

NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

GRADUATE PROGRAM

MSc THESIS

Adaptive unmanned vehicle autopiloting using WebRTC vid-
eo analysis

Apostolos I. Modas

Supervisor: Athanasia Alonistioti, Assistant Professor

ATHENS

JULY 2017

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Προσαρμοστικός αυτόματος πιλότος μη επανδρωμένου ο-
χήματος με χρήση WebRTC ανάλυσης βίντεο

Απόστολος Η. Μόδας

Επιβλέπουσα: Αθανασία Αλωνιστιώτη, Επίκουρη Καθηγήτρια

ΑΘΗΝΑ

ΙΟΥΛΙΟΣ 2017

MSc THESIS

Adaptive unmanned vehicle autopiloting using WebRTC video analysis

Apostolos I. Modas

Α.Μ.: M1463

SUPERVISOR: Athanasia Alonistioti, Assistant Professor

EXAMINATION COM-
MITEE:

Eystathios Hadjiefthymiades, Associate Professor

July 2017

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Προσαρμοστικός αυτόματος πιλότος μη επανδρωμένου οχήματος με χρήση WebRTC
ανάλυσης βίντεο

Απόστολος Η. Μόδας

Α.Μ.: Μ1463

ΕΠΙΒΛΕΠΟΥΣΑ: Αθανασία Αλωνιστιώτη, Επίκουρη Καθηγήτρια

ΕΞΕΤΑΣΤΙΚΗ ΕΠΙΤΡΟΠΗ: Ευστάθιος Χατζηευθυμιάδης, Αναπληρωτής Καθηγητής

Ιούλιος 2017

ABSTRACT

We exploit the new features provided by WebRTC in terms of interoperability and state-
of-the-art real-time communications, in order to develop a system for piloting unmanned
vehicles using video analysis. Specifically, we define a topology where a ROS-based
vehicle transmits its video using WebRTC to an intermediate server, who in turn relays it
to a client. The server takes advantage of the OpenCV library and applies video analy-
sis, with respect to a selected task (i.e. face detection) defined by the client. The corre-
sponding commands are transmitted to the vehicle, resulting in an automatically driven
unmanned vehicle. The client monitors the vehicle’s movement and can dynamically
change the selected use case; that is, either change slightly its operation (i.e. from hu-
man tracking to children tracking) or enable an entirely new core philosophy (i.e. to fire
detection) by sending the appropriate requests to the server. Upon reception of these
requests, the server utilizes the corresponding OpenCV functionalities to serve the new
task, and sends the new piloting commands to the vehicle, forcing the system to adopt a
new autopiloting mode. This communication between the vehicle, the server and the cli-
ent is established using SIP/SDP and orchestrated via a WebSocket server that serves
as a Signaling Server, the media are transferred through SRTP/UDP, and the com-
mands are carried via the WebRTC Data Channel over SCTP. We explain and describe
how to combine all of these heterogeneous components (WebRTC – OpenCV – ROS),
in order to compose a web-based infrastructure for autopiloting ROS-based vehicles
upon a specific use case. Finally, the results prove our concept, meaning a horizontal
infrastructure that (a) consists of a modular architecture, (b) provides the necessary
components for machine-to-machine communication, (c) uses state-of-the-art technolo-
gies, (d) allows a developer to implement her own logic vertically, and (e) provides IoT
with a solution that can be easily exploited in numerous ways.

SUBJECT AREA: Real-Time Communications, Computer Vision, Internet of Things

KEYWORDS: WebRTC, OpenCV, web infrastructure, autopiloting, unmanned vehicles,
ROS, IoT, technical instrumentation

ΠΕΡΙΛΗΨΗ

Εκμεταλλευόμαστε τις νέες δυνατότητες που παρέχονται από το WebRTC, υπό την έν-
νοια της διαλειτουργικότητας και των τελευταίας γενιάς επικοινωνιών σε πραγματικό
χρόνο, προκειμένου να αναπτύξουμε ένα σύστημα για το πιλοτάρισμα μη επανδρωμέ-
νων οχημάτων χρησιμοποιώντας ανάλυση βίντεο. Συγκεκριμένα, ορίζουμε μια τοπολο-
γία όπου ένα ROS όχημα μεταδίδει βίντεο μέσω WebRTC προς έναν ενδιάμεσο εξυπη-
ρετητή, ο οποίος με τη σειρά του το μεταβιβάζει σε έναν πελάτη. Ο εξυπηρετητής εκμε-
ταλλεύεται τη βιβλιοθήκη OpenCV και εφαρμόζει ανάλυση βίντεο, με τέτοιο τρόπο ώστε
να εξυπηρετήσει ένα επιλεγμένο από τον πελάτη σενάριο. Οι αντίστοιχες εντολές μετα-
δίδονται στο όχημα, με αποτέλεσμα να έχουμε ένα αυτόματα οδηγούμενο όχημα. Ο πε-
λάτης παρακολουθεί την πορεία του οχήματος και μπορεί να αλλάξει δυναμικά το επι-
λεγμένο σενάριο – αυτό σημαίνει είτε να αλλάξει ελαφρώς τη λειτουργία του (π.χ. από
παρακολούθηση ανθρώπων σε παρακολούθηση παιδιών) είτε να ενεργοποιήσει μια ε-
ντελώς διαφορετική φιλοσοφία λειτουργίας – στέλνοντας τα κατάλληλα αιτήματα στον
εξυπηρετητή. Μόλις ο εξυπηρετητής λάβει αυτά τα αιτήματα, χρησιμοποιεί τις αντίστοι-
χες λειτουργίες το OpenCV για να εξυπηρετήσει το νέο σενάριο, και στέλνει τις νέες ε-
ντολές οδήγησης στο όχημα, αναγκάζοντας το σύστημα να υιοθετήσει μια νέα λειτουρ-
γία αυτόματου πιλότου. Η επικοινωνία μεταξύ του οχήματος, του εξυπηρετητή και του
πελάτη εδραιώνεται μέσω των SIP/SDP και ενορχηστρώνεται μέσω ενός WebSocket
εξυπηρετητή που επιτελεί το ρόλο του Signaling Server, ενώ οι εντολές μεταφέρονται
μέσω του WebRTC Data Channel πάνω από το SCTP. Περιγράφουμε και αναλύουμε το
πώς όλα αυτά τα ετερογενή συστατικά (WebRTC – OpenCV – ROS) συνδυάζονται για
τη δημιουργία μιας δικτυακής υποδομής, για το αυτόματο πιλοτάρισμα ROS οχημάτων
σύμφωνα με ένα συγκεκριμένο σενάριο χρήσης. Τέλος, τα αποτελέσματα αποδεικνύουν
την ιδέα μας, δηλαδή μια οριζόντια υποδομή που (α) αποτελείται από μια ευέλι-
κτη/αρθρωτή αρχιτεκτονική, (β) παρέχει τα απαραίτητα στοιχεία για την μηχανή-σε-
μηχανή επικοινωνία, (γ) χρησιμοποιεί τελευταίας γενιάς τεχνολογίες, (δ) επιτρέπει σε
έναν προγραμματιστή να εφαρμόσει τη δική του λογική κατακόρυφα σε βάθος και (ε)
παρέχει στον τομέα του IoT μια λύση που μπορεί εύκολα να αξιοποιηθεί με πολλούς
τρόπους.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Επικοινωνίες Πραγματικού Χρόνου, Μηχανική Όραση, Διαδί-
κτυο των Πραγμάτων

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: WebRTC, OpenCV, web υποδομή, αυτόματος πιλότος, μη επαν-
δρωμένα οχήματα, ROS, ΙοΤ, τεχνική ενορχήστρωση

CONTENTS

PREFACE .. 12

1. INTRODUCTION ... 13

1.1 Real-time Audio and Video Communication Over the Internet ... 13
1.1.1 Protocols .. 13
1.1.2 Barriers ... 13

1.2 WebRTC ... 14

1.3 Internet of Things and Unmanned Vehicles ... 14
1.3.1 Image and Video Processing – OpenCV .. 14

1.4 Conclusions .. 14

2. REAL-TIME COMMUNICATIONS THROUGH THE WEB – WEBRTC 15

2.1 State-of-the-art .. 15
2.1.1 Browser-to-Browser.. 15
2.1.2 Interoperability – Adapter.js .. 15
2.1.3 Audio and Video Codecs .. 15
2.1.4 Interactive Connectivity Establishment ... 15

2.2 Protocol Stack ... 16
2.2.1 UDP.. 16
2.2.2 TCP .. 17
2.2.3 ICE, STUN, and TURN ... 17
2.2.4 TLS and DTLS ... 18
2.2.5 RTP/RTCP and SRTP/SRTCP ... 18
2.2.6 SCTP .. 18
2.2.7 SIP/SDP ... 19

2.3 WebRTC APIs .. 19
2.3.1 MediaStream API ... 19
2.3.2 RTCDataChannel API .. 20
2.3.3 RTCPeerConnection API ... 21

2.4 Signaling Server ... 21
2.4.1 Topology .. 22
2.4.2 Signaling Transport .. 23
2.4.3 Signaling Protocol .. 23

3. COMPUTER VISION – OPENCV .. 24

3.1 Face Detection .. 24

3.2 Web OpenCV ... 25
3.2.1 OpenCV.js .. 26
3.2.2 HTML5 Canvas Element .. 27

4. ROBOT OPERATING SYSTEM – ROS .. 28

4.1 ROS Architecture .. 28
4.1.1 The Filesystem Level ... 28
4.1.2 The Computational Graph Level .. 29

4.1.3 The Community Level .. 30

4.2 Turtlesim .. 30
4.2.1 Messages and Topics .. 31

4.3 ROS Web ... 31
4.3.1 Rosbridge suite .. 31
4.3.2 Roslibjs ... 32

5. ROS-BASED VEHICLE AUTOPILOTING USING WEBRTC VIDEO ANALYSIS
THROUGH OPENCV.JS .. 33

5.1 Architecture ... 34

5.2 Signalling Server... 35
5.2.1 Case: Login .. 35
5.2.2 Case: Offer ... 35
5.2.3 Case: Answer ... 36
5.2.4 Case: Candidate... 36
5.2.5 Case: Leave ... 36
5.2.6 Case: Start ... 36
5.2.7 Case: Stop ... 36
5.2.8 Case: Get Operations... 36

5.3 Client .. 36
5.3.1 Connect to Signaling Server ... 37
5.3.2 PeerConnection ... 37
5.3.3 getOps – Display Video – Log Data and Information.. 37
5.3.4 Select and Set Operation ... 38
5.3.5 Start and Stop Piloting.. 38
5.3.6 Leave ... 38
5.3.7 UI.. 38

5.4 Intermediate Server .. 39
5.4.1 Connect to Signaling Server ... 40
5.4.2 PeerConnection ... 40

5.5 Intermediate Server – Client Service ... 40
5.5.1 Relay Video .. 40
5.5.2 getOps – Expose operations .. 40
5.5.3 Data Chanel – Set-up Operations .. 40
5.5.4 Start – Enable Snapshots ... 41
5.5.5 Stop – Disable Snapshots .. 41
5.5.6 Leave ... 41

5.6 Intermediate Server – Vehicle Service .. 41
5.6.1 Receive Video .. 41
5.6.2 Snapshot function... 41
5.6.3 Leave ... 42

5.7 Vehicle ... 42
5.7.1 Fetch roslib ... 43
5.7.2 Connect to rosbridge Server .. 43
5.7.3 Connect to Signaling Server ... 43
5.7.4 getUserMedia ... 43
5.7.5 PeerConnection ... 44
5.7.6 Spawn Turtle .. 44
5.7.7 Move Robot .. 44
5.7.8 Leave ... 46

6. RESULTS ... 47

6.1 WebRTC ... 47

6.2 Adaptive ... 49

6.3 OpenCV.js .. 49

6.4 ROS-based Vehicle ... 50

6.5 Metrics ... 50

7. CONCLUSIONS AND FUTURE WORK.. 52

ABBREVIATIONS – ACRONYMS ... 53

REFERENCES ... 55

LIST OF IMAGES

Figure 1: The Protocol Stack of WebRTC ... 16

Figure 2: Use of STUN Server for NAT Traversal ... 17

Figure 3: Use of STUN/TURN Servers for NAT Traversal .. 17

Figure 4: SIP/SDP Offer/Answer between peers .. 19

Figure 5: The MediaStream Object ... 20

Figure 6: The PeerConnection Object .. 21

Figure 7: ICE agent connectivity states and transitions (ICE workflow) 21

Figure 8: The triangle topology ... 22

Figure 9: The trapezoid topology .. 22

Figure 10: Haar-feature filters ... 24

Figure 11: OpenCV results for face and eyes detection.. 25

Figure 12: The Emscripten toolchain .. 26

Figure 13: Use of Emscripten to expose the OpenCV native library to the Web 26

Figure 14: The ROS Filesystem Level .. 29

Figure 15: The ROS Computational Graph Level ... 30

Figure 16: A Turtlesim example .. 31

Figure 17: Interacting with ROS from the Browser using roslib and rosbridge 32

Figure 18: The core idea of the infrastructure ... 33

Figure 19: The architecture of the infrastructure ... 34

Figure 20: Client's Workflow ... 37

Figure 21: Client's UI .. 39

Figure 22: Intermediate Server's Workflow ... 39

Figure 23: Vehicle's Workflow .. 43

Figure 24: Pixel space to Turtlesim space transformation .. 45

Figure 25: Proof of concept: WebRTC Video .. 47

Figure 26: Proof of concept: WebRTC Data Channel ... 48

Figure 27: Proof of concept: getUserMedia method ... 48

Figure 28: Proof of concept: Adaptive .. 49

Figure 29: Proof of concept: OpenCV.js ... 49

Figure 30: Proof of concept: ROS autopiloting ... 50

Figure 31: Processing delay ... 51

LIST OF TABLES

Table 1: The SCTP protocol as a UDP-TCP hybrid .. 18

PREFACE

The current Master Thesis was pursued in Athens from September 2016 until July 2017.
It is a mandatory requirement for the graduation from the Master Program at the De-
partment of Informatics and Telecommunications of the National and Kapodistrian Uni-
versity of Athens.

Adaptive unmanned vehicle autopiloting using WebRTC video analysis

A. Modas 13

1. INTRODUCTION

Audio and video applications have become a basic part of everyday life, since they cov-
er a wide range of services such as communication, entertainment, news/information,
medicine, sports etc. Depending on the service, there are different ways in which some-
one can transmit and manipulate multimedia data, each of which requires a different
approach. In this chapter, we will make a small introduction to general features related
to real-time multimedia over the Internet, Google’s new communication “standard”
named WebRTC [1], and to the rapidly growing field of Internet of Things – IoT [2],
combined with the well-known computer vision library, OpenCV [3]. These introductory
sections are also the pre requirements for an in-depth understanding of our implementa-
tion.

1.1 Real-time Audio and Video Communication Over the Internet

Real-time audio and video communications over the Internet have high and strong re-
quirements in terms of bandwidth limitations, delays, and receiving quality, but several
difficulties need to overcome to meet these requirements. Although Internet provides
the ability to transfer data over long distances at high speed, its bandwidth is always
limited, and it presents many random fluctuations that have major impact on the delay
and the quality of the data being transferred. Thus, the identification of the appropriate
protocols and techniques for dealing with bandwidth limitations, for reducing both the
delay and packet loss, and for preserving the quality at the receiving end is necessary.

1.1.1 Protocols

For real-time media transmission, there are a set of specific protocols that are used,
which provide the appropriate mechanisms to meet or to handle the aforementioned re-
quirements. Regarding some of the most used protocol, on the transport layer, the User
Datagram Protocol – UDP [4] is adopted, whereas on the application layer, the Real-
time Transport Protocol – RTP [5] is the standard protocol. In cases where security is
mandatory, the Secure Real-time Transport Protocol – SRTP [6] is preferred. Both RTP
and SRTP are used in conjunction with their sister protocols, Real-time Transport Con-
trol Protocol – RTCP [5] and Secure Real-time Transport Protocol – SRTCP [6], which
provide control information for an RTP or an SRTP session respectively. Finally, on top
of RTP/SRTP, the Session Initiation Protocol – SIP [7] together with the Session De-
scription Protocol – SDP [8] are used, which provide the appropriate mechanisms for
signaling and media description.

1.1.2 Barriers

The most common problem when trying to establish a Peer-to-Peer (P2P) connection is
the presence of Network Address Translators – NAT [9], which operate as a network
firewall, protecting the IP of the machine/device, preventing other machines to detect it.
In order to surpass this barrier, a variety of NAT Traversal [10] and Hole Punching [11]
techniques and standards have been developed, but they come with a lot of restrictions
and complexity in use. Another very usual problem is the lack of interoperability; many
applications are hardware and device dependent, which means that an additional appli-
cation (i.e. a software) or a plugin must be present in order to setup a communication
between peers.

Adaptive unmanned vehicle autopiloting using WebRTC video analysis

A. Modas 14

1.2 WebRTC

WebRTC is new technology that simplifies and solves all the aforementioned require-
ments and barriers, enabling a fast, secure and simple real-time P2P communication
infrastructure. Its main advantage is that it provides the functionalities for P2P commu-
nication on the Web, without the need of a software or a plugin. Furthermore, it is device
independent since it can work on any device that has access to a browser, implements
state-of-the-art audio and video codecs, and finally, uses the Interactive Connectivity
Establishment – ICE [12] technique for NAT Traversal and Hole Punching, in order to
find ways for two peers to talk each other as directly as possible. WebRTC is further ex-
plained in Chapter 2.

1.3 Internet of Things and Unmanned Vehicles

Concerning the field of IoT, it is worth mentioning the importance of multimedia as more
and more applications are using audio and image/video sensors for measurements. For
instance, unmanned vehicles is an IoT category that makes use of a large set of sen-
sors, with the camera being the primary one, since it can be exploited by many sectors
such as health, sports, agri-food, security etc. However, could someone use WebRTC
for streaming the video as well as the sensor data in real-time from the vehicle to our
application?

1.3.1 Image and Video Processing – OpenCV

Finally, our application must analyze and process the video and image data provided by
the vehicles, in order to extract the corresponding information. These procedures can
be accomplished with the use of OpenCV, a library that has many applications in com-
puter vision and robotics. However, assuming that an unmanned vehicle is also a robot,
could someone use the video provided by WebRTC as the main input to OpenCV?

1.4 Conclusions

Considering all of the above – meaning the real-time protocols, the codecs, the re-
quirements and the barriers, the WebRTC, the unmanned vehicles, and the OpenCV –
we will combine them properly, in order to develop an infrastructure that fulfills all of
these requirements, and provides IoT with a Machine-to-Machine (M2M) communication
solution, that exploits state-of-the-art technologies along a wide range of applications.
The rest of the dissertation is organized as follows; in Chapter 2, an overview of
WebRTC and its protocols, as well as a description of the offered API’s is provided. The
OpenCV library, including its features and its web exposure is analyzed in Chapter 3,
whereas the Robot Operating System and the turtle simulator through the web are de-
scribed in Chapter 4. In Chapter 5, we exploit the knowledge of the aforementioned
Chapters to provide an in-depth analysis of our implemented infrastructure. Finally,
Chapter 6 shows the results and the metrics of our system, while the future work is dis-
cussed in Chapter 7.

Adaptive unmanned vehicle autopiloting using WebRTC video analysis

A. Modas 15

2. REAL-TIME COMMUNICATIONS THROUGH THE WEB – WEBRTC

WebRTC is a collection of communication protocols and Application Programming Inter-
faces – APIs that enable Real-Time Communication – RTC over P2P connections, al-
lowing web browsers not only to request resources from backend servers, but also real-
time information from browsers of other users. This enables applications such as video
conferencing, file transfer, chat, or desktop sharing without the need of either internal or
external plugins. Google released it on May 2011; it is supported by Mozilla and Opera
amongst others, and is being standardized by the World Wide Web Consortium – W3C
and the Internet Engineering Task Force – IETF.

2.1 State-of-the-art

WebRTC is a state-of-the-art technology since it came with a revolutionary approach on
Web-based RTC, setting the ground for becoming the main standard for real-time com-
munications.

2.1.1 Browser-to-Browser

The strongest aspect of WebRTC is the enrichment of browsers with RTC functionali-
ties, without the need of internal or external plugins. Before that, in order for two peers
to communicate over the browser, they had to use either a specific software or a specif-
ic plugin at both ends, which was Operating System – OS, browser, and device de-
pendent, and responsible for providing the appropriate RTC methods and infrastructure.

2.1.2 Interoperability – Adapter.js

What is more, WebRTC is not only OS and device independent – requires only a
browser – but also browser independent. This is feasible due to adapter.js [13], a shim
to insulate applications from specification changes and prefix differences along different
browsers (i.e. Chrome-to-Firefox, Chrome-to-Opera etc.).

2.1.3 Audio and Video Codecs

In addition, WebRTC uses some state-of-the-art audio and video codecs, which provide
high compression, while keeping a balanced tradeoff in terms of information loss and
network limitations. By now, it supports G.711, G.722, iSAC, iLBC, and Opus audio co-
decs [14, 15, 16, 17, and 18 respectively], while the supported video codecs are H.264
AVC, VP8, and VP9 [19, 20, and 21 respectively]. It is worth noting that the combination
of Opus and VP9 is the WebM video file format [22], while the VP9 video codec is the
one comparable to well-known HEVC [23], and the ancestor of AV1 [24].

2.1.4 Interactive Connectivity Establishment

Finally, WebRTC provides the appropriate frameworks and mechanisms for Hole
Punching and NAT Traversal, by using the ICE technique. ICE is used in computer net-
working to find ways for two computers to talk to each other as directly as possible in
P2P networking, and provides a framework with which a communicating peer may dis-
cover and communicate its public IP address so that other peers can reach it. Session

Adaptive unmanned vehicle autopiloting using WebRTC video analysis

A. Modas 16

Traversal Utilities for NAT – STUN [25] is a standardized protocol for such address dis-
covery (including NAT classification), while Traversal Using Relays around NAT –
TURN [26] places a third-party server to relay messages between two clients when di-
rect media traffic between peers is not allowed by a firewall.

2.2 Protocol Stack

Like every real-time P2P communication, WebRTC requires a set of communication
protocols for exchanging media and data, as well as for orchestrating the session.
Whereas the orchestration is usually managed by protocols and mechanisms that are
integrated into the application (i.e. the SIP/SDP procedures), WebRTC uses an external
entity for the signaling between peers called Signaling Server, which is not part of the
project’s implementation, but its presence is mandatory. Therefore, a WebRTC session
consists of two main entities; the Signaling Server, and the set of RTC functionalities
and APIs that are provided by the browser. The protocol stack used by WebRTC is de-
picted in Figure 1, where the left sub-stack refers to the Signaling Server, while the right
one to the provided APIs.

Figure 1: The Protocol Stack of WebRTC

In the following sub-sections, a brief description of the protocols used by WebRTC is
outlined.

2.2.1 UDP

Unlike all other browser communication, WebRTC transports its data over UDP. The
requirement for timeliness over reliability is the primary reason why the UDP protocol is
a preferred transport for delivery of real-time data; it offers no promises on reliability or
order of the data, and delivers each packet to the application the moment it arrives. In
effect, it is a thin wrapper around the best-effort delivery model offered by the IP layer of
the network stacks [27].

However, an application also needs mechanisms to traverse the many layers of NATs
and firewalls, negotiate the parameters for each stream, provide encryption of user da-
ta, implement congestion and flow control etc. Thus, while UDP is the foundation for re-
al-time communication in the browser, in order to meet all the requirements of WebRTC,
the browser also needs a large supporting cast of application protocols and methods.

Adaptive unmanned vehicle autopiloting using WebRTC video analysis

A. Modas 17

2.2.2 TCP

In the case of the transported messages of the Signaling Server, the Transmission Con-
trol Protocol – TCP is [28] preferred. The requirement for reliability over timeless is the
primary reason why the TCP protocol is a preferred transport for delivery of these mes-
sages; it offers reliability, in-order data, and delivers each packet to the application after
a complete error checking.

2.2.3 ICE, STUN, and TURN

WebRTC, as described in 2.1.4, utilizes the ICE technique, which makes use of the
STUN protocol and its extension, TURN. ICE provides a general framework for describ-
ing the available candidates [29], and exploits the STUN and TURN protocols to reach
the other peer behind the firewalls (Hole Punching and NAT Traversal).

STUN is a standardized set of methods, including a network protocol, for traversal of
NAT gateways in real-time communication applications. It is used by other protocols
(i.e. ICE, SIP), providing a tool for hosts to discover the presence of a NAT, and to dis-
cover the mapped, usually public, IP address and port number that the NAT has allo-
cated for the application’s TCP and UDP flows to remote hosts. The protocol requires
assistance from a third-party network server (STUN Server) located on the opposing,
public side of the NAT, usually the public Internet.

TURN is a protocol that assists in traversal of NATs or firewalls for multimedia applica-
tions. It is most useful for clients on networks masqueraded by symmetric NAT devices.
TURN does not aid in running servers on well-known ports in the private network
through a NAT, while it supports the connection of a user behind NAT to only single
peer. The topologies for STUN and TURN usages are depicted in Figure 2 and Figure 3
respectively.

Figure 2: Use of STUN Server for NAT Traversal

Figure 3: Use of STUN/TURN Servers for NAT
Traversal

Adaptive unmanned vehicle autopiloting using WebRTC video analysis

A. Modas 18

2.2.4 TLS and DTLS

WebRTC encrypts information for the Data Channels, by using the Datagram Transport
Layer Security – DTLS [30] protocol, which is built into all browsers that support
WebRTC, and is one protocol consistency used in web browsers, email, and VoIP plat-
forms to encrypt information; the built-in nature also means that no prior setup is re-
quired before use. As with other encryption protocols, it is designed to prevent eaves-
dropping and information tampering. DTLS itself is modelled upon the stream-oriented
Transport Layer Security – TLS [31] protocol, which offers full encryption with asymmet-
ric cryptography methods, data authentication, and message authentication. As DTLS is
a derivative of Secure Socket Layer – SSL [32] protocol, all data is known to be as se-
cure as using any standard SSL-based connection. In fact, WebRTC data can be se-
cured via any standard SSL-based connection on the web, offering end-to-end encryp-
tion between peers with almost any server arrangement.

2.2.5 RTP/RTCP and SRTP/SRTCP

The basic application protocol for real-time communications is the RTP along with
RTCP. However, it does not have any built-in security mechanisms, and thus provides
no protection or confidentiality of transmitted data, and so the use of external mecha-
nism that provide encryption is mandatory.

The use of unencrypted RTP is explicitly forbidden by the WebRTC specification. For
this reason, it utilizes SRTP/SRTCP for the encryption of media streams, rather than
DTLS, because SRTP is a lighter-weight option. The specification requires that any
compliant WebRTC implementation must support RTP/SAVPF [33], which is built on top
of RTP/SAVP [34]. However, the actual SRTP key exchange is initially performed end-
to-end with DTLS-SRTP [34], allowing for the detection of any man-in-the-middle
(MiTM) attack.

2.2.6 SCTP

WebRTC Data Channels deliver data using the SCTP over DTLS protocols [35], where
SCTP is the Stream Control Transmission Protocol [36]. STCP as a protocol can be
seen as a hybrid of UDP and TCP, as shown in Table 1; it is connection and message
oriented, offers optional reliability and ordering, and provides flow and congestion con-
trol. The SCTP is usually implemented on an application level.

Table 1: The SCTP protocol as a UDP-TCP hybrid

 TCP UDP SCTP

Reliability Reliable Unreliable Configurable

Delivery Ordered Unordered Configurable

Transmission Byte-oriented Message-oriented Message-oriented

Flow control Yes No Yes

Congestion control Yes No Yes

Adaptive unmanned vehicle autopiloting using WebRTC video analysis

A. Modas 19

2.2.7 SIP/SDP

Finally, WebRTC uses the SIP and SDP protocols for the orchestration of the communi-
cation between the peers. SIP is a communications protocol for signaling and controlling
multimedia communication sessions. It defines the messages that are sent between
endpoints, which govern establishment, termination and other essential elements of a
call. It can be used for creating, modifying, and terminating sessions consisting of one
or more media streams. SIP works in conjunction with several other protocols that spec-
ify and carry the media session. Media type and parameter negotiation and setup is per-
formed with the SDP, which is carried as a payload in a SIP message and provides a
format for describing streaming media parameters. These protocols are based on an
Offer/Answer model, and are implemented in the WebRTC application, but they are
transferred via the Signaling Server. The use of SIP in conjunction with SDP is shown in
Figure 4.

Figure 4: SIP/SDP Offer/Answer between peers

2.3 WebRTC APIs

WebRTC is a collection of standards, protocols, and JavaScript APIs, the combination
of which enables peer-to-peer audio, video, and data sharing between browsers
(peers). Instead of relying on third-party plug-ins or proprietary software, WebRTC turns
real-time communication into a standard feature that any web application can leverage
via a simple JavaScript API.

Delivering rich, high-quality, RTC applications such as audio and video teleconferencing
and peer-to-peer data exchange requires a lot of new functionality in the browser: audio
and video processing capabilities, new application APIs, and support for half a dozen
new network protocols. Thankfully, the browser abstracts most of this complexity behind
three primary APIs, which expose the native project’s functionalities to the web and
simplify the setup of the WebRTC session:

1. MediaStream API [37]

2. RTCDataChannel API [38]

3. RTCPeerConnection API [38]

2.3.1 MediaStream API

The MediaStream API represents synchronized streams of media (i.e., a stream taken
from camera and microphone input has synchronized video and audio tracks), and is
responsible for requesting and processing audio and video streams from the platform.
Each MediaStream object (Figure 5) has an input, which might be a media stream from
a device or a file, an output that can be manipulated in many ways (i.e. display video,

Adaptive unmanned vehicle autopiloting using WebRTC video analysis

A. Modas 20

play sound, send to other peer, record to file etc.), and consists of one or more tracks
(i.e. an audio and a video track). Finally, the main method for requesting the streams is
the getUserMedia, which takes three parameters:

1. Some constraints, which are applied to the media (i.e. fps, video dimensions, au-
dio packet time etc.).

2. A success callback, which is passed a MediaStream object.

3. A failure callback, which is passed an error object.

Figure 5: The MediaStream Object

2.3.2 RTCDataChannel API

Apart from audio and video, WebRTC supports real-time communication for other types
of data. The RTCDataChannel API enables P2P exchange of arbitrary data over SCTP,
with low latency and high throughput. What is more, it can be used as the main signal-
ing channel, for the case of a signaling server. Finally, it has some properties that are
quite powerful and flexible:

1. Maximum number of Data Channels: 65534 (theoretically)

2. Maximum capacity: Maximum Transfer Unit (MTU)

3. Delivery types: in-order, out-of-order, (un)reliable

4. Channel priorities

5. Multiplexing of independent channels

6. Message oriented API for fragmentations and assemblies

7. Flow and congestion control mechanisms

8. Confidentiality and integrity of transferred data

Adaptive unmanned vehicle autopiloting using WebRTC video analysis

A. Modas 21

2.3.3 RTCPeerConnection API

The last and most important API of WebRTC is the RTCPeerConnection, since it is re-
sponsible for managing the full life cycle of each P2P connection. The PeerConnection
object (Figure 6):

1. Manages the Ice workflow (Figure 7) for NAT Traversal, and trickles and registers
the local and remote ICE candidates respectively

2. Sends automatic STUN keepalives to ensure the ICE procedure

3. Keeps track of both the local and remote streams

4. Triggers an automatic stream renegotiation using SDP Offer/Answer

5. Provides all the methods for Offer/Answer, connection’s current state, ICE candi-
dates etc.

Figure 6: The PeerConnection Object

Figure 7: ICE agent connectivity states and transitions (ICE workflow)

2.4 Signaling Server

Signaling plays an important role in WebRTC but is not standardized, because it does
not need to be for enabling interoperability between browsers; it is effectively a matter
between the web browser and the web server. It has four main roles [39]:

1. Negotiation of media capabilities and settings.

Adaptive unmanned vehicle autopiloting using WebRTC video analysis

A. Modas 22

2. Identification and authentication of participants in a session.

3. Controlling the media session, indicating progress, changing and terminating the
session.

4. Glare resolution, when both sides of a session try to establish or change a ses-
sion at the same time.

2.4.1 Topology

The most common scenario for establishing a WebRTC session is likely to be where
both browsers are running the same WebRTC web application. This produces the
WebRTC “Triangle”, shown in Figure 8 [40]. This arrangement is called triangle due to
the shape of the signaling and media or data flows between the three elements.

Figure 8: The triangle topology

Figure 9 [41] shows the WebRTC Trapezoid [42] based on the SIP Trapezoid. The two
web servers are shown communicating using a standard signaling protocol (i.e. SIP) or
Jingle [43]. Note that in these more complicated cases, the media may not flow directly
between the two browsers, but may go through media relays and other elements.

Figure 9: The trapezoid topology

Adaptive unmanned vehicle autopiloting using WebRTC video analysis

A. Modas 23

2.4.2 Signaling Transport

WebRTC requires a bidirectional signaling channel between the two browsers, and thus
three transports are commonly used for WebRTC signaling:

1. HTTP [44]: sending information to the server is straightforward, using an XML
HTTP Request – XHR [45]. In the opposite direction, receiving information asyn-
chronously from the server is trickier, and a number of techniques have been de-
veloped over the years known as Asynchronous JavaScript And XML – AJAX.
The use of HTTP for signaling is often referred to as Representational State
Transfer – REST [46] or RESTful signaling.

2. Data Channel [47]: The Data Channel, once established between two browsers,
provides a direct, low latency connection, which makes it suitable for signaling
transport. Since the initial establishment of a Data Channel requires a separate
signaling mechanism, the Data Channel alone cannot be used for all WebRTC
signaling. However, it can be used to handle all signaling after it is set up, includ-
ing all the signaling for the audio and video media over the Peer Connection.

3. WebSockets [48]: WebSocket [49] transport, allows a browser to open a bidirec-
tional connection to a server; the connection begins as an HTTP request, but
then upgrades to a WebSocket. In order for a WebSocket server to be reachable,
it must have a public IP address and be running an HTTP server. Note that this
means it is not possible to open a WebSocket directly with another browser,
since browsers implement HTTP user agent functionality and not HTTP server
functionality. So, the WebSocket server is still needed to relay between two web
clients using WebSockets.

2.4.3 Signaling Protocol

The choice of signaling protocol for WebRTC is an important one, and not necessarily
tied to the choice of signaling transport. A developer may choose to create her own pro-
prietary signaling protocol, use a standard signaling protocol such as SIP or Jingle, or
use a library that abstracts away the details of the signaling protocol [50].

In our implementation, we chose to use the WebSocket Proxy approach [Burnet 86] with
a triangle topology. A WebSocket proxy used for WebRTC signaling, would use a server
which has a public IP address and is reachable by both browsers establishing the Peer
Connection. Each browser opens an independent WebSocket connection with the same
server, and the server bridges the connections, proxying information from one to anoth-
er. Since JavaScript does not support DNS lookups, the WebSocket server will need to
be provided by the web server as an IP address and port number. Finally, when infor-
mation is received from a WebSocket (i.e. from a peer’s WebSocket), it is relayed to
one particular connection that has the other browser; some sort of session/connection
ID is used for this.

Adaptive unmanned vehicle autopiloting using WebRTC video analysis

A. Modas 24

3. COMPUTER VISION – OPENCV

OpenCV is an open source computer vision and machine learning software library (writ-
ten in C++), which was built to provide a common infrastructure for computer vision ap-
plications and to accelerate the use of machine perception in the commercial products.
It has more than 2500 optimized algorithms, which include a comprehensive set of both
classic and state-of-the-art computer vision and machine learning algorithms. Finally, it
provides C++, C, Python, Java and MATLAB interfaces, and is supported – among oth-
ers – by Google, Microsoft, Intel, and IBM. The OpenCV library is used in our implemen-
tation for the real-time processing of the vehicle’s video.

3.1 Face Detection

OpenCV’s functionalities are divided into modules, including Image Processing, Video
Analysis, Object Detection, Object Tracking etc. We focus on an aspect of the Object
Detection module, and specifically on the case of Face Detection using Haar feature-
based cascade classifiers [52], in order to adopt it to the implementation .

Object Detection using Haar feature-based cascade classifiers is an effective object de-
tection method proposed by Paul Viola and Michael Jones [53]. It is a machine learning
based approach where a cascade function is trained from a set of positive and negative
images, and then it is used to detect objects in other images.

Initially, the algorithm needs a set of positive (images of faces) and negative images
(images without faces) to train the classifier. Then the Haar-feature filters are used
(Figure 10) to extract features from it, which are just like convolutional kernels. Each
feature is a single value obtained by subtracting sum of pixels under white rectangle
from sum of pixels under black rectangle.

Figure 10: Haar-feature filters

All possible sizes and locations of each kernel are used to calculate the features, where
a 24x24 window results over 160000 features. For each feature calculation, the sum of
pixels under white and black rectangles is computed through the integral images. But
among these features, most of them are irrelevant. For the best-features selection (out

Adaptive unmanned vehicle autopiloting using WebRTC video analysis

A. Modas 25

of ~160000), the Adaboost algorithm [54] is used. For each feature, Adaboost finds the
best threshold that will classify the faces into positive and negative. Regarding the er-
rors of misclassification, it selects the features with the minimum error rate, which
means that they best classify the face and non-face images. The final classifier is a
weighted sum of these “weak” classifiers, and the final setup had around 6000 features.

So, the procedure requires to divide the image into 24x24 windows, to apply 6000 fea-
tures to each one, and to check if it is a face or not. Due to the high complexity of this
procedure, they introduced the concept of cascade of classifiers, where instead of ap-
plying all 6000 features on a window, group the features into different stages of classifi-
ers, and apply one-by-one; if a window fails the first stage, discard it, else, apply the
second stage of features and continue the process. The window that passes all stages
is a face region. For the record, Viola’s and Jones’ cascade of classifiers consisted of
38 stages (with 1, 10, 25, 25, and 50 features in first five stages), where ~10 features
are evaluated per window.

OpenCV contains many pre-trained classifiers for face, eyes, smile, etc., stored in XML
files. The results of the face and eyes XML classifiers on an image are shown in Figure
11 [52].

Figure 11: OpenCV results for face and eyes detection

3.2 Web OpenCV

Although OpenCV is the most common library for computer vision, it was not built for
web applications. Despite the fact that it provides Java and Python interfaces – some-
one could build some sort of web app – there is no way to use it in HTML5 with JavaS-
cript. At this point, it is sensible to make a small reference to Emscripten [55].

Emscripten is a source-to-source compiler, developed by Alon Zakai. It runs as a back
end to the LLVM [56] compiler, and produces a highly optimized subset of JavaScript
code known as asm.js [57]. This allows applications and libraries originally designed to
run as standard executables (i.e. in C/C++) to be integrated into web applications
(Figure 12).

Adaptive unmanned vehicle autopiloting using WebRTC video analysis

A. Modas 26

Figure 12: The Emscripten toolchain

Finally, asm.js can be compiled by browsers ahead of time, meaning that the compiled
programs can run much faster than those traditionally written in JavaScript, and specifi-
cally close to native speed.

3.2.1 OpenCV.js

So, is it possible to use Emscripten to integrate into our web implementation the
OpenCV library? The answer came from the University of Irvine, which, in cooperation
with Intel, created the OpenCV.js [58], which takes advantage of Emscripten and asm.js
to expose the native library to the web (Figure 13).

Figure 13: Use of Emscripten to expose the OpenCV native library to the Web

Adaptive unmanned vehicle autopiloting using WebRTC video analysis

A. Modas 27

OpenCV.js extends the OpenCV language binding by providing a JavaScript interface. It
allows emerging web applications with multimedia processing to benefit from the wide
variety of vision functions available in OpenCV. It has several thrusts:

1. High performance: allow OpenCV.js to be used in demanding applications, e.g.
video processing. The OpenCV.js is based on asm.js specification, and near na-
tive performance is obtained on most modern browsers. It also supports SIMD.js
to take advantage of processor's vector (SIMD) processing capabilities.

2. Coverage: Currently, more than 50 classes and 800 functions from libraries in-
cluding core, image processing, video processing, image codecs, machine learn-
ing are already supported. This subset is comparable to Python OpenCV.

3. API Correspondence: the JavaScript API is close to the original OpenCV API,
thus making it easier to write/port applications.

3.2.2 HTML5 Canvas Element

One question remains: since we can access the OpenCV executables from the Web,
can we also give as input a live video stream for processing? The answer is no, be-
cause HTML5 does not yet provide access to the video bitstream. However, there is a
solution: HTML5 Canvas element.

Upon receiving a video stream, we use the Video element in order to manipulate it (dis-
play, record, relay etc). We can take advantage of the Canvas element, by taking a
snapshot of the Video element, and converting it to a Canvas one. From the canvas, we
can easily convert the data to an Image, and thus we can actually have a Frame of the
video, which can easily be processed by OpenCV.js.

Adaptive unmanned vehicle autopiloting using WebRTC video analysis

A. Modas 28

4. ROBOT OPERATING SYSTEM – ROS

The final component of our implementation is the Robot Operating System – ROS [59],
which is used to simulate the unmanned vehicle. ROS is a flexible framework for writing
robot software. It is a collection of tools, libraries, and conventions, that aim to simplify
the task of creating complex and robust robot behavior across a wide variety of robotic
platforms.

4.1 ROS Architecture

The ROS architecture has been designed and divided into three sections or levels of
concepts [60]:

1. The Filesystem Level

2. The Computational Graph Level

3. The Community Level

In the first level, a group of concepts is used to explain how ROS is internally formed,
the folder structure, and the minimal files that it needs to work. In the second level, the
communication between processes and systems takes place, while in the third level, the
tools and concepts to share knowledge, algorithms, and code from any developer is ex-
plained.

4.1.1 The Filesystem Level

Similar to an operating system, a ROS program is divided into folders, and these folders
have some files that describe their functionalities [61]:

 Packages: packages form the atomic level of ROS. A package has the minimum
structure and content to create a program within ROS. It may have ROS runtime
processes (nodes), configuration files, and so on.

 Manifests: manifests provide information about a package, license information,
dependencies, compiler flags, and so on. They are managed with a file called
manifests.xml.

 Stacks: when someone gathers several packages with some functionality, she
will obtain a stack. In ROS, there exists a lot of these stacks with different uses,
for example, the navigation stack.

 Stack manifests: stack manifests (stack.xml) provide data about a stack, includ-
ing its license information and its dependencies on other stacks.

 Message (msg) types: a message is the information that a process sends to oth-
er processes. ROS has a lot of standard type of messages.

 Service (srv) types: service descriptions define the request and response data
structures for services in ROS.

The Filesystem Level is depicted in Figure 14.

Adaptive unmanned vehicle autopiloting using WebRTC video analysis

A. Modas 29

Figure 14: The ROS Filesystem Level

4.1.2 The Computational Graph Level

ROS creates a network where all the processes are connected. Any node in the system
can access this network, interact with other nodes, see the information that they are
sending, and transmit data to the network [62]:

1. Nodes: nodes are processes where computation is done. If someone wants to
have a process that can interact with other nodes, she needs to create a node
with this process to connect it to the ROS network. Usually, a system will have
many nodes to control different functions.

2. Master: The Master provides name registration and lookup for the rest of the
nodes. If it is not in the user’s system, she cannot communicate with nodes, ser-
vices, messages, and others, but it is possible to have it in a computer where
nodes work in other computers.

3. Parameter Server: The Parameter Server gives the possibility to have data
stored using keys in a central location. With this parameter, it is possible to con-
figure nodes while it is running or to change the working of the nodes.

4. Messages: Nodes communicate with each other through messages. A message
contains data that sends information to other nodes. ROS has many types of
messages, and someone can develop her own type of message using standard
messages.

5. Topics: Each message must have a name to be routed by the ROS network.
When a node is sending data, we say that the node is publishing a topic. Nodes
can receive topics from other nodes simply by subscribing to the topic. A node
can subscribe to a topic, and it isn't necessary that the node that is publishing
this topic should exist. This permits to decouple the production of the consump-
tion.

6. Services: When someone publishes topics, she is sending data in a many-to-
many fashion, but when she needs a request or an answer from a node, she
cannot do it with topics. The services give us the possibility to interact with
nodes. Also, services must have a unique name. When a node has a service, all
the nodes can communicate with it, thanks to ROS client libraries.

Adaptive unmanned vehicle autopiloting using WebRTC video analysis

A. Modas 30

7. Bags: Bags are a format to save and play back the ROS message data. Bags are
an important mechanism for storing data, such as sensor data, that can be diffi-
cult to collect but is necessary for developing and testing algorithms.

The Computational Graph Level is depicted in Figure 15.

Figure 15: The ROS Computational Graph Level

4.1.3 The Community Level

The ROS Community level concepts are ROS resources that enable separate commu-
nities to exchange software and knowledge. These resources include [63]:

1. Distributions: ROS distributions are collections of versioned stacks that someone
can install. ROS distributions play a similar role to Linux distributions. They make
it easier to install a collection of software, and they also maintain consistent ver-
sions across a set of software.

2. Repositories: ROS relies on a federated network of code repositories, where dif-
ferent institutions can develop and release their own robot software components.

3. The ROS Wiki: The ROS Wiki is the main forum for documenting information
about ROS. Anyone can sign up for an account and contribute their own docu-
mentation, provide corrections or updates, write tutorials, and more.

4. Mailing lists: The ROS user-mailing list is the primary communication channel
about new updates to ROS as well as a forum to ask questions about the ROS
software.

4.2 Turtlesim

The TurtleBot [64] is a low-cost, personal robot kit with open source software that inte-
grates in Microsoft’s Kinect, Yujin Robot’s Kobuki, and others, and can be combined
with ROS. ROS provides the Turtlesim, a simulator that uses the turtlesim_node for
teaching ROS concepts to TurtleBot.

Adaptive unmanned vehicle autopiloting using WebRTC video analysis

A. Modas 31

4.2.1 Messages and Topics

Regarding the messages used in the simulator, the geometry_msg/Twist is the most
common, which expresses the simulated turtle’s velocity into linear and angular.

As for the subscribed topics, the turtleX/cmd_vel is used, which sets the linear angular
velocity of turtleX that needs to be executed; note here that since these quantities ex-
press velocity, the turtle will execute the command within 1 sec.

Finally, the public topic is the turteleX/Pose, which informs the application about the co-
ordinates (x, y), the angle θ, the linear, and the angular velocity of the turtle at that mo-
ment.

An example of the Turtlesim is depicted in Figure 16.

Figure 16: A Turtlesim example

4.3 ROS Web

Having explained the ROS and its functionalities, there is still on missing part to make
sure that we can adopt ROS to our implementation: is there a way to interact with ROS
from the browser? Fortunately, ROS provides the Rosbridge suite [65], which provides a
JSON API to ROS functionality for non-ROS programs. There are a variety of front ends
that interface with rosbridge, including a WebSocket server for web browsers to interact
with. Rosbridge_suite is a meta-package containing rosbridge, various front end pack-
ages for rosbridge like a WebSocket package, and helper packages.

4.3.1 Rosbridge suite

Rosbridge consists of two parts:

1. The Rosbridge Protocol: a specification for sending JSON based commands to
ROS, which is programming language and transport agnostic. The idea is that
any language or transport that can send JSON can talk the rosbridge protocol

Adaptive unmanned vehicle autopiloting using WebRTC video analysis

A. Modas 32

and interact with ROS. The protocol covers subscribing and publishing topics,
service calls, getting and setting params, and even compressing messages and
more.

2. The Rosbridge Implementation: the rosbridge suite package is a collection of
packages that implement the rosbridge protocol, and provides a WebSocket
transport layer. The packages include:

a. The rosbridge_library: the core rosbridge package. It is responsible for
taking JSON string and sending the commands to ROS and vice versa.

b. rosapi: makes certain ROS actions accessible via service calls that are
normally reserved for ROS client libraries.

c. rosbridge_server: while rosbridge_library provides the JSON  ROS
conversion, it leaves the transport layer to others. Rosbridge_server pro-
vides a WebSocket connection so browsers can “talk rosbridge”. Roslibjs
[66] is a JavaScript library for the browser that can talk to ROS via
rosbridge_server.

4.3.2 Roslibjs

Roslibjs is the core JavaScript library for interacting with ROS from the browser, and is
developed as part of the Robot Web Tools effort [67]. It uses WebSockets to connect
with rosbridge and provides publishing, subscribing, service calls, actionlib, TF, URDF
parsing, and other essential ROS functionality. Roslibjs provides an API with all the ap-
propriate JavaScript methods and objects for connecting to the rosbridge_server, and
building JSON actions. Finally, roslib either exists locally or can be fetched as a pre-built
executable script from a CDN server (Figure 17).

Figure 17: Interacting with ROS from the Browser using roslib and rosbridge

Adaptive unmanned vehicle autopiloting using WebRTC video analysis

A. Modas 33

5. ROS-BASED VEHICLE AUTOPILOTING USING WEBRTC VIDEO
ANALYSIS THROUGH OPENCV.JS

Having fully explained and described the three core components of our implementation
(WebRTC – OpenCV – ROS), we will combine them properly to compose a web-based
infrastructure for autopiloting ROS vehicles upon a specific use-case, by analyzing
through OpenCV the video exchanged with WebRTC.

The idea is to build a horizontal infrastructure that:

1. Consists of a modular architecture

2. Provides the necessary components for machine-to-machine communication

3. Uses state-of-the-art technologies (i.e. WebRTC)

4. Allows a developer to freely implement her own logic vertically (i.e. her own
OpenCV functions, autopiloting handling, use-cases etc.)

5. Provides IoT with a solution that can be easily adopted to many use-cases, and
be exploited in numerous ways.

Figure 18: The core idea of the infrastructure

An overview of this idea is shown in Figure 18:

1. A Vehicle transmits its real-time video feed to an Intermediate Server using
WebRTC.

2. The Intermediate Server relays the Vehicle’s video using WebRTC, and exposes
its available operations using the Data Channel to a Client.

Adaptive unmanned vehicle autopiloting using WebRTC video analysis

A. Modas 34

3. The Client monitors the Vehicle’s vision and route, and selects the desirable op-
eration (corresponding to a use-case, i.e. Face Detection) by informing properly
the Intermediate Server through the Data Channel.

4. The Intermediate Server applies the corresponding OpenCV operations on the
Vehicle’s video, in order to server the selected use-case. After that, sends the
appropriate commands to the Vehicle in order to pilot it.

5. What is more, the Client can dynamically choose a new operation (i.e. a new
use-case), enabling the system to adopt to this new condition for autopiloting
properly the Vehicle.

6. Finally, a Signaling Server orchestrates the whole communication between the
Vehicle, the Intermediate Server, and the Client.

5.1 Architecture

Having in mind the aforementioned idea, let us get a little deeper by presenting the ar-
chitecture of our infrastructure (Figure 19), and explaining how all these heterogeneous
components fit together.

Figure 19: The architecture of the infrastructure

Starting from top, the communication between the individuals is achieved through the
browser, enabling the exchange of multimedia and data using the WebRTC. Studying
the underlying level, we implement three components as services, which communicate
with each other by exploiting the WebRTC APIs:

Adaptive unmanned vehicle autopiloting using WebRTC video analysis

A. Modas 35

1. Vehicle: consists of an HTML and a JavaScript file, and is responsible for deliver-
ing the appropriate commands to the ROS-based vehicle. Specifically, it uses the
roslib API to connect to the rosbridge server and to construct the appropriate
commands for interacting with ROS.

2. Intermediate Server: consists of an HTML and a JavaScript file, and is responsi-
ble for applying the appropriate techniques using OpenCV.js, which binds with
the OpenCV executables. What is more, the Intermediate Server is responsible
for servicing both the Vehicle and the Client.

3. Client: consists of an HTML and a JavaScript file, and is responsible for selecting
the desired operation of the system, while monitoring the vehicle’s vision and
route. What is more, it can dynamically change the operation philosophy of the
Intermediate Server, and can either start or stop the whole piloting on demand.

4. Signaling Server: consists of a JavaScript file, and is responsible for orchestrat-
ing the communication between the individuals. It handles and relays properly
the transmitted messages, using WebSockets.

Having a deeper knowledge about the infrastructure, let us gradually analyze and ex-
plain in depth the implementation and the operation of each of the aforementioned enti-
ties.

5.2 Signalling Server

The first component to analyze is the Signaling Server. It consists of a JavaScript file
that creates a WebSocket server for serving all the other individuals. Its role is to man-
age and properly relay a set of messages to the peers, in order to enable the communi-
cation through WebRTC. In the following sub-sections, the messages of this set are de-
scribed.

5.2.1 Case: Login

Before establishing a WebRTC session, each individual must connect to the signaling
server. Thus, the “Login” message requests to connect to the signaling server, and car-
ries all the information required for the identification of each peer (i.e. name, IP, port
etc.). The signaling server keeps a list of all the connected users, and responds with a
success message.

5.2.2 Case: Offer

This message contains the SDP Offer of a peer A that wants to establish a connection
with peer B. In our case, the peer A is either the Vehicle or the Client, whereas peer B is
always the Intermediate Server. Thus, upon receipt of this message, the signaling serv-
er determines the name of the source (Vehicle or Client), as well as the destination
name (Intermediate Server), and properly relays a message to the Intermediate Server,
that includes the SDP Offer and the name of the source.

Adaptive unmanned vehicle autopiloting using WebRTC video analysis

A. Modas 36

5.2.3 Case: Answer

This message contains the SDP Answer of a peer B to a peer A that wants to establish
a connection. In our case, this is the Intermediate Server’s Answer to the Vehi-
cle’s/Client’s Offer. Thus, upon receipt of this message, the signaling server determines
the name of the source (Intermediate Server), as well as the destination name (Vehicle
or Client), and properly relays a message to the destination peer, that includes the SDP
Answer and the name of the Intermediate Server.

5.2.4 Case: Candidate

This message contains the trickled ICE Candidates of peer A to peer B. The possible
pair of peers can be {Intermediate Server, Vehicle}, and {Intermediate Server, Client}.
Thus, upon receipt of this message, the signaling server determines the source and
destination name, and properly relays a message to the destination peer, that includes
the ICE Candidates and the name of the source.

5.2.5 Case: Leave

A peer that wants to leave the session sends this message. Thus, the signaling server
relays it to all the other connected participants, in order for them to handle this event
properly. Finally, the signaling server closes the connection with the gone peer.

5.2.6 Case: Start

This message comes from the Client’s side and is meant for the Intermediate Server, in
order to demand the start of the autopilot. The signaling server properly relays it to the
Intermediate Server, declaring that the source is the Client.

5.2.7 Case: Stop

This message comes from the Client’s side and is meant for the Intermediate Server, in
order to demand the stop of the autopilot. The signaling server properly relays it to the
Intermediate Server, declaring that the source is the Client.

5.2.8 Case: Get Operations

This message comes from the Client’s side and is meant for the Intermediate Server,
requesting the set of available operations. The signaling server properly relays it to the
Intermediate Server, declaring that the source is the Client.

5.3 Client

The next component to analyze is the Client entity. It consists of an HTML file that pro-
vides a User Interface – UI, and a JavaScript file that contains the functionality behind
the UI. Its role is to monitor the Vehicle’s video, to log the received messages and data,
to set or change the operation of the Intermediate Server, and to Start or Stop the auto-
piloting. In the following sub-sections, we will analyze each part of the Client’s workflow
diagram, depicted in Figure 20.

Adaptive unmanned vehicle autopiloting using WebRTC video analysis

A. Modas 37

Figure 20: Client's Workflow

5.3.1 Connect to Signaling Server

As already mentioned, before establishing a WebRTC session the Client must connect
to the signaling server, by sending the “Login” message. If the signaling server rejects
the request, then the Client goes to an Error state, clears all the resources, and exits the
program. Otherwise, continues to the PeerConnection state.

5.3.2 PeerConnection

At this state, the Client tries to establish a P2P connection with the Intermediate Server.
Specifically, creates an SDP Offer, sets the Data Channel, defines the STUN url, and
creates a PeerConnection, which requires only to receive video. Automatically, the SDP
Offer and the ICE candidates are transferred through the signaling server, and the Of-
fer/Answer procedure takes place. Finally, if everything goes smoothly and the
PeerConnection is established, the peers start to exchange media and data, and the
system is ready to go to the next states.

5.3.3 getOps – Display Video – Log Data and Information

After having successfully established a PeerConnection with the Intermediate Server,
the Client automatically sends the “getOps” message through the signaling server, re-

Adaptive unmanned vehicle autopiloting using WebRTC video analysis

A. Modas 38

questing the available operations form the Intermediate Server.At the same time, the
Client receives the Vehicle’s video stream, as well as data from the Intermediate Server
through the Data Channel. Therefore, this video is set as the srcObject of the Video El-
ement in order to display it, while the data received are logged at a text area.

5.3.4 Select and Set Operation

The Intermediate Server’s response to the “getOps” message is transferred via the Data
Channel. Upon reception, the Client properly parses the data to determine the available
operations, and creates a drop-down menu with them. The user can select from the UI
the operation she prefers, and inform properly the Intermediate Server through the Data
Channel, by pressing the corresponding button.

5.3.5 Start and Stop Piloting

After selecting and setting the preferred operation, the user may choose to start the au-
topiloting, by sending the corresponding “Start” message through the signaling server;
in a similar way, she may choose to stop the it, by sending the “Stop” message

5.3.6 Leave

At any time during the session, the Client may choose to leave. By sending the corre-
sponding “Leave” message, she makes sure that all other individuals will be properly
informed, and her session is terminated.

5.3.7 UI

The aforementioned procedures are “hidden” behind the UI depicted in Figure 21. The
Connect button corresponds to the connection with the signaling server, the Join Room
to the PeerConnection, while the rest buttons correspond to what is written on their la-
bels. Finally, the black frame is the video area, while the white textbox is the log area.

Adaptive unmanned vehicle autopiloting using WebRTC video analysis

A. Modas 39

Figure 21: Client's UI

5.4 Intermediate Server

The third component to analyze is the Intermediate Server. It consists of an HTML file
that provides a UI, and a JavaScript file that contains the functionality behind of the UI.
Furthermore, the OpenCV.js bindings and APIs are also in a subdirectory, in order to
have access to the OpenCV executables. Its role is to control the whole operation, to
analyze the Vehicle’s video, to relay it to the Client, to receive commands from the Cli-
ent, and to send commands to the Vehicle. In the following sub-sections, we will ana-
lyze each part of the Intermediate Server’s workflow diagram, depicted in Figure 22.

Figure 22: Intermediate Server's Workflow

Adaptive unmanned vehicle autopiloting using WebRTC video analysis

A. Modas 40

5.4.1 Connect to Signaling Server

As already mentioned, before establishing a WebRTC session the Intermediate Server
must connect to the signaling server, by sending the “Login” message. If the signaling
server rejects the request, then the Intermediate Server goes to an Error state, clears all
the resources, and exits the program. Otherwise, continues to the PeerConnection
state.

5.4.2 PeerConnection

At this state, the Intermediate Server tries to establish a P2P connection with the other
individuals. Specifically, creates an SDP Offer, sets the Data Channel, defines the
STUN url, and creates a PeerConnection, which requires only to receive video. Howev-
er, its status remains “Idle”, since it is the first to join the session, and it is thus waiting
for incoming connections. Upon receipt of an SDP Offer, automatically, the SDP Answer
and the ICE candidates are transferred through the signaling server, and the Of-
fer/Answer procedure takes place. Finally, if everything goes smoothly and the
PeerConnection is established, the peers start to exchange media and data, and the
system is ready to go to the next states.

At this point, since the Intermediate Server may create a PeerConnection with either the
Vehicle or the Client, it will have to operate in a corresponding way. Thus, as shown in
Figure 22, we discern two service cases: the Client Service, and the Vehicle Service.

5.5 Intermediate Server – Client Service

The Client Service is responsible for interacting with the Client. This include the relay of
the Vehicle’s video, as well as the exchange of information regarding the operations and
the piloting.

5.5.1 Relay Video

Assuming that the Vehicle is already connected and streaming, the Intermediate relays
the Vehicle’s video to the Client, by adding the incoming stream to its PeerConnection
(with the Client) media object.

5.5.2 getOps – Expose operations

Upon receipt of the “getOps” message from the Signaling Server, the Intermediate
Server send via the Data Channel to the Client all the available operations in a JSON
format.

5.5.3 Data Chanel – Set-up Operations

When the Client sets the preferred operations, this is done through the Data Channel.
Thus, when the Intermediate Server receives the corresponding data, it parses it, and
enables the appropriate OpenCV operations for the selected use-case, by assigning the
corresponding functionality to a global function.

Adaptive unmanned vehicle autopiloting using WebRTC video analysis

A. Modas 41

5.5.4 Start – Enable Snapshots

Whenever the Intermediate Server receives the “Start” message from the Signaling
Server, it immediately enable the snap function, which is responsible for the whole pilot-
ing operation. The snap function is part of the Vehicle Service, and will be explained in
5.6.

5.5.5 Stop – Disable Snapshots

Whenever the Intermediate Server receives the “Stop” message from the Signaling
Server, it immediately disable the aforementioned snap function.

5.5.6 Leave

Upon receipt of this message, the Intermediate Server disconnects form the Client and
terminates any operation with the Vehicle.

5.6 Intermediate Server – Vehicle Service

The Vehicle Service is responsible for interacting with the Vehicle entity. This include
the reception of the video stream, and the exchange of data that corresponds to the cal-
culated goal, which the Vehicle will transform/translate into ROS commands.

5.6.1 Receive Video

The Vehicle’s incoming video stream is passed to the srcObject element, in order to
manipulate it, and is relayed to the Client.

5.6.2 Snapshot function

As mentioned in the Client Service, upon the receipt of the “Start” message, the snap
function is enabled. This is done through the JavaScript timing event “setInterval”, which
actually calls the snap function periodically. This function is responsible for taking a
snapshot of the video, to forward it to OpenCV, to calculate the goal from the pro-
cessing results, and finally to send it via the Data Channel to the Vehicle. The period of
the snap function is determined based on the needs of the piloting, but the minimum
snapshot period cannot be less than 1/fps.

However, we define a period of ~1500 milliseconds. Let us explain:

 Let the selected use-case be the Face Detection. We obtained some metrics and
found out that from the time the function is called until the time the goal is sent
via the Data Channel, the total duration is about 800 ms.

 Now, remember that we are going to test our system on a Turtlesim, where the
execution of one command takes exactly 1000 ms, since it corresponds to veloci-
ty (note that we do not use the Pose topic, which enables us to interrupt the tur-
tle’s movement with accuracy). Considering some communication and synchro-
nization delays, if the turtle receives a command at time t then it will be able to
execute the next command at time t + 1000 + delays ≈ t + 1100 ms.

 So, if we obtain a snapshot at time t, then the turtle will receive it at time t + 800
and will be ready to execute the next command at time t + 800 + 1100 = t + 1900,

Adaptive unmanned vehicle autopiloting using WebRTC video analysis

A. Modas 42

meaning almost two seconds later. If this delay propagates in time, it is easy to
understand that the turtle will “always be late” if the snapshot period is quite
short.

 With some experiments and some synchronization at the Vehicle’s procedures
(see 5.7.7), we determined that a sampling period of ~1500 ms is good enough
for a smoother piloting.

The OpenCV operation that we are testing is the Face Detection case. In order to
achieve this, we convert a video snapshot to Canvas element and get the image data.
We convert this data to a Mat array, and we apply the face cascade classifier that
OpenCV provides in an XML format. If any face is detected, we enclose it in a rectangle.

The next thing to do is to calculate the Goal. We define as the target of the turtle to be
the central point of the face’s rectangle. The use-case is a little tricky; consider that the
camera is somewhere above and is looking at a terrain, and we want to detect some-
thing specific that is moving on it. We consider that the object for detection is our face,
and thus we reduce it to a single point. This point (rectangle’s central point) is the object
on the terrain, and we need the turtle to rotate properly in order to stare at it.

Finally, the calculated coordinates of the central point (xm, ym) are sent via the Data
Channel to the Vehicle.

5.6.3 Leave

Upon receipt of this message, the Intermediate Server terminates any operation with the
Vehicle, and disconnects from it.

5.7 Vehicle

The final component to analyze is the Vehicle. It consists of an HTML file that provides
a UI, and a JavaScript file that contains the functionality behind of the UI. Its role is to
connect to the rosbridge_server for interacting with ROS, to stream its video to the In-
termediate Server, and to calculate and send the appropriate commands to the simula-
tor. In the following sub-sections, we will analyze each part of the Vehicle’s workflow di-
agram, depicted in Figure 23.

Adaptive unmanned vehicle autopiloting using WebRTC video analysis

A. Modas 43

Figure 23: Vehicle's Workflow

5.7.1 Fetch roslib

The first thing to do is to fetch the pre-built version of roslib.js from a CDN, in order to
use the APIs and the functionalities to interact with ROS.

5.7.2 Connect to rosbridge Server

Then, we connect to the reosbridge_server by creating a new Ros object, which estab-
lishes a WebSocket connection with the reosbridge_server. Note here that the
rosbridge_server and the turtlesim must be running on the ROS device to enable the
connection. Finally, after setting up the connection, we can exchange data and interact
with the simulator

5.7.3 Connect to Signaling Server

As already mentioned, before establishing a WebRTC session the Vehicle must connect
to the signaling server, by sending the “Login” message. If the signaling server rejects
the request, then the Intermediate Server goes to an Error state, clears all the re-
sources, and exits the program. Otherwise, continues to the PeerConnection state.

5.7.4 getUserMedia

After successfully connecting to the Signaling Server, the Vehicle calls the getUserMe-
dia method of the MediaStream API in order to get access to the camera’s video
stream. This video stream will be added on the PeerConnection object, in order to be
transferred to the Intermediate Server.

Adaptive unmanned vehicle autopiloting using WebRTC video analysis

A. Modas 44

5.7.5 PeerConnection

At this state, the Vehicle tries to establish a P2P connection with the Intermediate Serv-
er. Specifically, creates an SDP Offer, sets the Data Channel, defines the STUN url,
and creates a PeerConnection, which the video stream. Automatically, the SDP Offer
and the ICE candidates are transferred through the signaling server, and the Of-
fer/Answer procedure takes place. Finally, if everything goes smoothly and the
PeerConnection is established, the peers start to exchange media and data, and the
system is ready to go to the next state.

5.7.6 Spawn Turtle

At this state, the Vehicle publishes a Twist message to the Turtlesim, in order to set the
default orientation of the turtle at π/2 rads.

5.7.7 Move Robot

The calculated goal for the turtle is received from the Data Channel. When the first goal
arrives, the Vehicle calls the moveRobot function. Then, creates a new timing event
through the setInterval method, in order to periodically call the moveRobot function; this
period, as explained before, is set to 1100 ms. After the first one, the rest of the goals
are stored in a variable, in order to synchronize the turtle with the latest face position.
The moveRobot is responsible for constructing the appropriate commands based on the
turtle’s current position and the goal:

At first, the goal point must be transformed properly in order to match the space of the
turtle’s terrain (Figure 24). More specifically, the turtle’s space is smaller than the vid-
eo’s pixel space.

Let:

be the central point of the turtle’s terrain (actually that is the spawn coordinates of the
turtle).

Let:

be the video’s central pixel, where W and H are the Width and Height respectively.

Finally, let:

be the rectangle’s central point.

Then, the following transformation expresses the coordinates of the rectangle’s central
point on the turtle’s space:

Adaptive unmanned vehicle autopiloting using WebRTC video analysis

A. Modas 45

Figure 24: Pixel space to Turtlesim space transformation

After successfully transforming the coordinates of the central point, the moveRobot
function must calculate the angles that the turtle must steer in order to stare at the goal
point. First of all, the angle between the turtle’s position and the central point is calculat-
ed:

Let:

be the turtle’s current angle.

The absolute angle difference is calculated, and the following conditions pro-
vide the radians the turtle must steer in order to stare at the goal:

Finally, the calculated “ang” is set as the angular of z-axis (angular velocity) in the Twist
message, which is published to the turtle (command).

Adaptive unmanned vehicle autopiloting using WebRTC video analysis

A. Modas 46

5.7.8 Leave

Finally, when we want to disconnect the Vehicle from the system, the “Leave” message
is sent through the Signaling Server, in order to inform properly the other individuals.

Adaptive unmanned vehicle autopiloting using WebRTC video analysis

A. Modas 47

6. RESULTS

In the following sub-sections, we will try to prove our concept of this technical instru-
mentation, and to provide some metrics about the processing delay of the autopiloting
procedure.

6.1 WebRTC

First, we will prove that the real-time communication is achieved through WebRTC. Fig-
ure 25 shows the Vehicle’s video that is successfully relayed to the Client, while Figure
26 depicts the data transferred to the Vehicle through the Data Channel. Finally, Figure
27 shows how the getUserMedia method requires access to the video stream from the
Laptop’s camera.

Figure 25: Proof of concept: WebRTC Video

Adaptive unmanned vehicle autopiloting using WebRTC video analysis

A. Modas 48

Figure 26: Proof of concept: WebRTC Data Channel

Figure 27: Proof of concept: getUserMedia method

Adaptive unmanned vehicle autopiloting using WebRTC video analysis

A. Modas 49

6.2 Adaptive

Figure 28 shows how the Client can dynamically select a new operation, forcing the sys-
tem to adapt to this new use-case.

Figure 28: Proof of concept: Adaptive

6.3 OpenCV.js

Figure 29: Proof of concept: OpenCV.js

Adaptive unmanned vehicle autopiloting using WebRTC video analysis

A. Modas 50

Figure 29 shows the results of the Face Detection method. As we can see, OpenCV.js
successfully recognizes the face area and encloses it into a rectangle

6.4 ROS-based Vehicle

Figure 30 depicts the autopiloting of the simulated turtle. As we can see, at first, the de-
tected face is at the upper-left corner, and the turtle is staring at it. The, we make a 180
degree move, and the turtle successfully changes its orientation to the correct view.

Figure 30: Proof of concept: ROS autopiloting

6.5 Metrics

Figure 31 depicts the processing delay from the time of the snapshot, until the time of
the transmission of the calculated goal. The mean values is the red line on the graph,
which is approximately 683 ms, while the standard deviation is about 196 ms. These

Adaptive unmanned vehicle autopiloting using WebRTC video analysis

A. Modas 51

measurements result due to changes on the image, the number of detected objects per
image, and because no optimization techniques have been applied.

Figure 31: Processing delay

Adaptive unmanned vehicle autopiloting using WebRTC video analysis

A. Modas 52

7. CONCLUSIONS AND FUTURE WORK

In this implementation we explained and described how to combine all of these hetero-
geneous components (WebRTC – OpenCV – ROS), in order to compose a web-based
infrastructure for autopiloting ROS-based vehicles upon a specific use case. We devel-
oped a horizontal infrastructure that consists of a modular architecture, which provides
the necessary components for machine-to-machine communication, uses state-of-the-
art technologies (i.e. WebRTC), allows a developer to freely implement her own logic
vertically (i.e. her own OpenCV functions, autopiloting handling, use-cases etc), and
provides IoT with a solution that can be easily exploited in numerous ways.

The next step is to extend this infrastructure to a native project; since all of these com-
ponents are written in C++, we can properly combine them in order to gain the maxi-
mum speed and efficiency. Furthermore, since many robotic applications pair some da-
ta along with the video, we should find a way to interleave the video with the Data
Channel [68]. Regarding the metrics, we should test our system to real network condi-
tions with packet losses, delays, and congestions, in order to measure the impact on the
system (i.e. bandwidth, synchronization etc.). Finally, we should test the scalability of
our system, in order to enable some advanced uses cases like a fleet management,
car-to-car communications, and others.

Adaptive unmanned vehicle autopiloting using WebRTC video analysis

A. Modas 53

ABBREVIATIONS – ACRONYMS

AJAX Asynchronous JavaScript and XML

API Application Programming Interface

AVC Advanced Video Coding

CDN Content Delivery Network

DNS Domain Name System

DTLS Datagram transport Layer Security

FPS Frames per Second

HEVC High Efficient Video Coding

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

ICE Interactive Connectivity Establishment

IETF Internet Engineering Task Force

IoT Internet of Things

IP Internet Protocol

JSON JavaScript Object Notation

LLVM Low Level Virtual Machine

M2M Machine-to-Machine

MiTM Man in The Middle

MTU Maximum Transfer Unit

NAT Network Address Translation

OpenCV Open Computer Vision

OS Operating System

P2P Peer-to-Peer

REST Representational State Transfer

ROS Robot Operating System

RTC Real Time Communications

RTCP Real-time Transport Control Protocol

RTP Real-time Transport Protocol

SAVP Secure Audio Video Profile

SAVPF Secure Audio Video Profile with Feedback

SCTP Stream Control Transmission Protocol

SDP Session Description Protocol

Adaptive unmanned vehicle autopiloting using WebRTC video analysis

A. Modas 54

SIMD Single Instruction, Multiple Data

SIP Session Initiation Protocol

SRTCP Secure Real-time Transport Control Protocol

SRTP Secure Real-time Transport Protocol

SSL Secure Sockets Layer

STUN Session Traversal Utilities for NAT

TCP Transmission Control Protocol

TF Transmission Frame

TLS Transport Layer Security

TURN Traversal Using Relays around NAT

UDP User Datagram Protocol

UI User Interface

URDF Unified Robot Description Format

URL Uniform Resource Locator

VoIP Voice over IP

W3C World Wide Web Consortium

WebRTC Web Real Time Communnications

XHR XMLHttpRequest

XML eXtensible Markup Language

Adaptive unmanned vehicle autopiloting using WebRTC video analysis

A. Modas 55

REFERENCES

[1] C. Jennings, D. Burnett, A. Bergkvist, T. Brandstetter, A. Narayanan, and B. Aboba, “WebRTC 1.0:
Real-time Communication Between Browsers”, W3C Working Draft.

[2] “Internet of Things”, IEEE.
[3] “Open Computer Vision Library” [Online]. Available: http://opencv.org/
[4] J. Postel, “User Datagram Protocol”, RFC768, 1980.
[5] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: A Transport Protocol for Real-Time

Applications”, RFC3550, 2003.
[6] M. Baugher, D. McGrew, M. Naslund, E. Carrara, and K. Norrman, “The Secure Real-time Transport

Protocol (SRTP)”, RFC3711, 2004.
[7] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks, M. Handley, and E.

Schooler, “SIP: Session Initiation Protocol”, RFC3261, 2002.
[8] Μ. Handley, V. Jacobson, C. Perkins, “SDP: Session Description Protocol”, RFC4566, 2006.
[9] P. Srisuresh, and K. Egevang, “Traditional IP Network Address Translator (Traditional NAT)”,

RFC1631, 2001.
[10] T. Kivinen, B. Swander, A. Huttunen, and V. Volpe, “Negotiation of NAT-Traversal in the IKE”,

RFC3947, 2005.
[11] P. Srisuresh, B. Ford, and D. Kegel, “State of Peer-to-Peer (P2P) Communication across Network

Address Translators (NATs)”, RFC5128, 2008.
[12] J. Rosenberg, “Interactive Connectivity Establishment (ICE): A Protocol for Network Address Transla-

tor (NAT) Traversal for Offer/Answer Protocols”, RFC5245, 2010.
[13] adapter.js: https://github.com/webrtc/adapter.
[14] International Telecommunications Union, "Pulse code modulation (PCM) of voice frequencies", ITU-T

Recommendation G.711, November 1988.
[15] International Telecommunications Union, "Low-complexity coding at 24 and 32 kbit/s for hands-free

operation in systems with low frame loss", ITU-T Recommendation G.722.1, 2005.
[16] GIPS / Google, "iSAC reference implementation". Available at

https://chromium.googlesource.com/external/webrtc/+/master/webrtc/modules/audio_coding/codecs/i
sac/

[17] Andersen, S., Duric, A., Astrom, H., Hagen, R., Kleijn, W., and J. Linden, "Internet Low Bit Rate Co-
dec (iLBC)", RFC 3951, December 2004.

[18] JM. Valin, K. Vos, and T. Terriberry, “Definition of the Opus Audio Codec”, RC6716, September 2012.
[19] “Advanced Video Coding for Generic Audiovisual Services”, ITU-T Rec. H.264 and ISO/IEC 14496-10

(MPEG-4 AVC), Version 22: Feb. 2014.
[20] J. Bankoski, J. Koleszar, L. Quillio, J. Salonen, P. Wilkins, and Y. Xu, “VP8 Data Format and Decod-

ing Guide”, RFC6386, November 2011.
[21] A. Grange, P. de Rivaz, J. Hunt, “VP9 Bitstream & Decoding Process Specification”, Google 2012.
[22] “The WebM Project: WebM Container Guidelines”, April 2014.
[23] ISO/IEC, "Information technology -- High efficiency coding and media delivery in heterogeneous envi-

ronments -- Part 2: High efficiency video coding", ISO/IEC 23008-2, 2013.
[24] “AV1 Bitstream & Decoding Process Specification”: https://aomedia.googlesource.com/av1-spec/
[25] J. Rosenberg, R. Mahy, P. Matthews, and D. Wing, “Session Traversal Utilities for NAT (STUN)”,

RFC5389, October 2008.
[26] R. Mahy, P. Matthews, J. Rosenberg, “Traversal Using Relays around NAT (TURN): Relay exten-

sions to Session Traversal Utilities for NAT (STUN)”, RFC5766, April 2010.
[27] ISO, "OSI Routeing Framework", ISO/TR 9575, 1989.
[28] Information Science Institute - University of Southern California, “Transmission Control Protocol”,

RFC793, September 1981.
[29] J. Rosenberg, A. Keranen, B. B. Lowekamp, and A. B. Roach, “TCP Candidates with Interactive

Connectivity Establishment (ICE)”, RFC6544, March 2012.
[30] E. Rescorla, and N. Modadugu, “Datagram Transport Layer Security Version 1.2”, RFC6347, January

2012.
[31] T. Dierks, and E Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.2”, RFC5246, Au-

gust 2008.
[32] A. Freier, P. Karlton, and P. Kocher, “The Secure Sockets Layer (SSL) Protocol Version 3.0”,

RFC6101, August 2011.
[33] J. Ott, and E. Carrara, “Extended Secure RP profile for Real-time Transport Control Protocol (RTCP)-

based Feedback (RTP/SAVPF)”, RFC5124, February 2008.
[34] D. McGrew, and E. Rescorla, “Datagram transport Layer Security (DTLS) Extension to Establish Keys

for the Secure Real-time Transport Protocol (SRTP)”, RFC5764, May 2010.

Adaptive unmanned vehicle autopiloting using WebRTC video analysis

A. Modas 56

[35] R. Jesup, S. Loreto, and M. Tuexen, “WebRTC Data Channels draft-ietf-rtcweb-data-channel-13.txt”,
Internet-Draft, January 2015.

[36] R. Stewart, “Stream Control Transmission Protocol”, RFC4960, September 2007.
[37] D. C. Burnett, A. Bergkvist, C. Jennings, A. Narayanan, and B. Aboda, “Media Capture and Streams”,

W3C Candidate Recommendation, 19 May 2016.
[38] A. Bergkvist, D. C. Burnett, C. Jennings, and A, Narayanan, “WebRTC 1.0: Real-time Communication

Between Browsers”, W3C Working Draft, 10 September 2013.
[39] Alan B. Johnston, and Daniel C. Burnett, “WebRTC: APIs and Protocols of the HTML5 Real-Time

Web”, Third Ed., Digital Codex LLC, March 2014, p60.
[40] Alan B. Johnston, and Daniel C. Burnett, “WebRTC: APIs and Protocols of the HTML5 Real-Time

Web”, Third Ed., Digital Codex LLC, March 2014, p5.
[41] Alan B. Johnston, and Daniel C. Burnett, “WebRTC: APIs and Protocols of the HTML5 Real-Time

Web”, Third Ed., Digital Codex LLC, March 2014, p6.
[42] H. Alvestrand, “Overview: Real Time Protocols for Browser-based Applications”, Internet Draft, March

2017.
[43] Ludwig, S., Beda, J., Saint-Andre, P., McQueen, R., Egan, S., and J. Hildebrand, "Jingle", XSF XEP

0166, June 2007.
[44] Alan B. Johnston, and Daniel C. Burnett, “WebRTC: APIs and Protocols of the HTML5 Real-Time

Web”, Third Ed., Digital Codex LLC, March 2014, p63.
[45] van Kesteren, A., Ed., "XMLHttpRequest", W3C Candidate Recommendation CR-XMLHttpRequest-

20100803, August 2010.
[46] Fielding, R., "Architectural Styles and the Design of Network-based Software Architectures", 2000.
[47] Alan B. Johnston, and Daniel C. Burnett, “WebRTC: APIs and Protocols of the HTML5 Real-Time

Web”, Third Ed., Digital Codex LLC, March 2014, p65.
[48] Alan B. Johnston, and Daniel C. Burnett, “WebRTC: APIs and Protocols of the HTML5 Real-Time

Web”, Third Ed., Digital Codex LLC, March 2014, p64.
[49] I. Fette, and A. Melnikov, “The WebSocket Protocol”, RFC6455, December 2011.
[50] Alan B. Johnston, and Daniel C. Burnett, “WebRTC: APIs and Protocols of the HTML5 Real-Time

Web”, Third Ed., Digital Codex LLC, March 2014, p67.
[51] Alan B. Johnston, and Daniel C. Burnett, “WebRTC: APIs and Protocols of the HTML5 Real-Time

Web”, Third Ed., Digital Codex LLC, March 2014, p70.
[52] OpenCV.org. Available at:http://docs.opencv.org/trunk/d7/d8b/tutorial_py_face_detection.html
[53] P. Viola, M. Jones, “Rapid object detection using a boosted cascade of simple features,” in Proceed-

ings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
CVPR 2001.

[54] Yoav Freund and Robert E. Schapire, “A decision-theoretic generalization of on-line learning and an
application to boosting”, Journal of Computer and System Sciences, 55(1):119–139, August 1997.

[55] Emscripten. Available at: http://kripken.github.io/emscripten-site
[56] LLVM. Available at: https://llvm.org/
[57] asm.js. Available at: http://asmjs.org/
[58] OpenCV.js. Available at: http://www.ics.uci.edu/~sysarch/projects/OpenCV.html
[59] ROS. Available at: http://www.ros.org/
[60] Aaron Martinez, and Enrique Fernandez, “Learning ROS for Robotics Programming”, Third Ed., Packt

Publishing Ltd., September 2013, p25.
[61] Aaron Martinez, and Enrique Fernandez, “Learning ROS for Robotics Programming”, Third Ed., Packt

Publishing Ltd., September 2013, p26.
[62] Aaron Martinez, and Enrique Fernandez, “Learning ROS for Robotics Programming”, Third Ed., Packt

Publishing Ltd., September 2013, p32-33.
[63] Aaron Martinez, and Enrique Fernandez, “Learning ROS for Robotics Programming”, Third Ed., Packt

Publishing Ltd., September 2013, p39.
[64] TurtleBot. http://www.turtlebot.com/.
[65] Rosbridge Suite. Available at: http://wiki.ros.org/rosbridge_suite.
[66] Roslibjs. Available at: http://wiki.ros.org/roslibjs
[67] Robot Web Tools. http://robotwebtools.org/
[68] M. Petit-Huguenin, and G. Salgueiro, “Multiplexing Scheme Updates for Secure Real-time Transport

Protocol (SRTP) Extension for Datagram Transport Layer Security (DTLS)”, RFC7983, September
2016.

