
NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCES
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

PROGRAM OF POSTGRADUATE STUDIES

PhD THESIS

A GPU performance estimation model based on
micro-benchmarks and black-box kernel profiling

Elias N. Konstantinidis

ATHENS

JULY 2017

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ

ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ

Ένα μοντέλο εκτίμησης απόδοσης επεξεργαστή
γραφικών (GPU) βασισμένο σε μετροπρογράμματα και
καταγραφή μετρικών με προσέγγιση «μαύρο-κουτί»

Ηλίας Ν. Κωνσταντινίδης

ΑΘΗΝΑ

ΙΟΥΛΙΟΣ 2017

PhD THESIS

A GPU performance estimation model based on micro-benchmarks and black-box kernel
profiling

Elias N. Konstantinidis

SUPERVISOR: Yiannis Cotronis, Associate Professor NKUA

THREE-MEMBER ADVISORY COMMITTEE:
Yiannis Cotronis, Associate Professor NKUA
Elias Manolakos, Professor NKUA
Nectarios Koziris, Professor NTUA

SEVEN-MEMBER EXAMINATION COMMITTEE

Yiannis Cotronis, Elias Manolakos,
Associate Professor NKUA Professor NKUA

Nectarios Koziris, Nikolaos Missirlis,
Professor NTUA Professor NKUA

Dimitris Gizopoulos, Dimitrios Soudris,
Professor NKUA Associate Professor NTUA

Filippos Tzaferis,
Assistant Professor NKUA

Examination Date: July 3, 2017

ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ

Ένα μοντέλο εκτίμησης απόδοσης επεξεργαστή γραφικών (GPU) βασισμένο σε
μετροπρογράμματα και καταγραφή μετρικών με προσέγγιση «μαύρο-κουτί»

Ηλίας Ν. Κωνσταντινίδης

ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: Ιωάννης Κοτρώνης, Αναπληρωτής Καθηγητής ΕΚΠΑ

ΤΡΙΜΕΛΗΣ ΕΠΙΤΡΟΠΗ ΠΑΡΑΚΟΛΟΥΘΗΣΗΣ:
Ιωάννης Κοτρώνης, Αναπληρωτής Καθηγητής ΕΚΠΑ
Ηλίας Μανωλάκος, Καθηγητής ΕΚΠΑ
Νεκτάριος Κοζύρης, Καθηγητής ΕΜΠ

ΕΠΤΑΜΕΛΗΣ ΕΞΕΤΑΣΤΙΚΗ ΕΠΙΤΡΟΠΗ

Ιωάννης Κοτρώνης, Ηλίας Μανωλάκος,
Αναπληρωτής Καθηγητής ΕΚΠΑ Καθηγητής ΕΚΠΑ

Νεκτάριος Κοζύρης, Νικόλαος Μισυρλής,
Καθηγητής ΕΜΠ Καθηγητής ΕΚΠΑ

Δημήτρης Γκιζόπουλος, Δημήτριος Σούντρης,
Καθηγητής ΕΚΠΑ Αναπληρωτής Καθηγητής ΕΜΠ

Φίλιππος Τζαφέρης,
Επίκουρος Καθηγητής ΕΚΠΑ

Ημερομηνία Εξέτασης: 3 Ιουλίου 2017

ABSTRACT

Over the last decade GPUs have been established in the High Performance Computing
sector as compute accelerators. The primary characteristics that justify this modern trend
are the exceptionally high compute throughput and the remarkable power efficiency of
GPUs. However, GPU performance is highly sensitive to many factors, e.g. the type
of memory access patterns, branch divergence, the degree of parallelism and potential
latencies. Consequently, the execution time of a kernel on a GPU is a difficult to predict
measure. Unless the kernel is latency bound, a rough estimate of the execution time on a
particular GPU could be provided by applying the roofline model, which is used to map the
program’s operation intensity to the peak expected performance on a particular processor.
Though this approach is straightforward, it cannot not provide accurate prediction results.

In this thesis, after validating the roofline principle on GPUs by employing a micro-bench-
mark, an analytical throughput oriented performance model is proposed. In particular, this
improves on the roofline model following a quantitative approach and a completely auto-
mated GPU performance prediction technique is presented. In this respect, the proposed
model utilizes micro-benchmarking and profiling in a “black-box” fashion as no inspection
of source/binary code is required. The proposed model combines GPU and kernel param-
eters in order to characterize the performance limiting factor and to predict the execution
time on target hardware, by taking into account the efficiency of beneficial computational
instructions. In addition, the “quadrant-split” visual representation is proposed, which cap-
tures the characteristics of multiple processors in relation to a particular kernel.

The experimental evaluation combines test executions on stencil computations (red/black
SOR, LMSOR), matrix multiplication (SGEMM) and a total of 28 kernels of the Rodinia
benchmark suite, all applied on six CUDA GPUs. The observed absolute error in pre-
dictions was 27.66% in the average case. Special cases of mispredicted results were
investigated and justified. Moreover, the aforementioned micro-benchmark was used as
a subject for performance prediction and the exhibited results were very accurate. Fur-
thermore, the performance model was also examined in a cross vendor configuration by
applying the prediction method on the same kernel source codes through the HIP pro-
gramming environment supported on the AMD ROCm platform. Prediction errors were
comparable to CUDA experiments despite the significant architectural differences evident
between different vendor GPUs.

SUBJECT AREA: Parallel computing

KEYWORDS: performance model, GPU, roofline model

ΠΕΡΙΛΗΨΗ

Κατά την τελευταία δεκαετία, οι επεξεργαστές γραφικών (GPUs) έχουν εδραιωθεί στον
τομέα των υπολογιστικών συστημάτων υψηλής απόδοσης ως επιταχυντές υπολογισμών.
Τα βασικά χαρακτηριστικά που δικαιολογούν αυτή τη σύγχρονη τάση είναι η εξαιρετικά
υψηλή υπολογιστική απόδοση τους και η αξιοσημείωτη ενεργειακή αποδοτικότητα τους.
Ωστόσο, η απόδοση τους είναι πολύ ευαίσθητη σε πολλούς παράγοντες, όπως π.χ. τον
τύπο των μοτίβων πρόσβασης στη μνήμη (memory access patterns), την απόκλιση δια-
κλαδώσεων (branch divergence), τον βαθμό παραλληλισμού και τις δυνητικές καθυστερή-
σεις (latencies). Συνεπώς, ο χρόνος εκτέλεσης ενός πυρήνα (kernel) σε ένα επεξεργαστή
γραφικών είναι ένα δύσκολα προβλέψιμο μέγεθος. Στην περίπτωση που η απόδοση του
πυρήνα δεν περιορίζεται από καθυστερήσεις, μπορεί να παρασχεθεί μια χονδρική εκτί-
μηση του χρόνου εκτέλεσης σε ένα συγκεκριμένο επεξεργαστή εφαρμόζοντας το μοντέλο
γραμμής-οροφής (roofline), το οποίο χρησιμοποιείται για να αντιστοιχίσει την ένταση υπο-
λογισμών του προγράμματος στην μέγιστη αναμενόμενη απόδοση για ένα συγκεκριμένο
επεξεργαστή. Αν και αυτή η προσέγγιση είναι απλή, δεν μπορεί να παρέχει ακριβή απο-
τελέσματα πρόβλεψης.

Σε αυτή τη διατριβή, μετά την επαλήθευση της αρχής του μοντέλου γραμμής-οροφής σε
επεξεργαστές γραφικών με τη χρήση ενός μικρο-μετροπρογράμματος, προτείνεται ένα
αναλυτικό μοντέλο απόδοσης. Συγκεκριμένα, βελτιώνεται το μοντέλο γραμμής-οροφής
ακολουθώντας μια ποσοτική προσέγγιση και παρουσιάζεται μία πλήρως αυτοματοποιη-
μένη μέθοδος πρόβλεψης απόδοσης σε επεξεργαστή γραφικών. Από αυτή την άποψη, το
προτεινόμενο μοντέλο χρησιμοποιεί την αξιολόγηση μέσω μικρο-μετροπρογραμμάτων και
την καταγραφή μετρικών με μέθοδο «μαύρου κουτιού», καθώς δεν απαιτείται διερεύνηση
του πηγαίου/δυαδικού κώδικα. Το προτεινόμενο μοντέλο συνδυάζει τις παραμέτρους του
επεξεργαστή γραφικών και του πυρήνα για να χαρακτηρίσει τον παράγοντα περιορισμού
της απόδοσης και να προβλέψει το χρόνο εκτέλεσης στο στοχευόμενο υλικό, λαμβάνοντας
υπόψη την αποδοτικότητα των ωφελίμων υπολογιστικών εντολών. Επιπλέον, προτείνεται
η οπτική αναπαράσταση «διαμοιρασμού-τεταρτημορίου» (“quadrant-split”), η οποία απο-
δίδει τα χαρακτηριστικά πολλών επεξεργαστών σε σχέση με έναν συγκεκριμένο πυρήνα.

Η πειραματική αξιολόγηση συνδυάζει δοκιμαστικές εκτελέσεις σε υπολογισμούς μορίων
(κόκκινο/μαύρο SOR, LMSOR), πολλαπλασιασμό πινάκων (SGEMM) και ένα σύνολο 28
πυρήνων της σουίτας μετροπρογραμμάτων Rodinia, όλα εφαρμοσμένα σε έξι επεξεργα-
στές γραφικών CUDA. Το παρατηρηθέν απόλυτο σφάλμα στις προβλέψεις ήταν 27,66%
στη μέση περίπτωση. Διερευνήθηκαν και αιτιολογήθηκαν ιδιαίτερες περιπτώσεις εσφαλ-
μένων προβλέψεων. Επιπλέον, το προαναφερθέν μικρο-μετροπρόγραμμα χρησιμοποιή-
θηκε ως αντικείμενο για την πρόβλεψη απόδοσης και τα αποτελέσματα ήταν πολύ ακριβή.
Προσθέτως, το μοντέλο απόδοσης εξετάστηκε σε σύνθετο περιβάλλον μεταξύ διαφορε-
τικών κατασκευαστών, εφαρμόζοντας τη μέθοδο πρόβλεψης στους ίδιους πηγαίους κώ-
δικες πυρήνων μέσω του περιβάλλοντος προγραμματισμού HIP που υποστηρίζεται από
την πλατφόρμα AMD ROCm. Τα σφάλματα πρόβλεψης ήταν συγκρίσιμα αυτών των πει-

ραμάτων του περιβάλλοντος CUDA, παρά τις σημαντικές διαφορές αρχιτεκτονικής που
παρατηρούνται μεταξύ των διαφορετικών κατασκευαστών επεξεργαστών γραφικών.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Παράλληλος υπολογισμός

ΛΕΞΕΙΣΚΛΕΙΔΙΑ: μοντέλο απόδοσης, Μονάδα Επεξεργασίας Γραφικών, μοντέλο γραμμή-
οροφής

ACKNOWLEDGEMENTS

The accomplishment of this thesis would not be possible without the great assistance
and guidance of my advisor, Dr. Yiannis Cotronis. He has always been encouraging and
supportive on my every single step during all these years of my PhD. His support has been
valuable even in cases when I needed psychological encouragement.

However, this thesis required significant support by more than one persons. I could never
reach to success without the constant support and enduring patience of my loving wife,
Gina Gelasi. In addition, Nikos, my two and a half years old son, is another important
person in my life who inadvertently helped me reach my goal. I also want to thank my
parents for their support and for shaping me up to the person I’ve become.

I also want to thank the rest of my advisory committee, Dr. Nektarios Kozyris and Dr. Elias
Manolakos, who have been helpful with their advice and commentary. Their suggestions
and guidance helped me improve the orientation of this thesis and correct my defense
presentation in various aspects.

I also want to personally thank the generous support of the manager of the Radeon Open
Compute department of AMD, Greg Stoner, for his support through the donation of the
Radeon graphic cards used in the experiments of this thesis.

Finally, I would like to thank Dr. Nectarios Koziris and Dr. Dimitris Gizopoulos to use their
NVidia Tesla M2050 and NVidia Tesla K20c installations, respectively, for the purpose of
the experiments of this thesis.

ΣΥΝΟΠΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΤΗΣ ΔΙΔΑΚΤΟΡΙΚΗΣ ΔΙΑΤΡΙΒΗΣ

1. Εισαγωγή

Οι επεξεργαστές γραφικών (GPUs) στην σημερινή τους μορφή, εκτός από την κλασσική
τους χρήση στην ρεαλιστική απεικόνιση τρισδιάστατων μοντέλων, έχουν υιοθετηθεί και για
την επίλυση δύσκολων υπολογιστικών προβλημάτων γενικού σκοπού. Τα χαρακτηριστικά
υψηλής απόδοσης για υπολογιστικό φόρτο μεγάλης παραλληλίας από τους επεξεργαστές
γραφικών τους έχει καταστήσει ιδιαίτερα ελκυστικούς στην κοινότητα υπολογισμών υψη-
λής απόδοσης (High Performance Computing - HPC). Ταυτόχρονα, επιδεικνύουν υψηλούς
δείκτες αποδοτικότητας σε σχέση με την ενεργειακή τους κατανάλωση. Για την εκμετάλ-
λευσή τους αναπτύχθηκαν προγραμματιστικά περιβάλλοντα αμιγώς γενικού σκοπού. Οι
παραπάνω λόγοι τους έχουν καταστήσει ως ιδανικούς επιταχυντές για την επίλυση μεγά-
λων υπολογιστικών προβλημάτων.

Η δημιουργία αυτού του νέου πεδίου εκμετάλλευσης των επεξεργαστών γραφικών δη-
μιούργησε νέες ανάγκες στην μελέτη της απόδοσης τους, σε σχέση με την επίλυση υπο-
λογιστικών προβλημάτων. Ωστόσο, ο προγραμματισμός τους τείνει να είναι επιρρεπής
στην συχνή εμφάνιση προβλημάτων απόδοσης, συγκριτικά με τον προγραμματισμό των
επεξεργαστών γενικού σκοπού. Η εμπειρία έχει δείξει ότι η απόδοση τους είναι πολύ πιο
ευαίσθητη στην ορθή χρήση των πόρων και επομένως είναι πιο δύσκολο να εκτιμηθεί η τε-
λική τους απόδοση. Για το σκοπό αυτό επινοήθηκαν διάφορα μοντέλα απόδοσης από την
επιστημονική κοινότητα, προσανατολισμένα στις ιδιαιτερότητες των επεξεργαστών γρα-
φικών. Πολλά από τα μοντέλα αυτά είναι αναλυτικής φύσεως, ενώ άλλα ακολουθούν την
προσέγγιση της προσομοίωσης του επεξεργαστή γραφικών. Κάθε προσέγγιση έχει δια-
φορετικά πλεονεκτήματα και μειονεκτήματα. Η προσέγγιση της προσομοίωσης μπορεί να
είναι εξαιρετικά ακριβής αλλά ταυτόχρονα και μια χρονοβόρος διαδικασία. Αντιθέτως, τα
αναλυτικά μοντέλα τείνουν να είναι αρκετά γρηγορότερα στην εφαρμογή τους, ενώ παράλ-
ληλα τείνουν να παρέχουν καλύτερη αίσθηση πάνω στα χαρακτηριστικά υψηλού επιπέδου
της εφαρμογής που μπορούν να επηρεάσουν τις επιδόσεις

Ένα από τα κλασσικά αναλυτικά μοντέλα απόδοσης είναι το μοντέλο γραμμής-οροφής
(roofline). Το μοντέλο αυτό είναι ένα οπτικό μοντέλο που παρέχει ενόραση στην μέγιστη
αναμενόμενη απόδοση ενός πυρήνα, λαμβάνοντας υπόψη τις ανάγκες τόσο σε καθαρούς
υπολογισμούς, όσο και στην κίνηση από/προς τη μνήμη. Βασίζεται στην υπόθεση ότι
περιοριστικό παράγοντα της απόδοσης αποτελεί είτε η ρυθμαπόδοση υπολογισμών, είτε
το εύρος ζώνης της μνήμης του επεξεργαστή. Ο προσδιορισμός της εκάστοτε περίπτω-
σης προσδιορίζεται με βάση τις σχετικές απαιτήσεις πράξεων της εφαρμογής. Ο λόγος
υπολογισμών προς μετακινήσεων μνήμης εκφράζεται με το μέτρο της έντασης πράξεων
(operation intensity), το οποίο εκτιμάται σε μονάδες flop/byte και χρησιμοποιείται για τον
προσδιορισμό του παράγοντα περιορισμού της απόδοσης σε ένα συγκεκριμένο επεξερ-
γαστή. Η εκτίμηση της εντάσεως πράξεων ενός προγράμματος προσδιορίζεται μέσω της

εξίσωσης (1). Για παράδειγμα, στο σχήμα 1 απεικονίζεται η γραμμή που εκφράζει τις προ-
διαγραφές ενός επεξεργαστή. Το διακεκομμένο κάθετο ευθύγραμμο τμήμα εκφράζει την
ένταση πράξεων μιας εφαρμογής και το σημείο στο οποίο συναντά η τελευταία το γράφημα
του επεξεργαστή ορίζει την μέγιστη αναμενόμενη απόδοση.

Okernel =
Operations(compute)

Traffic(memory)

(1)

4

8

16

32

64

128

256

512

1,024

1/16 1/8 1/4 1/2 1 2 4 8 16 32 64 128

G
F

LO
P

S
 (

do
ub

le
 p

re
ci

si
on

)

Operation Intensity (Flops/byte ratio)

Roofline for Intel Xeon E7-8857 v2

Dot product (double precision)

Σχήμα 1: Το μοντέλο γραμμής-οροφής για τον Intel Xeon E7-8857 v2.

Το μοντέλο γραμμής-οροφής έχει εφαρμοστεί σε πληθώρα μελετών και εφαρμογών λό-
γω της απλότητάς του και της γενικότητάς του. Η ικανότητά του να αποδίδει με οπτικό
τρόπο την μέγιστη δυνατή απόδοση ενός πυρήνα (kernel) σε ένα επεξεργαστή αποτελεί
ένα από τα σημαντικότερα προτερήματα του. Ωστόσο, το μοντέλο είναι σε μεγάλο βαθμό
αφαιρετικό και στις περισσότερες περιπτώσεις δεν επιτρέπει την διενέργεια ρεαλιστικών
προσεγγίσεων παρά μόνο την εκτίμηση ενός άνω φράγματος απόδοσης.

2. Το μοντέλο γραμμής-οροφής σε επεξεργαστή γραφικών και η αναπαράσταση
διαμοιρασμού-τεταρτημορίου

Αρχικά, σε αυτή τη διατριβή μελετάται η εφαρμοσιμότητα του μοντέλου γραμμής-οροφής
στους επεξεργαστές γραφικών. Η μελέτη πραγματοποιείται μέσω ειδικού μετροπρογράμ-
ματος που αναπτύχθηκε για αυτό το σκοπό, το οποίο εκτιμά την απόδοση των επεξερ-
γαστών γραφικών πειραματικά σε μικτό φόρτο υπολογισμών και μεταφορών μνήμης, σε
ένα εύρος τιμών έντασης πράξεων. Μέσω του μετροπρογράμματος πραγματοποιήθηκε
πειραματική προσέγγιση της θεωρητικής γραμμής-οροφής για 3 επεξεργαστές γραφικών,
σε πράξεις κινητής υποδιαστολής μονής και διπλής ακρίβειας. Ενδεικτικά, στο σχήμα 2
απεικονίζεται η απόδοση του επεξεργαστή γραφικών GTX-480. Η διακεκομμένη γραμμή
αναπαριστά την θεωρητική μέγιστη απόδοση με βάση τις προδιαγραφές του επεξεργαστή
γραφικών. Οι παρατηρούμενη απόδοση ακολουθεί ένα παραπλήσιο μοτίβο της θεωρητι-
κής απεικόνισης όπως περιγράφεται από την γραμμή-οροφής. Συγκεκριμένα, η απόδοση

32

64

128

256

512

1,024

2,048

4,096

0.25 0.5 1 2 4 8 16 32 64 128

G
F

L
O

P
S

 (
si

ng
le

 p
re

ci
si

on
)

Operational intensity (Flops/byte)

Theoretical roofline

GFLOPS measured

(αʹ) SP floating point

32

64

128

256

512

1,024

2,048

4,096

0.25 0.5 1 2 4 8 16 32 64

G
F

L
O

P
S

 (
do

ub
le

 p
re

ci
si

on
)

Operational intensity (Flops/byte)

Theoretical roofline

GFLOPS measured

(βʹ) DP floating point

Σχήμα 2: Πειραματική προσέγγιση της γραμμής-οροφής σε επ.γραφικών GTX-480

του επεξεργαστή γραφικών GTX-480 προσέγγισε σε μεγάλο βαθμό την θεωρητική μέγι-
στη υπολογιστική απόδοση (οριζόντιο τμήμα γραφήματος γραμμής-οροφής). Στο τμήμα
που η απόδοση εξαρτάται από το εύρος ζώνης μνήμης (κεκλιμένο τμήμα γραφήματος
γραμμής-οροφής), η απόδοση είναι ελαφρώς μειωμένη και το φαινόμενο αυτό εκφράζει
την αδυναμία επίτευξης της μέγιστης θεωρητικής απόδοσης του εύρους ζώνης μνήμης
σε πραγματικούς επεξεργαστές γραφικών. Παρόλο που η μέγιστη θεωρητική απόδοση
του GTX-480 που χρησιμοποιήθηκε για τα πειράματα είναι 182GB/sec, το εύρος ζώνης
μνήμης που μετρήθηκε δεν ξεπέρασε τα 163GB/sec. Γενικά, τα αποτελέσματα έδειξαν
ικανοποιητική ταύτιση της θεωρητικής γραμμής-οροφής με την πειραματική. Παρατηρή-
θηκαν κάποιες αποκλίσεις, κυρίως στην επίτευξη του μεγίστου εύρους ζώνης μνήμης και
προκύψαν παρατηρήσεις.

Μια εναλλακτική μέθοδος απεικόνισης που προτείνεται σε αυτή τη διατριβή είναι η α-
πεικόνιση «διαμοιρασμού-τεταρτημορίου» (quadrant-split). Συγκριτικά με την απεικόνιση
γραμμής-οροφής, ο οριζόντιος άξονας περιγράφει το εύρος ζώνης μνήμης αντί της εντά-
σεως πράξεων. Με αυτή τη διαφοροποίηση ο κάθε επεξεργαστής περιγράφεται σαν ση-
μείο και η εφαρμογή ως μια ημι-ευθεία που διαπερνά το σημείο τομής των αξόνων και η
κλίση της προσδιορίζεται από την τιμή της εντάσεως πράξεων της εφαρμογής. Για παρά-
δειγμα, στο σχήμα 3 αναπαρίσταται το πρόβλημα LBMHD (Lattice-Boltzmann Magneto-
hydrodynamic) σε σχέση με 4 επεξεργαστές γραφικών και ένα επεξεργαστή γενικού σκο-
πού. Τα σημεία του επεξεργαστή Intel Xeon και των NVidia Tesla επεξεργαστών γραφι-
κών εντοπίζονται πάνω από την ημι-ευθεία, το οποίο σημαίνει ότι στους συγκεκριμένους
επεξεργαστές η απόδοση αναμένεται να καθορίζεται από το μέγιστο εύρος ζώνης μνήμης
(memory bound). Σε αντίθεση, τα σημεία των επεξεργαστών γραφικών GTX-480 και GTX-
Titan X εντοπίζονται κάτω από την ημι-ευθεία και συνεπώς η απόδοση τους αναμένεται
να καθορίζεται από την μέγιστη ρυθμαπόδοση των επεξεργαστών (compute bound). Οι
διακεκομμένες γραμμές υποδεικνύουν τα σημεία πάνω στην ημι-ευθεία του προβλήμα-
τος που αναπαριστούν την εκτιμώμενη απόδοση για κάθε επεξεργαστή στο συγκεκριμένο
πρόβλημα. Για την εκτίμηση της απόδοσης των άνω σημείων πραγματοποιείται διάσχιση
από το σημείο με κάθετη φορά προς τα κάτω, μέχρι την συνάντηση της ημι-ευθείας. Α-

ντίστοιχα, για την εκτίμηση της απόδοσης των κάτω σημείων πραγματοποιείται διάσχιση
από το σημείο με οριζόντια φορά προς τα αριστερά, μέχρι την συνάντηση της ημι-ευθείας.
Η τομή των διακεκομμένων τμημάτων με την ημι-ευθεία της εφαρμογής υποδεικνύουν την
αναμενόμενη απόδοση σε κάθε επεξεργαστή.

0

200

400

600

800

1,000

1,200

1,400

0 50 100 150 200 250 300 350

G
F

L
O

P
S

 (
do

ub
le

 p
re

ci
si

on
)

GB/sec

Intel Xeon E7-8857 v2

NVidia GTX-480

NVidia Tesla K20X

NVidia Tesla M2050

NVidia GTX TITAN X

Σχήμα 3: Η αναπαράσταση διαμοιρασμού-τεταρτημορίου του προβλήματος LBMHD με εφαρμογή
σε 5 επεξεργαστές (γραφικών και γενικού σκοπού).

Με την απεικόνιση διαμοιρασμού-τεταρτημορίουπερισσότεροι του ενός επεξεργαστές μπο-
ρούν να αναπαρασταθούν με φυσικό τρόπο σε ένα μοναδικό γράφημα. Η γραφική εκτί-
μηση της θεωρητικής απόδοσης πραγματοποιείται με απλό και ευθύ τρόπο. Η αναπα-
ράσταση γραμμής-οροφής είναι προσανατολισμένη στην απεικόνιση ενός επεξεργαστή
σε σχέση με πολλά προβλήματα, ενώ η προτεινόμενη απεικόνιση προσφέρεται για την
περίπτωση μίας εφαρμογής σε σχέση με πολλούς επεξεργαστές με διαφορετικά χαρακτη-
ριστικά.

3. Ένα ποσοτικό μοντέλο απόδοσης για επεξεργαστές γραφικών

Βασική συνεισφορά της διατριβής αποτελεί ένα μοντέλο απόδοσης για επεξεργαστή γρα-
φικών, που εστιάζει στην ποσοτική προσέγγιση. Αφού προηγήθηκε η παρατήρηση της
ικανοποιητικής προσέγγισης του μοντέλου γραμμής-οροφής μέσω της εφαρμογής μικρο-
μετροπρογράμματος, στη συνέχεια προέκυψε το ερώτημα σχετικά με το ποια χαρακτη-
ριστικά πραγματικών εφαρμογών για επεξεργαστές γραφικών αποτρέπουν την επίτευξη
μέγιστης απόδοσης, παραπλήσιας με αυτήν που αποδίδεται από το μοντέλο γραμμής-
οροφής. Με αυτό το σκεπτικό, μελετήθηκαν τα χαρακτηριστικά βελτιστοποιημένων εφαρ-
μογών τα οποία μπορούν να επηρεάσουν αρνητικά την απόδοση σε σημαντικό βαθμό.

Αυτή η μελέτη οδήγησε στον ορισμό ενός βελτιωμένου μοντέλου απόδοσης βασισμένο

Καταγραφή
μετρικών υλικού
στον GPU
αναφοράς

Παράμετροι
πυρήνα

Μοντέλο
απόδοσης στον

GPU στόχο

Παράμετροι
GPU
στόχο

εκτέλεση μικρο-
μετροπρογράμματος
στον GPU στόχο

GPU
αναφοράς Πρόβλεψη

απόδοσης στον
GPU

 στόχο

GPU
Πυρήνας
(kernel)

GPU
στόχος

Σχήμα 4: Η ροή των βημάτων εκτέλεσης της μεθόδου πρόβλεψης απόδοσης.

στο μοντέλο γραμμής-οροφής, το οποίο παράλληλα εμβαθύνει ακολουθώντας ποσοτική
προσέγγιση με ρεαλιστικές εκτιμήσεις πραγματικών εφαρμογών. To διάγραμμα ροής των
βημάτων όπως περιγράφονται από την προτεινόμενη μέθοδο απεικονίζεται στο σχήμα
4. Βασικά χαρακτηριστικά που ενσωματώθηκαν στο μοντέλο αποτελούν η αποδοτικότητα
των ωφελίμων πράξεων, καθώς επίσης και η αποδοτικότητα του συνόλου εκτελούμενων
εντολών ως προς το ποσοστό κατά το οποίο εκμεταλλεύονται τους εκτελεστικούς πόρους
του επεξεργαστή γραφικών. Ωφέλιμες πράξεις θεωρούνται οι πράξεις που συνεισφέρουν
άμεσα στην επίλυση του προβλήματος, δηλαδή τυπικά οι πράξεις κινητής υποδιαστολής.
Ως αποδοτικότητα ωφελίμων πράξεων ορίζεται το στατιστικό μέγεθος που εκφράζει την
αναμενόμενη τιμή του πλήθους πράξεων που πραγματοποιεί κάθε υπολογιστική εντολή
του πυρήνα διαιρεμένο με το μέγιστο πλήθος πράξεων που μπορεί να πραγματοποιήσει
μια υπολογιστική εντολή, τυπικά ο αριθμός 2, όπως προκύπτει από το πλήθος πράξεων
που πραγματοποιεί μια εντολή τύπου πολλαπλασιασμού-πρόσθεσης (multiply-addition).
Ως αποδοτικότητα του συνόλου εκτελούμενων εντολών ορίζεται το ποσοστό κατά το οποίο
οι εκτελεστικοί πόροι του επεξεργαστή πραγματοποιούν εκτέλεση ωφελίμων εντολών αντί
δευτερευόντων. Τέλος, η μέθοδος λαμβάνει υπόψη πραγματικές μετρήσεις των ρυθμαπο-
δόσεων για ένα σύνολο προκαθορισμένων πράξεων και του εύρους ζώνης μνήμης με την
χρήση μικρο-μετροπρογραμμάτων αντί των προδιαγραφών που δίνει ο κατασκευαστής.

Συγκεκριμένα, οι απαιτούμενες μετρικές υλικού που καταγράφονται κατά την εκτέλεση του
πυρήνα παρέχονται στον πίνακα 1. Αυτές οι μετρικές απαιτούνται για την εκτίμηση των
παραμέτρων του πυρήνα, οι οποίες παρουσιάζονται στον πίνακα 2. Ως κανόνας υπολογι-
σμού για την εκτίμηση τουKtype εφαρμόσθηκε η επιλογή του fp64 εφόσον η μετρικήMfp64

είναι μη μηδενική, του fp32 αν η μετρικήMfp32 είναι μη μηδενική ή διαφορετικά του int. Για

Πίνακας 1: Οι απαιτούμενες μετρικές υλικού του NVidia GPU για την εκτίμηση των παραμέτρων του
πυρήνα.

Μετρική Συμβολισμός
flop_count_sp_fma Mfma32

flop_count_dp_fma Mfma64

inst_compute_ld_st Mldst

inst_executed Minst

inst_fp_32 Mfp32

inst_fp_64 Mfp64

inst_integer Mint

dram_read_transactions Mtran-r
dram_write_transactions Mtran-w

Πίνακας 2: Το σύνολο των απαιτούμενων παραμέτρων του πυρήνα.

Παράμετρος Περιγραφή Ανάκτηση
Ktype Τύπος κύριων πράξεων (fp64, fp32 ή int) κανόνας υπολογισμού
Wcomp Πράξεις υπολογισμών τύπος (2)
Wtraf Πλήθος προσπελαθέντων DRAM bytes τύπος (3)
Emix Αποδοτικότητα μίξης πράξεων (%) τύπος (4)
Dops Πυκνότητα εντολών πράξεων (%) τύπος (7)
Dldst Πυκνότητα εντολών ανάκτησης/αποθήκευσης (%) τύπος (8)
Dother Πυκνότητα άλλων εντολών (%) τύπος (9)

την εκτίμηση των παραμέτρων απαιτείται η εφαρμογή των παρακάτω τύπων:

Wcomp =

Mfp32 +Mfma32, αν Ktype = fp32
Mfp64 +Mfma64, αν Ktype = fp64
Mint, αν Ktype = int

(2)

Wtraf = 32× (Mtran-r +Mtran-w) (3)

Emix =

Mfp32+Mfma32

2×Mfp32
× 100%, αν Ktype = fp32

Mfp64+Mfma64

2×Mfp64
× 100%, αν Ktype = fp64

50%, αν Ktype = int
(4)

Iops =

Mfp32, αν Ktype = fp32
Mfp64, αν Ktype = fp64
Mint, αν Ktype = int

(5)

Itotal = 32×Minst (6)

Dops =
Iops
Itotal

× 100% (7)

Dldst =
Mldst

Itotal
× 100% (8)

Dother = 100%−Dops −Dldst (9)

Οι απαιτούμενοι παράμετροι του επεξεργαστή γραφικών με τις οποίες θα πραγματοποιη-
θεί η πρόβλεψη δίνονται στον πίνακα 3. Όλες οι παράμετροι εκτιμώνται με την εκτέλεση
ειδικών μικρο-μετροπρογραμμάτων.

Πίνακας 3: Το σύνολο των παραμέτρων του επεξεργαστή γραφικών.

Παράμετρος Περιγραφή Μονάδα
TSP Ρυθμαπόδοση πρ.κινητής υποδιαστολής (μονής ακρίβειας) GFLOPS
TDP Ρυθμαπόδοση πρ.κινητής υποδιαστολής (διπλής ακρίβειας) GFLOPS
Tint Ρυθμαπόδοση πρ.ακεραίων (πολλαπλασ.-προσθέσεων) GIOPS
Tadd Ρυθμαπόδοση πράξεων ακεραίων (προσθέσεων) GIOPS
Tldst Ρυθμαπόδοση εντ.ανάκτησης/αποθήκευσης διαμοιραζ.μν. GOPS
Bmem Εύρος ζώνης μνήμης GB/sec

Η πρόβλεψη απόδοσης προϋποθέτει την εκτίμηση της αποδοτικότητας εντολών (Einstr)
και στην συνέχεια την εκτιμώμενη μέγιστη ρυθμαπόδοση σε ωφέλιμες πράξεις (T ′

op). Ο
υπολογισμός πραγματοποιείται ως ακολούθως:

Top =

TSP , αν Ktype = fp32
TDP , αν Ktype = fp64
Tint, αν Ktype = int

(10)

Wop =
TSP

Top

(11)

Wldst =
1/2TSP

Tldst

(12)

Wother =
1/2TSP

Tadd

(13)

Cop = Dops ×Wop (14)

Cldst = Dldst ×Wldst (15)

Cother = Dother ×Wother (16)

Einstr =
Cop

Cop + Cldst + Cother

× 100% (17)

T ′
op = Emix × Einstr × Top (18)

Στην τελική εκτιμώμενη απόδοση λαμβάνεται υπόψη και η χρήση του εύρους ζώνης μνή-
μης όπως φαίνεται στον παρακάτω τύπο:

Tpredicted =

{
T ′
op, αν Okrn > Odev

Okrn ×Bmem, αν Okrn ≤ Odev

(19)

Η μέθοδος αναλύθηκε με την επίδειξη μελέτης περιπτώσεων στα προβλήματα υπολο-
γισμού μορίων (κόκκινο/μαύρο SOR) και πολλαπλασιασμού πινάκων, με επεξεργαστή
γραφικών αναφοράς τον GTX-480 και πρόβλεψη στον πάνω στον επεξεργαστή γραφικών
GTX-660. Η πρόβλεψη με οπτική αναπαράσταση απεικονίζεται στο σχήμα 5. Τα αποτελέ-
σματα επαληθεύτηκαν τόσο με την αντιπαραβολή τους με πραγματικές μετρήσεις όσο και
με την ανάλυση τιμών μετρικών χρησιμοποίησης (utilization metrics) για τους διάφορους
πόρους του επεξεργαστή γραφικών. Τέλος, μελετήθηκαν οι προϋποθέσεις κάτω από τις
οποίες αναμένεται η μέθοδος να αποφέρει αξιόπιστα αποτελέσματα.

0

20

40

60

80

100

0 50 100 150 200

G
F

L
O

P
S

 (
do

ub
le

 p
re

ci
si

on
)

GB/sec

Theoretical specifications

Benchmarked peak

1st adjustment (E_mix)

Final adjustment (E_mix & E_instr)

Actual performance

E
in
st
r

E
m
ix

performance
estimation

p
er
fo
rm
an
ce

es
ti
m
at
io
n

Σχήμα 5: Οπτικοποίηση της πρόβλεψης απόδοσης της μεθόδου κόκκινο/μαύρο SOR στον επεξερ-
γαστή γραφικών GTX-660 με την εφαρμογή των προσαρμογών αποδοτικότητας.

4. Πειραματική αξιολόγηση

Στη συνέχεια ακολουθεί η πειραματική αξιολόγηση της μεθόδου. Επιλέχθηκε ένα ευρύ σύ-
νολο εφαρμογών, αποτελούμενο από υπολογισμούς μορίων (stencils), πολλαπλασιασμό
πινάκων (SGEMM) και 28 πυρήνες από 16 μετροπρογράμματα της σουίτας Rodinia. Οι
εφαρμογές υπολογισμών μορίων περιελάμβαναν τις μεθόδους κόκκινο/μαύρο (red/black)
SOR και LMSOR, οι υλοποιήσεις των οποίων αναπτύχθηκαν και μελετήθηκαν εκτενώς
προγενέστερα κατά τη διάρκεια της εκπόνησης της διατριβής και όπως αποδείχθηκε πει-
ραματικά, η αναδιάταξη των στοιχείων με βάση το χρώμα καθώς επίσης και η τακτική του
επανυπολογισμού μπορούν να οδηγήσουν σε σημαντική επιτάχυνση της εκτέλεσης προ-
βλημάτων με έντονη χρήση της μνήμης. Τα αποτελέσματα των προβλέψεων αναλύθηκαν
και σε περιπτώσεις σημαντικής απόκλισης με τις πραγματικές μετρήσεις πραγματοποιή-
θηκε πρόσθετη ανάλυση για την αιτιολόγηση των αποτελεσμάτων. Στην πλειονότητα των
περιπτώσεων (>50%) το απόλυτο σφάλμα πρόβλεψης εκτιμήθηκε κάτω του 25%, το οποίο
και θεωρήθηκε αρκετά ικανοποιητικό. Επιπλέον, μελετήθηκε η ακρίβεια των αποτελεσμά-
των του μοντέλου καθώς εφαρμόστηκε στο μικρο-μετροπρόγραμμα που αναφέρθηκε στο
πρώτο μέρος. Τα αποτελέσματα ήταν εξαιρετικά ακριβή. Στην αρχική μορφή το μοντέλο
περιορίστηκε στο περιβάλλον λογισμικού και υλικού της NVidia το οποίο αποτελεί προϋ-
πόθεση για το περιβάλλον CUDA.

5. Αξιολόγηση μεταξύ διαφορετικών κατασκευαστών και περιορισμοί του μοντέλου

Σε μια δεύτερη μελέτη διερευνήθηκε η εφαρμοσιμότητα της μεθόδου σε επεξεργαστή γρα-
φικών διαφορετικού κατασκευαστή. Το προγραμματιστικό περιβάλλον που επιλέχθηκε
είναι το HIP, κάτω από την πλατφόρμα ROCm της AMD, το οποίο προσφέρει ένα γρή-
γορο και σχεδόν αυτοματοποιημένο τρόπο μετάβασης από το CUDA, διατηρώντας κατ
ουσίαν τον κώδικα των πυρήνων αναλλοίωτο. Η ανάκτηση των τιμών των παραμέτρων
των πυρήνων πραγματοποιήθηκε σε επεξεργαστή γραφικών της NVidia λόγω έλλειψης
των αντιστοίχων μετρικών στους επεξεργαστές γραφικών της AMD. Η πρόβλεψη απόδο-
σης πραγματοποιήθηκε για τον επεξεργαστή γραφικών της AMD. Παρ όλες τις διαφορές
των μεταξύ αρχιτεκτονικών τα αποτελέσματα πρόβλεψης στα 3 προγράμματα στα οποία
εφαρμόστηκε η ανάλυση (μέθοδος κόκκινο/μαύρο SOR, πολλαπλασιασμός πινάκων και
το lavaMD από την σουίτα Rodinia) έδειξαν ιδιαίτερα θετικά αποτελέσματα καθώς το από-
λυτο σφάλμα εκτιμήθηκε στα ίδια πλαίσια στα οποία εκτιμήθηκε και στο περιβάλλον CUDA.
Τέλος, πραγματοποιήθηκε εκτενής ανάλυση των εγγενών περιορισμών του μοντέλου και
των ορίων του. Ακόμα περισσότερο, μελετήθηκε η εφαρμογή του μοντέλου σε δύο ακόμα
μικρο-μετροπρογράμματα, τα οποία επίσης αναπτύχθηκαν στα πλαίσια της διατριβής. Το
πρώτο προκαλεί έντονη χρήση των βοηθητικών μνημών (cache) του 1ου και 2ου επιπέ-
δου και το δεύτερο προκαλεί έντονη χρήση της διαμοιραζόμενης μνήμης (shared memory)
του επεξεργαστή γραφικών. Τα αποτελέσματα αναδεικνύουν δύο από τους περιορισμούς
του μοντέλου που αναφέρθηκαν προηγουμένως με πειραματικό τρόπο. Σε γενικές γραμ-
μές, το προτεινόμενο μοντέλο ενσωματώνει τα χαρακτηριστικά της αφαιρετικότητας και της
ικανότητας ρεαλιστικής πρόβλεψης σε μια ιδανική ισορροπία.

6. Συμπεράσματα και μελλοντικές κατευθύνσεις

Σε αυτή τη διατριβή παρουσιάζεται ένα αναλυτικό μοντέλο απόδοσης, το οποίο βασίζε-
ται στο μοντέλο γραμμής-οροφής. Η βασική αρχή του τελευταίου επαληθεύτηκε πειρα-
ματικά στους επεξεργαστές γραφικών με την ανάπτυξη εξειδικευμένου μικρο-μετροπρο-
γράμματος, μέσω του οποίου η απόδοση διερευνήθηκε σε ένα ευρύ φάσμα τιμών εντάσε-
ως πράξεων. Μέσω ποσοτικής προσέγγισης, το προτεινόμενο μοντέλο απόδοσης είναι
ικανό να παρέχει προβλέψεις που προσεγγίζουν πραγματικούς χρόνους εκτέλεσης στο
υλικό. Πρόσθετα, παρουσιάστηκε μια εναλλακτική οπτική αναπαράσταση, ονομαζόμε-
νη «διαμοιρασμού-τεταρτημορίου», η οποίο παρέχει βελτιωμένη ενόραση σε περιπτώσεις
όπου πολλοί επεξεργαστές αναπαριστώνται σε σχέση με μία εφαρμογή. Η αξία της α-
πλότητας του μοντέλου και το υψηλό επίπεδο αφαιρετικότητας επιτρέπουν την παροχή
αποτελεσμάτων, τα οποία μπορούν εύκολα να ερμηνευθούν και να αξιοποιηθούν από τον
προγραμματιστή για την εξαγωγή πολύτιμων συμπερασμάτων.

Ένα από τα σημαντικά σημεία της προτεινόμενης μεθόδου είναι η ικανότητά της να εξαγά-
γει τις τιμές των παραμέτρων με την εκμετάλλευση ενός απλού συνόλου τιμών μετρικών
υλικού. Η σύλληψη των τιμών του πραγματοποιείται με προσέγγιση «μαύρο-κουτί» καθώς
δεν απαιτεί κάποια εσωτερική γνώση των εσωτερικών δομών του πυρήνα. Επιπλέον, η
προτεινόμενη μέθοδος μπορεί να αναπτυχθεί ως ένα πλήρως αυτοματοποιημένο εργα-
λείο, το οποίο να λειτουργεί χωρίς την παρέμβαση του προγραμματιστή ή προηγούμενη
διερεύνηση του κώδικα του πυρήνα.

Η μέθοδος επιτρέπει καλύτερη κατανόηση του φόρτου υπολογισμού και μνήμης σε αντίθε-
ση με μια αμιγώς θεωρητική προσέγγιση κυρίως για δύο λόγους. Πρώτον, τόσο η εκτέλεση
των μη ουσιαστικών εντολών όσο και των εντολών ανάκτησης/αποθήκευσης λαμβάνονται
υπόψη μέσω της μοντελοποίησης των επιπτώσεων τους στον κορεσμό της διοχέτευσης ε-
ντολών. Πρόσθετα, ο τύπος της μίξης υπολογιστικών πράξεων λαμβάνεται επίσης υπόψη,
δηλαδή η αποδοτικότητά της σε σχέση με το πλήθος πράξεων ανά εντολή. Δεύτερον, οι α-
παιτήσεις σε φόρτο προσβάσεων μνήμης εκτιμώνται μέσω της μέτρησης της πραγματικής
κίνησης στη μνήμη, το οποίο σημαίνει ότι οι τοπικότητες καθώς επίσης και οι συγχωνεύσεις
των προσβάσεων λαμβάνονται υπόψη εμμέσως στο μοντέλο.

Σαν μελλοντική κατεύθυνση προτείνεται η βελτίωση του μοντέλου με στόχο την καλύτερη
ακρίβεια πρόβλεψης. Κάποιες βελτιώσεις θα μπορούσαν να περιλαμβάνουν την καλύ-
τερη εκτίμηση του κόστους εκτέλεσης των εντολών, την ποσοτικοποίηση της απόκλισης
εκτέλεσης των νημάτων, του μειωμένου παραλληλισμού λόγω άλλων φαινομένων όπως
συγκρούσεων πρόσβασης σε διαμοιραζόμενη ή σταθερή μνήμη. Η μεταβλητότητα των
φαινομένων λόγω βοηθητικής μνήμης είναι επίσης ένα ακόμα ζήτημα που θα ήταν σκό-
πιμο να ενσωματωθεί στο μοντέλο καθώς επηρεάζει το πλήθος των πραγματικών προ-
σβάσεων που παρατηρούνται στην κύρια μνήμη. Ωστόσο, σε κάθε βελτίωση θα πρέπει
να λαμβάνεται υπόψη η πιθανή διατάραξη της αφαιρετικότητας και του χαρακτήριστικού
«μαύρο-κουτί» της μεθόδου.

To my loving family

CONTENTS

1 INTRODUCTION 37
1.1 General purpose computation on GPUs . 37

1.2 The performance analysis challenge . 40

1.3 Structure of thesis . 41

2 BACKGROUND AND RELATED WORK 43
2.1 The graphics accelerator as a Graphics Processing Unit (GPU) 43

2.2 The GPU as a general purpose processor 44

2.2.1 Unified shaders through the introduction of the Tesla GPU architecture 45

2.2.2 A comparison of the GPU and the CPU 47

2.3 GPU compute programming paradigms . 49

2.4 GPU performance modeling . 51

2.4.1 Simulation based models . 52

2.4.2 Analytical approaches . 54

2.4.3 Specialized application models . 59

2.4.4 Power consumption oriented models 59

2.4.5 Micro-benchmarking of the GPU . 60

2.4.6 This thesis primary contributions . 61

3 GPU ROOFLINE MODEL AND THE QUADRANT SPLIT REPRESENTATION 63
3.1 Roofline GPU considerations . 63

3.1.1 The latency hiding opportunity on GPUs 64

3.2 An experimental roofline approximation . 65

3.2.1 Experimental results . 66

3.3 The quadrant-split visual representation . 68

4 TOWARDS A QUANTITATIVE PERFORMANCE MODEL FOR GPUS 71
4.1 Motivation and performance considerations 71

4.2 A quantitative roofline GPU performance model 72

4.2.1 An overview of the proposed model 73

4.2.2 Kernel parameter extraction . 75

4.2.3 Target GPU parameter extraction . 77

4.2.4 Kernel performance estimation . 78

4.3 Case study 1: Red/black SOR stencil computation 80

4.4 Case study 2: SGEMM computation . 84

4.5 Performance model assumptions . 88

5 EXPERIMENTAL EVALUATION 91
5.1 Applied kernel experiments . 92

5.1.1 Red/black SOR stencil computation 93

5.1.2 LMSOR stencil computation . 96

5.1.3 Matrix multiplication (SGEMM) . 99

5.1.4 Rodinia benchmark suite . 99

5.2 Performance prediction experiments . 101

5.2.1 Red/black SOR stencil computation 102

5.2.2 LMSOR stencil computation . 105

5.2.3 Matrix multiplication (SGEMM) . 107

5.2.4 Mixbench performance prediction 109

5.2.5 Rodinia benchmark suite . 110

5.2.6 Summary and conclusions . 118

6 CROSS-VENDOR EVALUATION AND PERFORMANCE LIMITATIONS 123
6.1 Portability on a different vendor’s architecture 123

6.1.1 The HIP/ROCm programming environment 123

6.1.2 Kernel parameter portability . 124

6.1.3 Experimental results . 124

6.2 Performance model limitations . 126

6.2.1 Exposing limitations through micro-benchmarking 129

7 CONCLUSIONS AND FUTURE WORK 131
7.1 Conclusions . 131

7.2 Future work discussion and proposed model refinements 132

7.2.1 Additional input parameters . 133

7.2.2 Simulated parameter extraction . 134

ABBREVIATIONS - ACRONYMS 137

APPENDICES 137

A MICRO-BENCHMARK KERNEL SOURCE CODES 139
A.1 Roofline approximation (mixbench) . 139

A.2 Compute throughput evaluation . 139

A.3 Memory bandwidth evaluation . 140

A.4 Load/store operation throughput evaluation 141

B BENCHMARKING OF FAST ON-CHIP GPU MEMORIES 143
B.1 cachebench (L1, L2 & texture cache micro-benchmark) 144

B.2 shmembench (shared memory micro-benchmark) 144

B.3 constbench (constant cache micro-benchmark) 145

REFERENCES 152

LIST OF FIGURES

1.1 A comparison of CPU and GPU floating point performance evolution [73]. . 38

2.1 The graphics pipeline. 43

2.2 The NVidia Tesla GPU architecture[55] block diagram. 46

2.3 The roofline visual model for Intel Xeon E7-8857 v2. 57

3.1 The roofline visual model on NVidia Titan X GPU against 4 applications. . . 64

3.2 Experimental roofline estimation on GTX-480 GPU 66

3.3 Experimental roofline estimation on Tesla K20c GPU 67

3.4 Experimental roofline estimation on GTX-960 GPU 67

3.5 The quadrant-split representation of the LBMHD problem using 5 CPU/GPUs. 69

4.1 The performance prediction methodology flow diagram. 74

4.2 Red points depend only on the neighboring black points and vice versa. . . 81

4.3 Instruction densities per instruction type for the red/black SOR kernel . . . 82

4.4 Visualization of red/black SOR performance estimation on GTX-660 with
efficiency adjustments. 83

4.5 Instruction densities per instruction type for the SGEMM kernel 86

4.6 Visualization of SGEMM computation performance estimation on GTX-660
with efficiency adjustments versus using theoretical specifications. 87

5.1 Same colored points depend only on the adjacent opposite colored points. 93

5.2 Matrix element reordering. 95

5.3 Read accesses by a hypothetical 4x4 thread block. 96

5.4 The proposed model applied on all GPUs for the red/black SOR computation.104

5.5 Performance prediction on mixbench (SP) for GTX-480 and GTX-660. . . . 109

5.6 Performance prediction on mixbench (SP) for GTX-960 and GTX-1060. . . 110

5.7 Performance prediction on mixbench (SP) for the two Tesla GPUs. 110

5.8 Performance prediction onmixbench (SP) for GTX-960 by using sameGPU
as reference. 111

5.9 GTX-480 roofline using the estimated fp32 Rodinia kernel intensities. . . . 111

5.10 Prediction errors in the Rodinia suite kernels on GTX-480, in relation to the
exploitation of the efficiency factors. 113

5.11 Prediction error of the selected Rodinia kernels per GPU. 114

5.12 Rodinia prediction errors after applying utilization factor correction. 118

6.1 Cachebench bandwidth predictions and measurements on various data-sets.129

6.2 Shmembench predictions and measurements for various data type sizes. . 130

B.1 GPU memory hierarchy includes caches and scratchpads. 143

B.2 Thread accesses in cachebench under a simplified scenario with 3 different
configurations. 144

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

LIST OF TABLES

1.1 Tesla P100 (GP100) GPU compared to prior GPU generations[76]. 39

2.1 A comparison of Xeon E7-8890 v4 CPU and NVidia GP100 GPU features[76]. 49

2.2 Most common intermediate languages leveraged by GPU computing plat-
forms. 51

3.1 Theoretical GPU specifications and the respective flops/byte ratios 66

4.1 The NVidia GPU profiler metrics required for the derivation of kernel param-
eters. 75

4.2 The set of required kernel parameters in the proposed performance model. 76

4.3 The set of GPU parameters used in the performance model. 78

4.4 The profiling metrics gathered for the red/black computation on a GTX-480
GPU. 81

4.5 The extracted kernel parameters of the red/black SOR kernel 82

4.6 Measured GPU parameters for the NVidia GTX-660 82

4.7 The GPU cost weights as measured in the model for the NVidia GTX-660 . 83

4.8 Utilization metric values of the red/black SOR kernel, on the GTX-660. . . . 84

4.9 The profiling metrics gathered for the SGEMM computation on a GTX-480
GPU. 85

4.10 The extracted kernel parameters of the SGEMM kernel 86

4.11 Utilization metric values of the SGEMM kernel, on the GTX-660. 88

5.1 List of the CUDA GPUs used in the experiments 91

5.2 GPU parameters as measured with micro-benchmarks 91

5.3 The GPU cost weights as measured and used in the model 92

5.4 CUDA benchmark list of the Rodinia benchmark suite 100

5.5 List of selected kernels of the Rodinia suite used on the experiments 102

5.6 The relative instruction execution costs and the instruction efficiency on all
GPUs for the red/black SOR kernel. 103

5.7 The derivation of performance estimation on all GPUs for the red/black SOR
kernel (Okrn=0.3). 103

33 E. Konstantinidis

5.8 The highest rated utilization metric values of the red/black SOR kernel, on
all GPUs. 104

5.9 Prediction results on all GPUs for the red/black SOR stencil computation . 105

5.10 The profiling metrics gathered for the LMSOR kernel on a GTX-480 GPU.
All metrics are the accumulated values collected in 4 iterations for the red
element calculation. 106

5.11 The kernel parameters and the operational intensity of the LMSOR kernel. . 106

5.12 Prediction results on all GPUs for the LMSOR kernel stencil computation . 107

5.13 The highest rated utilization metric values of the LMSOR SOR kernel. . . . 107

5.14 Prediction results for the matrix multiplication kernel 108

5.15 Top GPU utilization metrics on matrix multiplication kernel profiling 108

5.16 Collected kernel parameters and the operational intensity of the selected
Rodinia kernels . 112

5.17 The highest utilizationmetrics for the Rodinia kernels and the corresponding
utilization rating. 115

5.18 Throughput of native integer arithmetic instructions[73] (operations per clock
cycle per multiprocessor) . 120

6.1 Theoretical specifications of the R9-Nano GPU 125

6.2 Measured GPU parameters for R9-Nano . 125

6.3 The GPU cost weights as measured for the R9-Nano 126

6.4 SGEMM kernel parameters using a 16x16 thread block size. 126

6.5 Prediction results on the R9-Nano GPU for the red/black SOR, SGEMM
and lvmd-krn kernels . 127

B.1 The GPU on-chip memory types as provided by modern CUDA GPUs . . . 143

PREFACE

I’m in the delightful position to author the finishing lines in this manuscript known as PhD
thesis. The feelings are mixed. It’s a great relief that after all the enormous and long effort
spent, this work is finally reaching to its completion. On the other hand, there is a sense of
emotion as this journey is approaching to the end. I would think of finishing of this thesis
to be as one of the most important milestones in my whole life. I thank everyone cordially
who helped me reaching this goal.

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

1. INTRODUCTION

Traditionally, the GPU (Graphics Processor Unit) has been used to accelerate the gener-
ation of stunning 3D image representations for 3D games and 3D professional graphics
applications. Complex 3D image rendering requires a huge number of compute opera-
tions to be performed in order to create realistic images. In addition, the 3D rendering
process is an embarrassingly parallel problem and this fact led to the adoption of parallel
computation paradigm on GPUs in a much quicker pace and to a vastly larger extent than
the traditional CPUs did. As GPUs steadily evolved to be more and more powerful ren-
dering engines in recent years they surpassed the compute capabilities of CPUs. Thus,
researchers began experimenting on general purpose computation on GPUs. Nowadays,
they are considered to be alternative compute accelerators and have found their place
in the HPC (High Performance Computing) sector which provides the necessary paral-
lel compute workloads for GPU consumption. However, GPU programming tends to be
more cumbersome and tedious compared to the CPU programming posing performance
bottlenecks. Moreover, experience has shown that performance is much more sensitive
to the proper use of GPU resources and thus it is more difficult to predict.

1.1 General purpose computation on GPUs

Historically, a graphics accelerator which afterwards evolved to a GPU was designed and
applied for graphics rendering purposes only. The processing units, traditionally called
shaders, were initially fixed-functioned. The first programmable shaders were introduced
in 2001[56]. This functionality triggered the development of shading programming lan-
guages. We note the Cg programming language[58], the OpenGL shading language (also
known as GLSL)[38] and Microsoft’s DirectX High-Level Shader Language (i.e. HLSL).
The emergence of these languages enabled the programmability of the processing units
within the GPU not only for graphics rendering but for solving general purpose problems
which could naturally map to the graphics pipeline. In this way the GPGPU (General Pur-
pose on Graphics Processing Unit) term was coined[50].

Research regarding the possibilities of GPGPU pushed the development of special pro-
gramming languages for GPUs with a focus on GPGPU, e.g. Brook[16]. However, the
actual breakthrough was set when the NVidia’s Tesla architecture[55] as well as pure GPU
compute programming languages were introduced. Tesla architecture employed unified
shaders which no longer were designed for a particular purpose but they could either be
used for vertex, fragment processing or computation. The first GPU adopting Tesla archi-
tecture was the GeForce 8800 GPU in 2006, which featured 128 streaming processors
with a theoretical peak of 518 single precision GFLOPS performance. Pure GPU compu-
tation languages emerged, e.g. CUDA[73] and OpenCL[39]. These languages enabled
the programmability of GPU for general purpose computation without involving the graph-
ics pipeline. In this regard, a great interest from the research community was spawned in
the adoption of GPUs for general algorithm acceleration.

37 E. Konstantinidis

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

Figure 1.1: A comparison of CPU and GPU floating point performance evolution [73].

The GPU performance has vastly improved over the last years (figure 1.1). In 2010 the
highest performing NVidia GPU (GTX-580) featured a theoretical peak of 1,581 GFLOPS
single precision, whereas in 2015 the highest performing GPU of the same vendor (Titan-
X) was rated at 6,144 GFLOPS, which is a 3.9x improvement. At the time of writing of this
paper the highest performing GPU to date was the NVidia GP100. According to [76] the
features of this GPU compared to the professional GPUs of the 2 previous generations in
table 1.1. Half precision has been pushed mostly with the artificial intelligence applications
in mind, e.g. deep learning methods. This performance plus the accompanying energy
efficiency of the GPU are the greatest incentives for the adoption of the GPU for general
purpose computation.

CUDA programming environment[73] has been developed by NVidia and it works exclu-
sively on NVidia hardware. It is supported on all three major operating systems and it is the
most established GPU computing programming environment to date. It is well supported
by the vendor and most research on GPUs has been conducted by leveraging this partic-
ular API (Application Programming Interface). The most significant drawback of CUDA is
the restricted hardware support, which limits users to the particular vendor’s hardware.

The OpenCL is an open standard that targets multiple vendors and it is supported by the
Khronos group consortium. Programming style is similar to CUDA though more verbose.
However, it’s not established to the same extent as CUDA though it receives steadily more
attention. One of the primary advantages of OpenCL is the wide type of hardware support
as it is not limited to GPUs but it can be applied on CPUs, DSPs, or FPGAs, as well.

E. Konstantinidis 38

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

Table 1.1: Tesla P100 (GP100) GPU compared to prior GPU generations[76].

Tesla Products Tesla K40 Tesla M40 Tesla P100
GPU GK110 (Kepler) GM200 (Maxwell) GP100 (Pascal)
SMs 15 24 56
TPCs 15 24 28

FP32 CUDA cores / SM 192 128 64
FP32 CUDA cores / GPU 2,880 3,072 3,584
FP64 CUDA cores / SM 64 4 32

FP64 CUDA cores / GPU 960 96 1,792
Base clock 745 MHz 948 MHz 1,328 MHz

GPU boost clock 810/875 MHz 1,114 MHz 1,480 MHz
Peak FP32 GFLOP 5,040 6,840 10,600
Peak FP64 GFLOP 1,680 210 5,300

Texture units 240 192 224
Memory interface 384-bit GDDR5 384-bit GDDR5 4,096-bit HBM2

Memory size Up to 12 GB Up to 24 GB 16 GB
L2 cache size 1,536 KB 3,072 KB 4,096 KB

Register file size / SM 256 KB 256 KB 256 KB
Register file size / GPU 3,840 KB 6,144 KB 14,336 KB

TDP 235 Watts 250 Watts 300 Watts
Transistors 7.1 ·109 8 ·109 15.3 ·109

GPU die size 551 mm2 601 mm2 610 mm2

Manufacturing process 28-nm 28-nm 16-nm FinFET

Currently, GPUs have mostly found a place on the HPC sector as the interest of the sci-
entific community is significant. This interest stems from the vast compute requirements
of scientific applications which tend to require enormous amounts of computations with
inherent parallelism, which pose the GPUs suitable for such kind of algorithms. Main-
stream use of GPU compute is still limited mostly to video and image processing, or brute
force workloads (e.g. cryptocurrency mining, cryptography). Due to the architectural dif-
ferences of CPUs and GPUs, performance optimization decisions have to be applied in a
different manner in order to attain high performance. Since, the goal of GPU computing
paradigm is reaching higher performance levels the proper use of optimization techniques
is mandatory.

39 E. Konstantinidis

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

1.2 The performance analysis challenge

As already noted, the real focus of GPU computing is about performance so it would
be of great significance to be able to predict performance of GPU applications on a wide
range of hardware. Performance modeling information is particularly important that can be
exploited for either the consideration of a hardware upgrade or even on choosing important
optimization decisions. Additionally, the maximum performance that could be achieved is
very important as this could aid in searching for any worthwhile optimizations. However,
performance impact of migrating to a GPU accelerator or moving from one type of GPU to
another can be a puzzling process to predict. Performance bottlenecks can be different
due to architectural changes or variations on the balance of processor resources between
different types of processors.

CPUs do not require a vast amount of parallelism in order to yield decent performance.
They utilize large hierarchies of cache memories that are able to alleviate the large access
latencies of main memory. In addition, they employ advanced techniques in order to max-
imize the single threaded performance, e.g. aggressive speculative execution, register
renaming, result value forwarding, etc. All these features eliminate pipeline and memory
bottlenecks, leading to more predictable execution results.

On the other hand, GPUs are significantly more performance sensitive to supplied paral-
lelism, resource usage and memory access patterns. They are considered as massively
parallel compute devices as they practically need many thousands of active threads in or-
der to keep them occupied. This fact poses large problems with abundant parallelism as a
requirement. The GPUs feature much smaller cache memories which in conjunction with
the large amount of active threads allows only limited use, mostly for exploiting the spatial
locality between sibling threads. The missing of large cache hierarchies forces program-
mers to effectively use memory. However, GPUs require regular memory accesses with
specific requirements in order to apply coalescing, which is a mandatory requirement for
efficient memory accessing. All reasons above induce potential bottlenecks for GPU per-
formance. Practical experience has proven that GPU performance is sensitive to design
decisions and fine tuning. In general, GPUs tend to be less tolerant to naive program-
ming practices in regard to performance. Moreover, though GPUs provide great compute
performance, this can only be achieved on problems that match their characteristics.

It should be added that GPU ISAs (Instruction Set Architectures) are not fixed, which can
also affect the performance estimation process between different ISA GPUs. Modern
CPUs tend to be compatible on a specific ISA mostly due to the necessity of software
compatibility. The large existing software install base locks the CPU vendors on particular
ISAs, though they implement completely different micro-architectures within their prod-
ucts. On GPUs such restriction does not exist as the software install base typically does
not directly embed machine code but regularly binary code in other intermediate language
forms. That said, typically GPUs execute different machine codes for the same kernels
as they are just-in-time compiled for the respective ISA. Such differentiations can poten-
tially change the used instruction mix significantly and subsequently cause performance
variations.

E. Konstantinidis 40

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

For all the reasons above this thesis is focused on proposing a performance model that
provides the necessary abstraction in order to be applicable on a wide range hardware,
yet it provides decent prediction accuracy, is quick and straightforward to apply and can be
fully automated based on black-box kernel inspection. In addition, this model was devel-
oped as roofline based and as such it is able to indicate an upper bound on performance,
which can be fairly useful to the programmer as a guidance, providing performance feed-
back for further optimizations. The ultimate goal was to provide a tool that runs automati-
cally the whole performance prediction process by utilizing an existing GPU program and
producing the final results without the user’s intervention.

1.3 Structure of thesis

This thesis is structured as follows. In the next chapter background information and a
summary of related work is provided along with their connection to this thesis. The back-
ground information includes a short historical overview of the GPU as it evolved from fixed
function graphics acceleration hardware to the point being considered as a special general
purpose computation coprocessor. The various programming environments developed to
date are also described. Related work includes relevant research work conducted in the
field of performance prediction models for GPUs, both analytical and simulations.

The third chapter develops a discussion on the foundation of the proposed model, i.e. the
roofline model, as well as, an introduction to the quadrant-split visual model. The roofline
model is a widely accepted tool for performance analysis and the proposedmodel is based
on the same concept. An alternative visual representation proposed is the quadrant-split
model giving additional insight on multi-processor performance analysis. Furthermore, the
roofline model was experimentally approximated by using an artificial micro-benchmark
dubbed mixbench.

The fourth chapter is essentially the main contribution of this work. It provides a detailed
description of all steps required by the proposed method along with an analysis of the pro-
posed performance model. The description is additionally complemented with two applied
case studies and validation with real performance measurement.

The fifth chapter is an extended experimental evaluation of the proposed performance
method. Experimentation on a wide range of real world kernels is provided and a further
analysis on special cases where the prediction was not considered adequately accurate.
Additionally, the kernel performance of mixbench micro-benchmark was also validated by
the exact same methodology.

The sixth chapter exhibits the potential of the proposed methodology in cross-vendor GPU
environments (AMD GPUs) and a summary of the assumptions made in the performance
model along with known limitations that have been identified.

The last chapter concludes by summarizing on the proposed performance model and initi-
ating a discussion on possible future improvements. The latter includes potential improve-
ments on the model itself, on the hardware support or on software assisted approaches.

41 E. Konstantinidis

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

E. Konstantinidis 42

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

2. BACKGROUND AND RELATED WORK

2.1 The graphics accelerator as a Graphics Processing Unit (GPU)

Initially, the graphics accelerator had emerged as an ASIC (Application-Specific Integrated
Circuit) that performed fixed functions involved in 3D graphics rendering. In fact, well
before 3D hardware acceleration was established there had been graphics acceleration
hardware that focused on plain GUI 2D raster operations. The purpose of 3D hardware
acceleration was the offloading of these tasks from the CPU to another device with the
additional speed-up benefit. A simplified view of the graphics pipeline is illustrated in figure
2.1. Graphics accelerators gradually evolved by taking on the whole graphics pipeline.

Vertex
Processor

Clipper and
Assembler

Rasterizer
Fragment
Processor

vertices pixels

Figure 2.1: The graphics pipeline.

The term GPU (Graphics Processing Unit) was first coined by NVidia for the purpose of
marketing of the newly launched GeForce 256 accelerator in 1999. According to the origi-
nal definition a GPU was presented as a ”single-chip processor with integrated transform,
lighting, triangle setup/clipping, and rendering engines that is capable of processing a min-
imum of 10 million polygons per second”1. This term has been established for all modern
graphics accelerators ever since.

Initially, no programming could be applied on the graphics pipeline as all functions of
the GPU were fixed. However, as the accelerators evolved they allowed programmers
do write small custom programs that could be applied to the data processed within the
pipeline. These programs are called programmable shaders. The first GPU that of-
fered this capability was the GeForce 3 (NV20). It was introduced in 2001 and added
programmable pixel and vertex shaders. Thus, programmers could write programmable
shaders involved in either the vertex processor stage or the fragment processor stage.
This capability allowed the implementation of custom visual effects in graphics applica-
tions. Furthermore, it was the feature that enabled the capability of using GPUs for a
broader set of problems beyond graphics.

1http://www.nvidia.com/object/gpu.html

43 E. Konstantinidis

http://www.nvidia.com/object/gpu.html

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

2.2 The GPU as a general purpose processor

CPUs have traditionally been the heart of the computer as it is the primary component
that manages and executes the program’s instructions. All programs consist of a series
of machine code instructions and each instruction describes a tiny step in the progress of
computation. The solution of computational problems typically require a vast amount of
instructions to be executed in order to reach the final output of a program. Therefore one
of the primary factors in the speed of execution of a program is the speed of execution of
instructions as permitted by the central processor, i.e. the CPU. Especially the HPC sector
employs algorithms that require enormous amounts of computations to be performed.
Therefore, the effectiveness of CPUs in the execution of computation is of primary focus
in the particular industry.

During last decades the evolution of CPU has been mostly driven by the stable and fast-
paced evolution of process technologies employed by the semi-conductor industry. This
allowed the longevity of the so called Moore’s law[62] which had been first observed by
GordonMoore, one of the founders of Intel corporation. This lawwas an observation which
described a doubling every year in the number of components per integrated circuit and
latter it was revised to doubling every two years. The increasing trend in the number of
transistors on the CPU combined with increasing clock frequencies allowed the exponen-
tial scaling in the performance of CPUs which lasted for many decades. This improvement
had been enjoyed by the software industry without applying any changes to the existing
software. However, that era has reached to end due to the power wall[79] that seized the
long term increasing of CPU frequency clock speeds and the diminishing improvements in
exploiting the instruction level parallelism in existing software. Then, CPU vendors turned
to multi-core designs that allowed the inclusion of multiple processors within the same
chip silicon. IBM Power 4 was the first CPU to employ a multi-core design on year 2001.
However, this move forced software designers to change their sequential approach in pro-
gram development to parallel in order to take advantage of this new trend. An expressive
quote used to present this new reality was ‘The free lunch is over‘[87, 88].

On the other hand, the graphics accelerator employed a parallel design since the early be-
ginnings. The parallel nature of graphics processing allows a huge number of operations
to be performed in parallel and thus, GPU vendors adopted widely parallel processing de-
signs on GPUs. For instance, even the GeForce 256, introduced in 1999, employed quad
pixel pipelines. Thereafter, the additional transistors per fabrication node generation led
the GPU performance to rapidly increase.

Initially however, the GPU didn’t offer the programmability required to exploit this compute
capacity for anything more than graphics rendering. Later on the programmable shader
capability was introduced in 2001, as already reported, but the hardware units (shader
units) that were designed to execute shader code were still specialized to the particular
unit type. This meant that there were different physical units on the GPU at the time for
each pipeline stage, i.e. vertex shader units and pixel/fragment shader units, each built for
the execution of particular shader type codes. This led to imbalances in execution loads
inducing negative performance impact.

E. Konstantinidis 44

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

2.2.1 Unified shaders through the introduction of the Tesla GPU architecture

The real breakthrough in the GPU computing field was set when the first desktop GPUwith
unified shaders was released. That was the NVidia GeForce 8800, which was introduced
in 2006 and employed the Tesla GPU architecture[55]. It enabled flexible programmability
through CUDA[73], a native GPU compute programming environment.

Some key information of the Tesla architecture[55] (figure 2.2):

• 128 streaming-processor (SP) cores organized as 16 streaming multiprocessors
(SMs) in eight independent processing units called texture/processor clusters (TPCs)

• The SM manages and executes up to 768 concurrent threads in hardware with zero
scheduling overhead.

• The SM is a unified graphics and computing multiprocessor that executes vertex,
geometry, and pixel-fragment shader programs and parallel computing programs.

• The SM consists of eight streaming processor (SP) cores, two special function units
(SFUs), a multithreaded instruction fetch and issue unit (MT Issue), an instruction
cache, a read-only constant cache, and a 16-Kbyte read/write shared memory.

• The GeForce 8800 Ultra clocks the SPs and SFU units at 1.5 GHz, for a peak of 36
GFLOPS per SM. To optimize power and area efficiency, some SM non-data-path
units operate at half the SP clock rate.

• To efficiently execute hundreds of threads in parallel while running several different
programs, the SM is hardware multithreaded. It manages and executes up to 768
concurrent threads in hardware with zero scheduling overhead.

In order to support a large number of concurrent hardware threads, the SM sustains a
large set or registers (8,192 total 32bit registers per SM) in order to be able to perform
zero-cost switching whenever required. This allows supporting very fine-grained paral-
lelism in an efficient manner. The SM features a flexible type of SIMD (Single-Instruction,
Multiple-Data) architecture which designers call single-instruction, multiple-thread (SIMT).
The SM’s instruction unit creates, manages, schedules, and executes threads in groups
of 32 parallel threads called warps. In essence, each warp maps to 32-lane SIMD oper-
ations and is able to follow an independent code path. During the execution, individual
threads can be inactive due to independent branching. The SM maps the warp threads
to the SP cores, and each thread executes independently with its own register state. The
SM executes instructions at full efficiency and performance when all 32 threads of a warp
take the same execution path. In case the threads within a warp diverge due to a data
dependent conditional branch, the warp serially executes each branch path taken, dis-
abling threads that are not on that path. After the execution of all taken paths complete,
the threads re-converge on a common execution path. Different warps can freely follow
independent execution paths without incurring negative performance impact.

45 E. Konstantinidis

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

Figure 2.2: The NVidia Tesla GPU architecture[55] block diagram.

SIMT execution fashion is similar to SIMD. The difference is that SIMT applies instructions
to multiple threads instead of multiple data lanes. In essence, the SIMD architecture and
its vector width is not directly exposed the GPU ISA architecture. The GPU architecture
instructions are scalar but they are executed by multiple threads in lockstep. It is a duty
of the hardware to manage the SIMD execution. For that reason, this architecture allows
programmers to ignore the SIMT execution implications and write parallel code in a MIMD
fashion, by letting the hardware execute coordinated threads in a SIMD fashion. However,
they can optimize performance by minimizing the circumstances where thread warp exe-
cution diverges. In contrast, typical SIMD vector execution requires from the programmer
to explicitly handle vector operations and manage divergence, including vector loads and
stores from memory.

The SM warp scheduler operates at half of the SP’s clock rate. At each cycle, it selects
one warp which is ready for execution to issue an instruction. The selected warp executes
the issued instruction over four SP cycles. The warp scheduler issues instructions to the
SPs and SFU units on alternate cycles, potentially keeping both fully occupied. These
specifications enable the GeForce 8800 Ultra GPU a theoretical peak performance of
36×16=576 GFLOPS.

The supported ISA includes floating point, integer, flow control, memory load/store and
texture operations. The integer and floating point operations include add, multiply, multiply-
add, minimum, maximum, compare, transcendental, bitwise and conversions operations.
Memory access supports read/write accesses on the three distinct address spaces, i.e.
local memory, shared memory and global memory. In addition there is a constant mem-
ory address space offering read only access capability and a texture unit which allows
cached read-only accesses in addition to sample bilinear filtering. Multiple global memory

E. Konstantinidis 46

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

accesses can be coalesced, as long as they are aligned and reside on the same memory
segments, one fact that can optimize use of memory bandwidth.

The Tesla scalable parallel computing architecture enabled the GPU to be effectively
adopted for high-performance computing applications. Data parallel design embraces
a two level decomposition, where the problem is first decomposed to blocks and then,
the blocks are further decomposed to small problems that can be executed in parallel.
This design maps naturally to the architecture of the GPU. The blocks map to the SMs
and they are executed without any synchronization among them. The smallest tasks are
then mapped to CUDA threads of CTAs (Cooperative Thread Arrays) which are threads
belonging to groups that have the ability to synchronize and exchange data in an efficient
manner. This kind of two level parallelism allows great scalability as the blocks can be
distributed to as many GPU resources are available.

The fundamental features set on this GPU architecture have been carried over to Fermi
architecture [63] and on the currently most recent GPU architectures. Some aspects have
improved, though, but the primary architecture has stayed intact employing a similar two
level SIMT thread hierarchy and fine grained scheduling.

2.2.2 A comparison of the GPU and the CPU

The CPU and the GPU have fundamental differences from the perspective of general pur-
pose computing. CPUs are traditionally optimized on sequential programs with a focus
on the minimization of latencies. GPUs, in contrast, focus on maximizing throughput by
relaxing the latency restrictions and pushing parallelism to extreme levels. These natu-
ral differences reflect to many design aspects including the threading capabilities, core
datapath, as well as, the memory hierarchy.

As already described, GPUs do excessive use of fine grained multithreading. CPUs on
the other hand, rely on coarse grained multithreading in order to scale performance by
duplicating the CPU resources and to increase its utilization by employing symmetric mul-
tithreading. However, multithreading is limited on CPUs. A typical 4 core desktop CPU
provides a total of 8 hardware threads at most. A recent NVidia GPU allows a total of up to
64 active warps of threads, per SM. The GPU employs excessive multithreading in order
to hide pipeline and memory access latencies.

A fundamental difference between SIMD, as it is applied on the CPU, and SIMT execu-
tion lies in flexibility. CPU SIMD instructions are not always applicable as their use is
dependent on the access patterns and conditional operations. In addition, programmer
has always to have the width of SIMD in mind. On the other hand, SIMT execution offers a
great programmability advantage as every type of instruction is able to execute in a SIMT
fashion and the conditional branches can be suitably handled by the hardware. The only
implication of conditionals is their negative impact on performance, as they do not affect
the implementation.

At the time of writing of this thesis, contemporary desktop CPUs were equipped with up

47 E. Konstantinidis

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

to 10 cores. The largest consumer GPUs featured more than 20 SMs. In addition, one
should consider the parallelism per core, per SM. A GPU SM can regularly perform a count
of operations to the order of hundreds per clock whereas a CPU performs to the order of
tens. Therefore, the overall parallelism characteristics of the GPU are far more evident
compared to the CPU.

A modern CPU is equipped with 3 to 4 levels of cache memory. Typically, the L1 cache
is exclusive to each core whereas L3 & L4 are shared among cores. On the other hand,
GPUs feature a simpler cache memory structure, typically organized in a 2 level hierarchy
(L1 & L2). The L1 is dedicated to each SM whereas L2 is shared. GPU caches in general
are optimized for spacial locality instead of temporal locality. A significant cause for the
statement above is the necessity of servicing a huge number of active threads, thememory
accesses of which will largely evict any cached data that is intended to be reused. This
effect eliminates any opportunities to exploit temporal locality. For this reason, the GPUs
are typically suited for applications that employ specific patterns on data reuse.

On the other hand, the GPU main memory provides higher memory bandwidth compared
to the CPU. The GPU memories are optimized for bandwidth, though, their access laten-
cies are significantly higher. Typical bandwidth for GPUs is rated to hundreds of GB/sec
which is an order of magnitude higher than the typical bandwidth of a CPU.

Additionally, each GPU SM has far more available register space than a CPU core does.
The large register files are required in order for the GPU to keep the context of vast
amounts of active threads on the SM, enabling zero cost thread scheduling. As men-
tioned earlier, each SM is able to support thousands of active threads. In order for this to
be this possible, the register file must be sized to hundreds of KBytes.

Comparison of particular CPU and GPU products

As a more direct comparison, the GP100 GPU[76], the specification of which has already
been provided in table 1.1, is compared with an equivalent high-end server class CPU, the
Intel Xeon Intel Xeon Processor E7-8890 v4. Both products are HPC oriented and used
on servers. A direct comparison of quantitative features that were discussed previously is
presented in table 2.1.

The particular CPU consists of 24 CPU cores whereas the GPU is equipped with 56 SMs.
Each CPU core is able to keep just 2 active hardware threads through hyper-threading
technology. In contrast, each SM is able to keep a maximum of 64 warps active. This
entails a huge difference on the maximum hardware threads per processor (≈ ×75).

Similarly, the register file per SM on the GPU is more than ×21 the register file of the
CPU. The recent Intel Skylake architecture designates the CPU cores having 180 physical
integer registers plus 168 physical floating point registers. This is a total of 180×8+168×
64 = 12,192 bytes per core, assuming the use of AVX512 SIMD extensions (512bits per
floating point register and 64bits per integer register). On the contrary, each SM of the
NVidia P100 GPU is equipped with a 256KB register file, which is far larger.

E. Konstantinidis 48

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

Table 2.1: A comparison of Xeon E7-8890 v4 CPU and NVidia GP100 GPU features[76].

Feature NVidia GP100 Intel Xeon E7-8890 v4 Ratio
Core/SM count 56 24 2.333

Flops per clock, per core/SM 64 DP Flops 16 DP Flops 4.000
Total hardware threads/warps 3,584 48 74.667

Total last level cache 4 MB L2 60 MB L3 0.067
Total per core dedicated cache 3,584 6,912 0.519
Register file size per core/SM 262,144 bytes 12,192 bytes 21.501

Total register file space 14,336 KB 285.75 KB 50.170
Memory bandwidth 720 GB/sec 85 GB/s 8.471

On the other hand, cache memories are dramatically smaller on the GPU. Although, the
GPU has 4MB of L2 cache, which is the largest recorded to date for a GPU, the CPU
features a ×15 larger L3 cache. Furthermore, the total core dedicated cache is almost
double on the CPU (24 × 256 + 768 = 6,144 + 768 = 6,912 vs 56 × 64 = 3,584). However,
the small memory cache is alleviated by the exceptionally high memory bandwidth, which
is more than ×8 on the GPU and it is provided by the stacked HBM2 memories.

The harnessing of parallelism was evident on the GPUs since the early beginnings. Since,
this trend only became more aggressive and at the time of writing of this thesis the high-
end GPUs featured well over 3,000 parallel ALUs (Arithmetic Logic Units), e.g. the NVidia
GP100[76] and the AMD Fiji with 3,584 and 4,096 shader units, respectively. This aggres-
sive parallel architecture of GPUs pushed them to extreme levels of compute capabilities.
As already presented in section 1.1 the GPU compute performance evolution has been
greatly increased over the last years. This is mostly attributed on the fact that the graph-
ics rendering process offers huge parallel floating point computation opportunities and the
GPU designs were built to exploit this abundant parallelism. The clock frequency wall did
not have a severe negative impact for GPUs whereas CPUs suffer to exploit additional
instruction level parallelism from existing codes.

2.3 GPU compute programming paradigms

Early adoption of GPUs for computation employed shader programming languages though
the available graphics APIs. Some popular shading languages at the time were the
OpenGL shading language (also known as GLSL)[38], the NVidia’s Cg programming lan-
guage [58] and Microsoft’s DirectX High-Level Shader Language (i.e. HLSL). These
paradigms forced researchers to map their computation problem into a graphics prob-
lem. Therefore, it required a knowledge background and experience on the graphics APIs
and pipelines.

49 E. Konstantinidis

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

GPUs intrigued the interest of researchers since the early beginnings. Some indicative
early work onGPUs for general purpose computation is the work of Dokken et al. describing
methods and challenges of GPGPU, along with an example of solving the heat equation
using a Jacobi iteration [25]. An additional implementation of the Jacobi iteration compu-
tation was proposed by Amorim et al. [83], who presented an implementation using both
CUDA and OpenGL shaders (GLSL). Another example is an intrusion detection system
by Jacob et al. [34] which offloads string-matching computations to the GPU and it is im-
plemented in Cg.

In order to alleviate the programmer’s involvement with graphics management, the Brook
research project[16] was developed as a special GPU compute language that could hide
the graphics peculiarities from the programmer. However, the particular language, though
being a promising project, never did gain wide acceptance.

The CUDA environment[64, 73] was the first native GPU compute development environ-
ment which consisted of a complete toolchain for GPU compute programming and was
independent to the already existing graphics APIs. It was first introduced in 2007 by NVidia
and since, it has been the most popular GPU computing toolkit available. It supports all
modern NVidia GPUs, commercial and professional, and the most common operating sys-
tems, i.e. Windows, macOS and Linux. It provides a rich API on the host processor for
the GPU management and a C/C++ like kernel language for GPU kernel programming.

One of the most significant disadvantages of CUDA is its hardware support limitation to
NVidia GPU hardware. This gap is filled by an alternative GPU computing library called
OpenCL (Open Compute Language) and directed by Khronos group[39]. OpenCL is an
open standard which is supported by most hardware vendors. Its purpose is not limited
on GPUs, but it has been also supported by CPUs, DSPs and FPGAs. It has the form of a
library and it accepts kernels in text form through function calls which are compiled by the
device driver in a JIT (Just In Time compilation) fashion. The OpenCL programming model
is quite similar to CUDA. The kernel language is a C derived language called OpenCL C.
Beyond CUDA, OpenCL is one of the most popular GPU programming paradigms.

CUDA andOpenCL are considered as low level GPU programmingmodels as they expose
significant details of GPU execution and provide almost full control of the device. As such,
the programmer needs to have a deep knowledge of the GPU hardware in order to achieve
acceptable performance. In addition, a problem raised by using low level programming
models is the significant time required for the development of optimized code which is done
at the cost of productivity. This need has led to higher level GPU programming models
which facilitate productivity.

OpenACC[77] is one of the most well known high level programming languages for GPU
compute. It is directive based and it allows the same source to be compiled for CPU if it
is not supported by the compiler. In this sense, it significantly resembles the OpenMP[23]
parallel programming standard, though it has been developed specifically for GPUs.

Similarly, the OpenMP standard[23, 78] has expanded its support to accelerators since its
version 4.0. It is directive based, similarly to OpenACC. However, it is a well established
programming paradigm for shared memory multi-processors and it has only recently been

E. Konstantinidis 50

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

extended support to GPU accelerators.

Another higher level programming model for GPUs is C++AMP[60]. C++AMP is a stan-
dard specification defining a set of extensions on top of the C++ language on the purpose
of GPU compute acceleration. It has been introduced by Microsoft corporation and the
implementation they developed leverages the DirectX API as a backend, restricting the
OS platform to Windows. Recently, however, a C++AMP implementation has been intro-
duced by AMD through their open source HCC compiler[84] which leverages the LLVM
compiler infrastructure[49] and is available for Linux OS. This implementation uses the
ROCm[7] software stack as a backend, which is an open source software stack specifi-
cally developed for professional GPU compute.

Finally, apart from programming languages for GPUs the diversity of GPU architectures
imposes the use of intermediate languages in order to split the compilation process tomore
and simpler stages. Typically, each one of the GPU compute platform implementations
defines its own intermediate language. As a reference we provide the most common in
table 2.2 along with the respective platform.

Table 2.2: Most common intermediate languages leveraged by GPU computing platforms.

Intermediate Language GPU computing platform
PTX (Parallel Thread eXecution)[74] NVidia CUDA

SPIR/SPIR-V (Standard Portable Intermediate Representation)[35] Khronos OpenCL
HSAIL (HSA Intermediate Language)[33] HSA Runtime
AMD IL (AMD Intermediate Language)[3] AMD OpenCL runtime

2.4 GPU performance modeling

The GPUs have offered additional opportunities in the high performance computing field
by being utilized as accelerators in dense computations. Since they play a key role in
performance computing and their architecture is significantly different from the more tra-
ditional processors, i.e. CPUs, they have triggered the researchers’ interest in designing
performance models.

GPUs, as opposed to CPUs, are throughput processors. They mostly have different per-
formance bottlenecks and peculiarities than CPUs due to their different characteristics.
The different amounts of caches, the vast concurrency, increased latencies, higher com-
pute throughput and memory bandwidth are some factors. A performance model should,
at least, focus on the performance critical factors of the GPU. The different characteris-
tics of the GPU impose the use of tailored performance models on this special type of
hardware.

The work that has been developed to this goal can be classified into two major categories.
First is the simulation approach which can be extremely accurate yet a time consuming
process. The analytical approaches are much faster and easier to apply. Furthermore,
they tend to use and provide a better high-level insight [30]. Simulation based predictions

51 E. Konstantinidis

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

may use vast amount of generated data that may not yield the desired insight that is easy
to be interpreted by GPU programmers. Using an analytical performance model with a
reasonably small number of parameters could lead to amodel easy to use by programmers
while producing predictions that are sufficiently accurate.

In the following paragraphs simulation based modeling approaches are first presented
and next the analytical approaches to performance estimation follow. Additionally, some
more special case approaches are presented. Finally, power efficiency oriented, as well
as, GPU micro-benchmarking research is described. The referred research work mostly
employs the NVidia CUDA programming environment, unless otherwise stated.

2.4.1 Simulation based models

Here some significant related work on GPU simulators is presented. Bakhoda et al. de-
veloped a simulator called GPGPU-Sim[9], which simulates the execution of PTX instruc-
tions. The authors employed the simulator to characterize the performance impact of sev-
eral micro-architecture features, including the interconnect topology, the use of caches,
the design of memory controller, the parallel workload distribution mechanisms and the
memory request coalescing hardware. In their experiments they observed that perfor-
mance is more sensitive to the interconnect bisection bandwidth rather than latency and
that, for some applications, running fewer threads concurrently than the GPU allows can
improve performance by reducing contention in the memory system. At the end of this
section more detailed information is provided regarding the GPGPU-Sim simulator.

Power et al. developed an heterogeneous CPU-GPU simulator called gem5-gpu[80]. It is
based on the aforementioned GPGPU-Sim simulator [9] and on the gem5 CPU simulator
[12]. It is able to support coherent caches and a single virtual address space with separate
physical address spaces on CPU and GPU.

Multi2Sim simulator [89] is yet another open source CPU and GPU simulator. In [89]
authors used it to simulate an x86 CPU and an AMDEvergreenGPU. It has been extended
though to support the more recent AMD Southern Islands GPU architecture.

Another PTX execution simulator is Ocelot, which has been developed by Kerr et al. [37].
Ocelot can execute compiled kernels from the CUDA compiler and it supported the full PTX
1.4 specification at the time authors had written their research paper. The authors used
the simulator to provide experimental results that quantified the impact of optimizations,
e.g. branch re-convergence, data sharing between threads and additional parallelism.

A special software tool that enables simulated execution of GPU programs is Oclgrind [81].
The particular software allows running OpenCL applications on a virtual OpenCL software
device. In this sense, it cannot be strictly considered as a GPU simulator, yet it allows
GPU program execution analysis and bug detection through software. More information
on the tool follows.

Most tools discussed in this section are provided under open source licenses and therefore
are freely available for experimentation. Two representative tools are further described

E. Konstantinidis 52

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

here.

GPGPU-Sim

The GPGPU-Sim simulator [9] has been extended to support CUDA and it incorporates
all essential architectural features of a GPU. It supports the notion of a shader core which
is equivalent to the Streaming Multiprocessor and each core consists of an SIMD unit,
the width of which is the same as the number of SPs per SM. The cores are connected
to a set of memory controllers through an interconnection network and each controller
features an L2 cache. Each shader core consists of a set of fast memories, i.e. L1 texture
cache, L1 constant cache, L1 local & global caches and shared memory. The simulator
supports essential features of GPU execution including multi-stage pipelines, thread warp
scheduling in groups of 32 threads, memory access transaction coalescing and a round
robin scheduling of warps supporting long latency operations (e.g. DRAM accesses).
Essentially, the simulator accepts PTX kernel code as input for execution.

The initial work [9] was focused on a GeForce 200 based GPUmodel, thus the width of the
SIMD had been set to 8. At the time of writing of this thesis, though, the simulator had been
extended with support of the Fermi GPU architecture. It provides configuration with a wide
range of architectural options. It is believed that it can be extended in a straightforward
way to support even more recent GPU architectures.

Oclgrind

Oclgrind is a tool that acts as a virtual OpenCL device on the system[81]. It enables
the analysis and debugging of OpenCL programs. It features a plugin interface provid-
ing extensibility through which sophisticated developer plugins can be developed for the
collection of individual execution metrics in order to satisfy complex analysis.

The tool executes kernels in an architecture-agnostic manner. No actual execution on a
physical GPU is conducted as OpenCL kernels are assigned to the CPU for execution.
The tool does not simulate any particular GPU features as it aims at correct semanti-
cal execution of OpenCL code conforming to the standard. The OpenCL kernel sources
are compiled to SPIR (Standard Portable Intermediate Representation) code. Thereafter,
SPIR code is executed by interpreting SPIR instructions.

The tool incorporates a plugin that can generate histograms of the different types of instruc-
tions executed by the OpenCL kernel. It enables the developer to inspect the approximate
instruction mix and the amount of memory that is read or written to each memory type. As
the interpreted instructions are based on SPIR, they won’t precisely match the GPU ISA
instructions of any actual hardware, yet the ability to perform run-time analysis on their
execution is still worthwhile for performance investigation.

In [81] it is reported that Codeplay, a software development company specializing in cre-
ating compilers and tools for heterogeneous architectures, has developed an extended

53 E. Konstantinidis

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

implementation of Oclgrind that gathers data on memory operations. According to the
report, offline analysis of this data allows developers to identify code that is generating ex-
cessive off-chip memory traffic or causes poorly coalesced memory accesses. This tool
exhibits the extensibility of Oclgrind as a performance analysis tool.

2.4.2 Analytical approaches

An early work example was done by Liu et al. who proposed GPU performance prediction
models[57] which classify a GPU application to one out of three categories, i.e. data-linear,
data-constant and computation-dependent. They employ a set of factors that affect per-
formance: the time to load data to RAM, read back results to CPU, load shader program to
fragment processor, do overhead operations (framebuffer initialization and texture binding
andmapping) and perform the actual computation on fragment processor. As a pioneering
work the implementations were developed in a graphics API, i.e. GLSL.

A high level abstract model was developed by Ma et al. who proposed a GPU perfor-
mance theoretical model[48] called called “Threaded Many-core Memory”. It is regarded
as an improvement of the PRAM model[27]. This model extends on the PRAM model
by supporting features as highly threaded execution and memory access latency hiding.
Authors analyze the accuracy of PRAM and TMM on four algorithms for the classic all
pairs shortest paths problem where they prove the superiority of the latter.

An analytical GPU performance model that is based on the occupancy of the memory sub-
system and exhibits the memory warp level parallelism was proposed by Hong et al. [31].
This model considers the amount of parallel memory requests filling the memory pipeline
by considering the amount of running threads, operational intensity and memory band-
width. Authors employed the CUDA programming environment and they applied their
model on micro-benchmarks and applications where they exhibited 5.4% and 13.3% ge-
ometric mean of absolute errors, respectively.

Another performance prediction model was proposed by Kothapalli et al. [47] on which
they took into account of various special GPU characteristics, e.g. the amount of cores
(SPs/SM), the effects of memory latencies, memory access conflicts, cost of computation,
scheduling and pipelining. Their proposed model can be used to analyze CUDA kernel
pseudo codes in order to obtain performance estimations. The authors performed exper-
iments with matrix multiplication, list ranking and histogram generation kernels.

An analytical approach was also followed by Baghsorkhi et al. who performed perfor-
mance prediction on GPU architectures[8]. The authors represent a GPU kernel as a
work flow graph structure, which they analyze in order to estimate performance. They use
benchmarks that stress different GPU micro-architecture events, e.g. uncoalesced mem-
ory accesses, shared memory bank conflicts and branch divergence, all of which pose
challenging to analytical performance models. Authors validate their performance model
on matrix multiplication and FFT kernels. It can be useful for either compiler applying
optimizations or GPU programmers in order to assess performance bottlenecks in their
code.

E. Konstantinidis 54

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

Stevens et al. in [86] propose a linear GPU performance model based on kernel param-
eters and GPU coefficients for numerical oriented kernels. They consider costs related
with data motion, floating point computations and synchronizations. A set of benchmarks
is used in order to fit the parameters to the characteristics of the applied GPU hardware.
In this respect this model does not account for overlapping of compute and memory op-
erations. The relative performance accuracy exhibited in their experiments is comparable
to previously published work. Authors employed the OpenCL GPU programming environ-
ment and in this regard, their model can be used across GPU vendors and architectures.

Sim et al. proposed an analytical performance prediction framework with a focus on guid-
ing the programmer to beneficial optimizations in order to improve performance[85]. The
authors built a performance model which makes use of a wide set of parameters, e.g.
detailed instruction counts, warp counts, and hardware parameters, e.g. SM counts, la-
tency metrics, cache miss ratio, ILP (Instruction Level Parallelism), MLP (Memory Level
Parallelism), SIMD width, etc. Their model is based on the MWP-CWP (Memory Warp
Parallelism - Computation Warp Parallelism) model. It can generate programmer guid-
ing metrics. The authors employ their proposed model on sample input codes in order to
predict performance benefits.

In another pioneering work authors create a performance model based on the investiga-
tion of GPU ISA code and three major components, such as pipeline, shared memory and
global memory access[94]. The authors employ micro-benchmarks on the assessment of
GPU characteristics on the currently rather old GeForce 200 architecture. Their proposed
model is able to identify GPU kernel bottlenecks and provide quantitative performance
analysis allowing programmers to predict the benefits of potential program optimizations.
The experiments include three GPU applications: dense matrix multiplication, tridiagonal
systems solver and sparse matrix vector multiplication. They present experimental results
with high accuracy (5–15% error) as the model exploits information based on the native
GPU instruction set. In addition, authors employ their model to suggest architectural im-
provements on hardware.

Dao et al. in [24] propose two performance models for GPUs. A sampling based linear
model and a more advanced machine learning model. The former cannot deal with coa-
lescing or caching effects, whereas the latter can be used on either with or without caches.
The authors employ the OpenCL API.

Other researchers have used statistical methods for the purpose of performance predic-
tion on GPUs. Velho et al. employ a simple linear regression model for the purpose of
performance modeling[91]. Their proposed model involves three components: dispatch
time, execution time and collection time. They apply it on three common problems: matrix
multiplication, FFT and NeedleMan-Wunsch algorithm. Ali Karami et al. propose a per-
formance analyzer framework[36] focusing on OpenCL kernels which is based on princi-
pal component analysis (PCA) and a multiple regression model, utilizing data extracted
by hardware profiling metrics. A multiple linear regression model was also employed by
Mirsoleimani et al. in order to construct a performance predictor for GPUs[61]. Zhong
et al. incorporated a performance model[95] on a tool they developed which aims to im-
prove the utilization of GPUs by optimizing the scheduling of workloads through dynamic

55 E. Konstantinidis

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

slicing along with concurrent kernel execution. The performance model they propose is
based on Markov chain theory as they attempt to capture the non-determinism of concur-
rently executed kernels.

Authors in [54] utilize a performance model in their work involving a compute/memory
bound analysis. It is based on IPC metrics of various operations and the maximum mem-
ory bandwidth of the GPU, combined with a set of kernel’s instruction count parameters.
Their primary focus is an algorithm for scheduling concurrent kernels, focusing on the opti-
mized order of execution through combining kernels with opposing resource requirements,
i.e. compute intensive along with memory bandwidth intensive kernels. They define the
degree of the relative synergy among kernels as a measure for rating the extent to which
kernels are symbiotic. Through symbiotic scheduling the authors exhibited both perfor-
mance, as well as, energy efficiency gains.

Part of research work is focused on the analysis of specific aspects and resources which
can be performance critical during GPU execution. Boyer et al. built the Grophecy++
framework which they use to predict speedups of GPU kernels with a particular focus on
the CPU-GPU data transfer cost[15], the cost of which is a potential bottleneck when data
is not resident in the device memory. The Grophecy++ framework extends on Grophecy
[59], an earlier presented framework which is able to project the overall speedup from
CPU code. In particular, Meng et al. in [59] describe a method for developing an abstract
representation of a CPU code called skeleton, which they analyze by mapping its pieces
to various code transformations that correspond to hypothetical GPU codes. Their frame-
work does not require an actual GPU implementation. Later on, this representation can
map to estimated performance as well as the cost of development of the particular GPU
code, which can help developers determine whether GPU acceleration is beneficial before
actual development is undertaken.

VanWerkhoven et al. are also focused on the CPU-GPU transfer cost and they developed
a cost model that considers the PCIe transfers, as well as, the overlapping of communi-
cation with computation [90]. The authors explore the wide range of possibilities in the
implementation of overlapping, e.g. the applied number of streams or the use of device-
mapped host memory. They propose this model for the evaluation of all possible different
implementations with respect to their performance.

Authors in [40] propose CuMAPz, a tool for analyzing the memory access patterns per-
formed by GPU kernels in order to give guidance on optimizations. It focuses on analyzing
the behavior of both shared and global memories. This is based on memory access sim-
ulation by considering many aspects, i.e. data reuse, global memory access coalescing,
shared memory bank conflict, channel skew and branch divergence. The performance
impact of these aspects is predicted on various ways using shared and global memories.
The authors exhibited a 32% improvement on code over a previous approach.

A hybrid approach was employed by authors in [17], which is focused on exploiting the
advantages of both simulation and analytical prediction approaches. The authors devel-
oped a tool designed for performance prediction, in which they employ both a simulator
and an analytical model. They combine them in order to be able to do fast and accurate

E. Konstantinidis 56

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

performance estimations.

The roofline model

The roofline model [92] introduced by Williams and Patterson, is a visual model that pro-
vides insight on the maximum expected performance of a kernel by considering both pure
computation and DRAM memory transfer requirements. It is based on the assumption
that performance is either bound on the compute potential or the memory bandwidth of
the underlying processor. The performance bound is either one depending on the relative
requirements of operations of the application. The compute to memory transfer perfor-
mance ratio is expressed with Odev as equation (2.1) shows, which is the fraction of the
maximum compute operation throughput to memory bandwidth specifications of the de-
vice.

Odev =
Throughput(compute)

Bandwidth(memory)

(2.1)

Operational intensity is measured in flop/byte units and is used to determine the limiting
performance factor on a particular processor. This can be applied by estimating the pro-
gram’s operational intensity which is determined by the respective program’s requirements
as equation (2.2) indicates:

4

8

16

32

64

128

256

512

1,024

1/16 1/8 1/4 1/2 1 2 4 8 16 32 64 128

G
F

LO
P

S
 (

do
ub

le
 p

re
ci

si
on

)

Operation Intensity (Flops/byte ratio)

Roofline for Intel Xeon E7-8857 v2

Dot product (double precision)

Figure 2.3: The roofline visual model for Intel Xeon E7-8857 v2.

Okernel =
Operations(compute)

Traffic(memory)

(2.2)

57 E. Konstantinidis

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

This fraction is also measured in flop/byte units but it is dependent on the application
characteristics. Depending on the whether Okernel > Odev the kernel is considered as
compute bound or memory bound. The graphical representation of the roofline model is
able to provide a quick and insightful visual representation of the device theoretical peak
performance. In figure 2.3 the solid line represents the theoretical peak performance of an
Intel Intel Xeon E7-8857 v2 CPU depending on the program’s operational intensity. In this
example for program operational intensities up to 3.39 flop/byte the program is considered
as memory bound. Compute bound programs must exhibit higher compute intensity.

The expected theoretical peak performance of a device is estimated using equation (2.3):

Perf(roofline) =

{
Throughput(compute), if Okernel > Odev

Okernel ×Bandwidth(memory), if Okernel ≤ Odev

(2.3)

For example, the computation of the dot product between two double precision arrays of
lengthN requires traversing both of them. Thus, the expectedmemory traffic for accessing
both arrays would be 2 × N × 8 = 16 × N bytes. The amount of compute operations
is 2 × N + 1, as each pair of values between the two arrays has to be multiplied and
accumulated to the total sum. Therefore the operational intensity is estimated to be as
follows (2.4):

Odot product =
(2×N + 1)

16×N
≈ 1/8 (2.4)

which in general is rather low. In the graphic representation (figure 2.3) one can check
for the particular operational intensity which is the expected performance (intersection of
dashed and solid lines). In this case, the Intel Xeon E7-8857 v2 features Odev = 288/85 =
3.388 flop/byte, which is more than 25 times higher. Therefore, the roofline model points
to a memory bound performance limitation for the dot product computation.

Therefore, using this principle can aid on the characterization of particular programs.
Knowing the actual performance limitation is essential in order to follow proper decisions
for optimizing a particular application on a specific hardware.

Roofline derived models

Higher level performance models are more hardware agnostic, consisting a hardware ab-
straction of the real device, but tend to be less accurate. Nugteren et al. proposed a high
level performance model[65] which is roofline based, though refined by classifying the
kernel under inspection to a specific type out of a set of predefined classes which are fine
tuned instances of the roofline model, based on specific problem parameters. This way
the performance model provides more accurate prediction results compared to a common
roofline model approach. A significant highlight is that their proposed model inherently
works without requiring an existing optimized code implementation, which turns the model
ideal for estimating performance prior development.

E. Konstantinidis 58

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

Bombieri et al. designed a performance model[13] for identifying performance bottlenecks
on GPU kernels, with the ultimate goal of taking optimization decisions. The authors iden-
tify the maximum potential performance speed-up by eliminating a particular bottleneck.
They applied their model on three cases: Parallel Reduction, BFS and Matrix Transpose.
Through the method they propose they showed the way their proposed model led to opti-
mizations as a tool for providing guidelines to programmers.

Another roofline derived model is the work proposed by Li et al. in their “X model”[52]. It
is based on an older proposed visual model by the same authors called “Transit” model
and combines rooflines of memory bandwidth and compute throughput. Authors consider
the ILP, TLP (Thread Level Parallelism), DLP (Data Level Parallelism) and MLP (Memory
Level Parallelism) factors. Using the “X graph”, which is generated through the “X model”,
GPU programmers can identify performance bottlenecks and evaluate the effectiveness
of optimizations by investigating their individual and combined effects on performance.

2.4.3 Specialized application models

Other researchers have worked on performance models tailored for specific applications.
Examples are the work of Guo et al. as well as Li et al. , who have focused on Sparse
Matrix-Vector Multiplication (SpMV)[29, 53]. Guo’s goal is to accurately predict the ker-
nel execution times of CSR, ELL, COO, and HYB SpMV kernels, without being limited by
GPU programming languages or restricted to specific GPU architectures. The focus of Li
is a matrix type independent method for performance analysis and optimization. Authors
employ a probability mass function (PMF) method to optimize the SpMV computation pa-
rameters. Using this method they estimate the performance of SpMV based on COO,
CSR, ELL, and HYB formats. They compare their proposed method to the proprietary
cuSPARSE lib.

Baumeister’s et al. work regards to Finite-Difference Time-Domain (FDTD) applications[10],
whereas Feichtinger et al. have built a performance model on lattice Boltzmann (LBM)
simulations[26]. Baumeister focused on a particular implementation called B-CALM (Belgium-
California Light Machine) and they adopted a simple, semi-empirical modeling approach
to design a model which they validated for different hardware architectures. Feichtinger
proposed their software framework called waLBerla, which is centered around the lattice
Boltzmann method. They applied a highly scalable multi-GPU parallelization based on
the well established MPI[28] standard in a hybrid parallelization approach capable of us-
ing CPUs and GPUs in parallel.

2.4.4 Power consumption oriented models

A measure gaining more importance recently is power consumption. This issue is even
more significant given the fact that one of the major obstacle for High Performance Com-
puting is power consumption. In this regard, researchers are also focusing on GPU power
consumption and efficiency prediction models. For instance, Benedict et al. proposed a

59 E. Konstantinidis

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

performance and power consumption model for GPU kernels[11] which is based on dy-
namic regression models and Dynamic Random Forests (DynRFM), Dynamic Support
Vector Machines (DynSVM) and Dynamic Linear Regression Models (Dyn LRM) in partic-
ular.

Other research involving power consumption modeling on GPUs has been conducted by
Abe et al. [1]. The authors present power and performance characterization models of
GPU accelerated systems. They apply it on multiple architectures, including Kepler and
Fermi, where they quantify the impact of voltage and frequency scaling for each one. Next,
they propose statistical power and performance modeling of GPU-accelerated systems
that is simple enough to be applicable for multiple GPU architectures. They argue that
even though the proposed statistical models are simplified, they are able to predict power
and performance of GPUs within reasonable errors (20% to 30%).

Wu et al. in [93] followed a machine learning approach. Their model employs a neural
network that is trained by applying executions on real hardware and collecting the perfor-
mance and power measurements. The model learns how the application’s behavior scale
as the GPU hardware configuration is changed by using the measured performance and
power data. Performance counters of executions on kernels are used to feed the neu-
ral network in order to predict the scaling curve that represents a particular kernel. This
curve is used to predict performance and power consumption of the application on differ-
ent GPUs. The authors exhibited results with high accuracy which can be compared to
GPU simulators. Moreover, after the initial training of the network the model is very fast
on its execution.

Another power and performance model was proposed by Hong et al. [32]. Their primary
goal is to find the optimal number of active processors for GPU kernels, based on the fact
that if an application reaches its peak memory bandwidth then the exploitation of more
cores is not expected to improve performance any further. The model they propose does
predict both performance and power consumption. They exhibited they could save ≈ 11%
of energy on average by using their method.

2.4.5 Micro-benchmarking of the GPU

Researchers often employ micro-benchmarking in order to dive into the unknown charac-
teristics of compute devices and gain further understanding of the underlying hardware.
The extracted information can be used for the purpose of performance modeling of the
particular devices. Significant amount of research work has been based on benchmark-
ing accelerators either for the purpose of designing a performance model or for the deeper
understanding of hardware.

A benchmark similar tomixbench which is presented in this thesis was developed by Choi
et al. who propose a model for the analysis of various hardware devices focusing on the
execution time, power consumption and energy efficiency with respect to the operational
intensity of the application under execution[19]. Their goal is to connect the operational
intensity of the application with the efficiency of various types of devices used as building

E. Konstantinidis 60

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

blocks in the HPC sector (GPUs, APUs, SOCs). The benchmark they developed is based
on the same principles as mixbench does with some minor technical differences, e.g. the
authors employed manual unrolling of loops, different handling of the results which are
always written back to memory and each execution is designated for a specific operational
intensity value, whereasmixbench is based on template variables with automatic unrolling,
gets its intermediate results reduced but avoids writing them back to memory and invokes
multiple kernels mapping to a wide range of operational intensities. For more information,
reader is referred to paragraph 3.2 and section A.1 of the appendix, where the kernel’s
source code is provided.

Lemeire et al. [51] have also presented GPU micro-benchmarks for the analysis of issue
and completion latencies in various operations. They conduct an analysis on the effects
of the occupancy on these measurements, e.g. on a latency bound situation, or when the
ILP is not enough. The OpenCL environment was chosen in order to allow cross vendor
benchmarking.

The author of this thesis has also presented a set of micro-benchmarks for the evaluation
of fast on-chip GPU memories[43]. A short discussion on this contribution is provided in
the next paragraph, as well as, in B of the appendix.

2.4.6 This thesis primary contributions

The theoretical foundation of the work presented within this thesis has been presented in
a preliminary stage as a regular conference paper [42] and subsequently this work was
extended and published as an elaborate work in the form of a journal article [46]. The pro-
posed performance model is considered as a high level approach based on the roofline
model [92]. A discussion of the roofline model with GPU considerations in mind is pro-
vided in the 3rd chapter, along with a proposed visual representation called quadrant-split
model, which can provide better insight. Finally, the detailed description of the proposed
performance model is provided in the 4th chapter of this thesis and the experimental re-
sults follow in the 5th chapter.

The first paper contribution [42] presented an initial form of the method along with a limited
number of experimental results. The relevant journal publication [46] extended themethod
to a fully automated prediction process. The experimental results included executions on
a wide range of different real world kernels and a micro-benchmark. The hardware used
for the experiments included 4 consumer and 2 professional GPUs. Furthermore, the pro-
posed model was extended to the experimental use on a cross-vendor GPU environment
by employing an AMD GPU and the exhibited results were quite promising.

Other contributions that have been used in this thesis include an implementation of a red-
black SOR stencil computation method [44, 45] which has been utilized in the experiments
and it poses as a proof of concept case study in this thesis. A theoretical performance
analysis of the algorithm was provided and the implementations included various kernels,
each utilizing a different memory caching approach. Additionally, a set of developed LM-
SOR stencil computations [20, 21, 22] were also developed which served to investigate

61 E. Konstantinidis

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

the re-computation strategy as an optimization. In this respect various implementations
were investigated which are characterized by different operational intensities due to the
different degree of re-computation applied. Implementations of this work were also ap-
plied on the performance model. Last, a set of micro-benchmarks [43] was presented that
serves to the purpose of better understanding of the hardware capabilities regarding the
GPU’s fast on-chip memories. The micro-benchmarks assess the fast on-chip memories
which include shared memory, L1 & L2 cache, texture cache and constant memory cache.

E. Konstantinidis 62

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

3. GPU ROOFLINE MODEL AND THE QUADRANT SPLIT
REPRESENTATION

As already described on the previous chapter, the roofline model provides qualitative in-
sight to the primary performance limiting factor given no additional latencies affecting per-
formance. In this regard, a program can be classified as either compute bound when
being limited by compute throughput or memory bound when being limited by memory
bandwidth. Applying this principle on a GPU is a natural step as GPUs heavily rely on
memory access latency hiding by overlapping computations [73]. GPUs support hardware
context switching between threads that are active within a Streaming Multiprocessor. This
context switching is practically cost free and GPUs have been designed to exploit thread
level parallelism in this fashion in order to keep the resource utilization at high levels. This
overlapping potential allows the clear classification of a GPU kernel as bound to compute
or memory throughput, but not both. As such, it is a valid decision to apply the roofline
model on GPUs, at least in the same sense as it has been applied on CPUs.

3.1 Roofline GPU considerations

For instance, an example of the roofline model as applied on a GPU against to 4 types of
problems is depicted in figure 3.1. The operational intensity of these problems is indicative
as provided by authors proposed the roofline model in their original work[92]. The chart
depicts the GTX Titan-X GPU theoretical specifications. In this particular example the
SpMV (Sparse Matrix-Vector multiplication) and stencil computation problems are classi-
fied as memory bound whereas the LBMHD (Lattice Boltzmann Magnetohydrodynamics)
and 3D FFT problems as compute bound.

However, it should be noted that the roofline model provides an upper bound on perfor-
mance by definition. There is a wide range of causes that can have a negative impact
on performance on GPUs. These include bad memory access patterns, limited paral-
lelism, inefficient kernel launch configurations, branch divergences, resource limitations
(e.g. shared memory), bank conflicts (shared memory), and so on [73, 72]. In this regard,
as GPUs are massively parallel compute devices, it is assumed that satisfactory paral-
lelism is provided in order to keep the GPU busy. In general, a GPU kernel can be either
memory bound, compute bound or latency bound. It is memory bound when the memory
bus is congested by posing a limiting factor on the rate of execution of compute instruc-
tions. In this case the ALUs (arithmetic logic units) get stalled waiting for the memory data
transfers to complete. On the other hand, it is compute bound primarily when the ALUs
(Arithmetic Logic Units) of the GPU cores, or Streaming Multiprocessor in terms of CUDA,
are fully utilized and unable to provide additional throughput. In case the pipeline or mem-
ory latencies are the primary reason that limit performance the kernel is considered as
latency bound.

Due to the different architectural features of CPUs and GPUs some observations can be

63 E. Konstantinidis

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

16

32

64

128

256

512

0.125 0.250 0.500 1.000 2.000 4.000

G
F

L
O

P
S

 (
do

ub
le

 p
re

ci
si

on
)

Operation Intensity (Flops/byte ratio)

SpMV

Stencil

LBMHD

3-D FFT

Figure 3.1: The roofline visual model on NVidia Titan X GPU against 4 applications.

made. On one hand CPUs mostly focus on reducing memory access latencies by employ-
ing a high hierarchy of large amount of memory caches. As long as the memory caching
mechanism is unable to accommodate memory accesses, CPUs mostly exploit the ILP
(Instruction Level Parallelism) in order to overlap computation and memory transfers. In
addition, when hardware multithreading is supported, CPUs are able to overlap execution
of multiple threads. Typically, however, hardware multithreading on CPUs is limited, e.g.
2 threads per CPU core on Intel CPUs (i.e. a technology marketted as hyper-threading).
Only few server oriented CPUs provide wider multithreading capabilities (e.g. Sun Ultra-
SPARC T1 with 4 hardware threads per core[41]) but even in these cases the amount of
hardware threads is not comparable to GPUs. On the other hand, GPUs are not equipped
with large cache hierarchies and the large amount of active threads mostly diminish any
chance of temporal locality on memory accesses to be translated to cache hits. Therefore,
they mostly rely on overlapped execution in order to hide the memory access latencies.

3.1.1 The latency hiding opportunity on GPUs

A GPU can support a vast amount of active threads counted in thousands which serves as
an opportunity for hiding latencies. Active threads are handled by hardware by switching
between them whenever a thread is stalled due to a memory access operation or pipeline
dependency. This allows to continue execution on a thread that is available for execution
in the active thread pool. Since the thread switch is done through hardware it is imple-
mented to be as fast as possible. As long as the compute workload provides enough
computations the memory access latency could potentially be hidden. It should be noted
that in this context the notion of threads correspond to the warp on NVidia GPU platform
as the instruction execution is scheduled on a per warp basis instead of a CUDA thread

E. Konstantinidis 64

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

which corresponds to the data lane within a warp.

For instance, an NVidia GTX-980 GPU is equipped with 32 SMs, each comprised of 128
SPs[70]. Each SM employs 4 instruction schedulers, each orchestrating its own warps.
Each scheduler gets assigned amaximum of 16warps and thus, each SM is able to handle
up to a total of 64 warps (2048 CUDA threads). This allows a maximum of 16 warps to
be available in a warp pool for each on each scheduler, on each execution cycle, able to
execute whenever the currently executing warp encounters a stall situation which would
otherwise incur idle cycles.

Similarly, the recent AMD GPU architecture (AMD GCN[2]) allows each Compute Unit to
feature 4 SIMD units, each holding its ownwavefront pool. Each SIMD unit can keep active
up to 10 total wavefronts. As each wavefront comprises of 64 work-items (the equivalent
of a CUDA thread on AMD platform), each CU can support up to 2560 total work-items.

GPUs are focused on throughput instead of reduced latency of a particular thread. On
ideal cases where the GPU has a large amount of parallel workload at its disposal it
should be able to hide the corresponding latencies. This large amount of active threads
supported by modern GPUs allows the intensive use of the roofline principle to the same
or greater extent compared to a CPU. This is justified by the fact that CPUs rely mostly
on single thread execution and in case of a on-chip cache miss the overlapping oppor-
tunities are limited by the amount of independent instructions in the executed instruction
window. On the other hand, memory latencies for GPUs are larger and the overlapped
compute-memory execution becomes highly significant.

3.2 An experimental roofline approximation

In order to examine the behavior of the GPU on various operational intensities and to
check the validity of the roofline model on GPUs, a micro-benchmark was developed.
The micro-benchmark kernel involves both computation and memory traffic in a config-
urable balance inducing an artificial workload with mixed type of operations. As such, the
behavior of various GPUs can be investigated in mixed types of instruction streams. In its
design threads perform a small fixed number of read accesses and a configurable number
of multiply-add operations. The number of compute operations is set at compilation time
so the induced instruction overhead is kept to minimum. All additional instructions beyond
the required ones were minimized in order to keep extra overhead as low as possible.
Template variables have been used where beneficial including access strides, block size,
operational intensity factor and thread coarsening factor, enabling loops to be fully un-
rolled [72]. The developed micro-benchmark (mixbench-cuda-ro) is publicly available for
experimentation1.

1http://github.com/ekondis/mixbench/releases/tag/v0.02

65 E. Konstantinidis

http://github.com/ekondis/mixbench/releases/tag/v0.02

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

Table 3.1: Theoretical GPU specifications and the respective flops/byte ratios

Memory DP Compute SP Compute
GPU (GB/sec) (GFLOPS) (Flops/byte) (GFLOPS) (Flops/byte)

GTX-480 177 168 0.949 1,345 7.599
GTX-660 144 83 0.576 1,983 13.771
GTX-960 112 81 0.722 2,593 23.110

GTX-1060 6GB 192 120 1.074 3,855 34.364
Tesla S2050 148 514 3.473 1,028 6.946
Tesla K20c 208 1,174 5.644 3,522 16.933

32

64

128

256

512

1,024

2,048

4,096

0.25 0.5 1 2 4 8 16 32 64 128

G
F

L
O

P
S

 (
si

ng
le

 p
re

ci
si

on
)

Operational intensity (Flops/byte)

Theoretical roofline

GFLOPS measured

(a) SP floating point

32

64

128

256

512

1,024

2,048

4,096

0.25 0.5 1 2 4 8 16 32 64

G
F

L
O

P
S

 (
do

ub
le

 p
re

ci
si

on
)

Operational intensity (Flops/byte)

Theoretical roofline

GFLOPS measured

(b) DP floating point

Figure 3.2: Experimental roofline estimation on GTX-480 GPU

3.2.1 Experimental results

The GPU specifications for devices used in this experiment are are provided in table 3.1.
Four of the GPUs are consumer parts (GeForce GTX) and the rest two are professional
compute oriented parts (Tesla)[67]. All GPUs are manufactured by NVidia and support the
CUDA programming environment. The GTX-480 and Tesla S2050 are based on the Fermi
architecture[66], the GTX-660 and Tesla K20c are based on the Kepler architecture[69],
the GTX-960 is based on Maxwell architecture[70] and the GTX-1060 is based on Pascal
architecture[76].

In figure 3.2 the results of execution using the micro-benchmark on three GPUs are illus-
trated. The dashed line represents the theoretical peak of performance as determined
by the GPU specifications. The observed performance follows a similar pattern to the
theoretical one as indicated by the roofline. In particular, the GTX-480 performance ap-
proached the theoretical compute peak very closely. For the memory bound region the
observed performance is a little lower than what the theoretical roofline represents and
this fact expresses the inability to approach the maximum theoretical memory bandwidth
on real kernels. Though the theoretical peak of the GTX-480 used in the experiments

E. Konstantinidis 66

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

32

64

128

256

512

1,024

2,048

4,096

0.25 0.5 1 2 4 8 16 32 64 128

G
F

L
O

P
S

 (
si

ng
le

 p
re

ci
si

on
)

Operational intensity (Flops/byte)

Theoretical roofline

GFLOPS measured

(a) SP floating point

32

64

128

256

512

1,024

2,048

4,096

0.25 0.5 1 2 4 8 16 32 64
G

F
L

O
P

S
 (

do
ub

le
 p

re
ci

si
on

)
Operational intensity (Flops/byte)

Theoretical roofline

GFLOPS measured

(b) DP floating point

Figure 3.3: Experimental roofline estimation on Tesla K20c GPU

32

64

128

256

512

1,024

2,048

4,096

0.25 0.5 1 2 4 8 16 32 64 128

G
F

L
O

P
S

 (
si

ng
le

 p
re

ci
si

on
)

Operational intensity (Flops/byte)

Theoretical roofline

GFLOPS measured

(a) SP floating point

32

64

128

256

512

1,024

2,048

4,096

0.25 0.5 1 2 4 8 16 32 64

G
F

L
O

P
S

 (
do

ub
le

 p
re

ci
si

on
)

Operational intensity (Flops/byte)

Theoretical roofline

GFLOPS measured

(b) DP floating point

Figure 3.4: Experimental roofline estimation on GTX-960 GPU

67 E. Konstantinidis

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

was 182GB/sec (the particular GPU provided overclocked memory frequencies leading
to increased memory bandwidth compared to the 177 GB/sec provided by the reference
GPU), the attained bandwidth did not exceed 163GB/sec. For the Tesla GPUs the per-
formance on memory bound kernels is significantly worse due to the overhead of ECC
protection[68]. In figure 3.3 the results for the Tesla K20c are depicted. It is evident that
the gap between the theoretical roofline and the experimentally constructed one is larger
than in the previous case. The execution results on a GTX-960 are illustrated in figure
3.4. In this case the compute performance in some cases exceeds the theoretical one as
prescribed by the device specifications. This is particularly obvious in the double precision
experiment and it is attributed to the dynamic clock frequencies and their ability to exceed
its base clock frequency (boost clock frequency). Modern GPUs tend to work on a wide
frequency scale, regularly exceeding its base clock settings, as long as its thermal/power
limits are met. The GTX-960 used for the experimentation featured a 1,329MHz clock fre-
quency as it was reported through CUDA device properties and this frequency has been
used for the construction of the roofline chart. According to our measurements the partic-
ular GPU could reach up to 1,405MHz by using dynamic clock frequency adjustment. This
frequency corresponds to 89.9 GFLOPS double precision theoretical peak performance
and thus, justifies the observed 89 GFLOPS measurement. Similarly, the boost clock fre-
quency of the GTX-1060 GPU is significantly higher than the base clock frequency. Table
3.1 provides the theoretical specifications based on the base clocks for the GPUs. In par-
ticular, the base clock frequency of the GTX-1060 GPU is 1,506 MHz, which corresponds
to a theoretical peak of 3,855 GFLOPS (single precision). The boost clock frequency of the
GPU is 1,708 MHz and this corresponds to 4,372 GFLOPS peak performance. In practice
the clock frequency has been observed to even exceed the boost clock frequency in many
cases. This fact poses an uncertainty even to the estimation of pure theoretical rates of
modern GPUs.

In summary, the experimental approximation of the roofline model is validated. There
are some observations though, such as the measured effective memory bandwidth not
reaching the theoretical one. In addition, the effective compute throughput for the case of
Tesla K20c GPU is significantly lower than the theoretical peak. These observations will
be used in the next section for the approximation of performance of real world kernels.

3.3 The quadrant-split visual representation

The roofline visual model is a valuable abstract representation of the compute device ca-
pability. It can be used to map a program’s operational intensity to the maximum expected
theoretical performance of the device. Inherently, the roofline representation is focused
on a single device on multiple problems.

As an alternative representation, the quadrant-split is proposed where in the horizontal
axis the memory bandwidth is used instead of the operational intensity. In this respect,
a device can be represented by a single point on the chart determined by its memory
bandwidth and compute throughput peak rates. A program can be represented by a half-

E. Konstantinidis 68

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

line crossing the intersection of the axes with a slope equal to its operational intensity.
Typical memory bound problems tend to have a small slope whereas compute bound
problems have high slope. The half-line splits the quadrant space into two half-quadrants
where device points residing into the upper one have higher compute resources than
memory bandwidth potential with respect to the application’s requirements whereas the
device points residing on the lower one have lower compute potential. Simply put, the
half-line is the visual bound for the distinction of the area into two parts where the kernel is
expected to behave as memory bound for the devices residing in the upper half-quadrant
and as compute bound for the others instead. In this regard it is clear that a problem can
be considered as memory bound for some devices and as compute bound for others. In
other words the limiting factor is a relative term which is dependent on both the problem
and the device specifications.

0

200

400

600

800

1,000

1,200

1,400

0 50 100 150 200 250 300 350

G
F

L
O

P
S

 (
do

ub
le

 p
re

ci
si

on
)

GB/sec

Intel Xeon E7-8857 v2

NVidia GTX-480

NVidia Tesla K20X

NVidia Tesla M2050

NVidia GTX TITAN X

Figure 3.5: The quadrant-split representation of the LBMHD problem using 5 CPU/GPUs.

For instance, figure 3.5 represents the LBMHD problem with respect to 4 GPUs and a
CPU. The dashed arrow lines point to the estimated roofline performance points for the
each device on the particular problem. The Intel Xeon and both NVidia Tesla GPUs points
reside on the upper half-quadrant which entails that the problem is memory bound with
respect to these devices. In contrast, considering the GTX-480 and GTX-Titan X GPUs
the problem can be considered as compute bound as their points reside on the lower
half-quadrant. In order to determine the expected peak performance of a memory bound
problem, a vertical line is traversed from the device point straight down to the kernel half-
line (shown as a dotted line). Similarly, in order to determine the performance of a compute
bound problem a horizontal line is traversed from the device point to the left till the appli-
cation half-line is crossed. The intersection of these lines set the roofline performance on
this device on the particular problem.

In the quadrant-splitmodel more devices than one can be naturally represented on a single

69 E. Konstantinidis

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

chart representation. Roofline model is device-centric as it is convenient for applying
multiple problems on a single device whilst the quadrant-split model is application centric
clearly depicting one application with many devices having different characteristics.

E. Konstantinidis 70

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

4. TOWARDS A QUANTITATIVE PERFORMANCE MODEL FOR GPUS

On the previous chapter the roofline performance of a GPU device was experimentally
approximated by using a custom developed micro-benchmark application. The exhibited
performance reached close to the theoretical peaks for a wide range of operational inten-
sities in a variety of GPU devices. In this regard the theoretical roofline performance of
a device was experimentally approximated with micro-benchmarking. This approximation
yielded adequate results, which in many cases reached very close to the theoretically pro-
vided information. This was possible as the micro-benchmark application was designed
by taking into account various aspects of the underlying architectures. First, Multiply-ADd
(MAD) operations were applied, which typically are the most effective types of instruc-
tions provided by GPUs. Next, overhead was kept to minimum by eliminating factors that
would increase the amount of control and address computation instructions. The workload
assigned per thread was intentionally high by using thread coarsening techniques, plus
template variables and loop unrolling methods were intensively applied. Memory access
patterns were also designed to be effectively coalesced. Last, the amount total threads
was also high in order to ensure that all SMs were kept highly utilized. All these factors
pushed the micro-benchmark’s performance to approach very close to peak theoretical
performance.

Since this was proved possible the question arising is to which extent the opposite proce-
dure is feasible, i.e. estimating the performance of a particular kernel by using the theo-
retical specifications or other metrics of a device. This is the original value of the roofline
model, which is based mostly on theoretical specifications and thus, provides qualitative
characterization of programs. Knowing the amount of compute operations conducted by
a kernel and the respective memory traffic should give a sense of the expected program
behavior but there are also other essential factors affecting performance. What is the per-
formance of the GPU on the particular kernel’s compute operations? Does the memory
subsystem perform as expected? What is the effect of the rest instructions executed on
the execution time? In order to provide useful predictions such questions raise issues that
the design of a practical performance model should take into account.

To this direction in this chapter, after investigating the most significant factors leading
to performance degradations, a performance model is proposed focusing on the perfor-
mance prediction of real world kernels. The proposedmodel is a throughput based roofline
model which involves a set of adjustments based on both the kernel itself and the under-
lying device, allowing the realistic predictions of real world kernels.

4.1 Motivation and performance considerations

As already stated, the aforementioned micro-benchmark is tailored to yield the highest raw
performance in compute throughput as measured in FLOPS (Floating Point Operations)
or memory transfer performance when it comes to memory bandwidth. This was achieved

71 E. Konstantinidis

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

by focusing on a micro-benchmark design which provides the necessary freedom to apply
strict optimizations. While this is possible on a micro-benchmark, on real world kernels
applying similar optimizations to the same extent is often is not possible.

For instance, the instruction overhead typically consists a much larger portion of the exe-
cuted instruction stream and thus, the induced overhead is significant. The cost of instruc-
tion execution comprises by both compute operations and other overhead instructions.
The overhead instructions can be address calculations, control instructions and possi-
bly load/store instructions. Control instructions include integer calculations, comparisons,
branches (conditional or not), intra-block synchronization, etc. Load/store instructions are
used to access all possible memory spaces including global, shared or texture memory.
They are handled by separate execution units which typically count less than the Stream-
ing Multiprocessors per Multi-Processor. The cost of executing these additional types of
instructions should be considered by a performance model in order to be more accurate.

In addition, memory coalescing is not always practical on irregular applications or not
always adequately applied by the programmer. The majority of modern scientific appli-
cations tend to be memory bound, especially in cases where the memory accesses have
not been carefully refined. Thus, the negative performance effects of imperfect coalesc-
ing should absolutely be considered in a performance model. The proposed performance
estimation should therefore address these issues.

4.2 A quantitative roofline GPU performance model

Since GPUs are throughput oriented processors, in this work a throughput based ap-
proach is followed regarding performance modeling. Having the roofline model[92] as a
foundation, the proposed performance model introduces and takes into account the most
significant factors affecting the effective GPU compute throughput. The role of roofline
model is to distinguish between the two primary involved performance limiting factors in
the program’s execution i.e. the compute throughput and the memory bandwidth. The
impact of memory traffic is important for GPUs as the latter require being fed with vast
amounts of data in order to keep their compute resources busy. This becomes more
critical due to the absence of large cache hierarchies.

This work provides not only a qualitative analysis on GPU performance but quantitative re-
sults, as well. Typically, the original roofline model relies on the theoretical peak specifica-
tions of the processor. In the proposed model measurements through micro-benchmarks
are employed for both compute throughput and memory bandwidth peak rates. In addi-
tion, the peak compute throughput is further adjusted to an estimated maximum rate of
execution allowed by the kernel under inspection. This adjustment involves the construc-
tion of a set of kernel parameters in a “black box” fashion, by collecting hardware metrics
using the CUDA provided profiling tools. The combination of these parameters with the
GPU parameters extracted as micro-benchmark data are used to predict the expected
performance of the particular kernel on target GPU. As a result, this method achieves
more accurate results compared to using the pure theoretical peak values.

E. Konstantinidis 72

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

The primary benefits of the proposed performance model approach are its simplicity and
ability to run as part of an automated tool. It is able to run in an automated fashion as it does
not require user’s intervention since all GPU parameters rely on measurements captured
using micro-benchmarks and kernel parameters are collected using hardware profiling
executions. Thus, no source code or binary code is analyzed as all data is gathered
through a hardware metric profiling procedure.

4.2.1 An overview of the proposed model

The proposed performance prediction model follows the roofline model approach. In this
respect, it is based on throughput of instruction execution and memory bandwidth. How-
ever, it involves a set of corrections/adjustments in order to produce more accurate quan-
titative results:

1. Peak performance measurements
Although, the theoretical specifications set a good base of the performance that can
be achieved on a device, this is not always feasible in practice. In some cases
the measured performance is a fraction of the theoretical rate, especially in case of
memory bandwidth measurements. In order to estimate the practical peaks in both
compute and memory transfer performance a set of micro-benchmark kernels were
developed through which the real performance of the devices under investigation is
evaluated.

2. Floating point operation efficiency
GPU vendors tend to provide the peak performance achieved using multiply-add
operations. These operations fuse a multiplication and an addition operation into a
single instruction (a × b + c). These instructions are typically optimized to be exe-
cuted in just one shader cycle (single precision throughput). The theoretical peak
rates provided by vendors assume a perfectly balanced stream of floating point mul-
tiplications and additions. If the stream of executed instructions is not perfectly bal-
anced then the performance drops. For instance, having a pure stream of addition
instructions would reduce the floating point performance to a half as the addition in-
structions perform just one operation instead of two and they are executed as fast
as the multiply-add instructions.

3. Instruction mix efficiency
Another factor that further lowers peak floating point performance of a kernel is the
instruction overhead in the executed instruction stream. As far as we focus on sci-
entific problems the beneficial instructions are the floating point instructions which
perform the actual computations as required by the algorithm. The rest of the in-
structions can be control flow, address calculations, operations on auxiliary integer
variables (e.g. accumulators), etc. All these operations consume valuable resources
of the GPU, both of the instruction scheduler and the ALUs, thus, they limit the peak
floating point performance to lower levels than the theoretical ones.

73 E. Konstantinidis

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

The proposed model incorporates the cost induced by the execution of all types of instruc-
tions, beyond the beneficial compute instructions. In this respect, a profiling approach on
a reference GPU is employed by extracting kernel execution information without requiring
any internal knowledge of the kernel characteristics. This method allows the actual mem-
ory traffic generated by the kernel to be implicitly considered in the performance model.
This includes all potentially uncoalescedmemory operations that cause additional memory
traffic to memory subsystem. The parameters used for the GPU device that is targeted for
performance prediction are extracted by running a set of micro-benchmarks. An additional
benefit of this approach is the ability to run the whole prediction tool-chain without any fur-
ther input or intervention from the user. The whole process involves the steps described
in figure 4.1.

Hardware metric
profiling on

reference GPU
(table 4.1)

Kernel
parameters

(table 4.2)

Performance
modeling on
target GPU

Target GPU
parameters

(table 4.3)

micro-benchmark
execution on
target GPU

Reference
GPU

Target GPU
performace
prediction

Target
GPU

GPU
Kernel

Figure 4.1: The performance prediction methodology flow diagram.

In general, the approach for performance estimation of GPU kernels can be summarized
in three aspects:

• Modeling compute and memory parameters of GPU kernels, largely independently
of GPU architectural details, obtained by using a “black box” approach based ex-
clusively on profiling measures (figure 4.1: ”Hardware metric profiling on reference
GPU”)

• Modeling theGPUgeneric peak performance ratings on various operations, obtained
by micro-benchmarking the target GPU (figure 4.1: ”Micro-benchmark execution on
target GPU”)

• Estimation of the target GPU performance (figure 4.1: ”Performance modeling on
target GPU”) on the particular kernel according to:

– the estimatedmaximum rate of executed compute operations on the target GPU
for the particular kernel and

E. Konstantinidis 74

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

– the compute and memory demands of the given kernel (i.e. operational inten-
sity) determining whether its performance is limited by the compute or memory
throughput when executed on the target GPU

4.2.2 Kernel parameter extraction

The required kernel parameters are extracted by profiling the execution of the subject
kernel on a reference GPU. The nvprof NVidia profiling utility[71] is used which provides a
rich set of available GPU metrics in order to shed light on the kernel’s execution process.
The list of the required kernel metrics is shown in table 4.1, with the description provided by
the nvprof utility documentation[71]. For the rest of this thesis the notation of the metric will
be used for reference. TheMtran-r andMtran-w metrics reflect the induced DRAM memory
traffic (including the overhead memory traffic induced by sub-optimal coalescing) and all
the rest of metrics reveal information regarding the instructions executed by the kernel.

Table 4.1: The NVidia GPU profiler metrics required for the derivation of kernel parameters.

Metric Notation Description
flop_count_sp_fma Mfma32 Number of single-precision floating-point

multiply-accumulate operations executed
by non-predicated threads

flop_count_dp_fma Mfma64 Number of double-precision floating-point
multiply-accumulate operations executed

by non-predicated threads
inst_compute_ld_st Mldst Number of compute load/store instructions

executed by non-predicated threads
inst_executed Minst The number of instructions executed
inst_fp_32 Mfp32 Number of single-precision floating-point

instructions executed by non-predicated
threads (arithmetic, compare, etc.)

inst_fp_64 Mfp64 Number of double-precision floating-point
instructions executed by non-predicated

threads (arithmetic, compare, etc.)
inst_integer Mint Number of integer instructions executed

by non-predicated threads
dram_read_transactions Mtran-r Device memory read transactions
dram_write_transactions Mtran-w Device memory write transactions

The produced parameter set is provided in table 4.2. Ktype parameter determines the type
of beneficial operations within the kernel. It can be either fp64, fp32 or int. A simple rule
based approach in order to avoid user interaction is a function selecting fp64 if the Mfp64

metric is non zero, fp32 if the Mfp32 is non zero or int otherwise. The type of instructions
determined by Ktype is considered as the one that clearly contributes to the actual com-
putation and all the rest instructions are considered as overhead. The Wcomp parameter

75 E. Konstantinidis

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

Table 4.2: The set of required kernel parameters in the proposed performance model.

Parameter Description Obtained
Ktype Dominant ops (fp64, fp32 or int) rule based function
Wcomp Compute operations formula (4.1)
Wtraf DRAM bytes accessed formula (4.2)
Emix Operation mix efficiency (%) formula (4.3)
Dops Operation instruction density (%) formula (4.6)
Dldst Ld/St instruction density (%) formula (4.7)
Dother Other instruction density (%) formula (4.8)

represents the total beneficial compute operations performed by the kernel. It’s equal to
the amount of kernel operations that are specified to be of type Ktype. It is evaluated by
using formula (4.1).

Wcomp =

Mfp32 +Mfma32, if Ktype = fp32
Mfp64 +Mfma64, if Ktype = fp64
Mint, if Ktype = int

(4.1)

It should be noted that there are also metrics provided for the floating point operations
(flop_count_sp and flop_count_dp metrics) but some floating point instructions are ex-
cluded by this metric and thus, it was chosen to use the indirect formula (4.1) for the
estimation of compute operations. In any case, the expected divergence on the results is
minimal.

The parameter regarding the conducted memory traffic is the Wtraf . It is estimated by
using the DRAM transaction count metrics and shown in formula (4.2) as the size of each
transaction on NVidia platform is currently 32 bytes.

Wtraf = 32× (Mtran-r +Mtran-w) (4.2)

As it has been already noted, not all compute instructions perform the same amount of
operations. The instruction that is typically used in GPU performance specifications is the
Multiply-Add instruction which performs 2 operations per instruction, one multiplication
plus one addition. Other instructions perform a single operation in general. Therefore, the
efficiency of compute instructions Emix is defined as 100% when all compute instructions
perform 2 operations each or 50% when all compute instructions perform just a single
operation. In real world kernels it ranges from 50% to 100% depending on the usage
of multiply-add operations. In this respect, it is estimated by using formula (4.3) which

E. Konstantinidis 76

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

involves the type of compute instructions executed.

Emix =

Mfp32+Mfma32

2×Mfp32
× 100%, if Ktype = fp32

Mfp64+Mfma64

2×Mfp64
× 100%, if Ktype = fp64

50%, if Ktype = int
(4.3)

Finally, the instructions executed are classified in 3 different types (compute, load/store
and other instructions) and the individual density of each type in the instruction stream is
determined. In this regard, the compute instruction count is divided by the total instruction
count as formulae (4.4), (4.5) and (4.6) indicate. In the same manner, the load/store in-
struction count is used in the calculation of load/store instruction density, shown in formula
(4.7). The percentage of other instructions is the complement of the first two densities, as
shown in formula (4.8).

Iops =

Mfp32, if Ktype = fp32
Mfp64, if Ktype = fp64
Mint, if Ktype = int

(4.4)

Itotal = 32×Minst (4.5)

Dops =
Iops
Itotal

× 100% (4.6)

Dldst =
Mldst

Itotal
× 100% (4.7)

Dother = 100%−Dops −Dldst (4.8)

4.2.3 Target GPU parameter extraction

All required device parameters are collected by using micro-benchmarks. The list of pa-
rameters is shown in table 4.3. All floating point computation throughput parameters (TSP

and TDP) concern MAD (Multiply-ADd) operations. The Txxx parameters (TSP , TDP , Tint,
Tadd, Tldst) regard the compute throughput of the device in various types of instructions
and the Bmem parameter which reflects the effective memory bandwidth of the device.

The TSP , TDP , Tint, Tadd metrics are collected by using a micro-benchmark that excessively
performs execution of independent arithmetic instructions. The Tldst metric is measured
by using a micro-benchmark that performs intense memory copies between memory lo-
cations within shared memory, which has been presented along with 2 additional micro-
benchmarks in [43]. Typically, shared memory which is a scratchpad, exhibits the highest

77 E. Konstantinidis

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

Table 4.3: The set of GPU parameters used in the performance model.

Parameter Description Unit
TSP Single precision floating point operation throughput GFLOPS
TDP Double precision floating point operation throughput GFLOPS
Tint Integer multiply-add operation throughput GIOPS
Tadd Integer addition operation throughput GIOPS
Tldst Load/Store instruction throughput on shared memory GOPS
Bmem Memory bandwidth GB/sec

performing memory type accessed by load/store instructions. More information regarding
this micro-benchmark is provided in B.2 section of the appendix. Last, the Bmem metric is
estimated by applying memory operations like reads, writes and copies on large arrays.
The average bandwidth on these three operations is selected for each device.

As an alternative, in case that the target GPU hardware is not accessible (or even non
existing) these parameters could be determined by using rough estimations through the
specifications and the GPU’s architecture documentation. It is common for vendors to
provide throughput characteristics in operations/clock per SM[73].

4.2.4 Kernel performance estimation

At this point, the efficiency of instruction execution regarding beneficial computation is
modeled. In this model the throughput of various instruction types is considered. As
the instruction pipeline is occupied for the execution of various types of instructions, the
pipeline is only partially available for the execution of beneficial instructions. Thus, the
purpose is to estimate the attainable peak throughput by considering the portion in which
the pipeline is available for the execution of beneficial instructions.

GPUs exhibit varying execution throughput depending on the type of instruction under ex-
ecution. For instance, the Tesla K20c can execute a third of the floating point operations in
double precision compared to SP in the same amount of time. In this regard the instruction
type densities (Dops, Dldst, Dother) should be considered in order to provide an estimation
on the overall instruction execution throughput on the particular kernel.

The peak throughput on raw beneficial operations is selected in (4.9) according to Ktype:

Top =

TSP , if Ktype = fp32
TDP , if Ktype = fp64
Tint, if Ktype = int

(4.9)

For the estimation of the instruction execution efficiency the instruction densities along with
the instruction throughput for various types are considered. The instruction types consid-
ered correspond to the throughput parameters of the GPU (table 4.3). The fastest instruc-
tion on the GPU typically is the single precision multiply-add instruction, and therefore it

E. Konstantinidis 78

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

is the instruction that potentially is used to execute the most operations per second. So,
the single precision multiply-add instructions are used as a point reference. The weight
factor of executing a type of instruction is defined as the throughput ratio of fast single
precision floating point instructions to the throughput of the particular type of instructions.
Thus, weight factor is normalized by setting the weight of single precision instructions to 1.
Therefore, the weight of all other instructions is typically greater or equal to 1. A simplified
interpretation of the weight factor is that it represents a measure proportional to the time
that the instruction execution keeps the pipeline busy relative to the time that a fast single
precision instruction does. In this regard we define the weight factor operators as follows
in formulae (4.10), (4.11), (4.12):

Wop =
TSP

Top

(4.10)

Wldst =
1/2TSP

Tldst

(4.11)

Wother =
1/2TSP

Tadd

(4.12)

In the estimation of Wother the throughput of integer addition is used. This is an arbitrary
decision based on the assumption that the rest of the instructions apart from computa-
tion and load/store, is constituted mostly of simple integer instructions or instructions that
execute roughly with the same cost. The 1⁄2 factor in (4.11) and (4.12) is applied in or-
der to convert the operation throughput rate TSP to instruction execution rate as each
floating point MAD instruction is accounted as 2 operations. All beneficial operations are
assumed to be executed using MAD instructions (two operations per instruction) whereas
the load/store and integer addition operations are assumed to be implemented with single
operation instructions. By taking into account the instruction densities and the respective
weight factors the relative execution cost of each instruction type can be defined as shown
in (4.13), (4.14), (4.15):

Cop = Dops ×Wop (4.13)

Cldst = Dldst ×Wldst (4.14)

Cother = Dother ×Wother (4.15)

The load/store instruction cost should not be confused with the load/store DRAM through-
put. It models the instruction throughput of the load/store unit, which mostly depends on
the amount of load/store units per multiprocessor. Though not always all instructions in
a category exhibit the same throughput (e.g. integer addition vs integer shift operation)

79 E. Konstantinidis

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

there are no hardware metrics providing more detailed classification of instructions [71].
Thus, this is a compromise that is forced by both the available hardware metrics and as
a decision in order to restrict the model complexity. The estimated instruction efficiency
can be estimated as given by formula (4.16):

Einstr =
Cop

Cop + Cldst + Cother

× 100% (4.16)

This cost modeling for the instruction execution assumes that all instructions are executed
by the GPU multiprocessor on a single pipeline and therefore the execution of different
types of instructions cannot be co-issued in a super-scalar fashion. Although this as-
sumption is not accurate, we argue that the instructions in general are not co-issued. For
instance, multiprocessors based on Kepler architecture can issue 8 instructions per cycle
(4 instructions per scheduler, each SM having 2 schedulers) while only 6 instructions can
be issued to the ALU pipes (32 × 6 = 192 SPs). In this case, two additional instructions
could potentially be issued to the Load/Store units on the same cycle. However, this ideal
case is not typical and therefore in this model it is assumed that the SM consists of a single
instruction pipeline. An investigation of the multi-pipeline model is left as future work.

The adjusted throughput is estimated by applying both the efficiency ratios each decreas-
ing the theoretical instruction throughput by a factor. The adjusted throughput is given in
(4.17):

T ′
op = Emix × Einstr × Top (4.17)

As such, the kernel’s operational intensity isOkrn = Wcomp/Wtraf and the device’s adjusted
operational intensity is Odev = T ′

op/Bmem. The comparison of the two values is used to
determine if the application is considered to behave as memory bound or compute bound.
If Okrn > Odev then the kernel is considered as compute bound for the particular device or
memory bound otherwise. Thus, the estimated compute throughput is given by (4.18):

Tpredicted =

{
T ′
op, if Okrn > Odev

Okrn ×Bmem, if Okrn ≤ Odev

(4.18)

4.3 Case study 1: Red/black SOR stencil computation

In order to make the proposed method easier to understand, in this section a case study
is presented along with the execution of all required steps as prescribed in the previ-
ous section. The problem on which the performance prediction method is applied is a
stencil computation. More specifically, the SOR method is applied with red/black order-
ing, which effectively performs iterative computations between neighboring elements on
a 8192x8192 2D grid (figure 4.2) comprised of double precision values. The method is

E. Konstantinidis 80

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

described in detail in the next chapter (5.1.1) accompanied with a wide range of experi-
mental results. Furthermore, related work has also been published by the author of this
thesis [44, 45] and can be referred for more information.

Figure 4.2: Red points depend only on the neighboring black points and vice versa.

After running 4 iterations of the computation on the GTX-480, the accumulated metrics
were captured with the nvprof tool for all iterations of the red elements’ computation as
shown in table 4.4. Thereafter, the kernel parameters can be determined by the equa-
tions (4.1-4.8) as depicted in table 4.5. As such, the kernel’s operational intensity is
Okrn = Wcomp

Wtraf
≈ 0.3 which is considered to be low. In addition, the instruction overhead as

expressed byDother, occupies the majority of the instruction stream (figure 4.3). However,
if the expected nature of the problem being memory bound is true then the overhead is
expected to be hidden.

Table 4.4: The profiling metrics gathered for the red/black computation on a GTX-480 GPU.

Parameter Measurement
Mfma32 0
Mfma64 33,554,432
Mldst 303,079,424
Minst 56,100,732
Mfp32 0
Mfp64 218,107,904
Mint 736,891,392

Mtran-r 17,660,604
Mtran-w 8,392,704

81 E. Konstantinidis

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

Parameter Value
Ktype fp64
Wcomp 1,006,649,344
Wtraf 3,334,823,424
Emix 57.69%
Dops 12.15%
Dldst 16.88%
Dother 70.97%

Table 4.5: The extracted kernel parameters of the
red/black SOR kernel

Dops

Dldst

Dother

Figure 4.3: Instruction densities per instruction
type for the red/black SOR kernel

After having collected the kernel’s parameters, the device throughput parameters have
to be estimated in order to run the model. After running the micro-benchmarks, the GPU
parameters as shown in table 4.6 were assessed for theGTX-660GPU. These parameters
will be used for the performance prediction of the case studies in this chapter.

Table 4.6: Measured GPU parameters for the NVidia GTX-660

Parameter Value Unit
TSP 1,940.80 GFLOPS
TDP 89.70 GFLOPS
Tint 359.04 GIOPS
Tadd 621.36 GIOPS
Bmem 117.56 GB/sec
Tldst 169.58 GOPS

The instruction weight factors are estimated by using formulae (4.9)-(4.12) along with the
GPU parameters (table 4.6). These are shown in table 4.7. These weights represent a
comparison of throughput in each operation with respect to the throughput in single pre-
cision operation execution (Tops/TSP). For instance, the consumer Kepler GPUs feature
a quite low double precision operation throughput rated a 1⁄24 of their single precision op-
eration throughput. This is based on the fact that each SM on consumer Kepler GPUs is
equipped with just 8 double precision SPs compared to 192 single precision SPs. This is
approximated by weight Wop = 21.64 which means that the measured throughput of sin-
gle precision operations was 21.64 times higher than the measured throughput in double
precision operations. As such, weight factors represent the internal balance of available
resources in the GPU multiprocessor per type of operation.

The rest of this section will be focused on the performance estimation on the GTX-660.
The relative execution cost per instruction type can be estimated using equations (4.13),
(4.14) and (4.15) with the weight factors provided for the GTX-660. These are Cop ≈ 2.63,
Cldst ≈ 0.97 and Cother ≈ 1.11 respectively. Using formula (4.16) we get Einstr = 55.89%.
This rate expresses an approximation of the instruction execution cost of beneficial com-
pute instructions (double precision in this case) in the whole instruction stream. After ap-

E. Konstantinidis 82

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

Table 4.7: The GPU cost weights as measured in the model for the NVidia GTX-660

Weight Value
Wop (fp32) 1.00
Wop (fp64) 21.64
Wop (int) 5.41
Wldst (load/store) 5.72
Wother (add) 1.56

plying the efficiency factors (Emix and Einstr) to get the adjusted throughput using equation
(4.17) we get T ′

op = 28.92 GFLOPS. This suggests the maximum expected performance
of this kernel, ignoring the required DRAM bandwidth. In order to take memory band-
width into account the operational intensity of the device Odev = T ′

op/Bmem ≈ 0.25 should
be compared with the kernel’s operational intensity Okrn ≈ 0.3. Since the latter is higher
than the former, it means that the kernel itself requires more compute throughput than the
GPU can provide, given the characteristics of both the kernel and the GPU. Therefore,
the kernel is designated as compute bound on the particular GPU, in contrast to the initial
intuition, with Tpredicted = T ′

op = 28.92 GFLOPS.

0

20

40

60

80

100

0 50 100 150 200

G
F

L
O

P
S

 (
do

ub
le

 p
re

ci
si

on
)

GB/sec

Theoretical specifications

Benchmarked peak

1st adjustment (E_mix)

Final adjustment (E_mix & E_instr)

Actual performance

E
in
st
r

E
m
ix

performance
estimation

p
er
fo
rm
an
ce

es
ti
m
at
io
n

Figure 4.4: Visualization of red/black SOR performance estimation on GTX-660 with efficiency ad-
justments.

In figure 4.4 a visual representation is provided for applying the proposed model versus
using a straightforward approach based on the GPU’s theoretical specifications. The solid
dark gray half-line represents the red/black SOR kernel’s operational intensity (slope ~0.3
flops/byte). The gray point is determined by the theoretical specifications of the GPU.
Thus, by using just the gray point to determine performance one can infer that this kernel
is memory bound for this GPU, as the point resides well above the line representing the
kernel’s operational intensity. The roofline performance is estimated by following the ver-

83 E. Konstantinidis

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

tical dashed line downwards till the point it meets the kernel’s half-line and this happens at
a point exceeding 43 GFLOPS. However, following the proposed approach, the starting
point is set at the coordinates designated by the measured peak with micro-benchmarks
(top black point). Afterwards, the performance point is adjusted twice (Emix, Einstr) by
applying the efficiency degradations and the attained performance drops to a point well
below the kernel’s half-line. This means that the kernel is eventually considered as com-
pute bound using the proposed model on the particular GPU. The estimated performance
does not exceed 29 GFLOPS and one can estimate memory bandwidth by following the
horizontal dashed line to the left till it crosses the kernel’s line. This is a particular example
where the estimated performance is extremely close to the actual measured performance
of the kernel as the latter is designated by the ”X” on the kernel’s half-line (28.88 GFLOPS).

In order to further validate the compute/memory characterization, a study of the utiliza-
tion metrics was conducted. All hardware metrics provided by the nvprof tool named
with the ”_utilization” suffix represent a rough measurement of the utilization ratio of a
particular GPU resource, ranging from ”Idle(0)” to ”Max(10)”. The only exception is the
issue_slot_utilization which provides a percentage of the issue slots that issued one or
more instructions. As such we collected the utilization rates for the GPU in table 4.8.
The highest utilizations potentially expose the resources that are mostly utilized. In this
case the ALU function unit utilization is High (9) which means that the ALU units already
work near their full potential. The DRAM utilization is also high but not at the same rate
(High (7)). Therefore, the utilization metric rates also lean towards the compute bound
characterization being consistent with the outcome of the proposed performance model.

Table 4.8: Utilization metric values of the red/black SOR kernel, on the GTX-660.

∗Metric Utilization description Value
alu_fu Arithmetic Function Unit High (9)
dram Device Memory High (7)

l1_shared L1/Shared Memory Mid (4)
ldst_fu Load/Store Function Unit Mid (4)
l2 L2 Cache Low (3)

cf_fu Control-Flow Function Unit Low (1)
sysmem System Memory Low (1)
tex_fu Texture Function Unit Idle (0)
tex Texture Cache Idle (0)

∗ The “_utilization” suffix from metric names has been omitted

4.4 Case study 2: SGEMM computation

As a complementary example, themethod is additionally applied on a traditionally compute
intensive kernel. The selected application is the SGEMM (Single precision GEneric Matrix

E. Konstantinidis 84

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

Multiplication). The computation is defined as in (4.19):

C ← αA×B + βC (4.19)

However, in this kernel the core of the computation was implemented (4.20) for simplicity
reasons. This is the very non-trivial part of the computation as it requires intense amount
of operations and data sharing in order to achieve adequate performance. The implemen-
tation is straightforward and fundamental optimizations have been applied, i.e. memory
coalescing, block tiling and data sharing using shared memory. The source code of the
kernel is provided for further details in the appendix.

C ← A×B (4.20)

The matrix sizes used are 1280×640 for matrix A and 640×640 for matrix B. Kernel param-
eters were collected using an NVidia GTX-480 and the performance estimation provided
for the GTX-660 NVidia GPU. These GPUs feature a different architecture as the first one
is based on Fermi architecture and the latter on Kepler architecture.

After running the computation on the GTX-480, the accumulated metrics were captured
with the nvprof tool by running the computation and they are shown in table 4.9.

Table 4.9: The profiling metrics gathered for the SGEMM computation on a GTX-480 GPU.

Parameter Measurement
Mfma32 524,288,000
Mfma64 0
Mldst 721,715,200
Minst 46,208,000
Mfp32 524,288,000
Mfp64 0
Mint 164,659,200

Mtran-r 1,218,190
Mtran-w 102,400

Thereafter, the kernel parameters can be determined by the equations (4.1-4.8) as de-
picted in table 4.10. As such, the kernel operational intensity is Okrn = Wcomp/Wtraf ≈ 24.81
which is considered sufficiently high. In addition, though the instruction overhead is low
(Dother = 15.73%), the load store instruction portion occupies almost half of total instruc-
tions as expressed by Dldst = 48.81% (figure 4.5). Thus, the intense use of load/store
instructions poses the consideration of the latter in the model a necessity in order for the
performance prediction to work adequately.

85 E. Konstantinidis

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

Parameter Value
Ktype fp32
Wcomp 1,048,576,000
Wtraf 42,258,880
Emix 100%
Dops 35.46%
Dldst 48.81%
Dother 15.73%

Table 4.10: The extracted kernel parameters of
the SGEMM kernel

Dops

Dldst

Dother

Figure 4.5: Instruction densities per instruction
type for the SGEMM kernel

For this particular kernel Ktype = fp32, thus Wop = 1.00. The relative execution cost per
instruction type can be estimated by using equations (4.13), (4.14) and (4.15) with weight
factors provided in table 4.7 for the GTX-660. These are Cop ≈ 0.35, Cldst ≈ 2.79 and
Cother ≈ 0.25, respectively. Therefore, from formula (4.16) we estimate Einstr = 10.45%.
This rate expresses an approximation of the instruction execution cost of beneficial com-
pute instructions (double precision in this case) in the whole instruction stream. The more
it approaches 100% the more efficient the instruction execution stream is considered. In
this case this ratio is particularly low due to the high ratio of load/store instructions and the
high relative cost of these instructions compared to single precision multiply-add instruc-
tions (Cldst ≈ 8× Cop).

On the other hand Emix = 100%, which is optimum. Almost all beneficial compute in-
structions are multiply-add operations which was expected due to the nature of core com-
putation of matrix multiplication as it consists of multiplications of scalars followed by an
accumulation. These operations are optimally implemented on GPUs as the 2 operations
(addition + multiplication) can be executed by the SP in just one cycle.

After applying the efficiency factors (Emix and Einstr) to get the adjusted throughput us-
ing equation (4.17) it is estimated T ′

op = 202.80 GFLOPS. This suggests the maximum
expected performance of this kernel, ignoring the DRAM bandwidth requirements. In or-
der to take memory bandwidth into account the operational intensity of the device Odev =
T ′
op/Bmem ≈ 1.73 should be compared with the kernel’s operational intensity Okrn ≈ 24.81.
Since the latter is significantly higher than the former, it means that the kernel itself re-
quires more compute throughput than the GPU can provide, given the characteristics of
both the kernel and the GPU. Therefore, the kernel is designated as compute bound on
the particular GPU, which was expected for the matrix-multiplication problem.

Similarly to the previous section, in figure 4.6 a visual representation is provided for ap-
plying the proposed model versus using just the GPU’s theoretical specifications. The
solid dark gray half-line represents the kernel’s operational intensity (slope ~24.81 flop-
s/byte). The gray point is determined by the theoretical specifications of the GTX-660
GPU. It is evident that performance is characterized as compute limited as the device
point resides below the kernel’s half-line. That said, the roofline performance is estimated
by following the horizontal dashed line to the left till it meets the kernel’s half-line and this

E. Konstantinidis 86

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

happens at the point where the bandwidth falls down to ≈ 80 GB/sec. In a pure workload
ofWops ≈ 1.049 · 109 floating point operations the kernel would execute in just 0.52 msecs.
However, this estimation assumes that the kernel is able to sustain the maximum theo-
retical performance of the device in GFLOPS which experience has shown that it is not
feasible, at least for non highly optimized kernels. Following the proposed performance
model, the starting point is set at the coordinates designated by the measured peak with
micro-benchmarks (top black point). Afterwards, the performance point is adjusted twice
(Emix, Einstr) by applying the efficiency degradations (Emix and Einstr) and the attained
compute performance drops by almost an order of magnitude. Therefore, the estimated
compute performance is not expected to exceed 203 GFLOPS. The overall performance is
estimated again by following the horizontal dashed line to the left till it crosses the kernel’s
line. In this case the kernel would be estimated to execute in 5.17 msecs. The actual mea-
sured performance of the kernel on the GTX-660 is designated by the ”X” on the kernel’s
half-line (169.11 GFLOPS) and it corresponds to an execution time of 6.20 msecs.

0

500

1,000

1,500

2,000

2,500

0 20 40 60 80 100 120 140

G
F

L
O

P
S

 (
si

ng
le

 p
re

ci
si

on
)

GB/sec

Theoretical specifications

Benchmarked peak

Final adjustment (E_mix & E_instr)

Actual performance

E
m
ixperformance estimation

performance estimation

E
in
st
r

Figure 4.6: Visualization of SGEMM computation performance estimation on GTX-660 with efficiency
adjustments versus using theoretical specifications.

It is evident that the proposed estimation time is significantly closer to the actual mea-
sured execution time compared to a pure theoretical peak approach. And this was mostly
attributed to the consideration of the load/store instructions in the performance model.

In order to further validate the performance limiting factor characterization, a study of the
hardware utilization metrics was conducted. All hardware metrics provided by the nvprof
tool named with the ”_utilization” suffix represent a rough measurement of the utilization
ratio of a particular GPU resource, ranging from ”Idle(0)” to ”Max(10)” (an exception is the
issue_slot_utilization which provides a percentage of the issue slots that issued one or
more instructions and is therefore irrelevant to this investigation). As such the utilization
rates for the GTX-660 GPU were collected as shown in table 4.11. The highest utilizations
potentially expose the resources that are mostly utilized. These resources constitute most

87 E. Konstantinidis

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

Table 4.11: Utilization metric values of the SGEMM kernel, on the GTX-660.

∗Metric Utilization description Value
l1_shared_utilization L1/Shared Memory High (9)
ldst_fu_utilization Load/Store Function Unit High (8)
alu_fu_utilization Arithmetic Function Unit Low (2)
cf_fu_utilization Control-Flow Function Unit Low (1)
dram_utilization Device Memory Low (1)
l2_utilization L2 Cache Low (1)

sysmem_utilization System Memory Low (1)
tex_fu_utilization Texture Function Unit Idle (0)
tex_utilization Texture Cache Idle (0)

∗ The “_utilization” suffix from metric names has been omitted

likely the performance bottleneck of the kernel. In this case the L1 and shared memory
function unit utilization is High (9) which means that the shared memory already works
near its full potential. The load/store unit utilization is also almost equally high (High (8))
which was also expected due to the density of load/store instructions in the instruction
stream. As the proposedmodel combines both the compute instructions and the load/store
instructions in a single abstract pipeline these rates point towards having a compute bound
kernel on the GTX-660 and thus, they are consistent with the outcome of the proposed
performance model.

This example is a particular one that exhibits the merit of load/store operation consid-
eration in the performance model. In this case the load/store instructions are the most
frequent as they consist almost 50%. To exhibit the value of special consideration of load-
/store operations we conducted the performance prediction procedure in a more simplified
approach in which all load/store instructions are handled the same way as other instruc-
tions. In this case the prediction yielded an effective peak performance of 505 GFLOPS
and 2.08 msecs execution time, which is far more optimistic that the 5.17 msecs predicted
by the proposed approach. The load/store operations can play a dramatic role in perfor-
mance and thus, it is important for a performance model to take into special consideration
of these operations.

4.5 Performance model assumptions

The basic principle of the roofline approach suggests that either the peak compute through-
put or the memory bandwidth is feasible. As such in the proposed performance model it
is assumed that the kernels under consideration are either compute or memory bound
instead of latency bound. However, it should be noted that the predicted performance is
still useful on latency bound kernels from the perspective of an upper performance bound
(or a lower execution time bound). On such cases the kernel programmer should focus
on optimizing the kernel by eliminating the latency bottleneck, if possible. The amount
of parallelism must be able to keep the GPU computational units highly fed, as well. Ad-

E. Konstantinidis 88

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

ditionally, all data are assumed to reside in the GPU memory, thus CPU-GPU transfer
implications are not considered.

A summary of the assumptions that have been made in order to simplify performance
prediction is provided below:

• Kernel performance is only bounded by instruction throughput or memory bandwidth,
i.e. implying a compute or memory bound kernel. Other latencies are out of scope
of the work conducted for this thesis. However, it should be noted that the predicted
performance serves as an upper performance limit on latency bound kernels, which
is still useful information from the perspective of providing an upper bound on perfor-
mance (or a lower bound from the execution time perspective). On such cases the
kernel programmer can be guided by considering the performance model’s feedback
on focusing to optimizing the kernel by eliminating the latency bottleneck, if possible.

• All instructions are executed by a single type of pipeline, thus mixing different types
of instructions is not expected to improve IPC performance compared to applying a
single type of instructions. Thus, multi-issuing instructions on different types of exe-
cution units is not considered apart from the primary execution unit and the memory
subsystem of the GPU, e.g. mixing single precision floating point and load/store
instructions.

• From a throughput standpoint all instructions are considered to belong to either of 3
categories:

– Compute instructions
They can be either single/double precision floating point or integer instructions.
Peak throughput is determined by considering multiply-add operations. Typi-
cally, a multiply plus an addition operation are combined to a single multiply-add
instruction.

– Load/Store instructions
Instructions involving loads and stores from variousmemory types. Peak through-
put is determined by considering shared memory load/store operations, which
tend to be the most efficiently implemented.

– Control/overhead instructions
All other instructions not included in the first two categories. Peak throughput
is determined by considering integer addition instructions.

• Caching behavior tends to be relatively similar between different types of GPUs.
Thus, the amount of DRAM transactions that is profiled on the reference GPU is
not expected to change dramatically on the rest of the GPUs. This assumption is
based on the fact that GPU caches can mostly exploit of spatial locality instead of
temporal locality. It is believed that memory accesses with spacial locality are more
predictable and the various GPU architectures exhibit more often a uniform behavior,
while exploiting this type of locality.

89 E. Konstantinidis

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

• PCI-Express transfer overhead is out of scope of this thesis. All data are assumed to
reside in the GPU memory, thus CPU-GPU transfer implications are not considered.

The goal of all of the assumptions applied on the performance model is twofold. First, a
high level performance model should include a significant amount of details in the form of
parameters in order to provide reasonably accurate results. Otherwise, its merit would be
compromised. Secondly, it should not include an excessive amount of input as redundant
details would not be significant to the performance estimation and they would unneces-
sarily complicate the process without returning significant benefits. There is also a third
reason for not including some desired parameters which is the lack of hardware profiling
data as provided by the GPU vendor. This limitation will be further discussed in a later
chapter (7.2).

E. Konstantinidis 90

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

5. EXPERIMENTAL EVALUATION

In this chapter the performance estimation procedure is applied on a wide set of real
world GPU kernels. These include a stencil computation kernel which is considered as a
memory bound computation and a single precision matrix multiplication (SGEMM) kernel
which is considered as compute bound. As a last and broader evaluation study, the per-
formance estimation was tested on a large kernel subset of the well known Rodinia GPU
benchmark suite[18]. The stencil computation and the matrix multiplication kernels have
been developed for the purpose of the work summarized in this thesis. The prediction
results are compared and discussed with the real execution results. Special cases where
the predictions diverge significantly from real measurements are further investigated.

Table 5.1: List of the CUDA GPUs used in the experiments

Architectural specifications
GPU C.C. GPU architecture # SMs # SPs SP clock rate

(Compute Capability) (Name) (Total count) (Total count) (As reported by CUDA)

GTX-480 2.0 Fermi 15 480 1,550 MHz
GTX-660 3.0 Kepler 5 960 1,097 MHz
GTX-960 5.2 Maxwell 8 1,024 1,329 MHz

GTX-1060 6GB 6.1 Pascal 10 1,280 1,708 MHz
Tesla M2050 2.0 Fermi 14 448 1,147 MHz
Tesla K20c 3.5 Kepler 13 2,496 705 MHz

A list of all GPUs that have been used in the experiments is provided in table 5.1. First all
micro-benchmarks were executed on all GPUs in order to derive the required parameters
for the model. The derived parameter values are shown in table 5.2. These parameters
are used for all the experiments on this thesis.

Table 5.2: GPU parameters as measured with micro-benchmarks

Floating point ops Integer ops Memory access ops
TSP TDP Tint Tadd Bmem Tldst

GPU (GFLOPS) (GFLOPS) (GIOPS) (GIOPS) (GB/sec) (GOPS)
GTX-480 1,462.20 184.09 742.34 732.86 163.36 369.73
GTX-660 1,940.80 89.70 359.04 621.36 117.56 169.58
GTX-960 2,842.70 89.67 955.37 1,426.15 86.35 295.64

GTX-1060 6GB 4,609.54 145.02 1,533.61 2,304.10 161.64 524.27
Tesla M2050 1,011.36 508.91 513.10 504.88 ∗107.44 255.68
Tesla K20c 3,115.24 1,153.08 584.26 969.28 ∗151.72 283.59

∗ with ECC enabled

The derived weight factors are provided in table 5.3. As previously explained, these
weights represent a comparison of throughput in each operation with respect to the through-
put in single precision operation execution. As an example, the Tesla Kepler GPUs fea-
ture double precision operation throughput at a rate of 1⁄3 of its single precision operation

91 E. Konstantinidis

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

throughput. This is approximated by weight Wop (fp64) = 2.70 (Tesla K20c) which means
that the measured throughput of single precision operations was 2.70 times higher than the
measured throughput in double precision operations. Similarly, Wldst ≈ 2 (Tesla M2050)
on Fermi architecture due to the amount of 16 load/store elements per 32 SPs in each
multiprocessor. On Kepler architecture the number of load/store elements is 32 per 192
SPs in each multiprocessor hence Wldst approaches to 6 (GTX-660 & Tesla K20c). This
information will be used for the performance evaluation for all experiments.

Table 5.3: The GPU cost weights as measured and used in the model

Instruction throughput weights
GPU Wop Wop Wop Wldst Wother

(fp32) (fp64) (int) (load/store) (add)

GTX-480 1.00 7.94 1.97 1.98 1.00
GTX-660 1.00 21.64 5.41 5.72 1.56
GTX-960 1.00 31.70 2.98 4.81 1.00

GTX-1060 6GB 1.00 31.79 3.00 4.40 1.00
Tesla M2050 1.00 1.99 1.97 1.98 1.00
Tesla K20c 1.00 2.70 5.33 5.49 1.61

As a reference GPU the GTX-480 is being used for all the experiments in this chapter.
The computer systems used for the experiments were running 64bit Linux OS and the
installed CUDA versions were v6.5, v7.0 and v7.5 for Tesla K20c, Tesla M2050 and all
GTX cards, respectively. The GTX GPU systems were running on Intel Core i5 2500
CPUs, on Ubuntu 14.04.4 OS with kernel v4.2.0. The Tesla M2050 GPU system was
equipped with dual socketed Intel Xeon X5650 CPUs, running a Debian based distribution,
whereas the Tesla K20c GPU system was equipped with an Intel Core i7-3970X CPU, on
Ubuntu 14.04 with kernel v3.13.0. Shared memory configuration was set to default (48KB
for Fermi and Kepler), except for Hotspot3D of the Rodinia suite where a 16KB shared
memory configuration was identified after inspection of the source code. Setting does not
affect Maxwell and Pascal architectures, both of which utilize dedicated shared memories.

5.1 Applied kernel experiments

As said, the executed experiments include two variants of a stencil computation, a matrix
multiplication (SGEMM) kernel and a large subset of the Rodinia benchmark suite[18].
Though, the stencil computation is traditionally considered as memory intensive and the
matrix multiplication as compute intensive, these assumptions were verified by the pro-
posed performance prediction method. Findings were also verified by probing on the
appropriate utilization profiling metrics.

Beyond the aforementioned kernels the predictionmodel was also applied on themixbench
micro-benchmark itself, the results of which are presented in section 5.2.4. This is pro-
vided as a proof of the concept on a set of ideal kernels with various operational intensities.

E. Konstantinidis 92

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

5.1.1 Red/black SOR stencil computation

One of the first experiments that had been developed in the endeavor on the accomplish-
ment of this thesis was the experimentation and analysis of the red/black SOR stencil
computation[44, 45]. Specific methods for stencil computations provide large scale of par-
allelism and can be therefore applied on GPUs. However, the design and implementation
is still a subject for potential optimizations.

In this section the stencil computation method is presented as well as some important
implementation details. In case the reader is not interested in the implementation details
he is suggested to skip this section.

Method description

The SOR (Successive Over-Relaxation) method belongs to the family of iterative methods
like the Jacobi method which are widely used for solving large PDE (Partial Differential
Equation) problems. In order for this method to perform well on the GPU it should be
adequately parallelized. In this regard, the red/black ordering of the elements was chosen
which allows straightforward parallelization. More specifically, within each iteration half
of the elements can be calculated independently of the others, since there is no data
dependence between them. For a 2D mesh of points an example is illustrated on figure
5.1. Points outside the dashed rectangle define the boundary conditions. Therefore, the
problem in this form is ideal for parallelization.

Figure 5.1: Same colored points depend only on the adjacent opposite colored points.

In this implementation the Laplace equation (5.1) is considered in 2D space (2 independent
variables) as depicted below:

∇2T = 0 or
∂2T

∂x2
+

∂2T

∂y2
= 0 (5.1)

In order to solve the PDE, a predefined rectangular domain is discretized yielding a finite
number of grid points. Inner grid points are the unknowns and the boundary point values
are predefined as Dirichlet boundary conditions are assumed.

All these points are allocated in a 2D array during the calculation. The calculation is per-
formed iteratively, in two phases. First, all red elements get updated and then all black

93 E. Konstantinidis

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

elements follow. Every point is updated according to the neighbor point values, as equa-
tions (5.2) and (5.3) indicate.

uk+1
i,j = (1− ω)uk

i,j + ω(uk
i−1,j + uk

i+1,j + uk
i,j−1 + uk

i,j+1)/4 for (i+ j) odd (5.2)

uk+1
i,j = (1− ω)uk

i,j + ω(uk+1
i−1,j + uk+1

i+1,j + uk+1
i,j−1 + uk+1

i,j+1)/4 for (i+ j) even (5.3)

where ω is the relaxation factor which enables faster convergence in the computation. The
speed of convergence is not examined in this paper, thus the selected ω value is irrelevant
to our analysis. For the needs of our experiments a couple of a thousand iterations was
selected as they seemed to be a reasonable choice. In practice the number of iterations is
always related to the selected mesh size in order to satisfy convergence. Larger meshes
require significantly more iterations to be performed till they converge.

The memory wall challenge: Stencil computation performance analysis

An important characteristic of this application is the particular degree of operational inten-
sity with respect to GPUs capabilities. As it will be shown the red/black stencil computation
is typically a memory bound application. Before applying the proposed method for extract-
ing the kernel parameters and estimating the operation intensity in an automated fashion,
a theoretical analysis will be provided. Thereafter, the theoretical and experimental esti-
mations shall be compared.

First, it is required to estimate the mean number of accesses required for each computed
element. This estimate can indicate a lower bound for global memory traffic requirements.
On each iteration, during the first phase of computation all red and black elements are read
and the red element values are written back. On the next phase, all element values are
read again and the black element values are written back. Thus, assuming that either L1
or L2 cache is being used efficiently, N2 access reads and N2/2 access writes per red or
black calculation stage are required, where N is the size of matrix in each dimension.

This equals to 3xN2 total accesses per full iteration, as (5.4) indicates.

N2 +N2/2︸ ︷︷ ︸
red calculation phase accesses

+ N2 +N2/2︸ ︷︷ ︸
black calculation phase accesses

= 3N2︸︷︷︸
total accesses per iteration

(5.4)

For each element about 6 floating point computations are required (equations (5.2) and
(5.3)). So, for the whole matrix 6xN2 floating point computations and 3xN2 memory trans-
fers of floating point values are required, thus the mean number of floating point computa-
tions per memory transfer of floating point value ratio is 2, or 1/4 floating point computations
per byte memory transfer ratio as double precision floating point computations are used.
Comparing this ratio to the capability ratio of a GPU proves that the ratio is significantly
lower. For instance, according to the theoretical specifications of the GTX-480 GPU (table
3.1) the GPU provides about 168 GFLOPS peak computational power in double precision

E. Konstantinidis 94

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

operations and about 177 GB/sec memory bandwidth, which entails a ratio of about 0.95
Flops per byte. Thus, about 4x compute operations would be required in order to com-
pletely hide the memory access time with computations. Consequently, the performance
is predominantly dependent on the memory bandwidth capability of the GPU device.

Implementation details

Some details regarding the applied implementation are provided here. The computation
consists of a large number of iterations where each comprises two steps.

A straightforward approach would keep the original data arrangement of the matrix as pro-
vided. Applying computations on this arrangement however entails some memory access
inefficiencies. Essentially, the applied memory store operations are strided as in each
phase either red elements or black elements are stored. This results in memory write
transactions that contain interleaved unmodified elements. Thus, the memory accesses
would have to be uncoalesced to a significant degree as only half of the elements that are
accessed within a memory store transaction are actually updated in each stage of compu-
tation. Consequently, the memory bandwidth is not optimally used. Considering the fact
that the kernel is memory bound, a more optimized memory pattern has to used.

In order to avoid sparse element accesses and improve coalescing, a better approach
would be reordering the matrix elements according to its color. The matrix is split into
two independent matrices, one holding the red elements and the other the black elements
(figure 5.2). Each element position (i, j) is transformed to a new one (i/2, j) on the new
matrix which is the red one if (i + j) mod 2 = 0 or the black one otherwise. Therefore,
the addressing of elements is now slightly more complex. The neighbor elements are
positioned as 3 vertical elements plus one on the left or right, depending on the row number
(figure 5.2: i, ii).

0 1 2 3 4 5 0 1 2 0 1 2 8 8
0 0 1 2 3 4 5 0 0 2 4 1 3 5 (i) 13 14 15 13 15
1 6 7 8 9 10 11 1 7 9 11 6 8 10 20 20
2 12 13 14 15 16 17 2 12 14 16 13 15 17
3 18 19 20 21 22 23 3 19 21 23 18 20 22 15 15
4 24 25 26 27 28 29 4 24 26 28 25 27 29 (ii) 20 21 22 20 22
5 30 31 32 33 34 35 5 31 33 35 30 32 34 27 27

Red values Black valuesInitial matrix

Figure 5.2: Positioning of elements in the reordered matrix by applying reordering by color.

In the new data arrangement all calculated elements in a row are contiguous and stored
without leaving untouched elements between them. Thus, memory store transactions
carry only updated element values and thus, the average efficiency is increased.

Threads of a thread block share data element values through shared memory and thus,
all global memory read accesses are performed in a coalesced manner. One exception
is reading the values for the overhanging halo elements (figure 5.3). Light gray elements
are read in a coalesced manner whereas dark gray elements are read individually with-
out coalescing, since they belong to different memory segments, which is inefficient but

95 E. Konstantinidis

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

unavoidable. In this case, the global memory caching serves as a mechanism to avoid
fetching the same data from global memory multiple times.

0 1 2 3

0
1
2
3

Figure 5.3: Read accesses by a hypothetical 4x4 thread block.

The implementation performs double precision calculation. Template variables were used
instead of kernel parameters in order to fine tune the compiled kernel code. The data
reordering procedure, which is the initialization and finalization of the reordered data, in-
duces a small overhead for large matrices. However, as larger matrices require more
iterations for computation and each iteration benefits from the reordered memory struc-
ture, the induced overhead becomes only a small fraction of the total computation.

Readers are referred for more information on the published work[44, 45] describing the
respective implementations and experiments.

5.1.2 LMSOR stencil computation

A similar work had also been conducted regarding a relevant stencil computation method
called LMSOR (Local Modified SOR)[20, 21, 22]. This method resembles the red/black
SOR and has similar performance characteristics. However, in the particular case there
is an opportunity to reduce memory traffic by decreasing the redundancy of utilized data.
This decrement though, comes at a cost of re-computations which increase the compute
requirements. This increment combined with the decrement in memory traffic require-
ments disturbs the operational intensity of the kernel.

In this section a kernel variation was chosen which makes use of a higher operational
intensity value compared to the same value of the red/black SOR kernel and it theoretically
poses a stronger candidate in exhibiting ideal operational intensity.

Method description

A brief mathematical background on the LMSOR method is provided in this paragraph.
Reader is suggested to omit this section in order to proceed to implementation details.

E. Konstantinidis 96

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

This method was introduced by Boukas andMissirlis in [14] and the idea is based on letting
the relaxation factor ω vary from equation to equation, as well as having two different sets
of parameters ω1ij, ω2ij to be used for the red (i + j even) and black (i + j odd) points,
respectively. This means that each equation has its own relaxation parameter denoted by
ω1ij or ω2ij, depending on the point color.

In particular, the solution of the second order convection diffusion equation is considered:

∆u− f(x, y)
∂u

∂x
− g(x, y)

∂u

∂y
= 0 (5.5)

on a domain Ω = {(x, y)}|0 ≤ x ≤ 1, 0 ≤ y ≤ 1}, where u = u(x, y) is prescribed on the
boundary ∂Ω. The discretization of (5.5) on a rectangular grid M1 ×M2 = N unknowns
within Ω leads to

uij = ℓijui−1,j + rijui+1,j + tijui,j+1 + bijui,j−1, (5.6)
i = 1, 2, . . . ,M1 , j = 1, 2, . . . ,M2

with

ℓij =
k2

2(k2 + h2)
(1 +

1

2
hfij) , rij =

k2

2(k2 + h2)
(1− 1

2
hfij)

(5.7)

tij =
h2

2(k2 + h2)
(1− 1

2
kgij) , bij =

h2

2(k2 + h2)
(1 +

1

2
kgij),

where h = 1/(M1 + 1), k = 1/(M2 + 1), fij = f(ih, jk) and gij = g(ih, jk). For a particular
ordering of the grid points (5.6) yield a large, sparse, linear system of equations of order
N of the form:

Au = b. (5.8)

A grid point (i, j) is considered as red when i+ j is even and as black when i+ j is odd.
The LMSOR method can be expressed as follows:

u
(n+1)
ij = (1− ω1ij)u

(n)
ij + ω1ijJiju

(n)
ij , for i+ j even

u
(n+1)
ij = (1− ω2ij)u

(n)
ij + ω2ijJiju

(n+1)
ij , for i+ j odd (5.9)

where
Jiju

(n)
ij = liju

(n)
i−1,j + riju

(n)
i+1,j + tiju

(n)
i,j+1 + biju

(n)
i,j−1 (5.10)

and Jij is called the local Jacobi operator. The parameters ω1ij, ω2ij are called local re-
laxation parameters and (5.9) is referred to as the local Modified SOR (LMSOR) method
[14]. In case the eigenvalues µij of the local Jacobi operator Jij are all real or all imaginary
Boukas and Missirlis [14] found the optimum values of the local relaxation parameters ω1ij

and ω2ij for the LMSOR method.

97 E. Konstantinidis

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

In the related published work[20, 21, 22] one optimization strategy that has been applied
was the redundant computations. Re-computations can potentially be beneficial in cases
where memory accessing becomes a bottleneck, i.e. memory bound kernels. Instead of
keeping the processing units idle, one strategy is to recompute data when applicable, in
order to avoid multiple memory accesses. This is a trade-off and in cases when a kernel
is bandwidth limited, compute resources can be traded for less demand in memory band-
width. It can be applied when a few operations at most are required for the computation,
so that re-computation does not turn itself into a bottleneck. It can provide a performance
speed-up and moreover, it can alleviate memory requirements and consequently allow
solving larger problems. Moreover, even in cases where re-computation is excessively
applied, although performance is worsened, there can be other benefits as it leaves more
memory available for use and thus, a bigger problem is can be effectively solved.

In the previous work[20, 21, 22] a total of three kernel variations had been developed.
Each variation applies re-computations to a different degree and thus each one is char-
acterized by a different operational intensity value.

More specifically a summary of the kernels developed follows:

GPU Kernel #1 - No re-computations. This kernel performs no re-computations and
from this stand point it is a straightforward implementation. It utilizes a total of six matrices
in GPU memory and thus, it performs 8 element accesses per computed element. The
ratio of floating point operations per byte accessed is theoretically estimated to be 0.17
(11/8× 8), which is particularly low.

GPU Kernel #2 - Re-computations of elements ℓij , rij , tij , bij. On this kernel the num-
ber of matrices and the number of memory accesses are both decreased by 2. However,
it comes at the cost of extra operations needed to recompute the required terms for the
formula for each element on every iteration. In this case, each element computation re-
quires 6 accesses and at least 15 floating point operations, as formulae (5.6) and (5.11)
indicate. Now, the operational intensity is estimated to be 0.31 (15/6× 8) flops per byte,
which is roughly double than the same ratio of the straightforward implementation.

GPU Kernel #3 - Re-computations of elements ℓij , rij , tij , bij, ωij . In addition to the
previous re-computations on this kernel the ωij term are also recomputed. Thus, in this
case 5 accesses per computed element are required. However, a rough estimate is that
at least 39 (15+24) flops are required. An approximation of the previous ratio is ~0.98
(39/5× 8). Thus, in theory this kernel seems to be adequately balanced, as opposed to the
previous kernels. During computation uij, fij, gij terms are accessed from memory and
all other terms are recomputed as required.

Though kernel #3 was the theoretically optimum one, experiments proved that kernel #2
is actually the best performing[20, 21]. Therefore, the latter was chosen for performance
analysis in this thesis. Kernel is #2 applies re-computations for the estimation of ℓij, rij,
tij, bij, by exploiting the values f ′

ij and g′ij. The latter are precomputed and stored in two
matrices, f ′ and g′, which have been defined as f ′

ij = 1
2
hfij and g′ij = 1

2
kgij. Thus, 4

matrices are replaced by 2 matrices in device memory. The required terms (i.e. ℓij, rij, tij
and bij) are recomputed on demand through f ′

ij and g′ij during the LMSOR iterations as

E. Konstantinidis 98

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

follows:

ℓij = w(1 + f ′
ij) , rij = w(1− f ′

ij)

(5.11)
tij = w(1− g′ij) , bij = w(1 + g′ij),

where w = h2

2(k2+h2)
, which is constant during the computation.

For additional information on the implementations and analysis, readers are referred to
the aforementioned published work[20, 21, 22].

5.1.3 Matrix multiplication (SGEMM)

As a second experiment a kernel performing single precision matrix multiplication was se-
lected. The implementation applies tiling of source matrices in shared memory in order to
minimize global memory traffic as an implicit method for caching of source matrix element
tiles. Each thread block is allocated an equally sized tile for each source matrix in shared
memory. Thus, the size of the thread block also defines the size of shared memory al-
located for each source matrix. Each thread in a thread block fetches one element for
each source matrix to shared memory. Since the size of the thread block is known during
compilation time, the compiler is able to fully unroll the inner loop of computation. Due to
the dense computations, this kernel is considered as a compute intensive kernel.

5.1.4 Rodinia benchmark suite

As a last and broader application experiment of the performance model, the Rodinia
benchmark suite version 3.1 was selected[18]. Its source code is freely available on the
internet and it has been previously used by the research community. Rodinia consists of
a large set of benchmarks in CUDA, OpenCL and OpenMP parallel programming environ-
ments. The CUDA implementation is comprised of 23 total benchmarks, each of which
involves one or more CUDA kernels. The list of the Rodinia CUDA benchmarks is provided
in table 5.4.

Build configuration notes

For practical reasons some changes had to be applied in both the source code and build
configuration files. The purpose was to allow execution and profiling on the whole range of
hardware used for the experiments, as a wide range of architectures is used. Additionally,
some peculiarities in the source code forced the kernels exhibiting abnormal performance
behavior and therefore, they were fixed. The list of the changes/corrections applied is
provided below in order to allow the reproduction of the experimental results of the same
benchmark environment:

99 E. Konstantinidis

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

Table 5.4: CUDA benchmark list of the Rodinia benchmark suite

Benchmark name / folder Domain
Back Propagation / backprop Pattern Recognition

CFD Solver1 / cfd Fluid Dynamics
Heart Wall / heartwall Medical Imaging
Huffman / huffman Lossless data compression
LavaMD2 / lavaMD Molecular Dynamics

MUMmerGPU / mummergpu Bioinformatics
Needleman-Wunsch / nw Bioinformatics
Breadth-First Search1 / bfs Graph Algorithms

GPUDWT / dwt2d Image/Video Compression
HotSpot / hotspot Physics Simulation

Hybrid Sort / hybridsort Sorting Algorithms
Leukocyte / leukocyte Medical Imaging
Myocyte / myocyte Biological Simulation

Particle Filter / particlefilter Medical Imaging
SRAD / srad Image Processing

B+ Tree / b+tree Search
Gaussian Elimination / gaussian Linear Algebra

Hotspot3D / hotspot3D Physics Simulation
Kmeans / kmeans Data Mining

LU Decomposition / lud Linear Algebra
k-Nearest Neighbors / nn Data Mining
PathFinder / pathfinder Grid Traversal

Streamcluster1 / streamcluster Data Mining

• All CUDA code was compiled using the Fermi code generation option (-gencode=
arch=compute_20,code=\”compute_20,sm_20\”) in order to allow execution on all
GPUs used in the experiments and disabled L1 caching option (”-Xptxas -dlcm=cg”)
in order to minimize cache dependent behavior. On the original configuration files the
target GPU hardware was set on a per benchmark basis. This compiler option also
guides the code to be compiled in a PTX GPU form. Code in PTX form is compiled
to ISA code in a JIT fashion during runtime.

• In two benchmarks (Hotspot3D and Huffman) the debugging flags had been used (-g
-G) which produced fairy slow executable code and therefore they were removed.

• Floating point literal suffixes (”f”) were added in source code where required. On five
benchmarks (backprop, HotSpot, Leukocyte, Myocyte and SRAD) it was observed
that some floating point literals in the kernel codes had been declared by using the
double precision notation, i.e. missing the ”f” suffix, whereas the corresponding data
types were declared as single precision types. This induced an inadvertent implicit
conversion of the operand to double precision type which in turn led the compiler to
produce double precision operations where single precision were clearly intended.

E. Konstantinidis 100

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

This induced a severe negative impact on performance and therefore, it was cor-
rected.

• Reduced the number of iterations on CFD Solver1 from 2000 to 20 and set attempts
to 1 (”#define ATTEMPTS 1”) on Myocyte in order to allow the profiling to succeed.
Otherwise, profiling counters were led to overflow and the profiling procedure failed.

Considerations and performance estimation

After profiling the execution of kernels of the Rodinia suite it was observed that a significant
subset of them did not provide configurations with adequate parallelism and therefore the
GPU occupancy was significantly low. Consequently, these kernels are expected to exhibit
performance limitations due to limited occupancy of the GPUs which require vast amounts
of parallelism. Thread parallelism is expressed in terms of thread block counts and sizes
of thread blocks. Therefore, on the purpose of this analysis lower bound limits were set
on the minimum accepted thread block size and thread block count. In order for kernels
to qualify to performance analysis, the invocations have to be configured with at least 64
sized thread blocks and a minimum of 90 thread blocks in total.

This decision has been taken in order to exclude latency related cases where kernel per-
formance is not dependent on the overall GPU throughput but on other factors instead.
For instance, the completion time of individual thread blocks tends to be more dependent
on the GPU clock frequency. In general the excluded kernels are considered as latency
bound. However, the use of predicted execution times on them serves as an upper limit on
the attained performance. This analysis though, is restricted to the kernels meeting those
limits. The kernels that were selected are provided in table 5.5. Out of the 55 total kernels
only 28 qualify. As such, no kernel has been used in the experiments from Heart Wall,
Needleman-Wunsch, Myocyte, Particle Filter, Gaussian Elimination, LU Decomposition
and Streamcluster1 benchmarks of Rodinia which didn’t meet the configuration require-
ments. From this point and on, the abbreviations will be used in order to refer to the
particular kernels.

5.2 Performance prediction experiments

In this section all produced results are analyzed and presented, along with the real mea-
surements. Results include experiments on all aforementioned applications, i.e. red/black
SOR, LMSOR, SGEMM and Rodinia kernels. Comparisons of real and predicted mea-
surements are discussed.

101 E. Konstantinidis

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

Table 5.5: List of selected kernels of the Rodinia suite used on the experiments

Benchmark Kernel name Abbreviation
Hotspot3D hotspotOpt1 3d-htsp
B+ Tree findK btr-fnd

findRangeK btr-rng
Back Propagation bpnn_adjust_weights_cuda bp-adj

bpnn_layerforward_CUDA bp-fwd
Breadth-First Search1 Kernel bfs-k1

Kernel2 bfs-k2
GPUDWT c_CopySrcToComponents<int> dwt-cpy

dwt_cuda::fdwt53Kernel<int=192, int=8> dwt-krn
CFD Solver1 cuda_compute_flux e3d-flux

cuda_compute_step_factor e3d-sfac
cuda_initialize_variables e3d-init

cuda_time_step e3d-step
HotSpot calculate_temp hspt-tmp

Hybrid Sort mergepack hs-pack
mergeSortFirst hs-srtf

Kmeans invert_mapping km-map
kmeansPoint km-pt

LavaMD2 kernel_gpu_cuda lvmd-krn
Leukocyte dilate_kernel lct-dil

GICOV_kernel lct-gic
MUMmerGPU mummergpuKernel mum-krn

printKernel mum-prt
k-Nearest Neighbors euclid nn-euc

PathFinder dynproc_kernel pfnd-krn
Huffman vlc_encode_kernel_sm64huff pvl-huff
SRAD srad_cuda_1 srad-c1

srad_cuda_2 srad-c2

5.2.1 Red/black SOR stencil computation

In the previous chapter the performance model was applied on the red/black SOR stencil
computation kernel[44, 45] and the performance analysis was provided for the GTX-660
GPU. In this section the analysis is conducted for all the rest of the CUDA GPUs on the
same implementation and problem configuration. As previously, the computation is con-
ducted on a 8192x8192 2D array u comprised of double precision values and using pre-
defined boundary conditions. The reordering by color has been applied in order to enforce
locality and coalescing[44, 45]. Shared memory has been utilized for reusing values of the
mesh by intra-block threads and its configuration has been set to default, which is 48KB
shared memory for Fermi and Kepler platforms. Maxwell and Pascal architectures utilize
a dedicated 96KB of shared memory per SM on consumer GPUs[73, 75].

E. Konstantinidis 102

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

The captured kernel metrics and the derived kernel parameters have already been pro-
vided in tables 4.4 and 4.5, respectively. As it was estimated the kernel operational in-
tensity is Okrn = Wcomp

Wtraf
≈ 0.3. Recall from the previous section that the theoretically

determined ratio was 1/4 which is reasonably close.

The rest of this section will be focused on the performance estimation on the rest of the
GPUs. The relative execution cost per instruction type is estimated by using equations
(4.13), (4.14) and (4.15) with the weight factors already provided in table 5.3. The derived
values and Einstr for all GPUs are provided in table 5.6. The relative execution cost is a
measure expressing the relative contribution of each instruction type to the whole execu-
tion time, in case the kernel is compute bound. The Einstr efficiency rate expresses an
approximation of the relative instruction execution cost of all beneficial compute instruc-
tions (double precision in this case) in the whole instruction stream.

Table 5.6: The relative instruction execution costs and the instruction efficiency on all GPUs for the
red/black SOR kernel.

GPU Cop Cldst Cother Einstr

GTX-480 0.97 0.33 0.71 48.09%
GTX-660 2.63 0.97 1.11 55.89%
GTX-960 3.85 0.81 0.71 71.72%
GTX-1060 3.86 0.74 0.71 71.72%
Tesla M2050 0.24 0.33 0.71 10.83%
Tesla K20c 0.33 0.93 1.14 13.70%

After applying the efficiency factors (Emix and Einstr) to get the adjusted throughput using
equation (4.17) the T ′

op can be derived. This suggests themaximumexpected performance
of this kernel, ignoring the required DRAM bandwidth. The comparison of Odev and Okrn

determines if the kernel is expected to be compute of memory bound. The expected
performance is estimated by (4.18). The performance estimation intermediate values and
results are given in table 5.7. It is evident that the kernel is expected to be memory bound
with the exception of GTX-660, on which it was compute bound as it was proven in the
previous chapter. On the GTX-480 is marginally characterized as memory bound.

Table 5.7: The derivation of performance estimation on all GPUs for the red/black SOR kernel
(Okrn=0.3).

GPU Top T ′
op Bmem Odev Okrn > Odev Tpredicted

(GFLOPS) (GFLOPS) (GB/sec) (ops/byte) (True:Compute bound) (GFLOPS)

GTX-480 184.09 51.07 163.36 0.31 False 49.31
GTX-660 89.70 28.92 117.56 0.25 True 28.92
GTX-960 89.67 37.10 86.35 0.43 False 26.07

GTX-1060 6GB 145.02 60.80 161.64 0.38 False 48.79
Tesla M2050 508.91 55.12 107.44 0.51 False 32.43
Tesla K20c 1153.08 91.13 151.72 0.60 False 45.80

103 E. Konstantinidis

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

0

20

40

60

80

100

0 20 40 60 80 100 120 140 160 180

G
F

L
O

P
S

GB/sec

GTX-480

GTX-660

GTX-960

GTX-1060 6GB

Tesla M2050

Tesla K20c

Figure 5.4: The proposed model applied on all GPUs for the red/black SOR computation.

In figure 5.4 the prediction results after the efficiency adjustments have been applied are
illustrated. The solid dark gray half-line represents the red/black kernel’s operational in-
tensity (slope ≈ 0.3 flops/byte). The points refer to the GPUs expected performance on
the particular kernel after all the adjustments have already been applied. It is apparent
that the only GPU point residing below the kernel’s half-line is the one representing the
GTX-660. Additionally, the point for GTX-480 is very close to the half-line.

Similarly to the case study in previous chapter we provide profiling measurements of the
utilization metrics. These are helpful in the validation process of the results. As such we
collected the utilization rates for all GPUs in table 5.8. The highest utilizations potentially
expose the resources that are mostly utilized. Beyond the GTX-660 GPU, the rest GPUs
exhibit the DRAM utilization as the highest rated metric exposing the memory bound lim-
itation. As such, the utilization metrics are consistent with the outcome of the proposed
performance model.

Table 5.8: The highest rated utilization metric values of the red/black SOR kernel, on all GPUs.

GPU ∗Metric/utilization (1) ∗Metric/utilization (2) ∗Metric/utilization (3)
GTX-480 dram/High (9) l2/High (7) alu_fu/Mid (5)
GTX-660 alu_fu/High (9) dram/High (7) l1_shared/Mid (4)
GTX-960 dram/High (8) double_precision_fu/Mid (6) l2/Mid (6)

GTX-1060 6GB dram/High (9) double_precision_fu/Mid (6) l2/Low (3)
Tesla M2050 dram/High (9) l2/Mid (6) l1_shared/Mid (4)
Tesla K20c dram/High (9) ldst_fu/Mid (5) l2/Mid (4)

∗ The “_utilization” suffix from metric names has been omitted

In table 5.9 the predicted and measured execution times are provided with the respective

E. Konstantinidis 104

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

Table 5.9: Prediction results on all GPUs for the red/black SOR stencil computation

Predicted time Measured time Error
GPU (msecs) (msecs) (%)

GTX-480 20.414 21.456 -4.86%
GTX-660 34.803 34.851 -0.14%
GTX-960 38.620 38.793 -0.45%

GTX-1060 6GB 20.632 20.994 -1.73%
Tesla M2050 31.038 33.367 -6.98%
Tesla K20c 21.979 23.482 -6.40%

prediction error. The error percentage is evaluated by the ratio expressed in (5.12).

Error =
TPredicted − TMeasured

TMeasured

× 100% (5.12)

All GPUs exhibited less than 7% error. Tesla GPUs exhibited a slightly larger error which
can be attributed to the ECC implications on these platforms. Of course, the ECC cost has
already been indirectly accounted in the performancemodel throughmicro-benchmarking.
However, this kernel employs uncoalesced memory accesses for the left and right halo
point elements within a tile and the cost of ECC can be increased on these cases. Red/black
SOR kernel is memory bound on Tesla GPUs and thus the additional overhead of ECC
memory has impact on the kernel’s execution time.

5.2.2 LMSOR stencil computation

The computation involves memory accesses on matrices of size 3842x3842 with double
precision values. Similarly to the red/black kernel, reordering by color has been applied
and shared memory configuration has been set to default (48KB shared memory for Fermi
and Kepler platforms). This kernel utilizes texture memory for implicit caching of data
and alleviating global memory traffic. The profiling metrics were captured for a total of 4
iterations of computation on the GTX-480, using the nvprof tool for all iterations of the red
elements’ computation as shown in table 5.10.

Afterwards, the kernel parameters are determined and depicted in table 5.11 along with
the operational intensity. The theoretical operational intensity was estimated to be 0.31,
which compared to the experimental estimation (Okrn = 0.46) is significantly lower. This
difference is justified by the actual amount compute operations performed. Using the
theoretical assumptions as provided on paragraph 5.1.2, for matrix sizes of 3842x3842
and 4 iterations of red elements computation, the expected amount of compute operations
would be 442,368,000, while the expected memory traffic would be 1,415,577,600 bytes.
The experimental memory traffic estimation is very close toWtraf = 1,463,296,768, but the
compute operation count,Wcomp = 679,312,384, is significantly higher than the theoretically
estimated value (more than +53%). This entails 23 flops per element on average instead

105 E. Konstantinidis

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

Table 5.10: The profiling metrics gathered for the LMSOR kernel on a GTX-480 GPU. All metrics are
the accumulated values collected in 4 iterations for the red element calculation.

Parameter Measurement
Mfma32 0
Mfma64 36,864,000
Mldst 93,107,518
Minst 18,433,804
Mfp32 0
Mfp64 132,964,096
Mint 184,601,469

Mtran-r 9,577,528
Mtran-w 1,854,478

Table 5.11: The kernel parameters and the operational intensity of the LMSOR kernel.

Parameter Value
Ktype fp64
Wcomp 679,312,384
Wtraf 1,463,296,768
Emix 63.86%
Dops 22.54%
Dldst 15.78%
Dother 61.68%
Okrn 0.46

of the assumed 15 flops in paragraph 5.1.2. Nevertheless, the operational intensity is still
low and this kernel is also expected to be memory bound. It still exhibits a large instruction
overhead Dother = 61.68%, though lower than the exhibited ratio of the red/black SOR
kernel.

The performance modeling process proposes that this kernel is compute bound on the
GTX-660 GPU and memory bound on the other GPUs, similarly to the red/black SOR
kernel. The performance prediction results are provided in table 5.12 and compared with
the actual execution measurements. The GTX-480 and GTX-960 GPUs exhibited perfor-
mance very close to the predicted one. The rest of the GPUs executed the kernel with up
to ~10% worse performance than predicted. By inspecting the top utilizations seen on the
GPUs, provided in table 5.13, it is obvious that the GTX-660 is clearly compute bound as
the ALU unit is saturated to max(10) utilization, which validates the performance model
classification. The slight performance prediction error could stem from the evaluation of
the computational workload cost. The same kernel on the GTX-1060 seems to reside
on the critical/turning point between compute and memory bound regions as the DRAM
and ALU utilizations are equally assessed to be high(9). This is also expressed by the
performance model which estimated a device compute to memory ratio (Odev) equal to
0.479 which is very close to the operational intensity of the kernel (0.46). This would
be expressed by having the kernel’s operational intensity approaching the ridge point of

E. Konstantinidis 106

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

Table 5.12: Prediction results on all GPUs for the LMSOR kernel stencil computation

Predicted time Measured time Error
GPU (msecs) (msecs) (%)

GTX-480 8.957 8.971 -0.15%
GTX-660 16.397 18.069 -9.26%
GTX-960 16.946 17.458 -2.93%

GTX-1060 6GB 9.053 10.132 -10.65%
Tesla M2050 13.619 15.162 -10.17%
Tesla K20c 9.644 10.399 -7.26%

Table 5.13: The highest rated utilization metric values of the LMSOR SOR kernel.

GPU ∗Metric/utilization (1) ∗Metric/utilization (2) ∗Metric/utilization (3)
GTX-480 dram/High (9) alu_fu/High (7) l2/High (7)
GTX-660 alu_fu/Max (10) dram/High (7) l2/Low (3)
GTX-960 dram/High (8) double_precision_fu/High (7) l2/Mid (6)

GTX-1060 6GB dram/High (9) double_precision_fu/High (9) l2/Mid (4)
Tesla M2050 dram/Max (10) l2/Mid (6) tex/Low (3)
Tesla K20c dram/High (9) l2/Mid (4) alu_fu/Low (2)

∗ The “_utilization” suffix from metric names has been omitted

the roofline performance line in the roofline model. The Tesla GPUs exhibited high(9)
or max(10) DRAM utilizations so the prediction error could possibly be attributed to ECC
causing an extra overhead.

5.2.3 Matrix multiplication (SGEMM)

For the matrix multiplication kernel the selected matrix sizes for the experiments were
1280x640 and 640x640. The program was compiled by setting the thread block size to
be 32x32 (1024 threads per block). The larger the thread block size is set, the larger the
shared memory tile and therefore, the less the produced memory traffic is expected to be.

The derived parameters for this kernel have already been shown in table 4.10. The op-
erational intensity is particularly high in this case (Okrn = 24.81) so it would be valid to
assume that this kernel is compute bound. However, using the peak compute throughput
of the device as the expected kernel’s compute performance would not be wise in a suffi-
ciently accurate performance model. For instance, the GTX-660 with a theoretical 1,983
SP GFLOPS peak, would ideally execute this workload in less than 0.53 msecs, which is
far from the measured 6.2 msecs. If the instruction densities are taken into account then
it becomes apparent that this kernel executes mostly load/store instructions (almost half
of total instructions) instead of compute operations. Furthermore, as typically load/store
operations are more expensive than single precision flops, kernel’s compute potential is
greatly reduced. This reduction is modeled through the Einstr factor. If this factor is ap-
plied to the measured peak compute throughput for the GTX-660, the adjusted throughput

107 E. Konstantinidis

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

becomes T ′
op = 202.8 GFLOPS and entails the execution time of 5.171 msecs, which is

far closer to the measured performance.

In table 5.14 the prediction results are compared with the measured times. The perfor-
mance of both the GTX-960 and GTX-1060 appears to be very close to the predicted
time. For the rest of the GPUs the performance prediction error ranges between 16%
and 26%. After inspection and experimentation it was found that groups of 4 load in-
structions on shared memory regarding sequential addresses were combined to single
128bit loads (LDS.128 instruction on Fermi). In the profiling process these instructions
account as single, though the actual throughput of these is about 1/4 to 1/2 of the equiva-
lent using 32bit loads, depending on the architecture. Consequently, the accounted rela-
tive weight of load/store instructions is significantly less than the actual one. This relation
of throughput ratios is justified by the vendor’s documentation regarding shared memory
throughput[73], as well as, it has been validated on a published work assessing on-chip
memories’ throughput via micro-benchmarking[43]. The GTX-960 and GTX-1060 pre-
dictions were coincidentally very close to the actual execution time due to the effective
overlapped execution of load/store and compute instructions.

Table 5.14: Prediction results for the matrix multiplication kernel

Predicted time Measured time Error
GPU (msecs) (msecs) (%)

GTX-480 2.987 4.033 -25.95%
GTX-660 5.171 6.201 -16.61%
GTX-960 2.973 2.938 1.20%

GTX-1060 6GB 1.705 1.694 0.64%
Tesla M2050 4.320 5.795 -25.45%
Tesla K20c 3.122 3.963 -21.24%

In table 5.15 the highest rated utilization metrics are provided per GPU for the SGEMM
kernel. The particularly high values of l1_shared_utilization or shared_utilization metrics
point to the shared memory resource as the bottleneck of this application which is more
or less connected to the load/store utilization.

Table 5.15: Top GPU utilization metrics on matrix multiplication kernel profiling

GPU Metric Ratio
GTX-480 l1_shared_utilization High (8)
GTX-660 l1_shared_utilization High (9)
GTX-960 shared_utilization High (9)

GTX-1060 6GB shared_utilization High (9)
Tesla M2050 l1_shared_utilization High (8)
Tesla K20c l1_shared_utilization High (8)

E. Konstantinidis 108

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

5.2.4 Mixbench performance prediction

As an additional evaluation of the proposed model the mixbench micro-benchmark was
selected as a target. Mixbench is composed of a large group of kernels, where each one is
differentiated by parameter values which determine the balance of compute/memory op-
erations. Each parameter is essentially a template variable and each different value leads
to compiling a different kernel binary in the executable. All kernels are optimized so the
device is pushed close to its theoretical limits. Loops are optimally unrolled, proper data
types are used, parallelism is abundant, no divergences, control instructions minimized,
memory accesses are coalesced, etc. That said, the kernels are running very efficiently
are presented in section 3.2.1.

In this section, the performance prediction model was applied on mixbench itself. The
parameters of the kernels were captured and thereafter, the conducted performance pre-
diction results were used to reconstruct the roofline chart. In addition, running the micro-
benchmark on the same devices is used to compare the actual measurements with the
predicted ones. The GTX-480 is used again as a reference GPU for profiling the kernel.
This kind of chart is illustrated in figure 5.5 for the GTX-480 and GTX-660 GPUs. Figure
5.6 present the same information for the GTX-960 and GTX-1060, and figure 5.7 for Tesla
M2050 and K20c, respectively.

32

64

128

256

512

1,024

2,048

4,096

0.5 1 2 4 8 16 32 64 128

G
F

LO
P

S
 (

si
ng

le
 p

re
ci

si
on

)

Operational intensity (Flops/byte)

Predicted performance

Measured performance

(a) GTX-480

32

64

128

256

512

1,024

2,048

4,096

0.5 1 2 4 8 16 32 64 128

G
F

LO
P

S
 (

si
ng

le
 p

re
ci

si
on

)

Operational intensity (Flops/byte)

Predicted performance

Measured performance

(b) GTX-660

Figure 5.5: Performance prediction on mixbench (SP) for GTX-480 and GTX-660.

On the GTX-960 prediction there is a small divergence observed for high operational in-
tensities. This prediction error exposes some different compilation behavior for this ar-
chitecture. In order to elaborate, the same prediction procedure was repeated by using
the GTX-960 GPU as a reference this time in order to investigate the prediction results by
eliminating any code generation side effects. The prediction results are provided in figure
5.8. Here the regenerated prediction clearly exposes the performance fluctuation.

As it is evident, the model in general led to estimated performance which was quite close to
the actual measured. In fact, the curvature of line is very accurately predicted by the pro-
posed model compared to just using the flat theoretical peaks as already shown in figures
3.2, 3.3 and 3.4. Real world kernels, however, frequently expose other bottlenecks but on

109 E. Konstantinidis

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

32

64

128

256

512

1,024

2,048

4,096

0.5 1 2 4 8 16 32 64 128

G
F

LO
P

S
 (

si
ng

le
 p

re
ci

si
on

)

Operational intensity (Flops/byte)

Predicted performance

Measured performance

(a) GTX-960

32

64

128

256

512

1,024

2,048

4,096

0.5 1 2 4 8 16 32 64 128

G
F

LO
P

S
 (

si
ng

le
 p

re
ci

si
on

)

Operational intensity (Flops/byte)

Predicted performance

Measured performance

(b) GTX-1060

Figure 5.6: Performance prediction on mixbench (SP) for GTX-960 and GTX-1060.

32

64

128

256

512

1,024

2,048

4,096

0.5 1 2 4 8 16 32 64 128

G
F

LO
P

S
 (

si
ng

le
 p

re
ci

si
on

)

Operational intensity (Flops/byte)

Predicted performance

Measured performance

(a) Tesla M2050

32

64

128

256

512

1,024

2,048

4,096

0.5 1 2 4 8 16 32 64 128

G
F

LO
P

S
 (

si
ng

le
 p

re
ci

si
on

)

Operational intensity (Flops/byte)

Predicted performance

Measured performance

(b) Tesla K20c

Figure 5.7: Performance prediction on mixbench (SP) for the two Tesla GPUs.

these ideal kernels the proposed model produces close to real measurement predictions.

5.2.5 Rodinia benchmark suite

The Rodinia execution experiments were focused on the selected 28 kernels as provided
in table 5.5. The experimental executions yielded the parameter values that are summa-
rized in table 5.16. Out of 28 selected kernels exactly half of them were characterized as
single precision floating point (fp32), 13 as integer (int) and just one as double precision
floating point (fp64). Some are compute intensive e.g. in terms of instruction density on
e3d-flux more than 44% of executed instructions are single precision floating point and on
lvmd-krn more than 36% of executed instructions are double precision floating point. In
terms of operational intensity lct-gic approaches 600 flops/byte which is particularly high.
A detailed roofline chart with all single precision Rodinia kernels on GTX-480 is depicted
in figure 5.9.

Using the aforementioned parameters the prediction results were estimated and exper-

E. Konstantinidis 110

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

32

64

128

256

512

1,024

2,048

4,096

0.5 1 2 4 8 16 32 64 128

G
F

L
O

P
S

 (
si

ng
le

 p
re

ci
si

on
)

Operational intensity (Flops/byte)

Predicted performance

Measured performance

Figure 5.8: Performance prediction on mixbench (SP) for GTX-960 by using same GPU as reference.

8

16

32

64

128

256

512

1,024

2,048

4,096

8,192

16,384

0 1/4 1 4 16 64 256 1024

G
F

LO
P

S
 (

si
ng

le
 p

re
ci

si
on

)

Operation Intensity (Flops/byte ratio)

3d-htsp bp-adj
bp-fwd e3d-flux
e3d-sfac e3d-step
hspt-tmp hs-srtf
km-pt lct-dil
lct-gic nn-euc
srad-c1 srad-c2

Figure 5.9: GTX-480 roofline using the estimated fp32 Rodinia kernel intensities.

imental executions were conducted in order to compare the former with the actual time
measurements. The prediction errors are depicted in figure 5.11. Out of 168 total predic-
tions for all GPUs, 30 predictions proved to be pessimistic as the respective errors were
positive, which means that the actual execution times were shorter than predicted. The
rest 138 predictions were optimistic and this is expressed with the negative prediction er-
rors. In addition, 40 predictions were highly optimistic as the error was below -50%. In
terms of APE (Absolute Percentage Error), which is the absolute error (|Error|), the ma-
jority of predictions on all GPUs (89/168 = 52.98%) exhibited less than 25% APE. Focusing
on each particular GPU, predictions falling below 25% APE were 53.6% (15/28), 53.6%
(15/28), 57.1% (16/28), 50.0% (14/28), 50.0% (14/28) and 53.6% (15/28) for the GTX-480, GTX-
660, GTX-960, GTX-1060, Tesla M2050 and Tesla K20c, respectively. Thus, in summary
prediction accuracy is acceptable for more than half of predictions for all GPUs.

For sake of the evaluation of the efficiency factors (Emix & Einstr) in figure 5.10 the pre-

111 E. Konstantinidis

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

Table 5.16: Collected kernel parameters and the operational intensity of the selected Rodinia kernels

Kernel Ktype Wcomp Wtraf Emix Dops Dldst Dother Okrn

3d-htsp fp32 1,703,936,000 1,264,790,400 83.33% 15.92% 11.43% 72.65% 1.347
btr-fnd int 138,477,928 12,264,768 50.00% 54.95% 9.57% 35.48% 11.291
btr-rng int 149,868,966 14,210,080 50.00% 58.75% 11.34% 29.91% 10.547
bp-adj fp32 9,437,296 19,332,000 64.29% 15.91% 20.45% 63.64% 0.488
bp-fwd fp32 2,031,616 9,576,448 50.00% 1.51% 7.86% 90.63% 0.212
bfs-k1 int 144,663,996 419,167,488 50.00% 15.59% 3.95% 80.46% 0.345
bfs-k2 int 76,010,748 24,407,808 50.00% 35.13% 7.39% 57.48% 3.114
dwt-cpy int 20,709,376 15,775,936 50.00% 54.86% 20.83% 24.31% 1.313
dwt-krn int 61,932,984 26,166,336 50.00% 51.92% 25.87% 22.21% 2.367
e3d-flux fp32 4,862,041,500 630,725,760 81.70% 44.11% 3.93% 51.96% 7.709
e3d-sfac fp32 230,343,560 54,782,720 85.23% 34.35% 3.46% 62.20% 4.205
e3d-init int 3,788,928 5,851,008 50.00% 44.83% 17.24% 37.93% 0.648
e3d-step fp32 157,386,240 369,014,400 96.43% 16.28% 18.60% 65.12% 0.427
hspt-tmp fp32 23,790,048 3,490,880 80.95% 12.93% 6.52% 80.55% 6.815
hs-pack int 171,966,464 135,862,912 50.00% 43.08% 25.74% 31.17% 1.266
hs-srtf fp32 41,958,520 134,636,032 50.00% 27.78% 5.56% 66.67% 0.312
km-map int 129,438,028 611,707,072 50.00% 73.18% 18.99% 7.83% 0.212
km-pt fp32 508,840,600 693,726,720 74.64% 29.56% 29.22% 41.22% 0.733

lvmd-krn fp64 11,415,296,000 329,011,328 78.79% 36.07% 4.08% 59.86% 34.696
lct-dil fp32 144,440,534 5,853,952 50.00% 9.62% 9.61% 80.76% 24.674
lct-gic fp32 2,886,264,648 4,827,456 81.37% 36.27% 13.44% 50.29% 597.885

mum-krn int 64,023,008 122,884,896 50.00% 24.67% 2.11% 73.22% 0.521
mum-prt int 34,693,612 103,484,288 50.00% 25.78% 3.87% 70.35% 0.335
nn-euc fp32 513,168 277,536 66.67% 27.23% 9.08% 63.70% 1.849
pfnd-krn int 163,099,165 43,833,920 50.00% 41.43% 19.43% 39.14% 3.721
pvl-huff int 401,590,480 14,557,120 50.00% 47.39% 9.09% 43.51% 27.587
srad-c1 fp32 847,249,408 204,695,744 81.45% 24.44% 8.70% 66.86% 4.139
srad-c2 fp32 83,886,080 236,833,856 83.33% 5.25% 16.66% 78.08% 0.354

diction error is provided for three prediction cases on the GTX-480 GPU. The first is not
applying efficiency factor corrections at all, the second applies just Emix correction and
the last one applies the method as proposed by utilizing both Emix and Einstr. It is evident
that in all cases the efficiency adjustments either improve the absolute prediction error or
in the worst case they have no affect.

According to figure 5.9, taking into account just the operational intensity of the kernel
leads to expect a total of 11 fp32 kernels being memory bound on the GTX-480 GPU.
Our analysis, though, exposed only 4 kernels (bp-adj, e3d-step, hs-srtf, km-pt) exhibiting
higher intensity than the one the GPU could offer.

The errors of the rest of the predictions were larger and in some cases they reached to
high levels, exceeding 70% APE. In this regard, table 5.17 with the highest utilizations on
the execution of the Rodinia kernels is provided for all GPUs. The highest rated utilization
metric potentially reveals the most congested resource of the GPU and therefore it is a
significant indication of the performance limitation factor on the particular GPU. As the
proposed model is based on the assumption that kernels are not latency bound, the most

E. Konstantinidis 112

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

3d
-h

ts
p

bt
r-

fn
d

bt
r-

rn
g

bp
-a

dj

bp
-f

w
d

bf
s-

k1

bf
s-

k2

dw
t-

cp
y

dw
t-

kr
n

e3
d-

flu
x

e3
d-

sf
ac

e3
d-

in
it

e3
d-

st
ep

hs
pt

-t
m

p

hs
-p

ac
k

hs
-s

rt
f

km
-m

ap

km
-p

t

lv
m

d-
kr

n

lc
t-

di
l

lc
t-

g
ic

m
um

-k
rn

m
um

-p
rt

nn
-e

uc

pf
nd

-k
rn

pv
l-h

uf
f

sr
ad

-c
1

sr
ad

-c
2

E
rr

o
r

(%
)

Rodinia benchmark

Error (no corrections)

Error (E_mix correction applied)

Error (E_mix & E_instr corrections applied)

Figure 5.10: Prediction errors in the Rodinia suite kernels on GTX-480, in relation to the exploitation
of the efficiency factors.

utilized resource should be adequately utilized (e.g. utilization > 7). Otherwise, the ker-
nel should be considered as latency bound and the predicted execution time is expected
to be significantly lower than the actual one. In this case it serves as a lower bound. In
addition, the utilization metric should be either connected to the DRAM or to an execution
resource of the SM (ALU, Load/Store unit), otherwise performance is expected to depend
on a resource utilization (e.g. L2 cache) that it not explicitly considered in the proposed
model or it is bound to unknown latencies. To this end, some typical cases which exhib-
ited the largest average prediction errors were investigated. In addition, some distinctive
cases were probed where different behavior between GPUs was observed concerning the
execution time prediction and resource utilizations.

Special case considerations

Kernel pfnd-krn is essentially the only one that performed better on Fermi based GPUs
than predicted. This is attributed to the fact that this kernel was classified as type int and as
such its compute workload is based on the throughput of integer instructions, where each
integer instruction’s cost is accounted by the model as the cost of a Multiply-Add integer
instruction. However, this cost is not the lowest one exhibited by integer instructions. For
instance, the integer addition instruction throughput is double on Fermi GPUs[73]. The
inspection of the assembler code produced for Fermi (SASS) showed that the inner loop
consisted of 31 instructions out of which only 3 were of MAD type. Apart from the 6 shared
memory instructions (LDS/STS) there where 10 other integer instructions (ISETP, IADD,
etc) and 4 data movement instructions (MOV) which are expected to execute efficiently.
As there is no deeper distinction between integer instruction types in the available profiling

113 E. Konstantinidis

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

-3
6.

6% -2
6.

1%

-2
3.

9%

-6
7.

8%

-1
5.

8%

-6
2.

2%

-5
3.

8%

-1
2.

6% -7
.1

%

-5
8.

8%

-3
4.

6% -1
5.

5%

-1
3.

0%

-2
2.

9%

-4
3.

8%

-1
7.

3%

-1
.7

%

-3
6.

2%

-1
6.

5%

-7
2.

4%

-3
2.

1%

23
.0

%

19
.2

%

-6
5.

7%

-2
8.

2%

4.
9%

-9
.4

%

7.
2%

-2
.3

%

-4
7.

2%

-3
9.

0%

-9
.9

%

-5
8.

6%

-5
2.

2%

-5
1.

9%

-4
.1

%

-1
4.

9%

-4
7.

6%

-4
.4

%

-2
.4

%

-1
.3

%

-6
.9

%

-9
.6

4%

-5
4.

50
%

-4
6.

00
%

-1
0.

05
%

-4
7.

32
%

-5
2.

62
%

-5
9.

69
%

-6
.1

5%

-2
9.

54
%

-5
4.

34
% -2

8.
42

%

5.
92

%

-4
.6

1%

-1
7.

36
%

-2
6.

1%

-2
4.

1%

-2
0.

5%

-5
9.

0%

-1
5.

7%

-6
6.

9% -5
3.

8%

-8
.5

%

-1
0.

5%

-5
8.

0%

-3
4.

3%

0.
1%

-1
2.

0%

-2
3.

0%

-3
7.

7%

-1
5.

1%

1.
4%

-6
2.

3%

-4
.4

%

-6
3.

4%

-2
9.

6%

-1
.4

%

-1
4.

5%

-6
7.

2%

-3
3.

9%

12
.2

%

-1
2.

7%

20
.6

%

-100%

-75%

-50%

-25%

0%

25%

50%

75%

100%

3d
-h

ts
p

bt
r-

fn
d

bt
r-

rn
g

bp
-a

dj

bp
-f

w
d

bf
s-

k1

bf
s-

k2

dw
t-

cp
y

dw
t-

kr
n

e3
d-

fl
ux

e3
d-

sf
ac

e3
d-

in
it

e3
d-

st
ep

hs
pt

-t
m

p

P
re

di
ct

io
n

er
ro

r
(%

)

GTX-480
GTX-660
GTX-960
GTX-1060 6GB
Tesla M2050
Tesla K20c

-3
8.

0%

-1
.5

%

-5
8.

9%

-1
8.

6% -6
.3

%

-2
4.

1%

-3
.8

%

-5
7.

0%

-6
6.

0%

-7
1.

2%

23
.2

%

1.
3%

-1
9.

5%

-3
6.

8%

-4
.1

%

-1
.9

%

-6
5.

9%

-5
.9

%

-2
0.

0%

-2
8.

2%

11
.3

%

-7
0.

6%

-7
4.

6%

-6
7.

3%

43
.5

%

14
.1

%

-6
.9

%

-3
7.

7%

-0
.1

%

-0
.9

%

-1
4.

3%

3.
4%

-2
6.

3%

-2
9.

7%

21
.9

%

-4
9.

4%

-6
1.

0% -5
0.

3%

13
.4

% 31
.4

%

-5
.1

%

-1
.3

%

-1
3.

66
%

-5
.6

2%

3.
54

%

3.
81

%

-3
5.

37
%

-3
6.

03
%

33
.7

3%

-5
4.

63
%

-6
9.

19
% -4
9.

85
%

-5
.3

9%

20
.5

4%

-1
9.

88
%

-2
1.

31
%

-4
0.

3%

2.
2%

-5
8.

7%

-3
2.

6%

-1
2.

3%

-2
4.

8%

-7
.6

%

-5
4.

0%

-5
9.

9%

-6
6.

3%

22
.6

%

1.
4%

-3
2.

2%

-4
0.

3%

-6
.6

%

-1
.9

%

-4
7.

7%

-2
1.

0%

22
.6

%

-1
9.

1%

23
.4

%

-5
9.

5%

-6
5.

3%

-7
3.

5%

50
.3

%

40
.0

%

4.
9%

-3
0.

3%

-100%

-75%

-50%

-25%

0%

25%

50%

75%

100%

hs
-p

ac
k

hs
-s

rt
f

km
-m

ap

km
-p

t

lv
m

d-
kr

n

lc
t-

di
l

lc
t-

gi
c

m
um

-k
rn

m
um

-p
rt

nn
-e

uc

pf
nd

-k
rn

pv
l-

hu
ff

sr
ad

-c
1

sr
ad

-c
2

P
re

di
ct

io
n

er
ro

r
(%

)

GTX-480
GTX-660
GTX-960
GTX-1060 6GB
Tesla M2050
Tesla K20c

Figure 5.11: Prediction error of the selected Rodinia kernels per GPU.

metrics there cannot be an accurate cost assignment to integer instructions.

On Kepler GPUs the performance gap between the addition instruction throughput and the
multiply-add instruction throughput is significantly higher as each SM is able to fulfill 160
addition instructions per clock compared to just 32 integer MAD instructions (1/5 through-
put ratio)[73] and thus prediction error is wider on these GPUs. Maxwell and Pascal GPUs
reach to a theoretical throughput of 128 integer addition instructions per clock (1/4 through-
put ratio)[73], which entails also a wider gap compared to Fermi GPUs, though narrower
to Kepler. In addition, all three recent GPU architectures (Kepler, Maxwell and Pascal)
are able to co-issue ALU and load/store instructions contrary to Fermi GPUs. For both
reasons, kernels pvl-huff and lct-gic executed faster than predicted on Kepler, Maxwell
and Pascal GPUs.

BothMUMmerGPU kernels (mum-prt &mum-krn) exhibited large prediction errors, 66.00%
and 57.51%, respectively. Especially, the prediction of the mum-prt kernel execution on
the GTX-660 reached to 74.56%. All highest utilized metrics of both kernels point to the
DRAM resource as seen in table 5.17. However, the highest profiling utilizations were
observed particularly low for most GPUs (3-4) with Tesla GPUs being an exception, which
indicates other latencies as bounds. After source code inspection, it was noticed that
the inner loop global memory references consisted of 8bit scalar (char) type accesses.
Experience has shown that GPUs cannot approach peak memory bandwidth by utilizing
such short memory types. Ideally, both kernels would be memory bound as indicated of
the proposed model. However, this inspection suggests that kernels are bound on the
DRAM latency as the requested transactions cannot fully utilize the DRAM resource. In
contrast, the Tesla GPUs exhibited higher rates on DRAM utilization due to the ECC pro-
tection, which caused a much larger DRAM traffic (3,840,153, 10,062,748 and 6,612,211

E. Konstantinidis 114

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

Table 5.17: The highest utilization metrics for the Rodinia kernels and the corresponding utilization
rating.

Kernel GTX-480 GTX-660 GTX-960 GTX-1060 6GB Tesla M2050 Tesla K20c
3d-htsp l2 (7) alu_fu (4) l2 (10) dram (8) l2 (8) dram (6)
btr-fnd alu_fu (3) alu_fu (3) l2 (5) single_precision_fu (3) alu_fu (4) ldst_fu (4)
btr-rng alu_fu (4) ldst_fu (4) l2 (6) tex (4) alu_fu (4) ldst_fu (5)
bp-adj l2 (4) dram (5) l2 (9) dram (8) dram (5) dram (4)
bp-fwd alu_fu (7) alu_fu (7) single_precision_fu (6) single_precision_fu (5) alu_fu (8) alu_fu (7)
bfs-k1 alu_fu (2) ldst_fu (2) dram (3) dram (2) dram (4) dram (3)
bfs-k2 alu_fu (4) alu_fu (3) dram (4) dram (3) alu_fu (4) alu_fu (3)
dwt-cpy dram (9) dram (8) dram (8) dram (8) dram (9) dram (8)
dwt-krn alu_fu (5) ldst_fu (6) dram (7) dram (6) dram (6) dram (4)
e3d-flux alu_fu (4) alu_fu (3) l2 (10) dram (4) alu_fu (4) l2 (3)
e3d-sfac alu_fu (6) alu_fu (5) dram (7) dram (7) alu_fu (6) dram (6)
e3d-init dram (9) dram (8) dram (7) dram (8) dram (9) dram (8)
e3d-step dram (8) dram (8) dram (8) dram (8) dram (9) dram (7)
hspt-tmp alu_fu (6) alu_fu (6) single_precision_fu (7) single_precision_fu (7) alu_fu (6) alu_fu (5)
hs-pack dram (8) dram (6) dram (8) dram (8) dram (10) dram (8)
hs-srtf dram (9) dram (8) dram (8) dram (8) dram (9) dram (9)
km-map ldst_fu (5) ldst_fu (6) dram (7) dram (8) dram (9) ldst_fu (7)
km-pt dram (8) dram (8) dram (8) dram (9) dram (10) dram (8)

lvmd-krn alu_fu (10) alu_fu (10) double_precision_fu (10) double_precision_fu (10) alu_fu (7) alu_fu (8)
lct-dil alu_fu (5) alu_fu (3) l2 (7) single_precision_fu (4) alu_fu (5) alu_fu (5)
lct-gic alu_fu (7) alu_fu (5) tex_fu (7) tex_fu (7) alu_fu (7) alu_fu (5)

mum-krn dram (4) dram (3) dram (4) dram (3) dram (8) dram (6)
mum-prt dram (4) dram (3) dram (4) dram (3) dram (8) dram (5)
nn-euc alu_fu (4) dram (4) l2 (7) l2 (4) l2 (5) alu_fu (3)
pfnd-krn alu_fu (5) ldst_fu (6) dram (7) dram (6) dram (6) ldst_fu (6)
pvl-huff alu_fu (5) alu_fu (5) shared (6) shared (6) alu_fu (5) l1_shared (6)
srad-c1 alu_fu (6) ldst_fu (6) dram (8) dram (7) alu_fu (5) dram (6)
srad-c2 dram (6) ldst_fu (6) dram (8) dram (7) dram (9) dram (7)
∗The ”_utilization” suffix in the metric names has been omitted for space conservation.

total transactions on GTX-480, Tesla M2050 and Tesla K20c, respectively). Therefore,
this kernel is not expected to perform as optimally as the model would presume. As such,
both kernels could not get to the performance levels that the proposed model predicted.

Another kernel exhibiting large prediction error is nn-euc (avg. APE 63.09%). However,
this kernel takes a tiny amount of time to execute on the order of few micro-seconds
(7.42 micro-seconds on GTX-480). Kernels executing on such small intervals are difficult
to predict as the execution time becomes susceptible to the unavoidable invocation and
execution overheads. Thus, short kernel invocations are not considered to utilize the GPU
sufficiently enough in order to yield predictable execution times by using the proposed
model.

Kernels bfs-k1 and bfs-k2 prediction results are expressed by a 61.63% and 46.82% APE,
respectively. By inspecting the utilization metrics it becomes evident that the maximum
utilization rate ranges between 2 and 4 which in this case is also quite low. The type of
metric varies (alu_fu, dram, ldst_fu) but most important is the particularly low rate which
indicates yet another latency bound kernel. A further inspection on the GTX-480 reveals
that a total of 12 invocations were conducted per kernel with an average execution time
of 0.56 msecs and 0.075 msecs, respectively. A significant amount of invocations took
less than 0.1 msecs and as such, the invocation overheads are expected to affect the

115 E. Konstantinidis

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

execution time severely. This fact justifies the observed errors.

The “Back Propagation” kernels exhibited some peculiar behavior on the GTX-960 and
GTX-1060 performance predictions. While the bp-adj kernel’s performance was not well
predicted in general (average error 40.87%), predictions on the GTX-960 and GTX-1060
GPUs were significantly more accurate with the respective APE at ~10%. In contrast, the
performance of bp-fwd kernel was significantly better predicted on the rest of the GPUs,
yet the GTX-960 and GTX-1060 in particular still exhibited different behaviors as the pre-
dicted time was about the half of the actual measured time. The DRAM utilizations of bp-
adj on both the GTX-960 and GTX-1060 were significantly higher (7 and 8, respectively)
than on the rest of the GPUs and thus, prediction was more accurate on these GPUs.
The reason the DRAM was better utilized was again the reduced latencies on the partic-
ular GPUs. Stall reason metric values on the GTX-960 were stall_memory_dependency:
80.39% (which is normal for a memory bound kernel), stall_exec_dependency: 7.42% and
stall_sync: 7.75%. In contrast, on the GTX-480 stall metrics ratios were stall_memory_de-
pendency: 56.03%, stall_sync: 19.35%, stall_exec_dependency: 11.58% and stall_pipe-
_busy: 10.28%. Thus, it is evident that the GTX-480 is significantly more affected by
the synchronization and pipeline latencies. On the other hand, during the inspection of
bp-fwd kernel’s performance prediction it was found that the amount of compute oper-
ations on both the GTX-960 and GTX-1060 GPUs was significantly higher (>3) than the
same amount on the other GPUs. By examining the kernel’s source code it was found that
fast transcendental operations were involved in the computations (__log2f() and __powf())
which can be differently implemented on each GPU architecture, leading to different in-
struction counts. The experiments showed that the use of the transcendental operations
increased the total amount of instructions significantly on different magnitudes between
GPU architectures leading performance prediction errors to large margins. Nonetheless,
it was observed that the use of these transcendentals could have been easily avoided by
the programmer, as their operands were known during compilation time. Moreover, as the
operands are essentially integers, their use on functions expecting floating point operand
values is not expected to be optimal.

At this point, some cases are examined where kernels exhibited high utilizations on com-
pute or memory resources but performance prediction accuracy was not equally high. In
this respect, code inspection was used for better understanding and gaining insight into
the possible causes for the inaccurate prediction. On a particular example, the hs-pack
kernel on Tesla K20c exhibited “Max (10)” dram_utilization utilization while on the rest of
the GPUs it was “High (8)”, and just “Mid (6)” on the GTX-660. However, Fermi GPUs per-
formance prediction reached to error 38% and 40%, on the GTX-480 and Tesla M2050,
respectively. It should be noted that the particular kernel execution is quite short as it
takes less than 1.5 msecs to complete 4 total iterations which is 0.37 msecs per iteration.
Hence, it is not surprising that a such short invocation exhibits up to a 40% error on some
GPUs.

Kernel lvmd-krn was the only double precision compute (fp64) in the selected Rodinia
kernels. All GTX GPUs saturated the double precision utilization to “Max (10)”. How-
ever, the average APE for the particular kernel was ~20.5%. A key indication lies on the

E. Konstantinidis 116

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

warp_execution_efficiency profiling metric, which was 78.21% on GTX-480. This reflects
the actual cause of the miss-predicted result, which was the use of conditional loops, the
count of which was dependent on the thread index and thus, it caused divergent execution
between threads of warps. Another observation is the fact that all GPUs exhibited lower
performance due to the aforementioned cause with the exception of Tesla K20c, which
exceeded the predicted performance by almost ~22.6%. The cause of this discrepancy
on prediction errors is not clear and a further analysis will be required which is left for future
investigation.

Few kernels provided apparently better prediction performance on the GTX-960 and GTX-
1060 than on the rest of the GPUs. The APE on km-map, 3d-htsp and e3d-sfac kernels
was 14.32%, 2.31% and 4.36% on GTX-960, while the average APE was 41.52%, 26.03%
and 27.31%, respectively. The same kernels exhibited an APE of 3.54%, 9.64% and
28.42% on the GTX-1060, respectively. A possible cause could be the more efficient
L2 cache evident on both the GTX-960 and GTX-1060 which aids DRAM traffic reduction.
However, this explanation requires a further investigation which is left as future work. Note
that kernel e3d-sfac is called for a total of 20 times with an average execution time of just
0.042 msecs per invocation on the GTX-480 thus, its prediction is expected to be less
accurate.

Last, kernels dwt-cpy and dtw-krn performed significantly better on GTX-660 GPU than
predicted. The key element is that these kernels are integer compute based instead of
floating point and therefore they are more susceptible to the integer instruction throughput
variance. Using the proposed model they were designated as compute bound kernels
on GTX-660 but the actual average cost of integer instructions in this kernel is less than
presumed by the model and therefore the actual execution times are lower. In particular,
the utilization metrics showed that dwt-cpy kernel is actually memory bound (table 5.17).
The same issue holds for the K20c GPU as well, but as both performance limiting fac-
tors (compute / memory traffic) were more balanced on this particular GPU the effective
prediction error was lower.

Exploitation of reference GPU execution time

In order to increase the accuracy of predictions as a fine tuning improvement, the observed
kernel’s execution time on the reference GPU can taken into account. As the GPU kernel
is actually executed on the reference GPU during the profiling process, the observed ex-
ecution time can be used as a measure of the effectiveness of execution when compared
with the predicted time on the same GPU. In this respect, the utilization factor (Eutil) is
defined as given by (5.13):

Eutil =
T

(refGPU)
Measured

T
(refGPU)
Predicted

(5.13)

This factor can be applied as an additional correction on the predicted execution time of

117 E. Konstantinidis

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

all the rest of the GPUs as T ′
Predicted = Eutil × TPredicted. However, it should be noted that

this can be only a statistical correction as the actual performance limiting factor is not
necessarily the same for all GPUs and it does not always affect performance to the same
extent. Therefore, this correction is proposed to be only optionally applied.

After the utilization factor correction was applied on the previously presented Rodinia re-
sults, the adjusted prediction errors are depicted in figure 5.12. In this case the percentage
of total predictions below 25% increased to 92/140 = 65.71%. The prediction results on the
reference GPU were excluded, as the adjusted prediction error on the reference GPU is
0% by definition due to the correction applied to itself. However, some predictions have
worsened and especially 5 particular predictions (bp-adj and km-map kernels) exhibited
positive errors at the range of ~100% or more. The excessively high positive errors are at-
tributed to the fact that on these cases the adjusted predicted time got significantly longer
compared to the actual execution time. Due to the form of equation (5.12) the long pre-
dicted times tend to be reflected with particularly high error percentages. On the original
predictions the error was mostly negative expressing the longer measured time compared
to predicted one. Consequently, this correction discards the qualification of using the
model to estimate a lower bound on the execution time.

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

-1
1.

4%

12
.0

% 29
.2

%

97
.8

%

-0
.7

%

-2
7.

1%

47
.1

%

40
.8

%

28
.2

%

-1
6.

8%

9.
7%

24
.1

%

4.
1%

39
.1

%54
.1

%

-2
8.

6%

-1
9.

9%

17
9.

4%

-5
0.

8%

26
.2

%

4.
1% 9.

8%

-8
.4

%

27
.1

% 46
.2

%

15
.5

%

13
.5

%

20
.9

%

42
.5

2%

-3
8.

40
%

-2
9.

07
%

17
9.

02
%

-3
7.

41
%

25
.1

9%

-1
2.

66
%

7.
43

%

-2
4.

18
%

10
.8

8%

9.
41

% 25
.3

3%

9.
62

%

7.
25

%

16
.5

%

2.
7%

4.
4%

27
.2

%

0.
2%

-1
2.

5%

0.
1% 4.

8%

-3
.7

%

1.
9%

0.
4%

18
.4

%

1.
1%

-0
.1

%

-1
.7

%

14
.9

% 33
.2

%

17
.1

%

13
.6

%

-3
.4

%

52
.6

%

12
.9

%

-8
.0

%

-2
0.

4%

1.
0%

32
.8

%

0.
4%

56
.5

%

-100%

-75%

-50%

-25%

0%

25%

50%

75%

100%

3d
-h

ts
p

bt
r-

fn
d

bt
r-

rn
g

bp
-a

dj

bp
-f

w
d

bf
s-

k1

bf
s-

k2

dw
t-

cp
y

dw
t-

kr
n

e3
d-

fl
ux

e3
d-

sf
ac

e3
d-

in
it

e3
d-

st
ep

hs
pt

-t
m

p

P
re

di
ct

io
n

er
ro

r
(%

)

GTX-480
GTX-660
GTX-960
GTX-1060 6GB
Tesla M2050
Tesla K20c

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

54
.6

%

-0
.4

%

-1
7.

1%

15
.6

%

-1
4.

7% -5
.4

%

15
.6

%

-3
1.

6%

-2
5.

1%

13
.4

%

16
.5

%

12
.6

%

15
.6

%

-1
.4

%

61
.1

%

0.
6%

10
8.

4%

27
.0

%

-2
1.

4% -7
.4

%

26
.7

%

17
.6

%

14
.8

%

72
.7

%

-7
.9

%

29
.7

%

17
.8

%

56
.2

%

39
.2

1%

-4
.1

7%

15
1.

87
%

27
.4

8%

-3
1.

02
%

-1
5.

73
%

39
.0

0%

5.
43

%

-9
.3

4%

74
.1

9%

-2
3.

20
%

18
.9

7%

-0
.5

2%

24
.5

2%

-3
.8

%

3.
8%

0.
4%

-1
7.

3% -6
.4

%

-0
.9

%

-4
.0

%

6.
9% 17

.9
%

17
.0

%

-0
.5

%

0.
1%

-1
5.

8% -5
.5

%

50
.6

%

-0
.4

%

27
.2

%

-2
.9

%

30
.9

%

6.
6%

28
.2

%

-5
.8

%

2.
0%

-8
.1

%

22
.0

% 38
.2

%

30
.2

%

10
.3

%

-100%

-75%

-50%

-25%

0%

25%

50%

75%

100%

hs
-p

ac
k

hs
-s

rt
f

km
-m

ap

km
-p

t

lv
m

d-
kr

n

lc
t-

di
l

lc
t-

gi
c

m
um

-k
rn

m
um

-p
rt

nn
-e

uc

pf
nd

-k
rn

pv
l-

hu
ff

sr
ad

-c
1

sr
ad

-c
2

P
re

di
ct

io
n

er
ro

r
(%

)

GTX-480
GTX-660
GTX-960
GTX-1060 6GB
Tesla M2050
Tesla K20c

Figure 5.12: Rodinia prediction errors after applying utilization factor correction.

5.2.6 Summary and conclusions

By summarizing all the prediction results it is concluded that out of all conducted exper-
iments about half of them exhibited less than 25% APE. This is considered a significant
achievement given the little set of input that is used by the method. However, some cases
exhibited relatively larger errors which exposed limitations characterizing the method. Ad-

E. Konstantinidis 118

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

ditionally, some specific notes based on observations regarding the prediction results are
provided in the following list:

• Stencil computations performed mostly as expected, being memory bound with the
GTX-660 GPU slightly diverging to this trend. On both stencil computations the
particular GPU exhibited compute bound behavior. In addition, the GTX-1060 on the
LMSOR kernel was at the edge of being memory bound, having both the memory
and ALU utilizations rated as High(9). LMSOR, in general, exhibited slightly larger
errors presumably due to the slightly more complexmemory access patterns as each
computation requires fetching data from four matrices instead of one as it is the case
with red/black SOR kernel.

• The SGEMM kernel exhibited larger errors, reaching up to ~26% APE on the GTX-
480. The prediction error stems from the fact that the compiler generated 128bit
shared memory accesses by combining groups of 32bit accesses on successive ad-
dresses. The 128bit load/store instructions take significantly longer to execute than
their 32bit counterparts. The cost of load/store instruction execution, as perceived
by the model, does not take into account the width of the data being accessed which
is considered as a weakness of the proposed method.

• Some Rodinia kernels (e.g. pfnd-krn, pvl-huff, lct-gic, dwt-cpy and dtw-krn) exhibited
higher performance than anticipated on one or more GPUs by applying the perfor-
mance model. This is justified by the variability of integer instruction cost. This cost
is accounted in the proposed model as the cost of a Multiply-Add integer instruction.
There are multiple types of integer instructions which vary in performance as their
instruction throughput depends on the underlying GPU architecture. Consider the
integer throughput information as provided by the vendor in table 5.18. The variance
in various types of integer operations can be very wide. Especially Kepler GPUs ex-
hibit a 5× variance (e.g. integer addition vs integer multiplication). When an integer
computation kernel is comprised of faster instructions than multiply-add instructions
then the kernel’s performance can be higher than predicted by the proposed model.

• A less relevant issue that potentially causes significant disturbance on the perfor-
mance results is the variance on GPU core frequencies during execution. This effect
is more common on the more recent GPUs, and it was observed in the experiments
on both Maxwell and Pascal GPUs, which at the time of writing this thesis were the
most recent GPU CUDA architectures.

• It was also observed that memory accesses via small data types do not perform as
predicted, e.g. 8bit types inMUMmerGPU kernels. This effect has to be investigated
further and it is left as future work. It cannot be exposed through the profiling method
employed by the proposed approach and as such it can be practically regarded as
a latency bound case.

• Short kernel invocations (e.g. nn-euc, hs-pack) cannot be accurately predicted as
the invocation overhead is significant. As a criterion of a minimum duration it is pro-
posed to measure at least half a millisecond of execution time per invocation on the

119 E. Konstantinidis

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

Table 5.18: Throughput of native integer arithmetic instructions[73] (operations per clock cycle per
multiprocessor)

Operation 2.0 2.1 3.0, 3.2 3.5, 3.7 5.0, 5.2, 5.3
32-bit integer add, extended- 32 48 160 160 128
precision add, subtract,
extended-precision subtract
32-bit integer multiply, multiply- 16 16 32 32 multiple
add, extended-precision instructions1
multiply-add
32-bit integer shift 16 16 32 642 64
compare, minimum, 32 48 160 160 64
maximum
32-bit integer bit 16 16 32 32 64
reverse, bit field
extract/insert
32-bit bitwise AND, OR, XOR 32 48 160 160 128
count of leading zeros,
most significant nonsign bit 16 16 32 32 64
1experimentally estimated as 42.59 ≈ 128/3 according to tables 5.2 and 5.3
232 for GeForce GPUs

reference GPU. Otherwise, the prediction can be quite optimistic as no overheads
are considered.

• Irregular computations, e.g. transcendental operations, cannot be directly supported
by the performance method. These operation counts are not currently provided by
the hardware profilers. This effectively means that the black-box approach of the
method cannot work currently on the proposed method since more detailed infor-
mation is required from the profiler. A discussion on this issue follows on the next
chapter (section 6.2).

• Purely based on the utilization metrics, in few kernels the L2 cache seems to pose
a bottleneck. On 13 cases out of the 186, it appears that the l2_utilization is the
highest profiled utilization metric. Out of these, only 7 (<4%) exhibited a high utiliza-
tion degree (≥ 7, e.g. High(10) on e3d-flux with GTX-960). These examples could
potentially point to a hot-spot on caches regarding GPU performance. However, the
L1 & L2 caches do not exhibit the regular behavior of DRAM as it was realized in
[43]. More specifically, memory bandwidth performance exhibited different rates de-
pending on whether the type of accesses were reads or writes. The cache behavior
issue is also further discussed on the next chapter (section 6.2). Additionally, more
detailed information regarding experiments on GPU memory caching throughput is
provided in chapter B of the appendix.

• Divergent code execution (e.g. kernel lvmd-krn) can also cause problems on the
prediction process as the execution of such code behaves the same way as the

E. Konstantinidis 120

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

instructions were executed by the all threads belonging to a thread warp. This is
another aspect that is not supported by the proposed model as it induces lower
performance that predicted.

To the best of the author’s knowledge this research work conducts experiments to very
wide range of kernels compared to other research in regard to GPU performance mod-
eling. Typically, other related work is limited to a few kernels. The black-box nature of
this performance method allows applying it on many kernels without additional effort. In
addition, the kernels used in the experiments were selected using justified criteria instead
of cherry-picking well suited examples.

All the issues stated above potentially lead to lower performance, excluding the integer
instruction cost estimation issue which may lead to higher performance than predicted.
However, if a slight change is applied to the prediction method, i.e. using the integer
addition instruction cost as a reference for the cost of integer operations, the integer in-
struction cost could also lead to a higher predicted performance compared to the mea-
sured one. Therefore, the proposed method can be additionally used as a reference for
guiding optimizations. A kernel designer may choose to use the predicted performance
as an indication to the upper bound limit he can achieve by eliminating the bottlenecks.
Frequently, the existing bottlenecks are caused by following poor or improper GPU pro-
gramming practices. In other circumstances, it is the type of the algorithm that does not fit
well on GPUs, as it is often the case with irregular parallel algorithms. In either case, the
predicted method can prove to be convenient by exposing the theoretically peak attainable
performance in case the GPU resources are be optimally utilized.

121 E. Konstantinidis

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

E. Konstantinidis 122

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

6. CROSS-VENDOR EVALUATION AND PERFORMANCE
LIMITATIONS

In this chapter we explore the potential of applying the proposed performance model on a
wider range of hardware, beyond the CUDA capable GPUs. Other GPU hardware vendors
for desktop or server computers include AMD and Intel. However, these vendors do not
support CUDA. In this regard, in order to be able to apply the same performance prediction
method on their hardware requires resolving some portability issues.

6.1 Portability on a different vendor’s architecture

So far the performance prediction method has been limited to NVidia GPUs due to em-
ploying the CUDA environment. The automation potential of this method relies on the
existence of proper profiling metrics along with the capability of micro-benchmarking the
particular hardware that is used to assess the device under specific operations including
both computation and memory. The latter could easily be applied on a variety of GPU ar-
chitectures by porting the micro-benchmarks to the OpenCL platform which is supported
by multiple vendors. However, the former requirement cannot be easily met as other GPU
vendors do not provide the required performance counters so that the automated kernel
analysis can be performed and the required kernel parameter values be estimated. In
fact, at the time of writing of this thesis, the nvprof tool that was employed for CUDA ker-
nel analysis did not support OpenCL kernel profiling. That said, OpenCL kernels cannot
be used directly to the purpose of the extraction of kernel parameters. On the other hard,
porting applications from CUDA to OpenCL platforms and vice versa is a process that
requires significant time and effort. Thus, other possibilities should be explored to this
direction.

6.1.1 The HIP/ROCm programming environment

Recently, an alternative programming environment to NVidia CUDA has emerged by AMD
named HIP[6, 5], supporting easy migration from CUDA to a platform neutral API. HIP is
supported by the ROCm platform which is a full open source software stack and consists
of the ROCk kernel driver, the ROCr run-time, the ROCt thunk interface, the HCC compiler
and the LLVM-AMDGPU assembler. ROCm platform is based on the HSA specification
[82] and it has been extended to support discrete GPUs.

The migration of a CUDA application is assisted by the HIPify tool. In this migration the
kernel source code itself stays mostly intact, apart from some automated replacements
of reserved keywords, which is a key observation as it allows the same kernel source
to be examined for performance measurement on other architectures beyond the ones
supported by NVidia.

123 E. Konstantinidis

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

As it is currently the case with OpenCL and HSA environments, the vendor’s profiling ca-
pabilities provide a set of limited counters preventing the full execution of the performance
prediction method on the AMD GPU. For instance, there is no a distinct profiling counter
for floating point operations or memory transactions on the AMD GPU. A full list of the
supporting profiling counters can be found in [4]. However, as the kernels are essentially
the same, the profiling procedure could be performed on the NVidia hardware by using
either the CUDA application or the HIP application itself as HIP provides a compatibility
layer for both hardware platforms. The same parameters that had been extracted for the
previous experiments on the GTX-480 were used for the performance prediction on the
AMD GPU.

6.1.2 Kernel parameter portability

This model relies on the principle of parameter portability. The set of defined parameters
are generic in nature by hiding special hardware details and thus, the level of the model’s
abstraction allows retaining hardware dependency. The proposed model is not tailored
to a particular hardware though some slight variability on the parameter values between
different architectures can be normally expected. However, the overall picture as given
by the kernel features is not expected to change. It’s the level of abstraction that permits
use of the model on different hardware architectures.

NVidia and AMD’s GPU architectures are much different, yet they share common fea-
tures. They are both highly multithreaded and they exploit this multithreading capability
in the direction of hiding the expensive device memory access latencies with zero cost
context switching. In addition, they both employ flexible SIMD fashion execution so that
programming can be applied in a sequential (SISD) form and mapped to SIMD though the
hardware or the compiler. Moreover, they both feature fast scratchpad memories, large
register sets, L2 caches, coalesced memory accesses, high memory bandwidth, etc. That
said, the kernel parameters are not expected to differentiate significantly between ven-
dors’ architectures and the feasibility of using these values between architectures will be
assessed in the next section.

6.1.3 Experimental results

The HIP programming environment was applied as supported by ROCm 1.4.0 release, on
Ubuntu 14.04 Linux 64bit, using an AMD R9-Nano GPU. The theoretical specifications of
the particular GPU are provided in table 6.1.

The requiredmicro-benchmark tools were ported to HIP platformwithminimal effort through
the HIPify tool. Thereafter, they were used to generate the R9-Nano GPU parameters so
they can be used on the performance model. The produced GPU parameters are shown
in table 6.2. The cost weight factors are derived by using these parameter values which
are presented in table 6.3.

E. Konstantinidis 124

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

Table 6.1: Theoretical specifications of the R9-Nano GPU

Feature Rating Unit
Memory bandwidth 512 GB/sec

DP Compute 512 GFLOPS
SP Compute 8,190 GFLOPS

Table 6.2: Measured GPU parameters for R9-Nano

Parameter Value
TSP (GFLOPS) 8,032.08
TDP (GFLOPS) 339.84
Tint (GIOPS) 1,623.73
Tadd (GIOPS) 3,985.30
Bmem (GB/sec) 430.33
Tldst (GOPS) 1,322.12

The experiments selected were the red/black SOR computation using double precision
arithmetic, the single precision GEMM (SGEMM) and the Rodinia lvmd-krn kernel. It
should noted that the current HIP version is not complete in terms of full coverage of
CUDA features as a few features are not supported yet (e.g. use of texture memory). As
such, the kernels were selected so that they did not make any use of the unsupported fea-
tures. The respective parameters for red/black SOR and lvmd-krn kernels have already
been presented in tables 4.5 and 5.16, respectively. For the SGEMM kernel, the thread
block configuration had to be changed to 16× 16 as the original implementation employed
a 32×32 configuration which is not supported on the AMD platform as the maximum thread
block size on the latter was 256 threads per block. Therefore, new parameter data are
provided in table 6.4. It is evident that DRAM access traffic has increased due to the
smaller blocking.

Running the performance model yields the execution times shown in table 6.5. It is evident
that the observed prediction errors were very comparable to the ones produced on NVidia
GPUs. Out of the 3 kernels the lvmd-krn kernel exhibited slightly higher APE.

In general, it is expected to observe slightly higher APEs on the AMD platform due to
the architectural differences between the two different vendor GPU architectures. These
differences could slightly differentiate the extracted kernel parameters between the two
architectures. However, this is not expected they change dramatically allowing the use of
the performance prediction method in cross architecture environments, in the same way
it was applied on this experiment. The most notable architectural differences between the
two vendors are:

• All NVidia GPUs make use of a logical SIMD width (warp size) equal to 32, whereas
AMD GPUs make use of a 64 wide logical SIMD width (wavefront size). This makes
AMD GPUs performance more susceptible to thread divergent execution.

125 E. Konstantinidis

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

Table 6.3: The GPU cost weights as measured for the R9-Nano

Weight Value
Wop (fp32) 1.00
Wop (fp64) 23.63
Wop (int) 4.95
Wldst (load/store) 3.04
Wother (add) 1.01

Table 6.4: SGEMM kernel parameters using a 16x16 thread block size.

Parameter Value
Ktype fp32
Wcomp 1,048,576,000
Wtraf 61,806,400
Emix 100.00%
Dops 30.19%
Dldst 45.33%
Dother 24.48%
Okrn 16.97

• It has been observed that AMD ISA is more verbose as it handles all branches
explicitly. For instance, execution mask is handled by special instructions (e.g.
s_and_b64 exec,vcc,exec) and explicit branch instructions (e.g. s_cbranch_vccz)
are used when conditional statements are executed without divergences between
threads in a wavefront. Therefore, when code contains branches it typically gener-
ates more control instructions for AMD GPUs to execute.

• Typically, more parallelism is required for full occupancy as each compute unit (AMD’s
counterpart for Streaming Multiprocessor) contains 4 SIMD units and each executes
on its own threads. This means that an absolute minimum of 64 × 4 = 256 active
threads are required per compute unit in order make it work efficiently, which in turn
leads to a minimum of active 16,384 threads for utilizing all compute elements of the
R9-Nano GPU.

Having all the architectural differences in mind, the reported error percentages on the ex-
periments are considered to be on par with the previously presented single vendor exper-
iments. The proposed model provides a sufficiently good estimate of the actual execution
time.

6.2 Performance model limitations

The proposed prediction technique is able to indirectly capture some characteristics in
memory access patterns, as for instance, the degree that memory accesses are being

E. Konstantinidis 126

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

Table 6.5: Prediction results on the R9-Nano GPU for the red/black SOR, SGEMM and lvmd-krn
kernels

Predicted time Measured time Error
Benchmark (msecs) (msecs) (%)

red/black SOR 7.75 8.72 -11.18%
SGEMM 0.83 0.94 -11.45%
lvmd-krn 46.27 54.57 -15.21%

coalesced is a measure that is captured. Memory accesses of threads within a warp that
map within the same 32 or 128 byte memory segment can coalesce in one or few global
memory transactions. Otherwise, when each thread within a warp accesses elements
that map to different 32 byte segments then memory accesses are fully uncoalesced and
each of them entails a separate 32 byte transaction. Similarly, misaligned accesses can
also map to more than one memory transactions. The memory traffic in this work is mea-
sured by measuring the amount of transactions as returned by the profiling procedure.
Therefore, the actual memory traffic is considered instead of the requested, and thus the
effects of uncoalescing are indirectly taken into account. However, other performance
related memory access events are not captured. These include shared memory bank
conflicts, memory channel conflicts (i.e. partition camping) and constant memory access
serialization.

The automated kernel profiling procedure is applied for the total invocations for the par-
ticular kernel in the application. This means that the aggregated profiling metrics are
considered for the derivation of kernel’s parameters. However, many applications tend to
be executed for different data size inputs on different executions. In this case the impact
of input size on kernel parameters cannot be safely predicted. Either a kernel re-profiling
would be required for all possible input sizes or the empirical derivation on the way in-
put size affects the execution time. If the data size is small then the kernel could be
under-utilizing the GPU and in this case the proposed model is not able to infer the actual
performance. On the other hand, if the data size is sufficiently large then GPU occupancy
is considered enough to hide latencies. In this case an extrapolation would be possible
by considering the complexity of the computation and having a performance prediction
measurement for some reference input data size.

In general, the thread block size configuration stays constant for an application. However,
in case it is variable it might affect the kernel parameter values. This fact is induced from
the tight connection between threads within a thread block and their data sharing through
shared memory. In such cases exploitation of locality is reduced as thread block size
gets smaller. This was the case with the SGEMM kernel when using a different thread
block size. When a 32 × 32 thread block was chosen then the features collected led to
an operational intensity of 24.81 (table 4.10). In contrast, using a 16 × 16 thread block
configuration increased the amount of memory transactions by +46.26%, leading to a
decrement on the operational intensity got 16.97 (table 6.4). However, the different kernel
parameters did not significantly affect performance on the particular example due to its
compute intensity.

127 E. Konstantinidis

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

The described performance model assumes the use of simple floating point or integer
instructions (additions + multiplications) for performing beneficial operations. These op-
erations can be accurately counted by profiling as performed in the proposed method. If
user requires to apply this method on a kernel that employs other special type of bene-
ficial operations e.g. transcendentals (trigonometric functions, square root, etc.), bitwise
functions (intense use in hashing algorithms, encryption, etc.), the method can be easily
adjusted at the cost of requiring some input by the user. It requires the amount of benefi-
cial operations applied by the kernel and the peak throughput of the target device in this
kind of operations. The former could be empirically estimated assuming the user has at
least a basic understanding of the computation. The latter could be estimated by either
the theoretical device specifications (not always provided for such special operations) or
by using a custom benchmark that measures the throughput in the applied kind of opera-
tions. If these operations do comprise of multiple instructions the profiler should also be
leveraged in order to estimate the type and amount of instructions used for performing
each special operation. Thereafter, this information could adjust the respective parame-
ters used in the performance model (Dops, Top, Wop) to the particular special operation on
the goal of credible performance prediction measurement.

Similarly to the previous issue, the integer operations are significantly more diverse from
the perspective of execution cost. This fact can cause misprediction on the results de-
pending on the type of integer operations involved in the GPU kernel code. This issue
was earlier discussed in section 5.2.6, as it was encountered on the Rodinia experiments.
A typical case is the difference in performance between addition instructions and multipli-
cation instructions, where the performance difference can reach up to 5-fold degree. As
the integer instruction profiler counts constitute a summary of all integer instructions, this
issue cannot be addressed without providing additional information manually.

As already presented in section 2.2.2, GPUs are typically equipped with L1 and L2 caches,
which naturally have limited bandwidth. Thus, if either the L1 or L2 cache utilization poses
as a bottleneck, it will not be exposed by the proposed model. However, the benefits of
caching on the GPU are not expected to be critical in the same way they are on the CPU
and caching is not regularly the bottleneck of the application. This is due to the highly
multithreaded nature of GPUs and the typically limited size of GPU caches. In addition, the
cache bandwidth behavior is more complex compared to device memory, as different mix
of read/write operations can lead to different bandwidth ratios[43]. Using a safe bound for
cache memory throughput did not prove as a reliable roofline rule in the experiments. For
more detailed information the reader is advised to look in chapter B of the appendix. For
this reason, the consideration of caching in the performance model was left out as it would
significantly increase the complexity with questionable prediction refinements in return.
Therefore, the possibility of exploiting the cached memory transactions in the performance
model is left as a future work.

In general, summarizing the proposed performance model provides an optimistic view on
the predicted performance of a kernel. The primary limitation is the arbitrary assumption
that the kernel execution is not latency bound. Apart from this, there are a few additional
limitations worth to note. Memory coalescing is indirectly considered, though a similar

E. Konstantinidis 128

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

behavior between reference and target GPUs is assumed. Data sizes are assumed to
stay constant so they don’t influence the GPU workloads. The same would apply in cases
of random data are used or of variable thread block sizes. Irregular or integer opera-
tions could be misinterpreted in regard to its execution cost though there are proposed
workarounds. Non similar data caching behavior can also lead to errors in predictions.
Other GPU related performance issues are also not considered, the most notable being
the shared memory bank conflicts, branch divergences, constant memory serialization.
Even further, issues like register bank conflicts of memory channel conflicts are far more
complicated to be considered in this high level model. All these issues potentially influence
the prediction, though not to a dramatic degree. The most significant features affecting
performance are provided by the proposed model and the majority of the mispredictions
can be attributed to latency issues.

6.2.1 Exposing limitations through micro-benchmarking

Micro-benchmarks do regularly stress particular resources of the GPU. In this section
the performance model is tested against two micro-benchmarks that stress the on-chip
memories. These benchmarks [43] are briefly described in B in the appendix. These
experiments will be used in order to exhibit some special cases where the model does
not evaluate the instruction execution cost properly. It should be noted that all predictions
in this section were applied by considering as integer instruction cost (Top) the execution
cost of integer addition operations (Tadd) instead of integer multiply-add (Tint) operations.
This decision is based on the fact that the use of multiply-add instructions is minimal in
this applications.

0

100

200

300

400

500

600

B
an

d
w

id
th

 (
G

B
/s

ec
)

Dataset size

Measured b/w

Predicted b/w

(a) GTX-660

0

100

200

300

400

500

600

700

800

B
an

d
w

id
th

 (
G

B
/s

ec
)

Dataset size

Measured b/w

Predicted b/w

(b) GTX-960

Figure 6.1: Cachebench bandwidth predictions and measurements on various data-sets.

In figure 6.1 the benchmark assessing memory bandwidth (vertical axis) of global memory
hierarchy (cachebench) for repetitively reading 32bit data elements from a data array with
various sizes (horizontal axis). This benchmark explores the bandwidth limitations of L1,
L2 caches and GPU DRAM. The measured bandwidth is shown along with the predicted

129 E. Konstantinidis

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

bandwidth, which was estimated by using the predicted execution time given through the
proposed model. Benchmarks were executed on the GTX-660 and GTX-960 GPUs.

In both figures it is apparent that when the data-set is large so that cache memories cannot
fit the data, the prediction runs accurately. However, for small data-sets (≤ 360KB) the
prediction is particularly bad on the GTX-660. This is justified by the fact that for the
particular cases the performance model accounts just the instruction execution cost, as
no DRAM transactions are observed and all transactions are served by the L2 cache,
which is officially sized to 384KB on this GPU. For the GTX-960 the prediction error is
significantly less for small data-sets, as the L1/texture caches serve the majority of data
accesses. However, for medium sized data-sets the prediction is equally bad as with the
previous GPU, as the L1 caches are too small to accommodate the data-set and the data
accesses are served by the L2 cache. That said, the intensive cache usage on GPU
applications may induce errors with the proposed model.

0

10

20

30

40

50

60

70

80

90

32bit 64bit 128bit

T
im

e
(m

se
cs

)

Size of accessed element

Execution time

Predicted time

(a) GTX-660

0

10

20

30

40

50

60

70

80

90

32bit 64bit 128bit

T
im

e
(m

se
cs

)

Size of accessed element

Execution time

Predicted time

(b) GTX-960

Figure 6.2: Shmembench predictions and measurements for various data type sizes.

In figure 6.2 the shared memory benchmark (shmembench) was applied on the same
GPUs. This benchmark measures the effective bandwidth on GPU by intensively swap-
ping memory elements in shared memory, avoiding bank conflict effects. The source code
of this benchmark is provided in section A.4 of the appendix. The benchmark is executed
for 32bit, 64bit and 128bit elements, which translate to shared memory loads of the re-
spective size. In all three cases the same amount of data is transferred to/from shared
memory. The GTX660 seems to exhibit performance close to prediction for 32bit and 64bit
accesses. In fact, measured performance was better than the predicted performance due
to the multi-issue capability of load/store and integer instructions. This happens because
the CC3.0 SMs can serve 32 element accesses per clock on shared memory, with up to
64bit element size. Prediction is significantly worse on the last case as the cost of loading
128bit elements is the double of the cost of loading 64bit elements. The GTX960 differs
on the specifications on that its SMs can serve 32 element accesses per clock, with up to
32bit element size. That said, the observed prediction error is expected in both 64bit and
128bit cases, as shown in the experiments.

E. Konstantinidis 130

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

7. CONCLUSIONS AND FUTURE WORK

In the concluding chapter an overview of the key highlights of the proposed model is pro-
vided along with a discussion on the possible future directions for improvement.

7.1 Conclusions

During last years the GPUs have found a solid spot in the high performance computing
industry. Performance of compute intensive parts of code can be frequently accelerated
to a dramatic degree. The nature of GPUs, however, enables applications to exhibit highly
variable performance as it can be significantly affected by many factors. In addition GPUs
tend to be based on various GPU architectures and not being bound on a particular one
like CPUs do with the prevalence of x86-64 architecture. The exploitation of GPUs as
compute accelerators raises the significance of performance prediction methods on these
devices.

This thesis presents an analytical performance model that derives from the roofline model
[92]. The roofline principle was validated on GPUs by developing a micro-benchmark
through which performance was investigated on a wide range of operation intensity val-
ues. Through a quantitative approach, the proposed model is able to provide timings that
approximate actual execution measurements on real hardware. In addition, an alternative
visual representation approach was presented, named quadrant-split, which is insight-
ful in cases of multiple compute devices being represented along with a single application
characterized by a particular operation intensity. The merit of the model’s simplicity and its
high abstraction characteristic allows providing results, final and intermediate, that can be
easily interpreted by the final developer by being more human friendly. The small amount
of required parameters pose the method as readily applicable.

One of the key points of the proposed method is the ability to extract the kernel’s param-
eters by exploiting a mere set of profiling metrics as input parameters. This is captured
through a kernel profiling procedure in a black box fashion. Any internal knowledge of the
kernel structure itself is not required by the developer. Furthermore, the proposed method
can be developed as an automated tool which is executed without intervention from the
developer. In this regard, the developer can apply the method on kernels and use it as a
guidance tool without previous inspection the kernel design itself.

The proposed method achieves a better understanding of both compute and memory
workloads compared to a pure theoretical peak approach primarily for two reasons. First,
both the execution of non-essential and load/store instructions are considered by model-
ing their implications in the instruction pipeline and thus, their impact on the effective peak
performance on beneficial instructions. Additionally, the type of mix of compute operations
is also taken into account, i.e. the proportion of effective multiply-add operations in total
amount of compute instructions. Second, the memory traffic requirements are measured
by considering the actual traffic which means that any trivial locality is being indirectly

131 E. Konstantinidis

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

accounted as cached transactions will not produce any DRAM traffic and the degree of
memory access coalescing is also accounted as it directly affects the conducted memory
traffic. The model provides an adjusted roofline on the peak performance based on these
considerations.

The proposed performance model was tested and validated on a wide range of real world
kernels. It was applied on stencil computations (red/black SOR and LMSOR), matrix mul-
tiplication and a wide range of Rodinia benchmark kernels. The model was also applied on
themixbenchmicro-benchmark and it exhibited very accurate results. Furthermore, it was
also tested for cross-vendor applicability on the HIP programming environment [6, 5] of
the ROCm platform which is developed by AMD. The results were quite promising as they
were similar to CUDA prediction in terms of absolute errors, despite the broader architec-
tural differences between different vendor GPUs. The exact performance is dependent
on special issues as the exact instruction mix, variability in cache behavior, pipeline laten-
cies, the available parallelism and additional latencies which push performance to lower
levels than the predicted ones, as the proposed model does not take into account these
factors. Nevertheless, in these cases the performance prediction measurements serve as
an upper bound performance and they indicate the potential room for improvement with
further optimizations.

7.2 Future work discussion and proposed model refinements

In this section some directions are provided towards the improvement of the proposed per-
formancemodel. A primary obvious improvement would focus on optimizing the prediction
accuracy of the model. Some possible improvements could move around the observed
limitations of the model that have already been discussed. For instance, these include the
more accurate consideration of instruction execution cost, the quantification of thread di-
vergent execution implications and potential reduced parallelism due to other serialization
factors, e.g. shared memory conflicts, constant memory access serializations. In addition,
the short kernel execution amplifies the effect of kernel invocation overhead which should
be included in the model, as well. The variability of cache effects should also be con-
sidered as it potentially differentiates the amount of conducted DRAM accesses between
various types of GPUs.

However, before proposing any possible directions for improvement, there are a few key
questions that arise:

• What is the current hardware support of additional kernel profiling input that could
potentially be exploited by the performance model?

• Could the user provide additional input in order to fine tune the prediction results and
which one would be candidate to this purpose?

• How stable would an additional kernel parameter be across multiple hardware archi-
tectures?

E. Konstantinidis 132

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

• To what degree the additional complexity on the performance model refinement
would affect its level of abstraction?

Extending the model to a particular direction should be made by having considered the
questions above. Nevertheless, in this chapter some ideas on overcoming the model’s
limitations will be discussed. These proposals may require additional input either from the
profiler or the developer (manual input of data). Finally, a potential improvement of the
method will be discussed from the perspective of implementation.

7.2.1 Additional input parameters

The NVidia profiling capabilities provide a rich set of metrics that cover most aspects of
kernel execution. In this proposed model a restricted set of parameters have been em-
ployed that make use of a small subset of the available metrics (table 4.1). Special cases
could potentially be addressed by the exploitation of additional metrics.

Nevertheless, extending the model with more parameters would increase its complexity
and a proportional number of additional benchmarks would be required for target GPUs.
Thus, this decision is a trade-off between simplicity and complexity. The current form
of the model features the advantage of simplicity, so it is proposed to apply refinements
selectively and progressively. This strategy allows focusing on specific issues only when
required. Of course, this process requires the understanding of kernel’s inner performance
characteristics. The author’s suggestion is to extend the model only on special cases.

Shared memory bank conflicts or wide shared memory accesses (>32bit) are an example
that could be potentially better predicted by using additional metrics. More specifically,
the NVidia profiling capabilities provide a set of shared memory profiling counter met-
rics (shared_load_transactions, shared_store_transactions, shared_efficiency) that could
represent the actual shared memory traffic and efficiency. The use of these counters
could be employed in order to map such shared memory effects as effectively increas-
ing the number of issued load/store instructions. The performance model could be easily
modified in order to reflect this increment. All recent NVidia architectures seem to share
common shared memory characteristics and the behavior of shared memory is expected
to be similar between various GPUs.

On other cases the available profiling metrics seem not to be adequate in order to pro-
vide additional model parameters. A particular example is the constant memory access
serialization issue which is not considered by the model. In this regard no profiling met-
rics were found in order to incorporate constant memory serialization effects, which may
occur when multiple threads of a warp access constant memory using different indices. A
profiling counter is proposed, exposing the constant memory access efficiency (e.g. con-
stant_efficiency). This could be exploited by the performance model in order to take these
effects under consideration.

Another case could be the use of special, non-distinctively profiled compute operations.
The typical use of the performance model involves compute operations which can be

133 E. Konstantinidis

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

directly profiled. Regular floating point operations (additions and multiplications) of sin-
gle or double precision counts are quite accurately measured with the provided counters
(i.e. flop_count_XXX) on NVidia GPUs. The cost of execution of such operations is also
smoothly measured via micro-benchmarking. On specific special occasions, however, as
it has also been discussed in section 6.2, the operation counts cannot be such promptly
measured. Moreover, the assessment of their execution cost requires special tailored
micro-benchmarking. Some examples are division and transcendental operations, non-
typical integer operations (e.g. bitwise manipulations, divisions, etc.). The same issue
holds for integer operations in general, which may significantly vary in terms of cost de-
pending on their type of operations, i.e. being additions, multiplications or bitwise opera-
tions. In order to provide an automated prediction method, both a micro-benchmark tool
for the particular type of operations and an appropriate profiling counter metric measuring
these operations will be required. Therefore, some individual counter metrics that could
be proposed to be supported by future hardware and software would be metrics specializ-
ing on integer addition, multiplication, bitwise operations, as well as, sinusoidals, division
and square root.

In cases where the available metrics are insufficient for assessing a parameter, the human
factor is left as an alternative source for estimating valid values of individual parameters.
Nonetheless, this alternative requires good experience and knowledge of the kernel’s inner
workings, a requirement that decimates one of the advantages of this method.

A particular example is cache behavior, which cannot be predicted in a straightforward
fashion. Its implications have already been discussed on the previous chapter. What could
be suggested is letting the developer determining the expected amount of DRAM traffic
to be conducted by the kernel (Wtraf parameter). Beyond the kernel’s memory access
patterns, this strategy requires knowledge of the GPU cache memory characteristics, as
well as, memory access coalescing implications.

The same workaround can also be applied in cases where the memory transaction granu-
larity is different between the reference and the target GPUs. Global memory transactions
are accounted by profiling the total amount of read and write transactions on the reference
GPU. This assumes that transactions are of the same width on both the reference and the
target GPUs. However, this is not always true, e.g. on Fermi GPUs they can be applied as
128 byte multiples (4x32) when cached on the L1 or as single 32 byte transactions other-
wise. This fact potentially causes discrepancy on the actual amount of transactions seen
on the reference and the target GPUs, which in turn might negatively affect the prediction
accuracy. A user provided amount of DRAM traffic could be a possible workaround.

7.2.2 Simulated parameter extraction

Improving the method’s applicability is possible through the use of simulated execution of
GPU programs. The ultimate goal is to decouple the requirements of specific hardware
counters from the kernel parameters employed by the method. The current form of the
method relies on the availability of rich profiling capabilities of GPU hardware and software.

E. Konstantinidis 134

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

To overcome the requirements of using a real GPU device that offers a capable set per-
formance counters, a software approach for the parameter extraction could be employed.
Such move would avoid the requirement of having to use a real GPU device for conducting
the profiling process. This software could be a GPU simulator or a GPU code interpreter,
capable of executing compiled GPU programs and extracting the requested execution in-
formation by software analysis. For instance, two candidate interpreters and simulators
that have already been presented in the related work (section 2.4.1) are GPGPU-Sim [9]
and Oclgrind [81]. A major advantage of this method is the flexibility of extending the
performance counters with capabilities that are not offered by the current metrics on real
hardware (e.g. distinct counters for integer multiplications and other integer operations).
On the other hand, of course, the estimation of parameters is expected to be a significantly
slower process with this approach.

135 E. Konstantinidis

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

E. Konstantinidis 136

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

ABBREVIATIONS - ACRONYMS

ALU Arithmetic Logic Unit

API Application Programming Interface

ASIC Application-specific integrated circuit

CPU Central Processing Unit

CTA Cooperative Thread Array

DLP Data Level Parallelism

FLOPS Floating Point Operations

GPU Graphics Processing Unit

HPC High Performance Computing

ILP Instruction Level Parallelism

ISA Instruction Set Architecture

JIT Just In Time compilation

LMSOR Local Modified SOR

MIMD Multiple-Instruction, Multiple-Data

MLP Memory Level Parallelism

PDE Partial Differential Equation

SIMD Single-Instruction, Multiple-Data

SIMT Single-Instruction, Multiple-Thread

SM Streaming Multiprocessor

SOR Successive Over-Relaxation

SP Streaming Processor

SPIR Standard Portable Intermediate Representation

TLP Thread Level Parallelism

137 E. Konstantinidis

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

E. Konstantinidis 138

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

APPENDIX A. MICRO-BENCHMARK KERNEL SOURCE CODES

A.1 Roofline approximation (mixbench)

template <class T, int blockSize , unsigned int granularity ,
unsigned int fusion_degree , unsigned int compute_iterations
unsigned int compute_iterations >

__global__ void benchmark_func(T seed, T *g_data){
const int stride = blockSize;
int idx = blockIdx.x*blockSize*granularity + threadIdx.x;
const int big_stride = gridDim.x*blockSize*granularity;

T tmps[granularity];
for(int k=0; k<fusion_degree; k++){

#pragma unroll
for(int j=0; j<granularity; j++){

// Load elements (memory intensive part)
tmps[j] = g_data[idx+j*stride+k*big_stride];
// Perform computations (compute intensive part)
for(int i=0; i<compute_iterations; i++){

tmps[j] = tmps[j]*tmps[j]+seed;
}

}
// Multiply add reduction
T sum = (T)0;
#pragma unroll
for(int j=0; j<granularity; j+=2)

sum += tmps[j]*tmps[j+1];
// Dummy code
if(sum==(T)-1) // Designed so it never executes

g_data[idx+k*big_stride] = sum;
}

}

A.2 Compute throughput evaluation

template <class T, class F>
__global__ void benchmark_func(T *g_data){

F func;
int tid = threadIdx.x;
T r0 = g_data[blockIdx.x*blockDim.x + tid],

r1 = r0+(T)(31),
r2 = r0+(T)(37),
r3 = r0+(T)(41),
r4 = r0+(T)(43),
r5 = r0+(T)(47),
r6 = r0+(T)(53),
r7 = r0+(T)(59),
r8 = r0+(T)(61),
r9 = r0+(T)(67),
rA = r0+(T)(71),

139 E. Konstantinidis

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

rB = r0+(T)(73),
rC = r0+(T)(79),
rD = r0+(T)(83),
rE = r0+(T)(89),
rF = r0+(T)(97);

#pragma unroll 32
for(int j=0; j<COMP_ITERATIONS; j++){

r0 = func(r6, r6, r7);
r1 = func(r7, r7, r8);
r2 = func(r8, r8, r9);
r3 = func(r9, r9, rA);
r4 = func(rA, rA, rB);
r5 = func(rB, rB, rC);
r6 = func(rC, rC, rD);
r7 = func(rD, rD, rE);
r8 = func(rE, rE, rF);
r9 = func(rF, rF, r0);
rA = func(r0, r0, r1);
rB = func(r1, r1, r2);
rC = func(r2, r2, r3);
rD = func(r3, r3, r4);
rE = func(r4, r4, r5);
rF = func(r5, r5, r6);

}
if(r0==(T)-123456789.123456789){ // extremely unlikely to happen

g_data[tid+0*warpSize] = r0+r1+r2+r3+r4+r5+r6+r7+
r8+r9+rA+rB+rC+rD+rE+rF;

}
}

T is a template parameter designating the data type involved in the assessed operation
and func is a functor that designates the particular type of operation, e.g. for assessing
single precision multiply-add operations float should be passed as parameter T and the
dev_fun_mad class is passed as parameter F:
template <class T>
class dev_fun_mad{
public:

__device__ T operator()(T v1, T v2, T v3){ return v1*v2+v3; }
};

A.3 Memory bandwidth evaluation

template <class T, int granularity , bool doRead, bool doWrite, bool useTexture >
__global__ void kmemaccess(const T value, const T * __restrict g_adata,

T * __restrict g_cdata){
const unsigned int blockSize = blockDim.x;
const int stride = blockSize;
int i = blockIdx.x*blockSize*granularity + threadIdx.x;
T tmps[granularity];
#pragma unroll
for(int j=0; j<granularity; j++)

E. Konstantinidis 140

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

tmps[j] = doRead ?
(useTexture ? textureFetch <T>(i+j*stride) :

g_adata[i+j*stride]) : value;
T sum = tmps[0];
#pragma unroll
for(int j=1; j<granularity; j++)

sum = sum + tmps[j];
if(doWrite || value==sum){ // always: value!=sum

#pragma unroll
for(int j=0; j<granularity; j++)

g_cdata[i+j*stride] = tmps[j];
}

}

Template parameter T designates the data type used for memory access and the granu-
larity parameter was set to 8 in the experiments. The parameters doRead, doWrite and
useTexture are used to determine whether the benchmark shall involve memory loads,
memory stores or/and texture fetches, respectively.

The example below shows how the template function textureFetch is defined for double
data types, for which a native texture fetch function is not provided in CUDA:
template <class T>
__device__ __forceinline__ T textureFetch(unsigned int Aindex){
}

template <>
__device__ __forceinline__
double textureFetch <double >(unsigned int Aindex){

int2 v = tex1Dfetch(texdataD , Aindex);
return __hiloint2double(v.y, v.x);

}

A.4 Load/store operation throughput evaluation

template <class T>
__global__ void benchmark_shmem(T *g_data){

T *shm_buffer = (T*)shm_buffer_ptr;
int tid = threadIdx.x;
int globaltid = blockIdx.x*blockDim.x + tid;
set_vector(shm_buffer , tid+0*blockDim.x, init_val <T>(tid));
set_vector(shm_buffer , tid+1*blockDim.x, init_val <T>(tid+1));
set_vector(shm_buffer , tid+2*blockDim.x, init_val <T>(tid+3));
set_vector(shm_buffer , tid+3*blockDim.x, init_val <T>(tid+7));
set_vector(shm_buffer , tid+4*blockDim.x, init_val <T>(tid+13));
set_vector(shm_buffer , tid+5*blockDim.x, init_val <T>(tid+17));
__threadfence_block();
#pragma unroll 32
for(int j=0; j<TOTAL_ITERATIONS; j++){

shmem_swap(shm_buffer+tid+0*blockDim.x,
shm_buffer+tid+1*blockDim.x);

shmem_swap(shm_buffer+tid+2*blockDim.x,
shm_buffer+tid+3*blockDim.x);

141 E. Konstantinidis

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

shmem_swap(shm_buffer+tid+4*blockDim.x,
shm_buffer+tid+5*blockDim.x);

__threadfence_block();
shmem_swap(shm_buffer+tid+1*blockDim.x,

shm_buffer+tid+2*blockDim.x);
shmem_swap(shm_buffer+tid+3*blockDim.x,

shm_buffer+tid+4*blockDim.x);
__threadfence_block();

}
g_data[globaltid] = reduce_vector <T>(shm_buffer[tid+0*blockDim.x],

shm_buffer[tid+1*blockDim.x],
shm_buffer[tid+2*blockDim.x],
shm_buffer[tid+3*blockDim.x],
shm_buffer[tid+4*blockDim.x],
shm_buffer[tid+5*blockDim.x]);

}

The templated functions init_val, set_vector, shmem_swap and reduce_vector are used
to allow the kernel to be compiled for multiple data types. For instance, the specialized
functions for data type float2 are shown below:

template <>
__device__ float2 init_val(int i){

return make_float2(i, i+11);
}

template <>
__device__ void set_vector(float2 *target, int offset, float2 v){

target[offset].x = v.x;
target[offset].y = v.y;

}

template <class T>
__device__ void shmem_swap(T *v1, T *v2){

T tmp;
tmp = *v2;
*v2 = *v1;
*v1 = tmp;

}

template <>
__device__ float2 reduce_vector(float2 v1, float2 v2, float2 v3,

float2 v4, float2 v5, float2 v6){
return make_float2(v1.x + v2.x + v3.x + v4.x + v5.x + v6.x,

v1.y + v2.y + v3.y + v4.y + v5.y + v6.y);
}

E. Konstantinidis 142

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

APPENDIX B. BENCHMARKING OF FAST ON-CHIP GPU MEMORIES

A diagram with the typical GPU cache memory hierarchy is depicted on figure B.1. This hi-
erarchy is either explicitly or implicitly visible to the programmer through the global, texture,
constant and shared memories that CUDA provides. GPU memory type characteristics
are summarized in table B.1. Other vendors provide other special memory types as well,
e.g. last generations of AMD GPUs include a fast scratchpad shared between all compute
units on the GPU (Global Data Share, GDS[2]).

L2 cache

GPU DRAM (Global memory)

SM-0

Registers

L1

cache

Shared

memory

Texture

cache

Constant

cache

SM-1

Registers

L1

cache

Shared

memory

Texture

cache

Constant

cache

GPU

Figure B.1: GPU memory hierarchy includes caches and scratchpads.

In [43] the on-chip memories of the GPU were assessed by micro-benchmarking. These
micro-benchmarks were designed with a focus on stressing the particular special memory
resources of the GPU. They consist of cachebench, shmembench and constbench, for the
assessment of L1-L2 & texture cache bandwidth, shared memory bandwidth and constant
cache memory bandwidth, respectively. All micro-benchmark source codes are freely
available for experimentation1 under the GNU GPL 2 license.

Table B.1: The GPU on-chip memory types as provided by modern CUDA GPUs

GPU physical memory storage
Memory type Part of the SM Scratchpad Read-only

Shared memory X X
L1 cache X X∗

L2 cache
Texture cache X X
Constant cache X X
∗GPUs currently do not cache global memory stores in the L1
cache though values of spilled registers and local arrays can
be cached.

A brief description of each micro-benchmark application follows.
1http://github.com/ekondis/gpumembench/releases/tag/v0.1

143 E. Konstantinidis

http://github.com/ekondis/gpumembench/releases/tag/v0.1

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

B.1 cachebench (L1, L2 & texture cache micro-benchmark)

Benchmarking the multilevel cache hierarchy is achieved by a kernel in which threads of
a warp access elements repeatedly in a sequence using strides equal to thread block size
(figure B.2). Strides are applied for a predefined number of iterations (threshold) which
is set at the compilation time and it virtually determines the size of the data-set that is
being accessed. Afterwards, the index is reset to its initial position and the procedure
continues repeatedly. For data-sets smaller than the size of grid of threads some of the
indexes of different threads are overlapped. Each thread performs a large total number of
accesses (8192) in order to eliminate the relative extra overhead of other instructions and
an adequate amount of thread blocks is created at the invocation in order to keep the GPU
device occupied. A few experiments are conducted in which the threshold is progressively
increased. The larger the threshold is, the bigger the data-set that is intensively accessed.

0 1

Block 0

0 1 2 3 4 5 6 7

Block 1

0 1 2 3

Block 0 Block 1

Block 0 Block 1

Figure B.2: Thread accesses in cachebench under a simplified scenario with 3 different configura-
tions.

The kernel is implemented by either reading elements directly from global memory or by
reading elements via texture memory. Thus, all types of generic caches can be assessed,
i.e. L1 cache, L2 cache and texture cache.

B.2 shmembench (shared memory micro-benchmark)

The shared memory micro-benchmark works by exchanging repeatedly scalar/vector val-
ues in shared memory. Each swap amounts to two load and two store accesses. Thread
synchronization barriers are also limited to __threadfence_block() as the primary goal in
the kernel is to evaluate the throughput of shared memory accesses through data ex-
changes and not to involve extra synchronization overheads. Element accesses are se-
quential between threads in a warp thus no bank conflicts occur. Each thread performs a
total of 5× 1024 = 5K element swaps in shared memory.

E. Konstantinidis 144

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

B.3 constbench (constant cache micro-benchmark)

The estimation of constant memory bandwidth relies on a large number of threads, all of
which perform the exact the same series of memory loads in a sequential pattern, in a
constant memory region. The constant memory data-set consists of 1024 elements and
every thread reads all elements and calculates their sum. As all threads in a warp access
the same elements per time-step the constant memory cache broadcasts the element
value to all threads of the thread warp which is the intended use of constant memory and
no serialization occurs. The calculation is performed in multiple iterations and all threads
perform the same computation.

145 E. Konstantinidis

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

E. Konstantinidis 146

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

BIBLIOGRAPHY

[1] Y. Abe, H. Sasaki, S. Kato, K. Inoue, M. Edahiro, and M. Peres. Power and performance characterization
and modeling of gpu-accelerated systems. In 2014 IEEE 28th International Parallel and Distributed
Processing Symposium, pages 113–122, May 2014.

[2] Inc. Advanced Micro Devices. AMD Graphics Cores Next (GCN) Architecture. http://www.amd.com/
Documents/GCN_Architecture_whitepaper.pdf, Jun 2012.

[3] AMD. Reference Guide: AMD Intermediate Language (IL), Oct 2011. Rev. 2.4.
[4] AMD. User Guide, AMD GPU Performance API, 2015.
[5] AMD. HIP. https://github.com/GPUOpen-ProfessionalCompute-Tools/HIP, 2016.
[6] AMD. HIP Data Sheet, 2016. Rev. 1.7.
[7] AMD. ROCm - Open Source Platform for HPC and Ultrascale GPU Computing. https://github.com/

RadeonOpenCompute/ROCm/tree/roc-1.4.0, 2016.
[8] Sara S. Baghsorkhi, Matthieu Delahaye, Sanjay J. Patel, William D. Gropp, and Wen-mei W. Hwu.

An adaptive performance modeling tool for gpu architectures. SIGPLAN Not., 45(5):105–114, January
2010.

[9] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt. Analyzing cuda workloads using
a detailed gpu simulator. In 2009 IEEE International Symposium on Performance Analysis of Systems
and Software, pages 163–174, April 2009.

[10] P. F. Baumeister, T. Hater, J. Kraus, D. Pleiter, and P. Wahl. A performance model for gpu-accelerated
fdtd applications. In 2015 IEEE 22nd International Conference on High Performance Computing (HiPC),
pages 185–193, Dec 2015.

[11] Shajulin Benedict, R. S. Rejitha, and Suja A. Alex. Energy and performance prediction of cuda ap-
plications using dynamic regression models. In Proceedings of the 9th India Software Engineering
Conference, ISEC ’16, pages 37–47, New York, NY, USA, 2016. ACM.

[12] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali Saidi, Arkaprava Basu,
Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh Sardashti, Rathijit Sen, Korey Sewell,
Muhammad Shoaib, Nilay Vaish, Mark D. Hill, and David A. Wood. The gem5 simulator. SIGARCH
Comput. Archit. News, 39(2):1–7, August 2011.

[13] N. Bombieri, F. Busato, and F. Fummi. A fine-grained performance model for gpu architectures. In 2016
Design, Automation Test in Europe Conference Exhibition (DATE), pages 1267–1272, March 2016.

[14] L. A. Boukas and N. M. Missirlis. The parallel local modified sor for nonsymmetric linear systems.
International Journal of Computer Mathematics, 68(1-2):153–174, 1998.

[15] M. Boyer, J. Meng, and K. Kumaran. Improving gpu performance prediction with data transfer modeling.
In Parallel and Distributed Processing Symposium Workshops PhD Forum (IPDPSW), 2013 IEEE 27th
International, pages 1097–1106, May 2013.

[16] Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fatahalian, Mike Houston, and Pat
Hanrahan. Brook for gpus: Stream computing on graphics hardware. ACM Trans. Graph., 23(3):777–
786, August 2004.

[17] Guillaume Chapuis, Stephan Eidenbenz, and Nandakishore Santhi. Gpu performance prediction
through parallel discrete event simulation and common sense. In Proceedings of the 9th EAI Interna-
tional Conference on Performance Evaluation Methodologies and Tools, VALUETOOLS’15, pages 204–
211, ICST, Brussels, Belgium, Belgium, 2016. ICST (Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering).

147 E. Konstantinidis

http://www.amd.com/Documents/GCN_Architecture_whitepaper.pdf
http://www.amd.com/Documents/GCN_Architecture_whitepaper.pdf
https://github.com/GPUOpen-ProfessionalCompute-Tools/HIP
https://github.com/RadeonOpenCompute/ROCm/tree/roc-1.4.0
https://github.com/RadeonOpenCompute/ROCm/tree/roc-1.4.0

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

[18] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. H. Lee, and K. Skadron. Rodinia: A benchmark
suite for heterogeneous computing. InWorkloadCharacterization, 2009. IISWC2009. IEEE International
Symposium on, pages 44–54, Oct 2009.

[19] J. Choi, M. Dukhan, X. Liu, and R. Vuduc. Algorithmic time, energy, and power on candidate hpc com-
pute building blocks. In 2014 IEEE 28th International Parallel and Distributed Processing Symposium,
pages 447–457, May 2014.

[20] Yiannis Cotronis, Elias Konstantinidis, Maria A. Louka, and Nikolaos M. Missirlis. Parallel SOR for
Solving the Convection Diffusion Equation Using GPUs with CUDA, pages 575–586. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2012.

[21] Yiannis Cotronis, Elias Konstantinidis, Maria A. Louka, and Nikolaos M. Missirlis. A comparison of
CPU and GPU implementations for solving the convection diffusion equation using the local modified
SOR method. Parallel Computing, 40(7):173 – 185, 2014. 7th Workshop on Parallel Matrix Algorithms
and Applications.

[22] Yiannis Cotronis, Elias Konstantinidis, and Nikolaos M. Missirlis. A GPU Implementation for Solving
the Convection Diffusion Equation Using the Local Modified SOR Method, pages 207–221. Springer
International Publishing, Cham, 2014.

[23] Leonardo Dagum and Ramesh Menon. Openmp: an industry standard api for shared-memory pro-
gramming. Computational Science & Engineering, IEEE, 5(1):46–55, 1998.

[24] T. T. Dao, J. Kim, S. Seo, B. Egger, and J. Lee. A performance model for gpus with caches. IEEE
Transactions on Parallel and Distributed Systems, 26(7):1800–1813, July 2015.

[25] Tor Dokken, Trond R. Hagen, and Jon M. Hjelmervik. The gpu as a high performance computational
resource. In Proceedings of the 21st Spring Conference on Computer Graphics, SCCG ’05, pages
21–26, New York, NY, USA, 2005. ACM.

[26] Christian Feichtinger, Johannes Habich, Harald Köstler, Ulrich Rüde, and Takayuki Aoki. Performance
modeling and analysis of heterogeneous lattice boltzmann simulations on cpu–gpu clusters. Parallel
Computing, 46:1 – 13, 2015.

[27] Steven Fortune and James Wyllie. Parallelism in random access machines. In Proceedings of the
Tenth Annual ACM Symposium on Theory of Computing, STOC ’78, pages 114–118, New York, NY,
USA, 1978. ACM.

[28] Message P Forum. Mpi: A message-passing interface standard. Technical report, Knoxville, TN, USA,
1994.

[29] P. Guo, L.Wang, and P. Chen. A performancemodeling and optimization analysis tool for sparsematrix-
vector multiplication on gpus. IEEE Transactions on Parallel and Distributed Systems, 25(5):1112–1123,
May 2014.

[30] Torsten Hoefler, William Gropp, William Kramer, and Marc Snir. Performance modeling for systematic
performance tuning. In State of the Practice Reports, SC ’11, pages 6:1–6:12, New York, NY, USA,
2011. ACM.

[31] Sunpyo Hong and Hyesoon Kim. An analytical model for a gpu architecture with memory-level and
thread-level parallelism awareness. In Proceedings of the 36th Annual International Symposium on
Computer Architecture, ISCA ’09, pages 152–163, New York, NY, USA, 2009. ACM.

[32] Sunpyo Hong and Hyesoon Kim. An integrated gpu power and performance model. In Proceedings
of the 37th Annual International Symposium on Computer Architecture, ISCA ’10, pages 280–289, New
York, NY, USA, 2010. ACM.

[33] HSA foundation. HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming Model,
Compiler Writer, and Object Format (BRIG), Version 1.1, Feb 2016.

E. Konstantinidis 148

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

[34] N. Jacob and C. Brodley. Offloading ids computation to the gpu. In 2006 22nd Annual Computer
Security Applications Conference (ACSAC’06), pages 371–380, Dec 2006.

[35] Google John Kessenich and Intel BoazOuriel. SPIR-V Specification, Version 1.00, Revision 9. Khronos
group, Feb 2017.

[36] Ali Karami, Farshad Khunjush, and Seyyed Ali Mirsoleimani. A statistical performance analyzer frame-
work for opencl kernels on nvidia gpus. The Journal of Supercomputing, 71(8):2900–2921, 2015.

[37] A. Kerr, G. Diamos, and S. Yalamanchili. A characterization and analysis of ptx kernels. In 2009 IEEE
International Symposium on Workload Characterization (IISWC), pages 3–12, Oct 2009.

[38] John Kessenich, Dave Baldwin, and Randi Rost. The opengl shading language. Language version, 1,
2004.

[39] Khronos group. The OpenCL Specification, 2009.

[40] Y. Kim and A. Shrivastava. Cumapz: A tool to analyze memory access patterns in cuda. In 2011 48th
ACM/EDAC/IEEE Design Automation Conference (DAC), pages 128–133, June 2011.

[41] Poonacha Kongetira, Kathirgamar Aingaran, and Kunle Olukotun. Niagara: A 32-way multithreaded
sparc processor. IEEE Micro, 25(2):21–29, March 2005.

[42] E. Konstantinidis and Y. Cotronis. A practical performance model for compute and memory bound GPU
kernels. In 2015 23rd Euromicro International Conference on Parallel, Distributed, and Network-Based
Processing, pages 651–658, March 2015.

[43] E. Konstantinidis and Y. Cotronis. A quantitative performance evaluation of fast on-chip memories of
GPUs. In 2016 24th Euromicro International Conference on Parallel, Distributed, and Network-Based
Processing (PDP), pages 448–455, Feb 2016.

[44] Elias Konstantinidis and Yiannis Cotronis. Accelerating the red/black sor method using gpus with
cuda. In Roman Wyrzykowski, Jack Dongarra, Konrad Karczewski, and Jerzy Waśniewski, editors,
Parallel Processing and AppliedMathematics: 9th International Conference, PPAM2011, Torun, Poland,
September 11-14, 2011. Revised Selected Papers, Part I, pages 589–598, Berlin, Heidelberg, 2012.
Springer Berlin Heidelberg.

[45] Elias Konstantinidis and Yiannis Cotronis. Graphics processing unit acceleration of the red/black sor
method. Concurrency and Computation: Practice and Experience, 25(8):1107–1120, 2013.

[46] Elias Konstantinidis and Yiannis Cotronis. A quantitative roofline model for GPU kernel performance
estimation using micro-benchmarks and hardware metric profiling. Journal of Parallel and Distributed
Computing, 107:37 – 56, 2017.

[47] K. Kothapalli, R. Mukherjee, M. S. Rehman, S. Patidar, P. J. Narayanan, and K. Srinathan. A per-
formance prediction model for the cuda gpgpu platform. In 2009 International Conference on High
Performance Computing (HiPC), pages 463–472, Dec 2009.

[48] R.D. Chamberlain L. Ma, K. Agrawal. A memory access model for highly-threaded many-core archi-
tectures. Future Generation Computer Systems, 30:202–215, 2014.

[49] Chris Lattner and Vikram Adve. The llvm compiler framework and infrastructure tutorial. In International
Workshop on Languages and Compilers for Parallel Computing, pages 15–16. Springer, 2004.

[50] Aaron Lefohn, Ian Buck, John D Owens, and Robert Strzodka. Gpgpu: General-purpose computation
on graphics processors. Presentation at IEEE Visualization, 2004.

[51] J. Lemeire, J. G. Cornelis, and L. Segers. Microbenchmarks for gpu characteristics: The occupancy
roofline and the pipeline model. In 2016 24th Euromicro International Conference on Parallel, Dis-
tributed, and Network-Based Processing (PDP), pages 456–463, Feb 2016.

149 E. Konstantinidis

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

[52] A. Li, S. L. Song, E. Brugel, A. Kumar, D. Chavarría-Miranda, and H. Corporaal. X: A comprehensive
analytic model for parallel machines. In 2016 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), pages 242–252, May 2016.

[53] K. Li, W. Yang, and K. Li. Performance analysis and optimization for spmv on gpu using probabilistic
modeling. IEEE Transactions on Parallel and Distributed Systems, 26(1):196–205, Jan 2015.

[54] Teng Li, Vikram K. Narayana, and Tarek El-Ghazawi. Symbiotic scheduling of concurrent gpu kernels
for performance and energy optimizations. In Proceedings of the 11th ACM Conference on Computing
Frontiers, CF ’14, pages 36:1–36:10, New York, NY, USA, 2014. ACM.

[55] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym. Nvidia tesla: A unified graphics and computing
architecture. IEEE Micro, 28(2):39–55, March 2008.

[56] Erik Lindholm, Mark J. Kilgard, and Henry Moreton. A user-programmable vertex engine. In Proceed-
ings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’01,
pages 149–158, New York, NY, USA, 2001. ACM.

[57] W. Liu, W. Muller-Wittig, and B. Schmidt. Performance predictions for general-purpose computation on
gpus. In 2007 International Conference on Parallel Processing (ICPP 2007), pages 50–50, Sept 2007.

[58] William R. Mark, R. Steven Glanville, Kurt Akeley, and Mark J. Kilgard. Cg: A system for programming
graphics hardware in a c-like language. ACM Trans. Graph., 22(3):896–907, July 2003.

[59] J. Meng, V. A. Morozov, K. Kumaran, V. Vishwanath, and T. D. Uram. Grophecy: Gpu performance
projection from cpu code skeletons. In 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis (SC), pages 1–11, Nov 2011.

[60] Microsoft Corporation. C++ amp : Language and programming model, version 1.2, december 2013.
http://download.microsoft.com/download/2/2/9/22972859-15C2-4D96-97AE-93344241D56C/
CppAMPOpenSpecificationV12.pdf, December 2013.

[61] S. Ali Mirsoleimani, Ali Karami, and Farshad Khunjush. A Two-Tier Design Space Exploration Algorithm
to Construct a GPU Performance Predictor, pages 135–146. Springer International Publishing, Cham,
2014.

[62] G. E. Moore. Cramming more components onto integrated circuits, reprinted from electronics, volume
38, number 8, april 19, 1965, pp.114 ff. IEEE Solid-State Circuits Society Newsletter, 11(5):33–35, Sept
2006.

[63] J. Nickolls and W. J. Dally. The gpu computing era. IEEE Micro, 30(2):56–69, March 2010.

[64] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable parallel programming with
cuda. Queue, 6(2):40–53, 2008.

[65] Cedric Nugteren and Henk Corporaal. The boat hull model: Enabling performance prediction for paral-
lel computing prior to code development. In Proceedings of the 9th Conference on Computing Frontiers,
CF ’12, pages 203–212, New York, NY, USA, 2012. ACM.

[66] NVidia. NVIDIA’s Next Generation CUDA™Compute Architecture: Fermi™V1.1, 2009.

[67] NVidia. Tesla S2050 GPU Computing System, 2010.

[68] NVidia. Tuning CUDA Applications for Fermi, 2011.

[69] NVidia. NVIDIA’s Next Generation CUDA Compute Architecture: Kepler TM GK110, 2012.

[70] NVidia. Whitepaper: NVIDIA GeForce GTX 980 Featuring Maxwell, The Most Advanced GPU Ever
Made., 2014.

[71] NVidia. Profiler user’s guide, DU-05982-001_v7.5, September 2015.

[72] NVidia. NVidia CUDA C Best Practices Guide Version, DG-05603-001_v8.0, September 2016.

E. Konstantinidis 150

http://download.microsoft.com/download/2/2/9/22972859-15C2-4D96-97AE-93344241D56C/CppAMPOpenSpecificationV12.pdf
http://download.microsoft.com/download/2/2/9/22972859-15C2-4D96-97AE-93344241D56C/CppAMPOpenSpecificationV12.pdf

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

[73] NVidia. NVidia CUDA C Programming Guide, Design Guide, PG-02829-001_v8.0, September 2016.

[74] NVidia. PARALLEL THREAD EXECUTION ISA v5.0, Application Guide, September 2016.

[75] NVidia. Whitepaper: NVIDIA GeForce GTX 1080, Gaming Perfected., 2016.

[76] NVidia. Whitepaper: NVIDIA Tesla P100, The Most Advanced Datacenter Accelerator Ever Built,
Featuring Pascal GP100, the World’s Fastest GPU, 2016.

[77] OpenACC-Standard.org. The OpenACC® Application Programming Interface, Version 2.5, 2015.

[78] OpenMP Architecture Review Board. OpenMP application program interface version 4.5. http://
www.openmp.org/wp-content/uploads/openmp-4.5.pdf, November 2015.

[79] David A. Patterson and John L. Hennessy. Computer Organization and Design, Fifth Edition: The
Hardware/Software Interface. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 5th edition,
2013.

[80] Jason Power, Joel Hestness, Marc Orr, Mark Hill, and David Wood. gem5-gpu: A heterogeneous
cpu-gpu simulator. Computer Architecture Letters, 13(1), Jan 2014.

[81] James Price and Simon McIntosh-Smith. Oclgrind: An extensible opencl device simulator. In Proceed-
ings of the 3rd International Workshop on OpenCL, IWOCL ’15, pages 12:1–12:7, New York, NY, USA,
2015. ACM.

[82] Phil Rogers and AC Fellow. Heterogeneous system architecture overview. In Hot Chips, volume 25,
2013.

[83] Manfred Liebmann Ronan Amorim, Gundolf Haase and Rodrigo Weber. Comparing cuda and opengl
implementations for a jacobi iteration. SpezialForschungsBereich F 32, 2008(025), December 2008.

[84] Ben Sander, Greg Stoner, Siu-chi Chan, WH Chung, and Robin Maffeo. P00069r0: Hcc: A c++ com-
piler for heterogeneous computing. HSA Foundation, Tech. Rep., 2015.

[85] Jaewoong Sim, Aniruddha Dasgupta, Hyesoon Kim, and Richard Vuduc. A performance analysis
framework for identifying potential benefits in gpgpu applications. In Proceedings of the 17th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP ’12, pages 11–22,
New York, NY, USA, 2012. ACM.

[86] James Stevens and Andreas Klöckner. A unified, hardware-fitted, cross-gpu performance model.
CoRR, abs/1604.04997, 2016.

[87] Herb Sutter. The free lunch is over: A fundamental turn toward concurrency in software. Dr. Dobb’s
journal, 30(3):202–210, 2005.

[88] Herb Sutter and James Larus. Software and the concurrency revolution. Queue, 3(7):54–62, Septem-
ber 2005.

[89] Rafael Ubal, Byunghyun Jang, Perhaad Mistry, Dana Schaa, and David Kaeli. Multi2Sim: A Simu-
lation Framework for CPU-GPU Computing . In Proc. of the 21st International Conference on Parallel
Architectures and Compilation Techniques, Sep. 2012.

[90] B. van Werkhoven, J. Maassen, F.J. Seinstra, and H.E. Bal. Performance models for cpu-gpu data
transfers. 2014 14th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, 0:11–
20, 2014.

[91] Pedro Velho, Daniel A G Oliveira, Edson Luiz Padoin, and P. O. A. Navaux. Accurate analytic models
to estimate execution time on gpu applications. In XI Parallel and Distributed Processing Workshop
(WSPPD), Porto Alegre, RS, 2013.

[92] Samuel Williams, Andrew Waterman, and David Patterson. Roofline: An insightful visual performance
model for multicore architectures. Commun. ACM, 52(4):65–76, April 2009.

151 E. Konstantinidis

http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf

A GPU performance estimation model based on micro-benchmarks and black-box kernel profiling

[93] G. Wu, J. L. Greathouse, A. Lyashevsky, N. Jayasena, and D. Chiou. Gpgpu performance and power
estimation using machine learning. In 2015 IEEE 21st International Symposium on High Performance
Computer Architecture (HPCA), pages 564–576, Feb 2015.

[94] Y. Zhang and J. D. Owens. A quantitative performance analysis model for gpu architectures. In 2011
IEEE 17th International Symposium on High Performance Computer Architecture, pages 382–393, Feb
2011.

[95] Jianlong Zhong and Bingsheng He. Kernelet: High-throughput gpu kernel executions with dynamic
slicing and scheduling. IEEE Trans. Parallel Distrib. Syst., 25(6):1522–1532, June 2014.

E. Konstantinidis 152

	CONTENTS
	INTRODUCTION
	General purpose computation on GPUs
	The performance analysis challenge
	Structure of thesis

	BACKGROUND AND RELATED WORK
	The graphics accelerator as a Graphics Processing Unit (GPU)
	The GPU as a general purpose processor
	Unified shaders through the introduction of the Tesla GPU architecture
	A comparison of the GPU and the CPU

	GPU compute programming paradigms
	GPU performance modeling
	Simulation based models
	Analytical approaches
	Specialized application models
	Power consumption oriented models
	Micro-benchmarking of the GPU
	This thesis primary contributions

	GPU ROOFLINE MODEL AND THE QUADRANT SPLIT REPRESENTATION
	Roofline GPU considerations
	The latency hiding opportunity on GPUs

	An experimental roofline approximation
	Experimental results

	The quadrant-split visual representation

	TOWARDS A QUANTITATIVE PERFORMANCE MODEL FOR GPUS
	Motivation and performance considerations
	A quantitative roofline GPU performance model
	An overview of the proposed model
	Kernel parameter extraction
	Target GPU parameter extraction
	Kernel performance estimation

	Case study 1: Red/black SOR stencil computation
	Case study 2: SGEMM computation
	Performance model assumptions

	EXPERIMENTAL EVALUATION
	Applied kernel experiments
	Red/black SOR stencil computation
	LMSOR stencil computation
	Matrix multiplication (SGEMM)
	Rodinia benchmark suite

	Performance prediction experiments
	Red/black SOR stencil computation
	LMSOR stencil computation
	Matrix multiplication (SGEMM)
	Mixbench performance prediction
	Rodinia benchmark suite
	Summary and conclusions

	CROSS-VENDOR EVALUATION AND PERFORMANCE LIMITATIONS
	Portability on a different vendor’s architecture
	The HIP/ROCm programming environment
	Kernel parameter portability
	Experimental results

	Performance model limitations
	Exposing limitations through micro-benchmarking

	CONCLUSIONS AND FUTURE WORK
	Conclusions
	Future work discussion and proposed model refinements
	Additional input parameters
	Simulated parameter extraction

	ABBREVIATIONS - ACRONYMS
	APPENDICES
	MICRO-BENCHMARK KERNEL SOURCE CODES
	Roofline approximation (mixbench)
	Compute throughput evaluation
	Memory bandwidth evaluation
	Load/store operation throughput evaluation

	BENCHMARKING OF FAST ON-CHIP GPU MEMORIES
	cachebench (L1, L2 & texture cache micro-benchmark)
	shmembench (shared memory micro-benchmark)
	constbench (constant cache micro-benchmark)

	REFERENCES

