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ABSTRACT 

 

We exploit the new features provided by WebRTC in terms of interoperability and state-
of-the-art real-time communications, in order to develop a system for piloting unmanned 
vehicles using video analysis. Specifically, we define a topology where a ROS-based 
vehicle transmits its video using WebRTC to an intermediate server, who in turn relays it 
to a client. The server takes advantage of the OpenCV library and applies video analy-
sis, with respect to a selected task (i.e. face detection) defined by the client. The corre-
sponding commands are transmitted to the vehicle, resulting in an automatically driven 
unmanned vehicle. The client monitors the vehicle’s movement and can dynamically 
change the selected use case; that is, either change slightly its operation (i.e. from hu-
man tracking to children tracking) or enable an entirely new core philosophy (i.e. to fire 
detection) by sending the appropriate requests to the server. Upon reception of these 
requests, the server utilizes the corresponding OpenCV functionalities to serve the new 
task, and sends the new piloting commands to the vehicle, forcing the system to adopt a 
new autopiloting mode. This communication between the vehicle, the server and the cli-
ent is established using SIP/SDP and orchestrated via a WebSocket server that serves 
as a Signaling Server, the media are transferred through SRTP/UDP, and the com-
mands are carried via the WebRTC Data Channel over SCTP. We explain and describe 
how to combine all of these heterogeneous components (WebRTC – OpenCV – ROS), 
in order to compose a web-based infrastructure for autopiloting ROS-based vehicles 
upon a specific use case. Finally, the results prove our concept, meaning a horizontal 
infrastructure that (a) consists of a modular architecture, (b) provides the necessary 
components for machine-to-machine communication, (c) uses state-of-the-art technolo-
gies, (d) allows a developer to implement her own logic vertically, and (e) provides IoT 
with a solution that can be easily exploited in numerous ways. 
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ΠΕΡΙΛΗΨΗ 
 

Εκμεταλλευόμαστε τις νέες δυνατότητες που παρέχονται από το WebRTC, υπό την έν-
νοια της διαλειτουργικότητας και των τελευταίας γενιάς επικοινωνιών σε πραγματικό 
χρόνο, προκειμένου να αναπτύξουμε ένα σύστημα για το πιλοτάρισμα μη επανδρωμέ-
νων οχημάτων χρησιμοποιώντας ανάλυση βίντεο. Συγκεκριμένα, ορίζουμε μια τοπολο-
γία όπου ένα ROS όχημα μεταδίδει βίντεο μέσω WebRTC προς έναν ενδιάμεσο εξυπη-
ρετητή, ο οποίος με τη σειρά του το μεταβιβάζει σε έναν πελάτη. Ο εξυπηρετητής εκμε-
ταλλεύεται τη βιβλιοθήκη OpenCV και εφαρμόζει ανάλυση βίντεο, με τέτοιο τρόπο ώστε 
να εξυπηρετήσει ένα επιλεγμένο από τον πελάτη σενάριο. Οι αντίστοιχες εντολές μετα-
δίδονται στο όχημα, με αποτέλεσμα να έχουμε ένα αυτόματα οδηγούμενο όχημα. Ο πε-
λάτης παρακολουθεί την πορεία του οχήματος και μπορεί να αλλάξει δυναμικά το επι-
λεγμένο σενάριο – αυτό σημαίνει είτε να αλλάξει ελαφρώς τη λειτουργία του (π.χ. από 
παρακολούθηση ανθρώπων σε παρακολούθηση παιδιών) είτε να ενεργοποιήσει μια ε-
ντελώς διαφορετική φιλοσοφία λειτουργίας – στέλνοντας τα κατάλληλα αιτήματα στον 
εξυπηρετητή. Μόλις ο εξυπηρετητής λάβει αυτά τα αιτήματα, χρησιμοποιεί τις αντίστοι-
χες λειτουργίες το OpenCV για να εξυπηρετήσει το νέο σενάριο, και στέλνει τις νέες ε-
ντολές οδήγησης στο όχημα, αναγκάζοντας το σύστημα να υιοθετήσει μια νέα λειτουρ-
γία αυτόματου πιλότου. Η επικοινωνία μεταξύ του οχήματος, του εξυπηρετητή και του 
πελάτη εδραιώνεται μέσω των SIP/SDP και ενορχηστρώνεται μέσω ενός WebSocket 
εξυπηρετητή που επιτελεί το ρόλο του Signaling Server, ενώ οι εντολές μεταφέρονται 
μέσω του WebRTC Data Channel πάνω από το SCTP. Περιγράφουμε και αναλύουμε το 
πώς όλα αυτά τα ετερογενή συστατικά (WebRTC – OpenCV – ROS) συνδυάζονται για 
τη δημιουργία μιας δικτυακής υποδομής, για το αυτόματο πιλοτάρισμα ROS οχημάτων 
σύμφωνα με ένα συγκεκριμένο σενάριο χρήσης. Τέλος, τα αποτελέσματα αποδεικνύουν 
την ιδέα μας, δηλαδή μια οριζόντια υποδομή που (α) αποτελείται από μια ευέλι-
κτη/αρθρωτή αρχιτεκτονική, (β) παρέχει τα απαραίτητα στοιχεία για την μηχανή-σε-
μηχανή επικοινωνία, (γ) χρησιμοποιεί τελευταίας γενιάς τεχνολογίες, (δ) επιτρέπει σε 
έναν προγραμματιστή να εφαρμόσει τη δική του λογική κατακόρυφα σε βάθος και (ε) 
παρέχει στον τομέα του IoT μια λύση που μπορεί εύκολα να αξιοποιηθεί με πολλούς 
τρόπους. 
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1. INTRODUCTION 

Audio and video applications have become a basic part of everyday life, since they cov-
er a wide range of services such as communication, entertainment, news/information, 
medicine, sports etc. Depending on the service, there are different ways in which some-
one can transmit and manipulate multimedia data, each of which requires a different 
approach. In this chapter, we will make a small introduction to general features related 
to real-time multimedia over the Internet, Google’s new communication “standard” 
named WebRTC [1], and to the rapidly growing field of Internet of Things – IoT [2], 
combined with the well-known computer vision library, OpenCV [3]. These introductory 
sections are also the pre requirements for an in-depth understanding of our implementa-
tion. 

 

1.1 Real-time Audio and Video Communication Over the Internet 

Real-time audio and video communications over the Internet have high and strong re-
quirements in terms of bandwidth limitations, delays, and receiving quality, but several 
difficulties need to overcome to meet these requirements. Although Internet provides 
the ability to transfer data over long distances at high speed, its bandwidth is always 
limited, and it presents many random fluctuations that have major impact on the delay 
and the quality of the data being transferred. Thus, the identification of the appropriate 
protocols and techniques for dealing with bandwidth limitations, for reducing both the 
delay and packet loss, and for preserving the quality at the receiving end is necessary. 

 

1.1.1 Protocols 

For real-time media transmission, there are a set of specific protocols that are used, 
which provide the appropriate mechanisms to meet or to handle the aforementioned re-
quirements. Regarding some of the most used protocol, on the transport layer, the User 
Datagram Protocol – UDP [4] is adopted, whereas on the application layer, the Real-
time Transport Protocol – RTP [5] is the standard protocol. In cases where security is 
mandatory, the Secure Real-time Transport Protocol – SRTP [6] is preferred. Both RTP 
and SRTP are used in conjunction with their sister protocols, Real-time Transport Con-
trol Protocol – RTCP [5] and Secure Real-time Transport Protocol – SRTCP [6], which 
provide control information for an RTP or an SRTP session respectively. Finally, on top 
of RTP/SRTP, the Session Initiation Protocol – SIP [7] together with the Session De-
scription Protocol – SDP [8] are used, which provide the appropriate mechanisms for 
signaling and media description. 

 

1.1.2 Barriers 

The most common problem when trying to establish a Peer-to-Peer (P2P) connection is 
the presence of Network Address Translators – NAT [9], which operate as a network 
firewall, protecting the IP of the machine/device, preventing other machines to detect it. 
In order to surpass this barrier, a variety of NAT Traversal [10] and Hole Punching [11] 
techniques and standards have been developed, but they come with a lot of restrictions 
and complexity in use. Another very usual problem is the lack of interoperability; many 
applications are hardware and device dependent, which means that an additional appli-
cation (i.e. a software) or a plugin must be present in order to setup a communication 
between peers. 
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1.2 WebRTC 

WebRTC is new technology that simplifies and solves all the aforementioned require-
ments and barriers, enabling a fast, secure and simple real-time P2P communication 
infrastructure. Its main advantage is that it provides the functionalities for P2P commu-
nication on the Web, without the need of a software or a plugin. Furthermore, it is device 
independent since it can work on any device that has access to a browser, implements 
state-of-the-art audio and video codecs, and finally, uses the Interactive Connectivity 
Establishment – ICE [12] technique for NAT Traversal and Hole Punching, in order to 
find ways for two peers to talk each other as directly as possible. WebRTC is further ex-
plained in Chapter 2. 

 

1.3 Internet of Things and Unmanned Vehicles 

Concerning the field of IoT, it is worth mentioning the importance of multimedia as more 
and more applications are using audio and image/video sensors for measurements. For 
instance, unmanned vehicles is an IoT category that makes use of a large set of sen-
sors, with the camera being the primary one, since it can be exploited by many sectors 
such as health, sports, agri-food, security etc. However, could someone use WebRTC 
for streaming the video as well as the sensor data in real-time from the vehicle to our 
application? 

 

1.3.1 Image and Video Processing – OpenCV 

Finally, our application must analyze and process the video and image data provided by 
the vehicles, in order to extract the corresponding information. These procedures can 
be accomplished with the use of OpenCV, a library that has many applications in com-
puter vision and robotics. However, assuming that an unmanned vehicle is also a robot, 
could someone use the video provided by WebRTC as the main input to OpenCV? 

 

1.4 Conclusions 

Considering all of the above – meaning the real-time protocols, the codecs, the re-
quirements and the barriers, the WebRTC, the unmanned vehicles, and the OpenCV – 
we will combine them properly, in order to develop an infrastructure that fulfills all of 
these requirements, and provides IoT with a Machine-to-Machine (M2M) communication 
solution, that exploits state-of-the-art technologies along a wide range of applications. 
The rest of the dissertation is organized as follows; in Chapter 2, an overview of 
WebRTC and its protocols, as well as a description of the offered API’s is provided. The 
OpenCV library, including its features and its web exposure is analyzed in Chapter 3, 
whereas the Robot Operating System and the turtle simulator through the web are de-
scribed in Chapter 4. In Chapter 5, we exploit the knowledge of the aforementioned 
Chapters to provide an in-depth analysis of our implemented infrastructure. Finally, 
Chapter 6 shows the results and the metrics of our system, while the future work is dis-
cussed in Chapter 7. 
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2. REAL-TIME COMMUNICATIONS THROUGH THE WEB – WEBRTC 

WebRTC is a collection of communication protocols and Application Programming Inter-
faces – APIs that enable Real-Time Communication – RTC over P2P connections, al-
lowing web browsers not only to request resources from backend servers, but also real-
time information from browsers of other users. This enables applications such as video 
conferencing, file transfer, chat, or desktop sharing without the need of either internal or 
external plugins. Google released it on May 2011; it is supported by Mozilla and Opera 
amongst others, and is being standardized by the World Wide Web Consortium – W3C 
and the Internet Engineering Task Force – IETF. 

 

2.1 State-of-the-art 

WebRTC is a state-of-the-art technology since it came with a revolutionary approach on 
Web-based RTC, setting the ground for becoming the main standard for real-time com-
munications. 

 

2.1.1 Browser-to-Browser 

The strongest aspect of WebRTC is the enrichment of browsers with RTC functionali-
ties, without the need of internal or external plugins. Before that, in order for two peers 
to communicate over the browser, they had to use either a specific software or a specif-
ic plugin at both ends, which was Operating System – OS, browser, and device de-
pendent, and responsible for providing the appropriate RTC methods and infrastructure. 

 

2.1.2 Interoperability – Adapter.js 

What is more, WebRTC is not only OS and device independent – requires only a 
browser – but also browser independent. This is feasible due to adapter.js [13], a shim 
to insulate applications from specification changes and prefix differences along different 
browsers (i.e. Chrome-to-Firefox, Chrome-to-Opera etc.). 

 

2.1.3 Audio and Video Codecs 

In addition, WebRTC uses some state-of-the-art audio and video codecs, which provide 
high compression, while keeping a balanced tradeoff in terms of information loss and 
network limitations. By now, it supports G.711, G.722, iSAC, iLBC, and Opus audio co-
decs [14, 15, 16, 17, and 18 respectively], while the supported video codecs are H.264 
AVC, VP8, and VP9 [19, 20, and 21 respectively]. It is worth noting that the combination 
of Opus and VP9 is the WebM video file format [22], while the VP9 video codec is the 
one comparable to well-known HEVC [23], and the ancestor of AV1 [24]. 

 

2.1.4 Interactive Connectivity Establishment 

Finally, WebRTC provides the appropriate frameworks and mechanisms for Hole 
Punching and NAT Traversal, by using the ICE technique. ICE is used in computer net-
working to find ways for two computers to talk to each other as directly as possible in 
P2P networking, and provides a framework with which a communicating peer may dis-
cover and communicate its public IP address so that other peers can reach it. Session 
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Traversal Utilities for NAT – STUN [25] is a standardized protocol for such address dis-
covery (including NAT classification), while Traversal Using Relays around NAT – 
TURN [26] places a third-party server to relay messages between two clients when di-
rect media traffic between peers is not allowed by a firewall. 

 

2.2 Protocol Stack 

Like every real-time P2P communication, WebRTC requires a set of communication 
protocols for exchanging media and data, as well as for orchestrating the session. 
Whereas the orchestration is usually managed by protocols and mechanisms that are 
integrated into the application (i.e. the SIP/SDP procedures), WebRTC uses an external 
entity for the signaling between peers called Signaling Server, which is not part of the 
project’s implementation, but its presence is mandatory. Therefore, a WebRTC session 
consists of two main entities; the Signaling Server, and the set of RTC functionalities 
and APIs that are provided by the browser. The protocol stack used by WebRTC is de-
picted in Figure 1, where the left sub-stack refers to the Signaling Server, while the right 
one to the provided APIs. 

 

 

Figure 1: The Protocol Stack of WebRTC 

 

In the following sub-sections, a brief description of the protocols used by WebRTC is 
outlined. 

 

2.2.1 UDP 

Unlike all other browser communication, WebRTC transports its data over UDP. The 
requirement for timeliness over reliability is the primary reason why the UDP protocol is 
a preferred transport for delivery of real-time data; it offers no promises on reliability or 
order of the data, and delivers each packet to the application the moment it arrives. In 
effect, it is a thin wrapper around the best-effort delivery model offered by the IP layer of 
the network stacks [27]. 

However, an application also needs mechanisms to traverse the many layers of NATs 
and firewalls, negotiate the parameters for each stream, provide encryption of user da-
ta, implement congestion and flow control etc. Thus, while UDP is the foundation for re-
al-time communication in the browser, in order to meet all the requirements of WebRTC, 
the browser also needs a large supporting cast of application protocols and methods. 
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2.2.2 TCP 

In the case of the transported messages of the Signaling Server, the Transmission Con-
trol Protocol – TCP is [28] preferred. The requirement for reliability over timeless is the 
primary reason why the TCP protocol is a preferred transport for delivery of these mes-
sages; it offers reliability, in-order data, and delivers each packet to the application after 
a complete error checking. 

 

2.2.3 ICE, STUN, and TURN 

WebRTC, as described in 2.1.4, utilizes the ICE technique, which makes use of the 
STUN protocol and its extension, TURN. ICE provides a general framework for describ-
ing the available candidates [29], and exploits the STUN and TURN protocols to reach 
the other peer behind the firewalls (Hole Punching and NAT Traversal). 

STUN is a standardized set of methods, including a network protocol, for traversal of 
NAT gateways in real-time communication applications. It is used by other protocols 
(i.e. ICE, SIP), providing a tool for hosts to discover the presence of a NAT, and to dis-
cover the mapped, usually public, IP address and port number that the NAT has allo-
cated for the application’s TCP and UDP flows to remote hosts. The protocol requires 
assistance from a third-party network server (STUN Server) located on the opposing, 
public side of the NAT, usually the public Internet. 

TURN is a protocol that assists in traversal of NATs or firewalls for multimedia applica-
tions. It is most useful for clients on networks masqueraded by symmetric NAT devices. 
TURN does not aid in running servers on well-known ports in the private network 
through a NAT, while it supports the connection of a user behind NAT to only single 
peer. The topologies for STUN and TURN usages are depicted in Figure 2 and Figure 3 
respectively. 

 

 

Figure 2: Use of STUN Server for NAT Traversal 

 

Figure 3: Use of STUN/TURN Servers for NAT 
Traversal 
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2.2.4 TLS and DTLS 

WebRTC encrypts information for the Data Channels, by using the Datagram Transport 
Layer Security – DTLS [30] protocol, which is built into all browsers that support 
WebRTC, and is one protocol consistency used in web browsers, email, and VoIP plat-
forms to encrypt information; the built-in nature also means that no prior setup is re-
quired before use. As with other encryption protocols, it is designed to prevent eaves-
dropping and information tampering. DTLS itself is modelled upon the stream-oriented 
Transport Layer Security – TLS [31] protocol, which offers full encryption with asymmet-
ric cryptography methods, data authentication, and message authentication. As DTLS is 
a derivative of Secure Socket Layer – SSL [32] protocol, all data is known to be as se-
cure as using any standard SSL-based connection. In fact, WebRTC data can be se-
cured via any standard SSL-based connection on the web, offering end-to-end encryp-
tion between peers with almost any server arrangement. 

 

2.2.5 RTP/RTCP and SRTP/SRTCP 

The basic application protocol for real-time communications is the RTP along with 
RTCP. However, it does not have any built-in security mechanisms, and thus provides 
no protection or confidentiality of transmitted data, and so the use of external mecha-
nism that provide encryption is mandatory. 

The use of unencrypted RTP is explicitly forbidden by the WebRTC specification. For 
this reason, it utilizes SRTP/SRTCP for the encryption of media streams, rather than 
DTLS, because SRTP is a lighter-weight option. The specification requires that any 
compliant WebRTC implementation must support RTP/SAVPF [33], which is built on top 
of RTP/SAVP [34]. However, the actual SRTP key exchange is initially performed end-
to-end with DTLS-SRTP [34], allowing for the detection of any man-in-the-middle 
(MiTM) attack. 

 

2.2.6 SCTP 

WebRTC Data Channels deliver data using the SCTP over DTLS protocols [35], where 
SCTP is the Stream Control Transmission Protocol [36]. STCP as a protocol can be 
seen as a hybrid of UDP and TCP, as shown in Table 1; it is connection and message 
oriented, offers optional reliability and ordering, and provides flow and congestion con-
trol. The SCTP is usually implemented on an application level. 

 

Table 1: The SCTP protocol as a UDP-TCP hybrid 

 TCP UDP SCTP 

Reliability Reliable Unreliable Configurable 

Delivery Ordered Unordered Configurable 

Transmission Byte-oriented Message-oriented Message-oriented 

Flow control Yes No Yes 

Congestion control Yes No Yes 

 

 



Adaptive unmanned vehicle autopiloting using WebRTC video analysis 

 

A. Modas   19 

 

2.2.7 SIP/SDP 

Finally, WebRTC uses the SIP and SDP protocols for the orchestration of the communi-
cation between the peers. SIP is a communications protocol for signaling and controlling 
multimedia communication sessions. It defines the messages that are sent between 
endpoints, which govern establishment, termination and other essential elements of a 
call. It can be used for creating, modifying, and terminating sessions consisting of one 
or more media streams. SIP works in conjunction with several other protocols that spec-
ify and carry the media session. Media type and parameter negotiation and setup is per-
formed with the SDP, which is carried as a payload in a SIP message and provides a 
format for describing streaming media parameters. These protocols are based on an 
Offer/Answer model, and are implemented in the WebRTC application, but they are 
transferred via the Signaling Server. The use of SIP in conjunction with SDP is shown in 
Figure 4. 

 

 

Figure 4: SIP/SDP Offer/Answer between peers 

 

2.3 WebRTC APIs 

WebRTC is a collection of standards, protocols, and JavaScript APIs, the combination 
of which enables peer-to-peer audio, video, and data sharing between browsers 
(peers). Instead of relying on third-party plug-ins or proprietary software, WebRTC turns 
real-time communication into a standard feature that any web application can leverage 
via a simple JavaScript API. 

Delivering rich, high-quality, RTC applications such as audio and video teleconferencing 
and peer-to-peer data exchange requires a lot of new functionality in the browser: audio 
and video processing capabilities, new application APIs, and support for half a dozen 
new network protocols. Thankfully, the browser abstracts most of this complexity behind 
three primary APIs, which expose the native project’s functionalities to the web and 
simplify the setup of the WebRTC session: 

1.   MediaStream API [37] 

2.   RTCDataChannel API [38] 

3.   RTCPeerConnection API [38] 

 

2.3.1 MediaStream API 

The MediaStream API represents synchronized streams of media (i.e., a stream taken 
from camera and microphone input has synchronized video and audio tracks), and is 
responsible for requesting and processing audio and video streams from the platform. 
Each MediaStream object (Figure 5) has an input, which might be a media stream from 
a device or a file, an output that can be manipulated in many ways (i.e. display video, 
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play sound, send to other peer, record to file etc.), and consists of one or more tracks 
(i.e. an audio and a video track). Finally, the main method for requesting the streams is 
the getUserMedia, which takes three parameters: 

1.   Some constraints, which are applied to the media (i.e. fps, video dimensions, au-
dio packet time etc.). 

2.   A success callback, which is passed a MediaStream object. 

3.   A failure callback, which is passed an error object. 

 

 

Figure 5: The MediaStream Object 

 

2.3.2 RTCDataChannel API 

Apart from audio and video, WebRTC supports real-time communication for other types 
of data. The RTCDataChannel API enables P2P exchange of arbitrary data over SCTP, 
with low latency and high throughput. What is more, it can be used as the main signal-
ing channel, for the case of a signaling server. Finally, it has some properties that are 
quite powerful and flexible: 

1.   Maximum number of Data Channels: 65534 (theoretically) 

2.   Maximum capacity: Maximum Transfer Unit (MTU) 

3.   Delivery types: in-order, out-of-order, (un)reliable 

4.   Channel priorities 

5.   Multiplexing of independent channels 

6.   Message oriented API for fragmentations and assemblies 

7.   Flow and congestion control mechanisms 

8.   Confidentiality and integrity of transferred data 
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2.3.3 RTCPeerConnection API 

The last and most important API of WebRTC is the RTCPeerConnection, since it is re-
sponsible for managing the full life cycle of each P2P connection. The PeerConnection 
object (Figure 6): 

1.   Manages the Ice workflow (Figure 7) for NAT Traversal, and trickles and registers 
the local and remote ICE candidates respectively 

2.   Sends automatic STUN keepalives to ensure the ICE procedure 

3.   Keeps track of both the local and remote streams 

4.   Triggers an automatic stream renegotiation using SDP Offer/Answer 

5.   Provides all the methods for Offer/Answer, connection’s current state, ICE candi-
dates etc. 

 

 

Figure 6: The PeerConnection Object 

 

 

Figure 7: ICE agent connectivity states and transitions (ICE workflow) 

 

2.4 Signaling Server 

Signaling plays an important role in WebRTC but is not standardized, because it does 
not need to be for enabling interoperability between browsers; it is effectively a matter 
between the web browser and the web server. It has four main roles [39]: 

1.   Negotiation of media capabilities and settings. 
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2.   Identification and authentication of participants in a session. 

3.   Controlling the media session, indicating progress, changing and terminating the 
session. 

4.   Glare resolution, when both sides of a session try to establish or change a ses-
sion at the same time. 

 

2.4.1 Topology 

The most common scenario for establishing a WebRTC session is likely to be where 
both browsers are running the same WebRTC web application. This produces the 
WebRTC “Triangle”, shown in Figure 8 [40]. This arrangement is called triangle due to 
the shape of the signaling and media or data flows between the three elements. 

 

 

Figure 8: The triangle topology 

 

Figure 9 [41] shows the WebRTC Trapezoid [42] based on the SIP Trapezoid. The two 
web servers are shown communicating using a standard signaling protocol (i.e. SIP) or 
Jingle [43]. Note that in these more complicated cases, the media may not flow directly 
between the two browsers, but may go through media relays and other elements. 

 

 

Figure 9: The trapezoid topology 
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2.4.2 Signaling Transport 

WebRTC requires a bidirectional signaling channel between the two browsers, and thus 
three transports are commonly used for WebRTC signaling: 

1.   HTTP [44]: sending information to the server is straightforward, using an XML 
HTTP Request – XHR [45]. In the opposite direction, receiving information asyn-
chronously from the server is trickier, and a number of techniques have been de-
veloped over the years known as Asynchronous JavaScript And XML – AJAX. 
The use of HTTP for signaling is often referred to as Representational State 
Transfer – REST [46] or RESTful signaling. 

2.   Data Channel [47]:  The Data Channel, once established between two browsers, 
provides a direct, low latency connection, which makes it suitable for signaling 
transport. Since the initial establishment of a Data Channel requires a separate 
signaling mechanism, the Data Channel alone cannot be used for all WebRTC 
signaling. However, it can be used to handle all signaling after it is set up, includ-
ing all the signaling for the audio and video media over the Peer Connection. 

3.   WebSockets [48]: WebSocket [49] transport, allows a browser to open a bidirec-
tional connection to a server; the connection begins as an HTTP request, but 
then upgrades to a WebSocket. In order for a WebSocket server to be reachable, 
it must have a public IP address and be running an HTTP server. Note that this 
means it is not possible to open a WebSocket directly with another browser, 
since browsers implement HTTP user agent functionality and not HTTP server 
functionality. So, the WebSocket server is still needed to relay between two web 
clients using WebSockets. 

 

2.4.3 Signaling Protocol 

The choice of signaling protocol for WebRTC is an important one, and not necessarily 
tied to the choice of signaling transport. A developer may choose to create her own pro-
prietary signaling protocol, use a standard signaling protocol such as SIP or Jingle, or 
use a library that abstracts away the details of the signaling protocol [50]. 

In our implementation, we chose to use the WebSocket Proxy approach [Burnet 86] with 
a triangle topology. A WebSocket proxy used for WebRTC signaling, would use a server 
which has a public IP address and is reachable by both browsers establishing the Peer 
Connection. Each browser opens an independent WebSocket connection with the same 
server, and the server bridges the connections, proxying information from one to anoth-
er. Since JavaScript does not support DNS lookups, the WebSocket server will need to 
be provided by the web server as an IP address and port number. Finally, when infor-
mation is received from a WebSocket (i.e. from a peer’s WebSocket), it is relayed to 
one particular connection that has the other browser; some sort of session/connection 
ID is used for this. 
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3. COMPUTER VISION – OPENCV 

OpenCV is an open source computer vision and machine learning software library (writ-
ten in C++), which was built to provide a common infrastructure for computer vision ap-
plications and to accelerate the use of machine perception in the commercial products. 
It has more than 2500 optimized algorithms, which include a comprehensive set of both 
classic and state-of-the-art computer vision and machine learning algorithms. Finally, it 
provides C++, C, Python, Java and MATLAB interfaces, and is supported – among oth-
ers – by Google, Microsoft, Intel, and IBM. The OpenCV library is used in our implemen-
tation for the real-time processing of the vehicle’s video. 

 

3.1 Face Detection  

OpenCV’s functionalities are divided into modules, including Image Processing, Video 
Analysis, Object Detection, Object Tracking etc. We focus on an aspect of the Object 
Detection module, and specifically on the case of Face Detection using Haar feature-
based cascade classifiers [52], in order to adopt it to the implementation . 

Object Detection using Haar feature-based cascade classifiers is an effective object de-
tection method proposed by Paul Viola and Michael Jones [53]. It is a machine learning 
based approach where a cascade function is trained from a set of positive and negative 
images, and then it is used to detect objects in other images. 

Initially, the algorithm needs a set of positive (images of faces) and negative images 
(images without faces) to train the classifier. Then the Haar-feature filters are used 
(Figure 10) to extract features from it, which are just like convolutional kernels. Each 
feature is a single value obtained by subtracting sum of pixels under white rectangle 
from sum of pixels under black rectangle. 

 

 

Figure 10: Haar-feature filters 

 

All possible sizes and locations of each kernel are used to calculate the features, where 
a 24x24 window results over 160000 features. For each feature calculation, the sum of 
pixels under white and black rectangles is computed through the integral images. But 
among these features, most of them are irrelevant. For the best-features selection (out 
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of ~160000), the Adaboost algorithm [54] is used. For each feature, Adaboost finds the 
best threshold that will classify the faces into positive and negative. Regarding the er-
rors of misclassification, it selects the features with the minimum error rate, which 
means that they best classify the face and non-face images. The final classifier is a 
weighted sum of these “weak” classifiers, and the final setup had around 6000 features. 

So, the procedure requires to divide the image into 24x24 windows, to apply 6000 fea-
tures to each one, and to check if it is a face or not. Due to the high complexity of this 
procedure, they introduced the concept of cascade of classifiers, where instead of ap-
plying all 6000 features on a window, group the features into different stages of classifi-
ers, and apply one-by-one; if a window fails the first stage, discard it, else, apply the 
second stage of features and continue the process. The window that passes all stages 
is a face region. For the record, Viola’s and Jones’ cascade of classifiers consisted of 
38 stages (with 1, 10, 25, 25, and 50 features in first five stages), where ~10 features 
are evaluated per window. 

OpenCV contains many pre-trained classifiers for face, eyes, smile, etc., stored in XML 
files. The results of the face and eyes XML classifiers on an image are shown in Figure 
11 [52]. 

 

 

Figure 11: OpenCV results for face and eyes detection 

 

3.2 Web OpenCV 

Although OpenCV is the most common library for computer vision, it was not built for 
web applications. Despite the fact that it provides Java and Python interfaces – some-
one could build some sort of web app – there is no way to use it in HTML5 with JavaS-
cript. At this point, it is sensible to make a small reference to Emscripten [55]. 

Emscripten is a source-to-source compiler, developed by Alon Zakai. It runs as a back 
end to the LLVM [56] compiler, and produces a highly optimized subset of JavaScript 
code known as asm.js [57]. This allows applications and libraries originally designed to 
run as standard executables (i.e. in C/C++) to be integrated into web applications 
(Figure 12).  
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Figure 12: The Emscripten toolchain 

 

Finally, asm.js can be compiled by browsers ahead of time, meaning that the compiled 
programs can run much faster than those traditionally written in JavaScript, and specifi-
cally close to native speed. 

 

3.2.1 OpenCV.js 

So, is it possible to use Emscripten to integrate into our web implementation the 
OpenCV library? The answer came from the University of Irvine, which, in cooperation 
with Intel, created the OpenCV.js [58], which takes advantage of Emscripten and asm.js 
to expose the native library to the web (Figure 13). 

 

 

Figure 13: Use of Emscripten to expose the OpenCV native library to the Web 
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OpenCV.js extends the OpenCV language binding by providing a JavaScript interface. It 
allows emerging web applications with multimedia processing to benefit from the wide 
variety of vision functions available in OpenCV. It has several thrusts: 

1.   High performance: allow OpenCV.js to be used in demanding applications, e.g. 
video processing. The OpenCV.js is based on asm.js specification, and near na-
tive performance is obtained on most modern browsers. It also supports SIMD.js 
to take advantage of processor's vector (SIMD) processing capabilities. 

2.   Coverage: Currently, more than 50 classes and 800 functions from libraries in-
cluding core, image processing, video processing, image codecs, machine learn-
ing are already supported. This subset is comparable to Python OpenCV. 

3.   API Correspondence: the JavaScript API is close to the original OpenCV API, 
thus making it easier to write/port applications. 

  

3.2.2 HTML5 Canvas Element 

One question remains: since we can access the OpenCV executables from the Web, 
can we also give as input a live video stream for processing? The answer is no, be-
cause HTML5 does not yet provide access to the video bitstream. However, there is a 
solution: HTML5 Canvas element. 

Upon receiving a video stream, we use the Video element in order to manipulate it (dis-
play, record, relay etc). We can take advantage of the Canvas element, by taking a 
snapshot of the Video element, and converting it to a Canvas one. From the canvas, we 
can easily convert the data to an Image, and thus we can actually have a Frame of the 
video, which can easily be processed by OpenCV.js. 
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4. ROBOT OPERATING SYSTEM – ROS 

The final component of our implementation is the Robot Operating System – ROS [59], 
which is used to simulate the unmanned vehicle. ROS is a flexible framework for writing 
robot software. It is a collection of tools, libraries, and conventions, that aim to simplify 
the task of creating complex and robust robot behavior across a wide variety of robotic 
platforms. 

 

4.1 ROS Architecture 

The ROS architecture has been designed and divided into three sections or levels of 
concepts [60]: 

1.   The Filesystem Level   

2.   The Computational Graph Level 

3.   The Community Level 

In the first level, a group of concepts is used to explain how ROS is internally formed, 
the folder structure, and the minimal files that it needs to work. In the second level, the 
communication between processes and systems takes place, while in the third level, the 
tools and concepts to share knowledge, algorithms, and code from any developer is ex-
plained. 

 

4.1.1 The Filesystem Level 

Similar to an operating system, a ROS program is divided into folders, and these folders 
have some files that describe their functionalities [61]: 

   Packages: packages form the atomic level of ROS. A package has the minimum 
structure and content to create a program within ROS. It may have ROS runtime 
processes (nodes), configuration files, and so on. 

   Manifests: manifests provide information about a package, license information, 
dependencies, compiler flags, and so on. They are managed with a file called 
manifests.xml. 

   Stacks: when someone gathers several packages with some functionality, she 
will obtain a stack. In ROS, there exists a lot of these stacks with different uses, 
for example, the navigation stack. 

   Stack manifests: stack manifests (stack.xml) provide data about a stack, includ-
ing its license information and its dependencies on other stacks. 

   Message (msg) types: a message is the information that a process sends to oth-
er processes. ROS has a lot of standard type of messages. 

   Service (srv) types: service descriptions define the request and response data 
structures for services in ROS. 

The Filesystem Level is depicted in Figure 14. 
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Figure 14: The ROS Filesystem Level 

 

4.1.2 The Computational Graph Level 

ROS creates a network where all the processes are connected. Any node in the system 
can access this network, interact with other nodes, see the information that they are 
sending, and transmit data to the network [62]: 

1.   Nodes: nodes are processes where computation is done. If someone wants to 
have a process that can interact with other nodes, she needs to create a node 
with this process to connect it to the ROS network. Usually, a system will have 
many nodes to control different functions. 

2.   Master: The Master provides name registration and lookup for the rest of the 
nodes. If it is not in the user’s system, she cannot communicate with nodes, ser-
vices, messages, and others, but it is possible to have it in a computer where 
nodes work in other computers. 

3.   Parameter Server: The Parameter Server gives the possibility to have data 
stored using keys in a central location. With this parameter, it is possible to con-
figure nodes while it is running or to change the working of the nodes. 

4.   Messages: Nodes communicate with each other through messages. A message 
contains data that sends information to other nodes. ROS has many types of 
messages, and someone can develop her own type of message using standard 
messages. 

5.   Topics: Each message must have a name to be routed by the ROS network. 
When a node is sending data, we say that the node is publishing a topic. Nodes 
can receive topics from other nodes simply by subscribing to the topic. A node 
can subscribe to a topic, and it isn't necessary that the node that is publishing 
this topic should exist. This permits to decouple the production of the consump-
tion. 

6.   Services: When someone publishes topics, she is sending data in a many-to-
many fashion, but when she needs a request or an answer from a node, she 
cannot do it with topics. The services give us the possibility to interact with 
nodes. Also, services must have a unique name. When a node has a service, all 
the nodes can communicate with it, thanks to ROS client libraries.  
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7.   Bags: Bags are a format to save and play back the ROS message data. Bags are 
an important mechanism for storing data, such as sensor data, that can be diffi-
cult to collect but is necessary for developing and testing algorithms. 

The Computational Graph Level is depicted in Figure 15. 

 

 

Figure 15: The ROS Computational Graph Level 

 

4.1.3 The Community Level 

The ROS Community level concepts are ROS resources that enable separate commu-
nities to exchange software and knowledge. These resources include [63]: 

1.   Distributions: ROS distributions are collections of versioned stacks that someone 
can install. ROS distributions play a similar role to Linux distributions. They make 
it easier to install a collection of software, and they also maintain consistent ver-
sions across a set of software. 

2.   Repositories: ROS relies on a federated network of code repositories, where dif-
ferent institutions can develop and release their own robot software components. 

3.   The ROS Wiki: The ROS Wiki is the main forum for documenting information 
about ROS. Anyone can sign up for an account and contribute their own docu-
mentation, provide corrections or updates, write tutorials, and more. 

4.   Mailing lists: The ROS user-mailing list is the primary communication channel 
about new updates to ROS as well as a forum to ask questions about the ROS 
software. 

 

4.2 Turtlesim 

The TurtleBot [64] is a low-cost, personal robot kit with open source software that inte-
grates in Microsoft’s Kinect, Yujin Robot’s Kobuki, and others, and can be combined 
with ROS. ROS provides the Turtlesim, a simulator that uses the turtlesim_node for 
teaching ROS concepts to TurtleBot. 
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4.2.1 Messages and Topics 

Regarding the messages used in the simulator, the geometry_msg/Twist is the most 
common, which expresses the simulated turtle’s velocity into linear and angular. 

As for the subscribed topics, the turtleX/cmd_vel is used, which sets the linear angular 
velocity of turtleX that needs to be executed; note here that since these quantities ex-
press velocity, the turtle will execute the command within 1 sec. 

Finally, the public topic is the turteleX/Pose, which informs the application about the co-
ordinates (x, y), the angle θ, the linear, and the angular velocity of the turtle at that mo-
ment. 

An example of the Turtlesim is depicted in Figure 16. 

 

 

Figure 16: A Turtlesim example 

 

4.3 ROS Web 

Having explained the ROS and its functionalities, there is still on missing part to make 
sure that we can adopt ROS to our implementation: is there a way to interact with ROS 
from the browser? Fortunately, ROS provides the Rosbridge suite [65], which provides a 
JSON API to ROS functionality for non-ROS programs. There are a variety of front ends 
that interface with rosbridge, including a WebSocket server for web browsers to interact 
with. Rosbridge_suite is a meta-package containing rosbridge, various front end pack-
ages for rosbridge like a WebSocket package, and helper packages. 

 

4.3.1 Rosbridge suite 

Rosbridge consists of two parts: 

1.   The Rosbridge Protocol: a specification for sending JSON based commands to 
ROS, which is programming language and transport agnostic. The idea is that 
any language or transport that can send JSON can talk the rosbridge protocol 
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and interact with ROS. The protocol covers subscribing and publishing topics, 
service calls, getting and setting params, and even compressing messages and 
more. 

2.   The Rosbridge Implementation: the rosbridge suite package is a collection of 
packages that implement the rosbridge protocol, and provides a WebSocket 
transport layer. The packages include: 

a. The rosbridge_library: the core rosbridge package. It is responsible for 
taking JSON string and sending the commands to ROS and vice versa. 

b. rosapi: makes certain ROS actions accessible via service calls that are 
normally reserved for ROS client libraries. 

c. rosbridge_server: while rosbridge_library provides the JSON  ROS 
conversion, it leaves the transport layer to others. Rosbridge_server pro-
vides a WebSocket connection so browsers can “talk rosbridge”. Roslibjs 
[66] is a JavaScript library for the browser that can talk to ROS via 
rosbridge_server.  

 

4.3.2 Roslibjs 

Roslibjs is the core JavaScript library for interacting with ROS from the browser, and is 
developed as part of the Robot Web Tools effort [67]. It uses WebSockets to connect 
with rosbridge and provides publishing, subscribing, service calls, actionlib, TF, URDF 
parsing, and other essential ROS functionality. Roslibjs provides an API with all the ap-
propriate JavaScript methods and objects for connecting to the rosbridge_server, and 
building JSON actions. Finally, roslib either exists locally or can be fetched as a pre-built 
executable script from a CDN server (Figure 17). 

 

 

Figure 17: Interacting with ROS from the Browser using roslib and rosbridge 
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5. ROS-BASED VEHICLE AUTOPILOTING USING WEBRTC VIDEO 
ANALYSIS THROUGH OPENCV.JS 

Having fully explained and described the three core components of our implementation 
(WebRTC – OpenCV – ROS), we will combine them properly to compose a web-based 
infrastructure for autopiloting ROS vehicles upon a specific use-case, by analyzing 
through OpenCV the video exchanged with WebRTC.  

The idea is to build a horizontal infrastructure that: 

1.   Consists of a modular architecture   

2.   Provides the necessary components for machine-to-machine communication 

3.   Uses state-of-the-art technologies (i.e. WebRTC) 

4.   Allows a developer to freely implement her own logic vertically (i.e. her own 
OpenCV functions, autopiloting handling, use-cases etc.) 

5.   Provides IoT with a solution that can be easily adopted to many use-cases, and 
be exploited in numerous ways. 

 

 

Figure 18: The core idea of the infrastructure 

 

An overview of this idea is shown in Figure 18: 

1. A Vehicle transmits its real-time video feed to an Intermediate Server using 
WebRTC. 

2. The Intermediate Server relays the Vehicle’s video using WebRTC, and exposes 
its available operations using the Data Channel to a Client. 
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3. The Client monitors the Vehicle’s vision and route, and selects the desirable op-
eration (corresponding to a use-case, i.e. Face Detection) by informing properly 
the Intermediate Server through the Data Channel. 

4. The Intermediate Server applies the corresponding OpenCV operations on the 
Vehicle’s video, in order to server the selected use-case. After that, sends the 
appropriate commands to the Vehicle in order to pilot it. 

5. What is more, the Client can dynamically choose a new operation (i.e. a new 
use-case), enabling the system to adopt to this new condition for autopiloting 
properly the Vehicle. 

6. Finally, a Signaling Server orchestrates the whole communication between the 
Vehicle, the Intermediate Server, and the Client. 

 

5.1 Architecture 

Having in mind the aforementioned idea, let us get a little deeper by presenting the ar-
chitecture of our infrastructure (Figure 19), and explaining how all these heterogeneous 
components fit together. 

 

 

Figure 19: The architecture of the infrastructure 

 

Starting from top, the communication between the individuals is achieved through the 
browser, enabling the exchange of multimedia and data using the WebRTC. Studying 
the underlying level, we implement three components as services, which communicate 
with each other by exploiting the WebRTC APIs: 
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1.   Vehicle: consists of an HTML and a JavaScript file, and is responsible for deliver-
ing the appropriate commands to the ROS-based vehicle. Specifically, it uses the 
roslib API to connect to the rosbridge server and to construct the appropriate 
commands for interacting with ROS. 

2.   Intermediate Server: consists of an HTML and a JavaScript file, and is responsi-
ble for applying the appropriate techniques using OpenCV.js, which binds with 
the OpenCV executables. What is more, the Intermediate Server is responsible 
for servicing both the Vehicle and the Client. 

3.   Client: consists of an HTML and a JavaScript file, and is responsible for selecting 
the desired operation of the system, while monitoring the vehicle’s vision and 
route. What is more, it can dynamically change the operation philosophy of the 
Intermediate Server, and can either start or stop the whole piloting on demand. 

4.   Signaling Server: consists of a JavaScript file, and is responsible for orchestrat-
ing the communication between the individuals. It handles and relays properly 
the transmitted messages, using WebSockets. 

Having a deeper knowledge about the infrastructure, let us gradually analyze and ex-
plain in depth the implementation and the operation of each of the aforementioned enti-
ties. 

 

5.2 Signalling Server 

The first component to analyze is the Signaling Server. It consists of a JavaScript file 
that creates a WebSocket server for serving all the other individuals. Its role is to man-
age and properly relay a set of messages to the peers, in order to enable the communi-
cation through WebRTC. In the following sub-sections, the messages of this set are de-
scribed. 

 

5.2.1 Case: Login 

Before establishing a WebRTC session, each individual must connect to the signaling 
server. Thus, the “Login” message requests to connect to the signaling server, and car-
ries all the information required for the identification of each peer (i.e. name, IP, port 
etc.). The signaling server keeps a list of all the connected users, and responds with a 
success message. 

 

5.2.2 Case: Offer 

This message contains the SDP Offer of a peer A that wants to establish a connection 
with peer B. In our case, the peer A is either the Vehicle or the Client, whereas peer B is 
always the Intermediate Server. Thus, upon receipt of this message, the signaling serv-
er determines the name of the source (Vehicle or Client), as well as the destination 
name (Intermediate Server), and properly relays a message to the Intermediate Server, 
that includes the SDP Offer and the name of the source.  
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5.2.3 Case: Answer 

This message contains the SDP Answer of a peer B to a peer A that wants to establish 
a connection. In our case, this is the Intermediate Server’s Answer to the Vehi-
cle’s/Client’s Offer. Thus, upon receipt of this message, the signaling server determines 
the name of the source (Intermediate Server), as well as the destination name (Vehicle 
or Client), and properly relays a message to the destination peer, that includes the SDP 
Answer and the name of the Intermediate Server. 

 

5.2.4 Case: Candidate 

This message contains the trickled ICE Candidates of peer A to peer B. The possible 
pair of peers can be {Intermediate Server, Vehicle}, and {Intermediate Server, Client}. 
Thus, upon receipt of this message, the signaling server determines the source and 
destination name, and properly relays a message to the destination peer, that includes 
the ICE Candidates and the name of the source. 

 

5.2.5 Case: Leave 

A peer that wants to leave the session sends this message. Thus, the signaling server 
relays it to all the other connected participants, in order for them to handle this event 
properly. Finally, the signaling server closes the connection with the gone peer. 

 

5.2.6 Case: Start 

This message comes from the Client’s side and is meant for the Intermediate Server, in 
order to demand the start of the autopilot. The signaling server properly relays it to the 
Intermediate Server, declaring that the source is the Client. 

 

5.2.7 Case: Stop 

This message comes from the Client’s side and is meant for the Intermediate Server, in 
order to demand the stop of the autopilot. The signaling server properly relays it to the 
Intermediate Server, declaring that the source is the Client. 

 

5.2.8 Case: Get Operations 

This message comes from the Client’s side and is meant for the Intermediate Server, 
requesting the set of available operations. The signaling server properly relays it to the 
Intermediate Server, declaring that the source is the Client. 

 

5.3 Client 

The next component to analyze is the Client entity. It consists of an HTML file that pro-
vides a User Interface – UI, and a JavaScript file that contains the functionality behind 
the UI. Its role is to monitor the Vehicle’s video, to log the received messages and data, 
to set or change the operation of the Intermediate Server, and to Start or Stop the auto-
piloting. In the following sub-sections, we will analyze each part of the Client’s workflow 
diagram, depicted in Figure 20. 
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Figure 20: Client's Workflow 

 

5.3.1 Connect to Signaling Server 

As already mentioned, before establishing a WebRTC session the Client must connect 
to the signaling server, by sending the “Login” message. If the signaling server rejects 
the request, then the Client goes to an Error state, clears all the resources, and exits the 
program. Otherwise, continues to the PeerConnection state. 

 

5.3.2 PeerConnection 

At this state, the Client tries to establish a P2P connection with the Intermediate Server. 
Specifically, creates an SDP Offer, sets the Data Channel, defines the STUN url, and 
creates a PeerConnection, which requires only to receive video. Automatically, the SDP 
Offer and the ICE candidates are transferred through the signaling server, and the Of-
fer/Answer procedure takes place. Finally, if everything goes smoothly and the 
PeerConnection is established, the peers start to exchange media and data, and the 
system is ready to go to the next states. 

 

5.3.3 getOps – Display Video – Log Data and Information 

After having successfully established a PeerConnection with the Intermediate Server, 
the Client automatically sends the “getOps” message through the signaling server, re-
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questing the available operations form the Intermediate Server.At the same time, the 
Client receives the Vehicle’s video stream, as well as data from the Intermediate Server 
through the Data Channel. Therefore, this video is set as the srcObject of the Video El-
ement in order to display it, while the data received are logged at a text area. 

 

5.3.4 Select and Set Operation 

The Intermediate Server’s response to the “getOps” message is transferred via the Data 
Channel. Upon reception, the Client properly parses the data to determine the available 
operations, and creates a drop-down menu with them. The user can select from the UI 
the operation she prefers, and inform properly the Intermediate Server through the Data 
Channel, by pressing the corresponding button. 

 

5.3.5 Start and Stop Piloting 

After selecting and setting the preferred operation, the user may choose to start the au-
topiloting, by sending the corresponding “Start” message through the signaling server; 
in a similar way, she may choose to stop the it, by sending the “Stop” message 

 

5.3.6 Leave 

At any time during the session, the Client may choose to leave. By sending the corre-
sponding “Leave” message, she makes sure that all other individuals will be properly 
informed, and her session is terminated. 

 

5.3.7 UI 

The aforementioned procedures are “hidden” behind the UI depicted in Figure 21. The 
Connect button corresponds to the connection with the signaling server, the Join Room 
to the PeerConnection, while the rest buttons correspond to what is written on their la-
bels. Finally, the black frame is the video area, while the white textbox is the log area. 
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Figure 21: Client's UI 

 

5.4 Intermediate Server 

The third component to analyze is the Intermediate Server. It consists of an HTML file 
that provides a UI, and a JavaScript file that contains the functionality behind of the UI. 
Furthermore, the OpenCV.js bindings and APIs are also in a subdirectory, in order to 
have access to the OpenCV executables. Its role is to control the whole operation, to 
analyze the Vehicle’s video, to relay it to the Client, to receive commands from the Cli-
ent, and to send commands to the Vehicle. In the following sub-sections, we will ana-
lyze each part of the Intermediate Server’s workflow diagram, depicted in Figure 22. 

 

 

Figure 22: Intermediate Server's Workflow 
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5.4.1 Connect to Signaling Server 

As already mentioned, before establishing a WebRTC session the Intermediate Server 
must connect to the signaling server, by sending the “Login” message. If the signaling 
server rejects the request, then the Intermediate Server goes to an Error state, clears all 
the resources, and exits the program. Otherwise, continues to the PeerConnection 
state. 

 

5.4.2 PeerConnection 

At this state, the Intermediate Server tries to establish a P2P connection with the other 
individuals. Specifically, creates an SDP Offer, sets the Data Channel, defines the 
STUN url, and creates a PeerConnection, which requires only to receive video. Howev-
er, its status remains “Idle”, since it is the first to join the session, and it is thus waiting 
for incoming connections. Upon receipt of an SDP Offer, automatically, the SDP Answer 
and the ICE candidates are transferred through the signaling server, and the Of-
fer/Answer procedure takes place. Finally, if everything goes smoothly and the 
PeerConnection is established, the peers start to exchange media and data, and the 
system is ready to go to the next states. 

At this point, since the Intermediate Server may create a PeerConnection with either the 
Vehicle or the Client, it will have to operate in a corresponding way. Thus, as shown in 
Figure 22, we discern two service cases: the Client Service, and the Vehicle Service. 

 

5.5 Intermediate Server – Client Service 

The Client Service is responsible for interacting with the Client. This include the relay of 
the Vehicle’s video, as well as the exchange of information regarding the operations and 
the piloting. 

 

5.5.1 Relay Video 

Assuming that the Vehicle is already connected and streaming, the Intermediate relays 
the Vehicle’s video to the Client, by adding the incoming stream to its PeerConnection 
(with the Client) media object.  

 

5.5.2 getOps – Expose operations 

Upon receipt of the “getOps” message from the Signaling Server, the Intermediate 
Server send via the Data Channel to the Client all the available operations in a JSON 
format. 

 

5.5.3 Data Chanel – Set-up Operations 

When the Client sets the preferred operations, this is done through the Data Channel. 
Thus, when the Intermediate Server receives the corresponding data, it parses it, and 
enables the appropriate OpenCV operations for the selected use-case, by assigning the 
corresponding functionality to a global function. 
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5.5.4 Start – Enable Snapshots 

Whenever the Intermediate Server receives the “Start” message from the Signaling 
Server, it immediately enable the snap function, which is responsible for the whole pilot-
ing operation. The snap function is part of the Vehicle Service, and will be explained in 
5.6. 

 

5.5.5 Stop – Disable Snapshots 

Whenever the Intermediate Server receives the “Stop” message from the Signaling 
Server, it immediately disable the aforementioned snap function. 

 

5.5.6 Leave 

Upon receipt of this message, the Intermediate Server disconnects form the Client and 
terminates any operation with the Vehicle. 

5.6 Intermediate Server – Vehicle Service 

The Vehicle Service is responsible for interacting with the Vehicle entity. This include 
the reception of the video stream, and the exchange of data that corresponds to the cal-
culated goal, which the Vehicle will transform/translate into ROS commands. 

 

5.6.1 Receive Video 

The Vehicle’s incoming video stream is passed to the srcObject element, in order to 
manipulate it, and is relayed to the Client. 

 

5.6.2 Snapshot function 

As mentioned in the Client Service, upon the receipt of the “Start” message, the snap 
function is enabled. This is done through the JavaScript timing event “setInterval”, which 
actually calls the snap function periodically. This function is responsible for taking a 
snapshot of the video, to forward it to OpenCV, to calculate the goal from the pro-
cessing results, and finally to send it via the Data Channel to the Vehicle. The period of 
the snap function is determined based on the needs of the piloting, but the minimum 
snapshot period cannot be less than 1/fps.  

However, we define a period of ~1500 milliseconds. Let us explain: 

   Let the selected use-case be the Face Detection. We obtained some metrics and 
found out that from the time the function is called until the time the goal is sent 
via the Data Channel, the total duration is about 800 ms. 

   Now, remember that we are going to test our system on a Turtlesim, where the 
execution of one command takes exactly 1000 ms, since it corresponds to veloci-
ty (note that we do not use the Pose topic, which enables us to interrupt the tur-
tle’s movement with accuracy). Considering some communication and synchro-
nization delays, if the turtle receives a command at time t then it will be able to 
execute the next command at time t + 1000 + delays ≈ t + 1100 ms. 

   So, if we obtain a snapshot at time t, then the turtle will receive it at time t + 800 
and will be ready to execute the next command at time t + 800 + 1100 = t + 1900, 
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meaning almost two seconds later. If this delay propagates in time, it is easy to 
understand that the turtle will “always be late” if the snapshot period is quite 
short. 

   With some experiments and some synchronization at the Vehicle’s procedures 
(see 5.7.7), we determined that a sampling period of ~1500 ms is good enough 
for a smoother piloting. 

The OpenCV operation that we are testing is the Face Detection case. In order to 
achieve this, we convert a video snapshot to Canvas element and get the image data. 
We convert this data to a Mat array, and we apply the face cascade classifier that 
OpenCV provides in an XML format. If any face is detected, we enclose it in a rectangle. 

The next thing to do is to calculate the Goal. We define as the target of the turtle to be 
the central point of the face’s rectangle. The use-case is a little tricky; consider that the 
camera is somewhere above and is looking at a terrain, and we want to detect some-
thing specific that is moving on it. We consider that the object for detection is our face, 
and thus we reduce it to a single point. This point (rectangle’s central point) is the object 
on the terrain, and we need the turtle to rotate properly in order to stare at it. 

Finally, the calculated coordinates of the central point (xm, ym) are sent via the Data 
Channel to the Vehicle. 

 

5.6.3 Leave 

Upon receipt of this message, the Intermediate Server terminates any operation with the 
Vehicle, and disconnects from it. 

 

5.7 Vehicle 

The final component to analyze is the Vehicle. It consists of an HTML file that provides 
a UI, and a JavaScript file that contains the functionality behind of the UI. Its role is to 
connect to the rosbridge_server for interacting with ROS, to stream its video to the In-
termediate Server, and to calculate and send the appropriate commands to the simula-
tor. In the following sub-sections, we will analyze each part of the Vehicle’s workflow di-
agram, depicted in Figure 23. 
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Figure 23: Vehicle's Workflow 

 

5.7.1 Fetch roslib 

The first thing to do is to fetch the pre-built version of roslib.js from a CDN, in order to 
use the APIs and the functionalities to interact with ROS. 

 

5.7.2 Connect to rosbridge Server 

Then, we connect to the reosbridge_server by creating a new Ros object, which estab-
lishes a WebSocket connection with the reosbridge_server. Note here that the 
rosbridge_server and the turtlesim must be running on the ROS device to enable the 
connection. Finally, after setting up the connection, we can exchange data and interact 
with the simulator 

5.7.3 Connect to Signaling Server 

As already mentioned, before establishing a WebRTC session the Vehicle must connect 
to the signaling server, by sending the “Login” message. If the signaling server rejects 
the request, then the Intermediate Server goes to an Error state, clears all the re-
sources, and exits the program. Otherwise, continues to the PeerConnection state. 

 

5.7.4 getUserMedia 

After successfully connecting to the Signaling Server, the Vehicle calls the getUserMe-
dia method of the MediaStream API in order to get access to the camera’s video 
stream. This video stream will be added on the PeerConnection object, in order to be 
transferred to the Intermediate Server. 
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5.7.5 PeerConnection 

At this state, the Vehicle tries to establish a P2P connection with the Intermediate Serv-
er. Specifically, creates an SDP Offer, sets the Data Channel, defines the STUN url, 
and creates a PeerConnection, which the video stream. Automatically, the SDP Offer 
and the ICE candidates are transferred through the signaling server, and the Of-
fer/Answer procedure takes place. Finally, if everything goes smoothly and the 
PeerConnection is established, the peers start to exchange media and data, and the 
system is ready to go to the next state. 

 

5.7.6 Spawn Turtle 

At this state, the Vehicle publishes a Twist message to the Turtlesim, in order to set the 
default orientation of the turtle at π/2 rads. 

 

5.7.7 Move Robot 

The calculated goal for the turtle is received from the Data Channel. When the first goal 
arrives, the Vehicle calls the moveRobot function. Then, creates a new timing event 
through the setInterval method, in order to periodically call the moveRobot function; this 
period, as explained before, is set to 1100 ms. After the first one, the rest of the goals 
are stored in a variable, in order to synchronize the turtle with the latest face position. 
The moveRobot is responsible for constructing the appropriate commands based on the 
turtle’s current position and the goal: 

At first, the goal point must be transformed properly in order to match the space of the 
turtle’s terrain (Figure 24). More specifically, the turtle’s space is smaller than the vid-
eo’s pixel space.  

Let: 

 

be the central point of the turtle’s terrain (actually that is the spawn coordinates of the 
turtle). 

Let: 

 

be the video’s central pixel, where W and H are the Width and Height respectively.  

Finally, let: 

 

be the rectangle’s central point. 

Then, the following transformation expresses the coordinates of the rectangle’s central 
point on the turtle’s space: 
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Figure 24: Pixel space to Turtlesim space transformation 

 

After successfully transforming the coordinates of the central point, the moveRobot 
function must calculate the angles that the turtle must steer in order to stare at the goal 
point. First of all, the angle between the turtle’s position and the central point is calculat-
ed: 

 

Let: 

 

be the turtle’s current angle. 

The absolute angle difference  is calculated, and the following conditions pro-
vide the radians the turtle must steer in order to stare at the goal: 

 

 

 

 

Finally, the calculated “ang” is set as the angular of z-axis (angular velocity) in the Twist 
message, which is published to the turtle (command). 
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5.7.8 Leave 

Finally, when we want to disconnect the Vehicle from the system, the “Leave” message 
is sent through the Signaling Server, in order to inform properly the other individuals. 



Adaptive unmanned vehicle autopiloting using WebRTC video analysis 

 

A. Modas   47 

 

6. RESULTS 

In the following sub-sections, we will try to prove our concept of this technical instru-
mentation, and to provide some metrics about the processing delay of the autopiloting 
procedure. 

 

6.1 WebRTC 

First, we will prove that the real-time communication is achieved through WebRTC. Fig-
ure 25 shows the Vehicle’s video that is successfully relayed to the Client, while Figure 
26 depicts the data transferred to the Vehicle through the Data Channel. Finally, Figure 
27 shows how the getUserMedia method requires access to the video stream from the 
Laptop’s camera. 

 

 

Figure 25: Proof of concept: WebRTC Video 
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Figure 26: Proof of concept: WebRTC Data Channel 

 

 

Figure 27: Proof of concept: getUserMedia method 
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6.2 Adaptive 

Figure 28 shows how the Client can dynamically select a new operation, forcing the sys-
tem to adapt to this new use-case. 

 

 

Figure 28: Proof of concept: Adaptive 

 

6.3 OpenCV.js 

 

 

Figure 29: Proof of concept: OpenCV.js 
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Figure 29 shows the results of the Face Detection method. As we can see, OpenCV.js 
successfully recognizes the face area and encloses it into a rectangle 

 

6.4 ROS-based Vehicle 

Figure 30 depicts the autopiloting of the simulated turtle. As we can see, at first, the de-
tected face is at the upper-left corner, and the turtle is staring at it. The, we make a 180 
degree move, and the turtle successfully changes its orientation to the correct view. 

 

 

Figure 30: Proof of concept: ROS autopiloting 

 

6.5 Metrics 

Figure 31 depicts the processing delay from the time of the snapshot, until the time of 
the transmission of the calculated goal. The mean values is the red line on the graph, 
which is approximately 683 ms, while the standard deviation is about 196 ms. These 
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measurements result due to changes on the image, the number of detected objects per 
image, and because no optimization techniques have been applied. 

 

Figure 31: Processing delay 
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7. CONCLUSIONS AND FUTURE WORK 

In this implementation we explained and described how to combine all of these hetero-
geneous components (WebRTC – OpenCV – ROS), in order to compose a web-based 
infrastructure for autopiloting ROS-based vehicles upon a specific use case. We devel-
oped a horizontal infrastructure that consists of a modular architecture, which provides 
the necessary components for machine-to-machine communication, uses state-of-the-
art technologies (i.e. WebRTC), allows a developer to freely implement her own logic 
vertically (i.e. her own OpenCV functions, autopiloting handling, use-cases etc), and 
provides IoT with a solution that can be easily exploited in numerous ways. 
 
The next step is to extend this infrastructure to a native project; since all of these com-
ponents are written in C++, we can properly combine them in order to gain the maxi-
mum speed and efficiency. Furthermore, since many robotic applications pair some da-
ta along with the video, we should find a way to interleave the video with the Data 
Channel [68]. Regarding the metrics, we should test our system to real network condi-
tions with packet losses, delays, and congestions, in order to measure the impact on the 
system (i.e. bandwidth, synchronization etc.). Finally, we should test the scalability of 
our system, in order to enable some advanced uses cases like a fleet management, 
car-to-car communications, and others. 
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ABBREVIATIONS – ACRONYMS 

AJAX Asynchronous JavaScript and XML 

API Application Programming Interface 

AVC Advanced Video Coding 

CDN Content Delivery Network 

DNS Domain Name System 

DTLS Datagram transport Layer Security 

FPS Frames per Second 

HEVC High Efficient Video Coding 

HTML HyperText Markup Language 

HTTP HyperText Transfer Protocol 

ICE Interactive Connectivity Establishment 

IETF Internet Engineering Task Force 

IoT Internet of Things 

IP Internet Protocol 

JSON JavaScript Object Notation 

LLVM Low Level Virtual Machine 

M2M Machine-to-Machine 

MiTM Man in The Middle 

MTU Maximum Transfer Unit 

NAT Network Address Translation 

OpenCV Open Computer Vision 

OS Operating System 

P2P Peer-to-Peer 

REST Representational State Transfer 

ROS Robot Operating System 

RTC Real Time Communications 

RTCP Real-time Transport Control Protocol 

RTP Real-time Transport Protocol 

SAVP Secure Audio Video Profile 

SAVPF Secure Audio Video Profile with Feedback 

SCTP Stream Control Transmission Protocol 

SDP Session Description Protocol 
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SIMD Single Instruction, Multiple Data 

SIP Session Initiation Protocol 

SRTCP Secure Real-time Transport Control Protocol 

SRTP Secure Real-time Transport Protocol 

SSL Secure Sockets Layer 

STUN Session Traversal Utilities for NAT 

TCP Transmission Control Protocol 

TF Transmission Frame 

TLS Transport Layer Security 

TURN Traversal Using Relays around NAT 

UDP User Datagram Protocol 

UI User Interface 

URDF Unified Robot Description Format 

URL Uniform Resource Locator 

VoIP Voice over IP 

W3C World Wide Web Consortium 

WebRTC Web Real Time Communnications 

XHR XMLHttpRequest 

XML eXtensible Markup Language 
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