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ABSTRACT

Knowing the exact locations of nucleosomes in a genome is crucial for understanding
how gene expression is organized. Consequently, during the latest years, an increasing
interest has emerged, in applying text-mining techniques in genomic studies, an example
of which is examining whether the primary structure of DNA, i.e. textual data extracted
from genomes, influences nucleosome positioning and, thus, chromatin structure. To the
best of our knowledge, there exists no complete study on the effect of representation to
the classification of genomic sequenses as nucleosome-free regions (NFR) - i.e. sequ-
ences depleted of nucleosomes - or nucleosome-binding sites (NBS) - i.e. sequences
where nucleosomes are present. In this thesis we study 3 different genomic sequence
representations (Hidden Markov Models, Bag-of-Words and N-gram Graphs) in combi-
nation to a number of machine learning algorithms on the task of classifying genomic
sequences as NFR and NBS. Finally, we conclude that, based on our findings, different
approaches that involve the usage of different representations or algorithms can be more
or less effective at predicting nucleosome positioning based on the textual data of the
underlying genomic sequence.

SUBJECT AREA: Machine Learning, Molecular Biology
KEYWORDS: e.g. nucleosomes, genomic sequences, classification, representa-
tions, machine learning













ACKNOWLEDGEMENTS

For the completion of this B.Sc. Thesis I first and foremost want to thank my supervisor
at the NCSR Demokritos, Dr. George Giannakopoulos, thanks to the guidance of whom I
managed to withstand all the tests that surfaced in this project. Armed with insight, con-
cise in his words and especially patient and loyal towards myself, not only he managed to
make me love the research procedure but also helped me acquire feats which I will surely
carry with me forever, as his former student, as a new and aspiring scientist and, mainly,
as a human being.
Special acknowledgements also have to go towards Dr. Christophoros Nikolaou, Assis-
tant Professor of Molecular, Cellular and Developmental Biology and Biochemistry of the
Biology Department at the University of Crete, on the findings of whom this B.Sc. thesis
was based. Professor Nikolaou not only made the essential experimental data available
to me but he also offered me useful advice during the time I was studying the basic ele-
ments of Molecular Biology.
However, I also have to greatly thank my supervisor at the Department of Informatics and
Telecommunications , Assistant Professor Panagiotis Stamatopoulos, who, at the begin-
ning of my search for a potential thesis subject, he guided me towards coming in touch
and meeting Dr. Giannakopoulos. I also have to thank him for the continuous communica-
tion and conversations we had throughout the duration of my thesis, especially in matters
involving the Machine Learning field.
Last but not least, I am obliged towards Ilias Roussos, secondary education Professor
of Chemistry and Biology, for the essential information he provided me with, at the very
beginning of my quest, and for helping me get a first glimpse of the field of Molecular
Biology.
There are a few occasions in which a human can possibly thank his beloved ones and
it may be out of context to do it here. Nevertheless, I have to thank all the people who
are mentioned in my dedication for the undivided support, tolerance and patience they
showed during this year’s quest towards completing this thesis. Their contribution is mul-
tiplied, and this is due to their effort in guiding me towards the realization that, in order to
support a human being in anything, any knowledge about the path leading to the solution
of his/her problem is not necessary at all. The thing that is most important though is to
be on his side, despite being ignorant. And this is the main reason I have to thank these
people for.





CONTENTS

1 Introduction 19

2 Related Work 23

3 Proposed Approach 29

3.1 Method Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Representations and Features . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.1 Vector Space Models . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Hidden Markov Models - HMMs . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Bag-of-words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5 N-gram Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.6 Classification Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.6.1 Decision Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.6.2 Naive Bayes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.6.3 k-Nearest Neighbor . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.6.4 Support Vector Machines . . . . . . . . . . . . . . . . . . . . . . . 49

3.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.7.1 Evaluation Metrics Definition . . . . . . . . . . . . . . . . . . . . . 51

3.7.2 What do different metrics mean ? . . . . . . . . . . . . . . . . . . . 52

4 Experiments 55

4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55



4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 Discussion and Conclusion 69

ABBREVIATIONS - ACRONYMS 71

BIBLIOGRAPHY 73



LIST OF FIGURES

1.1 The crystal structure of the nucleosome core particle (Source: Wikipedia) 19

3.1 Vector representation of three-dimensional entity space . . . . . . . 31

3.2 The above example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 The Hidden Markov Model in our approach . . . . . . . . . . . . . . . . 35

3.4 Graph extracted from the genomic sequence ATTCGC based on the

symmetric type of window. . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5 A decision tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.6 Training set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.7 Confusion matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.8 Confusion matrix of model A . . . . . . . . . . . . . . . . . . . . . . . . 52

3.9 Confusion matrix of model B . . . . . . . . . . . . . . . . . . . . . . . . 52

3.10 Confusion matrix of model C . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1 Recall measure per Representation (values between 0.00 - 0.65 ne-

glected due to lack of data). . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Precision measure per Representation. . . . . . . . . . . . . . . . . . . 59

4.3 F-measure per Representation (NOTE: minimum y-axis value is 0.70). 61

4.4 Training Time per Algorithm/Representation Pair. . . . . . . . . . . . . 63

4.5 Classification Time per Algorithm/Representation Pair. . . . . . . . . 64

4.6 Total Time per Algorithm/Representation Pair. . . . . . . . . . . . . . . 66





LIST OF TABLES

3.1 Notation used in the HMM chapter. . . . . . . . . . . . . . . . . . . . . . 34

3.2 N-gram examples from various disciplines. . . . . . . . . . . . . . . . . 42

4.1 Mean Recall per Algorithm/Representation Pair (higher is better). . . 58

4.2 Mean Precision per Algorithm/Representation Pair (higher is better). 60

4.3 Mean F-measure per Algorithm/Representation Pair (higher is better). 62

4.4 Mean Classification Time per Algorithm/Representation Pair (lower is

better). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5 Mean Total Time per Algorithm/Representation Pair (lower is better). 67





A Study on chromatin structure via nucleosome positioning pattern classification using n-gram graphs

1. INTRODUCTION

It has been suggested recently [1] [2], that nucleosome positioning in the eukaryotic
genome playes a vital role in fundamental processes at the molecular level, such as tran-
scriptional regulation or replication.

A Nucleosome is a proteinic structure which plays a vital role in DNA compression in
eukaryotic nuclei. The DNA sequence encircles these units resembling a thread wrapped
around a spool.

Figure 1.1: The crystal structure of the nucleosome core particle (Source: Wikipedia)

Nucleosomes constitute the basic structural units of chromatin at the eukaryotic genome,
a molecular complex which is used to envelop the genomic code into the nucleus while
still keeping it appropriately accessible. When folded in a sequence of overlapping higher
order structures, nucleosome layers ultimately create chromosomes; this is responsible
for both ensuring DNA density and the creation of an added layer of regulatory control,
which ensures the proper expression of genes.

DNA, Histones and Chromatin

Histones are proteins which compact chromosomal DNA into the microscopic space
of the eukaryotic nucleus. The combination of these proteinic structures and DNA
forms a complex which is called chromatin.

19 N. - S. Kostagiolas
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Processes such as transcription and replication allow DNA to be copied by allowing
chromatin to unfold. During this process the presence of nucleosomes pose barriers
to determining which parts of DNA are to be copied. The parts of DNA which are to
be copied during transcription are called transcription sites.

What happens after DNA Regulation/Replication ?

The genetic information copied after DNA regulation or replication is used in gene
expression, i.e. the process which controls the synthesis of a functional gene prod-
uct, usually a protein. Genetic information can be transmitted from one generation to
the next without being altered, influencing the attributes of the offspring. This shared
information between the two generations is called epigenetically inherited informa-
tion.

Frequently, the particular positioning of nucleosomes has been shown to be driven by the
properties of the underlying sequence, but it remains under question as whether DNA has
a decisive effect on such positioning.

In our work, we’re aiming to reveal the features in the DNA sequences that guide nucle-
osomes to be formed or not. To achieve this feat we distinguish genomic data into two
classes : Nucleosome Free Regions or simply NFR and Nucleosome Binding Sites
or simply NBS in order to examine, with the help of various Machine Learning algorithms,
the extent to which the primary DNA structure contains patterns that appear to guide
nucleosome positioning in the eukaryotic genome.

Below we elaborate in what way our work complements all the research efforts made in
nucleosome positioning studies during a period spanning from 2002 to 2014, and how it
brings novelty with respect to the approaches taken so far

A notable factor that helped the field accelerate its findings is the rise in efficiency and
accuracy of computational methods in analyzing and predicting nucleosome positioning.
Fast software tools have been developed in order to facilitate even more complex exper-
iments which opt to tackle more obscure questions by utilizing more and more detailed
and data-heavy genome maps. However, it would be interesting to examine, to what ex-
tent different Machine Learning algorithms and representations would be able to predict
nucleosome positioning based on the textual data of the underlying DNA sequence.

As one can note, the research made so far has resorted to the established methods of
Hidden Markov Models (HMMs) and Support Vector Machines [3] for classification. In our
study we will use three different kinds of representations :

• Hidden Markov Models (HMMs),

• N-gram Graphs (NGGs) and,

• Bag-of-Words or Bag-of-Nucleotides (BOWs)

N. - S. Kostagiolas 20
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along with four different kinds of classification algorithms :

• Decision Trees,

• Naive Bayes,

• k-Nearest Neighbors and,

• Support Vector Machines

We selected different algorithms from different approaches on machine learning and rep-
resentations supporting varying use of contextual information. This was done to evaluate
the pros and cons of combinations through a unified set of experiments and evaluations.
This can also give us many hints about nucleosome positioning motifs that are still ob-
scure and may lead to future research insights that could shed light in genomic studies.

Here we’re going to discuss the structure of the rest of the thesis. We begin by focusing
on related work and how this thesis compliments it, in chapter 2. Then, we proceed
by presenting the methods we used in our approach, in chapter 3. Finally, we provide
the results of our experiments including a discussion and conclusion based on them, in
chapters 4 and 5 respectively.

21 N. - S. Kostagiolas
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2. RELATED WORK

Knowing the exact locations of nucleosomes in a genome is crucial for understanding
how gene expression is organized. Recent discoveries have led to understanding that
chromatin structure is regulated by some basic principles. In this chapter we will discuss
about certain methods which facilitate us to produce more and more accurate results and
build an intuition surrounding nucleosome positioning and gene regulation, while trying to
give a brief historical resume of the research made in this field.

Althought it was argued early on that nucleosomes are positioned along DNA randomly, it
soon became apparent that chromatin structure is indeed regulated by some certain prin-
ciples which are also responsible for essential biological reactions such as transcription,
recombination and replication. In recent studies, it has been suggested that chromatin
structure plays a vital role in fundamental molecular processes, such as transcriptional
regulation [1] or replication [2].

In the first case, Guenther et al. [1] provided the results of a genome-wide analysis of
H.sapiens cells, which indicated that nucleosomes flank the transcription initiation sites
(i.e. sites where transcription begins), where transcription is more likely to occur, as
these parts of the DNA are more accessible to transcription factors. This provided strong
evidence that regulation happens in certain sites, which could possibly be defined by
nucleosome positioning, and not in the whole genome.

Furthermore, according to the study made by Eaton et al. [2], which attempted to analyze
the molecular process of replication in S.cerevisiae, it was found that nucleosomes also
tend to flank the replication origins (i.e. sites where replication begins) in the genome.
In addition to that, the genomic sequences present at the origin sites were depleted of
nucleosomes, indicating that a nucleosome-free region was present.

Important sites in the Genome

Some important sites in genome maps are transcription initiation sites (or tran-
scription start sites) and replication origins, which flag where the transcription
and replication processes begin in the DNA sequence, respectively. Adjacent to these

23 N. - S. Kostagiolas
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sites are situated the promoters, regions of DNA which are responsible for initiating
the transcription of a particular gene.

The proteins in a genome that are essential for the regulation of the expression of
genes near a sequence, by binding to it, are called transcription factors.

Although these studies indicated that the functions of regulation and replication may be
defined by nucleosome organization, the principles that specify the location of nucleo-
somes along the DNA sequence remain obscure.

In an initial study made by Vicent et. al [4] on Mouse Mammary Tumor Virus (MMTV) pro-
moter shed some light to the factors that specify nucleosome positioning, by suggesting
that the position of nucleosomes is driven to an extent by the underlying DNA sequence
principles. However, to what extent nucleosomal DNA accessibility is influenced by the
nucleotide sequence of the DNA remains an open question.

Upon 2005, it became apparent that genome-wide nucleosomal maps may play a vital
role in providing us with information regarding the relationship between chromatin struc-
ture, histone modifications and the control of gene expresion. Large-scale studies of
nucleosome positions featuring such maps succeeded in defining the positions occupied
by nucleosomes for a significant portion of the S.cerevisiae genome [5], while others pro-
vided higher resolution maps describing nucleosome positioning along the entire yeast
genome [6]. Finally, in [7] Shivaswamy et al. used high-throughput sequencing to map
the remodeling of nucleosomes (i.e. the positions taken by the nucleosomes before and
after a change) after genome-wide transcriptional changes had occured.

In the first study, Yuan et al. [5] denoted that transcription factor binding sites were lack-
ing nucleosomes, suggesting that the positions occupied by nucleosomes determine the
transcription factor accessibility in a global scale. This was strongly emphasized by the
fact that these nucleosome-free sequences were evolutionary conserved.

Furthermore, Lee et al.’s [6] study confirmed the above results, by showing that a general
pattern of nucleosome occupancy was present at the borders of the transcription factors,
with the nucleosomes being fixed at the transcription start sites (or TSS). It was also
revealed that this pattern was shared between functionally related genes, at their promoter
regions.

Nucleosome positioning patterns in relation to transcribed regions and transcription bind-
ing sites were also observed in the study made by Shivaswamy et al. [7], in which it
was indicated that, during a transcriptional change, nucleosomal rearrangements did not
happen across the whole genome, but only in specific sites. However, despite the fact
that these sites included transcription factor binding sites, nucleosome remodeling also
occurred unexpectedly at promoters even where no apparent transcriptional change had
taken place. This provided evidence that the relationship between chromatin remodeling
and transcriptional activity could not be driven by globally applicable rules.

While the aforementioned results were more complicated than expected Stein et al. [8]
used independent nucleosomal datasets of the S.cerevisiae genome in an attempt to de-
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fine whether nucleosome posititioning was determined by the underlying DNA sequence.
The inconsistency in the results between the different datasets used led to the conclu-
sion that DNA sequence preferences have small effect in nucleosome organization in
vivo, although nucleosome positioning in genomes is not randomly regulated. The paper
indicates that more complex experiments on wide data could shed light to the questions
concerning the plausibility that DNA preferences organize the position of the nucleosomes
across the genome.

In-vivo vs. in-vitro vs. in-silico

Processes which are performed or take place inside an organism can be described
by the term in-vivo.

When we perform a procedure in an environment which is controlled outside of a living
organism, we refer to it as being an in-vitro process.

Lastly, when we use computer models or simulations to conduct a scientific experi-
ment, we can describe this method with the term in-silico.

At this point, studies began to focus on attempts to define the sequence properties of
nucleosomal DNA, mainly by predicting the positions occupied by nucleosomes [9, 10,
11, 12, 3] . Although various computational methods had been utilized, varying from
likelihood models [10], [11] to supervised learning strategies [12], [3], the results can be
summarized into two basic conclusions:

• we may be able to predict only a subgroup of nucleosome positions

• although there is a possibility for the existence of constraints on the underlying DNA
sequence, apparently they are very weak

In the first study, Caserta et al. [9] suggested that a specific element, that of the en-
chancement of dinucleotides which contain AT, was a distinct feature of the sequence
code for nucleosome binding sites. That particular signature was a preference associ-
ated with nucleosome positioning anchored at the flanks of promoter regions indicating
that it can be a possible feature which contributes to the nucleosomal occupancy in such
positions.

In addition, Kaplan et al.’s [10] study sought to establish the extent to which the DNA
sequence determines nucleosome organization in living cells, by comparing results be-
tween in vivo and in vitro datasets of nucleosome positions. While the aforementioned
datasets were of different organisms, the in vivo belonging to the genome of C.elegans
and the in vitro to the purified genome of S.cerevisiae, the results indicated that nucleo-
somal sequence preferences in both cases were highly correlated. The combined results
showed that a sequence preference for approximately 40000 double-stranded 150-base-
pair oligonucleotides 1 was apparent, indicating that the underlying DNA sequence has a
central role in determining nucleosomal positioning in vivo.

1a part of DNA whose molecules contain a relatively small number of nucleotides.
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Meanwhile, supervised learning began to play its part in the identification of DNA seuquences
that either assist or restrain nucleosome formation, as Peckam et al. [3] used DNA se-
quences of S.cerevisiae to train a support vector machine, in order to discover the likeli-
hood of nucleosome formations for any given DNA sequence. The results, despite suc-
cessfully predicting the experimentally determined nucleosome positions accross a spe-
cific promoter region, reinforced the fact suggested by previous studies, that nucleosome
positioning rules, although existent, may affect just a small percentage of the nucleosome
positions in the genome. Another suggestion that became apparent by examining the
results was that A/T nucleotides seem to favor nucleosome formation, while G/C ones
appear to inhibit it.

In a subsequent study, Ogawa et al. [12] followed by refining the method of Peckam et
al. providing more accurate results achieved with less available data. The results they
provided, showed high frequencies of nucleotide G/C, and low frequencies of nucleotide
A/T in nucleosomal DNA, relative to the frequencies found in the rest of the genome,
which was consistent with the results provided by the previous study. This tendency for
G/C containment could possibly indicate a specific sequence preference of nucleosomal
DNA.

An alternative approach based on likelihood models was taken by Segal et al. [11], at-
tempting to define the sequence preferences responsible for higher nucleosome occu-
pancy. The results of this study demonstrated that 50% of the in vivo nucleosome po-
sitions are organized by a genomic code, which probably regulates multiple functions
including transcription factor binding, transcription initiation and even nucleosome remod-
eling 2. Nevertheless, the paper suggests that nucleosome positioning is encoded in
eukaryotic genomes, agreeing with all previous studies in that matter.

A more recent study by Bettecken and Trifonov [13] which combined various datasets
attempted to provide a framework for the sequence elements that drive nucleosome po-
sitioning on DNA. However, despite being in line with the findings of previous studies
concerning the fact that dinucleotide periodicities play a role in nucleosome organiza-
tion, no specific preferences for nucleosome binding DNA where accounted. The paper,
though, concluded by stating that the selection of the dinucleotides which contribute to the
regulation of nucleosome positions is species specific, and it may also differ from region
to region, depending on the sequence context.

To sum up, the remarks made by the aformentioned research groups suggest that there
is little consistency in nucleosome positioning across the eukaryotic cellular population,
indicating that most of the nucleosomes are positioned in a stochastic way and that se-
quence elements do not provide assistance in defining a wide genomic code that drives
the organization of nucleosomal positions.

Indeed, the idea that the overall nucleosome positioning is statistically guided by a sub-
set of nucleosomes has its roots in the early work by Kornberg and Stryer [14], while

2Nucleosome remodeling is the dynamic modification of chromatin architecture to allow access of
condensed genomic DNA to the regulatory transcription factors, and thereby control gene expression
(Source:Wikipedia)
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further studies [15], elaborated the same model. Furthermore Reynolds et al. [16] pro-
vided a brief but comprehensive theoretical framework, in order to differentiate between
nucleosome-binding sites (NBSs) and nucleosome-free regions (NFRs), and restated the
fact that only a small subset of the nucleosomal population was well positioned. However,
this study didn’t clarify whether any form of constraint was present in the nucleosome
positioning patterns. An answer to this question was given in [17], a study which revealed
the fact that constraints in the nucleosomal landscape were indeed extant, as its results
indicated that consistent nucleosomes may be organized to some extent statistically by
nearby nucleosome-free regions.

More specifically, in their 1988 study, Kornberg and Stryer [14] proposed some relatively
early theoretical models for the statistical positioning of nucleosomes, but due to lack of
data, it proved difficult to specify the sequence preferences which guided nucleosome or-
ganization and posed stuctural constraints on chromatin patterns. This particular attempt,
though, proved to be one of the first to indicate the stochastic nature of nucleosome or-
ganization within the genome.

Later, Mavrich et al. [15] attempted to establish rules responsible for nucleosomeal or-
ganization using a large dataset of immunopurified 3 S.cerevisiae nucleosomes. This
study suggested that the positions occupied by the -1 and +1 nucleosomes (i.e. the nu-
cleosomes that are situated right before and right after a nucleosome free region) were
defined by the underlying genomic sequence and, more importantly, it indicated that the
+1 nucleosome imposes statistical rules under which a subset of the nucleosomal pop-
ulation positions are organized statistically, with the constraint decaying as nucleosome
positions distance themselves from the barrier formed by the +1 nucleosome.

Furthermore, Reynolds et al. [16], in their 2010 paper attempted to provide a more ac-
curate description of a nucleosome positioning pattern, based on the preferences of the
underlying sequence, by defining a nucleosomal organization model based on mono-,
di- and tri- nucleotide elements and predicting the positions of the nucleosomal popula-
tion in datasets of S.cerevisiae and H.sapiens. The results produced achieved higher
accuracy than that of two previous nucleosome positioning pattern models combined and
suggested that, in both cases, only a small fraction of the nucleosomal population were
well-positioned, while the rest of the bulk appeared to be statistically situated across the
genome.

Finally, in the study made by Nikolaou et al. [17], a comparison of the complete sets
of nucleosome positions in the genome of S.cerevisiae in two independent experiments
produced results which were in unison with the above studies. These results not only in-
cluded the fact that only a subset of nucleosome positions were consistent cross-experimentally,
but also were shown to impose structural and sequential rules. In addition, the presence
of consistent nucleosomes in sequences where certain pairs of dinucleotides were also
present was once more indicated. Although consistent with previous studies, the most
striking discovery of Nikolaou’s [17] research team was that a subset of the nucleosome
population which was positioned adjacently of nucleosome free regions appeared to be

3immunopurification: the use of immunological techniques to purify proteins (Source: Wiktionary.org
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highly consistent with regard to the low levels of conservation of the sequence in general.
That particular element indicated the presence of particular constraints that may be im-
posed to consistent nucleosome positioning by nearby nucleosome-free regions through
statistical positioning.

In conclusion, it is made clear that, although the existence of a DNA code responsible for
organizing nucleosomal positioning is quite plausible, the information load which it could
pose on the genetic code by regulating all the positions of the nucleosomal population is
a fact that discourages this theory. This indicates that the theory concerning the statistical
organization of the bulk, in addition to the sequence-dictated positioning of just a subset
of nucleosomes, is more feasible. Nucleosome free regions seem to play a vital role in the
formation of nearby nucleosomes, due to their high levels of sequence conservation and
their association with transcription factors. Furthermore, well-positioned nucleosomes
which flank the transcription start sites in the genome, also form a candidate responsible
for imposing constraints in the organization of adjacent nucleosomes. This is based on a
model that is similar to that of the ’parking lot’ introduced by Kiyama and Trifonov [18].

The sequence preferences of these two types of nucleosome positioning (i.e. the se-
quences depleted of nucleosomes or Nucleosome Free Regions and the sequences with
binded consistent nucleosomes or Nucleosome Binding Sites) are, therefore, more in-
teresting to inspect in their respective sites, than those across the whole genome, due
to their connections with several key cellular processes. These sequence elements are
the center piece of this study, as we focus on providing evidence for the existence of
constraints in this subset of nucleosomes that share particular positional and structural
preferences.
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3. PROPOSED APPROACH

This chapter elaborates about the possibilities how Machine Learning (ML) methods can
help Genomic studies. Lately, more and more data is available spanning from bacterial
genomes (E.coli) to single-cell eukaryotic genomes (S.cerevisiae) and even to complex
multi-cell organism (H.sapiens), which facilitates the use of Machine Learning (ML) meth-
ods, in order to solve some everlasting problems fast and efficiently. In this chapter, we
narrow further down how several Machine Learning methods can be applied on our prob-
lem, while also providing an overview and comparison between the different approaches
that we’ve used.

3.1 Method Description

Nowadays, the field of Machine Learning is a very broad one, as it offers a vast range
of algorithms, each one of which has been successfully applied in a wide range of fields,
providing solutions for both the scientific and the industrial community. Spanning from
Natural Language Processing and Anomaly Detection to Robotics and Bioinformatics,
the field of Machine Learning is utilized in effectively solving numerous problems in a
most efficient way.

In most cases, when we opt to use a machine to perform a task, we have to program
it in order to accomplish it. However, in some cases, programming a machine to assist
us in completing a task can be a lengthy and time-consuming choice. Yet, there exists
a more optimal way to get things done, especially when enough data indicating how the
program which potentially solves our problem should behave, exists. Generally, this is the
main concept behind Machine Learning algorithms, which ML experts utilize in order to
bridge that gap. Initially, a Machine Learning algorithm defines a model, which enables it
to make predictions or judgements from the input data that we feed to it. It then proceeds
to the phase of learning, in which the model parameters are optimized, based on given
data or past experience. A more formal definition about this process can be found in the
introductory book by Mitchell [19] :

”A computer program is said to learn from experience E with respect to some class of
tasks T and performance measure P, if its performance at tasks in T, as measured by P,
improves with experience E.”
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Supervised learning is a prominent branch of Machine Learning which challenges the
problems it’s facing by inferring (or ”learning”) a function from available data which has
been labeled by human annotators. A common example of potential problems Supervised
Learning methodologies tackle is that of deciding whether a patient’s tumor is ”malignant”
or ”not malignant”, based on data from previous patients, the tumors of whom have been
classified by the annotator as such.

The data used for the training process in supervised learning, comprising of labeled ex-
amples, is often called the ”training set”. Each example in the training set consists of an
input value (generally in the form of a vector) and a label value, which is the desired output
value corresponding to that vector. The algorithm utilizes the training data in order to infer
a function which correctly reflects the data, by analyzing and finding patterns in it. The
term ”supervised” refers to the examples being labeled by the human user, who hence
tells the learning machine what the right outcome of the inferred function is, depending
on each example. This procedure opts to allow the machine to classify new unseen in-
stances by assigning to them the correct output value, thus generalizing from the training
data. These unseen examples are often referred to as the ”test set”.

Our problem is, therefore, a Supervised Learning use case as we opt to classify nucleotide
sequences in two classes, the first being Nucleosome Free Region and the second
being Nucleosome Binding Site - for further information please refer to chapter 1 - using
the method of supervised learning, given two datasets of accordignly labeled data - one
for each class - upon which we will train our classifiers.

3.2 Representations and Features

3.2.1 Vector Space Models

When problems of entity comparison occur, where entities can be sentences, documents
or text corpora, a helpful strategy is that of mapping these entities into an indexing space
where information may be more expressible and concise. A way of achieving that is by
applying the given entities to a vector space model, a mathematical model that assists
in mapping data into vectors. Initially aimed for information retrieval, the vector space
models finally became a useful tool for machine learning, due to its ability of allowing the
positioning of different types of items in a single type of space. Generally, a vector space
model is applied on a set of given entities Ei by decomposing them into features fj and
mapping these features into a joint space. An analogous example is illustrated in Figure
3.1, where each instance has been mapped into a three-dimensional vector, each one
composed from an extracted triplet of features. The dimensions may also be generalized
to t, moving the representation to index spaces of higher dimension. Therefore, each
entity Ei can be represented by a t-dimensional vector

Ei = (di,1, di,2, ..., di,t),
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Where dij corresponds to the j-th feature.

Figure 3.1: Vector representation of three-dimensional entity space

The next step towards an effective way of comparing two or more entities is to measure
the similarity between them, expressed in s(Ei, Ej) corresponding vectors. Usually, an
efficient way of achieving this, is by defining a metric that reflects the degree of similarity
between the vectors of each entity. A simple, yet powerful strategy towards this goal is to
compute the inner product for each pair of vectors that we opt to compare, as the angle
between them will usually suggest how similar or different are as it diminishes or grows,
respectively.

3.3 Hidden Markov Models - HMMs

Hidden Markov Models (HMMs) have been the baseline statistical model used in sequen-
tial or temporal environments. Despite being limited, HMMs and their variants are the
most widely used technique in that specific domain of studies, and are commonly re-
garded as the most popular one, due to their success when used in various systems and
applications and general simplicity.

An HMM is nothing more than a probabilistic function of a Markov process. Here we
provide a definition for Markov process (model).
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A Markov process or Markov chain is a random process on which the Markov property
can be applied. In other words, a Markov process can be described as a time sequence
representing the evolution of a system represented by random variables that aren’t in-
dependent, but rather the value of each variable depends on the previous states in the
sequence. It is often quite reasonable to assume that one can make predictions for the
future states of the process based solely on its present state as one could knowing the
process’s full full history, i.e. all the previous states plus the present state. Therefore,
the evolution of a Markov process depends solely on the system’s current state, entirely
neglecting its future and past states.

For example, if the random variables measure the number of cars in a parking lot, then,
knowing how many cars were parked in the parking lot today might adequately predict
the number of cars that there will be parked tomorrow, without extra knowledge about the
number of parked cars the parking lot had last week, let alone last year. That is, future
states in the sequence are conditionally independent of past states, provided that we have
information on the present state.

Every Markov process follows the Markov Assumption specified by Manning and Schuetze
[20]:

”Suppose X = (X1, ..., XT ) is a sequence of random variables taking values in some finite
set S = s1, ...sN , the state space. Then the Markov Properties are :

Limited Horizon:
P (Xt+1 = sk|X1, ..., Xt) = P (Xt+1 = sk|Xt)

Time invariant (stationary):
P (X2 = sk|X1)

Hence, we say that X is a Markov chain or has the Markov property.”

A Markov chain can be, alternatively, represented by a state diagram as the one shown
in Figure 3.2. The states correspond to the reports compiled by a hypothetical weather
prediction center, including forecasts about sunny, rainy and cloudy days. According to
the figure, a sunny day is followed by another sunny day 90% of the time, a cloudy day
7.5% of the time and a rainy day the other 2.5% of the time.
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Rainy
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Figure 3.2: The above example.

Here, the circles represent the states, with the state name being at the center, while
possible transitions between states are represented by arrows which connect them. Fi-
nally the edges are labeled with the probability of the transition from the state which lies
at the tail of the arrow to the state at which the arrow points.

A notable observation which stems from the above example is that the sum of the prob-
abilities of the outgoing edges is equal to 1. Moreover, it is emphasized that no long
distance dependencies are present and the transition between one state to another is
conditioned solely on the current state of the system, while being free of long distance
dependencies.

Now that we have defined the Markov models, we can describe the Hidden Markov model:

A hidden Markov model (HMM) is a statistical Markov model in which the system being
modeled is assumed to be a Markov process with unobserved (hidden) states. How-
ever, despite not having knowledge about the state sequence that the model transitions
through, that specific information is provided through a probability function which de-
scribes the evolution of the system.
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Table 3.1: Notation used in the HMM chapter.

Set of states S = {s1, ..., sN}
Output alphabet K = {κ1, ..., κM} = {1, ...,M}

Intial state probabilities Π = {πi}, i ∈ S
State transition probabilities A = {ai,j},i,j ∈ S

Symbol emission probabilities B = {bi,j,k}, i,j ∈ S, k ∈ K
State sequence x = (X1, ..., XT+1) Xt → 1, ..., N

Output sequence O = (o1, ..., oT ) ot ∈ K

The definition of a HMM can be based on a five-triple (S, K, Π, A, B) where the states
and the output alphabet are symbolized with S and K respectively and the initial state
probabilities, the transitions between states and the outputting of symbols are symbolized
with Π, A and B respectively. We hypothesize that we cannot observe the states of the
Markov process (or chain) at time t, hence s(t) is hidden. The mapping from state names
to integers which correspond to them is represented by the random variables Xt. Further-
more, there is a dependency between the symbol emitted at time and both the states at
time t and at t+ 1.

Hereby we provide a visualization of a Hidden Markov Process in the following example,
which suits our approach:

Imagine that we are outside of a room without having vision of what is going on inside.
In that room there are two buckets, labeled NFR and NBS each one of which contains a
known mix of nucleotides, labeled T (for thymine), A (for adenine), C (for cytocine) and
G (for guanine). Inside the room, someone chooses a bucket and randomly draws a
nucleotide from it. He then proceeds by presenting the nucleotide to us in a way that can
observe the sequence of the nucleotides coming out of the buckets, but not the sequence
of buckets from which the nucleotides were drawn. Imagine that we are outside of a
room without having vision of what is going on inside. In that room there are two buckets,
labeled NFR and NBS each one of which contains a known mix of nucleotides, labeled
T (for thymine), A (for adenine), C (for cytocine) and G (for guanine). Inside the room,
someone chooses a bucket and randomly draws a nucleotide from it. He then proceeds by
presenting the nucleotide to us in a way that can observe the sequence of the nucleotides
coming out of the buckets, but not the sequence of buckets from which the nucleotides
were drawn.

The person that’s inside the room follows a certain procedure in choosing the buckets
which lies on the fact that the choice of the bucket from which the n-th nucleotide will be
drawn depends solely on the choice of the hat from which the n − 1-th nucleotide was
drawn. This choice is not directly conditioned on the buckets chosen before the very
bucket that was chosen previously. Therefore, the process followed by the person in the
room has the Markov property. It can be described by the upper part of Figure 3.3, where
NFR and NBS are the states of the model, T,A,C,G are the possible observations, the
state transition probabilities are illustrated as numerical labels on arrows connecting the
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states and the output probabilities appear as numerical labels on arrows connecting a
state with an observation.

NFR

A C G T

NBS0.36

0.64

0.22
0.78

0.106

0.374

0.236 0.1820.402 0.119

0.256

0.325

Figure 3.3: The Hidden Markov Model in our approach

In addition to the above, the Markov process is invisible to the observer, who sees only
the sequence of nucleotides drawn from the buckets. This is the element responsible for
calling this process a ”hidden Markov process”. Even if the observer has been informed
about the composition of the buckets and has observed a sequence of nucleotides, he is
not able to distinguish which bucket produced which nucleotide. However, the observer
has other means to follow the process, such as knowing the likelihood that the n-th nu-
cleotide shown came from each of the buckets.

HMMs are useful in that they efficiently describe surface events that are probabilistically
generated by events which are undisclosed. In our approach, the HMMs can be useful in
tagging parts of genomic sequences to being Nucleosome Free Regions or Nucleosome
Binding Sites, taking into account the strict sequence of n-bases. We think of there being
an underlying Markov chain of nucleotides from which the actual genomic sequences are
generated.

FEATURES

We will initialize our work here by developing a feature vector with two dimensions, each
one belonging to a class of our problem : Nucleosome Free Region - i.e a region depleted
of nucleosomes - and Nucleosome Binding Site - a region with consistent nucleosomes -
and then creating two Hidden Markov Models, one for each of the above classes. Thus,
given a new sequence we will determine the probability of this sequence belonging to
each one of our two classes. Hence, our feature vector will have its dimensions assigned
to these two probabilities.
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Here’s a description of our feature vector v:{
v1i = P (wi ∈ A|wi)

v2i = P (wi ∈ B|wi)

where wi describes the nucleotide sequences we want to classify, A is the set belonging
to our first class and B is the set belonging to our second class. We can illustrate how the
feature extraction works considering the following example :

Example 3.3.1. Consider two genomic sequences, CGCAAATTATTG and AGCAAGACAGTT,
each one belonging to one of the above classes - we will use NFR and NBS for referring
to the first and the second class respectively. We then proceed to compute the conditional
probabilities of each genomic sequence belonging to each of the two classes, having the
following results :{

P ({CGCAAATTATTG} ∈ {NFR|CGCAAATTATTG})=0.47

P ({CGCAAATTATTG} ∈ {NBS|CGCAAATTATTG})=0.13

and {
P ({AGCAAGACAGTT} ∈ {NFR}|AGCAAGACAGTT})=0.25

P ({AGCAAGACAGTT} ∈ {NBS}|AGCAAGACAGTT})=0.62

Hence, our feature vector for this two instances will be the following :[
0.47 0.13
0.25 0.62

]

We also included a different kind of feature extraction for the same HMM model, entitled
Normalized HMM, previously used in Antonakaki et. al [21], where the feature vectors
consist of the logarithm of the probability P of each input sequence, given the model,
normalized by dividing it by the length l of the sequence (in nucleotides). More specifically
our feature vector v will now have the following form:{

v1i = log(P (wi ∈ A|wi))/l(wi)

v2i = log(P (wi ∈ B|wi))/l(wi)

The reasons behind this approach are linked to the fact that the probability P is inversely
proposal to the length, which means that, as the length of the input sequence increases,
its probability decreases in an analogous manner resulting in unscaled data. Hence, we
proceed to normalize that data using the logarithm function to achieve numerical stability
and math simplicity and finally we normalize it, using the division by the sequence length
described above. This may optimize the classification process by tackling any mismatches
based on the previously unnormalized nature of the feature vectors.
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3.4 Bag-of-words

The Bag-of-words model represents forms of text (such as sentences, documents or cor-
pora) as the multiset of their words, which is called a bag. Despite keeping words which
occur multiple times in a document, the Bag-of-words model ignores any form of linguistic
structure present in the text, including grammar and word order. In most cases, a bag of
words is a sparse vector which holds the number of times each word appears in the text.
In our case, in order to create a bag-of-words (or, more precisely, a bag-of-nucleotides)
model for a given genomic text document, we need to count the occurrence of each nu-
cleotide in it.

We will now give an example by applying the bag-of-words model to a text document.
Consider the following two sentences:

(2.3.1) Ryze is a good student. Annie is a good student too.

(2.3.2) Ryze is also good at playing football.
Based on these two sentences, we can construct a list which will hold the distinct words
present in them:

[”Ryze”, ”is”, ”a”, ”good”, ”student”, ”Annie”, ”too”, ”also”, ”at”, ”playing”, ”football”]

Now we can represent each sentence by a 11-entry vector, using the indeces of the list
that we’ve created:

[1, 2, 2, 2, 2, 1, 1, 0, 0, 0, 0] (2.3.1)

[1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1] (2.3.2)

Each scalar component of the above vectors represents the count of the corresponding
entry in the list. For instance, the first three components of the first vector (which refers to
the first sentence) are ”1, 2, 2” because the first component, ”Ryze” is encountered one
time in it, the second component, ”is”, is encountered two times, while the third one, ”a”
is also encountered two times. Similarly, the first and second components of the second
vector hold the value ”1” because their corresponding words appear one time each in the
second sentence, while the third component has the value ”0” due to its absence from it.

Most of the times, in order to enhance the representational power of the bag-of-words
model by simultaneously reducing its description length, we usually combine it with n-
gram statistics. These hybrid models tend to reveal useful statistical information about
the textual structure inside a document or between different documents. These models
either generate each word based on a given number of preceding words which have
already been encountered or neglect the word order entirely, by putting emphasis on
word correlations which provide information about the topic of a document.
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Although the most widely applied hybrid models are bigram-based – i.e. models which
make predictions for each word by taking into account just the immediately previous one
– there is flexibility in the available models one can use to harness the n-gram enhanced
model. For example the length we choose for the n-grams may vary (2-grams, 3-grams
and so on). In our approach we use the 3-gram model, or in our case, the 3-base.

The Bag-of-Words representation is of high importance to this study, because of the fact
that it is independent of the order in which the nucleotides appear inside a sequence,
meaning that it ignores the position of the n-base. This can possibly show that the po-
sitioning of nucleosomes is statistically correlated to the presence (or to the absence)
of particular nucleotides or any forms of nucleotide n-grams in the underlying genomic
sequence. It can also reinforce the fact that a genomic code which regulates genome
positioning, despite being apparrent, doesn’t actually depend on the sequence per se but
rather on the nucleotide frequencies.

FEATURES

In this method, we will initialize our work by evaluating the frequency of each n-base -
where n ∈ ℵ - in our training set (the n is set by default to 3). Finally, we will proceed
to construct two bags of 3-bases, one for each of our classes, which will act as a hash
table the purpose of which will be to map each 3-base to its word count. Finally we will
extract an initial feature vector for each class, consisting of the frequencies of the 3-bases
belonging to that specific class. Hence, if the NFR and NBS bags have m and n discrete
3-bases respectively, our initial feature vectors v will have the following form :

vi = fi = Ni/m, where i ∈ {0, ..., m}

for the NFR class and :

vi = fi = Ni/n, where i ∈ {0, ..., n}

for the NBS class, where vi is the i-th row of the feature vector, fi is the frequency of the
i-th 3-base in the corresponding class bag and Ni is the count of that particular 3-base in
the class sequences.

Finally, we proceed to construct the final feature vector, which will then be used by the
classication algorithms. We begin by defining a second temporary feature vector which
consists of the frequencies of the 3-bases which form each testing instance and then we
continue by computing the cosine similarity between this temporary feature vector and the
initial feature vector described above. We will here provide a definition for cosine similarity
:

Definition 3.4.1. Given two vectors of attributes, A and B, the cosine similarity, cos(θ), is
represented using a dot product and magnitude as

similarity = cos(θ) =
A ·B

‖ A ‖‖ B ‖
=

∑n
i=1AiBi√∑n

i A
2
i

√∑n
i B

2
i
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where Ai and Bi are components of vector A and B respectively.

Let us now give an example of the feature extraction that will take place :

Example 3.4.1. Consider the following eight genomic sequences, four of them belonging
to the NFR class and four of them to the NBS class :

NFR NBS
GCACT AATCC
TGGCA GAAAT
ACACT TCCAT
CCACA CATGT

By extracting the overlapping 3-bases we get the following bags :

NFR NBS
–’GCA’,’CAC’,’ACT’˝ –’AAT’,’ATC’,’TCC’˝
–’TGG’,’GGC’,’GCA’˝ –’GAA’,’AAA’,’AAT’˝
–’ACA’,’CAC’,’ACT’˝ –’TCC’,’CCA’,’CAT’˝
–’CCA’,’CAC’,’ACA’˝ –’CAT’,’ATG’,’TGT’˝

The NFR and NBS bags will then be formed, by uniting the same-class 3-bases and
computing the frequencies the distinct 3-bases :

NFR NBS
–’GCA’ : 0.166˝ –’AAT’ : 0.166˝
–’CAC’ : 0.250˝ –’ATC’ : 0.083˝
–’ACT’ : 0.166˝ –’TCC’ : 0.166˝
–’TGG’ : 0.083˝ –’GAA’ : 0.083˝
–’GGC’ : 0.083˝ –’AAA’ : 0.083˝
–’ACA’ : 0.166˝ –’CCA’ : 0.083˝
–’CCA’ : 0.083˝ –’CAT’ : 0.166˝

–’TGT’ : 0.083˝

Now let’s consider that we have the two instances of example 3.3.1. : CGCAAATTATTG
and AGCAAGACAGTT. Their bags are the following :

CGCAAATTATTG AGCAAGACAGTT
–’CGC’ : 0.1˝ –’AGC’ : 0.1˝
–’GCA’ : 0.1˝ –’GCA’ : 0.1˝
–’CAA’ : 0.1˝ –’CAA’ : 0.1˝
–’AAA’ : 0.1˝ –’AAG’ : 0.1˝
–’AAT’ : 0.1˝ –’AGA’ : 0.1˝
–’ATT’ : 0.2˝ –’GAC’ : 0.1˝
–’TTA’ : 0.1˝ –’ACA’ : 0.1˝
–’TAT’ : 0.1˝ –’CAG’ : 0.1˝
–’TTG’ : 0.1˝ –’AGT’ : 0.1˝

–’GTT’ : 0.1˝
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The reason we take the frequencies instead of the 3-base counts is simply to save time
by skipping the division by ‖ A ‖ and ‖ B ‖.

Finally by computing the cosine similarity between the unlabeled sequences’ bags and
the two classes’ bags we construct the final feature vectors.

The cosine similarity between the first testing instance bag and the NFR bag is :

0.1 · 0.166 = 0.1166

while that between the first testing instance bag and the NBS bag is :

0.1 · 0.083 + 0.1 · 0.166 = 0.0249

With the same pattern we compute the cosine similarities between the second testing
instance and the two class-bags resulting to the following feature vector :

0.1166 0.0249
0.0332 0

We also included a different kind of feature extraction for the same Bag-of-words model,
entitled Baseline Bag-of-words, in which we used the raw counts of each 3-base per
instance as features. More specifically, our language L will consist of all the 3-bases
produced over the alphabet {A,C,G, T}, therefore |L| = 43 = 64. This results in the
following 64-dimensional feature vectors :

vi,j = Nj, where i ∈ {1, ..., n}, j ∈ {1, ..., 64}

where vi,j is the i-th feature vector, n is the total number of instances and Nj is the count
of the j-th 3-base for the corresponding instance.

Let us now give an example of the feature extraction that will take place, based on the
sequences CATCATAATCGGTTC and ATTAATTAGGGGGCA of the previous example :

Example 3.4.2. To construct the feature vectors for our NFR and NBS classes, we just
have to compute the count of each distinct 3-base, for each of our instances. Hence, the
following feature vectors will be constructed:
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CGCAAATTATTG CGCAAATTATTG
–’AAA’ : 1˝ –’AAA’ : 0˝
–’AAC’ : 0˝ –’AAC’ : 0˝

...
...

–’AAT’ : 1˝ –’AAT’ : 0˝
...

...
–’ACA’ : 0˝ –’ACA’ : 1˝

...
...

–’ATT’ : 2˝ –’ATT’ : 0˝
...

...
–’CAA’ : 1˝ –’CAA’ : 1˝

...
...

–’CAG’ : 0˝ –’CAG’ : 1˝
...

...
–’GCA’ : 1˝ –’GCA’ : 1˝

...
...

–’TAT’ : 1˝ –’TAT’ : 0˝
...

...
–’TTG’ : 1˝ –’TTG’ : 0˝

...
...

This type of feature extraction clearly results in sparse multidimensional feature vectors
of dimension d = 64. The reason behind this specific approach is to indicate the effect
of dimensionality reduction to our problem by making a comparison between this 64-
dimensional model with the 2-dimensional one, described at the beginning of this section.

3.5 N-gram Graphs

Another useful model which can be used to represent text data is the n-gram graph. In
text-related studies, an n-gram is a set which consists of n characters or words. The n-
gram graph model has been successfully applied to a variety of disciplines, including text
summarization [22], classification [23] and sequence clustering.
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Table 3.2: N-gram examples from various disciplines.

Field Unit Sample sequence 1-gram 2-gram 3-gram
Protein sequencing amino acid . . . Cys-Gly- . . . , Cys, Gly, . . . , Cys-Gly, . . . , Cys-Gly-Leu,

-Leu-Ser-Trp... Leu, Ser, Gly-Leu, Gly-Leu-Ser,
Trp,... Ser-Trp, ... Leu-Ser-Trp, . . .

DNA sequencing base pair ...AGCTTCGA... ..., A, G, C, ..., AG, GC, ..., AGC, GCT,
C, T, T, C, CT, TT, TC, CTT, TTC,
G, A, . . . CG, GA, . . . TCG, CGA, . . .

Computational linguistics character ...to˙be˙or˙ . . . , t, o, ˙, b, . . . , to, o˙, ˙b, . . . , to˙, o˙b,
not˙to˙be. . . e, ˙, o, r, ˙, be, e˙, ˙o, or ˙be, be˙, e˙o,

n, o, t, ˙, t, r˙, ˙n, no, ot, ˙or, or˙, r˙n,
o, ˙, b, e, . . . t˙, ˙t, to, ˙no, not, ot˙,

o˙, ˙b, be, . . . t˙t, ˙to, to˙,
o˙b, ˙be, . . .

Computational linguistics word . . . to be or . . . , to, be, . . . , to be, be . . . , to be or,
not to be not, to, be, or, or not, be or not,

. . . . . . not to, to or not to,
be, . . . not to be, . . .

An n-gram graph can be constructed by following three basic methods, depending on
the ways in which the adjacency between neighboring n-grams is defined. Generally,
we can use a window of a given character width which surrounds the n-gram of interest
N0 and includes the characters which are regarded as being the neighbors of it. Each
neighborhood present in the original text corresponds to a pair of connected vertices in
the n-gram graph which represent the neighboring n-grams. Here we provide a definition
for the symmetric approach, which we follow in this study, as provided by Giannakopoulos
et al.[22].

The symmetric approach - ”A window of length n runs over the summary text, centered
at the beginning of N0. If the n-gram we are interested in is located at position p0, then
the window will span from p0 − [n

2
] to p0 + [n

2
], taking into account both preceding and

following characters or words. Each neighbourhood indicative edge is weighted based on
the number of window co-occurrences of the neighbours, as previously indicated, within
the text.”
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Figure 3.4: Graph extracted from the genomic sequence ATTCGC based on the symmetric type of
window.

We now provide the definition of n-gram, given a text, as it is described by Giannakopoulos
et al. [22]:

Definition 3.5.1. If n > 0, n ∈ Z, and ci is the i-th character of an l-length character
sequence T l = {c1, c2, ..., cl} (our text), then a character n-gram Sn = (s1, s2, ..., sn) is a
subsequence of length n of T l ⇐⇒ ∃i ∈ [1, l − n + 1] : ∀j ∈ [1, n] : sj = ci+j−1. We shall
indicate the n-gram spanning from ci to ck, K > i, as Si,k, while n-grams of length n will
be indicated as Sn.

The above definition means that n-gram Sn can be located in the original text in the form
of a substring of length n, which begins at the i-th and ends at the j-th character of the
original text. For example if the text is the following genomic sequence:

GCACTTCATTGCTATCCAACGTTACATTAGCGG

then S1,2 is the sequence ’G’,’C’≡’GC’ for display purposes.

Extracting N-grams
If we choose to extract the n-grams (Sn) of a text T l, the (elementary) algorithm is indi-
cated as algorithm 1.

Input: text
Output: n-gram set
//T is the text we analyse
for all i in [1, length(T)-n+1] do
| get substring of T from index i to i+n-1
end

Algorithm 1: Extraction of n-grams

Now we can provide an example of this algotithm’s effect on genomic textual data :

Example 3.5.1. Application of our method to the genomic sequences CGCAAATTATTG
and AGCAAGACAGTT we have used in examples 3.3.1, 3.4.1, with a requested n-gram
size of 3 would return:

–‘CGC’, ‘GCA’, ‘CAA’, ‘AAA’, ‘AAT’, ’ATT’, ‘TTA’, ‘TAT’, ‘ATT’, ‘TTG’˝ and
–’AGC’, ’GCA’, ’CAA’, ’AAG’, ’AGA’, ’GAC’, ’ACA’, ’CAG’, ’AGT’, ’GTT’˝
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for CGCAAATTATTG and AGCAAGACAGTT respectively, while an algorithm taking dis-
joint n-grams would return:

–’CGC’, ’AAA’ ’TTA’, ’TTG’˝ and –’AGC’, ’AAG’, ’ACA’, ’GTT’˝

for CGCAAATTATTG and AGCAAGACAGTT respectively.

N-gram Graph

The n-gram graph is a graph G = {V G, EG} the vertices of which are n-grams vG ∈ V G

and the edges eG ∈ EG which connect them represent the adjacency between the corre-
sponding n-grams (also see figure 3.4). The edges usually carry weights which indicate
the distance between the two n-gram neighbors in the text. A more formal definition is
given by Giannakopoulos et al. [22]:

Definition 3.5.2. ”If S = {S1, S2, ...}, Sk 6= Sl,∀k 6= l, k, l ∈ N is the set of distinct n-grams
extracted from a text T l, and Si is the i-th extracted n-gram, then G is a graph, where
there is a bijection (one-to-one and onto) function f : S → V .”

The edges E, are labeled with weights cij where cij corresponds to the number of times
an adjacency of a specific pair of n-grams Si, Sj grams occurs within a distance Dwin (is
commonly measured in characters) of each other.However, in order to reduce the com-
plexity of the representation and due to the diminishing importance of a relation between
n-grams neighboring each other while the distance between them increases, one has to
consider only a window surrounding Si in the original text, in order to deduce which neigh-
bors Sj are worth examining. The adjacency between two given neighboring n-grams Si,
Sj which happen to be located inside the window Dwin and are represented by vertices
vi, vj , is representing by the corresponding edge e ≡ {vi, vj} that connects them.

All in all, an n-gram graph is a graph which contains n-grams extracted from textual data
(or in our case genomic textual data) and bears context-related information. By using the
n-gram graph as a representation in this study we are trying to augment our undestanding
of genomic text data not only by capturing the simple co-occurence of nucleotides or n-
bases (i.e. n-grams of nucleotides), but also by allowing for different types of the same
n-base. This may reinforce the fact that nucleosome positioning is not regulated by the
exact order in which nucleotides appear inside a genomic sequence, but rather it depends
on the presence (or absence) of certain nucleotides or n-bases in the underlying genomic
sequence. It also may indicate whether neighborhoods of n-bases can identify NFR or
NBS genomic sequences, taking into account the relative positioning of n-bases.

FEATURES

We will initialize our work here by constructing two n-gram graphs based on the symmetric
approach, one for each of our classes. This can be done by merging the n-gram graphs
of the genomic sequences belonging to the training instances of the same class - let GA

be the n-gram graph of the first class (i.e. NFR) and GB the n-gram graph of the second
class (i.e. NBS). In order to keep these graphs balanced (i.e. each n-gram graph that
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gets merged to it has the same effect on the final resulting graph), the class n-gram graph
is scaled by the amount of n-grams that are so far merged into it. A definition of the union
between graphs G1 and G2 is given formally in: [24]

Definition 3.5.3. ”If E1 and E2 are the edge sets of G1, G2 correspondingly, Wi is the
result graph edge weighting function andW1, W2 are the weighting function of the operand
graphs with e /∈ Ei =⇒ Wi(e) = 0, i ∈ 1, 2, then the edgeset E of the merged graph is:

E = E1 ∪ E2,W i(e) =
W 1(e) +W 2(e)

2
, e ∈ (E1 ∪ E2)

Subsequently we proceed by constructing an n-gram graph for each testing genomic se-
quence wi which will then be compared with each of the two class graphs mentioned
above. The similarities which will be extracted by this comparison can be assigned to the
dimensions of our feature vector.

In this study we use three forms of similarity metrics between two n-grams Gi, Gj: the
Value Similarity (or V S) which measures the amount of edges which are contained both
in graph Gi and in graph Gj, the Size Similarity (or SS) which compares the size between
Gi, Gj and the Containment Similarity (or CS) which measures the part of Gi contained
by Gj. Here we will provide formal definitions fo each metric as given formally in [24]:

Definition 3.5.4.

V S(Gi, Gj) =

∑
e∈Gi min(wi

e,w
j
e)

max(wi
e,w

j
e)

max(|Gi|, |Gj|)

Definition 3.5.5.

SS(Gi, Gj) =
min(|Gi|, |Gj|)
max(|Gi|, |Gj|)

Definition 3.5.6.

CS(Gi, Gj) =

∑
e∈Gi min(wi

e,w
j
e)

max(wi
e,w

j
e)

|Gi|

Hence, our vector v will be: 

vi1 = V S(Gwi
, GA)

vi2 = V S(Gwi
, GB)

vi3 = SS(Gwi
, GA)

vi4 = SS(Gwi
, GB)

vi5 = CS(Gwi
, GA)

vi6 = CS(Gwi
, GB)

where Gwi
is the n-gram graph extracted from the genomic sequence test instance wi.

45 N. - S. Kostagiolas



A Study on chromatin structure via nucleosome positioning pattern classification using n-gram graphs

3.6 Classification Algorithms

3.6.1 Decision Trees

We will here give a brief description of decision trees. For a more complete overview the
reader can check either [25] or [26].

When we want to say that an instance belongs to a certain class we sometimes sub-
ject it to a series of questions upon its attributes or features. On receiving an answer to
these question, we follow up with another, until we can carefully distinguish the class to
which the instance in question belongs. This sequence of questions can be organized in a
decision tree, a hierarchical structure consisting of nodes and directed edges. A decision
tree has three types of nodes:

• The root node, which hasn’t got any internal edges and zero or more external
edges.

• The internal nodes, each one of which has exactly one internal edge and two or
more external edges.

• The leaves or terminal nodes, each one of which has exactly one internal edge
and one external edge.

Figure 3.5 provides an illustration of a decision tree for the training set of Figure 3.6.

Figure 3.5: A decision tree
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Nucleotide1 Nucleotide2 Nucleotide3 Class
A C G NBS
C G T NFR
A A T NFR
T T C NFR
C G A NFR
G A T NBS
G C G NBS
T T A NFR

Figure 3.6: Training set

In a decision tree, a class label is assigned to each leaf node. The non-terminal nodes,
which consist of the root node and the internal nodes, contain decision conditions in order
to distinguish the instances that have different attributes or features. If we try to classify,
for example, the instance ”ACG” (the first from our training set in Figure 3.6) using the
decision tree from Figure 3.5, then the classification process for this instance will begin
from the root node Nucleotide1, proceed to the internal node Nucleotide2 and finally
reach the terminal node Nucleotide3 where it will be classified as belonging to the NBS
class. Algorithm 2 presents a general pseudo-code for building decision trees.

function DTL(examples, attributes, default) returns a decision tree
if examples is empty then return default
else if all examples have the same classification then return the

classification
else if attributes is empty then return MODE(examples)
else

best ← CHOOSE-ATTRIBUTE(attributes, examples)
tree ← a new decision tree with root best
for each value vi of best do

examplesi ← elements of examples with best = vi
subtree ← DTL(examplesi, attributes - best, MODE(examples))
add a branch to tree with label vi and subtree subtree

return tree

Algorithm 2: Pseudo-code for building a decision tree

3.6.2 Naive Bayes

In some cases the connection between the instance characteristics and the class variable
is non-deterministic. In other words, the class label of a given instance can’t be predicted
with certainty, even when the attributes of the instance resemble very much those of the
already classified training instances. This uncertainty can be modeled with the assistance
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of the Bayes Theorem:

P (Y |X) =
P (X|Y )P (Y )

P (X)

where X and Y are random variables. For example, X might be a random variable rep-
resenting the fact that a genomic sequence contains the trinucleotide ”ATT” and Y might
be a random variable representing the fact that this genomic sequence is a Nucleosome
Free Region (or a NFR).

Hence, let’s suppose that X is used to define the set of characteristics and Y is used to
define the class variable. If those two variables are correlated in a deterministic way, then
it is possible to utilize X and Y as random variables, in order to define their probabilistic
relationship using the posterior probability P (Y |X). This is the probability of Y happening,
provided that we have evidence of X happening.

The Bayes theorem is, therefore, useful in the way that it allows us to define the pos-
terior probability in relation to the prior probability P (Y ), the class-conditional probability
P (X|Y ) and the evidence P (X).

The Naive Bayes classifier makes the assumption that the characteristics are condition-
ally independent, considering a given class y, in order to be able to compute the class-
conditional probability. This assumption can be expressed as:

P (X|Y = y) =
d∏

i=1

P (Xi|Y = y),

where we have d characteristics for each instance of the training set.

Therefore, in order to classify each instance in the test set, the Naive Bayes classifier
computes the posterior probability for every class Y:

P (Y |X) =
P (Y )

∏d
i=1 P (Xi|Y = y)

P (X)

and chooses the class Y which maximizes the numerator of the above equation, since the
denominator P(X) will always be constant.

3.6.3 k-Nearest Neighbor

Sometimes, when we want to assign a class label to an instance we choose to compare
its characteristics with those belonging to the training set instances. For the classification
process to be as accurate as possible we need to find the examples in the training set,
the characteristics of which tend to resemble those of the instance to be classified. These
examples are often known as the nearest neighbors and can be utilized in order to define
the correct class label for the test instance.

A nearest neighbor classifier represents every instance as a point in a d-dimentional
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space, where d is the number of characteristics we have for each instance. Given a new
unclassified instance, the classifier can measure its proximity to the training set instances,
by mapping it at this d-dimentional space and then computing the distance between it and
the rest of the data using a proximity measure. Hence, given an unclassified instance z,
we use the term k-nearest neighbors to refer to the k points in the data that are closer
to z. In Algorithm 3, a pseudo-code example for the instance base learning methods is
illustrated.

1) for each testing instance
1.1) find the k nearest instances of
the training set according to a
distance metric
1.2) Resulting Class = most frequence class
label of the k nearest instances

Algorithm 3: Instance-based learning pseudo-code

If the value of k is too little, then the nearest neighbor classifier might be susceptible to
underfitting due to the presence of noise in the training set. On the other hand, if the value
of k is too large, the classifier might be error-prone in its classification outcome, due to the
possibility that the nearest neighbors may include points in space which aren’t situated
in close proximity to the unclassified instance. Lastly, in the case that the neighbors hold
more than one labels, the label assigned to the majority of the neighbors is then assigned
to the unclassified instance. This is shown in the next equation:

y′ = argmaxv
∑

(xi,yi)∈Dz

I(v = yi)

, where v is a class label, yi is a class label belonging to the i-th neighbor and I() is a
function which returns the value of 1 when its argument is true and 0 otherwise.

As we see in the above equation, every neighbor has equal saying on the outcome of the
classification, although their distance from the unclassified data point may vary greatly.
Therefore, a way of maintaining a safe classification criterion is to normalize the influence
that each neighbor has on the class label, in relation to its distance from the test instance:
wi = 1/d(x′, xi)

2. By doing this we allow the neighbors which are situated closer to the
unclassified data point to have much greater influence on the classification outcome than
the ones which tend to be found at a greater distance from it.

3.6.4 Support Vector Machines

A classification technique which has gained considerable attention, is the Support Vec-
tor Machine (SVM). This particular technique, the roots of which lie in statistical training
theory, has shown many promising results in many cases that it has been applied on.
The main reason for that is the efficiency of the SVM in handling multi-dimentional data,
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which gives it the ability to tackle the curse of dimensionality. Another important aspect
of this classification technique is that it makes decisions based on a subset of the training
instances, known as the support vectors.

The SVM initiates by representing the training examples in a feature space, mapping them
in a way that the points belonging to different categories are separated by a gap. Then,
during the classification process, the SVM maps the new unseen examples into that same
space, in order to predict the category to which they belong to. Therefore, the separation
gap must be as wide as possible, in order for the SVM to be more accurate in its pre-
dictions.When the training instances can’t be separated linearly, the SVM is also able to
perform an efficient non-linear classification process, by mapping the training examples
into feature spaces which are high-dimensional. Hence, the Support Vector Machine clas-
sifier opts to define the hyperplane for which the largest separation, or margin, between
the data points of the different classes in our data, can be achieved. In other words, the
aim of this classiication technique is to locate which feature space allows for the maximum
distance possible between the nearest points in our data belonging to different classes.
This hyperplane, if exists, is commonly known as the maximum-margin hyperplane.

A general pseudo-code for SVMs is illustrated in Algorithm 4.

1) Introduce positive Lagrange
multiplers, one for each of the
inequality constraints. This
gives Lagrangian:

Lp =
1

2
‖w‖2 −

N∑
i=1

aiyi(xi · w − b) +
N∑
i=1

ai

2) Minimize Lp with respect to w, b.
This is a convex quadratic programming problem.
3) In the solution, those points
for which ai > 0 are called "support vectors"

Algorithm 4: SVM pseudo-code

where w is termed the weight vector and b the bias which are used in order to define the
decision rule for the algorithm given by:

fw,b(x) = sgn(wTx + b)
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3.7 Evaluation

3.7.1 Evaluation Metrics Definition

The results produced from various classification tasks can be represented in confusion
matrices [27] such as the one shown in Table 3.1. The purpose of this matrix is to repre-
sent the number of instances that were classified correctly (True positives or TP and True
Negatives or TN) and falsely (False Positives or FP and False Negatives or FN). In Table
3.1 we provide a confusion matrix for a binary classification task, where n is the number
of instances to be classified.

n = 150 Predicted Value: N Predicted Value: P
Actual Value: N True Negatives (or TN): 45 False Positives (or FP): 15
Actual Value: P False Negatives (or FN): 10 True Positives (or TP): 80

Figure 3.7: Confusion matrix

The confusion matrix aids us in computing several performance metrics, in order to accu-
rately evaluate our models.
We are going to present some performance metrics, of which we will use the first four in
our experiments:

• Accuracy

Accuracy =
TP + TN

N

• Recall
Recall =

TP

TP + FN

• Precision
Precision =

TP

TP + FP

• F-measure
F −measure = 2 · Recall · Precision

Recall + Precision

• Specificity

Specificity =
TN

FP + TN
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• AUC
AUC = 2 · Accuracy · Precision

3.7.2 What do different metrics mean ?

In this section we are going to analyze the meaning of each measure. We will define
models A, B and C to facilitate our examples. Here follow the Confusion Matrices of each
model :

Predicted Value: N Predicted Value: P
Actual Value: N True Negatives (or TN): 0 False Positives (or FP): 0
Actual Value: P False Negatives (or FN): 60 True Positives (or TP): 90

Figure 3.8: Confusion matrix of model A

Predicted Value: N Predicted Value: P
Actual Value: N True Negatives (or TN): 60 False Positives (or FP): 90
Actual Value: P False Negatives (or FN): 0 True Positives (or TP): 0

Figure 3.9: Confusion matrix of model B

Predicted Value: N Predicted Value: P
Actual Value: N True Negatives (or TN): 10 False Positives (or FP): 15
Actual Value: P False Negatives (or FN): 50 True Positives (or TP): 75

Figure 3.10: Confusion matrix of model C

• Accuracy
The accuracy metric measures how efficient is our model at correctly classifying
instances. When evaluating models, we need to ensure that we pick the model with
the highest accuracy.

� The accuracy of the A model is (90/150)*100 or 60%.
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� The accuracy of the B model is (60/150)*100 or 40%.

� The accuracy of C is (85/150)*100 or 56.7%.

The accuracy measure suggests that A is a better model while C comes second
with a close margin. B is the far worst model.

• Recall
The recall metric is defined as the division between the number of accurate positive
predicted instances and the number of the instances belonging to the positive class
in our data. This metric measures how complete a classifier is. A low recall indicates
that many instances in our data are classified as being negative class instances
despite belonging to the positive class.

� The recall of the A model is 90/150*100 or 60%.

� The recall of the B model is 0/(0+60)*100 or 0%.

� The recall of C is 75/(75+50)*100 or 60%.

The recall metric suggests C is a better model and that the B is more useful than the
A model even though it has a lower accuracy. The difference in recall between the B
model and the C can be explained by the large number of False Positives predicted
by the B model.

• Precision
The precision metric is defined as the division between the number of accurate
positive predictions and the total number of the instances which were predicted
as belonging to the positive class in our data. This metric measures how exact a
classifier is. A low precision indicates that many instances in our data are classified
as being positive class instances despite belonging to the negative class.

� The precision of the A model is 90/(90+0)*100 or 100%.

� The precision of the B model is 0/(0+90)*100 or 0%.

� The precision of C is 75/(75+15)*100 or 83.4%.

The precision suggests C is a better model and that the B is more useful than the
A model even though it has a lower accuracy. The difference in precision between
the B model and the C can be explained by the large number of False Positives
predicted by the B model.

• F-measure
The F-measure is also called the F Score or the F Measure. This metric measures
how balanced are the metrics Recall and Precision for a given model.

� The F-measure of the A model is 2*(0.6*1.0)/(0.6+1.0)*100 or 75%.

� The F-measure of the B model is 2*(0.0*0.0)/(0.0+0.0)*100 or undefined.

� The F-measure of C is 2*(0.6*0.834)/(0.6+0.834)*100 or 69.8%.
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If we were looking to select a model based on a balance between precision and
recall, the F-measure suggests that B model is the one to beat and that C model is
not yet sufficiently competitive.

This example illustrates the fact that the accuracy measure can be misleading. Hence,
it is often more preferable to select a model which has large precision and recall despite
having lower accuracy, because of its ability of producing correct predictions for our prob-
lem.

For example, when we have a problem of class imbalance (i.e. a problem where the
number of the instances belonging to one class is many times larger than the number
of the instances belonging to the other), the model will usually predict the majority of the
instances as belonging to the ”major” class in a rather naive way, by just simply taking into
account the class imbalance rather than being accurate by extracting useful representa-
tions from the data.
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4. EXPERIMENTS

4.1 Experimental Setup

The dataset we will use for our study consists of the the S. cerevisiae genome and is the
similar dataset to that used in [17]. Due to it being a commonly used dataset in previous
studies, we can easily compare our results with that of previous experiments.

Here, follows a description of the data files :

• .bed files
These .bed files (browser extensible data) have a quite simple structure, which con-
sists from three elements : a) the chromosome to which the specific data belongs,
b) the starting point and c) the ending point of it.
For example the line ”chr5 100 200” means that the element we’ve encountered
belongs to the 5-th chromosome from the 100-th position to the 200-th.

• .fa files
These .fa files complement the above .bed files by providing more information for the
specific coordinated elements, due to having not only the information about the three
elements described above, but also having information about the nucleotide se-
quences. Hence, the above example now looks like this: ”chr5:100-200 ATGAGA...”

Our experiments were ran in a MacBook Air (13-inch, Early 2014) featuring a 1.4GHz
dual-core Intel Core i5 (with Turbo Boost up to 2.7GHz) with 3MB shared L3 cache. Since
our code does not take advantage of both cores, the processor possibly uses just one
core with the latter clock frequency.

For handling the Hidden Markov Model part of the implementation, Jahmm1, a Java library
implementing the various algorithms related to HMMs was used. For training our HMM
model, we used the Baum-Welch algorithm [28], which was implemented in this library.
Jahmm’s original author is Jean-Marc Francois.

In addition, for the n-gram graph part of the implementation, the JINSECT2 toolkit was
1https://github.com/aubry74/Jahmm
2https://sourceforge.net/p/jinsect/wiki/Home/
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used. JINSECT is a Java-based toolkit and library that supports and demonstrates the
use of n-gram graphs within Natural Language Processing applications. For our imple-
mentation, we took advantage of JINSECT’s tools capable of creating, merging and com-
paring n-gram graphs, which facilitated the feature extraction needed for the experiments.
JINSECT was written by George Giannakopoulos and Panagiotis Giotis.

Finally, we used Weka3 [29] a collection of machine learning algorithms for data mining
tasks, in order to utilize these algorithms for our classification tasks. The Weka Data
Mining Software was implemented by the Machine Learning Group at the University of
Waikato.

4.2 Results

We hereby present our experimental results. We used the measures Recall, Precision
and F-measure for our experiments and we also computed the Mean Training Time per
Algorithm/Representation Pair, the Mean Classification Time per Algorithm/Representa-
tion Pair and the Mean Total Time per Algorithm/Representation Pair.

3http://www.cs.waikato.ac.nz/ml/weka/
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Figure 4.1: Recall measure per Representation (values between 0.00 - 0.65 neglected due to lack of
data).

The most successful models in terms of Recall are: the N-gram graphs and Baseline
Bag-of-words models the mean Recall of which stands at 0.990 and 0.985 respectively.
HMMs tend to be the least successful ones featuring a mean Recall of 0.884. Normalized
HMMs appear to be more effective than plain ones with a mean Recall at 0.940, while the
Bag-of-words model featuring dimensionality reduction tends to be less effective than its
Baseline model by a mean margin of 0.007.
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Table 4.1: Mean Recall per Algorithm/Representation Pair (higher is better).

Representation Classification Algorithm Mean Recall

HMM

Naive Bayes 0.713
Decision Trees 1.000

kNN 0.824
SVM 1.000

Normalized HMM

Naive Bayes 0.952
Decision Trees 0.976

kNN 0.834
SVM 0.990

Bag-of-words

Naive Bayes 0.987
Decision Trees 0.989

kNN 0.965
SVM 0.978

Baseline Bag-of-words

Naive Bayes 1.000
Decision Trees 0.945

kNN 0.970
SVM 1.000

N-gram graphs

Naive Bayes 0.991
Decision Trees 0.993

kNN 0.977
SVM 1.000
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Figure 4.2: Precision measure per Representation.

The most successful models in terms of Precision are: the N-gram graphs and Baseline
Bag-of-words models the mean Precision of which stands at 0.973 and 0.960 respec-
tively. HMMs tend to be the least successful ones featuring a mean Precision of 0.769.
Normalized HMMs appear to be more effective than plain ones with a mean precision at
0.814, while the Bag-of-words model featuring dimensionality reduction tends to be less
precise than its Baseline model by a mean margin of 0.006.
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Table 4.2: Mean Precision per Algorithm/Representation Pair (higher is better).

Representation Classification Algorithm Mean Precision

HMM

Naive Bayes 0.828
Decision Trees 0.722

kNN 0.803
SVM 0.722

Normalized HMM

Naive Bayes 0.827
Decision Trees 0.820

kNN 0.840
SVM 0.764

Bag-of-words

Naive Bayes 0.944
Decision Trees 0.962

kNN 0.970
SVM 0.938

Baseline Bag-of-words

Naive Bayes 0.945
Decision Trees 0.944

kNN 0.971
SVM 0.982

N-gram graphs

Naive Bayes 0.968
Decision Trees 0.977

kNN 0.980
SVM 0.967
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Figure 4.3: F-measure per Representation (NOTE: minimum y-axis value is 0.70).

The most successful models in terms of F-measure are: the Baseline Bag-of-words and
N-gram graphs models the mean F-measure of which resides at 0.984 and 0.974 respec-
tively. HMMs tend to be the least successful ones featuring a mean F-measure of 0.739.
Normalized HMMs appear to be more effective than plain ones with a mean F-measure at
0.805, while the Bag-of-words model featuring dimensionality reduction tends to be less
successful than its Baseline model by a mean margin of 0.004.
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Table 4.3: Mean F-measure per Algorithm/Representation Pair (higher is better).

Representation Classification Algorithm Mean F-measure

HMM

Naive Bayes 0.747
Decision Trees 0.722

kNN 0.764
SVM 0.722

Normalized HMM

Naive Bayes 0.824
Decision Trees 0.824

kNN 0.801
SVM 0.770

Bag-of-words

Naive Bayes 0.947
Decision Trees 0.963

kNN 0.961
SVM 0.945

Baseline Bag-of-words

Naive Bayes 0.951
Decision Trees 0.932

kNN 0.964
SVM 0.984

N-gram graphs

Naive Bayes 0.969
Decision Trees 0.972

kNN 0.974
SVM 0.971
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Figure 4.4: Training Time per Algorithm/Representation Pair.

In terms of training time both the Bag-of-words and Baseline Bag-of-words models are
the fastest to train, as they take 0.0518 and 0.0674 seconds for the training phase to
complete. The HMM models (i.e. plain HMM and Normalized HMM) take a quite longer
to train, as they need 3.317 and 4.177 seconds to be trained. Finally, the most inefficient
representation to train is the N-gram graphs model, using 18.718 seconds for the training
phase.
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Figure 4.5: Classification Time per Algorithm/Representation Pair.

In terms of classification time all the models except for the Baseline Bag-of-words model
take little time for the classification process to finish ranging from 0.046 to 0.16 seconds
at most. The Baseline Bag-of-words model is the only one, the classification process of
which takes multiple times to finish, in relation with the classification times of the rest of
the models.
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Table 4.4: Mean Classification Time per Algorithm/Representation Pair (lower is better).

Representation Classification Algorithm Mean Classification Time (secs)

HMM

Naive Bayes 0.046
Decision Trees 0.050

kNN 0.157
SVM 0.125

Normalized HMM

Naive Bayes 0.074
Decision Trees 0.122

kNN 0.185
SVM 0.133

Bag-of-words

Naive Bayes 0.052
Decision Trees 0.095

kNN 0.164
SVM 0.127

Baseline Bag-of-words

Naive Bayes 0.149
Decision Trees 0.517

kNN 1.458
SVM 2.017

N-gram graphs

Naive Bayes 0.062
Decision Trees 0.095

kNN 0.213
SVM 0.091
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Figure 4.6: Total Time per Algorithm/Representation Pair.

The most efficient models concerning completion time (i.e. training time + classification
time) are the Bag-of-words which take 6-7 seconds to finish the training and classification
processes. The Baseline Bag-of-words follow with 11-30 seconds to completion, while
the HMM and Normalized HMM ones take relatively equal time to finish, at 35-38 and 37-
47 respectively. The most inefficient model, in terms of completion time, are the N-gram
graphs, the completion time of which takes up to 320-323 seconds.
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Table 4.5: Mean Total Time per Algorithm/Representation Pair (lower is better).

Representation Classification Algorithm Mean Total Time (secs)

HMM

Naive Bayes 35
Decision Trees 37

kNN 36
SVM 38

Normalized HMM

Naive Bayes 47
Decision Trees 37

kNN 41
SVM 38

Bag-of-words

Naive Bayes 7
Decision Trees 6

kNN 7
SVM 7

Baseline Bag-of-words

Naive Bayes 11
Decision Trees 14

kNN 25
SVM 30

N-gram graphs

Naive Bayes 321
Decision Trees 321

kNN 320
SVM 323
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5. DISCUSSION AND CONCLUSION

Here we are going to sum up our conclusions resulted from the experiments we’ve con-
ducted so far.

First and foremost, a striking fact to note is that the dataset imbalance in our classes
affected negatively the efficiency of our experiments. The class instances were 1033 for
the NFR class and 3061 for the NBS class, therefore some models and especially the
HMM suffered from the Most Common Class problem. However, all the other models,
the Normalized HMM included, fared better against these problems and proved to tackle
them efficiently.

Furthermore, our results indicated that the N-gram graphs and Bag-of-words models are
better suited for our problem than HMM. This is better shown in section 4.2 where com-
parisons between the different models are made, based on the Recall, Precision and
F-measure metrics.

Another thing to note, is that, although the N-gram graphs model is more efficient than
the HMM, the time reserved for its training phase overwhelms that of the other models.
However, due to the training phase’s unique heavy preprocessing schedule, the training
time is reasonably lower, in comparison to the other models. Moreover, we should also
include the fact that the Normalized version of the HMM model tended to be more efficient
than the plain one, which is probably correlated with the normalization procedure that we
used.

Finally, we can’t ignore the fact that the Baseline Bag-of-words model has the longest clas-
sification time among our models. This is probably explained by the fact that the features
extracted from this particular model were high-dimensional, which proved to constrain the
efficiency of the classification algorithms used. This particular problem, though, doesn’t
appear in the dimensionality-reduced case of our standard Bag-of-words model, a fact
which reinforces our intuition about the dimensionality problem being apparent in the first
model.

Some of the next steps towards increasing our understanding of global chromatin struc-
ture from a Machine Learning perspective will be to introduce new methods which could
possibly complement the already existent ones. As the information era moves forward,
large computational power and vast datasets have become the norm in research studies,
facilitating the acquisition of better results more efficiently. Therefore, a research direction
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could be to apply the current methods to larger and more complex datasets, such as the
H.sapiens genome, to verify that similar results can be found in larger eukaryotic systems
and produce more interesting results.

Furthermore, another promising area of research could be to optimise the feature extrac-
tion so far used between different representations, or even introduce new representations
for a wider variety of possible features. Better features can ultimately lead to better clas-
sification results which can capture more accurately the factors that distinguish genomic
sequences between Nucleosome Free Regions and Nucleosome Binding Sites.

Last but not least, an important decision to make is whether the above results conserning
genomic sequences could be enhanced by analyzing the secondary structure of DNA,
which gives us a wider view of the interactions between bases, i.e., which parts of strands
are bound to each other.
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ABBREVIATIONS - ACRONYMS

ABBREVIATION FULL COMMENTARY
NBS Nucleosome Binding Site
NFR Nucleosome Free Region
HMM Hidden Markov Model
HMM Hidden Markov Model
NGG N-gram Graph
BOW Bag-of-words
DNA Deoxyribonucleic acid

MMTV Mouse Mammary Tumor Virus
TSS Transcription Start Site
ML Machine Learning
EM Estimation Maximization
kNN k-Nearest Neighbors
SVM Support Vector Machine
TP True Positives
TN True Negatives
FP False Positives
FN False Negatives
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