomials of degree n. Thus if we consider the set
Mat = {M(s) ∈R[s],m×p,m > p,deg(M(s)) = n} we have a function:

Mat(n)→{T : T ∈R(n+1)×(n+1),T = Tt ,T ≥ 0}

and for a M(s) ∈ Mat(n) its prime almost zero may be calculated by minimizing:

min
s

n

∑
i=1

λi|bi(s)|2.

So far we investigated the existence and calculation of almost zeros of a polynomial
matrix M(s) i.e. complex number that almost drop the rank of M(s). We can generalize this
notion to examine the size of the rank of M(s). To this end we utilize the identity:

tr(Ck(Mt(s̄)M(s))) = symk(σ
2
i (M(s)))
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where symk is the k-th symmetric function of p objects for 1 ≤ k ≤ p. In the previous
exposition we utilize k = p where in this case symp was just the product of the squares of the
singular values of M(s). For a given k: 1 ≤ k ≤ p we may define as:

Pk
M(s̄,s) = tr(Ck(Mt(s̄)M(s)))

and as prime almost zero of degree k the complex number that minimizes Pk
M(s̄,s). The

polynomial Pk
M(s̄,s) is the sum of squares of the norms of all k× k minors of M(s). If a

complex number sk
0 is a root of Pk

M(s̄,s) then rank(M(sk
0))< k. This way for a given matrix

M(s) we may define a set of almost zeros sk
0 according to the examination of how much

a complex number drops the rank of the matrix M(s). The calculation then of sk
0 follows

exactly the same steps as in ch.2 as Pk
M(s̄,s) has the same structure as PM(s̄,s).

In this respect, we have to minimize Pk
M(s̄,s) with respect to s. In all the above cases

Pk
M(s̄,s) is written as:

Pk
M(s̄,s) = ∥p(s)∥2,

where p(s) is an appropriately defined vector. To minimize ∥p(s)∥2 we write (in the case
where the coefficients of p(s) are real numbers) the F.O.C. of min

s
⟨p(s̄),p(s)⟩ with s = x+ iy.

Hence,

∂

∂x
⟨p(s̄),p(s)⟩= ⟨p(s̄)′,p(s)⟩+ ⟨p(s̄),p′(s)⟩= 0

∂

∂y
⟨p(s̄),p(s)⟩=−i⟨p(s̄)′,p(s)⟩+ i⟨p(s̄),p′(s)⟩= 0,

where p′(s) denotes the complex derivative with respect to s. Combining the equations, we
take

⟨p′(s̄),p(s)⟩= 0.

The last is the condition an almost zero must satisfy. (If p(s) has complex coefficients, then
the above calculation remains valid by replacing p(s̄) with p′(s).)

5.3 Example of prime almost zero calculation

We next present some examples of prime almost zero calculation in terms of minimization of
PM(s,s), which can be done either directly or using numerical methods.
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Example 12:
Let p̄(s) = (s− s1,s− s2, . . . ,s− sn)

t then

p(s) = (s− s1,s− s2, . . . ,s− sn),

⟨p(s)′,p(s)⟩=
n

∑
i=1

(s− si) = 0 ⇒ s =
∑

n
i=1 si

n
.

Hence s0 = Avg((s j)
n
j=1)

s0 = Avg((a j)
n
j=1)+ iAvg((b j)

n
j=1) = Avg((s j)

n
j=1)

where Avg((c j)
n
j=1) =

∑
n
j=1 c j

n denotes the average of the numbers (c j)
n
j=1. Hence, the

p-index2 of p(s) is given by:

∑
i
|si −Avg(si)|2

which is the standard measure of dispersion of the roots (s j)
n
j=1.

Example 13:
To calculate the almost zeros of the polynomial matrix:

M(s) =


s+1 0

1 s2

0 s
0 1


we calculate the 2 - compound of M(s) i.e. C2(M(s))t =

[
s3 + s2 s2 + s s+1 s 1 0

]
and hence T is given by:

T =


0 0 0 0
0 0 0 0
0 0 1 1
0 0 1 1

+


0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

+


1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

+


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

+


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

+0 =


2 1 0 0
1 3 1 0
0 1 2 1
0 0 1 1


and the quality to be minimized is:

min
s∈C

(|s|6 +2|s|4 +3|s|2 +2+2ℜ(s)(1+ |s|2 + |s|4))
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which is minimized for s0 =−0.48 and PM(s̄0,s0) = 1.58.

If we alternatively decompose T as BtΛB then the eigenvalues in Λ are:

{4.06,2.4,1.3,0.236}

and the quantity to be minimized is:

pM(s̄,s) = 4.06||0.38+0.79s+0.46s2 +0.149s3||2+
+2.4||−0.54−0.212s+0.66s2 +0.476s3||2

+1.3||0.74−0.51s+0.13s2 +0.422s3||2+
+0.236||−0.15+0.26s−0.58s2 +0.76s3||2

which has minimum as above.

Example 14:
Suppose we have the following polynomial vector where ai ∈R:

p(s) = (s2 +a1,s2 +a2, . . . ,s2 +an).

Suppose we have the polynomial vector then:

< p′(s̄),p(s)>= 2(n|s|2s+ s̄(∑
i

ai)) = 0

Hence, s2
0 =−(ai) which implies that the absolute almost zero is:

s0 =±i
√

E(a j)

5.4 Statistical results

In this study we consider a polynomial vector random ensembles of the form:

Pk,n(s) =


a1nsn +a1n−1sn−1 + · · ·+a10

a2nsn +a2n−1sn−1 + · · ·+a20

a3nsn +a3n−1sn−1 + · · ·+a30
...

aknsn +akn−1sn−1 + · · ·+ak0


where Pk,n is a polynomial rectangular matrix k×1 of degree n and the coefficients ai j are
i.i.d. ∼ U (−1,1). It is worth noting that the polynomials are not monic as one expects
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and if they are normalized the resulting ratio ai j/ain follows a distribution with probability
distribution function:

f (x) =

1/4 |x| ≤ 1

1/(4x2) |x|> 1

We carried out simulations for the ensembles Pk,n for n = 1,2,3,4 and k = 1,2, . . . ,25
and created 2000 scenarios for every pair (k,n). For every scenario Pk,n we calculated via a
minimization process the almost zero s j

0 and the minimum value PM(s0, s̄0) of the objective
function PM(s, s̄).

Since s and ai j are random variables, it follows that the almost zero and the p-index2 are
random variables. Therefore, our purpose is to calculate the mean and the variance of the
p-index2, PM(s0, s̄0) and of the size ||s0||2 of the almost zero s0. The results are depicted in
the Figures: 5, 6, 7 and 8.

We observe that the p-index increases linearly with the size of the polynomial vector
and independently to the polynomial degree as we can see in Figure 5. Next in Figure 6 we
observe that the standard deviation of the p-index is strictly increasing as k increases from 1
to 25 and it is independent to the degrees of polynomials. In addition in Figure 7 the mean
of the size of almost zero of polynomials is strictly decreasing and with a rapid decrease in
the range of polynomials with size 1-5 with the graph to flatten thereafter, this phenomenon
is more evident for the degree n = 1. Furthermore, the standard deviation of the size of the
almost zero is strictly concave for all polynomials degree as the size the polynomial vector k
increases from 1 to 25 and only the graph corresponding to the polynomial of degree 1 is
decreasing more rapidly than the graphs of the others and this is true up to k=11 as depicted
in Figure 8.

Moreover the distribution function of the p-index2 PM(s̄0,s0) for ensembles of polynomi-
als of degree 1 up to 4 belongs to log-normal family distribution. The last can be observed
by Figures 9a up to 9d. In addition Figure 13 shows us the distribution that best fits is the
Pearson 6 distribution and on the other hand according to Anderson Darling and Chi-Squared
criteria the distribution that best fits is the Johnson SB and Beta distributions, respectively.
Furthermore the Figures from 14a up to 14c depict the distributions of the p-index2 which
for polynomial degree 1-3 have the same hyperbolic shape with the exception of Figure 14d.
This is a Pearson Type 6 distribution and according to Kolmogorov Smirnov, Pearson 6 states
is the best fit among the others.

In addition to this statistical analysis of polynomials as described before there exist a
remarkable fact. According to Figures (5) - (8) both the mean and the variance of the p-index2

PM(s̄0,s0) increase as the size of the ensemble M increases and therefore the distribution
of PM(s̄0,s0) flattens with the size of M (see Figure 11). On the contrary, the mean and the
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variance of the size ∥s0∥2 of almost zero s0 ∥s0∥2 decrease with the size of M. Hence, the
corresponding distribution sharpens with the size of M (Figure 12).

This observation reveals that there is some kind of uncertainty in the determination of the
size and p-index2 of almost zeros in the following sense: while the mean and the variance of
the size ∥s0∥2 of s0 converge to 0, as the size of M increases, the corresponding magnitudes
of p-index2 converge to infinity. Roughly speaking, although we can say that the value of s0

is close to 0, it is not possible to determine in any way the value of the p-index2, PM(s̄0,s0).
We use the term uncertainty principle to describe this phenomenon. However, we should
point out that this term usually means uncertainty in two ways: when one determines the
value of one quantity, then the value of the other becomes vague. In our framework, this only
applies in one direction.

If we assume (as it is observed) that this uncertainty relation depends only on size and not
on degree of the polynomials vectors, we may formulate the uncertainty principle in terms of
polynomial vectors of degree 1, i.e. let

p(s) = (ai1s+ai2)
k
i=1.

Then, ⟨p′(s0),p(s0)⟩= 0 implies that ⟨a1,a1s0 +a2⟩= 0 and therefore

s0 =−⟨a1,a2⟩
∥a1∥2 .

Hence,

∥p(s0)∥2 =∥a1∥2∥s0∥2 +∥a2∥2 +2⟨a1,a2⟩s0

=
⟨a1,a2⟩2

∥a1∥2 +∥a2∥2 −2
⟨a1,a2⟩2

∥a1∥2

=∥a2∥2 − ⟨a1,a2⟩
∥a1∥2 = ∥p(0)∥2 + s0

∥p(s0)∥2 =∥p(0)∥2 + s0

where, ∥a2∥2 = ∥p(0)∥2 and − ⟨a1,a2⟩
∥a1∥2 =+s0. Moreover, the numerator of the LHS of the last

equality is approach to zero, due to inner product between of two random vectors a1,a2 and
the denominator ∥a1∥2 goes to infinity.

This last relation highlights the fact that, as k → ∞, then the mean value and the variance
of s0 converge to 0, while the mean value and variance of the p-index, ||p(s0)|| converge to
∞. This is proven next.
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Theorem 5.4.1. For fixed n, assume that for each k ≥ 1, sk denotes the almost zero of the
multivariable random vector Pk,n(s). Then with probability 1 it holds limk→∞ sk = 0.

Proof. Let pk(s) = ∑
n
j=0 a js j where a j is the j-th column of Pk,n. Since ||pk(s)||2 is a non

negative continuously differentiable function of x and y (s = x+ iy) with lims→∞ ||pk(s)||2 =
∞, it attains a minimum value at a finite point. If we define

fk(s) := ⟨p′
k(s),pk(s)⟩=

n

∑
j=1

j||a j||2|s|2 j−2s+ ∑
1≤ j,r≤n

j ̸=r

j⟨a j,ar⟩s̄ j−1sr,

then any point ŝ where this minimum is attained satisfies fk(ŝ) = 0. Note that fk is a poly-
nomial in s, s̄ of degree 2n−1 with leading term n||an||2|s|2n−2s. The law of large numbers
implies that with probability one, for each j,r = 1,2, . . . ,n with r ̸= j, it holds

lim
k→∞

1
k
||a j||2 = E(a2

11) =
1
3
, (5.1)

lim
k→∞

1
k
⟨a j,ar⟩= 0. (5.2)

It is then easy to show that, because of the leading term, for almost all ω in the probability
space, there are k0(ω) ∈N and M(ω)> 0 such that | fk(s)|> 1 for all s with |s|> M(ω) and
k ≥ k0(ω).

Now for each k ≥ 1, let sk be any point satisfying fk(sk) = 0. We will show that
limk→∞ sk = 0 with probability 1. For almost all ω in the probability space and for k ≥ k0(ω)

we have |sk| ≤ M(ω). It is enough then to show that all convergent subsequences of (sk)k≥1

converge to 0. Let (skν
)ν≥1 be such a subsequence that converges to a number c. Using (5.1)

and (5.2) we get that

0 = lim
ν→∞

1
kν

fkν
(skν

) =
1
3

c
n

∑
j=1

j|c|2 j−2.

Consequently, c = 0. ■

5.5 Conclusions

We defined the notion of almost zeros of polynomial matrices which was generalized in
various degrees. This is related to notions such as almost controllability and observability as
well as almost McMillan degree and pole zero assignability. Furthermore we investigate the
statistical properties of almost zeros in the light of randomness of elements of matrices and
we prove an uncertainty type result for the determination of almost zeros.



Chapter 6

Random Matrices and Controllability of
Dynamical Systems

‘Let no-one ignorant of geometry enter‘.
— Plato, 427-347 B.C., Greek Philosopher.

6.1 Introduction

Controllability is one of the most fundamental concepts in systems theory and control theory.
Roughly speaking, a system is controllable if one can switch from one trajectory to the other
provided that the laws governing the system are obeyed and some delay is allowed. In the
present work, we focus on the linear, time-invariant multivariable system described by the
following equations (see [39], [63]):

dx
dt

= Ax+bu, y = Cx+du, (6.1)

where x = x(t) = (x1(t),x2(t), . . . ,xn(t))t ∈ Rn is a vector describing the state of the system
at time t, u = u(t) ∈ R is the input and y = y(t) is the m-vector of outputs. A, C are
respectively n×n, m×n matrices, and b ∈Rn, d ∈Rm are vectors. In this case the definition
of controllability goes as follows. The system (6.1) is said to be state controllable or simply
controllable, if there exists a finite time T > 0, such that for any initial state x(0) ∈ Rn and
any x1 ∈ Rn, there is an input u = u(t) defined on [0,T ] that will transfer x(0) to x1 at time
T (i.e. x(t) obeys the first equation of (6.1) and x(T ) = x1). Otherwise, the system (6.1) is
called uncontrollable.

In this chapter, we consider random systems of the form (6.1), that are systems where
the parameters A and b have been replaced with random matrices. Given a positive number
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ε , we define the concept of ε-uncontrollability of a random system. It is natural that the
ε-uncontrollability of a random system depends on the distribution of the entries of A and
b. Consequently, we consider the fundamental Gaussian orthogonal ensemble of random
matrices and we calculate the ε-uncontrollability in this particular case.

The rest of the chapter is organised as follows. In Section 6.2, we define the ε-
uncontrollability for random systems. In Section 6.3, we describe the Gaussian orthogonal
ensemble, which is going to be used in this work, and we state some known results about
this ensemble that will be used in the sequel. In Section 6.4, we consider the case n = 2, i.e.
when the state space is R2, and we give the detailed calculation of the ε-uncontrollability of
a random system where the matrix A comes from the Gaussian orthogonal ensemble. Finally,
in Section 6.5, we deal with the general case of Rn for n > 2. In this case, the situation is
more complicated and we provide an upper bound for the ε-uncontrollability of a random
system.

We close this introductory section with some comments concerning the motivation of the
present work. Random matrix theory applies in problems of algebraic control in the presence
of error or noise due to many factors. Here, we ignore systematic errors and we consider
the effect of randomness to algebraic relations (equalities). For example, suppose that a set
of equations f(x) = 0 is given. In order to study the effect of a random perturbation x+ εp,
where x is a given solution and p is a random variable, we expand f (x+p) into

f(x)+ εf1 + ε
2f2 + . . . (6.2)

and we examine the statistical properties of f1, f2 as random variables.
In the case of controllability, we have the equations

[(s+ εsr)I−A− εAr,−b− εbr](x+ εxr) = 0 (6.3)

and we examine the statistical properties of the second-order term [srI−Ar,br]xr , assuming
that the properties of the first-order perturbation have already been resolved.

This study is to provide a statistical effect of such random perturbations on a system of a
given model description as far as the controllability is concerned.

6.2 ε-uncontrollability of random systems

In order to formulate a suitable concept of uncontrollability for random systems, we utilize a
characterisation of the controllability of systems of the form (6.1). This is provided in the
next theorem (for more details see, for example, [39] Theorem 2.2).
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Theorem 6.2.1. The following are equivalent.

1. The system (6.1) is controllable.

2. The matrix [sI−A,−b] has full rank (i.e. rank n), for every s ∈ C.

Additionally, we need the next lemma whose proof is based on elementary linear algebra
and thus it is omitted.

Lemma 6.2.2. Let A be an n×n-matrix and b ∈ Rn. Then, the following are equivalent.

1. The matrix [sI−A,−b] has full rank (i.e. rank n), for every s ∈ C.

2. There is no eigenvector v ∈ Rn of the matrix A such that ⟨v,b⟩= 0.

Motivated by the above results, we now define the ε-uncontrollability for random systems.

Definition 6.2.1. Assume that a random system is given:

dx
dt

= Ax+bu, (6.4)

where A is an n× n random matrix and b is an n-dimensional random vector. Given a
positive number ε , the ε-uncontrollability of the above system is defined to be the probability:

Pε = P(|⟨v,b⟩|< ε : for some eigenvector v of A with ∥v∥2 = 1) .

6.3 Random matrix ensemble

It is quite evident that the measure of ε-uncontrollability Pε of the random system (6.4)
depends on the distribution of the matrix A and the vector b. In this chapter, we consider
one important ensemble of real symmetric random matrices, namely the so-called GOE. On
account of its applications, GOE is one of the most studied random matrix ensembles. It is
placed in the more general framework of Wigner matrices, which are defined as follows. We
consider ξ ,ζ real-valued random matrices with zero mean. Let W =

(
wi j
)n

i, j=1 be a random
symmetric matrix. We call W a Wigner matrix if its entries satisfy the next conditions:

• {wi j | 1 ≤ i ≤ j ≤ n} are independent random variables;

• {wi j | 1 ≤ i < j ≤ n} are i.i.d. (independent, identically distributed) copies of ξ ;

• {wii | i = 1, . . . ,n} are i.i.d. copies of ζ .
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The case of Wigner matrices in which ξ and ζ are Gaussian with E[ξ 2] = 1 and E[ζ 2] = 2
gives the GOE. Hence, if the symmetric matrix W belongs to GOE, then wii ∼ N(0,2) (for
all i= 1, . . . ,n), wi j ∼N(0,1) (for all 1≤ i< j ≤ n) and the entries on and above the diagonal
are independent random variables. (We write GOE(n) when an emphasis on the dimension
is necessary. However, in majority of cases the dimension will be clear from the context.)

Additionally, as far as the random vector b is concerned, we have to choose some
ensemble. More specifically, we consider the ensemble Sb containing all random vectors b =

(b1,b2, . . . ,bn) such that (bi)
n
i=1 are independent Gaussian random variables with zero mean

and E[b2
i ] = 1. Furthermore, we assume that (bi)1≤i≤n and (wi j)1≤i≤ j≤n are all independent

random variables.
For more information concerning Wigner matrices and the GOE we refer to [4]. For

our purpose, we need a couple of result for the eigenstructure of the GOE, which are stated
here without proof. First of all, it is known that a.s., the eigenvalues of a matrix A from
GOE are all distinct (see [4], Theorem 2.5.2). Let now v1, . . . ,vn denote the eigenvectors
corresponding to the (real) eigenvalues of A, with their first non zero entry positive real.
Then the following proposition holds (see [4], Corollary 2.5.4).

Proposition 6.3.1. The collection (v1,v2, . . . ,vn) is independent of the eigenvalues. Each of
the eigenvectors v1,v2, . . . ,vn is distributed uniformly on

Sn−1
+ = {x = (x1,x2, . . . ,xn) | xi ∈ R,∥x∥2 = 1,x1 > 0}.

6.4 The case n = 2

This section is entirely devoted to the calculation of the ε-uncontrollability of a random sys-
tem of the form (6.4) when the state space is R2 and A,b belong to GOE and Sb respectively.
In order to achieve this goal, we firstly fix a vector b ∈ R2 and we set

Pε,b = P(|⟨v,b⟩|< ε : for some eigenvector v of A,∥v∥2 = 1) .

Then, the following result holds.

Theorem 6.4.1. Let the random system (6.4) be given, where the state space is R2 and A
belongs to GOE(2). Then, for every non zero vector b ∈ R2, we have

Pε,b =

 4
π
· arcsin

(
ε

∥b∥2

)
, if ε

∥b∥2
<

√
2

2 ;

1, if ε

∥b∥2
≥

√
2

2 .
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Proof. Since the matrix A from GOE(2) is symmetric, there is an orthonormal basis {v1,v2}
of R2 consisting of eigenvectors of A. Without loss of generality (replacing v1 with −v1

or changing the order of {v1,v2}, if necessary), we may assume that the first coordinate of
v1 is positive. Hence, we can write v1 = (cosθ ,sinθ) and v2 = (−sinθ ,cosθ), for some
θ ∈ (−π

2 ,
π

2 ). Now, we have:

Pε,b =P(|⟨v,b⟩|< ε : for some eigenvector v of A with ∥v∥2 = 1)

=P(|⟨vi,b⟩|< ε : for some eigenvector vi of A, i = 1,2) .

The non-zero vector b is written in the form b = ∥b∥2

(
b1

∥b∥2
, b2
∥b∥2

)
. Let T be the rotation

through a suitable angle ϕ such that T
(

b1
∥b∥2

, b2
∥b∥2

)
= e2 = (0,1). Then, T is in orthogonal

group O(2) and hence,

|⟨v,b⟩|= |(v),T (b)⟩|= ∥b∥2 · |⟨T (v),e2⟩|

for any eigenvector v = vi, i = 1,2 of A. Thus,

Pε,b =P(∥b∥2 · |⟨e2,T (vi)⟩|< ε : for i = 1 or i = 2)

=P
(
|⟨e2,T (vi)⟩|<

ε

∥b∥2
: for i = 1 or i = 2

)
.

The rotation T is given by the following matrix representation

T =

[
cosϕ −sinϕ

sinϕ cosϕ

]
.

Therefore,

T (v1) = (cos(ϕ +θ),sin(ϕ +θ)) and T (v2) = (−sin(ϕ +θ),cos(ϕ +θ)),

and, consequently,

Pε,b = P
(
|sin(ϕ +θ)|< ε

∥b∥2
or |cos(ϕ +θ)|< ε

∥b∥2

)
.

We have to distinguish two cases.

Case I If ε

∥b∥2
≥

√
2

2 , then, clearly, one has Pε,b = 1.
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Case II If ε

∥b∥2
<

√
2

2 , then

Pε,b = P
(
|sin(ϕ +θ)|< ε

∥b∥2

)
+P

(
|cos(ϕ +θ)|< ε

∥b∥2

)
,

where the equality follows from the disjointness of the two sets. Now, for the first summand,
we observe that ϕ +θ belongs to a semicircle. Hence, the values of ϕ +θ for which we
have |sin(ϕ +θ)|< ε

∥b∥2
belong to an arc or to the unions of two disjoint arcs whose length

is 2 · arcsin( ε

∥b∥2
). It follows that θ belongs either to an arc or to the union of two disjoint

arcs with total length 2 · arcsin( ε

∥b∥2
). By Proposition 6.3.1, θ is a random variable with the

uniform distribution on the interval (−π

2 ,
π

2 ). Therefore,

P
(
|sin(ϕ +θ)|< ε

∥b∥2
| θ ∈

(
−π

2
,
π

2

))
=

2
π
· arcsin

(
ε

∥b∥2

)
.

Using similar argumentation for the second summand, we finally obtain:

Pε,b =
4
π
· arcsin

(
ε

∥b∥2

)
.

■

We are now ready to prove the main result of this section.

Theorem 6.4.2. Assume that n = 2 and that A,b belong to GOE and S1,vb respectively. For
any positive number ε , the ε-uncontrollability of the random system (6.4) is given by

Pε = 1− e2ε2
+

4√
2π

∫
∞

2ε2
arcsin

(
ε√
x

)
e−x/2 dx.

Proof. Let {v1,v2} be an orthonormal basis of R2 consisting of eigenvectors of A. We set

Z = min{|⟨v1,b⟩|, |⟨v2,b⟩|}.

Then, Z is a non-negative random variable, which follows from the coordinates of the random
vectors v1,v2,b after multiplication, summation and absolute values. It is not hard to see that

Pε = P(Z < ε) = E[Z ·1[0,ε]],

where 1[0,ε] is the characteristic (or indicator) function of the interval.
Recall (from Section 6.3) our assumption that the entries (wi j)1≤i≤ j≤n of A and (bi)1≤i≤n

of b are independent. It follows that v1,b are independent random vectors and clearly this is
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also true for the pair v2,b. Using conditional expectation, we obtain that

Pε = E[Z ·1[0,ε]] =
∫
R2

E[Z ·1[0,ε]|b] · f (b)db =
∫
R2

Pε,b · f (b)db,

where f (b) is the probability density function of the random vector b. Since the coordinates
b1,b2 of b are independent Gaussian random variables with zero mean and variance equal to
1, it follows that

Pε =
∫
R2

Pε,b ·
1

2π
· exp

(
−

b2
1 +b2

2
2

)
db1db2 =

∫
R2

Pε,b ·
1

2π
· exp

(
−
∥b∥2

2
2

)
db1db2.

We observe now that Pε,b depends only on ∥b∥2 =
√

b2
1 +b2

2. Hence, by changing in polar

coordinates (or, equivalently using the fact that b2
1+b2

2 has the χ2-distribution with 2 degrees
of freedom), we get that

Pε =
∫ 2π

0

∫
∞

0
Pε,b(r)

1
2π

e−r2/2r drdθ =
∫

∞

0
Pε,b(r)e−r2/2r dr =

∫
∞

0
Pε,b(

√
r)

1
2

e−r/2 dr

=
∫ 2ε2

0

1
2

e−r/2 dr+
∫

∞

2ε2

4
π
· arcsin(

ε√
r
)
1
2

e−r/2 dr

=1− e2ε2
+

2
π

∫
∞

2ε2
arcsin(

ε√
r
) · e−r/2 dr

and we have proved the desired result. ■

6.5 The general case

In this section, we consider the more general case where the state space of the random system
(6.4) is Rn, n ≥ 3. This case is more complicated and we only give an upper bound for the
ε-uncontrollability of the system.

Firstly, we need some estimates from the elementary convex geometry. Assume that
v ∈ Sn−1 is a unit vector and ε ∈ [0,1). The ε-spherical cap about v is the following subset
of Sn−1:

C(ε,v) =
{

θ ∈ Sn−1 : ⟨θ ,v⟩ ≥ ε
}
.

Observe that the number ε does not refer to the radius of the cap. An easy calculation shows
that the radius is r = 2(1− ε). In general, the cap of radius r about v is:{

θ ∈ Sn−1 : |θ −v| ≤ r
}
.



110 Random Matrices and Controllability of Dynamical Systems

Let An denote the surface area of the unit ball Sn−1, i.e. An = 2πn/2

Γ(n/2) . Convex geometry
provides the following upper and lower bounds for the surface area of a spherical cap (see,
for example, [8]).

Lemma 6.5.1. For 0 ≤ ε < 1, the cap C(ε,v) on Sn−1 has surface area at most e−nε2/2 ·An.

Lemma 6.5.2. For 0 ≤ r ≤ 2, a cap of radius r on Sn−1 has surface area at least 1
2 ·
( r

2

)n−1 ·
An.

Following the lines of Theorem 6.4.1, we now prove the next result. Assume that we
have a random system of the form (6.4), where the matrix A belongs to GOE(n).

Theorem 6.5.3. Let A be in the GOE(n) and let b ∈ Rn be any non-zero vector. Then, for
the random system (6.4), we have the estimate:

Pε,b = P(|⟨v,b⟩|< ε : for some eigenvector v of A,∥v∥2 = 1)≤ n
(

1−
(

1− ε

∥b∥2

)n−1)
.

Proof. Let {vi}n
i=1 be an orthonormal basis of Rn consisting of eigenvectors of the matrix A.

Without loss of generality (replacing vi with −vi if necessary), we may assume that the first
non-zero coordinate of each vi is positive. We now obtain:

Pε,b = P(|⟨vi,b⟩|< ε : for some i = 1,2, . . . ,n) .

We write b = ∥b∥2

(
b1

∥b∥2
, b2
∥b∥2

, . . . , bn
∥b∥2

)
and we consider an orthogonal transformation

T ∈ O(n) that assigns
(

b1
∥b∥2

, b2
∥b∥2

, . . . , bn
∥b∥2

)
to the vector e1 = (1,0, . . . ,0). Since T is

orthogonal, it follows that:

|⟨b,v⟩|= |⟨T (b),T (v)⟩|= ∥b∥2 · |⟨e1,T (v)⟩|

for any eigenvector v = vi, i = 1,2, . . . ,n of A. Hence,

P(∥b∥2|⟨T (vi),e1⟩|< ε : for some i = 1,2, . . . ,n)

=P
(
|⟨T (vi),e1⟩|<

ε

∥b∥2
: for some i = 1,2, . . . ,n

)
.

Note that in Rn for n ≥ 3, the sets (|⟨T (vi),e1⟩| < ε

∥b∥2
), i = 1,2, . . . ,n are not pairwise

disjoint, even for small values of ε . Therefore, we cannot repeat the argumentation of the
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case n = 2. However, we may proceed as follows

Pε,b ≤
n

∑
i=1

P
(
|⟨T (vi),e1⟩|<

ε

∥b∥2

)
.

Since vi is uniformly distributed in Sn−1
+ (see Proposition 6.3.1), we have that T (vi) is

uniformly distributed to some hemisphere. Therefore, if A denotes the surface area measure
in the sphere Sn−1, then,

P
(
|⟨T (vi),e1⟩|<

ε

∥b∥2

)
≤

A(θ ∈ Sn−1 : 0 < θ1 <
ε

∥b∥2
)

An/2

=
An/2−A(θ ∈ Sn−1 : ε

∥b∥2
≤ θ1)

An/2
.

The set {θ ∈ Sn−1 : ε

∥b∥2
≤ θ1} is a spherical cap of radius r = 2

(
1− ε

∥b∥2

)
. Hence, by

Lemma 6.5.2, its surface area is at least 1
2

( r
2

)n−1 An. Therefore,

Pε,b ≤
An/2− 1

2

( r
2

)n−1 An

An/2
= 1−

( r
2

)n−1
= 1−

(
1− ε

∥b∥2

)n−1

.

Hence,

Pε,b ≤
n

∑
i=1

(
1−
(

1− ε

∥b∥2

)n−1)
= n
(

1−
(

1− ε

∥b∥2

)n−1)
.

■

Theorem 6.5.4. Assume that A,b belong to GOE(n) and Sb respectively and let ε be any
positive number. For the ε-uncontrollability of the random system (6.4), the following
inequality holds

Pε ≤
n

2n/2Γ(n/2)

∫
∞

0

(
1−
(

1− ε√
r

)n−1)
· e−r/2 · r(n/2)−1 dr. (6.5)

which can also be written as

Pε ≤
n−1

∑
k=1

(−1)k+1
(

n−1
k

)
nΓ(n−k

2 )

2k/2Γ(n
2)

ε
k (6.6)

Consequently, the growth of Pε is at most polynomial of degree n−1 with respect to ε .



112 Random Matrices and Controllability of Dynamical Systems

Proof. As in the proof of Theorem 6.4.2, it follows that

Pε =
∫
Rn

Pε,b · f (b)db,

where f is the probability density function of the random vector b. Since the entries of b are
independent Gaussian random variables with zero mean and variance equal to 1, we have

Pε =
∫
Rn

Pε,b ·
1√
(2π)n

· exp
(
−
∥b∥2

2
2

)
db.

By Theorem 6.5.3, we obtain

Pε ≤
∫
Rn

n
(

1−
(

1− ε

∥b∥2

)n−1)
· 1√

(2π)n
· exp

(
−
∥b∥2

2
2

)
db.

We observe that, in the last integral, only the norm ∥b∥2 of the vector b appears. Hence,
using polar coordinates (see, for example, [21] Corollary 2.51), or equivalently, the fact that
b2

1 + . . .+b2
n has the χ2-distribution with n degrees of freedom, we obtain

Pε ≤
2
√

πn

Γ(n/2)

∫
∞

0
n
(

1−
(

1− ε

r

)n−1)
· 1√

(2π)n
· exp

(
−r2

2

)
rn−1 dr

=
n

2n/2Γ(n/2)

∫
∞

0

(
1−
(

1− ε√
r

)n−1)
· e−r/2 · r(n/2)−1 dr

and the proof of inequality (6.5) is complete. ■

As far as (6.6) is concerned, we use the binomial expansion formula to obtain

1−
(

1− ε√
r

)n−1

=
n−1

∑
k=1

(
n−1

k

)
(−1)k+1 εk

rk/2 . (6.7)

By inequality (6.5), it follows that

Pε ≤
n−1

∑
k=1

(−1)k+1
(

n−1
k

)
n

2n/2Γ(n
2)

· εk
∫

∞

0
e−r/2r

n−k
2 −1dr

=
n−1

∑
k=1

(−1)k+1
(

n−1
k

)
nΓ(n−k

2 )

2k/2Γ(n
2)

ε
k
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and we have the desired result.
The next natural corollary is now straightforward.

Corollary 6.5.4.1. For any integer n ≥ 2, we have that limε→0 Pε = 0.

Furthermore, the following corollary shows that the upper estimate of Theorem 6.5.4 is
sharp in the case n = 2.

Corollary 6.5.4.2. Under the assumptions of Theorem 6.4.1, we have

2√
π

ε ≤ Pε <
√

2πε (6.8)

for ε > 0 small enough.

Proof. The right-hand inequality follows immediately by Theorem 6.5.4 and holds for any
positive ε . As far as the left-hand inequality is concerned, we utilize Theorem 6.4.2. Firstly,
we observe that the inequality ex − 1 < (e− 1)x, for 0 < x < 1, implies that 1− e2ε2

>

−2(e−1)ε2 for small values of ε (namely, when 2ε2 < 1). Furthermore, since arcsin(x)> x
for 0 < x < 1, we obtain∫

∞

2ε2
arcsin

(
ε√
x

)
e−x/2dx ≥

=
∫

∞

0

(
ε√
x

)
e−x/2dx−

∫ 2ε2

0

(
ε√
x

)
e−x/2dx

≥
√

2Γ

(
1
2

)
ε − ε

∫ 2ε2

0

1√
x

dx

=
√

2
√

πε −2
√

2ε
2. (6.9)

Therefore, the formula of Theorem 6.4.2 gives

Pε ≥−2(e−1)ε2 +
4√
π

ε − 8
π

ε
2

=

(
4√
π
−
(

8
π
+2(e−1)

)
ε

)
ε

≥ 2√
π

ε (6.10)

(for small values of ε). Consequently, we have proved the next inequality:

2√
π

ε ≤ Pε ≤
√

2πε (6.11)
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(for small values of ε) showing that the upper bound of Theorem 6.5.4 is sharp in the case
n = 2. ■

Finally, an upper estimate for the growth rate of Pε at 0 can also be obtained.

Corollary 6.5.4.3. Assume that Pε is differentiable at 0. Then,

dPε

dε

∣∣∣∣
ε=0

≤
n(n−1)Γ(n−1

2 )
√

2Γ(n
2)

.

Proof. It follows immediately by inequality (6.6) of Theorem 6.5.4. ■

6.6 Conclusions

We defined a measure of ε uncontrollability in a Gaussian Random Ensemble of linear
systems. We calculated tight bounds for this probability in terms of ε and the number of
states n. This is also depicted in the graphs included in the appendix (Figures 15, 16).



Chapter 7

Conclusions

‘And if you find her poor, Ithaka won’t have fooled you. Wise as you will have become, so full
of experience, you’ll have understood by then what these Ithakas mean‘.
— K. P. Kavafis, 1863-1933, Greek Poet.

7.1 Epilogue

In this section we summarize the most important findings of this thesis and we outline
prospects for future research.

The aim of this PhD Thesis is trifold. Initially, we looked at networks of banks which are
modelled by connected, directed and weighted graphs and are sustained by interbank lending.
We assumed that the interbank lending is governed by a diffusion-like law. We proved that
the diffusion-like interbank lending drives the network of banks towards its steady state
where the leverages of all the banks of the network are equal. This research can be of interest
in the banking community as this method determines on systematic manner flows of funds
between banks that make the overall system more stable. That said, it could be possible for
the central bank which is the main authority and has under control all the banks to choose
those leverages in order to have a stable banking network. This possibility is something that
we are going to study in the future as another research paper to which we will focus on the
regulation mechanism of a central bank. In other words, we want to study how the central
banker could play the role of a stabilizer, a regulator in an unstable banking network. Thus,
we will approach this problem by introducing the mathematical control theory.

The second topic we examined was not only to investigate the algebraic and computations
of almost zeros of polynomial vectors or matrices but also to describe new results that we
found and which rely on a high order of almost zeros. A connection between randomness
and almost zeros was shown to exist through the study of problems of random ensembles of
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polynomial vectors. Moreover, several statistical results in connection with the prime almost
zeros is presented as well. More specifically, we studied problems of random ensembles
of polynomial vectors and several statistical results in connection with the prime almost
zeros are presented as well. As it is well known, the importance of zeros and poles of a
linear dynamical system is shown via a Laplace transformation to the system of coupled
linear ordinary differential equations which describe the dynamical system. The position of
poles and zeros is related with the stability of the system as well as with the stabilization
of the system with feedback [33][38][34][28]. Also, if we know the position of zeros and
poles, we can obtain very useful information and conclusions not only about the behavior
of systems but also about their controllability. It is well known that if zeros lay on the right
of the complex plane, then the stabilization by feedback of this system is difficult. There
are some cases where a system does not have strict zeros but has almost zeros. That being
said not merely the existence of such almost zeros but also their position can efficiently be
characterized equivalently by the dynamic of a system as it could have happened in the case
of ordinary zeros. These are some cases where, we are facing the problem of not existence of
zeros by the strict meaning. Thus, alternatively we can use the existence of almost zeros in
order to study besides the dynamic behavior of the system its stabilization ability as well.

Focusing on an economic system poles and zeros could be computed and we can obtain
very useful conclusions about the dynamic behavior of the system along with the availability
to design a controller responsible for its stabilization. For instance let an economic system
where, the almost zeros are laying on the right complex plain. Then, this system is charac-
terized by a stabilization problem and probably it’s very difficult to stabilize it by feedback.
In addition, a system with almost zero that belongs to the right half plane and which is
close to a pole of a system then it is very difficult to stabilize this system by feedback. For
more information on those dynamical characteristics which have been studied in depth, we
recommend to have a glimpse on the relative bibliography [35] [36] [37].

The third aim of this thesis was to study in depth a linear time invariant multivariable
system from a controllability point of view. More specifically, we focused on systems with a
special characteristic that given matrices were random. Moreover, we worked on the case
of Gaussian Random Ensemble and we defined ε controllability which is a measure for
the previous category of random matrices. Finally, we found bounds in terms of ε and the
number of states n of a given linear system. The notion of controllability relies on the ability
of changing the behavior of the system. More specifically, suppose we have a system either
economic, mechanic or electric which can be described by a system of differential equations
with input, output and states. Then, the controllability gives an answer on how likely it is
to transfer a vector state by changing the input values or the policy variables. In such a
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case the system is called controllable; conversely, we say that the system is uncontrollable.
Moreover, the properties of controllability, stability are of great importance which are used
in the theory of systems and control very often. Uncontrollable systems are of zero measure
in the total of all systems. Hence, if we assume a random system, then it is more likely
to be controllable. Nevertheless, there is a necessity to evaluate if a random system is
controllable or uncontrollable; because the systems are not all the same. Furthermore, ε−
controllability is a broader notion of controllability meaning because in the systems we do not
only have two states i.e. controllable or uncontrollable but there are also intermediate states
of controllability. In other words, we can think about ε− controllability as a scale notion of
controllability. In addition, in this thesis we define the notion of ε− controllability which has
a very special meaning in random systems because we can evaluate how controllable such a
system is, to put it in another way, it shows how difficult it is to change the behavior of the
system through control theory techniques like the feedback mechanism. In economic science
there are systems which are characterized by randomness like networks or links that are
unstable, residuals, noise, laws under uncertainty etc. Finally, in such systems controllability
in the classical point of view is not applicable thus we are using ε− controllability which is a
scale or an approximation of controllability as a more appropriate tool. In the ensemble we
use to parameterize random systems we calculated the distribution of ε−controllability of
these systems.
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Fig. 1 Plot of the vector field for the system in Example 4.



126

.2 Chapter 4

Fig. 2 Sort list of leverages in descending order.
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Fig. 3 The mean initial leverage (lM) is equal to 7/9. At the point of equilibrium li = l j =
l ∈R, i ̸= j and l ≥ lM
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Fig. 4 From dark blue to red we are moving from the highest level of leverage per bank to
the lowest and furthermore from the heighest level of weights to the lowest, for the nodes
and edges, respectively.
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.3 Chapter 5

Fig. 5 Mean of p-index2 vs k, k = 1,2, . . . ,25

Fig. 6 Standard deviation of p-index2 vs k, k = 1,2, . . . ,25

Fig. 7 Mean of the size of almost zero vs k, k = 1,2, . . . ,25
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Fig. 8 Standard deviation of the size of almost zero vs k, k = 1,2, . . . ,25

(a) PDF of the p-index2 PM(s0, s̄0) of degree 1 (b) PDF of the p-index2 PM(s0, s̄0) of degree 2

(c) PDF of the p-index2 PM(s0, s̄0) of degree 3 (d) PDF of the p-index2 PM(s0, s̄0) of degree 4

Fig. 9 Probability distribution functions of the p-index2 for degrees ranging from 1 up to 4

Fig. 10 Descriptive statistics of polynomials degree 1
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Fig. 11 The distribution of the p-index2 of s0, PM(s̄0,s0) follows Gamma distribution and
flattens with respect to the size of M.

Fig. 12 The distribution of almost zero s0 of ||s0||2 follows Gamma distribution and sharpens
with respect to the size of M.

Fig. 13 Fit of various distributions for the size or p-index2 for the ensemble of degree 1
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(a) Polynomials of sum of squares degree 1 (b) Polynomials of sum of squares degree 2

(c) Polynomials of sum of squares degree 3 (d) Polynomials of sum of squares degree 4

Fig. 14 Probability distribution functions of sum of squares of polynomials degrees 1 up to 4
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The diagram of the upper bound for ε-uncontrollability given in Theorem 6.5.4 (Fig. 15);

Fig. 15 Moving from the lower to the upper value of ε the probability bound increases with
n.
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The diagram of the upper bound for the derivative dPε

dε
|ε=0 given in Corollary 6.5.4.3

(Fig.16).

Fig. 16 The growth of probability bound increases quadraticaly with n.
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