

NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATION

BSc THESIS

Framework for autonomous navigation through MS
HoloLenses

Vasilis K. Iliopoulos
Fanis K. Theodoulou

Supervisor: Stathes P. Hadjiefthymisades, Professor

ATHENS

MAY 2021

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Εφαρμογή για αυτόνομη πλοήγηση μέσω MS HoloLenses

Βασίλης Κ. Ηλιόπουλος
Φάνης Κ. Θεοδούλου

Επιβλέπων: Ευστάθιος Π. Χατζηευθυμιάδης, Καθηγητής

ΑΘΗΝΑ

ΜΑΙΟΣ 2021

BSc THESIS

Framework for autonomous navigation through MS HoloLenses

Vasilis K. Iliopoulos

S.N.: 1115201500044

Fanis K. Theodoulou

S.N.: 1115201500045

SUPERVISOR: Stathes P. Hadjiefthymisades, Professor

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Εφαρμογή για αυτόνομη πλοήγηση μέσω MS HoloLenses

Βασίλης Κ. Ηλιόπουλος

Α.Μ.: 1115201500044

Φάνης Κ. Θεοδούλου

Α.Μ.: 1115201500045

ΕΠΙΒΛΕΠΩΝ: Ευστάθιος Π. Χατζηευθυμιάδης, Καθηγητής

ABSTRACT

In recent years, the immense development of the virtual reality technologies seems to
overwhelm the technological community. The possibilities which the virtual reality family
brings to the table, pose a life changing experience for both daily and industrial life. More
particular, Augmented Reality (AR) in considered by a large portion of the scientific
community, the reign technology of User Interfaces (UI). The key feature of AR is that adds
digital content to the real environment without isolating the user from it, providing a very
realistic interaction, close to the user’s perception. Considering these features, AR
technology can be used for instance in cases of enhanced learning, machine control,
human/vehicle navigation. For example, an AR UI deployed in AR glasses can help the actor
control a machine easily and without risk from distance.

In addition, this functionality can be enriched by using an unmanned vehicle, a robot, as the
machine that will be controlled. Robotics is a field of technology, whose intervention in
people’s lives seems unstoppable in more and more aspects. Nowadays, unmanned
vehicles are used in the majority of industrial operations and daily habits. Let us consider a
situation where harmful waste should be extracted from a specific area. The use of an
unmanned vehicle is mandatory for the collection and the removal of the waste. On top of
this, an Augmented Reality UI for the remote control of the UV, offers the ability to the actor
to make the most out of his skills without risking his life. The AR UI offers a very natural an
intimate control to the user.

In this Thesis, we examine the scenario where the user controls/navigates an unmanned
ground vehicle with the aid of an AR headset. The AR headset projects a specially designed
UI for the robot’s movement control. The vehicle’s navigation depends solely on the user’s
perception and experience. That’s where the AR technology comes in handy as is does not
affects the vision and the environment perception of the user and his surroundings. More
specifically, a series of experiments are carried out, where the user wears the AR headset
and navigates the robot by giving a series of movement commands. Of course, the robot
should always remain on his field of view.

Experiments were executed both in simulated and real world. For the simulation Gazebo
simulator was used with a virtual Turtlebot 2 running ROS operating system and the Unity
simulator for the AR headset. The real - world experiments were executed with a Turtlebot2
running ROS and the Microsoft HoloLens AR headset where our AR application was
deployed.

SUBJECT AREA: Augmented Reality, Autonomous Navigation

KEYWORDS: navigation, ROS, movement control, turtlebot, HoloLens

ΠΕΡΙΛΗΨΗ

Τα τελευταία χρόνια, η τεράστια ανάπτυξη των τεχνολογιών εικονικής πραγματικότητας
φαίνεται να κατακλύζει την τεχνολογική κοινότητα. Οι δυνατότητες που η οικογένεια της
εικονικής πραγματικότητας φέρνει στο τραπέζι, αποτελούν μια εμπειρία που αλλάζει τόσο
την καθημερινή όσο και τη βιομηχανική ζωή. Πιο συγκεκριμένα, η Επαυξημένη
Πραγματικότητα (AR) θεωρείται από ένα μεγάλο μέρος της επιστημονικής κοινότητας, η
κυρίαρχη τεχνολογία των Διεπαφών Χρήστη (UI). Το βασικό χαρακτηριστικό του AR είναι ότι
προσθέτει ψηφιακό περιεχόμενο στο πραγματικό περιβάλλον χωρίς να απομονώνει το
χρήστη από αυτό, παρέχοντας μια πολύ ρεαλιστική αλληλεπίδραση κοντά στην αντίληψη
του χρήστη. Λαμβάνοντας υπόψη αυτά τα χαρακτηριστικά, η τεχνολογία AR μπορεί να
χρησιμοποιηθεί για παράδειγμα σε περιπτώσεις βελτιωμένης μάθησης, ελέγχου μηχανής,
πλοήγησης ανθρώπου / οχήματος. Για παράδειγμα, ένα AR UI ανεπτυγμένο σε γυαλιά AR
μπορεί να βοηθήσει τον χειριστή να ελέγξει ένα μηχάνημα εύκολα και χωρίς κίνδυνο από
απόσταση.

Επιπλέον, αυτή η λειτουργικότητα μπορεί να εμπλουτιστεί χρησιμοποιώντας ένα μη
επανδρωμένο όχημα, ένα ρομπότ, ως το μηχάνημα που θα ελέγχεται. Η ρομποτική είναι
ένας τομέας της τεχνολογίας, του οποίου η παρέμβαση στη ζωή των ανθρώπων φαίνεται
ασταμάτητη σε όλο και περισσότερες πτυχές. Σήμερα, τα μη επανδρωμένα οχήματα
χρησιμοποιούνται στην πλειονότητα των βιομηχανικών δραστηριοτήτων και των
καθημερινών συνηθειών. Ας εξετάσουμε μια κατάσταση κατά την οποία επιβλαβή απόβλητα
πρέπει να εξαχθούν από μια συγκεκριμένη περιοχή. Η χρήση μη επανδρωμένου οχήματος
είναι υποχρεωτική για τη συλλογή και την απομάκρυνση των αποβλήτων. Επιπλέον, ένα UI
επαυξημένης πραγματικότητας για το τηλεχειριστήριο του UV, προσφέρει τη δυνατότητα
στον χειριστή να αξιοποιήσει στο έπακρο τις δεξιότητές του χωρίς να διακινδυνεύσει τη ζωή
του. Το AR UI προσφέρει έναν πολύ φυσικό και οικείο έλεγχο στον χρήστη.

Σε αυτήν την πτυχιακή εργασία, εξετάζουμε το σενάριο όπου ο χρήστης ελέγχει / πλοηγεί
ένα μη επανδρωμένο όχημα εδάφους με τη βοήθεια AR γυαλιών. Τα γυαλιά AR προβάλλουν
μία ειδικά σχεδιασμένη διεπαφή χρήστη για τον έλεγχο κίνησης του ρομπότ. Η πλοήγηση
του οχήματος εξαρτάται αποκλειστικά από την αντίληψη και την εμπειρία του χρήστη. Εκεί η
τεχνολογία AR γίνεται πρακτική καθώς δεν επηρεάζει την όραση και την αντίληψη του
περιβάλλοντος για τον χρήστη και το περιβάλλον του. Πιο συγκεκριμένα, πραγματοποιείται
μια σειρά πειραμάτων, όπου ο χρήστης φορά τα AR γυαλιά και πλοηγεί το ρομπότ δίνοντας
μια σειρά εντολών κίνησης. Φυσικά, το ρομπότ πρέπει να παραμένει πάντα στο οπτικό του
πεδίο.

Τα πειράματα εκτελέστηκαν τόσο σε προσομοιωμένο όσο και σε πραγματικό κόσμο. Για την
προσομοίωση, χρησιμοποιήθηκε ο προσομοιωτής Gazebo με ένα εικονικό Turtlebot 2 με
λειτουργικό σύστημα ROS και ο προσομοιωτής Unity για τα AR γυαλιά. Τα πειράματα του
πραγματικού κόσμου εκτελέστηκαν με ένα Turtlebot2 που εκτελεί ROS και τα γυαλιά
Microsoft HoloLens AR όπου αναπτύχθηκε η εφαρμογή AR.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Επαυξημένη Πραγματικότητα, Αυτόνομη Πλοήγηση

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: πλοήγηση, ROS, έλεγχος κίνησης, turtlebot, HoloLens

Αυτή η πτυχιακή εργασία αφιερώνεται από τον ένα φίλο στον άλλο, για την αδιάκοπη

επιμονή και αντοχή που επιδείξαμε από την πρώτη μέχρι και την τελευταία μέρα αυτού του

ταξιδιού.

ACKNOWLEDGEMENTS

We would like to express our deepest appreciation to our supervisor professor, Stathes P.
Hadjiefthymisades, who gave us the chance to work on the field of robotics and AR and
trusted us with this thesis. We would also like to extend our deepest gratitude to Dr. Kyriaki
Panagidi for her constant support throughout the duration of this project. Thanks should also
go to Nektarios Deligiannakis and Athanasios Chalvatzaras for their invaluable contribution
to this thesis.

CONTENTS

1. INTRODUCTION .. 15

2. ROS AND UNMANNED DEVICES ... 16

2.1. Definition of Unmanned Vehicles ... 16

2.1.1. Unmanned Ground Vehicles ... 16

2.1.2. Unmanned Aerial Vehicles .. 19

2.1.3. Unmanned Surface Vehicles ... 21

2.1.4. Unmanned Underwater Vehicles ... 21

2.2. Robotic Operation System – ROS .. 22

2.2.1. Definition of ROS ... 22

2.2.2. ROS packages... 24

2.2.3. ROS Stack ... 24

2.2.4. ROS Catkin .. 24

2.2.5. ROS Nodes .. 24

2.2.6. ROS Topics ... 24

2.2.7. ROS Messages.. 25

2.2.8. Master Node .. 26

2.2.9. ROS Services .. 26

2.3. Sensors ... 26

2.4. Turtlebot .. 26

2.5. Gazebo Simulator ... 27

3. AR TECHNOLOGIES AND TOOLS ... 29

3.1. Reality Technologies.. 29

3.1.1. Virtual Reality .. 29

3.1.2. Augmented Reality .. 29

3.1.3. Mixed Reality ... 30

3.2. HoloLens Devices ... 31

3.2.1. HoloLens 1st Gen .. 31

3.2.2. HoloLens 2nd Gen... 33

3.3. Tools for this application ... 34

3.3.1. Unity Engine .. 34

3.3.2. Mixed Reality Toolkit (MRTK) .. 35

3.3.3. Visual Studio .. 36

3.3.4. HoloLens Emulator for Windows ... 37

3.4. HoloLens MR Concepts ... 37

3.4.1. Holograms ... 37

3.4.2. Gaze .. 38

3.4.3. Gesture .. 38

3.4.3.1. The hand-tracking frame .. 39

3.4.3.2. Bloom ... 40

3.4.3.3. Air tap ... 41

3.4.3.4. Hand ray ... 42

3.4.3.5. Start Gesture .. 42

4. RELATED WORK ... 44

4.1. Robot teleoperation and control ... 44

4.2. Augmented Reality in navigation .. 44

4.3. HoloLens and User Experience .. 45

5. UNMANNED NAVIGATION USING AUGMENTED REALITY 47

5.1. Problem Definition .. 47

5.2. Challenges .. 47

5.2.1. Setting Up the turtlebot .. 47

5.2.2. AR application approach ... 48

5.2.2.1. Application Variables Input ... 48

5.2.2.2. Movement Controller .. 48

5.2.3. Technical Challenges .. 48

5.2.4. Middleware communication between AR and unmanned vehicle ... 49

5.3. Our application ... 50

5.3.1. Turtlebot’s manipulation script ... 50

5.3.1.1. Movement ... 50

5.3.1.2. Snap Photo ... 53

5.3.2. AR Application ... 54

5.3.2.1. User Interface ... 54

5.3.2.2. Unity Application ... 58

5.3.2.3. Script .. 61

5.3.3. Message Format .. 64

6. EXPERIMENTS .. 65

6.1. Testing Robot’s Moving Script ... 65

6.2. Testing HoloLens Application ... 65

6.3. Putting it all together.. 66

6.4. Measuring Latency and Position .. 68

6.5. Final Results ... 68

6.5.1. Experiment in Gazebo ... 69

6.5.2. Real Word Experiment .. 70

7. CONCLUSIONS ... 73

ABBRIVIATIONS – ACRONYMS ... 74

ANNEX I .. 75

REFERENCES .. 76

LIST OF FIGURES

Figure 1 - Mars Rover ... 17

Figure 2 - Self-driving car ... 18

Figure 3 - Military robot defusing a bomb ... 19

Figure 4 - Drone for consumers .. 20

Figure 5 - Military drone .. 20

Figure 6 - Unmanned Boat ... 21

Figure 7 - Prototype of an unmanned submarine ... 22

Figure 8 - ROS flow chart ... 23

Figure 9 - ROS topics graph ... 25

Figure 10 - ROS Messages Table .. 25

Figure 11 - ROS Master node flow chart .. 26

Figure 12 - Turtlebot2 ... 27

Figure 13 - Gazebo UI .. 28

Figure 14- Google Glasses ... 30

Figure 15 - HoloLens 1st gen ... 31

Figure 16- HoloLens components ... 32

Figure 17 - HoloLens 2 ... 34

Figure 18 - MRTK Unity in play mode ... 36

Figure 19 - Working with Holograms .. 38

Figure 20 - Hand tracking frame ... 39

Figure 21 - Bloom Gesture ... 40

Figure 22 - Air tap gesture .. 41

Figure 23 - Hand ray ... 42

Figure 24 - Start gesture ... 42

Figure 25 - Alternative start gesture ... 43

Figure 26 - Backend communication .. 50

Figure 27 - Axis of turtlebot's movement .. 51

Figure 28 - Movement script ... 51

Figure 29 - Rotation script .. 52

Figure 30 - Photo script .. 53

Figure 31 - Screenshot of the AR Application on HoloLens 2 ... 54

Figure 32 - Variables Panel .. 55

Figure 33 - Screenshot of the variables panel in HoloLens 2 ... 55

Figure 34 - Controller UI ... 56

Figure 35 - Cross following head movement .. 57

Figure 36 - Cross following head movement in HoloLens 2 ... 57

Figure 37 - Unity scene hierarchy ... 58

Figure 38 - Components of ControllerPanel ... 59

Figure 39 - Objects of VariablesPanel .. 60

Figure 40 - SceneManager components .. 61

Figure 41 - VariablesPanel buttons functions ... 62

Figure 42 - Sending variables script ... 63

Figure 43 - Forward command script .. 63

Figure 44 - Messages format .. 64

Figure 45 - Android application UI .. 66

Figure 46 - Holographic Emulation settings in Unity ... 67

Figure 47 - Odometry consumer script ... 68

Figure 48 - Latency graph in Gazebo ... 69

Figure 49 - Position trajectory graph in Gazebo ... 70

Figure 50 - Latency Graph .. 71

Figure 51 - Latency probability density function .. 71

Figure 52 - 3 axis graph of turtlebot's trajectory .. 72

LIST OF TABLES

Table 1 - Participants overall experience .. 45

Table 2 - The pros and cond of Hololens .. 46

Framework for autonomous navigation through MS HoloLenses

15
V. Iliopoulos - F. Theodoulou

1. INTRODUCTION
It will not be an overstatement if someone suggests that we live in a virtual era. Virtual Reality
refers to the computer – generated objects and scenes that appear to be real, making the
user feel they are immersed is his surroundings. Nowadays, you can produce everything you
desire from a simple button to a 3D model of a skyscraper and deploy it to virtual machine
and make it part of your environment. This virtualization leads to the next level of User
Interface (UI) and User Experience (UX) in reference to the digital world. In this Thesis we
focus on Augmented Reality (AR) as part of the virtual reality technologies. The key
characteristic of AR is the mixed experience of real – time interaction with computer –
generated objects enhancing a real – world environment.
The advantages of AR were tested in this Thesis by creating an AR control panel for machine
navigation. And what a better option than navigating an unmanned vehicle. Unmanned
vehicles core characteristic is that their navigation is either remote controlled or autonomous.
This translates to a no need for human presence on board. Additionally, endurance and
multimedia streaming are great UV assets. The technological breakthroughs that occurred
in the last years and the work that has been put together for the evolution of UVs, significantly
expand the possible uses of UVs. Some of the most common use cases are autonomous
travel and navigation systems and support crisis management activities. For instance, an
unmanned ground vehicle (UGV) with an attached grip can help the safe removal of
wreckages in order to find survivors.

In several missions, these activities need to be operated by a skilled person, as the smallest
mistake could prove fatal. On the other hand, the actor should be many meters away from
the wreckage site without risking his own life. Here is where the cooperation of an AR UI and
a UV delivers the best. A very detailed UI, with 360 degrees’ grip rotation controller,
movement control of the UV and live video streaming feedback from the UV’s cameras,
results to an easy accomplishment of this high-risk operation, making the best use of the
actors’ skills, without putting his life at risk.

The goal of this Thesis is the remote control of UGV with AR UI control and what assets
brings to the table. In this research, a user-friendly AR UI was created for the movement
control of a small, unmanned ground vehicle (UGV). The UGV that was used is a turtlebot,
operating ROS. The AR application was deployed in Microsoft HoloLens AR headset. Such
a device gives the best user experience regarding the real-environment and AR interaction.
A movement algorithm was also created, for the turtlebot, to translate the AR commands into
robot’s actual movement. In section 2 a Robotic Operating System (ROS) used for the
controlled UGV is presented. In section 3 we dive into the concepts, the technologies and
the philosophy behind the AR. We continue in section 4 where related research, considering
innovative ways of robotic navigation and AR navigation applications, is exhibited. In section
5 our idea and work behind the AR UI and the robotic movement is explained. Lastly, in
section 6 the experiments that took place and their data are presented and explained.

Framework for autonomous navigation through MS HoloLenses

16
V. Iliopoulos - F. Theodoulou

2. ROS AND UNMANNED DEVICES

2.1. Definition of Unmanned Vehicles

An unmanned vehicle is defined as a vehicle that operates without an onboard human
presence (which need no person on board in order to be operated). The operation and
control of the unmanned vehicles can be handled remotely by a distant source. For example,
an operator in a distant room, with the use of a computer could send commands in the form
of messages through a streaming platform like Kafka. An unmanned vehicle can also operate
autonomously with the help of installed sensors, by running algorithms in order to make the
most out of the incoming sensors data. In this Thesis we worked with the first type of
unmanned vehicles.

The remote-controlled vehicles can be teleoperated either by a person that has the vehicle
inside his field of view and in logical range for the human to keep track of the vehicle or by a
user who is located far away from the vehicle, even in an isolated computer room, having no
physical eye contact with it. Of course, for the second scenario to be successful, a live video
stream of the vehicle’s environment and surroundings is obligatory. In the last years, a huge
portion of the scientific community is working to find efficient and innovative ways to
teleoperate unmanned vehicles as the vehicles have many uses such as exploration of
space and deep ocean, military and law enforcement, hobby and many others. In this Thesis
we developed a framework and ran experiments where the user had visual contact with the
vehicle via AR toolkit to operate it correctly. The navigation and the obstacle avoidance are
based only on the user’s commands and perception.

The types of unmanned vehicles differ depending to the environment in which they are meant
to be navigated. Those are the Unmanned Ground Vehicles (UGVs), unmanned aerial
vehicles (UAVs or drones), unmanned sea surface vehicles (USSVs/USVs) and the
unmanned underwater vehicles (UUVs), also known as underwater drones.

2.1.1. Unmanned Ground Vehicles

Unmanned Ground Vehicles (UGVs) [1] are robotic vehicles that operate on the ground
without an onboard human operator. A UGV may be remotely controlled by a human actor
or operate autonomously with the help of installed sensors and implemented algorithms. The
use of the UGVs is considered necessary in environments that are hazardous to humans
and for tasks that pose great risk. UGVs use covers a vast area of professions both of civilian
and military interests. For instance, the exploration of Mars would have impossible if it were
not for the three-special designed UGVs. The Figure shows one of the three UGVs that
where send to Mars and the one that had the biggest lifespan.

Framework for autonomous navigation through MS HoloLenses

17
V. Iliopoulos - F. Theodoulou

Figure 1 - Mars Rover

Nowadays the majority of automobile manufacturers in cooperation with scientists all over
the world focus their efforts on creating and perfecting self-driving cars that will be the future
of human transportation, always acting in pursuit of the passenger’s safety. The original idea
in 1921 was the construction of a remotely controlled car and since then the idea continues
to evolve.

Framework for autonomous navigation through MS HoloLenses

18
V. Iliopoulos - F. Theodoulou

Figure 2 - Self-driving car

As mentioned above there is a huge variety of UGVs that are used for military purposes. In
Figure 3 a military vehicle is shown.

Framework for autonomous navigation through MS HoloLenses

19
V. Iliopoulos - F. Theodoulou

Figure 3 - Military robot defusing a bomb

2.1.2. Unmanned Aerial Vehicles

Unmanned Aerial Vehicles (UAVs) [1], commonly known as drones, are aircrafts of each size
that do not have a human pilot boarded. The UAV’s flight can be controlled by a human actor
or it can be fully autonomous. The use of drones, like the majority of unmanned vehicles,
was initially targeted for military purposes, however they have become the one of the most
commonly used unmanned vehicle. Nowadays the use of drones covers a vast area of
professions that simplifies as well as entertainment reasons. In the Figures 4 and 5 examples
of UAVs are shown.

Framework for autonomous navigation through MS HoloLenses

20
V. Iliopoulos - F. Theodoulou

Figure 4 - Drone for consumers

Figure 5 - Military drone

Framework for autonomous navigation through MS HoloLenses

21
V. Iliopoulos - F. Theodoulou

2.1.3. Unmanned Surface Vehicles

Unmanned Surface Vehicles (USVs) [2], also known as surface drones, are boats that
operate without a human on board. In most cases USVs are controlled remotely by a human
operator, who is in land. The use of USVs focuses on military missions, oceanography, and
seaweed farming. Furthermore, USVs are the future of cargo shipment. In Figure 6 an
example of USV is shown

Figure 6 - Unmanned Boat

2.1.4. Unmanned Underwater Vehicles

Unmanned Underwater Vehicles (UUVs), also known as underwater drones, are
submarine like vehicles that operate underwater without any human on board. The control
of UUVs could either be remote by a human actor or autonomous. UUVs are used mainly
for military missions and deep-exploration and research. In Figure 7 an example of UUV is
shown

Framework for autonomous navigation through MS HoloLenses

22
V. Iliopoulos - F. Theodoulou

Figure 7 - Prototype of an unmanned submarine

2.2. Robotic Operation System – ROS

From space robot missions to autonomous self-driving cars, industrial assembly, and
surgery, it is obvious that robotics and automation play an essential role to our modern way
of life. The progress both in hardware and software development is significant, resulting on
making available a wide variety of robots to every human for many professions and uses.
Regardless the significant progress that has been noted, software development has still
many challenges to cope with. The lack of uniformity, the reuse of code and distribution of
computations are some of the most crucial challenges that we came across. A proposed
solution to these challenges is a software platform called Robot Operating System (ROS).

2.2.1. Definition of ROS

Robot Operating System (ROS) is a software framework for operating robots [3] [4]. It is an
open-source, meta-operating system, that assumes there is an underlying operating system
that runs alongside. It means that it is not an operating system in the traditional sense, as it
provides many of the expected services of an operating system, including hardware
abstraction, message-passing between processes and package management, but not the
core functionalities that an operating system is supposed to provide. It also provides tools
and libraries that helps you build, write, and run your project’s code across multiple
computers.

It is essential to highlight that ROS due to its open-source nature, needs its underlying
operating system to be also easily modified and open-source. That leads Linux to be the
best OS candidate.

The main advantages of ROS [3] are:

1. Peer-to-peer communication: ROS provides a simple and reliable mechanism for
communication between processes in a peer-to-peer architecture, that enables each

Framework for autonomous navigation through MS HoloLenses

23
V. Iliopoulos - F. Theodoulou

component to communicate with any other. That results on the avoidance of traffic in a link
which leads to prevention of errors.

2. Open Source: The open-source feature provides reuse of already written code by other
users. In addition, the most important algorithms of the robot’s operation are provided in
ROS’s standard package as well to several other ROS packages. This great tool helps
developers to focus on their real problem without worrying of reinventing the wheel every
time.

3. Testing: Testing the created code and algorithms is always a tricky and inevitable stage
of the developer’s process. Running experiments and tests on physical robotic systems
might be difficult or time and fund consuming. ROS provides specially designed simulators
and a simple way of recording data, which aim to overcome the aforementioned problems
and enhance the testing experience

ROS is maybe the most supported robotic software environment by the scientific community.
ROS is certified for both industrial and university research. These and many other reasons
lead us to choose ROS over the other platforms. The fundamental concepts that ROS uses
are the packages, nodes, topics, messages, and services.

Figure 8 - ROS flow chart

Framework for autonomous navigation through MS HoloLenses

24
V. Iliopoulos - F. Theodoulou

2.2.2. ROS packages

ROS code and software is catalogued into packages. A ROS package is a directory that
contains numerous executables and supporting files. Such files are ROS nodes, a ROS-
independent library, a dataset, configuration files, a third-party piece of software. A package
is the smallest unit of build and release. The software packaging aims to the easier consume
and maintenance of the code as well as its reuse. A ROS package should contain only the
necessary, following ROS thin architecture. It also simplifies other software to use it.

2.2.3. ROS Stack

Similar ROS packages are collected thematically into ROS stacks. Stacks are the basic
releasing and sharing unit of ROS code. Stacks are meant to bundle together code that
delivers a certain functionality. Unlike traditional software libraries, ROS stacks are able to
add functionality through topics and services, while the robot’s program is running. Stacks
have version and can declare dependencies on other stacks. Every stack is a directory that
among others has a Stack manifest (stack.xml), which is a file that contains information about
the stack and the dependencies to other stacks.

2.2.4. ROS Catkin

Catkin is the ROS build system. It is a set of tools that is responsible for creating executable
programs, libraries, scripts, and interfaces that are easily distributed and usable.

2.2.5. ROS Nodes

ROS’s overall architecture follows the thin philosophy, of categorizing the code into small
independent pieces. In order to achieve it, ROS has a tool named nodes. Everything in ROS
is made with nodes. Essentially, node is a process in which computations are performed.
Each node is responsible for a specific task of the robot’s manipulation, for instance one
node is responsible for the robot’s navigation and another for the robot’s camera. Nodes
have an inter-communication system which relies mostly on topics.

Nodes are proven to be greatly beneficial for the overall robotic system. If one node crashes,
the other nodes will continue to work correctly, as nodes do not have direct links with each
other. In addition, it is accepted fact that running and testing only smaller parts of a huge
application speeds up the debugging process and development time. Finally, the code
complexity is significantly reduced.

2.2.6. ROS Topics

ROS topics are named buses which nodes use for their communication. Basically, the
transfer of data in form of ROS messages takes place through topics. Each topic has
publisher and subscriber nodes. If a node that generates data wants to share them, it
publishes the data to a topic and whomever node needs them, subscribes to it, and
consumes the messages. Every topic has a specific type which is equivalent to the message
type that the topic transmits.

Framework for autonomous navigation through MS HoloLenses

25
V. Iliopoulos - F. Theodoulou

Figure 9 - ROS topics graph

2.2.7. ROS Messages

The communication between nodes is achieved by exchanging messages through topics. A
message is created by a publisher node and consumed by one or plenty subscriber nodes.
Each message has its type strictly specified. There are standard message types supported
in ROS, but others could be created. A msg file is created for the definition of each message
type, standard or custom.

Figure 10 - ROS Messages Table

Framework for autonomous navigation through MS HoloLenses

26
V. Iliopoulos - F. Theodoulou

2.2.8. Master Node

For the correct functioning of the ROS, some challenging and complex operations should
take place, such as the message exchange and communication between nodes and the
synchronous running of all nodes. ROS master make it possible. With command “roscore”
the Master node will start. Master node must be functioning the entire time ROS is used and
before any code execution [4].

Figure 11 - ROS Master node flow chart

2.2.9. ROS Services

Communication in ROS is topic-based. This “broadcast” philosophy is not suitable for
synchronous transactions between nodes. In ROS, this situation is solved with the services.
Service is pair of defined messages: one for the request and one for the response. A service
is provided via a string name. Services are defined in a srv file.

2.3. Sensors

Unmanned vehicles and robot systems, in order to operate correctly in every environment
and perform requested tasks, need sensors. For instance, in a robot’s navigation system a
lidar or camera would be considered essential. In this Thesis, a Kinect camera was used, for
the exploration of the world and picture capturing of the surroundings.

2.4. Turtlebot

Turtlebot [5] is a small, low-cost, programmable, ROS standard mobile robot. Turtlebot finds
applications in numerous fields such as education, research, new software development and
hobby. It belongs to the category of unmanned ground vehicles (UGVs). Turtlebot is
embodied with a mobile base for its movement and several sensors like camera and Kinect
for proper navigation and data collection. To be functional, it needs an external unit that runs
ROS and connects with the sensors, such as a Rasberry Pi. In this Thesis the Turtlebot 2
was used, as the Kinect camera is pre-installed, which we used for capturing photos. A
turtlebot 2 is shown in Figure.

Framework for autonomous navigation through MS HoloLenses

27
V. Iliopoulos - F. Theodoulou

Figure 12 - Turtlebot2

2.5. Gazebo Simulator

A well-designed simulator is an essential tool for every person who is involved into robotics.
A well-designed simulator significantly reduces the test and debug time, as developers test
their algorithms easily. Developers have the ability to test and create numerous robotic
systems and environments. It also provides user-friendly graphical and straightforward
programmatic interfaces. In this Thesis, Gazebo simulator was used to test the code on
turtlebot 2. Gazebo is considered as the leader in robotic community.

In order to achieve the connection between ROS and Gazebo simulator, some ROS
packages have to be optained. This particular set of packages is called gazebo_ros_pkgs
and it is essential for the robot and environment creation and simulation. At the installation
of ROS, gazebo_ros_pkgs comes with default files. The command that starts Gazebo

Framework for autonomous navigation through MS HoloLenses

28
V. Iliopoulos - F. Theodoulou

simulator is roslaunchturtlebot_gazeboturtlebot_world.launch. In Figure 13 a simulated
environment with turtlebot 2 is shown.

Figure 13 - Gazebo UI

Framework for autonomous navigation through MS HoloLenses

29
V. Iliopoulos - F. Theodoulou

3. AR TECHNOLOGIES AND TOOLS

3.1. Reality Technologies

In this chapter we will go over the three reality technologies: Virtual Reality, Augmented
Reality and Mixed Reality.

3.1.1. Virtual Reality

Virtual Reality [6] as technology immerses users in a completely virtual environment that is
generated by a computer. There is no connection with the real world around the user. There
are different levels on how much immersive a virtual reality experience can be. A basic virtual
reality experience comes as a simple VR video. The most advanced VR experiences even
provide freedom of movement, where users can move in a digital environment and hear
sounds. Moreover, special hand controllers can be used to enhance VR experiences.

The origins of the term virtual reality is hard to trace, because it was used with many
meanings in the past. The first VR technologies were developed between 1970 to1990. The
virtual reality industry mainly provided VR devices for medical, flight simulation, automobile
industry design, and military training purposes. In the 90’s the VR technology moved into the
gaming world, with Sega announcing the first gaming VR hardware. Even though a lot of
companies had interest in this technology, the hardware wasn’t affordable, so it wasn’t really
popular. The years that followed, from2000 to 2020, were the years that VR became
accepted by the general public, for educational and gaming reasons. The hardware became
affordable and consumers showed interest. In 2010, Palmer Luckey designed the first
prototype of the Oculus Rift and the products under this brand name were the first massively
consumed VR products, for gaming reasons.

Today, VR headsets are also a consumer product for entertainment and education, but also
a tool used in science research. Most VR headsets are connected to a computer (Oculus
Rift) or a gaming console (PlayStation VR) but there are standalone devices (Google
Cardboard is among the most popular) as well. Most standalone VR headsets work in
combination with smartphone.

3.1.2. Augmented Reality

In augmented reality [7], users see and interact with the real world while digital content is
added to it. The primary value of augmented reality is the way in which components of the
digital world blend into a person's perception of the real world, not as a simple display of
data, but through the integration of immersive sensations, which are perceived as natural
parts of an environment. The earliest functional AR systems that provided immersive mixed
reality experiences for users were invented in the early 1990s, starting with the Virtual
Fixtures system developed at the U.S. Air Force's Armstrong Laboratory in 1992.
Commercial augmented reality experiences were first introduced in entertainment and
gaming businesses. Subsequently, augmented reality applications have spanned
commercial industries such as education, communications, medicine, and entertainment. In
education, content may be accessed by scanning or viewing an image with a mobile device
or by using markerless AR techniques. Augmented reality (AR) differs from virtual reality
(VR) in the sense that in AR part of the surrounding environment is actually 'real' and just
adding layers of virtual objects to the real environment. On the other hand, in VR the
surrounding environment is completely virtual. If you own a modern smartphone, you can
easily download an AR app and try this technology. There is a different way to experience

Framework for autonomous navigation through MS HoloLenses

30
V. Iliopoulos - F. Theodoulou

augmented reality, though, with special AR headsets, such as Google Glass, where digital
content is displayed on a tiny screen in front of a user’s eye.

Figure 14- Google Glasses

3.1.3. Mixed Reality

Mixed reality (MR) [7] is the merging of real and virtual worlds to produce new environments
and visualizations, where physical and digital objects co-exist and interact in real time. Mixed
reality does not exclusively take place in either the physical or virtual world, but is a hybrid
of reality and virtual reality. It may sound similar to AR, but the main difference between MR
and AR is that in an MR application you can interact with the virtual objects. Just like in AR,
the virtual objects can interact with the physical ones, for example a hologram sitting on a
surface like a table [14]. Microsoft was one of the first companies that embraced this
technology. They developed HoloLens 1 in 2016 and HoloLens 2 in 2019.

Framework for autonomous navigation through MS HoloLenses

31
V. Iliopoulos - F. Theodoulou

3.2. HoloLens Devices

Microsoft HoloLens are a pair of mixed reality smart glasses developed and manufactured
by Microsoft. As of today, there are two versions, HoloLens 1st Gen and HoloLens 2 (or
HoloLens 2nd Gen).

3.2.1. HoloLens 1st Gen

Microsoft HoloLens (1st gen) [8] is the world's first fully untethered holographic computer.
HoloLens blends cutting-edge optics and sensors to deliver 3D holograms pinned to the real
world around you. HoloLens was the first head-mounted display running the Windows Mixed
Reality platform under the Windows 10 computer operating system. The tracking technology
used in HoloLens can trace its lineage to Kinect.

Figure 15 - HoloLens 1st gen

The device capabilities that support the MR functionality are:

Using the following to understand user actions:

 Gaze tracking
 Gesture input
 Voice Support
Using the following to understand the environment:

 Spatial sound

Framework for autonomous navigation through MS HoloLenses

32
V. Iliopoulos - F. Theodoulou

Figure 16- HoloLens components

As of 2016, a number of augmented-reality applications have been announced or showcased for Microsoft
HoloLens. A collection of applications will be provided for free for developers purchasing the Microsoft HoloLens
Developer Edition. Applications available at launch include:

 Cortana, Microsoft's virtual assistant.

 Holograms, a catalog of a variety of 3D objects that users can place and scale around
them; ranging from tigers and cats to space shuttles and planets.

 HoloStudio, a full-scale 3D modeling application by Microsoft with 3D print compatibility.

 CAE VimedixAR is a commercial application of Microsoft HoloLens technology that enables
immersive simulation-based training in ultrasound and anatomical education through
augmented reality for increased patient safety and enhanced learning.

 An implementation of the Skype telecommunications application by Microsoft. Any user
with Skype on his or her regular devices like PC, Mobile etc. can dial user on HoloLens and
communicate with each other. With Video Call On, the user on PC will see the view HoloLens
user is seeing and HoloLens user will see view captured by PC / Mobile device user camera.

 HoloTour, an audiovisual three-dimensional virtual tourism application developer by
Microsoft and Asobo Studio.

Framework for autonomous navigation through MS HoloLenses

33
V. Iliopoulos - F. Theodoulou

 Fragments, a high-tech crime thriller adventure game developed by Microsoft and Asobo
Studio, in which the player engages in crime-solving.

 Young Conker, a platform game developed by Microsoft and Asobo Studio, featuring a
young version of Conker the Squirrel.

 RoboRaid (previously code-named "Project X-Ray"), an augmented-reality first-person
shooter game by Microsoft in which the player defends against a robot invasion, aiming the
weapon via gaze, and shooting via the Clicker button or an air tap.

 Actiongram, an application for staging and recording short video clips of simple mixed-
reality presentations using pre-made 3D virtual assets, will be released in summer 2016 in
the United States and Canada.

 In November, 2018, Microsoft announced that it is readying HoloLens for combat. The
company won a $480 million military contract with the U.S. government to bring AR headset
tech into the weapons repertoire of American soldiers

3.2.2. HoloLens 2nd Gen

The second generation came to fix some of the issuses of the first one. In general the
components of the device and the functionality remained the same, but with some big
improvements.Some of the main improvements with the HoloLens 2 MR headset include:
 Processing power: with its Snapdragon 850 Compute Platform, the HoloLens 2 is more
powerful than its predecessor.

 FOV: at 52°, the HoloLens 2’s field of view is larger, offering a more immersive MR
experience for the user. The original HoloLens only has an FOV of 30°.

 Battery life: The HoloLens 2 features a 3-hour battery life, while the HoloLens 1 has a 2.5-
hour battery life.

 Design and fit: according to Microsoft, the HoloLens 2 offers a lighter and more ergonomic
fit than the original HoloLens. The HMD also now features a flip-up visor which allows users
to enter/exit mixed reality more quickly [9].

Framework for autonomous navigation through MS HoloLenses

34
V. Iliopoulos - F. Theodoulou

Figure 17 - HoloLens 2

Even though initially this application was meant target the 2nd generation HoloLens, the
application was developed and tested for both 2nd and 1st generation of HoloLens devices.
More on that in sections 5 and 6.

3.3. Tools for this application

This section goes over the tools that were used in the development of this project.

3.3.1. Unity Engine

Unity [10] is one of the most popular game engines in the market, but its capabilities don’t
stop at developing games. It packs a ton of features together and is flexible enough to make
almost any game or application you can imagine. When it comes down to creating an MR
application, that can be deployed to the HoloLens hardware, Unity is the only choice. This is
because the MRTK library, created by Microsoft, was designed for Unity. Unity is a tool
constantly updating and this was useful many times in order to fix bugs and problems that
halted the development of the application many times. However, it was also possible that
these updates could cause serious issues and force the developers to make changes to the
project in order to make it buildable again. Therefore, the correct configuration is very
important in order to make the application work.

Framework for autonomous navigation through MS HoloLenses

35
V. Iliopoulos - F. Theodoulou

For this application MRTK 2.5 was used, which is the currently latest version, so the
appropriate Unity version had to be used as well. MRTKS’s official repository at GitHub
states that: “for MRTK 2.5 Unity 2018.4.13f1 or later is strongly recommended for customers
using Unity 2018. Earlier versions of Unity 2018.4 are still supported but now require extra
steps to set up and to upgrade to Unity 2019.”. That is the reason why Unity 2018.4.13f1 was
used, or in other words Unity 2018 LTS, for the development of this project. During the initial
stages of the project, we tested the robot communication through ROS topics integrated in
a message bus platform, i.e. Apache KAFKA, and handled by a mobile application, instead
of the HoloLens glasses. In order to develop the needed android application, Unity 2019 LTS
was used, because Unity 2018 LTS lacked some necessary libraries, which are needed to
make an app that can be deployed to an android mobile phone.

3.3.2. Mixed Reality Toolkit (MRTK)

MRTK for Unity [11] [12] is an open-source, cross-platform development kit for mixed reality
applications. The toolkit provides a cross-platform input system, foundational components,
and common building blocks for spatial interactions. MRTK version 2 intends to speed up
application development for Microsoft HoloLens, Windows Mixed Reality immersive (VR)
headsets, and OpenVR platform.

The predecessor of the MRTK is the HoloKit, which was created for HoloLens 1st Gen. With
the release of HoloLens 2 the MRTK plugin was created for Unity. Even though its release
was for HoloLens 2, its compatible with all of the HoloLens generations. For this thesis the
currently latest MRTK, which is MRTK version 2.5, was used.

The MRTK consists of 5 Unity asset packages, which are provided by the official Microsoft
repository at GitHub. These are:

1. Foundation:

The Mixed Reality Toolkit Foundation is the set of code that enables your application to
leverage common functionality across Mixed Reality Platforms.

2. Extensions

The optional Microsoft.MixedRealityToolkit.Unity.Extensions package includes additional
services that extend the functionality of the Microsoft Mixed Reality Toolkit. These additional
services are about hand physics and scenes transitioning and more.

3. Tools

The optional Microsoft.MixedRealityToolkit.Unity.Tools package includes helpful tools that
enhance the mixed reality development experience using the Microsoft Mixed Reality Toolkit.

4. Test utilities

The optional test utilities package (com.microsoft.mixedreality.toolkit.testutilities) contains a
collection of helper scripts that enable developers to easily create play mode tests. These
utilities are especially useful for developers creating MRTK components.

5. Examples

The examples package (com.microsoft.mixedreality.toolkit.examples), is structured to allow
developers to import only the examples of interest.

Framework for autonomous navigation through MS HoloLenses

36
V. Iliopoulos - F. Theodoulou

One of the greatest features of MRTK is that it provides an interface to test your HoloLens
application in the Unity Editor. When MRTK is imported to Unity Editor, the play mode of
Unity becomes a simulation of the HoloLens experience. The in-editor input simulation allows
you to test virtual object behavior given a specific type of input such as hands or eyes. This
simulation takes input from keyboard. This feature accelerated the development of this
project greatly because it gives the developer the ability to quickly test his project without
having to build and deploy it every time.

Figure 18 - MRTK Unity in play mode

This input simulation also provides some metrics about the performance as shown in the above picture. That
grey box that follows you around in the simulated scene is called visual profiler. This is a diagnostic tool which
gives real-time information about the current FPS and memory usage in application view. The Visual Profiler
can be configured via the Diagnostics System Settings under the MRTK Profiles Inspector. It is important to
always keep track of the frame rate and the memory usage like this because It is important to meet the target
framerate, as outlined by the platform being targeted (i.e., Windows Mixed Reality, Oculus, etc.). For example,
on HoloLens, the target framerate is 60 FPS. Low framerate applications can result in deteriorated user
experiences such as worsened hologram stabilization, world tracking, hand tracking, and more.

3.3.3. Visual Studio

Microsoft Visual Studio is an IDE from Microsoft, which is used to develop computer
programs, as well as websites, web apps, web services and mobile apps. It can produce
both native code and managed code. Visual Studio includes a code editor supporting
IntelliSense (the code completion component) as well as code refactoring. The integrated
debugger works both as a source-level debugger and a machine-level debugger. Other built-
in tools include a code profiler, designer for building GUI applications, web designer, class
designer, and database schema designer. It accepts plug-ins that expand the functionality
at almost every level, including adding support for source control systems (like Git) and
adding new toolsets like editors and visual designers for domain-specific languages or
toolsets for other aspects of the software development lifecycle. Visual Studio supports 36

Framework for autonomous navigation through MS HoloLenses

37
V. Iliopoulos - F. Theodoulou

different programming languages and allows the code editor and debugger to support (to
varying degrees) nearly any programming language, provided a language-specific service
exists.

By default, the Unity editor installation package comes with a version of Visual Studio.
Compilers and tools for developing applications in Unity are automatically downloaded and
set. The Unity Editor offers many platform configurations, and it is easy to switch between
platforms. Then, the editor automatically configures the visual studio project in order to start
the applications development. Unity 2018.4.13f1, which we used, comes with the commercial
version of Visual Studio of 2017, but we decided to use the latest version, Visual Studio 2019
commercial, in order to build and deploy the application.

The build procedure from Unity prepares the solution that is needed from Visual Studio. And
afterwards the Visual studio compiles the solution with the ILL2CPP compiler and builds the
solution to create all the necessary dll files. When this procedure is completed then the
application is ready to be deployed to the device.

3.3.4. HoloLens Emulator for Windows

The HoloLens Emulator lets you test holographic applications on your PC without a physical
HoloLens, including the HoloLens development toolset. The emulator uses a Hyper-V virtual
machine, which means human and environmental inputs being read by HoloLens sensors
are simulated from your keyboard, mouse, or Xbox controller. You don't even need to modify
your projects to run on the emulator, the app doesn't know it isn't running on a real HoloLens.

3.4. HoloLens MR Concepts

The basic concepts in order for someone to understand how our application works or any
MR application works, are presented here. The user input to the HoloLens has the form of
gestures, gaze, and voice commands. The user input can be used to manipulate the
holograms in an application. Gestures, and input in general, have some differences between
the first gen HoloLens and the second gen The main gestures for both generations are
presented in this section.

3.4.1. Holograms

HoloLens lets you create holograms, which are objects made of light and sound that appear
in the world around you like real objects. Holograms respond to your gaze, gestures, and
voice commands. They can even interact with real-world surfaces around you. With
holograms, you can create digital objects that are part of your world. The holograms that
HoloLens renders appear in the holographic frame directly in front of the user's eyes.
Holograms add light to your world, which means that you see both the light from the display
and the light from your surroundings. When you have a particular location for a hologram,
you can place it precisely at that point in the world. As you walk around, the hologram
appears stable based on the world around you. If you use a spatial anchor to pin the object,
the system can even remember where you left it when you come back later. Some holograms
follow the user instead, positioning themselves based on the user no matter where they walk.
You may even choose to bring a hologram with you for a while and then place it on the wall
once you get to another room.

Framework for autonomous navigation through MS HoloLenses

38
V. Iliopoulos - F. Theodoulou

Figure 19 - Working with Holograms

3.4.2. Gaze

Gaze [13] is a form of input that interacts with the world based on where the user is looking.
Gaze exists in two different ways, head gaze and eye gaze. Head gaze is based on the
direction that the head/camera is looking at. Head gaze is active on systems that don't
support eye gaze, or in cases where the hardware may support eye gaze, but the right set
of permissions and setup has not been performed. Head gaze is usually associated with
HoloLens 1 style interactions involving looking at object by placing it in the center of the
Holographic Frame and then performing the air tap gesture. On the other hand, eye gaze is
based on where the user's eyes are looking. Eye gaze is only present on systems that
support eye tracking. This type of gaze was introduced with the HoloLens 2. While using the
HoloLens, there is a circle-pointer indicator which reflects where the user gazes at. You use
gaze to target an item, and then act on that selection by using a gesture. Gazing is when the
user moves his head to the desired direction and not just his eyes. The cursor will follow the
direction the user gazes at.
3.4.3. Gesture

The user controls the HoloLens UI by his hand’s gestures. Hand-tracking frame and air tap
apply both to the 1st and 2nd generation of HoloLens device, while the bloom can only be
used in the 1st gen of HoloLens. The rest were implemented with the release of HoloLens 2
[13].

Framework for autonomous navigation through MS HoloLenses

39
V. Iliopoulos - F. Theodoulou

3.4.3.1. The hand-tracking frame

HoloLens has sensors that can see a few feet to either side of you. When you use your
hands, you'll need to keep them inside that frame, or HoloLens won't see them. As you move
around, the frame moves with you.

Figure 20 - Hand tracking frame

Framework for autonomous navigation through MS HoloLenses

40
V. Iliopoulos - F. Theodoulou

3.4.3.2. Bloom

You can bring all of your fingers together then open your hand, this is called bloom and it is
used to open the start menu.

Figure 21 - Bloom Gesture

Framework for autonomous navigation through MS HoloLenses

41
V. Iliopoulos - F. Theodoulou

3.4.3.3. Air tap

To select an app or other hologram, air tap it while looking directly at the hologram you're
selecting. To do this, gaze at the hologram you want to select, point your index finger straight
up toward the ceiling and air tap, by lowering your finger and then quickly raising it.

Figure 22 - Air tap gesture

Framework for autonomous navigation through MS HoloLenses

42
V. Iliopoulos - F. Theodoulou

3.4.3.4. Hand ray

To use a hand ray, hold your hand in front of you, with your palm facing away. A laser pointer
(hand ray) appears. After you target an item with your hand ray, you can act on that target
in different ways, like manipulating it.

Figure 23 - Hand ray

3.4.3.5. Start Gesture

This replaced the bloom gesture with the release of HoloLens 2. The Start gesture opens

the Start menu. To perform the Start gesture, hold out your hand with your palm facing you.

You’ll see a Start icon appear over your inner wrist. Tap this icon using your other hand.

The Start menu will open where you’re looking.

Figure 24 - Start gesture

Framework for autonomous navigation through MS HoloLenses

43
V. Iliopoulos - F. Theodoulou

You can also perform the Start gesture with only one hand. To do this, hold out your hand
with your palm facing you and look at the Start icon on your inner wrist. While keeping your
eye on the icon, pinch your thumb and index finger together. This is called One-handed Start
gesture.

Figure 25 - Alternative start gesture

Framework for autonomous navigation through MS HoloLenses

44
V. Iliopoulos - F. Theodoulou

4. RELATED WORK

4.1. Robot teleoperation and control

When dealing with remotely controlled unmanned vehicles, one of the most important issues
is the teleoperation. While the evolution of robotics continues, many new technologies and
innovations flourish. With the aid of those technologies and ideas, the human-robot
experience reaches new levels. Discovering ways to make the robot’s teleoperation
effortless for the human operators, towards their perception and operative actions, is the
main concern of the scientific community working on this field of robotics. A proposed
approach [14] is teleoperation of a robot using motion detection and tracking sensors. Such
sensor is the Kinect. Thus, human actors rely just on their movement and body motion in
order to manipulate the robot.

Another suggested solution [15] [16], very familiar to the human nature and actions, is the
speech and gesture recognition for the teleoperation of a robot. In order, to achieve the
speech recognition it is essential to create a formalized speech model, which translates the
human speech in robot’s commands. On the other hand, the gesture recognition will be
successful with the use of machine learning, in order to translate the various gestures in
robot commands. Of course, a movement and speech sensor, like Kinect, is required.

Instead of teleoperating the unmanned vehicle via single commands i.e., move forward, turn
left, turn right etc., the human operator has the ability to provide the robot a specific route to
follow. The aforementioned concept can be accomplished using sketch interfaces [17]. A
simple representation of the robot’s environment can be represented to the sketch UI, giving
the opportunity to the operator to design collision-effective routes.

The introduction of Augmented Reality, provides numerous innovative concepts concerning
the human-robot-interaction and the teleoperation process. Advances in AR technology,
offer a more intuitive and natural interaction between human actors and robots. In addition,
the new possibilities that the virtual technology offers increase the efficacy of the robot
operation. On the other hand, errors and misconception are dribbled as AR offers real-time
response. The most common approaches regarding the control and the teleoperation system
[18] [19], is the design and use of virtual created control panels. This approach finds
application also to the industrial spectrum, considering that robotic teleoperation is the key
to a new industrial revolution. Of course, the design of such controllers, is considered
beneficial due to the fact that the operator does not need to lose care of his surroundings.
This approach is followed in this Thesis.

4.2. Augmented Reality in navigation

Augmented Reality (AR), is considered by many, the technological tool of the future. The
ability to provide to the users virtual interfaces without isolating them from their environment
is AR’s greatest asset. Taking into consideration and the real-time interaction of the user with
the virtual graphics, AR is the best candidate for the enhancement of the human navigation
[20]. This approach, follows the logic of GPS, but in a significant smaller scale as it refers to
indoor navigation. The user navigates himself on his environment following the visual
directions of the AR interface, in the form of directional arrows.

Augmented Reality’s visual graphics can also amplify the autonomous robotic navigation
process [21] [22]. Projected virtual signs compose the feed of special designed algorithms,

Framework for autonomous navigation through MS HoloLenses

45
V. Iliopoulos - F. Theodoulou

in order to optimize the robot’s navigation [22]. Furthermore, special designed icons could
be projected in order to be consumed by installed sensors at the robotic vehicle, like infrared
sensor, and design a path for the robot to follow [21].

Augmented reality could pose a great assistant for the human understanding, regarding the
robot’s actions and movement [23]. A special designed AR interface, on the human side of
the human-robot-interaction (HRI), projects the real-time position of the robot and the
designed paths in its environment.

4.3. HoloLens and User Experience

It is already well stated that Augmented Reality is introduced to the world as a revolutionary
technology, designed to solve problems and not create new ones. AR will elevate the user
experience in many aspects of life. Microsoft HoloLens goggles is considered the most
innovative and well-designed device, that represents the AR community, so it is reasonable
that this device will be used for the introduction of users to the AR world. Of course, in cases
where HoloLens is used in applications of enhancing and simplifying job tasks, user feedback
is essential for proving HoloLens’ capabilities and advantages. [24]

Table 1 - Participants overall experience

Positive descriptions Negative descriptions

Interesting (4 times) Frustrating (2 times)

Useful (2 times) Embarrassing

Easy (2 times)

Fun

Nice

Engaging

Quite innovative

Great

Addictive

Stimulating

Framework for autonomous navigation through MS HoloLenses

46
V. Iliopoulos - F. Theodoulou

Table 2 - The pros and cond of Hololens

Pros Cons

Comfortable (2 times) Vision is limited/narrow view (3 times)

Engaging (2 times) Bulky

Light Doesn’t look that cool

Useful Too complicated

Interactive It didn’t understand me sometimes
(speech recognition)

Futuristic The task list was too far

Easy to use Text fonts hard to read, size is ok

Worked better than I thought, the way it
followed my movements

Placement of content is obstructive

Tracking is really good Have to be careful of real world
collisions and objects in case of
accident. Needs warnings when

moving. Needs clear space without
hazards

Gesture recognition Negative I don’t have

Resolution For creating recording, the process
could be more intuitive

Overall task was easy to perform

Useful to d without instructor

Recording gives several tools that are
useful for building a training session

Overlap of Virtual and Real (AR) is
good

Involving

Framework for autonomous navigation through MS HoloLenses

47
V. Iliopoulos - F. Theodoulou

5. UNMANNED NAVIGATION USING AUGMENTED REALITY

5.1. Problem Definition

Critical infrastructures require regular inspections, maintenance, but also safe demolition and
fast intervention in case of disasters. This kind of operations usually involves tasks of a great
danger for the workers employed, but also for the nearby population in general. Particularly
demolition and disaster intervention can turn out to be extremely dangerous if some of the
demanded precautions get ignored, or factors that were not considered in the first place
appear. Autonomous or teleoperated robotic solutions could be of a great help to this kind of
operations, making them a lot safer and easier to process. Examples for such scenarios
include decommissioning of nuclear power and chemical plants, clean up after landslides,
demining or cleaning munitions dumps.

Unfortunately, existing robot technologies have only proven to be useful to assess a
situation, but they are often too immature or fragile for the use in real decommissioning,
clean-up, or deconstruction scenarios. Thereby, in most of such operations conventional
construction site machines are used, involving human operators in a traditional way. A
human operator conducting tasks of a large-scale mission cannot have adequate situational
awareness and should rely on external observers and previous experience. Moreover, the
operator is exposed to immediate danger in case something goes wrong, putting also in
danger other workers and the around population. The problem deteriorates significantly
when the operations take place in toxic or/and fragile environments. For this reason, the
remote navigating efficiently of an unmanned ground device by using AR devices as
controller for the robot’s movement and actions is highly needed. During this thesis, the
remote control and navigation of an unmanned vehicle was investigated, i.e. a turtlebot2,
which was controlled by AR devices, i.e. HoloLens 1st gen.

5.2. Challenges

The problem stated previously was splitted in different smaller parts, that were combined in
order to achieve the project’s scenario. Firstly, the unmanned vehicle was set up in order to
receive messages/commands from a remote device that the user controls such as a laptop
via keyboard commands, a smartphone via a mobile application and finally AR glasses via
an AR interface. Secondly, a responsive, user friendly controller in an AR interface was
developed which is responsible to transmit the user’s choices in suitable message format.
Finally, find a way to connect AR glasses with the turtlebot in order for the turtlebot to listen
to the user’s commands and have low latency for the best user experience.

5.2.1. Setting Up the turtlebot

In this thesis, the turtlebot had no knowledge for the world in which it operates. This is the
reason that requires the user to have visual contact with the turtlebot to navigate it correctly
without crashing it. The user should also have the ability to give turtlebot the command of
taking a photo of its surroundings using the robot’s camera.

In addition, the user should have the ability to enter the preferable distance and angle for the
turtlebot’s “step” and turn accordingly too.

Therefore, a script in python was developed which decoded he transmitted
messages/commands from the HoloLens glasses and fed turtlebot in order to complete one
of the requested actions:

Framework for autonomous navigation through MS HoloLenses

48
V. Iliopoulos - F. Theodoulou

1.move forward

2.move backwards

3.turn clockwise

4.turn counterclockwise

5.take a photo

In order to be completed, the ROS topics which are responsible for the turtlebot’s movement
and camera were utilized. These topics are analyzed later (5.3.1. Turtlebot’s manipulation
script).

5.2.2. AR application approach

The initial challenge was to keep the user interface of the AR application to be understood
easily by a general user. The application’s UI must be simple and also cover the wanted
functionality. The needed UI elements were the robot’s movement control buttons and some
form of user input for the application variables (angle and distance).

5.2.2.1. Application Variables Input

The user must have the ability to change the degrees of the robot’s rotation and the distance
the robot covers in a single step. These values must be predefined, because having the user
choose the exact number of degrees and distance would complicate the usage and looks of
the application. So, at the launch of our application we wanted a simple UI in order to give
the ability to the user to choose between 3 or 4 values of distance and rotation degrees.

5.2.2.2. Movement Controller

The control buttons of the robot are customizable in size, as they must not block the user’s
field of view in a way that he won’t be able to navigate the robot safely. The navigation
buttons should be something like a cross. This design is familiar to everyone and suits the
desired type of movement. This cross should be in the user’s field of view all the time while
he navigates the robot. So, in a way the cross must follow the head movement of the user.
We decided to follow this approach, because the most common scenario is for the user to
navigate the robot inside a room and his head will turn a lot of times in the process of doing
so. Having the cross always in your field of view makes the navigation of the robot easier,
but it also must not block your field of view. Having the cross always at the center of the
user’s field of view would in some cases be annoying. To overcome this problem the cross
should follow the head movement of the user but not precisely, meaning that for example,
as the user turns his head around, the cross will stick to the edge of his field of view and
follow him as the users walks around the room.

5.2.3. Technical Challenges

During the installation of the tools needed to develop and test the AR application we came
across with some problems. The following versions were established to develop and test our
framework.

Versions:

 Unity LTS 2018.4.13f1

 MRTK 2.5

 Visual Studio Commercial 2019

Framework for autonomous navigation through MS HoloLenses

49
V. Iliopoulos - F. Theodoulou

 Windows SDK 18362+

 Hololens 1st gen Emulator

Installation order:

1. Install Unity and include the Universal Windows Platform (UWP).

2. Unity 2018 installs visual studio 2017 automatically, if it doesn’t you must
install it without any workload selected manually.

3. Install windows SDK

4. Install Hololens Emulator

5. Install Visual Studio 2019 without any workloads, once you open a UWP
built project with it you will be prompt to install the required workloads, you
do it then.

Unity settings:

1. Download and import MRTK foundation and example packages from
https://microsoft.github.io/MixedRealityToolkit-
Unity/Documentation/Installation.html

2. Follow the steps found with the above link

3. Import TMP Essentials Resources, you need to restart Unity to see
changes.

4. Set architecture to x86

5.2.4. Middleware communication between AR and unmanned vehicle

For our project to work properly a middleware communication between AR and unmanned
vehicle was crucial. The control of the robot should be smooth, in order to achieve this the
communication middleware should have low latency and be reliable. This middleware should
also give us a level of abstraction, so the development of the robot’s scripts and the
development of the HoloLens application wouldn’t interfere with each other.

A middleware that could provide us all these benefits was KAFKA.

https://microsoft.github.io/MixedRealityToolkit-Unity/Documentation/Installation.html
https://microsoft.github.io/MixedRealityToolkit-Unity/Documentation/Installation.html

Framework for autonomous navigation through MS HoloLenses

50
V. Iliopoulos - F. Theodoulou

5.3. Our application

Figure 26 - Backend communication

5.3.1. Turtlebot’s manipulation script

For the purposes of this Thesis, scripts and applications were developed that run both on
simulators and the actual turtlebot. Achieving this was feasible, as ROS uses the same topics
for the teleoperation of its movement and the feed of the preinstalled Kinect camera on the
turtlebot. This is one of the main reasons we chose to work with turtlebot2 as it has the Kinect
camera preinstalled and ready to work. Regardless the tests and the experiments that were
performed to the gazebo simulator, the desirable, final/delivered scenario, is a user wearing
the HoloLens glasses and controlling the turtlebot in a realistic environment.

5.3.1.1. Movement

As mentioned above the turtlebot can operate two types of movement. It can either move
front and backwards or turn around itself clockwise and counterclockwise. In order for the
turtlebot to follow the user’s command and move accordingly, a Twist message was created,
which then was published at the ‘cmd_vel_mux/input/teleop’ topic which is responsible for
the movement of turtlebot2. A Twist message expresses velocity in free space broken into
its linear and angular parts. Each part is represented by a vector3, which translates to the 3
axes in free space x, y, z which are mutually perpendicular to each other and their point of
intersection is called the origin (x = 0, y = 0, z = 0).

Framework for autonomous navigation through MS HoloLenses

51
V. Iliopoulos - F. Theodoulou

Figure 27 - Axis of turtlebot's movement

Figure 28 - Movement script

As turtlebot is a ground robot, angular velocity is in z, i.e. its turning speed. And linear velocity

is in x i.e. its moving straight speed. So now if the user chose to move forward or backwards

the speed or the -speed was assigned to the linear.x accordingly and the twist message was
published in a loop until the defined step-distance was covered. In order to break the loop
we used the distance definition formula :distance = absolute(speed)*time.

Framework for autonomous navigation through MS HoloLenses

52
V. Iliopoulos - F. Theodoulou

Figure 29 - Rotation script

Analogous, if the user chose to turn clockwise or counterclockwise the angular_speed was
used, which was assigned to the angular.z component and in order to break the publishing
loop, the defined turn-degrees were converted to radians using the degrees to radians
formula: 1rad = 1degree *π /180 degrees.

Framework for autonomous navigation through MS HoloLenses

53
V. Iliopoulos - F. Theodoulou

5.3.1.2. Snap Photo

Figure 30 - Photo script

In order for the photo to be taken we subscribe to the ‘/camera/rgb/image_raw’ topic which
is responsible for capturing a ROS image. Then the ROS image is converted to OpenCV
format and it is saved using the name ‘photo%’ where ‘%’ is the counter of the taken photos.

Framework for autonomous navigation through MS HoloLenses

54
V. Iliopoulos - F. Theodoulou

5.3.2. AR Application

Figure 31 - Screenshot of the AR Application on HoloLens 2

5.3.2.1. User Interface

 Application’s variables panel

The variables panel is the first thing the user sees when he launches our HoloLens
application. From there the user can choose how far the robot will travel in a single step. The
three options are 0.5 meters, 1 meter or 2 meters. The user can also choose the degrees
the robot rotates in a single turn. The options are 15°, 30°, 45° or 90°.

Framework for autonomous navigation through MS HoloLenses

55
V. Iliopoulos - F. Theodoulou

Figure 32 - Variables Panel

By clicking the check sign at the bottom of the panel, the user sends these variables to the
turtlebot and the application loads the controller UI.

Figure 33 - Screenshot of the variables panel in HoloLens 2

Framework for autonomous navigation through MS HoloLenses

56
V. Iliopoulos - F. Theodoulou

 Robot Controller UI

The Controller UI had to covered the basic functionality we needed, a controller cross, a
photo button and a slider to adjust the size of the cross. We also mentioned that the cross
must follow the user’s movement inside the room. The UI looks like this:

Figure 34 - Controller UI

Framework for autonomous navigation through MS HoloLenses

57
V. Iliopoulos - F. Theodoulou

The cross follows user’s head movement as shown here:

Figure 35 - Cross following head movement

Figure 36 - Cross following head movement in HoloLens 2

Framework for autonomous navigation through MS HoloLenses

58
V. Iliopoulos - F. Theodoulou

5.3.2.2. Unity Application Scene

The application consists of one single scene, called “Main Scene”.

Figure 37 - Unity scene hierarchy

The objects in this scene are, besides the lighting and the imported MRTK mandatory objects
(Directional Light, MixedRealityToolkit, MixedRealityPlayspace), are the following:

 PinchSliderModule: the slider that controls the size of the cross

 PhotoButton: the button which commands the robot to take a photo.

Framework for autonomous navigation through MS HoloLenses

59
V. Iliopoulos - F. Theodoulou

 ControllerPanel: is used as an empty game object to group the four arrows of the cross.
To achieve the effect of the cross following the user’s head movement a script component
named “Radial View” was added to the cross, which can be found in the foundation package
of MRTK. The ControllerPanel has this component.

Figure 38 - Components of ControllerPanel

Framework for autonomous navigation through MS HoloLenses

60
V. Iliopoulos - F. Theodoulou

 VariablesPanel: this is the panel that is displayed when the application launches, and the
user can set the application variables there. The panel is imported from the Examples
package of the MRTK and was modified to fit the needs of this application.

Figure 39 - Objects of VariablesPanel

 SceneManager: this is an empty game object that holds the script of the application. This
is a common practice when developing apps in Unity. The script is called
SceneManagerScript.

Framework for autonomous navigation through MS HoloLenses

61
V. Iliopoulos - F. Theodoulou

Figure 40 - SceneManager components

The prefabs that were used in Unity for the slider, the camera button and the panel can be
found in the examples package in the MRTK assets on GitHub.

5.3.2.3. Script

The script in this Unity application, as mentioned above, is the SceneManagerScript. This
script handles all the functionality of the HoloLens application. This script’s functions are
described here:

 The functions public void incAng(), public void decAng(), public void incDis(), public
void decDis() are responsible for handling the UI functionality of the VariablesPanel.

Framework for autonomous navigation through MS HoloLenses

62
V. Iliopoulos - F. Theodoulou

Figure 41 - VariablesPanel buttons functions

 The function public void ApplyVariables() is the one that sends the variables that the
user chose to the turtlebot. As we already mentioned, the communication between the
HoloLens application and the turtlebot is handled by a KAFKA server. The messages
exchanged are in JSON format. The message format is analyzed in the next paragraph
(5.3.3. Message Format).

Framework for autonomous navigation through MS HoloLenses

63
V. Iliopoulos - F. Theodoulou

Figure 42 - Sending variables script

 The functions public void upClick(), public void downClick(), public void rightClick(),
public void leftClick(), public void photoClick() are the functions that cover the
commands the user can give to the turtlebot (movement and taking photos). All these
functions are identical and they work just like the ApplyVariables() function, meaning they
create a JSON message and push it to the KAFKA topic. For example here is the upClick()
function, which makes the robot take one step forward:

Figure 43 - Forward command script

Framework for autonomous navigation through MS HoloLenses

64
V. Iliopoulos - F. Theodoulou

The only thing that differs between these functions is the value of the JSON message, which
depends on the action we want the turtlebot to take.

5.3.3. Message Format

In order to have a clear and understandable communication between the HoloLens AR
device and the turtlebot it was mandatory to build our own messages types in JSON format
in order to translate the user choices at the AR UI to the corresponding actions of the
turtlebot.

Figure 44 - Messages format

The JSON format is chosen as we need to exchange the messages between the HoloLens
glasses and the turtlebot via KAFKA.

To consume messages from the KAFKA topic on the turtlebot the python library for KAFKA
communications was used. But for the HoloLens application, which is written in C#, the .NET
library for KAFKA communications was not utilized. The reason for this is that this library
didn’t work correctly, or at least in a useful way for this application. So for the communication
between the KAFKA server and the HoloLens application Rest API was used. The HTTP
requests are made by Unity’s Net library. With these HTTP requests the JSON messages
get posted to the KAFKA topic.

Framework for autonomous navigation through MS HoloLenses

65
V. Iliopoulos - F. Theodoulou

6. EXPERIMENTS

Using Kafka topics for the communication between HoloLens and the robot, made it easier
to test each aspect of this project separately. Having this level of abstraction, we tested the
robot’s movement on its own, the MR application for the HoloLens and the Kafka server
separately.

6.1. Testing Robot’s Moving Script

Prior to robot experimentation, the concepts of navigating and controlling a robot were
created and tested in a simulated environment. Since the robot we were going to use for this
project was a turtlebot, we used a software called Gazebo 7, which is a robotics simulator
for the turtlebots offered by ROS. The script for moving the turtlebot was developed and then
tested on the Gazebo.

When we secured that the commands were executed correctly and safely in the simulated
environment, we went on and tested it on a physical robot. Fortunately, the script worked on
the physical robot as well without significant modifications. We had though to change the
distance and angles values of the script in order for the movements of the robot to correspond
better in the real world. This script used keyboard as the input source of the user’s
commands. So, the last step was to implement the consuming of movement commands
through the Kafka topic. The fact that our movement script and the consumer script for Kafka
were both written in python, was really convenient, because there was no need for further
testing at this stage.

6.2. Testing HoloLens Application

As mentioned before MRTK gives you great tools to test your application in Unity Editor as
you develop it. We constantly tested our application inside the Unity Editor and as we were
finalizing it, we used the HoloLens emulator too. Our biggest concern was to test our
implementation of the Kafka producer in C# using REST API. We tested this implementation
in two ways. At first, we used the Unity Editor to test the script and after some debugging,
we got it to work as we intended it to work. So, after the script was ready, we decided to test
it on a real device too. We developed a simple android application in Unity which mimicked
our HoloLens application and used the same script. The UI of this application was just 4
buttons that are used to navigate the robot.

Framework for autonomous navigation through MS HoloLenses

66
V. Iliopoulos - F. Theodoulou

Figure 45 - Android application UI

6.3. Putting it all together

When we had all the equipment and software we needed we started testing the whole
project. At first, we used the android application we developed to navigate
the turtlebot around the campus. The success of this test secured that the backend of the
communication between the turtle bot and our phone, which used the Kafka server, was
functioning properly. Then we started experimenting using the HoloLens. Unity Editor gives
you the ability to test your application on HoloLens without having to install it on the HoloLens
with a feature called Holographic Emulation, just like the MRTK package allows you to run
your application in play mode of Unity.

Framework for autonomous navigation through MS HoloLenses

67
V. Iliopoulos - F. Theodoulou

Figure 46 - Holographic Emulation settings in Unity

This feature allows you to emulate your application on the HoloLens device over a local
network. This helped us see how our application would look on the HoloLens without having
to deploy it on the device. The installment and execution of the application on the HoloLens
can be challenging and time consuming to debug, so being able to just emulate your
application on the HoloLens can be really helpful. After some visual tweaks, our application
looked and worked how we intended on the HoloLens devices. But since the interaction with
the application is a simulation over a network, it has high latency and slow response times.
So, in order to understand how our application worked in terms of response times, we had
to install and test the application on the HoloLens device. So, the last step was to install and
run the application instead of emulating.

Framework for autonomous navigation through MS HoloLenses

68
V. Iliopoulos - F. Theodoulou

6.4. Measuring Latency and Position

In order to keep record of the turtlebot’s position after the completion of each movement
command we use the ROS odometry topic and message. Odometry message is a ROS
message which contains an estimation of the robot’s position in free space. A second script
is developed where we subscribe to the /odom topic which provides repeatedly odometry
estimations. From these messages we save only the X and Y coordinates of the robot’s
position and we create a json message with the current position and timestamp. The created
message is sent from the turtlebot back to the KAFKA via the turtle_location topic that we
created for this purpose. The data are sent to KAFKA and are stored for later process.

Figure 47 - Odometry consumer script

6.5. Final Results

We execute experiments in both simulated and real world as it is essential to check and
compare the data from both environments in order to examine the deviance between the
robot’s ordered movement and its actual movement. Turtlebot’s position represented in X

Framework for autonomous navigation through MS HoloLenses

69
V. Iliopoulos - F. Theodoulou

and Y coordinates and the latency of turlebot’s movement after each user command from
the AR side of the application, are the examined data.

The experiments which are executed, are series of movement commands, for instance move
forward, turn right etc.

6.5.1. Experiment in Gazebo

In Gazebo, we set the distance at 50 cm and the rotation angle to 45°. We executed the
following commands:

forward, forward, left, left, back, back. The latency we measured is shown in this chart:

Figure 48 - Latency graph in Gazebo

Framework for autonomous navigation through MS HoloLenses

70
V. Iliopoulos - F. Theodoulou

The position of the robot throughout the experiment is shown here:

Figure 49 - Position trajectory graph in Gazebo

6.5.2. Real Word Experiment

For the experiment in a real word situation, we used the HoloLens 2 device and turtlebot 2.
We set the distance at 50 cm and the rotation angle to 30°. The same measurements were
recorded as in the simulated environment. The latency measured is shown here:

Framework for autonomous navigation through MS HoloLenses

71
V. Iliopoulos - F. Theodoulou

Figure 50 - Latency Graph

The probability density function of the latency can be seen here:

Figure 51 - Latency probability density function

Framework for autonomous navigation through MS HoloLenses

72
V. Iliopoulos - F. Theodoulou

The commands that were given to the turtlebot were: forward, forward, forward, right, right,
right, forward, left, left, back, back.The recorded trajectory of the turtlebot is presented in a
3 axis graph:

Figure 52 - 3 axis graph of turtlebot's trajectory

We can observe that there is a small amount of discrepancy between the requested and the
calculated movement trajectory. This type of disagreement is acceptable and can be justified
taking into consideration two separate factors of flaw. First, the flaws in movement formula
and calculations that we do not take into consideration and secondly the faults of odometry.
The fault of our calculations regarding the formula that we use is that we do not take into
account the turtlebot’s movement environment. Friction between the surface and robot’s
wheels as well as ground irregularities change the motion to accelerated motion. Thus, the
smallest deceleration affects the results. The simulated world of Gazebo is free of this
physicalities and this is the reason that Gazebo’s measurements are more accurate as it is
clear from the graph. On second note, the disadvantage of odometry is that the
measurements are indirect, relating the power of the motors or the motion of the wheels to
changes in the robot’s position. This can be error-prone since the relation between motor
speed and wheel rotation can be very nonlinear. Furthermore, wheels can slip and skid so
there may be errors in relating the motion of the wheels to the motion of the robot.

Framework for autonomous navigation through MS HoloLenses

73
V. Iliopoulos - F. Theodoulou

7. CONCLUSIONS

To conclude, an MR application was developed that runs both on the first and second
generation of the HoloLens devices, which is used to control an unmanned ground
vehicle. This is a more specific case scenario than any of the applications someone can
find in the application store, which can open paths for similar applications to be developed
in the future. Even though, this application covers the basic functionality someone would
expect from a vehicle controller, the same basis can be used to add more features. Unity
is a great tool for easily adding new features.

As it is mentioned, a Kafka server handling the backend gives great abstraction, which
makes the integration of controlling another type of vehicle feasible. The same principles
could be used to develop theoretically MR applications to control any kind of unmanned
vehicle. Drones, for example, are becoming popular lately in scientific and industrial
fields, maybe in the future we could see drones controlled with HoloLens devices.

In the process of developing this application, smaller applications for different platforms
had to be developed to debug each component of the application’s structure
independently. Those applications included, a simple web application for Kafka testing,
a mobile application for android OS, a HoloLens 1st gen app and a HoloLens 2nd gen app.
This makes it clear that this concept of a controller can make use different types of
devices.

Finally, the results of the experiments showed that the application analyzed in this thesis
could be used in a real-life scenario, despite some minor latency and precision deviation.
Latency and position precision are after all heavily dependent on the case of use and the
type of unmanned vehicle that the user wants to navigate.

We hope with this thesis we contributed to the fields of MR and robotics, which are rapidly
advancing.

Framework for autonomous navigation through MS HoloLenses

74
V. Iliopoulos - F. Theodoulou

ABBRIVIATIONS – ACRONYMS

UV Unmanned Vehicle

UGV Unmanned Ground Vehicle

UAV Unmanned Aerial Vehicle

USV Unmanned Surface Vehicle

UUV Unmanned Underwater Vehicle

UI User Interface

UX User Experience

ROS Robot Operating System

JSON JavaScript Object Notation

VR Virtual Reality

AR Augmented Reality

MR Mixed Reality

MRTK Mixed Reality Toolkit

FOV Field of View

IDE Integrated development environment

FPS Frames Per Second

HRI Human Robot Interaction

Framework for autonomous navigation through MS HoloLenses

75
V. Iliopoulos - F. Theodoulou

ANNEX I

The source code of this thesis can be found by following the link:

https://github.com/VasilisIliopoulos/AR_Turtlebot_Controller_Thesis

Framework for autonomous navigation through MS HoloLenses

76
V. Iliopoulos - F. Theodoulou

REFERENCES

[1]. Caska, Serkan & Gayretli, Ahmet. (2014). A survey of UAV/UGV collaborative systems. 453-
463.

[2]. Yan, Rj., Pang, S., Sun, Hb. et al. Development and missions of unmanned surface vehicle. J.
Marine. Sci. Appl. 9, 451–457 (2010). https://doi.org/10.1007/s11804-010-1033-2

[3]. Quigley, Morgan & Conley, Ken & Gerkey, Brian & Faust, Josh & Foote, Tully & Leibs, Jeremy &
Wheeler, Rob & Ng, Andrew. (2009). ROS: an open-source Robot Operating System. ICRA
Workshop on Open-Source Software. 3

[4]. Khan Saad Bin Hasan, “What, Why and How of ROS”, (2019),
https://towardsdatascience.com/what-why-and-how-of-ros-b2f5ea8be0f3

[5]. Turtlebot, https://www.turtlebot.com/about/ , [accessed 22/04/2021]
[6]. Psotka, J. Immersive training systems: Virtual reality and education and training. Instr

Sci 23, 405–431 (1995). https://doi.org/10.1007/BF00896880
[7]. Bockholt, “VR, AR, MR and What Does Immersion Actually Mean?”, (2017), VR, AR, MR and

What Does Immersion Actually Mean? (thinkwithgoogle.com)
[8]. HoloLens 1 Hardware, (2019), https://docs.microsoft.com/en-us/hololens/hololens1-hardware
[9]. Jacek Kościesza, “HoloLens 2 vs HoloLens 1: what’s new?”, (2020),

https://4experience.co/hololens-2-vs-hololens-1-whats-new/
[10]. Josh Petty, “What is Unity 3D & What is it Used For?”, https://conceptartempire.com/what-is-

unity/
[11]. Introducing MRTK for Unity, (2019), https://docs.microsoft.com/en-us/windows/mixed-

reality/develop/unity/mrtk-getting-started
[12]. What is the Mixed Reality Toolkit, (2021), https://docs.microsoft.com/en-us/windows/mixed-

reality/mrtk-unity/
[13]. HoloLens 1 gestures for authoring and navigating in Dynamics 365 Guides, (2020),

https://docs.microsoft.com/en-us/dynamics365/mixed-reality/guides/authoring-gestures
[14]. W. Song, X. Guo, F. Jiang, S. Yang, G. Jiang and Y. Shi, "Teleoperation Humanoid Robot

Control System Based on Kinect Sensor," 2012 4th International Conference on Intelligent
Human-Machine Systems and Cybernetics, 2012, pp. 264-267, doi: 10.1109/IHMSC.2012.159.

[15]. I. Rodriguez, A. Astigarraga, E. Jauregi, T. Ruiz and E. Lazkano, "Humanizing NAO robot
teleoperation using ROS," 2014 IEEE-RAS International Conference on Humanoid Robots,
2014, pp. 179-186, doi: 10.1109/HUMANOIDS.2014.7041357.

[16]. H. Fakhrurroja, Riyanto, A. Purwarianti, A. S. Prihatmanto and C. Machbub, "Integration of
Indonesian Speech and Hand Gesture Recognition for Controlling Humanoid Robot," 2018 15th
International Conference on Control, Automation, Robotics and Vision (ICARCV), 2018, pp.
1590-1595, doi: 10.1109/ICARCV.2018.8581071.

[17]. Boniardi, Federico & Valada, Abhinav & Burgard, Wolfram & Tipaldi, Gian Diego. (2016).
Autonomous indoor robot navigation using a sketch interface for drawing maps and routes.
2896-2901. 10.1109/ICRA.2016.7487453

[18]. M. E. Walker, H. Hedayati and D. Szafir, "Robot Teleoperation with Augmented Reality
Virtual Surrogates," 2019 14th ACM/IEEE International Conference on Human-Robot Interaction
(HRI), 2019, pp. 202-210, doi: 10.1109/HRI.2019.8673306.

[19]. Kot T., Novák P., Babjak J. (2018) Application of Augmented Reality in Mobile Robot
Teleoperation. In: Mazal J. (eds) Modelling and Simulation for Autonomous Systems. MESAS
2017. Lecture Notes in Computer Science, vol 10756. Springer, Cham.
https://doi.org/10.1007/978-3-319-76072-8_16

[20]. U. Rehman and S. Cao, "Augmented-Reality-Based Indoor Navigation: A Comparative
Analysis of Handheld Devices Versus Google Glass," in IEEE Transactions on Human-Machine
Systems, vol. 47, no. 1, pp. 140-151, Feb. 2017, doi: 10.1109/THMS.2016.2620106.

[21]. R. Kuriya, T. Tsujimura and K. Izumi, "Augmented reality robot navigation using infrared
marker," 2015 24th IEEE International Symposium on Robot and Human Interactive
Communication (RO-MAN), 2015, pp. 450-455, doi: 10.1109/ROMAN.2015.7333607.

[22]. E. Malayjerdi, M. Yaghoobi and M. Kardan, "Mobile robot navigation based on Fuzzy
Cognitive Map optimized with Grey Wolf Optimization Algorithm used in Augmented Reality,"
2017 5th RSI International Conference on Robotics and Mechatronics (ICRoM), 2017, pp. 211-
218, doi: 10.1109/ICRoM.2017.8466169

https://doi.org/10.1007/s11804-010-1033-2
https://medium.com/@khansaadbinhasan?source=post_page-----b2f5ea8be0f3--------------------------------
https://towardsdatascience.com/what-why-and-how-of-ros-b2f5ea8be0f3
https://www.turtlebot.com/about/
https://doi.org/10.1007/BF00896880
https://www.thinkwithgoogle.com/intl/en-cee/future-of-marketing/machine-learning/vr-ar-mr-and-what-does-immersion-actually-mean/
https://www.thinkwithgoogle.com/intl/en-cee/future-of-marketing/machine-learning/vr-ar-mr-and-what-does-immersion-actually-mean/
https://docs.microsoft.com/en-us/hololens/hololens1-hardware
https://4experience.co/hololens-2-vs-hololens-1-whats-new/
https://conceptartempire.com/what-is-unity/
https://conceptartempire.com/what-is-unity/
https://docs.microsoft.com/en-us/windows/mixed-reality/develop/unity/mrtk-getting-started
https://docs.microsoft.com/en-us/windows/mixed-reality/develop/unity/mrtk-getting-started
https://docs.microsoft.com/en-us/windows/mixed-reality/mrtk-unity/
https://docs.microsoft.com/en-us/windows/mixed-reality/mrtk-unity/
https://docs.microsoft.com/en-us/dynamics365/mixed-reality/guides/authoring-gestures
https://doi.org/10.1007/978-3-319-76072-8_16

Framework for autonomous navigation through MS HoloLenses

77
V. Iliopoulos - F. Theodoulou

[23]. Liu – Wang – Wei, “Augmented Reality Application on Robot Trajectory with ROS system”,
the Notre Dame Journal of Formal Logic, (2018) , [accessed 22/04/2021]

[24]. Helin, Kaj & Kuula, Timo & Vizzi, Carlo & Karjalainen, Jaakko & Vovk, Alla. (2018). User
Experience of Augmented Reality System for Astronaut's Manual Work Support. Frontiers in
Robotics and AI. 5. 106. 10.3389/frobt.2018.00106

