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ABSTRACT 

 
In recent years, the immense development of the virtual reality technologies seems to 
overwhelm the technological community. The possibilities which the virtual reality family 
brings to the table, pose a life changing experience for both daily and industrial life. More 
particular, Augmented Reality (AR) in considered by a large portion of the scientific 
community, the reign technology of User Interfaces (UI). The key feature of AR is that adds 
digital content to the real environment without isolating the user from it, providing a very 
realistic interaction, close to the user’s perception. Considering these features, AR 
technology can be used for instance in cases of enhanced learning, machine control, 
human/vehicle navigation. For example, an AR UI deployed in AR glasses can help the actor 
control a machine easily and without risk from distance. 

In addition, this functionality can be enriched by using an unmanned vehicle, a robot, as the 
machine that will be controlled. Robotics is a field of technology, whose intervention in 
people’s lives seems unstoppable in more and more aspects. Nowadays, unmanned 
vehicles are used in the majority of industrial operations and daily habits. Let us consider a 
situation where harmful waste should be extracted from a specific area. The use of an 
unmanned vehicle is mandatory for the collection and the removal of the waste. On top of 
this, an Augmented Reality UI for the remote control of the UV, offers the ability to the actor 
to make the most out of his skills without risking his life. The AR UI offers a very natural an 
intimate control to the user. 

In this Thesis, we examine the scenario where the user controls/navigates an unmanned 
ground vehicle with the aid of an AR headset. The AR headset projects a specially designed 
UI for the robot’s movement control. The vehicle’s navigation depends solely on the user’s 
perception and experience. That’s where the AR technology comes in handy as is does not 
affects the vision and the environment perception of the user and his surroundings. More 
specifically, a series of experiments are carried out, where the user wears the AR headset 
and navigates the robot by giving a series of movement commands. Of course, the robot 
should always remain on his field of view. 

Experiments were executed both in simulated and real world. For the simulation Gazebo 
simulator was used with a virtual Turtlebot 2 running ROS operating system and the Unity 
simulator for the AR headset. The real - world experiments were executed with a Turtlebot2 
running ROS and the Microsoft HoloLens AR headset where our AR application was 
deployed. 
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ΠΕΡΙΛΗΨΗ 

 

Τα τελευταία χρόνια, η τεράστια ανάπτυξη των τεχνολογιών εικονικής πραγματικότητας 
φαίνεται να κατακλύζει την τεχνολογική κοινότητα. Οι δυνατότητες που η οικογένεια της 
εικονικής πραγματικότητας φέρνει στο τραπέζι, αποτελούν μια εμπειρία που αλλάζει τόσο 
την καθημερινή όσο και τη βιομηχανική ζωή. Πιο συγκεκριμένα, η Επαυξημένη 
Πραγματικότητα (AR) θεωρείται από ένα μεγάλο μέρος της επιστημονικής κοινότητας, η 
κυρίαρχη τεχνολογία των Διεπαφών Χρήστη (UI). Το βασικό χαρακτηριστικό του AR είναι ότι 
προσθέτει ψηφιακό περιεχόμενο στο πραγματικό περιβάλλον χωρίς να απομονώνει το 
χρήστη από αυτό, παρέχοντας μια πολύ ρεαλιστική αλληλεπίδραση κοντά στην αντίληψη 
του χρήστη. Λαμβάνοντας υπόψη αυτά τα χαρακτηριστικά, η τεχνολογία AR μπορεί να 
χρησιμοποιηθεί για παράδειγμα σε περιπτώσεις βελτιωμένης μάθησης, ελέγχου μηχανής, 
πλοήγησης ανθρώπου / οχήματος. Για παράδειγμα, ένα AR UI ανεπτυγμένο σε γυαλιά AR 
μπορεί να βοηθήσει τον χειριστή να ελέγξει ένα μηχάνημα εύκολα και χωρίς κίνδυνο από 
απόσταση. 

Επιπλέον, αυτή η λειτουργικότητα μπορεί να εμπλουτιστεί χρησιμοποιώντας ένα μη 
επανδρωμένο όχημα, ένα ρομπότ, ως το μηχάνημα που θα ελέγχεται. Η ρομποτική είναι 
ένας τομέας της τεχνολογίας, του οποίου η παρέμβαση στη ζωή των ανθρώπων φαίνεται 
ασταμάτητη σε όλο και περισσότερες πτυχές. Σήμερα, τα μη επανδρωμένα οχήματα 
χρησιμοποιούνται στην πλειονότητα των βιομηχανικών δραστηριοτήτων και των 
καθημερινών συνηθειών. Ας εξετάσουμε μια κατάσταση κατά την οποία επιβλαβή απόβλητα 
πρέπει να εξαχθούν από μια συγκεκριμένη περιοχή. Η χρήση μη επανδρωμένου οχήματος 
είναι υποχρεωτική για τη συλλογή και την απομάκρυνση των αποβλήτων. Επιπλέον, ένα UI 
επαυξημένης πραγματικότητας για το τηλεχειριστήριο του UV, προσφέρει τη δυνατότητα 
στον χειριστή να αξιοποιήσει στο έπακρο τις δεξιότητές του χωρίς να διακινδυνεύσει τη ζωή 
του. Το AR UI προσφέρει έναν πολύ φυσικό και οικείο έλεγχο στον χρήστη. 

Σε αυτήν την πτυχιακή εργασία, εξετάζουμε το σενάριο όπου ο χρήστης ελέγχει / πλοηγεί 
ένα μη επανδρωμένο όχημα εδάφους με τη βοήθεια AR γυαλιών. Τα γυαλιά AR προβάλλουν 
μία ειδικά σχεδιασμένη διεπαφή χρήστη για τον έλεγχο κίνησης του ρομπότ. Η πλοήγηση 
του οχήματος εξαρτάται αποκλειστικά από την αντίληψη και την εμπειρία του χρήστη. Εκεί η 
τεχνολογία AR γίνεται πρακτική καθώς δεν επηρεάζει την όραση και την αντίληψη του 
περιβάλλοντος για τον χρήστη και το περιβάλλον του. Πιο συγκεκριμένα, πραγματοποιείται 
μια σειρά πειραμάτων, όπου ο χρήστης φορά τα AR γυαλιά και πλοηγεί το ρομπότ δίνοντας 
μια σειρά εντολών κίνησης. Φυσικά, το ρομπότ πρέπει να παραμένει πάντα στο οπτικό του 
πεδίο. 

Τα πειράματα εκτελέστηκαν τόσο σε προσομοιωμένο όσο και σε πραγματικό κόσμο. Για την 
προσομοίωση,  χρησιμοποιήθηκε ο προσομοιωτής Gazebo με ένα εικονικό Turtlebot 2 με 
λειτουργικό σύστημα ROS και ο προσομοιωτής Unity για τα AR γυαλιά. Τα πειράματα του 
πραγματικού κόσμου εκτελέστηκαν με ένα Turtlebot2 που εκτελεί ROS και τα γυαλιά 
Microsoft HoloLens AR όπου αναπτύχθηκε η εφαρμογή AR. 

 

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Επαυξημένη Πραγματικότητα, Αυτόνομη Πλοήγηση  

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: πλοήγηση, ROS, έλεγχος κίνησης, turtlebot, HoloLens 



 

 

 

 

 

 

 
Αυτή η πτυχιακή εργασία αφιερώνεται από τον ένα φίλο στον άλλο, για την αδιάκοπη 

επιμονή και αντοχή που επιδείξαμε από την πρώτη μέχρι και την τελευταία μέρα αυτού του 

ταξιδιού. 

 

 

 

 

 

 

 

 

 
 



ACKNOWLEDGEMENTS 

 

We would like to express our deepest appreciation to our supervisor professor, Stathes P. 
Hadjiefthymisades, who gave us the chance to work on the field of robotics and AR and 
trusted us with this thesis. We would also like to extend our deepest gratitude to Dr. Kyriaki 
Panagidi for her constant support throughout the duration of this project. Thanks should also 
go to Nektarios Deligiannakis and Athanasios Chalvatzaras for their invaluable contribution 
to this thesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CONTENTS 

 

 
1. INTRODUCTION .................................................................................................... 15 

2. ROS AND UNMANNED DEVICES ......................................................................... 16 

2.1. Definition of Unmanned Vehicles ..................................................................................................... 16 

2.1.1. Unmanned Ground Vehicles ................................................................................................... 16 

2.1.2. Unmanned Aerial Vehicles ...................................................................................................... 19 

2.1.3. Unmanned Surface Vehicles ................................................................................................... 21 

2.1.4. Unmanned Underwater Vehicles ............................................................................................. 21 

2.2. Robotic Operation System – ROS .................................................................................................... 22 

2.2.1. Definition of ROS ..................................................................................................................... 22 

2.2.2. ROS packages......................................................................................................................... 24 

2.2.3. ROS Stack ............................................................................................................................... 24 

2.2.4. ROS Catkin .............................................................................................................................. 24 

2.2.5. ROS Nodes .............................................................................................................................. 24 

2.2.6. ROS Topics ............................................................................................................................. 24 

2.2.7. ROS Messages........................................................................................................................ 25 

2.2.8. Master Node ............................................................................................................................ 26 

2.2.9. ROS Services .......................................................................................................................... 26 

2.3. Sensors ............................................................................................................................................... 26 

2.4. Turtlebot .............................................................................................................................................. 26 

2.5. Gazebo Simulator ............................................................................................................................... 27 

3. AR TECHNOLOGIES AND TOOLS ....................................................................... 29 

3.1. Reality Technologies.......................................................................................................................... 29 

3.1.1. Virtual Reality ................................................................................................................................ 29 

3.1.2. Augmented Reality ........................................................................................................................ 29 

3.1.3. Mixed Reality ................................................................................................................................. 30 

3.2. HoloLens Devices ............................................................................................................................... 31 

3.2.1. HoloLens 1st Gen .......................................................................................................................... 31 

3.2.2. HoloLens 2nd Gen......................................................................................................................... 33 

3.3. Tools for this application ................................................................................................................... 34 

3.3.1. Unity Engine .................................................................................................................................. 34 

3.3.2. Mixed Reality Toolkit (MRTK) ........................................................................................................ 35 

3.3.3. Visual Studio .................................................................................................................................. 36 

3.3.4. HoloLens Emulator for Windows ................................................................................................... 37 

3.4. HoloLens MR Concepts ..................................................................................................................... 37 



3.4.1. Holograms ..................................................................................................................................... 37 

3.4.2. Gaze .............................................................................................................................................. 38 

3.4.3. Gesture .......................................................................................................................................... 38 

3.4.3.1. The hand-tracking frame ............................................................................................................ 39 

3.4.3.2. Bloom ......................................................................................................................................... 40 

3.4.3.3. Air tap ......................................................................................................................................... 41 

3.4.3.4. Hand ray ..................................................................................................................................... 42 

3.4.3.5. Start Gesture .............................................................................................................................. 42 

4. RELATED WORK ................................................................................................... 44 

4.1. Robot teleoperation and control ....................................................................................................... 44 

4.2. Augmented Reality in navigation ...................................................................................................... 44 

4.3. HoloLens and User Experience ........................................................................................................ 45 

5. UNMANNED NAVIGATION USING AUGMENTED REALITY ............................... 47 

5.1. Problem Definition .............................................................................................................................. 47 

5.2. Challenges .......................................................................................................................................... 47 

5.2.1. Setting Up the turtlebot .................................................................................................................. 47 

5.2.2. AR application approach ............................................................................................................... 48 

5.2.2.1. Application Variables Input ......................................................................................................... 48 

5.2.2.2. Movement Controller .................................................................................................................. 48 

5.2.3. Technical Challenges .................................................................................................................... 48 

5.2.4. Middleware communication between AR and unmanned vehicle ................................................. 49 

5.3. Our application ................................................................................................................................... 50 

5.3.1. Turtlebot’s manipulation script ....................................................................................................... 50 

5.3.1.1. Movement ................................................................................................................................... 50 

5.3.1.2. Snap Photo ................................................................................................................................. 53 

5.3.2. AR Application ............................................................................................................................... 54 

5.3.2.1. User Interface ............................................................................................................................. 54 

5.3.2.2. Unity Application ......................................................................................................................... 58 

5.3.2.3. Script .......................................................................................................................................... 61 

5.3.3. Message Format ............................................................................................................................ 64 

6. EXPERIMENTS ...................................................................................................... 65 

6.1. Testing Robot’s Moving Script ......................................................................................................... 65 

6.2. Testing HoloLens Application ........................................................................................................... 65 

6.3. Putting it all together.......................................................................................................................... 66 

6.4. Measuring Latency and Position ...................................................................................................... 68 

6.5. Final Results ....................................................................................................................................... 68 

6.5.1. Experiment in Gazebo ................................................................................................................... 69 

6.5.2. Real Word Experiment .................................................................................................................. 70 



7. CONCLUSIONS ..................................................................................................... 73 

ABBRIVIATIONS – ACRONYMS ................................................................................. 74 

ANNEX I ........................................................................................................................ 75 

REFERENCES .............................................................................................................. 76 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



LIST OF FIGURES 

Figure 1 - Mars Rover ......................................................................................................... 17 

Figure 2 - Self-driving car ................................................................................................... 18 

Figure 3 - Military robot defusing a bomb ........................................................................... 19 

Figure 4 - Drone for consumers .......................................................................................... 20 

Figure 5 - Military drone ...................................................................................................... 20 

Figure 6 - Unmanned Boat ................................................................................................. 21 

Figure 7 - Prototype of an unmanned submarine ............................................................... 22 

Figure 8 - ROS flow chart ................................................................................................... 23 

Figure 9 - ROS topics graph ............................................................................................... 25 

Figure 10 - ROS Messages Table ...................................................................................... 25 

Figure 11 - ROS Master node flow chart ............................................................................ 26 

Figure 12 - Turtlebot2 ......................................................................................................... 27 

Figure 13 - Gazebo UI ........................................................................................................ 28 

Figure 14- Google Glasses ................................................................................................. 30 

Figure 15 - HoloLens 1st gen ............................................................................................. 31 

Figure 16- HoloLens components ....................................................................................... 32 

Figure 17 - HoloLens 2 ....................................................................................................... 34 

Figure 18 - MRTK Unity in play mode ................................................................................. 36 

Figure 19 - Working with Holograms .................................................................................. 38 

Figure 20 - Hand tracking frame ......................................................................................... 39 

Figure 21 - Bloom Gesture ................................................................................................. 40 

Figure 22 - Air tap gesture .................................................................................................. 41 

Figure 23 - Hand ray ........................................................................................................... 42 

Figure 24 - Start gesture ..................................................................................................... 42 

Figure 25 - Alternative start gesture ................................................................................... 43 

Figure 26 - Backend communication .................................................................................. 50 

Figure 27 - Axis of turtlebot's movement ............................................................................ 51 

Figure 28 - Movement script ............................................................................................... 51 

Figure 29 - Rotation script .................................................................................................. 52 

Figure 30 - Photo script ...................................................................................................... 53 

Figure 31 - Screenshot of the AR Application on HoloLens 2 ............................................. 54 



Figure 32 - Variables Panel ................................................................................................ 55 

Figure 33 - Screenshot of the variables panel in HoloLens 2 ............................................. 55 

Figure 34 - Controller UI ..................................................................................................... 56 

Figure 35 - Cross following head movement ...................................................................... 57 

Figure 36 - Cross following head movement in HoloLens 2 ............................................... 57 

Figure 37 - Unity scene hierarchy ....................................................................................... 58 

Figure 38 - Components of ControllerPanel ....................................................................... 59 

Figure 39 - Objects of VariablesPanel ................................................................................ 60 

Figure 40 - SceneManager components ............................................................................ 61 

Figure 41 - VariablesPanel buttons functions ..................................................................... 62 

Figure 42 - Sending variables script ................................................................................... 63 

Figure 43 - Forward command script .................................................................................. 63 

Figure 44 - Messages format .............................................................................................. 64 

Figure 45 - Android application UI ...................................................................................... 66 

Figure 46 - Holographic Emulation settings in Unity ........................................................... 67 

Figure 47 - Odometry consumer script ............................................................................... 68 

Figure 48 - Latency graph in Gazebo ................................................................................. 69 

Figure 49 - Position trajectory graph in Gazebo ................................................................. 70 

Figure 50 - Latency Graph .................................................................................................. 71 

Figure 51 - Latency probability density function .................................................................. 71 

Figure 52 - 3 axis graph of turtlebot's trajectory .................................................................. 72 

 

 

  



LIST OF TABLES 

Table 1 - Participants overall experience ............................................................................ 45 

Table 2 - The pros and cond of Hololens ............................................................................ 46 

 

 



Framework for autonomous navigation through MS HoloLenses 

 

15 
V. Iliopoulos - F. Theodoulou 

 

1. INTRODUCTION 
It will not be an overstatement if someone suggests that we live in a virtual era. Virtual Reality 
refers to the computer – generated objects and scenes that appear to be real, making the 
user feel they are immersed is his surroundings. Nowadays, you can produce everything you 
desire from a simple button to a 3D model of a skyscraper and deploy it to virtual machine 
and make it part of your environment. This virtualization leads to the next level of User 
Interface (UI) and User Experience (UX) in reference to the digital world. In this Thesis we 
focus on Augmented Reality (AR) as part of the virtual reality technologies. The key 
characteristic of AR is the mixed experience of real – time interaction with computer – 
generated objects enhancing a real – world environment. 
The advantages of AR were tested in this Thesis by creating an AR control panel for machine 
navigation. And what a better option than navigating an unmanned vehicle. Unmanned 
vehicles core characteristic is that their navigation is either remote controlled or autonomous. 
This translates to a no need for human presence on board. Additionally, endurance and 
multimedia streaming are great UV assets. The technological breakthroughs that occurred 
in the last years and the work that has been put together for the evolution of UVs, significantly 
expand the possible uses of UVs. Some of the most common use cases are autonomous 
travel and navigation systems and support crisis management activities. For instance, an 
unmanned ground vehicle (UGV) with an attached grip can help the safe removal of 
wreckages in order to find survivors. 

In several missions, these activities need to be operated by a skilled person, as the smallest 
mistake could prove fatal. On the other hand, the actor should be many meters away from 
the wreckage site without risking his own life. Here is where the cooperation of an AR UI and 
a UV delivers the best. A very detailed UI, with 360 degrees’ grip rotation controller, 
movement control of the UV and live video streaming feedback from the UV’s cameras, 
results to an easy accomplishment of this high-risk operation, making the best use of the 
actors’ skills, without putting his life at risk. 

The goal of this Thesis is the remote control of UGV with AR UI control and what assets 
brings to the table. In this research, a user-friendly AR UI was created for the movement 
control of a small, unmanned ground vehicle (UGV). The UGV that was used is a turtlebot, 
operating ROS. The AR application was deployed in Microsoft HoloLens AR headset. Such 
a device gives the best user experience regarding the real-environment and AR interaction. 
A movement algorithm was also created, for the turtlebot, to translate the AR commands into 
robot’s actual movement. In section 2 a Robotic Operating System (ROS) used for the 
controlled UGV is presented. In section 3 we dive into the concepts, the technologies and 
the philosophy behind the AR. We continue in section 4 where related research, considering 
innovative ways of robotic navigation and AR navigation applications, is exhibited. In section 
5 our idea and work behind the AR UI and the robotic movement is explained. Lastly, in 
section 6 the experiments that took place and their data are presented and explained. 
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2. ROS AND UNMANNED DEVICES 

2.1. Definition of Unmanned Vehicles 

An unmanned vehicle is defined as a vehicle that operates without an onboard human 
presence (which need no person on board in order to be operated). The operation and 
control of the unmanned vehicles can be handled remotely by a distant source. For example, 
an operator in a distant room, with the use of a computer could send commands in the form 
of messages through a streaming platform like Kafka. An unmanned vehicle can also operate 
autonomously with the help of installed sensors, by running algorithms in order to make the 
most out of the incoming sensors data. In this Thesis we worked with the first type of 
unmanned vehicles. 

The remote-controlled vehicles can be teleoperated either by a person that has the vehicle 
inside his field of view and in logical range for the human to keep track of the vehicle or by a 
user who is located far away from the vehicle, even in an isolated computer room, having no 
physical eye contact with it. Of course, for the second scenario to be successful, a live video 
stream of the vehicle’s environment and surroundings is obligatory. In the last years, a huge 
portion of the scientific community is working to find efficient and innovative ways to 
teleoperate unmanned vehicles as the vehicles have many uses such as exploration of 
space and deep ocean, military and law enforcement, hobby and many others. In this Thesis 
we developed a framework and ran experiments where the user had visual contact with the 
vehicle via AR toolkit to operate it correctly. The navigation and the obstacle avoidance are 
based only on the user’s commands and perception. 

The types of unmanned vehicles differ depending to the environment in which they are meant 
to be navigated. Those are the Unmanned Ground Vehicles (UGVs), unmanned aerial 
vehicles (UAVs or drones), unmanned sea surface vehicles (USSVs/USVs) and the 
unmanned underwater vehicles (UUVs), also known as underwater drones. 

 
2.1.1. Unmanned Ground Vehicles 

Unmanned Ground Vehicles (UGVs) [1] are robotic vehicles that operate on the ground 
without an onboard human operator. A UGV may be remotely controlled by a human actor 
or operate autonomously with the help of installed sensors and implemented algorithms. The 
use of the UGVs is considered necessary in environments that are hazardous to humans 
and for tasks that pose great risk. UGVs use covers a vast area of professions both of civilian 
and military interests. For instance, the exploration of Mars would have impossible if it were 
not for the three-special designed UGVs. The Figure shows one of the three UGVs that 
where send to Mars and the one that had the biggest lifespan. 
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Figure 1 - Mars Rover 

 

Nowadays the majority of automobile manufacturers in cooperation with scientists all over 
the world focus their efforts on creating and perfecting self-driving cars that will be the future 
of human transportation, always acting in pursuit of the passenger’s safety. The original idea 
in 1921 was the construction of a remotely controlled car and since then the idea continues 
to evolve. 
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Figure 2 - Self-driving car 

 

 

As mentioned above there is a huge variety of UGVs that are used for military purposes. In 
Figure 3 a military vehicle is shown. 
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Figure 3 - Military robot defusing a bomb 

 

 

2.1.2. Unmanned Aerial Vehicles 

Unmanned Aerial Vehicles (UAVs) [1], commonly known as drones, are aircrafts of each size 
that do not have a human pilot boarded. The UAV’s flight can be controlled by a human actor 
or it can be fully autonomous. The use of drones, like the majority of unmanned vehicles, 
was initially targeted for military purposes, however they have become the one of the most 
commonly used unmanned vehicle. Nowadays the use of drones covers a vast area of 
professions that simplifies as well as entertainment reasons. In the Figures 4 and 5 examples 
of UAVs are shown. 
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Figure 4 - Drone for consumers 

 

 

 

 

Figure 5 - Military drone 
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2.1.3. Unmanned Surface Vehicles 

Unmanned Surface Vehicles (USVs) [2], also known as surface drones, are boats that 
operate without a human on board. In most cases USVs are controlled remotely by a human 
operator, who is in land. The use of USVs focuses on military missions, oceanography, and 
seaweed farming. Furthermore, USVs are the future of cargo shipment. In Figure 6 an 
example of USV is shown 

 

 

 

Figure 6 - Unmanned Boat 

 

 

2.1.4. Unmanned Underwater Vehicles 

Unmanned Underwater Vehicles (UUVs), also known as underwater drones, are 
submarine like vehicles that operate underwater without any human on board. The control 
of UUVs could either be remote by a human actor or autonomous. UUVs are used mainly 
for military missions and deep-exploration and research. In Figure 7 an example of UUV is 
shown 
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Figure 7 - Prototype of an unmanned submarine 

 

2.2. Robotic Operation System – ROS 

From space robot missions to autonomous self-driving cars, industrial assembly, and 
surgery, it is obvious that robotics and automation play an essential role to our modern way 
of life. The progress both in hardware and software development is significant, resulting on 
making available a wide variety of robots to every human for many professions and uses. 
Regardless the significant progress that has been noted, software development has still 
many challenges to cope with. The lack of uniformity, the reuse of code and distribution of 
computations are some of the most crucial challenges that we came across. A proposed 
solution to these challenges is a software platform called Robot Operating System (ROS). 

 

2.2.1. Definition of ROS 

Robot Operating System (ROS) is a software framework for operating robots [3] [4]. It is an 
open-source, meta-operating system, that assumes there is an underlying operating system 
that runs alongside. It means that it is not an operating system in the traditional sense, as it 
provides many of the expected services of an operating system, including hardware 
abstraction, message-passing between processes and package management, but not the 
core functionalities that an operating system is supposed to provide. It also provides tools 
and libraries that helps you build, write, and run your project’s code across multiple 
computers. 

It is essential to highlight that ROS due to its open-source nature, needs its underlying 
operating system to be also easily modified and open-source. That leads Linux to be the 
best OS candidate. 

The main advantages of ROS [3] are: 

1. Peer-to-peer communication: ROS provides a simple and reliable mechanism for 
communication between processes in a peer-to-peer architecture, that enables each 
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component to communicate with any other. That results on the avoidance of traffic in a link 
which leads to prevention of errors. 

2. Open Source: The open-source feature provides reuse of already written code by other 
users. In addition, the most important algorithms of the robot’s operation are provided in 
ROS’s standard package as well to several other ROS packages. This great tool helps 
developers to focus on their real problem without worrying of reinventing the wheel every 
time. 

3. Testing: Testing the created code and algorithms is always a tricky and inevitable stage 
of the developer’s process. Running experiments and tests on physical robotic systems 
might be difficult or time and fund consuming. ROS provides specially designed simulators 
and a simple way of recording data, which aim to overcome the aforementioned problems 
and enhance the testing experience 

ROS is maybe the most supported robotic software environment by the scientific community. 
ROS is certified for both industrial and university research. These and many other reasons 
lead us to choose ROS over the other platforms. The fundamental concepts that ROS uses 
are the packages, nodes, topics, messages, and services. 

 

 

 

 

Figure 8 - ROS flow chart 
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2.2.2. ROS packages 

ROS code and software is catalogued into packages. A ROS package is a directory that 
contains numerous executables and supporting files. Such files are ROS nodes, a ROS-
independent library, a dataset, configuration files, a third-party piece of software. A package 
is the smallest unit of build and release. The software packaging aims to the easier consume 
and maintenance of the code as well as its reuse. A ROS package should contain only the 
necessary, following ROS thin architecture. It also simplifies other software to use it. 

2.2.3. ROS Stack 

Similar ROS packages are collected thematically into ROS stacks. Stacks are the basic 
releasing and sharing unit of ROS code. Stacks are meant to bundle together code that 
delivers a certain functionality. Unlike traditional software libraries, ROS stacks are able to 
add functionality through topics and services, while the robot’s program is running. Stacks 
have version and can declare dependencies on other stacks. Every stack is a directory that 
among others has a Stack manifest (stack.xml), which is a file that contains information about 
the stack and the dependencies to other stacks. 

2.2.4. ROS Catkin 

Catkin is the ROS build system. It is a set of tools that is responsible for creating executable 
programs, libraries, scripts, and interfaces that are easily distributed and usable. 

2.2.5. ROS Nodes 

ROS’s overall architecture follows the thin philosophy, of categorizing the code into small 
independent pieces. In order to achieve it, ROS has a tool named nodes. Everything in ROS 
is made with nodes. Essentially, node is a process in which computations are performed. 
Each node is responsible for a specific task of the robot’s manipulation, for instance one 
node is responsible for the robot’s navigation and another for the robot’s camera. Nodes 
have an inter-communication system which relies mostly on topics. 

Nodes are proven to be greatly beneficial for the overall robotic system. If one node crashes, 
the other nodes will continue to work correctly, as nodes do not have direct links with each 
other. In addition, it is accepted fact that running and testing only smaller parts of a huge 
application speeds up the debugging process and development time. Finally, the code 
complexity is significantly reduced. 

2.2.6. ROS Topics 

ROS topics are named buses which nodes use for their communication. Basically, the 
transfer of data in form of ROS messages takes place through topics. Each topic has 
publisher and subscriber nodes. If a node that generates data wants to share them, it 
publishes the data to a topic and whomever node needs them, subscribes to it, and 
consumes the messages. Every topic has a specific type which is equivalent to the message 
type that the topic transmits. 
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Figure 9 - ROS topics graph 

 

2.2.7. ROS Messages 

The communication between nodes is achieved by exchanging messages through topics. A 
message is created by a publisher node and consumed by one or plenty subscriber nodes. 
Each message has its type strictly specified. There are standard message types supported 
in ROS, but others could be created. A msg file is created for the definition of each message 
type, standard or custom. 

 

 

Figure 10 - ROS Messages Table 
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2.2.8. Master Node 

For the correct functioning of the ROS, some challenging and complex operations should 
take place, such as the message exchange and communication between nodes and the 
synchronous running of all nodes. ROS master make it possible. With command “roscore” 
the Master node will start. Master node must be functioning the entire time ROS is used and 
before any code execution [4]. 

 

 

 

Figure 11 - ROS Master node flow chart 

 

 

2.2.9. ROS Services 

Communication in ROS is topic-based. This “broadcast” philosophy is not suitable for 
synchronous transactions between nodes. In ROS, this situation is solved with the services. 
Service is pair of defined messages: one for the request and one for the response. A service 
is provided via a string name. Services are defined in a srv file. 

2.3. Sensors 

Unmanned vehicles and robot systems, in order to operate correctly in every environment 
and perform requested tasks, need sensors. For instance, in a robot’s navigation system a 
lidar or camera would be considered essential. In this Thesis, a Kinect camera was used, for 
the exploration of the world and picture capturing of the surroundings. 

2.4. Turtlebot 

Turtlebot [5] is a small, low-cost, programmable, ROS standard mobile robot. Turtlebot finds 
applications in numerous fields such as education, research, new software development and 
hobby. It belongs to the category of unmanned ground vehicles (UGVs). Turtlebot is 
embodied with a mobile base for its movement and several sensors like camera and Kinect 
for proper navigation and data collection. To be functional, it needs an external unit that runs 
ROS and connects with the sensors, such as a Rasberry Pi. In this Thesis the Turtlebot 2 
was used, as the Kinect camera is pre-installed, which we used for capturing photos. A 
turtlebot 2 is shown in Figure. 
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Figure 12 - Turtlebot2 

 

2.5. Gazebo Simulator 

A well-designed simulator is an essential tool for every person who is involved into robotics. 
A well-designed simulator significantly reduces the test and debug time, as developers test 
their algorithms easily. Developers have the ability to test and create numerous robotic 
systems and environments. It also provides user-friendly graphical and straightforward 
programmatic interfaces. In this Thesis, Gazebo simulator was used to test the code on 
turtlebot 2. Gazebo is considered as the leader in robotic community. 

In order to achieve the connection between ROS and Gazebo simulator, some ROS 
packages have to be optained. This particular set of packages is called gazebo_ros_pkgs 
and it is essential for the robot and environment creation and simulation. At the installation 
of ROS, gazebo_ros_pkgs comes with default files. The command that starts Gazebo 
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simulator is roslaunchturtlebot_gazeboturtlebot_world.launch. In Figure 13 a simulated 
environment with turtlebot 2 is shown. 

 

 

Figure 13 - Gazebo UI 
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3. AR TECHNOLOGIES AND TOOLS 
 

3.1.  Reality Technologies 

In this chapter we will go over the three reality technologies: Virtual Reality, Augmented 
Reality and Mixed Reality. 

3.1.1. Virtual Reality 

Virtual Reality [6] as technology immerses users in a completely virtual environment that is 
generated by a computer. There is no connection with the real world around the user. There 
are different levels on how much immersive a virtual reality experience can be. A basic virtual 
reality experience comes as a simple VR video. The most advanced VR experiences even 
provide freedom of movement, where users can move in a digital environment and hear 
sounds. Moreover, special hand controllers can be used to enhance VR experiences. 

The origins of the term virtual reality is hard to trace, because it was used with many 
meanings in the past. The first VR technologies were developed between 1970 to1990. The 
virtual reality industry mainly provided VR devices for medical, flight simulation, automobile 
industry design, and military training purposes. In the 90’s the VR technology moved into the 
gaming world, with Sega announcing the first gaming VR hardware. Even though a lot of 
companies had interest in this technology, the hardware wasn’t affordable, so it wasn’t really 
popular. The years that followed, from2000 to 2020, were the years that VR became 
accepted by the general public, for educational and gaming reasons. The hardware became 
affordable and consumers showed interest. In 2010, Palmer Luckey designed the first 
prototype of the Oculus Rift and the products under this brand name were the first massively 
consumed VR products, for gaming reasons. 

Today, VR headsets are also a consumer product for entertainment and education, but also 
a tool used in science research.  Most VR headsets are connected to a computer (Oculus 
Rift) or a gaming console (PlayStation VR) but there are standalone devices (Google 
Cardboard is among the most popular) as well. Most standalone VR headsets work in 
combination with smartphone. 

3.1.2. Augmented Reality 

In augmented reality [7], users see and interact with the real world while digital content is 
added to it. The primary value of augmented reality is the way in which components of the 
digital world blend into a person's perception of the real world, not as a simple display of 
data, but through the integration of immersive sensations, which are perceived as natural 
parts of an environment. The earliest functional AR systems that provided immersive mixed 
reality experiences for users were invented in the early 1990s, starting with the Virtual 
Fixtures system developed at the U.S. Air Force's Armstrong Laboratory in 1992. 
Commercial augmented reality experiences were first introduced in entertainment and 
gaming businesses. Subsequently, augmented reality applications have spanned 
commercial industries such as education, communications, medicine, and entertainment. In 
education, content may be accessed by scanning or viewing an image with a mobile device 
or by using markerless AR techniques. Augmented reality (AR) differs from virtual reality 
(VR) in the sense that in AR part of the surrounding environment is actually 'real' and just 
adding layers of virtual objects to the real environment. On the other hand, in VR the 
surrounding environment is completely virtual. If you own a modern smartphone, you can 
easily download an AR app and try this technology. There is a different way to experience 
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augmented reality, though, with special AR headsets, such as Google Glass, where digital 
content is displayed on a tiny screen in front of a user’s eye. 

 

 
Figure 14- Google Glasses 

 
3.1.3. Mixed Reality 

Mixed reality (MR) [7] is the merging of real and virtual worlds to produce new environments 
and visualizations, where physical and digital objects co-exist and interact in real time. Mixed 
reality does not exclusively take place in either the physical or virtual world, but is a hybrid 
of reality and virtual reality. It may sound similar to AR, but the main difference between MR 
and AR is that in an MR application you can interact with the virtual objects. Just like in AR, 
the virtual objects can interact with the physical ones, for example a hologram sitting on a 
surface like a table [14]. Microsoft was one of the first companies that embraced this 
technology. They developed HoloLens 1 in 2016 and HoloLens 2 in 2019. 
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3.2.  HoloLens Devices 

Microsoft HoloLens are a pair of mixed reality smart glasses developed and manufactured 
by Microsoft. As of today, there are two versions, HoloLens 1st Gen and HoloLens 2 (or 
HoloLens 2nd Gen). 

3.2.1. HoloLens 1st Gen 

Microsoft HoloLens (1st gen) [8] is the world's first fully untethered holographic computer. 
HoloLens blends cutting-edge optics and sensors to deliver 3D holograms pinned to the real 
world around you. HoloLens was the first head-mounted display running the Windows Mixed 
Reality platform under the Windows 10 computer operating system. The tracking technology 
used in HoloLens can trace its lineage to Kinect. 

 

 

Figure 15 - HoloLens 1st gen 

 

The device capabilities that support the MR functionality are: 

Using the following to understand user actions: 

 Gaze tracking 
 Gesture input 
 Voice Support 
Using the following to understand the environment: 

 Spatial sound 
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Figure 16- HoloLens components 

 

As of 2016, a number of augmented-reality applications have been announced or showcased for Microsoft 
HoloLens. A collection of applications will be provided for free for developers purchasing the Microsoft HoloLens 
Developer Edition. Applications available at launch include: 

 Cortana, Microsoft's virtual assistant. 

 Holograms, a catalog of a variety of 3D objects that users can place and scale around 
them; ranging from tigers and cats to space shuttles and planets. 

 HoloStudio, a full-scale 3D modeling application by Microsoft with 3D print compatibility. 

 CAE VimedixAR is a commercial application of Microsoft HoloLens technology that enables 
immersive simulation-based training in ultrasound and anatomical education through 
augmented reality for increased patient safety and enhanced learning. 

 An implementation of the Skype telecommunications application by Microsoft. Any user 
with Skype on his or her regular devices like PC, Mobile etc. can dial user on HoloLens and 
communicate with each other. With Video Call On, the user on PC will see the view HoloLens 
user is seeing and HoloLens user will see view captured by PC / Mobile device user camera. 

 HoloTour, an audiovisual three-dimensional virtual tourism application developer by 
Microsoft and Asobo Studio. 
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 Fragments, a high-tech crime thriller adventure game developed by Microsoft and Asobo 
Studio, in which the player engages in crime-solving. 

 Young Conker, a platform game developed by Microsoft and Asobo Studio, featuring a 
young version of Conker the Squirrel. 

 RoboRaid (previously code-named "Project X-Ray"), an augmented-reality first-person 
shooter game by Microsoft in which the player defends against a robot invasion, aiming the 
weapon via gaze, and shooting via the Clicker button or an air tap. 

 Actiongram, an application for staging and recording short video clips of simple mixed-
reality presentations using pre-made 3D virtual assets, will be released in summer 2016 in 
the United States and Canada. 

 In November, 2018, Microsoft announced that it is readying HoloLens for combat. The 
company won a $480 million military contract with the U.S. government to bring AR headset 
tech into the weapons repertoire of American soldiers 

3.2.2. HoloLens 2nd Gen 

The second generation came to fix some of the issuses of the first one. In general the 
components of the device and the functionality remained the same, but with some big 
improvements.Some of the main improvements with the HoloLens 2 MR headset include: 
 Processing power: with its Snapdragon 850 Compute Platform, the HoloLens 2 is more 
powerful than its predecessor. 

 FOV: at 52°, the HoloLens 2’s field of view is larger, offering a more immersive MR 
experience for the user. The original HoloLens only has an FOV of 30°. 

 Battery life: The HoloLens 2 features a 3-hour battery life, while the HoloLens 1 has a 2.5-
hour battery life. 

 Design and fit: according to Microsoft, the HoloLens 2 offers a lighter and more ergonomic 
fit than the original HoloLens. The HMD also now features a flip-up visor which allows users 
to enter/exit mixed reality more quickly [9]. 
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Figure 17 - HoloLens 2 

 

Even though initially this application was meant target the 2nd generation HoloLens,  the 
application was developed and tested for both 2nd and 1st generation of HoloLens devices. 
More on that in sections 5 and 6. 

3.3.  Tools for this application 

This section goes over the tools that were used in the development of this project. 

3.3.1. Unity Engine 

Unity [10] is one of the most popular game engines in the market, but its capabilities don’t 
stop at developing games. It packs a ton of features together and is flexible enough to make 
almost any game or application you can imagine. When it comes down to creating an MR 
application, that can be deployed to the HoloLens hardware, Unity is the only choice. This is 
because the MRTK library, created by Microsoft, was designed for Unity. Unity is a tool 
constantly updating and this was useful many times in order to fix bugs and problems that 
halted the development of the application many times. However, it was also possible that 
these updates could cause serious issues and force the developers to make changes to the 
project in order to make it buildable again. Therefore, the correct configuration is very 
important in order to make the application work. 
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For this application MRTK 2.5 was used, which is the currently latest version, so the 
appropriate Unity version had to be used as well. MRTKS’s official repository at GitHub 
states that: “for MRTK 2.5 Unity 2018.4.13f1 or later is strongly recommended for customers 
using Unity 2018. Earlier versions of Unity 2018.4 are still supported but now require extra 
steps to set up and to upgrade to Unity 2019.”. That is the reason why Unity 2018.4.13f1 was 
used, or in other words Unity 2018 LTS, for the development of this project. During the initial 
stages of the project, we tested the robot communication through ROS topics integrated in 
a message bus platform, i.e. Apache KAFKA, and handled by a mobile application, instead 
of the HoloLens glasses. In order to develop the needed android application, Unity 2019 LTS 
was used, because Unity 2018 LTS lacked some necessary libraries, which are needed to 
make an app that can be deployed to an android mobile phone. 

3.3.2. Mixed Reality Toolkit (MRTK) 

MRTK for Unity [11] [12] is an open-source, cross-platform development kit for mixed reality 
applications. The toolkit provides a cross-platform input system, foundational components, 
and common building blocks for spatial interactions. MRTK version 2 intends to speed up 
application development for Microsoft HoloLens, Windows Mixed Reality immersive (VR) 
headsets, and OpenVR platform. 

The predecessor of the MRTK is the HoloKit, which was created for HoloLens 1st Gen. With 
the release of HoloLens 2 the MRTK plugin was created for Unity. Even though its release 
was for HoloLens 2, its compatible with all of the HoloLens generations. For this thesis the 
currently latest MRTK, which is MRTK version 2.5, was used.  

The MRTK consists of 5 Unity asset packages, which are provided by the official Microsoft 
repository at GitHub. These are: 

1. Foundation: 

The Mixed Reality Toolkit Foundation is the set of code that enables your application to 
leverage common functionality across Mixed Reality Platforms. 

2. Extensions 

The optional Microsoft.MixedRealityToolkit.Unity.Extensions package includes additional 
services that extend the functionality of the Microsoft Mixed Reality Toolkit. These additional 
services are about hand physics and scenes transitioning and more. 

3. Tools 

The optional Microsoft.MixedRealityToolkit.Unity.Tools package includes helpful tools that 
enhance the mixed reality development experience using the Microsoft Mixed Reality Toolkit. 

4. Test utilities 

The optional test utilities package (com.microsoft.mixedreality.toolkit.testutilities) contains a 
collection of helper scripts that enable developers to easily create play mode tests. These 
utilities are especially useful for developers creating MRTK components. 

5. Examples 

The examples package (com.microsoft.mixedreality.toolkit.examples), is structured to allow 
developers to import only the examples of interest. 
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One of the greatest features of MRTK is that it provides an interface to test your HoloLens 
application in the Unity Editor. When MRTK is imported to Unity Editor, the play mode of 
Unity becomes a simulation of the HoloLens experience. The in-editor input simulation allows 
you to test virtual object behavior given a specific type of input such as hands or eyes. This 
simulation takes input from keyboard. This feature accelerated the development of this 
project greatly because it gives the developer the ability to quickly test his project without 
having to build and deploy it every time. 
 

 
Figure 18 - MRTK Unity in play mode 

 

This input simulation also provides some metrics about the performance as shown in the above picture. That 
grey box that follows you around in the simulated scene is called visual profiler. This is a diagnostic tool which 
gives real-time information about the current FPS and memory usage in application view. The Visual Profiler 
can be configured via the Diagnostics System Settings under the MRTK Profiles Inspector. It is important to 
always keep track of the frame rate and the memory usage like this because It is important to meet the target 
framerate, as outlined by the platform being targeted (i.e., Windows Mixed Reality, Oculus, etc.). For example, 
on HoloLens, the target framerate is 60 FPS. Low framerate applications can result in deteriorated user 
experiences such as worsened hologram stabilization, world tracking, hand tracking, and more. 

3.3.3. Visual Studio 

Microsoft Visual Studio is an IDE from Microsoft, which is used to develop computer 
programs, as well as websites, web apps, web services and mobile apps. It can produce 
both native code and managed code. Visual Studio includes a code editor supporting 
IntelliSense (the code completion component) as well as code refactoring. The integrated 
debugger works both as a source-level debugger and a machine-level debugger. Other built-
in tools include a code profiler, designer for building GUI applications, web designer, class 
designer, and database schema designer. It accepts plug-ins that expand the functionality 
at almost every level, including adding support for source control systems (like Git) and 
adding new toolsets like editors and visual designers for domain-specific languages or 
toolsets for other aspects of the software development lifecycle. Visual Studio supports 36 
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different programming languages and allows the code editor and debugger to support (to 
varying degrees) nearly any programming language, provided a language-specific service 
exists. 

By default, the Unity editor installation package comes with a version of Visual Studio. 
Compilers and tools for developing applications in Unity are automatically downloaded and 
set. The Unity Editor offers many platform configurations, and it is easy to switch between 
platforms. Then, the editor automatically configures the visual studio project in order to start 
the applications development. Unity 2018.4.13f1, which we used, comes with the commercial 
version of Visual Studio of 2017, but we decided to use the latest version, Visual Studio 2019 
commercial, in order to build and deploy the application. 

The build procedure from Unity prepares the solution that is needed from Visual Studio. And 
afterwards the Visual studio compiles the solution with the ILL2CPP compiler and builds the 
solution to create all the necessary dll files. When this procedure is completed then the 
application is ready to be deployed to the device. 

3.3.4. HoloLens Emulator for Windows 

The HoloLens Emulator lets you test holographic applications on your PC without a physical 
HoloLens, including the HoloLens development toolset. The emulator uses a Hyper-V virtual 
machine, which means human and environmental inputs being read by HoloLens sensors 
are simulated from your keyboard, mouse, or Xbox controller. You don't even need to modify 
your projects to run on the emulator, the app doesn't know it isn't running on a real HoloLens. 

3.4.  HoloLens MR Concepts 

The basic concepts in order for someone to understand how our application works or any 
MR application works, are presented here. The user input to the HoloLens has the form of 
gestures, gaze, and voice commands. The user input can be used to manipulate the 
holograms in an application. Gestures, and input in general, have some differences between 
the first gen HoloLens and the second gen The main gestures for both generations are 
presented in this section. 

3.4.1. Holograms 

HoloLens lets you create holograms, which are objects made of light and sound that appear 
in the world around you like real objects. Holograms respond to your gaze, gestures, and 
voice commands. They can even interact with real-world surfaces around you. With 
holograms, you can create digital objects that are part of your world. The holograms that 
HoloLens renders appear in the holographic frame directly in front of the user's eyes. 
Holograms add light to your world, which means that you see both the light from the display 
and the light from your surroundings. When you have a particular location for a hologram, 
you can place it precisely at that point in the world. As you walk around, the hologram 
appears stable based on the world around you. If you use a spatial anchor to pin the object, 
the system can even remember where you left it when you come back later. Some holograms 
follow the user instead, positioning themselves based on the user no matter where they walk. 
You may even choose to bring a hologram with you for a while and then place it on the wall 
once you get to another room. 
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Figure 19 - Working with Holograms 

 

3.4.2. Gaze 

Gaze [13] is a form of input that interacts with the world based on where the user is looking. 
Gaze exists in two different ways, head gaze and eye gaze. Head gaze is based on the 
direction that the head/camera is looking at. Head gaze is active on systems that don't 
support eye gaze, or in cases where the hardware may support eye gaze, but the right set 
of permissions and setup has not been performed. Head gaze is usually associated with 
HoloLens 1 style interactions involving looking at object by placing it in the center of the 
Holographic Frame and then performing the air tap gesture. On the other hand, eye gaze is 
based on where the user's eyes are looking. Eye gaze is only present on systems that 
support eye tracking. This type of gaze was introduced with the HoloLens 2. While using the 
HoloLens, there is a circle-pointer indicator which reflects where the user gazes at.  You use 
gaze to target an item, and then act on that selection by using a gesture. Gazing is when the 
user moves his head to the desired direction and not just his eyes. The cursor will follow the 
direction the user gazes at. 
3.4.3. Gesture 

The user controls the HoloLens UI by his hand’s gestures. Hand-tracking frame and air tap 
apply both to the 1st and 2nd generation of HoloLens device, while the bloom can only be 
used in the 1st gen of HoloLens. The rest were implemented with the release of HoloLens 2 
[13]. 
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3.4.3.1. The hand-tracking frame 

HoloLens has sensors that can see a few feet to either side of you. When you use your 
hands, you'll need to keep them inside that frame, or HoloLens won't see them. As you move 
around, the frame moves with you. 

 

 

Figure 20 - Hand tracking frame 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Framework for autonomous navigation through MS HoloLenses 

 

40 
V. Iliopoulos - F. Theodoulou 

 

3.4.3.2. Bloom 

You can bring all of your fingers together then open your hand, this is called bloom and it is 
used to open the start menu. 

 

 

 

Figure 21 - Bloom Gesture 
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3.4.3.3. Air tap 

To select an app or other hologram, air tap it while looking directly at the hologram you're 
selecting. To do this, gaze at the hologram you want to select, point your index finger straight 
up toward the ceiling and air tap, by lowering your finger and then quickly raising it. 

 

 

 

Figure 22 - Air tap gesture 
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3.4.3.4. Hand ray 

To use a hand ray, hold your hand in front of you, with your palm facing away. A laser pointer 
(hand ray) appears. After you target an item with your hand ray, you can act on that target 
in different ways, like manipulating it. 

 

Figure 23 - Hand ray 

3.4.3.5. Start Gesture 

This replaced the bloom gesture with the release of HoloLens 2.  The Start gesture opens 

the Start menu. To perform the Start gesture, hold out your hand with your palm facing you. 

You’ll see a Start icon appear over your inner wrist. Tap this icon using your other hand. 

The Start menu will open where you’re looking. 

 

Figure 24 - Start gesture 
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You can also perform the Start gesture with only one hand. To do this, hold out your hand 
with your palm facing you and look at the Start icon on your inner wrist. While keeping your 
eye on the icon, pinch your thumb and index finger together. This is called One-handed Start 
gesture. 

 

 

Figure 25 - Alternative start gesture 
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4. RELATED WORK 

4.1. Robot teleoperation and control 

When dealing with remotely controlled unmanned vehicles, one of the most important issues 
is the teleoperation. While the evolution of robotics continues, many new technologies and 
innovations flourish. With the aid of those technologies and ideas, the human-robot 
experience reaches new levels. Discovering ways to make the robot’s teleoperation 
effortless for the human operators, towards their perception and operative actions, is the 
main concern of the scientific community working on this field of robotics. A proposed 
approach [14] is teleoperation of a robot using motion detection and tracking sensors. Such 
sensor is the Kinect. Thus, human actors rely just on their movement and body motion in 
order to manipulate the robot. 

Another suggested solution [15] [16], very familiar to the human nature and actions, is the 
speech and gesture recognition for the teleoperation of a robot. In order, to achieve the 
speech recognition it is essential to create a formalized speech model, which translates the 
human speech in robot’s commands. On the other hand, the gesture recognition will be 
successful with the use of machine learning, in order to translate the various gestures in 
robot commands. Of course, a movement and speech sensor, like Kinect, is required. 

Instead of teleoperating the unmanned vehicle via single commands i.e., move forward, turn 
left, turn right etc., the human operator has the ability to provide the robot a specific route to 
follow. The aforementioned concept can be accomplished using sketch interfaces [17]. A 
simple representation of the robot’s environment can be represented to the sketch UI, giving 
the opportunity to the operator to design collision-effective routes. 

The introduction of Augmented Reality, provides numerous innovative concepts concerning 
the human-robot-interaction and the teleoperation process. Advances in AR technology, 
offer a more intuitive and natural interaction between human actors and robots. In addition, 
the new possibilities that the virtual technology offers increase the efficacy of the robot 
operation. On the other hand, errors and misconception are dribbled as AR offers real-time 
response. The most common approaches regarding the control and the teleoperation system 
[18] [19], is the design and use of virtual created control panels. This approach finds 
application also to the industrial spectrum, considering that robotic teleoperation is the key 
to a new industrial revolution.  Of course, the design of such controllers, is considered 
beneficial due to the fact that the operator does not need to lose care of his surroundings. 
This approach is followed in this Thesis. 

4.2. Augmented Reality in navigation 

Augmented Reality (AR), is considered by many, the technological tool of the future. The 
ability to provide to the users virtual interfaces without isolating them from their environment 
is AR’s greatest asset. Taking into consideration and the real-time interaction of the user with 
the virtual graphics, AR is the best candidate for the enhancement of the human navigation 
[20]. This approach, follows the logic of GPS, but in a significant smaller scale as it refers to 
indoor navigation. The user navigates himself on his environment following the visual 
directions of the AR interface, in the form of directional arrows. 

Augmented Reality’s visual graphics can also amplify the autonomous robotic navigation 
process [21] [22]. Projected virtual signs compose the feed of special designed algorithms, 
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in order to optimize the robot’s navigation [22]. Furthermore, special designed icons could 
be projected in order to be consumed by installed sensors at the robotic vehicle, like infrared 
sensor, and design a path for the robot to follow [21]. 

Augmented reality could pose a great assistant for the human understanding, regarding the 
robot’s actions and movement [23]. A special designed AR interface, on the human side of 
the human-robot-interaction (HRI), projects the real-time position of the robot and the 
designed paths in its environment. 

4.3. HoloLens and User Experience 

It is already well stated that Augmented Reality is introduced to the world as a revolutionary 
technology, designed to solve problems and not create new ones. AR will elevate the user 
experience in many aspects of life. Microsoft HoloLens goggles is considered the most 
innovative and well-designed device, that represents the AR community, so it is reasonable 
that this device will be used for the introduction of users to the AR world. Of course, in cases 
where HoloLens is used in applications of enhancing and simplifying job tasks, user feedback 
is essential for proving HoloLens’ capabilities and advantages. [24] 

 

 

Table 1 - Participants overall experience 

Positive descriptions Negative descriptions 

Interesting (4 times) Frustrating (2 times) 

Useful (2 times) Embarrassing 

Easy (2 times)  

Fun  

Nice  

Engaging  

Quite innovative  

Great  

Addictive  

Stimulating  
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Table 2 - The pros and cond of Hololens 

Pros Cons 

Comfortable (2 times) Vision is limited/narrow view (3 times) 

Engaging (2 times) Bulky 

Light Doesn’t look that cool 

Useful Too complicated 

Interactive It didn’t understand me sometimes 
(speech recognition) 

Futuristic The task list was too far 

Easy to use Text fonts hard to read, size is ok 

Worked better than I thought, the way it 
followed my movements 

Placement of content is obstructive 

Tracking is really good Have to be careful of real world 
collisions and objects in case of 
accident. Needs warnings when 

moving. Needs clear space without 
hazards 

Gesture recognition Negative I don’t have 

Resolution For creating recording, the process 
could be more intuitive 

Overall task was easy to perform  

Useful to d without instructor  

Recording gives several tools that are 
useful for building a training session 

 

Overlap of Virtual and Real (AR) is 
good 

 

Involving  
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5. UNMANNED NAVIGATION USING AUGMENTED REALITY 

5.1.  Problem Definition 

Critical infrastructures require regular inspections, maintenance, but also safe demolition and 
fast intervention in case of disasters. This kind of operations usually involves tasks of a great 
danger for the workers employed, but also for the nearby population in general. Particularly 
demolition and disaster intervention can turn out to be extremely dangerous if some of the 
demanded precautions get ignored, or factors that were not considered in the first place 
appear. Autonomous or teleoperated robotic solutions could be of a great help to this kind of 
operations, making them a lot safer and easier to process. Examples for such scenarios 
include decommissioning of nuclear power and chemical plants, clean up after landslides, 
demining or cleaning munitions dumps. 

Unfortunately, existing robot technologies have only proven to be useful to assess a 
situation, but they are often too immature or fragile for the use in real decommissioning, 
clean-up, or deconstruction scenarios. Thereby, in most of such operations conventional 
construction site machines are used, involving human operators in a traditional way. A 
human operator conducting tasks of a large-scale mission cannot have adequate situational 
awareness and should rely on external observers and previous experience. Moreover, the 
operator is exposed to immediate danger in case something goes wrong, putting also in 
danger other workers and the around population. The problem deteriorates significantly 
when the operations take place in toxic or/and fragile environments. For this reason, the 
remote navigating efficiently of an unmanned ground device by using AR devices as 
controller for the robot’s movement and actions is highly needed. During this thesis, the 
remote control and navigation of an unmanned vehicle was investigated, i.e. a turtlebot2, 
which was controlled by AR devices, i.e. HoloLens 1st gen. 

5.2.  Challenges 

The problem stated previously was splitted in different smaller parts, that were combined in 
order to achieve the project’s scenario. Firstly, the unmanned vehicle was set up in order to 
receive messages/commands from a remote device that the user controls such as a laptop 
via keyboard commands, a smartphone via a mobile application and finally AR glasses via 
an AR interface. Secondly, a responsive, user friendly controller in an AR interface was 
developed which is responsible to transmit the user’s choices in suitable message format. 
Finally, find a way to connect AR glasses with the turtlebot in order for the turtlebot to listen 
to the user’s commands and have low latency for the best user experience. 

5.2.1. Setting Up the turtlebot 

In this thesis, the turtlebot had no knowledge for the world in which it operates. This is the 
reason that requires the user to have visual contact with the turtlebot to navigate it correctly 
without crashing it. The user should also have the ability to give turtlebot the command of 
taking a photo of its surroundings using the robot’s camera. 

In addition, the user should have the ability to enter the preferable distance and angle for the 
turtlebot’s “step” and turn accordingly too.  

Therefore, a script in python was developed which decoded he transmitted 
messages/commands from the HoloLens glasses and fed turtlebot in order to complete one 
of the requested actions: 
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1.move forward 

2.move backwards 

3.turn clockwise 

4.turn counterclockwise 

5.take a photo 

In order to be completed, the ROS topics which are responsible for the turtlebot’s movement 
and camera were utilized. These topics are analyzed later (5.3.1. Turtlebot’s manipulation 
script). 

5.2.2. AR application approach 

The initial challenge was to keep the user interface of the AR application to be understood 
easily by a general user. The application’s UI must be simple and also cover the wanted 
functionality. The needed UI elements were the robot’s movement control buttons and some 
form of user input for the application variables (angle and distance). 

5.2.2.1. Application Variables Input 

The user must have the ability to change the degrees of the robot’s rotation and the distance 
the robot covers in a single step. These values must be predefined, because having the user 
choose the exact number of degrees and distance would complicate the usage and looks of 
the application. So, at the launch of our application we wanted a simple UI in order to give 
the ability to the user to choose between 3 or 4 values of distance and rotation degrees. 

5.2.2.2. Movement Controller 

The control buttons of the robot are customizable in size, as they must not block the user’s 
field of view in a way that he won’t be able to navigate the robot safely. The navigation 
buttons should be something like a cross. This design is familiar to everyone and suits the 
desired type of movement. This cross should be in the user’s field of view all the time while 
he navigates the robot. So, in a way the cross must follow the head movement of the user. 
We decided to follow this approach, because the most common scenario is for the user to 
navigate the robot inside a room and his head will turn a lot of times in the process of doing 
so. Having the cross always in your field of view makes the navigation of the robot easier, 
but it also must not block your field of view. Having the cross always at the center of the 
user’s field of view would in some cases be annoying. To overcome this problem the cross 
should follow the head movement of the user but not precisely, meaning that for example, 
as the user turns his head around, the cross will stick to the edge of his field of view and 
follow him as the users walks around the room. 

5.2.3. Technical Challenges 

During the installation of the tools needed to develop and test the AR application we came 
across with some problems. The following versions were established to develop and test our 
framework. 

Versions:  

 Unity LTS 2018.4.13f1 

 MRTK 2.5 

 Visual Studio Commercial 2019  
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 Windows SDK 18362+ 

 Hololens 1st gen Emulator 

Installation order: 

1. Install Unity and include the Universal Windows Platform (UWP). 

2. Unity 2018 installs visual studio 2017 automatically, if it doesn’t you must 
install it without any workload selected manually. 

3. Install windows SDK 

4. Install Hololens Emulator 

5. Install Visual Studio 2019 without any workloads, once you open a UWP 
built project with it you will be prompt to install the required workloads, you 
do it then. 

Unity settings: 

1. Download and import MRTK foundation and example packages from 
https://microsoft.github.io/MixedRealityToolkit-
Unity/Documentation/Installation.html 

2. Follow the steps found with the above link 

3. Import TMP Essentials Resources, you need to restart Unity to see 
changes. 

4.  Set architecture to x86 

 

 

5.2.4. Middleware communication between AR and unmanned vehicle 

For our project to work properly a middleware communication between AR and unmanned 
vehicle was crucial. The control of the robot should be smooth, in order to achieve this the 
communication middleware should have low latency and be reliable. This middleware should 
also give us a level of abstraction, so the development of the robot’s scripts and the 
development of the HoloLens application wouldn’t interfere with each other.  

A middleware that could provide us all these benefits was KAFKA. 

 

 

 

 

 

 

 

 

 

https://microsoft.github.io/MixedRealityToolkit-Unity/Documentation/Installation.html
https://microsoft.github.io/MixedRealityToolkit-Unity/Documentation/Installation.html
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5.3.  Our application 

 

Figure 26 - Backend communication 

 

5.3.1. Turtlebot’s manipulation script 

For the purposes of this Thesis, scripts and applications were developed that run both on 
simulators and the actual turtlebot. Achieving this was feasible, as ROS uses the same topics 
for the teleoperation of its movement and the feed of the preinstalled Kinect camera on the 
turtlebot. This is one of the main reasons we chose to work with turtlebot2 as it has the Kinect 
camera preinstalled and ready to work. Regardless the tests and the experiments that were 
performed to the gazebo simulator, the desirable, final/delivered scenario, is a user wearing 
the HoloLens glasses and controlling the turtlebot in a realistic environment. 

5.3.1.1. Movement 

As mentioned above the turtlebot can operate two types of movement. It can either move 
front and backwards or turn around itself clockwise and counterclockwise. In order for the 
turtlebot to follow the user’s command and move accordingly, a Twist message was created, 
which then was published at the ‘cmd_vel_mux/input/teleop’ topic which is responsible for 
the movement of turtlebot2. A Twist message expresses velocity in free space broken into 
its linear and angular parts. Each part is represented by a vector3, which translates to the 3 
axes in free space x, y, z which are mutually perpendicular to each other and their point of 
intersection is called the origin (x = 0, y = 0, z = 0). 
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Figure 27 - Axis of turtlebot's movement 

 

 

 

Figure 28 - Movement script 

As turtlebot is a ground robot, angular velocity is in z, i.e. its turning speed. And linear velocity 

is in x i.e. its moving straight speed. So now if the user chose to move forward or backwards 

the speed or the -speed was assigned to the linear.x accordingly and the twist message was 
published in a loop until the defined step-distance was covered. In order to break the loop 
we used the distance definition formula :distance = absolute(speed)*time. 
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Figure 29 - Rotation script 

 

Analogous, if the user chose to turn clockwise or counterclockwise the angular_speed was 
used, which was assigned to the angular.z component and in order to break the publishing 
loop, the defined turn-degrees were converted to radians using the degrees to radians 
formula: 1rad = 1degree *π /180 degrees. 
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5.3.1.2. Snap Photo 

 

 

Figure 30 - Photo script 

 

In order for the photo to be taken we subscribe to the ‘/camera/rgb/image_raw’ topic which 
is responsible for capturing a ROS image. Then the ROS image is converted to OpenCV 
format and it is saved using the name ‘photo%’  where ‘%’ is the counter of the taken photos. 
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5.3.2. AR Application 

 

 

Figure 31 - Screenshot of the AR Application on HoloLens 2 

 

5.3.2.1. User Interface 

 Application’s variables panel 

The variables panel is the first thing the user sees when he launches our HoloLens 
application. From there the user can choose how far the robot will travel in a single step. The 
three options are 0.5 meters, 1 meter or 2 meters. The user can also choose the degrees 
the robot rotates in a single turn. The options are 15°, 30°, 45° or 90°.  
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Figure 32 - Variables Panel 

 

By clicking the check sign at the bottom of the panel, the user sends these variables to the 
turtlebot and the application loads the controller UI. 

 

Figure 33 - Screenshot of the variables panel in HoloLens 2 
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 Robot Controller UI 

The Controller UI had to covered the basic functionality we needed, a controller cross, a 
photo button and a slider to adjust the size of the cross. We also mentioned that the cross 
must follow the user’s movement inside the room. The UI looks like this: 

 

  

Figure 34 - Controller UI 
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The cross follows user’s head movement as shown here: 

 

 

Figure 35 - Cross following head movement 

 

 

 

 

Figure 36 - Cross following head movement in HoloLens 2 
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5.3.2.2. Unity Application Scene 

The application consists of one single scene, called “Main Scene”.  

 

 

Figure 37 - Unity scene hierarchy 

 

 

 

The objects in this scene are, besides the lighting and the imported MRTK mandatory objects 
(Directional Light, MixedRealityToolkit, MixedRealityPlayspace), are the following: 

 PinchSliderModule: the slider that controls the size of the cross 

 PhotoButton: the button which commands the robot to take a photo. 
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 ControllerPanel: is used as an empty game object to group the four arrows of the cross. 
To achieve the effect of the cross following the user’s head movement a script component 
named “Radial View” was added to the cross, which can be found in the foundation package 
of MRTK. The ControllerPanel has this component.  

 

 

Figure 38 - Components of ControllerPanel 
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 VariablesPanel: this is the panel that is displayed when the application launches, and the 
user can set the application variables there. The panel is imported from the Examples 
package of the MRTK and was modified to fit the needs of this application. 

 

 

Figure 39 - Objects of VariablesPanel 

 

 SceneManager: this is an empty game object that holds the script of the application. This 
is a common practice when developing apps in Unity. The script is called 
SceneManagerScript. 
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Figure 40 - SceneManager components 

The prefabs that were used in Unity for the slider, the camera button and the panel can be 
found in the examples package in the MRTK assets on GitHub. 

5.3.2.3. Script 

The script in this Unity application, as mentioned above, is the SceneManagerScript. This 
script handles all the functionality of the HoloLens application. This script’s functions are 
described here: 

 The functions public void incAng(), public void decAng(), public void incDis(), public 
void decDis() are responsible for handling the UI functionality of the VariablesPanel. 
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Figure 41 - VariablesPanel buttons functions 

 

 The function public void ApplyVariables() is the one that sends the variables that the 
user chose to the turtlebot. As we already mentioned, the communication between the 
HoloLens application and the turtlebot is handled by a KAFKA server. The messages 
exchanged are in JSON format. The message format is analyzed in the next paragraph 
(5.3.3. Message Format). 
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Figure 42 - Sending variables script 

 

 The functions public void upClick(), public void downClick(), public void rightClick(), 
public void leftClick(), public void photoClick() are the functions that cover the 
commands the user can give to the turtlebot (movement and taking photos). All these 
functions are identical and they work just like the ApplyVariables() function, meaning they 
create a JSON message and push it to the KAFKA topic. For example here is the upClick() 
function, which makes the robot take one step forward: 

 

 

Figure 43 - Forward command script 
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The only thing that differs between these functions is the value of the JSON message, which 
depends on the action we want the turtlebot to take. 

5.3.3. Message Format 

In order to have a clear and understandable communication between the HoloLens AR 
device and the turtlebot it was mandatory to build our own messages types in JSON format 
in order to translate the user choices at the AR UI to the corresponding actions of the 
turtlebot. 

 

 

Figure 44 - Messages format 

The JSON format is chosen as we need to exchange the messages between the HoloLens 
glasses and the turtlebot via KAFKA. 

To consume messages from the KAFKA topic on the turtlebot the python library for KAFKA 
communications was used. But for the HoloLens application, which is written in C#, the .NET 
library for KAFKA communications was not utilized. The reason for this is that this library 
didn’t work correctly, or at least in a useful way for this application. So for the communication 
between the KAFKA server and the HoloLens application Rest API was used. The  HTTP 
requests are made by Unity’s Net library. With these HTTP requests the JSON messages 
get posted to the KAFKA topic. 
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6. EXPERIMENTS 

Using Kafka topics for the communication between HoloLens and the robot, made it easier 
to test each aspect of this project separately. Having this level of abstraction, we tested the 
robot’s movement on its own, the MR application for the HoloLens and the Kafka server 
separately. 

6.1. Testing Robot’s Moving Script 

Prior to robot experimentation, the concepts of navigating and controlling a robot were 
created and tested in a simulated environment. Since the robot we were going to use for this 
project was a turtlebot, we used a software called Gazebo 7, which is a robotics simulator 
for the turtlebots offered by ROS. The script for moving the turtlebot was developed and then 
tested on the Gazebo.  

When we secured that the commands were executed correctly and safely in the simulated 
environment, we went on and tested it on a physical robot. Fortunately, the script worked on 
the physical robot as well without significant modifications. We had though to change the 
distance and angles values of the script in order for the movements of the robot to correspond 
better in the real world. This script used keyboard as the input source of the user’s 
commands. So, the last step was to implement the consuming of movement commands 
through the Kafka topic. The fact that our movement script and the consumer script for Kafka 
were both written in python, was really convenient, because there was no need for further 
testing at this stage. 

6.2. Testing HoloLens Application 

As mentioned before MRTK gives you great tools to test your application in Unity Editor as 
you develop it. We constantly tested our application inside the Unity Editor and as we were 
finalizing it, we used the HoloLens emulator too. Our biggest concern was to test our 
implementation of the Kafka producer in C# using REST API. We tested this implementation 
in two ways. At first, we used the Unity Editor to test the script and after some debugging, 
we got it to work as we intended it to work. So, after the script was ready, we decided to test 
it on a real device too. We developed a simple android application in Unity which mimicked 
our HoloLens application and used the same script. The UI of this application was just 4 
buttons that are used to navigate the robot. 
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Figure 45 - Android application UI 

6.3. Putting it all together 

When we had all the equipment and software we needed we started testing the whole 
project. At first, we used the android application we developed to navigate 
the turtlebot around the campus. The success of this test secured that the backend of the 
communication between the turtle bot and our phone, which used the Kafka server, was 
functioning properly. Then we started experimenting using the HoloLens. Unity Editor gives 
you the ability to test your application on HoloLens without having to install it on the HoloLens 
with a feature called Holographic Emulation, just like the MRTK package allows you to run 
your application in play mode of Unity.  
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Figure 46 - Holographic Emulation settings in Unity 

 

This feature allows you to emulate your application on the HoloLens device over a local 
network. This helped us see how our application would look on the HoloLens without having 
to deploy it on the device. The installment and execution of the application on the HoloLens 
can be challenging and time consuming to debug, so being able to just emulate your 
application on the HoloLens can be really helpful. After some visual tweaks, our application 
looked and worked how we intended on the HoloLens devices. But since the interaction with 
the application is a simulation over a network, it has high latency and slow response times. 
So, in order to understand how our application worked in terms of response times, we had 
to install and test the application on the HoloLens device. So, the last step was to install and 
run the application instead of emulating.  
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6.4. Measuring Latency and Position 

In order to keep record of the turtlebot’s position after the completion of each movement 
command we use the ROS odometry topic and message. Odometry message is a ROS 
message which contains an estimation of the robot’s position in free space.  A second script 
is developed where we subscribe to the /odom topic which provides repeatedly odometry 
estimations. From these messages we save only the X and Y coordinates of the robot’s 
position and we create a json message with the current position and timestamp. The created 
message is sent from the turtlebot back to the KAFKA via the turtle_location topic that we 
created for this purpose. The data are sent to KAFKA and are stored for later process. 
 

 

Figure 47 - Odometry consumer script 

 

6.5. Final Results 

We execute experiments in both simulated and real world as it is essential to check and 
compare the data from both environments in order to examine the deviance between the 
robot’s ordered movement and its actual movement. Turtlebot’s position represented in X 
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and Y coordinates and the latency of turlebot’s movement after each user command from 
the AR side of the application, are the examined data. 

The experiments which are executed, are series of movement commands, for instance move 
forward, turn right etc.  

6.5.1. Experiment in Gazebo 

In Gazebo, we set the distance at 50 cm and the rotation angle to 45°. We executed the 
following commands: 

forward, forward, left, left, back, back. The latency we measured is shown in this chart: 
 

 
Figure 48 - Latency graph in Gazebo 
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The position of the robot throughout the experiment is shown here: 

 

 

Figure 49 - Position trajectory graph in Gazebo 

 

6.5.2. Real Word Experiment 

For the experiment in a real word situation, we used the HoloLens 2 device and turtlebot 2. 
We set the distance at 50 cm and the rotation angle to 30°. The same measurements were 
recorded as in the simulated environment. The latency measured is shown here: 
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Figure 50 - Latency Graph 

 

The probability density function of the latency can be seen here: 

 

Figure 51 - Latency probability density function 
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The commands that were given to the turtlebot were: forward, forward, forward, right, right, 
right, forward, left, left, back, back.The recorded trajectory of the turtlebot is presented in a 
3 axis graph: 

 

Figure 52 - 3 axis graph of turtlebot's trajectory 

 

We can observe that there is a small amount of discrepancy between the requested and the 
calculated movement trajectory. This type of disagreement is acceptable and can be justified 
taking into consideration two separate factors of flaw. First, the flaws in movement formula 
and calculations that we do not take into consideration and secondly the faults of odometry. 
The fault of our calculations regarding the formula that we use is that we do not take into 
account the turtlebot’s movement environment. Friction between the surface and robot’s 
wheels as well as ground irregularities change the motion to accelerated motion. Thus, the 
smallest deceleration affects the results. The simulated world of Gazebo is free of this 
physicalities and this is the reason that Gazebo’s measurements are more accurate as it is 
clear from the graph. On second note, the disadvantage of odometry is that the 
measurements are indirect, relating the power of the motors or the motion of the wheels to 
changes in the robot’s position. This can be error-prone since the relation between motor 
speed and wheel rotation can be very nonlinear. Furthermore, wheels can slip and skid so 
there may be errors in relating the motion of the wheels to the motion of the robot. 
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7. CONCLUSIONS 

To conclude, an MR application was developed that runs both on the first and second 
generation of the HoloLens devices, which is used to control an unmanned ground 
vehicle. This is a more specific case scenario than any of the applications someone can 
find in the application store, which can open paths for similar applications to be developed 
in the future. Even though, this application covers the basic functionality someone would 
expect from a vehicle controller, the same basis can be used to add more features. Unity 
is a great tool for easily adding new features.  

As it is mentioned, a Kafka server handling the backend gives great abstraction, which 
makes the integration of controlling another type of vehicle feasible. The same principles 
could be used to develop theoretically MR applications to control any kind of unmanned 
vehicle. Drones, for example, are becoming popular lately in scientific and industrial 
fields, maybe in the future we could see drones controlled with HoloLens devices. 

In the process of developing this application, smaller applications for different platforms 
had to be developed to debug each component of the application’s structure 
independently. Those applications included, a simple web application for Kafka testing, 
a mobile application for android OS, a HoloLens 1st gen app and a HoloLens 2nd gen app. 
This makes it clear that this concept of a controller can make use different types of 
devices. 

Finally, the results of the experiments showed that the application analyzed in this thesis 
could be used in a real-life scenario, despite some minor latency and precision deviation. 
Latency and position precision are after all heavily dependent on the case of use and the 
type of unmanned vehicle that the user wants to navigate. 

We hope with this thesis we contributed to the fields of MR and robotics, which are rapidly 
advancing. 
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ABBRIVIATIONS – ACRONYMS 

 

UV Unmanned Vehicle 

UGV Unmanned Ground Vehicle 

UAV Unmanned Aerial Vehicle 

USV Unmanned Surface Vehicle 

UUV Unmanned Underwater Vehicle 

UI User Interface 

UX User Experience 

ROS Robot Operating System 

JSON JavaScript Object Notation 

VR Virtual Reality 

AR Augmented Reality 

MR Mixed Reality 

MRTK Mixed Reality Toolkit 

FOV Field of View 

IDE Integrated development environment 

FPS Frames Per Second 

HRI Human Robot Interaction 
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ANNEX I 

The source code of this thesis can be found by following the link: 

https://github.com/VasilisIliopoulos/AR_Turtlebot_Controller_Thesis 
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