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ABSTRACT
We consider the two existing extensional approaches to the semantics of positive higher-
order logic programming, originally introduced by W. W. Wadge and M. Bezem respec-
tively. The former approach uses classical domain-theoretic tools while the latter builds
on a fixed-point construction defined on a syntactic instantiation of the source program.
The relationships between these two approaches had not been investigated until now,
while only Wadge’s approach had been extended to apply to higher-order programs with
negation.

We show that Wadge’s semantics and Bezem’s semantics coincide for a broad and inter-
esting class of programs, which do not include existentially quantified predicate variables
in the bodies of clauses. We indicate that they also have profound differences, which sur-
face when we extend our source language to allow existential predicate variables.

In addition, we focus on the less developed research direction of the two, namely Bezem’s
semantics, and we adapt, for the first time, Bezem’s technique to define an extensional
semantics for higher-order logic programs with negation. For this purpose, we utilize
the infinite-valued approach to negation-as-failure. On the other hand, we show that an
adaptation of the technique under the well-founded or the stable model semantics does
not in general lead to an extensional semantics. We analyse the reasons for this failure
arguing that a three-valued setting cannot distinguish between certain predicates that
appear to have a different behaviour inside a program context, but which happen to be
identical as three-valued relations.

As an application of our developments, we define for the first time the notions of stratifica-
tion and local stratification for higher-order logic programs with negation. We prove that
every stratified program has a distinguished extensional model which can be equivalently
obtained through the well-founded, stable or infinite-valued model semantics. Further-
more, we show that this model does not assign the unknown truth value. These results
affirm the importance and the well-behaved nature of stratified programs, which was,
until now, only known for the first-order case.

SUBJECT AREA: Programming Languages

KEYWORDS: Higher-order logic programming, Negation in logic programming, Exten-
sional semantics





ΠΕΡΙΛΗΨΗ
Θεωρούμε τις δύο υπάρχουσες εκτατικές προσεγγίσεις στη σημασιολογία των θετικών
λογικών προγραμμάτων ανώτερης τάξης, προταθείσες από τον W. W. Wadge και τον M.
Bezem αντίστοιχα. Η πρώτη προσέγγιση χρησιμοποιεί κλασικά εργαλεία από τη θεωρία
πεδίων ενώ η δεύτερη στηρίζεται στις συντακτικές οντότητες που εμφανίζονται στο πρό-
γραμμα και βασίζεται στην επεξεργασία του βασικού αναπτύγματος του προγράμματος.
Οι σχέσεις μεταξύ των δύο προσεγγίσεων δεν είχαν ως τώρα διερευνηθεί, ενώ μόνο η
προσέγγιση του Wadge είχε επεκταθεί ώστε να εφαρμοστεί σε προγράμματα ανώτερης
τάξης με άρνηση.

Δείχνουμε ότι οι σημασιολογίες του Wadge και του Bezem συμπίπτουν για μία ευρεία και
ενδιαφέρουσα κλάση προγραμμάτων, τα οποία δεν περιλαμβάνουν υπαρξιακά ποσοτι-
κοποιημένες μεταβλητές στα σώματα των προτάσεων. Σημειώνουμε ότι έχουν επίσης
ουσιαστικές διαφορές, οι οποίες γίνονται εμφανείς όταν επεκτείνουμε την θεωρούμενη
γλώσσα ώστε να επιτρέπονται υπαρξιακές μεταβλητές.

Επιπλέον, εστιάζουμε στη λιγότερο ανεπτυγμένη ερευνητική κατεύθυνση εκ των δύο, δη-
λαδή τη σημασιολογία του Bezem, και προσαρμόζουμε για πρώτη φορά την τεχνική του
Bezem ώστε να ορίσουμε μία εκτατική σημασιολογία για λογικά προγράμματα ανώτε-
ρης τάξης με άρνηση. Για τον σκοπό αυτό, αξιοποιούμε την απειρότιμη προσέγγιση στην
άρνηση-μέσω-αποτυχίας. Από την άλλη, δείχνουμε ότι o συνδυασμός της τεχνικής με τη
σημασιολογία σταθερού μοντέλου ή με την καλώς θεμελιωμένη σημασιολογία, αποτυγ-
χάνει να παράξει εκτατικές σημασιολογίες, στη γενική περίπτωση. Αναλύουμε τις αιτίες
αυτής της αποτυχίας και ισχυριζόμαστε ότι μία τρίτιμη λογική δεν μπορεί να διαχωρίσει
μεταξύ τους ορισμένα κατηγορήματα, τα οποία έχουν διαφορετική συμπεριφορά μέσα σε
ένα πρόγραμμα, αλλά τυγχάνει να εμφανίζονται ως πανομοιότυπες τρίτιμες σχέσεις.

Τέλος, ορίζουμε για πρώτη φορά τις έννοιες της στρωματοποίησης και της τοπικής στρω-
ματοποίησης για λογικά προγράμματα ανώτερης τάξης με άρνηση. Αποδεικνύουμε ότι
κάθε στρωματοποιημένο πρόγραμμα έχει ένα διακριτό εκτατικό μοντέλο, το οποίο μπορεί
να κατασκευαστεί ισοδύναμα μέσω της καλώς θεμελιωμένης, της σταθερής ή της απει-
ρότιμης σημασιολογίας. Επιπλέον, δείχνουμε ότι αυτό το μοντέλο δεν αποδίδει ποτέ την
άγνωστη τιμή αληθείας. Τα αποτελέσματα αυτά αναδεικνύουν τη σπουδαιότητα και την
καλή φύση των στρωματοποιημένων προγραμμάτων, που ήταν ως τώρα γνωστή μόνο
στην περίπτωση των λογικών προγραμμάτων πρώτης τάξης.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Γλώσσες Προγραμματισμού

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Λογικός προγραμματισμός ανώτερης τάξης, Άρνηση στον λογικό προ-
γραμματισμό, Εκτατική σημασιολογία
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ΣΥΝΟΠΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΤΗΣ ΔΙΔΑΚΤΟΡΙΚΗΣ ΔΙΑΤΡΙΒΗΣ
Ο παραδοσιακός λογικός προγραμματισμός βασίζεται στην ιδέα ότι το υποσύνολο της
λογικής πρώτης τάξης που ορίζεται από τις προτάσεις Horn, μπορεί να χρησιμοποιηθεί
ως μία δηλωτική γλώσσα προγραμματισμού. Από την πληθώρα των επεκτάσεων του
λογικού προγραμματισμού που έχουν προταθεί κατά καιρούς, η μετάβαση στον λογικό
προγραμματισμό ανώτερης τάξης (higher-order logic programming) αποτελεί μία ιδιαιτέ-
ρως ελκυστική αλλά και αμφιλεγόμενη προοπτική. Το βασικό χαρακτηριστικό αυτού του
προγραμματιστικού ιδιώματος είναι η δυνατότητα να ορίζονται κατηγορήματα που επε-
νεργούν πάνω σε κατηγορήματα.

Για τον συναρτησιακό προγραμματισμό, το δεύτερο επιφανές είδος δηλωτικού προγραμ-
ματισμού, οι συναρτήσεις ανώτερης τάξης είναι το καθοριστικό του χαρακτηριστικό. Αντι-
θετα, ο λογικός προγραμματισμός ανώτερης τάξης έχει χαρακτηριστεί ως υπερβολικά
περίπλοκος και όχι αναλόγως απαραίτητος. Για παράδειγμα, ο Warren [32] ισχυρίζεται
ότι οι δυνατότητες ανώτερης τάξης δεν είναι ενδιαφέρουσες, καθώς μπορούν να προσο-
μοιωθούν στην κλασσική Prolog. Ταυτόχρονα, τα λίγα συστήματα με γνήσιες δυνατότητες
προγραμματισμού ανώτερης τάξης, που υλοποιήθηκαν σε προηγούμενες δεκαετίες (με
χαρακτηριστικότερα παραδείγματα την HiLog [11] και την λProlog [24, 25]), βασίζονται
σε γλώσσες που παρουσιάζουν μεγάλη σημασιολογική πολυπλοκότητα.

Παρά τον όποιο σκεπτικισμό, δεν μπορεί κανείς να αγνοήσει ότι οι προαναφερθείσες
γλώσσες ανώτερης τάξης έχουν πολλά πλεονεκτήματα από πλευράς εκφραστικής δύνα-
μης και ευκολίας χρήσης. Γενικότερα, εξάλλου, η χρήση μίας προγραμματιστικής γλώσ-
σας για την προσομοίωση των δυνατοτήτων μίας άλλης είναι συχνά εφικτή αλλά σπάνια
πρακτική. Συνεπώς, είναι φυσικό να αναρωτηθούμε αν υπάρχει τρόπος να επωφελη-
θούμε αυτών των πλεονεκτημάτων και ταυτόχρονα να διατηρήσουμε τις επιθυμητές ση-
μασιολογικές ιδιότητες των κλασικού λογικού προγραμματισμού πρώτης τάξης.

Οι ερευνητικές προσπάθειες των [31, 2, 3, 21, 9, 8, 10] κινούνται προς αυτήν την κατεύ-
θυνση, προσδιορίζοντας την νοηματική (intensional) φύση των παραδοσιακών γλωσσών
ανώτερης τάξης, όπως η HiLog και η λProlog, ως το “προβληματικό” τους (από σημα-
σιολογικής πλευράς) σημείο. Η νοηματική προσέγγιση σημαίνει ότι ένα κατηγόρημα δεν
αντιπροσωπεύει απλά το σύνολο των ορισμάτων για τα οποία είναι αληθές. Κατηγορή-
ματα τα οποία είναι ίσα ως σχέσεις, δεν αντιμετωπίζονται απαραίτητα ως ίσα. Για παρά-
δειγμα, στην HiLog, δύο κατηγορήματα δεν θεωρούνται ίσα εκτός αν τα ονόματά τους
είναι ίδια. Τέτοιες γλώσσες δεν έχουν σημασιολογία ελάχιστου μοντέλου. Οι εναλλακτικές
προσεγγίσεις των [31, 2, 3, 21, 9, 8, 10], αντίθετα, προτείνουν εκτατικές (extensional)
γλώσσες, όπου μπορούμε να χρησιμοποιήσουμε τυπικές συνολοθεωρητικές έννοιες για
να κατανοήσουμε το νόημα των προγραμμάτων και να τα μελετήσουμε. Το πλεονέκτημά
τους είναι η απλή και κομψή σημασιολογία, που στηρίζεται στις εδραιωμένες τεχνικές
του προγραμματισμού πρώτης τάξης. Το κόστος, ωστόσο, είναι το σχετικά περιορισμένο
συντακτικό των γλωσσών αυτών.

Μπορούμε να εντοπίσουμε δύο διακριτές ερευνητικές κατευθύνσεις για την απόδοση
εκτατικών σημασιολογιών στον λογικό προγραμματισμό ανώτερης τάξης. Η πρώτη [31,
21, 9, 8, 10] έχει αναπτυχθεί με τη χρήση εργαλείων της θεωρίας πεδίων και προσομοιά-
ζει τις τεχνικές για την απόδοση δηλωτικών σημασιολογιών σε συναρτησιακές γλώσ-
σες. Στο [31], ο W. W. Wadge έθεσε τις βάσεις αυτής της προσέγγισης, εισάγοντας έναν
απλό συντακτικό περιορισμό που διασφαλίζει την ύπαρξη ενός εκτατικού ελάχιστου μο-
ντέλου και σκιαγραφώντας τη σχετική απόδειξη. Ερευνητικές προσπάθειες που ακολού-



θησαν [21, 9] επέκτειναν και βελτίωσαν την εργασία αυτή, χαλαρώνοντας τον αρχικό
περιορισμό του Wadge και δίνοντας πλήρεις και λεπτομερείς αποδείξεις όλων των απο-
τελεσμάτων που προδιαγράφονται στο [31], συμπεριλαμβανομένης και μίας πλήρους
αποδεικτικής διαδικασίας [9]. Από το [9] προέκυψε και η πρώτη υλοποίηση μιας εκτατι-
κής γώσσας ανώτερης τάξης, με το όνομα HOPES. Το επόμενο, προφανές βήμα ήταν
η μελέτη προγραμμάτων ανώτερης τάξης με άρνηση. Πράγματι, η πρώτη εκτατική ση-
μασιολογία για τέτοια προγράμματα δόθηκε στο [8], όπου η δηλωτική σημασιολογία του
Wadge συνδυάζεται με μία σχετικά πρόσφατη πρόταση από το πεδίο της σημασιολογίας
των λογικών προγραμμάτων πρώτης τάξης με άρνηση, την επονομαζόμενη απειρότιμη
σημασιολογία (infinite-valued semantics) [30]. Τέλος, στο [10] αναπτύσσεται μία εναλλα-
κτική (αυτής του [8]) σημασιολογία, αυτήν τη φορά επεκτείνοντας την πιο δημοφιλή και
καθιερωμένη καλώς θεμελιωμένη σημασιολογία (well-founded semantics) [18] των γενι-
κών προγραμμάτων πρώτης τάξης.

Η δεύτερη εκτατική προσέγγιση, στην οποία και εστιάζουμε, προτάθηκε αρχικά από τον
M. Bezem στο [2, 3] για θετικά λογικά προγράμματα ανώτερης τάξης. Αυτή η προσέγ-
γιση στηρίζεται στις συντακτικές οντότητες που εμφανίζονται στο πρόγραμμα και βασί-
ζεται στην επεξεργασία του βασικού αναπτύγματος του προγράμματος. Εξαιτίας αυτών
των χαρακτηριστικών, είναι σε ένα βαθμό λιγότερο ισχυρή από την προσέγγιση του [9],
αλλά την ίδια στιγμή είναι απλούστερη στην κατανόηση και μπορεί πιθανώς να οδηγήσει
σε ενδιαφέρουσες τεχνικές υλοποίησης. Παρόλες τις σημαντικές διαφορές τους, οι δύο
ερευνητικές κατευθύνσεις δεν είναι ασύνδετες μεταξύ τους. Δείχνουμε ότι για μία ευρεία
κλάση θετικών προγραμμάτων συμπίπτουν ως προς τις λογικές τιμές που αποδίδουν σε
βασικά άτομα. Ωστόσο, πριν την δουλειά που παρουσιάζεται στην παρούσα διατριβή, η
ερευνητική προσπάθεια που ξεκίνησε στα [2, 3] ήταν πολύ λιγότερο ανεπτυγμένη και δεν
είχαν υπάρξει αποτελέσματα σχετικά με την πιθανή εφαρμογή της τεχνικής σε προγράμ-
ματα με άρνηση. Η συνεισφορά μας όσον αφορά αυτήν την προοπτική έχει και θετικές
και αρνητικές αποχρώσεις: δείχνουμε ότι, ενώ είναι εφικτό να επιτύχουμε μία εκτατική ση-
μασιολογία για γενικά προγράμματα μέσω της τεχνικής του Bezem, αυτό δεν μπορεί να
γίνει μέσω των παραδοσιακών προσεγγίσεων της άρνησης. Συγκεκριμένα, δείχνουμε ότι
τόσο η σημασιολογία σταθερού μοντέλου (stable model semantics) [19] όσο και η καλώς
θεμελιωμένη σημασιολογία [18] αποτυγχάνουν σε αυτήν την αποστολή (με την αξιοση-
μείωτη εξαίρεση των στρωματοποιημένων (stratified) προγραμμάτων) και μόνον η απει-
ρότιμη σημασιολογία [30] επιτυγχάνει. Επιπλέον, υποστηρίζουμε ότι μία τρίτιμη εκτατική
σημασιολογία δεν είναι πιθανό να επιτευχθεί μέσω οποιασδήποτε τεχνικής, παρά μόνο
αν κάνουμε σχετικά αντισυμβατικές υποθέσεις ως προς την συμπεριφορά της άρνησης
στα λογικά προγράμματα ανώτερης τάξης. Πιο συγκεκριμένα, η συμβολή της παρούσης
διατριβής μπορεί να συνοψιστεί στα παρακάτω αποτελέσματα:

• Δείχνουμε ότι για μία ευρεία και χρήσιμη κλάση προγραμμάτων χωρίς άρνηση, συ-
γκεκριμένα για την κλάση που ορίζεται από τον W. W. Wadge στο [31], οι προσεγγί-
σεις των [2, 3] και [31, 21, 9] συμπίπτουν ως προς τις λογικές τιμές που αποδίδουν
σε βασικά άτομα που περιέχουν σύμβολα του προγράμματος. Διαισθητικά, αυτό
σημαίνει ότι για οποιοδήποτε πρόγραμμα αυτής της κλάσης, τα σύνολα των βασι-
κών ατόμων που είναι αληθή ταυτίζονται υπό τις δύο διαφορετικές σημασιολογικές
προσεγγίσεις.

• Επεκτείνουμε την θεωρούμενη γλώσσαώστε να επιτρέπει την εμφάνιση υπαρξιακά
ποσοτικοποιημένων μεταβλητών που αντιπροσωπεύουν κατηγορήματα στα σώ-
ματα των προτάσεων του προγράμματος. Αποδεικνύουμε ότι σε αυτήν την περί-



πτωση οι δύο προσεγγίσεις δίνουν εν γένει διαφορετικά αποτελέσματα, όμως πα-
ρουσιάζουμε μία επιπλέον προϋπόθεση, υπό την οποία μπορούν να συνεχίσουν
να συμπίπτουν.

• Υποδεικνύουμε ότι η προσαρμογή της τεχνικής του Bezem στην σημασιολογία στα-
θερού μοντέλου δεν οδηγεί, στη γενική περίπτωση, σε εκτατικά μοντέλα. Ομοίως,
τεκμηριώνουμε την αποτυχία της καλώς θεμελιωμένης σημασιολογίας να παράσχει
εκτατικά μοντέλα σε συνδυασμό με την τεχνική του Bezem.

• Δείχνουμε ότι συνδυάζοντας την τεχνική του [2, 3] με την απειρότιμη σημασιολογία
του [30], επιτυγχάνουμε μία εκτατική σημασιολογία για λογικά προγράμματα ανώ-
τερης τάξης με άρνηση. Η απειρότιμη σημασιολογία είναι ένας ενδιαφέρων εναλλα-
κτικός τρόπος για την ερμηνεία της άρνησης στον λογικό προγραμματισμό, στενά
συνδεδεμένος με την καλώς θεμελιωμένη σημασιολογία. Να σημειωθεί επίσης, ότι η
απειρότιμη σημασιολογία ήταν η πρώτη προσέγγιση της άρνησης-μέσω-αποτυχίας
που κατέστησε εφικτή την επέκταση της σημασιολογίας των [31, 21, 9] (βλ. [8]).

• Μελετάμε τους λόγους της αποτυχίας της καλώς θεμελιωμένης σημασιολογίας και
το γενικότερο ερώτημα της πιθανής ύπαρξης μίας εναλλακτικής τρίτιμης εκτατικής
σημασιολογίας για λογικά προγράμματα ανώτερης τάξης με άρνηση. Επιχειρημα-
τολογούμε ότι ο περιορισμός σε μία τρίτιμη λογική φαίνεται να “απορρίπτει υπερ-
βολικά πολλή πληροφορία” και έχει σαν αποτέλεσμα, κατηγορήματα που αναμένε-
ται να έχουν διαφορετική συμπεριφορά, να εμφανίζονται ως πανομοιότυπες τρίτι-
μες σχέσεις. Υποδεικνύουμε, ότι μία τέτοια τρίτιμη εκτατική σημασιολογία απαιτεί
ορισμένες μη καθιερωμένες υποθέσεις σχετικά με την συμπεριφορά της άρνησης,
όπως επιβεβαιώνει το παράδειγμα του [10].

• Ορίζουμε τις έννοιες της στρωματοποίησης και της τοπικής στρωματοποίησης για
λογικά προγράμματα ανώτερης τάξης με άρνηση. Αυτές οι δύο έννοιες γενικεύουν
τις αντίστοιχες από τον κλασικό (πρώτης τάξης) λογικό προγραμματισμό. Τέτοιες
έννοιες δεν έχουν ακόμα μελετηθεί υπό το πρίσμα της σημασιολογίας των [31, 21,
9, 8, 10]. Δείχνουμε ότι οι εκδοχές της σημασιολογίας του Bezem που προκύπτουν
από τον συνδυασμό της με την σημασιολογία σταθερού μοντέλου, την καλώς θε-
μελιωμένη σημασιολογία και την απειρότιμη σημασιολογία, συμφωνούν στην πε-
ρίπτωση των στρωματοποιημένων προγραμμάτων και δίνουν ισοδύναμα εκτατικά
μοντέλα. Αυτό το αποτέλεσμα επιβεβαιώνει την σημασία και την καλή συμπεριφορά
των στρωματοποιημένων προγραμμάτων, που ήταν ως τώρα γνωστή μόνο για την
περίπτωση του λογικού προγραμματισμού πρώτης τάξης.

Στην συνέχεια δίνουμε μία σύντομη, διαισθητική παρουσίαση της σημασιολογικής τεχνι-
κής του Bezem για θετικά προγράμματα και σκιαγραφούμε τις τεχνικές που εφαρμόζουμε
για να φτάσουμε στα αποτελέσματα που περιγράφηκαν παραπάνω.

Δεδομένου ενός θετικού λογικού προγράμματος ανώτερης τάξης, η κεντρική ιδέα πίσω
από την προσέγγιση του Bezem είναι να εργαστούμε πάνω στο βασικό του ανάπτυγμα.
Το τελευταίο προκύπτει αντικαθιστώντας τις μεταβλητές με καλοσχηματισμένους όρους
που μπορούν να παραχθούν χρησιμοποιώντας συντακτικές οντότητες που εμφανίζονται
στο πρόγραμμα. Για παράδειγμα, ας θεωρήσουμε το παρακάτω πρόγραμμα ανώτερης



τάξης:
q(a).
q(b).
p(Q):-Q(a).
id(R)(X):-R(X).

Προκειμένου να παράξουμε το βασικό ανάπτυγμα αυτού του προγράμματος, θεωρούμε
κάθε πρόταση και αντικαθιστούμε κάθε μεταβλητή αυτής της πρότασης με έναν βασικό
όρο που έχει τον ίδιο τύπο με την εν λόγω μεταβλητή. Με αυτόν τον τρόπο λαμβάνουμε
το εξής άπειρο πρόγραμμα:

q(a).
q(b).
p(q):-q(a).
id(q)(a):-q(a).
id(q)(b):-q(b).
p(id(q)):-id(q)(a).

· · ·
Πλέον, μπορούμε να αντιμετωπίσουμε το πρόγραμμα ως ένα άπειρο προτασιακό πρό-
γραμμα (δηλαδή, κάθε βασικό άτομο μπορεί να ειδωθεί ως μία προτασιακή μεταβλητή).
Αυτό μας επιτρέπει να χρησιμοποιήσουμε τον γνωστό από τον λογικό προγραμματισμό
πρώτης τάξης τελεστή άμεσου επακόλουθου (βλ. για παράδειγμα [23]), ώστε να υπολο-
γίσουμε το σύνολο των ατόμων που θα πρέπει να θεωρηθούν “αληθή”. Στο παράδειγμά
μας, το ελάχιστο σταθερό σημείο του τελεστή θα περιέχει άτομα όπως q(a), q(b), p(q),
id(q)(a), id(q)(b), p(id(q)) κ.λ.π.

Ο Bezem απέδειξε ότι το ελάχιστο μοντέλο του βασικού αναπτύγματος κάθε θετικού λο-
γικού προγράμματος ανώτερης τάξης της γλώσσας που επεξεργάζεται στο [3] είναι εκτα-
τικό, με μία έννοια που μπορεί να ερμηνευθεί ως ακολούθως. Στο παράδειγμά μας, τα q
και id(q) είναι ίσα, καθώς και τα δύο είναι αληθή για τις ίδιες ακριβώς σταθερές, δηλαδή
τις a και b. Ως εκ τούτου, αναμένουμε ότι (για παράδειγμα), αν το p(q) είναι αληθές, τότε
το p(id(q)) θα είναι επίσης αληθές, αφού δεν μπορεί να υπάρχει διαχωρισμός μεταξύ
των q και id(q). Αυτή η ιδιότητα ορίζεται τυπικά στα [2, 3] και αποδεικνύεται ότι ισχύει για
το ελάχιστο σταθερό σημείο του τελεστή άμεσου επακόλουθου του βασικού αναπτύγμα-
τος κάθε προγράμματος που συμμορφώνεται με τον απλό συντακτικό περιορισμό που
επιβάλλεται από τον Bezem.

Στις προσεγγίσεις των [31, 21, 9], το μοντέλο του προγράμματος περιγράφεται αρκετά
διαφορετικά. Μέσω ενός τελεστή άμεσου επακόλουθου, σε κάθε κατηγόρημα ανατίθεται
μία σχέση ή, ισοδύναμα, ένα σύνολο. Για παράδειγμα, στο κατηγόρημα πρώτης τάξης q
του προηγούμενου παραδείγματος ανατίθεται το σύνολο των αντικειμένων για τα οποία
είναι αληθές, δηλαδή το σύνολο {a, b}. Στο κατηγόρημα δεύτερης τάξης p ανατίθεται το
σύνολο των μονοτονικών σχέσεων (και όχι κατηγορημάτων) πρώτης τάξης για τα οποία
είναι αληθές, δηλαδή το σύνολο {{a},{a, b}}. Η σύγκριση του μοντέλου αυτού με το
μοντέλο που προκύπτει από την σημασιολογία του Bezem αποκαλύπτει ότι οι δύο σημα-
σιολογίες ταυτίζονται για μία μεγάλη κλάση προγραμμάτων, τα οποία δεν περιλαμβάνουν
υπαρξιακά ποσοτικοποιημένες μεταβλητές τύπου κατηγορήματος. Το αποτέλεσμα αυτό
ωστόσο παύει να ισχύει στη γενική περίπτωση, όπως αποδεικνύουμε μέσω σχετικού
αντιπαραδείγματος.

Η βασική ιδέα πίσω από την επέκταση της σημασιολογίας του Bezem ώστε να εφαρμο-
στεί σε προγράμματα ανώτερης τάξης με άρνηση, είναι εύκολο να διατυπωθεί: δεδομένου



ενός τέτοιου προγράμματος, πρώτα παίρνουμε το βασικό του ανάπτυγμα. Το αποτέλε-
σμα είναι ένα (πιθανώς άπειρο) προτασιακό πρόγραμμα με άρνηση, συνεπώς μπορούμε
να υπολογίσουμε το νόημά του με οποιαδήποτε από τις μεθόδους που είναι διαθέσιμες
για την ερμηνεία τέτοιων προγραμμάτων. Επιλέγουμε να χρησιμοποιήσουμε την καλώς
θεμελιωμένη σημασιολογία [18], την σημασιολογία σταθερού μοντέλου [19] και την απει-
ρότιμη σημασιολογία ως πιθανούς υποψήφιους [30] και κατόπιν εξετάζουμε κατά πόσο
το καλώς θεμελιωμένο μοντέλο ή το κάθε σταθερό μοντέλο ή το απειρότιμο μοντέλο είναι
εκτατικό κατά την έννοια των [2, 3] (όπως περιγράφεται άτυπα παραπάνω). Δείχνουμε ότι
η απάντηση στο ερώτημα αυτό είναι θετική μόνο στην περίπτωση του απειρότιμου μο-
ντέλου. Για να αποδείξουμε ότι οι σημασιολογίες που προκύπτουν από τον συνδυασμό
της μεθόδου του Bezem με την σημασιολογία σταθερού μοντέλου και την καλώς θεμελιω-
μένη σημασιολογία δεν είναι εκτατικές, παρουσιάζουμε παραδείγματα “προβληματικών”
προγραμμάτων, δηλαδή προγραμμάτων με μη εκτατικά σταθερά μοντέλα και μη εκτα-
τικό καλώς θεμελιωμένο μοντέλο αντίστοιχα. Από την άλλη, η απόδειξη ότι η ορισθείσα
απειρότιμη σημασιολογία είναι εκτατική βασίζεται σε επαγωγή που ακολουθεί τα βήματα
κατασκευής του μοντέλου και σε αποδεικτικές τεχνικές από το [3].

Όπωςπροειπώθηκε, αποδεικνύουμε ότι κάθε στρωματοποιημένο λογικό πρόγραμμα ανώ-
τερης τάξης με άρνηση έχει εκτατικό καλώς θεμελιωμένο μοντέλο. Επιπλέον, αυτό το
μοντέλο είναι δίτιμο και ταυτίζεται με το μοναδικό σταθερό μοντέλο ενώ είναι ισοδύναμο
με το απειρότιμο μοντέλο του προγράμματος. Κατ’ αυτόν τον τρόπο, υποδεικνύουμε μία
ευρεία κλάση προγραμμάτων που έχουν καλή συμπεριφορά ως προς την εκτατική ση-
μασιολογία. Η απόδειξη βασίζεται σε έναν εκ των πολλών χαρακτηρισμών του τέλειου
μοντέλου, συγκεκριμένα στον κατασκευαστικό ορισμός από το [28], και στην ισοδυναμία
αυτού με τα προαναφερθέντα μοντέλα.
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Semantics of Negation in Extensional Higher-Order Logic Programming

1. INTRODUCTION
The purpose of this dissertation is to evaluate M. Bezem’s extensional semantics for
higher-order logic programs, first in comparison to the sole existing alternative, intro-
duced by W. W. Wadge, and second with respect to its potential to generalise to pro-
grams with negation. We demonstrate that the two approaches are closely connected
and that they even coincide for a broad class of programs. Then we extend Bezem’s
semantics under the well-founded, stable model and infinite-valued semantics and show
that only the latter succeeds in retaining extensionality in the general case. The results
of the dissertation contribute to a better understanding of the semantics of higher-order
logic programming and, in particular, the behaviour of negation in higher-order logic pro-
gramming.

This chapter offers an introductory presentation of the main concepts involved in defining
the problems addressed in this dissertation, as well as the contributions made towards
the solutions. We begin with an intuitive discussion of what higher-order logic program-
ming is and why it is a particularly interesting extension of classical (first-order) logic
programming. Then we outline the main issues related to the semantics of higher-order
programs and the different approaches that have been taken in attempt to define such
a semantics. We conclude with a summary of our contributions and an overview of the
structure of the dissertation.

1.1 First-order Logic Programming
Traditional logic programming is based on the idea of using the Horn subset of first-order
logic as a declarative programming language. In contrast to imperative programming
languages, the building blocks of a logic program are not instructions on how to perform
basic tasks in a specified order, but clauses that describe relationships between objects.
Clauses may be unconditional (e.g., “A holds”) or conditional axioms (e.g., “A holds if B
and C both hold”). For example, take the following program:

man(socrates).
god(zeus).
mortal(X):-man(X).

The first line is an unconditional clause and declares that an object of our world, Socrates,
has a property, i.e. is a man. In logic programming terms, the predicate man is true of the
individual socrates. The second line can be understood in a similar way. The third line
is a conditional clause and declares that an arbitrary object, represented by the variable
X, is mortal, if the object is a man. Predicates like man, god and mortal can be seen as
relations, that may be true or false of different objects in our knowledge base.

Given the above program, the system can accept queries about the knowledge base
described in it. It may answer questions about specific objects, as for example:

?- mortal(socrates).

In this case, the system will find that, in order for Socrates to be proven mortal, it suffices
to prove that Socrates is a man. The latter is stated to hold in our world, therefore the
above question would receive a positive answer. On the other hand, queries like:

?- mortal(zeus).
?- mortal(plato).

29 I. Symeonidou



Semantics of Negation in Extensional Higher-Order Logic Programming

would receive negative answers, because neither Zeus nor Plato can be proven to be
men on the grounds of our example program. The system can also accept queries of the
following form:

?- mortal(Y).

This question can be understood as “who in our world is mortal?”. A query such as the
above will be addressed by trying to bind the variable Y to objects for which mortal(Y) can
be proven; in this case, Socrates. Therefore, the answer Y=socrates will be produced.
It becomes apparent that, with declarative languages in general and logic programming
in particular, handling the operational details of how the solution to a problem is reached,
falls not on the programmer, but on the system executing the program.

The semantics of first-order logic programs such as the above are given by theirminimum
Herbrand model (or simply minimum model), i.e. the set of facts that can be deduced
to be true from the program. More generally, a model of the program is a set of facts
that satisfy all the clauses of the program, if they are assumed to be true, and the min-
imum model is the smallest such set. For our example program above, the minimum
model is the set {man(socrates), god(zeus), mortal(socrates)}, which satisfies the
two unconditional clauses of our program, because the facts stated by those clauses are
assumed to be true in the model, and the third, conditional clause, because mortal is
assumed to be true for every individual of which man is true (i.e. socrates).

1.2 Higher-order Logic Programming
Out of the many extensions of traditional logic programming that have been proposed
over the years, the transition to a higher-order setting has been a particularly intriguing
and at the same time controversial potential course. The key characteristic of higher-
order logic programming is that (roughly speaking) it allows predicates to be passed as
parameters of other predicates. In other words, we can define relations on objects, which
are considered first-order, but we can also define relations on other relations, which are
considered higher-order.

Example 1. The following is a higher-order program that defines the union of two rela-
tions P, Q (in this chapter, we use ad-hoc Prolog-like syntax for our examples):

union(P,Q)(X):-P(X).
union(P,Q)(X):-Q(X).

The predicate union is second-order and operates on two first-order predicates, P and Q,
and an individual, X.

The greatest advantage of higher-order logic programming, compared to first-order logic
programming, is of course the added expressivity. Most importantly, this is achieved in a
way that enhances, rather than disrupts, the positive aspects of the declarative program-
ming style, such as code elegance, human-friendly structure and programmer productiv-
ity.

Functional programming, the other prominent declarative paradigm, boasts higher-order
functions as its most elemental feature. In [20], J. Hughes advocated the importance of
higher-order functions and portrayed them as a powerful structure to reinforce modular
programming, by better enabling the programmer to modularize a problem conceptually.
The way in which simple functions, implementing basic tasks, can be combined together
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to produce more complex ones, through higher-order capabilities, is illustrated even in
seemingly trivial programs in [20]. We use a similar example taken from [31]. Consider
the following first-order program for deciding whether a list of integers is ordered:

ordered([]).
ordered([X]).
ordered([X,Y|T]) :- X<Y, ordered([Y|T]).

where [] represents an empty list, [X] represents a list of one element and [X,Y|T] rep-
resents a list with at least two elements, X and Y, followed by a possibly empty sequence
of additional elements T. The only part of this definition that is specific to integer values is
the comparison X<Y, while the rest of the definition only describes the iteration through the
elements of the list. However, in a first-order language, implementing a similar predicate
for lists of e.g. sets or strings, would require the repetition of the iteration mechanism.
The use of a higher-order predicate, on the other hand, could allow the separation of the
iteration function and the comparison function. This way the former becomes indepen-
dent of the type of the list items and so the code can be appropriately reused if needed.
Such a universal predicate might be defined as in the following example.

Example 2. The following is a higher-order, parametrized version of the above predicate
ordered:

ordered([],R).
ordered([X],R).
ordered([X,Y|T],R) :- R(X,Y), ordered([Y|T],R).

where R can be substituted for any (first-order) ordering relation, such as <, ⊂, a relation
that checks lexicographical order, and so on.

1.3 Issues with Higher-order Logic Programming
Programming in higher-order dialects has become a growing trend in the recent years,
as the benefits of higher-order structures have become widely acknowledged. This is
evident from the increasing popularity of purely functional languages, as well as the fact
that higher-order features are being gradually incorporated into mainstream, traditionally
imperative languages such as C# and Java.

On the opposite side, higher-order logic programming has been met with relative scepti-
cism and has sometimes been argued to be more complicated than it is necessary. For
example, D. Warren claimed in [32] that higher-order features in logic programming are
of no interest, because they can be simulated in classical Prolog. At the same time,
the few logic programming systems with genuinely higher-order capabilities that were
implemented a while ago (most notably HiLog [11] and λProlog [24, 25]), are based on
languages which suffer from semantic complexity. In the general case, arbitrary higher-
order logic programs cannot be interpreted in the same way as first-order logic programs;
even the existence of a minimum model is not guaranteed.

Despite the issues raised, one cannot disregard the fact that the aforementioned higher-
order languages have much to offer in terms of expressive power and ease of use. After
all, in programming, using one language to emulate another is very often possible, but
it is rarely practical. It is natural to wonder if one can enjoy some of these appealing
qualities and at the same time retain the elegant and desirable semantic properties of
classical first-order logic programming.
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As mentioned previously, in classical first-order logic programming, predicates denote
relations and they can be identified with the set of arguments for which they are true. The
semantics of these programs is said to be extensional. The following example from [3],
based on a similar example from [31], illustrates the problems encountered when we
attempt to interpret a higher-order program in an extensional way.

Example 3. Consider the program

p(a).
q(a).
r(p).
p(b):-r(q).

If we see predicates as denoting relations in the set theoretic sense, then we should see
p and q as both denoting the set {a}. Since the two predicates are equal as sets, they
should be indistinguishable and, therefore, interchangeable. This means that r(p) being
true, makes it necessary that r(q) is also true. Then, so that the last clause is satisfied,
p must be true of b. Observe that this constitutes a paradox, because adding b to the
denotation of p makes q no longer equal to p and there is no more reason to assume that
r(q) is true.

The above program does have a minimum model, namely {p(a), q(a), r(p)}, but this
model is not extensional. On the other hand, it has two minimal extensional models:
{p(a), p(b), q(a), r(p)} and {p(a), q(a), q(b), r(p)}, but p(b) in the first model
and q(b) in the second have no justification. Moreover, in the first model r is only true of
the relation {a, b}, while in the second it is true of a different relation, {a}. These symp-
toms are inconsistent with our experience with the semantics of logic programs.

One way to address this problem is to abandon extensionality. In the traditional higher-
order languages such as HiLog and λPrologmentioned above, an intensional approach is
taken instead; predicates that are equal as relations, may not always be treated as equal.
For example, in Hilog, two predicates are not considered equal unless their names are
the same. In an intensional system, it is acceptable that r(p) succeeds and r(q) fails.
Languages like these have all the expressive power of higher-order Horn logic. However,
this choice also means abandoning the elegant, well-established semantic properties of
first-order logic programs and stirring logic programming away from its logical foundation.

Extensionality, on the other hand, bears not only the theoretical advantage, but also some
more practical rewards. First and foremost, the fact that two predicates which are true of
the same arguments are semantically indistinguishable, has major impact on the mod-
ularity of programs. For example, if we define two sorting predicates merge_sort and
quick_sort that perform the same task (possibly with different efficiency), it is guaran-
teed that any higher-order predicate will have the same behaviour whether it is given
merge_sort or quick_sort as an argument. This means we can safely replace one im-
plementation of sort with another without breaking our program. In the previous section
we argued that this property is one of the major assets of functional programming; note
that functional programs also have extensional semantics. As mentioned in [31] “exten-
sionality means exactly that predicates are used as black boxes - and the “black box”
concept is central to all kinds of engineering”. Another impressive result of extensionality
is demonstrated in Example 6.
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The above discussion suggests that the problem revealed in our example program de-
serves some more consideration. Recall that the paradox arose when we claimed that
p and q being equal as sets means that if r(p) is true, then r(q) should also be true.
There is one more issue with this clause: the only way to deduce from this program that
r(q) is true, is to prove that p and q are equal. In this case this was trivial, but in general
higher-order predicates may denote relations that are infinite. Therefore relying on such
comparisons is unrealistic. Obviously, the root of the problem is the fact that we explicitly
named a specific predicate, i.e. p, as a member of a certain relation, i.e. the extension of
r. In [31] W. W. Wadge suggested that if we appropriately restrict the syntax of higher-
order logic programming to disallow this practice, then we can obtain languages that can
be assigned an extensional semantics. The same idea was stated independently by M.
Bezem in [2], even though it was pursued through different techniques.

1.4 Syntactic Restrictions for Extensional Higher-Order Logic Programs
W. W. Wadge was the first to acknowledge that an extensional approach to higher-order
logic programming would require to sacrifice some of the expressive power of higher-
order logic. The syntactic restrictions imposed by Wadge in [31] are the following:

R1: In the head of every clause in a program, each argument of predicate type must be
a variable; all such variables must be distinct.

R2: The only variables of predicate type that can appear in the body of a clause, are
variables that appear in its head (in other words, existentially quantified predicate
variables are not allowed).

Programs that satisfy the above restrictions are named definitional in [31].

Example 4. The programs of Example 1 and Example 2 (as well as the two first-order
programs of Sections 1.1 and 1.2) are legitimate under Wadge’s restrictions. However,
the program of Example 3 does not satisfyR1: recall that the predicate constant p appears
as an argument in the head of the clause r(p). Similarly, the program:

p(Q,Q):-Q(a).

is problematic because the predicate variable Q is used twice in the head of the clause.
Finally, the program:

p(a):-Q(a).

is not definitional because the predicate variable Q that appears in the body of the above
clause, does not appear in the head of the clause.

In [9], Charambidis et al. rendered unnecessary the second restriction, R2, showing
that existential predicate variables can freely appear in the bodies of clauses (and, ob-
viously, program goals), without compromising extensionality. Example 6 demonstrates
the added expressive power of dropping this restriction. However, the first restriction, R1,
is essential for the reasons discussed in Section 1.3 and so it was adopted in [9].

Interestingly, M. Bezem independently followed a very similar course. In [2] he imposed
his own syntactic restrictions that guaranteed extensionality of higher-order logic pro-
grams and these were very similar to Wadge’s original ones (R1 and R2). In particular,
Bezem required that:
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R′
1: In every atom of every clause in a program, each argument of predicate type must

be a variable; all such variables in the head of the clause must be distinct.

R′
2: The only variables of predicate type that can appear in the body of a clause, are

variables that appear in its head, or variables of first-order predicate types.

Observe that Bezem’s first rule, R′
1, is stricter than Wadge’s respective rule, since it for-

bids predicate constants to appear as arguments anywhere in a clause (as opposed to
the head atom). On the other hand, R′

2 is less strict than R2, because it declares that
existentially quantified predicate variables are allowed, if they are first-order.

However, Bezem soon revisited his work and in [3] he arrived at the same conclusion
as Charalambidis et al. [9] would reach a few years later: Wadge’s first syntactic restric-
tion, R1, alone is enough to ensure that any conforming program can be assigned an
extensional semantics.

It is perhaps worth noting that, despite agreeing on R1, the language considered in [3]
is still a strict superset of the language of [9]. The difference is that Bezem allows the
left-most predicate of the head atom of a clause to be a variable. For example, the clause:

Q(b):-r(Q).

is legitimate under Bezem’s syntax of [3], but not under the syntax of Wadge or Charam-
bidis et al. We will not consider such programs (named hoapata in [3]).

1.5 Intuitive Overview of the Existing Approaches
Two distinct research directions for providing extensional semantics to higher-order logic
programs can be identified. The first [31, 21, 9, 8, 10] has been developed using domain-
theoretic tools, and resembles the techniques for assigning denotational semantics to
functional languages. In [31] W. W. Wadge laid the foundations for this approach by
introducing the syntactic restrictions discussed in Section 1.4 and outlining an extensional
semantics for positive (i.e., negationless) higher-order logic programs. Later research
efforts [21, 9] extended and refined the work of [31], relaxing Wadges’s original syntactic
restriction and providing complete and detailed proofs of all results either sketched or
conjectured in [31], including a sound and complete proof procedure [9]. The first actual
implementation of an extensional higher-order language, called HOPES, was built based
on this work [9].

The second extensional approach, and the one wemainly focus on, was initially proposed
by M. Bezem in [2, 3], also for positive programs. This approach relies on the syntactic
entities that exist in a program, and is based on processing the ground instantiation of
the program (the notion of ground instantiation is informally explained later in this section
and formally defined in Chapter 4). Because of these traits, it is a little less powerful than
the approach of [9], but at the same time, it is easy to comprehend and can probably
lead to interesting implementation techniques. Despite their important differences, the
two research directions are not unrelated. We show that for a broad class of positive
programs, they coincide with respect to ground atoms.

We give an intuitive overview of each of the two approaches, starting with the domain
theoretic semantics of [31]. The formal details of both approaches will be given in Chap-
ter 4.
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As it is argued in [31], if a program is definitional, i.e. satisfies the two syntactic restric-
tions, R1 and R2, presented in Section 1.4, then it has a unique minimum model.

Example 5. Consider the definitional program:

q(a).
q(b).
p(Q):-Q(a).
id(R)(X):-R(X).

In the minimum model of the above program, the meaning of q is the relation {a, b}. The
meaning of p is the set of all unary relations (over the set of individuals appearing in the
program), that contain at least a; more formally, it is the relation {r | a ∈ r}. The meaning
of id is the set of all pairs (r, d) such that d belongs to r; more formally, it is the relation
{(r, d) | d ∈ r}.

As remarked byW.W. Wadge (and formally demonstrated in [21, 9]), the minimummodel
of every definitional program is monotonic and continuous.1 Intuitively, monotonicity
means that if in the minimum model the meaning of a predicate is true of a relation,
then it is also true of every superset of this relation. For example, we see that since the
meaning of p is true of {a}, then it is also true of {a, b} (because {a, b} is a superset of
{a}).

The minimum model of a given definitional program can be constructed as the least
fixed-point of an operator that is associated with the program, called the immediate con-
sequence operator of the program. As is demonstrated in [31, 21], the immediate conse-
quence operator is monotonic, and this guarantees the existence of the least fixed-point
which is constructed by a bottom-up iterative procedure.

Reasoning with predicates as abstract relations, as opposed to predicates as concrete
syntactic entities, makes possible a powerful feature of the language HOPES. It is the fact
that abstract relations can be produced by the system as answers to queries, even when
these queries are not satisfied by specific relations defined in a program. The following
example from [9] demonstrates this.

Example 6. Suppose that we have the following database of musicians:

singer(sally).
singer(steve).
drummer(dave).
quitarist(george).
quitarist(grace).

Then the following clause can be used to describe what constitutes a band:

band(B):-singer(S),B(S),drummer(D),B(D),guitarist(G),B(G).

This says that a band is a group that has at least a singer, a drummer and a guitarist.
The programming language HOPES allows the query ?- band(B)., at which it will start

1The notion of continuity will not play any role in this dissertation.
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enumerating the finite sets of musicians that constitute bands according to the above rule.
For example, answers such as B = {sally, dave, george, grace} and B = {steve,
dave, george} will be produced. For a more detailed discussion of the example and the
way that HOPES handles goals with uninstantiated predicate variables, see [7].

It should be noted that Bezem’s semantic technique [2, 3], though also extensional, falls
short in this case, as it is more syntax-oriented and cannot produce abstract answers
as in the above example. Specifically, under Bezem’s semantics predicate variables
range over the equivalence classes, with respect to extensional equality, of predicates
that appear in the program, instead of sets of abstract relations. The repercussions of
this key difference between the approaches of [2, 3] and [31, 21, 9] will be discussed in
Section 4.4.2. For the moment, we give a short description of Bezem’s technique at an
intuitive level.

Given a positive higher-order logic program, the starting idea behind Bezem’s approach
is to take its “ground instantiation”, in which we replace variables with well-typed terms
that can be created using syntactic entities that appear in the program. For example,
consider the higher-order program below:

q(a).
q(b).
p(Q):-Q(a).
id(R)(X):-R(X).

In order to obtain the ground instantiation of this program, we consider each clause and
replace each variable of the clause with a ground term that has the same type as the
variable under consideration (the formal definition of this procedure will be given in Defi-
nition 38). In this way we obtain the following infinite program:

q(a).
q(b).
p(q):-q(a).
id(q)(a):-q(a).
id(q)(b):-q(b).
p(id(q)):-id(q)(a).

· · ·

One can now treat the new program as an infinite propositional one (i.e., each ground
atom can be seen as a propositional variable). This implies that we can use the standard
minimum model of classical logic programming in order to obtain the set of atoms that
should be taken as “true”. In our example, the minimum model will contain atoms such
as q(a), q(b), p(q), id(q)(a), id(q)(b), p(id(q)), and so on.

Bezem demonstrated that the minimum model semantics of the ground instantiation of
every positive higher-order logic program of the language considered in [3], is extensional
in a sense that can be explained as follows. In our example, q and id(q) are equal since
they are both true of exactly the constants a and b. Therefore, we expect that (for exam-
ple) if p(q) is true then p(id(q)) is also true, because q and id(q) should be considered
as indistinguishable. This property of “indistinguishability” is formally defined in [2, 3] and
it is demonstrated that it holds in the minimum model of the ground instantiation of every
program that abides to the simple syntactic restriction given in Section 1.4.
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The obvious next step of course is to consider higher-order programs with negation. In-
deed, the first extensional semantics for such programs was given in [8], where Wadge’s
denotational semantics is combined with a relatively recent semantic proposal from the
sphere of first-order logic programming with negation, called the infinite-valued seman-
tics [30]. In [10] an alternative semantics was obtained, this time by extending the more
popular and established well-founded semantics [18] of general first-order programs.
However, prior to the work reported in this dissertation, the line of research started in [2, 3]
was much less developed and there had been no results regarding the possible applica-
tion of the technique to general logic programs.

1.6 Contributions
In this dissertation we focus exclusively on the extensional approaches to the semantics
of higher-order logic programming. Our first goal is to explore the connections between
the two existing research directions for positive (i.e., negationless) higher-order logic
programs, namely M. Bezem’s approach of [2, 3] and the one of [31, 9], initiated by W.
W. Wadge and extended by Charalambidis et al. Our second and main goal, is to fill a
gap in the field of extensional semantics for higher-order logic programs with negation,
by investigating the applicability of Bezem’s semantic technique to such programs.

The key idea behind extending Bezem’s semantics in order to apply to programs with
negation, is straightforward to state: given such a program, we first take its ground instan-
tiation. The resulting program is a (possibly infinite) propositional program with negation
and therefore we can compute its semantics in any standard way that exists for obtain-
ing the meaning of such programs. We use the well-founded semantics [18], the stable
model semantics [19], and the infinite-valued semantics [30] as possible candidates and
then proceed to examine whether the well-founded model or each stable model or the
minimum infinite-valued model is extensional in the sense of [2, 3] (informally described
in the previous section).

Our contributions can be summarized as follows:

• We demonstrate that for a very broad class of positive programs, namely the class
of definitional programs introduced by W. W. Wadge [31], the approaches of [2,
3] and [31, 9] coincide with respect to ground atoms that involve symbols of the
program. Intuitively, this means that for any given definitional program, the sets
of true ground atoms of the program are identical under the two different semantic
approaches.

• On the other hand, we argue that if we consider an extended language, which
allows existential predicate variables in the bodies of program clauses, then the two
approaches give different results in general; even in this extended case however,
we demonstrate that under an additional assumption, the two approaches can still
be shown to coincide.

• We show that, even though it is possible to acquire an extensional semantics for
general programs by Bezem’s technique, this cannot be done through the tradi-
tional approaches to negation. We demonstrate that the stable model adaptation
of Bezem’s technique does not in general lead to extensional models. In particular,
we exhibit a program that has more than one stable models, none of which are
extensional. In the same manner, we demonstrate that the well-founded extension
of Bezem’s technique also fails to retain extensionality in the general case.
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• We demonstrate that by combining the technique of [2, 3] with the infinite-valued
semantics of [30], we obtain an extensional semantics for higher-order logic pro-
grams with negation. The infinite-valued approach is an interesting alternative way
to interpret negation in logic programs, with close connections to the well-founded
semantics. As it was recently demonstrated in [16, 6], despite these connections
the infinite-valued approach satisfies all identities of iteration theories [5], while the
well-founded semantics does not. Iteration theories (intuitively) provide an abstract
framework for the evaluation of the merits of various semantic approaches for lan-
guages that involve recursion. Note also, that the infinite-valued semantics was
the first approach to negation to enable the extension of the semantics of [31, 9]
(see [8]).

• We study the reasons for the failure of the well-founded adaptation of Bezem’s
technique and the more general question of the possible existence of an alternative
extensional three-valued semantics for higher-order logic programs with negation.
We argue that restricting attention to three-valued logic appears to “throw away
too much information” and makes predicates that are expected to have different
behaviours, appear as identical three-valued relations. We indicate that in order
to achieve such a semantics, one has to make some (arguably) non-standard as-
sumptions regarding the behaviour of negation, for example as in the case of [10].

• We define the notions of stratification and local stratification for higher-order logic
programs with negation. These two new notions generalize the corresponding ones
from classical (first-order) logic programming. Such notions have not yet been stud-
ied under the semantics of [31, 9, 8, 10]. We prove that the stable model, the well-
founded and the infinite-valued adaptations of Bezem’s technique all agree in the
case of stratified programs and give equivalent extensional models. This result
affirms the importance and the well-behaved nature of stratified programs, which
was, until now, only known for the first-order case.

1.7 Summary of the Dissertation
The rest of the dissertation is structured as follows:

In Chapter 2 we recall the syntax and semantics of positive propositional programs. Sim-
ilarly, in Chapter 3 we discuss the syntax and semantics of propositional programs with
negation. We focus on propositional programs (logic programs that do not contain vari-
ables) as these are simpler than first-order logic programs and suffice for the purposes
of this dissertation. However, all the semantic approaches presented in the first two
chapters also apply to, and were originally defined for, first-order logic programs.

Chapter 4 introduces higher-order logic programs and gives the formal details for the two
existing approaches to their semantics. Moreover, we study the relationships between
these approaches. First we prove their equivalence for definitional programs and then
we discuss their differences in the case that existentially quantified predicate variables
are allowed in our programs.

In Chapter 5, we consider higher-order programs with negation and give a framework
for extending Bezem’s semantics to such programs over two-valued, three-valued or
infinite-valued interpretations. We utilize this framework in conjunction with the stable
model semantics and the well-founded model semantics and show that both of these
approaches fail to produce extensional semantics for our higher-order programs. The
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extension under the infinite-valued semantics, on the other hand, is shown to achieve
this goal. Finally, we define the classes of stratified and locally stratified programs and
show that they have equivalent extensional models under all the extensions of Bezem’s
semantics.

Chapter 6 concludes the dissertation with a discussion of related work and possible future
research directions.
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2. POSITIVE PROPOSITIONAL LOGIC PROGRAMS
One of the advantages of the extensional approaches to the semantics of higher-order
logic programming, is that they are usually generalisations of existing semantic tech-
niques from traditional first-order logic programming. The purpose of this chapter and
the next is to give an overview of the specific techniques for positive and general pro-
grams respectively, which we will employ.

Even though we have often referred (and will continue to refer) to the semantics of first-
order programs, we will restrict our attention to propositional programs, for two reasons.
First, M. Bezem’s semantics [2, 3] and our extensions of it, as described intuitively in
Section 1.5, are based on the idea of seeing the ground instantiation of a higher-order
program as a propositional program. Then, the aforementioned techniques from the
first-order case are applied to this perceived propositional program (and not a first-order
programmore generally). The second reason is simplicity: the syntax of such programs is
almost elementary and the concepts involved in the definitions of the individual semantic
approaches are often simplified in the absence of variables.

2.1 Syntax

In this section, we define the syntax of positive propositional logic programs.

We begin by defining our source language, L.

Definition 1. The alphabet of L consists of:

• the set of propositional variables (denoted by lower case letters, such as p,q, . . .);

• the constants true and false;

• the inverse implication constant←;

• the comma.

Note that, by a common convention in logic programming, the comma is used in place of
the logical conjunction constant ∧.

Definition 2. A propositional clause (or simply clause) of L is a formula p← A1, . . . ,Am,
where m ≥ 0, p is a propositional variable and each Ai is either a propositional variable
or one of the constants true, false. The propositional variable p is called the head of the
clause and the conjunction A1, . . . ,Am is its body. A propositional program (or simply
program) P of L is a countable set of clauses.

The above definition is slightly different from the usual definition of a program in two
ways. First, it allows the constants true and false to appear in the body of a clause.
Second, it permits the program to comprise an infinite number of clauses. Both of these
assumptions are necessary for technical reasons that will be made clear in Chapters 4
and 5. Also, they are compatible with all of the semantic approaches presented in this
and the next chapter.
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2.2 Minimum Model Semantics
Ascribing meaning to propositional programs is fairly straightforward. We think of propo-
sitional variables as representing atomic statements that may be true or false and we
think of clauses as more complex statements, which tell us that if a set of atomic state-
ments (i.e., the propositional variables in the body of a clause) are simultaneously true,
then it is implied that a different statement (i.e., the head of the clause) is also true. This
way, clauses may also be true or false, depending on the values of the atomic statements
that they involve.

A (Herbrand) interpretation of the program is a stipulation of the truth values of the propo-
sitional variables that appear in the program. On the other hand, we regard the constants
true and false as having fixed truth values across all interpretations. These concepts are
described in the following two definitions:

Definition 3. The set of propositional variables that appear in a program P is called the
Herbrand base of P and denoted by BP.

Definition 4. A Herbrand interpretation (or simply interpretation) I of a program P is a
mapping from BP to the set {T, F}. Moreover, we define I(true) = T and I(false) = F .

The set {T, F} is the traditional two-valued truth domain and will be denoted by V2. In
the next chapter, we will define more truth domains with additional truth values.

Frequently, an interpretation I is identified with a subset of the Herbrand base; in particu-
lar, with the set {p | p ∈ BP and I(p) = T}. This means that we can write either I(p) = T
or p ∈ I to denote that the propositional variable p is assigned the value T in I. We will
make this identification throughout and use the two notations interchangeably.

We define an ordering on the set of interpretations based on the usual ordering of truth
values, i.e. F ≤ F , T ≤ T and F ≤ T .

Definition 5. Let P be a program. We define the relation≤ on the set of interpretations of
P as follows: if I and J are interpretations of P, then I ≤ J if, for all propositional variables
p ∈ BP, we have I(p) ≤ J(p).

As mentioned earlier, every clause of a program is intended to state that, if the propo-
sitional variables (and constants) in the body of the clause are all true with respect to
an interpretation of the program, then the propositional variable that is the head of the
clause is also true with respect to the same interpretation. Of course this may be so for
some interpretations, but not for others. This leads to the concept of (Herbrand) model:

Definition 6. An interpretation M of a propositional program P is a model of P, if for every
clause p← A1, . . . ,Am in P, it holds that M(p) ≥ min{M(A1), . . . ,M(Am)}.

As it is well established in the literature (for example [23]), every program has a unique
minimum (with respect to ≤) model. This model can be characterized as the intersec-
tion of all Herbrand models of the program or as the least fixed-point of the so called
immediate consequence operator of the program:

Definition 7. We define the immediate consequence operator, TP, for P, as follows:

TP(I)(p) =


T, if there exists a clause p← A1, . . . ,Am in P

such that I(Ai) = T for all i ∈ {1, . . . ,m}
F, otherwise.
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It is widely accepted that the minimum Herbrand model captures the intended meaning
of positive logic programs.
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3. GENERAL PROPOSITIONAL LOGIC PROGRAMS
The most obvious and intuitive way in which we can expect to extend the expressive
power of logic programs is the addition of negation, most often in the bodies of clauses.
Unfortunately, this seemingly natural extension disrupts the relationship between logic
programs and their underlying logics. As a result, the semantics of negation proves to be
a complex problem for almost every flavour of logic programming. This is made evident
from the fact that numerous different approaches have been proposed even for classical
first-order logic programs with negation (for example [14, 1, 17, 19, 18, 30]), some of
which are discussed in the following sections.

We continue to examine possibly infinite propositional programs, which we extend to
allow negated propositional variables in the bodies of clauses. As mentioned in the pre-
vious chapter, the semantic approaches presented here apply to such programs, even
though they were originally defined for finite first-order programs.

3.1 Syntax
In this section we extend the syntax of propositional programs so as to allow negation.
We introduce the negation operator ∼ which can be applied to propositional variables.

Definition 8. A positive literal is a propositional variable. A negative literal is an expres-
sion of the form ∼p, where p is a propositional variable. A literal is either a positive or
negative literal.

Our extended class of logic programs is defined by the fact that the body of a clause may
contain both positive and negative literals:

Definition 9. A general propositional clause of L is a formula p ← L1, . . . , Lm, where
m ≥ 0, p is a propositional variable and each Li is either a literal or one of the constants
true, false. A general propositional program P of L is a countable set of clauses.

A general propositional program (respectively, general propositional clause) may also be
called a propositional program or simply a program (respectively, propositional clause or
simply clause), when no confusion arises. On the other hand, when we need to refer
to programs (respectively, clauses) that do not contain negation, we will use the term
“positive (propositional) program” (respectively, “positive (propositional) clause”).

3.2 Stable Model Semantics
The stable model semantics [19] (see also [22]) is, along with program completion [14]
and the well-founded semantics [18], one of the standard approaches to the semantics
of general logic programs.

An interpretation under the stable model semantics is defined, as in the case of positive
programs, as amapping fromBP to the setV2 and identified with a subset ofBP. However,
we need to extend the above definition, so that an interpretation can also assign meaning
to negative literals.

Definition 10. Let I be a Herbrand interpretation of a given propositional program P. We
extend I, so that for every negative literal ∼p, with p ∈ BP:

I(∼p) =
{

T, if I(p) = F
F, if I(p) = T
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The concept of model is also defined in the same way as for positive programs.

The stable model semantics is defined through a derivative of a given logic program,
called the reduct of the program:

Definition 11. Let P be a propositional program and let I be an interpretation of P. The
reduct PI of P with respect to I, is the set of clauses without negation that can be obtained
from P by first dropping every clause of P that contains a negative literal ∼p in its body
such that p ∈ I, and then dropping all negative literals from the bodies of all the remaining
clauses. The set I is called a stable model of P if I coincides with the least model of PI.

It is shown in [19] that every stablemodel of a programP is indeed amodel of P. However,
it is not guaranteed that every program will have a unique stable model, as the following
example demonstrates:

Example 7. The program
q←
p← ∼p

does not have any stable models. On the other hand, the program:

q←
p← ∼q

has exactly one stable model, namely M = {q}. Finally, the program:

p← ∼q
q← ∼p

has two stable models, namely M1 = {p} and M2 = {q}.

3.3 Well-founded Semantics
The well-founded semantics [18] is another major approach to the semantics of general
programs. It differs from the stable model semantics in many ways; for example, under
the well-founded semantics the meaning of a program is captured by a unique distin-
guished model and such a model exists for every logic program. Also, the semantics has
a fixed-point characterisation which is an extension of the least fixed-point characterisa-
tion of the minimum model semantics for positive programs.

Perhaps the greatest difference between the stable model and the well-founded seman-
tics, though, is that the latter is three-valued. This means that it uses an additional truth
value, 0, which is stands for “unknown” and is assigned to propositional variables whose
truth value cannot be decided under the semantics. We denote the new, three-valued
truth domain {F, 0, T} by V3.

We define two partial orders on V3. The first is denoted by ≤ and is the extension of the
classical truth ordering. More specifically, ≤ is the partial order such that F ≤ F , 0 ≤ 0,
T ≤ T and F ≤ 0 ≤ T . The second is the information or Fitting ordering, denoted by ≼
and defined by F ≼ F , 0 ≼ 0, T ≼ T , 0 ≼ F and 0 ≼ T .

Three-valued interpretations are defined analogously to two-valued interpretations:

Definition 12. A three-valued Herbrand interpretation, or three-valued interpretation, or
partial interpretation I of a program P is a mapping from BP to V3. Moreover, we define
I(true) = T and I(false) = F .
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Definition 13. Let I be a three-valued interpretation of a given propositional program P.
We extend I, so that for every negative literal ∼p, with p ∈ BP:

I(∼p) =


T, if I(p) = F
F, if I(p) = T
0, if I(p) = 0

Obviously, the set of propositional variables that are true under a three-valued interpre-
tation does not suffice to fully represent the interpretation. Instead, we can denote a
three-valued interpretation I as the pair ⟨TI, FI⟩, where TI is the set of propositional vari-
ables that are assigned the value T and FI is the set of propositional variables that are
assigned the value F . The intersection of the sets TI and FI is of course empty, while their
union is not necessarily the Herbrand base BP of the program, hence the name “partial”
interpretation. In contrast, a two-valued interpretation is also called a “total” interpretation
and can be seen as a three-valued interpretation such that TI ∪ FI = BP.

In this section, when we refer to an interpretation, we will always mean a partial interpre-
tation, unless otherwise stated.

The concept of model is defined exactly as in the case of two-valued interpretations,
based on the truth ordering on V3:

Definition 14. An interpretation M of a propositional program P is a model of P, if for
every clause p← A1, . . . ,Am in P, it holds that M(p) ≥ min{M(A1), . . . ,M(Am)}.

Our presentation of the construction of the well-founded semantics relies on the method
of [28]. We first give the necessary definitions from [28].

Definition 15. Let P be a propositional program and let J be a partial interpretation of
P. The operator ΘJ(·) on the set of partial interpretations of P is defined as follows: for
every interpretation I and every propositional variable p of P,

ΘJ(I)(p) =



T, there exists a clause p← L1, . . . , Ln in P s.t. for all i ≤ n,

either J(Li) = T or Li is a positive literal and I(Li) = T ;

F, for all clauses p← L1, . . . , Ln in P there exists an i ≤ n, s.t.
either J(Li) = F or Li is a positive literal and I(Li) = F ;

0, otherwise.

Moreover we define the following sequence of interpretations:

Θ↑0
J = ⟨T0, F0⟩ = ⟨∅, BP⟩

Θ
↑(n+1)
J = ⟨Tn+1, Fn+1⟩ = ΘJ(Θ

↑n
J )

Θ↑ω
J = ⟨Tω, Fω⟩ = ⟨

∪
n<ω Tβ,

∩
n<ω Fβ⟩

It is shown in [28] that, for any interpretation J, the operator ΘJ has a unique least fixed-
point given by Θ↑ω

J .

Definition 16. Let P be a propositional program. For every countable ordinal α, we define
the interpretation Mα as follows:

M0 = ⟨T0, F0⟩ = ⟨∅, ∅⟩
Mα+1 = ⟨Tα+1, Fα+1⟩ = Θ↑ω

Mα
, for a successor ordinal α + 1

Mα = ⟨Tα, Fα⟩ = ⟨
∪

β<α Tβ,
∪

β<α Fβ⟩, for a limit ordinal α
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Again from [28], there exists the least countable ordinal λ, such that Mλ = Θ↑ω
Mλ

and
Mλ coincides with the well-founded model MP of the propositional program P (originally
defined in [18]).

Example 8. Cosnider again the following program from Example 7:

q←
p← ∼p

The well-founded model MP of this program is the partial interpretation ⟨{q}, {}⟩, i.e. the
interpretation such that MP(q) = T and MP(p) = 0.

3.4 Locally Stratified Programs and the Perfect model semantics

There exists a broad class of general programs, called locally stratified programs, which
have a clear, intuitive meaning. This is affirmed by the fact that, for locally stratified
programs, the major semantic approaches, such as the well-founded and stable model
semantics, always coincide. However, before the introduction of either the stable model
or the well-founded semantics, the meaning of locally stratified programs was first cap-
tured by the perfect model semantics [1, 17].

The following definition of the local stratification of possibly infinite propositional programs
is adapted to allow for the presence of the constants true and false.

Definition 17. A propositional program P is called locally stratified if and only if it is pos-
sible to decompose the Herbrand base BP of P into disjoint sets (called strata) S1, S2, . . . ,
Sα, . . ., α < γ, where γ is a countable ordinal, such that for every clause p← A1, . . . ,Am,
∼B1, . . . , ∼Bn in P, we have that for every i ≤ m, stratum(Ai) ≤ stratum(p) and for every
i ≤ n, stratum(Bi) < stratum(p), where stratum is a function such that stratum(C) = β, if
the propositional variable C ∈ BP belongs to Sβ and stratum(C) = 0, if C ̸∈ BP and is a
constant. Any decomposition of the described form is called a local stratification of P.

There exist a few alternative characterizations of the perfect model semantics (for ex-
ample [1, 17, 29]), the most popular one probably being the preferred models charac-
terisation from [29]. However, we choose to present here a fixed-point characterization
given in [28], whose constructive nature is the basis for the proof of a main result in
Section 5.3.1.

In [28], for any total interpretation J, the operator ΨJ is defined and shown to have a
unique least fixed-point given by Ψ↑ω

J of the next definition. This is then used to give an
iterated fixed-point characterization of the perfect model of a locally stratified program.

Definition 18. Let P be a propositional program and let J be a total interpretation of P.
The operator ΨJ : 2BP → 2BP is defined as follows: for every I ⊆ BP, ΨJ(I) = {p ∈
BP | there exists a clause p ← L1, . . . , Ln in P such that, for all i ≤ n, either J(Li) = T or
Li ∈ I}. Moreover we define the following sequence:

Ψ↑0
J = ∅

Ψ
↑(n+1)
J = ΨJ(Ψ

↑n
J )

Ψ↑ω
J =

∪
n<ω Ψ

↑n
J
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Even though the interpretations defined above are total or two-valued interpretations and
identified with subsets of the Herbrand base, we may use the partial interpretation nota-
tion and represent them as pairs. E.g., a set Ψ↑n

J of the above sequence may be repre-
sented as ⟨Ψ↑n

J , BP −Ψ↑n
J ⟩.

Given a local stratification S1, S2, . . . , Sα, . . ., α < γ, of a propositional program P, we
define the sets Bα =

∪
β<α Sβ for every countable ordinal α ≤ γ. Clearly, BP = Bγ.

Then the perfect model of P can be constructed [28] as the last interpretation Nγ in an
≼-increasing sequence of partial interpretations of P:

Definition 19. Let P be a propositional program and let S1, S2, . . . , Sα, . . . , α < γ, where
γ is a countable ordinal, be a local stratification of P. For every countable ordinal α ≤ γ,
we define the interpretation Nα as follows:

N0 = ⟨T0, F0⟩ = ⟨∅, ∅⟩
Nα+1 = ⟨Tα+1, Fα+1⟩ = ⟨Ψ↑ω

Nα
,Bα+1 −Ψ↑ω

Nα
⟩, for a successor ordinal α + 1

Nα = ⟨Tα, Fα⟩ = ⟨
∪

β<α Tβ,
∪

β<α Fβ⟩, for a limit ordinal α

Theorem 1 (Przymusinska, Przymusinski [28]). Let P be a propositional program. The
sequence N0, N1, . . . , Nα, . . . , Nγ is ≼-increasing. Moreover, Nγ is the unique perfect
model NP of P.

As implied earlier, both the stable model and the well-founded semantics agree with the
perfect model semantics, when restricted to locally stratified programs.

Theorem 2 (Przymusinska, Przymusinski [27]). Every locally stratified program P has a
unique stable model which coincides with the perfect model of P.

Theorem 3 (VanGelder, Ross, Schlipf [18]). The well-foundedmodel of a locally stratified
program P is two-valued and coincides with the perfect model of P.

3.5 Infinite-valued Semantics
The infinite-valued semantics [30] is a far more recent approach to the semantics of
general logic programs. The key idea of this approach is that, in order to give a logical
semantics to negation-as-failure and to distinguish it from ordinary negation, one needs
to extend the domain of truth values. For example, consider the program:

p←
r← ∼p
s← ∼q
t← ∼t

According to negation-as-failure, both p and s receive the value T . However, p seems
“truer” than s because there is a clause which says so, whereas s is true only because
we are never obliged to make q true. In a sense, s is true only by default. For this reason,
it was proposed in [30] to introduce a “default” truth value T1 just below the “real” true T0,
and (by symmetry) a weaker false value F1 just above (“not as false as”) the real false F0.
Then, negation-as-failure is a combination of ordinary negation with a weakening. Thus
∼F0 = T1 and ∼T0 = F1. Since negations can be iterated, the new truth domain has a
sequence . . . , T3, T2, T1 of weaker and weaker truth values below T0 but above a neutral
value 0; and a mirror image sequence F1, F2, F3, . . . above F0 and below 0. Since our
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propositional programs are possibly countably infinite, we need a Tα and a Fα for every
countable ordinal α. The intermediate truth value 0 is needed for certain atoms that have
a “pathological” negative dependence on themselves (such as t in the above program).
In conclusion, our truth domain V∞ is shaped as follows:

F0 < F1 < · · · < Fω < · · · < Fα < · · · < 0 < · · · < Tα < · · · < Tω < · · · < T1 < T0

and the notion of “Herbrand interpretation of a program” can be generalized:

Definition 20. An (infinite-valued) interpretation I of a propositional program P is a map-
ping from BP to the set V∞. Moreover, we define I(true) = T0 and I(false) = F0.

For example, an infinite-valued interpretation for the program in the beginning of this
section is I = {(p, T3), (q, F0), (r, 0), (s, F2), (t, T0)}. As we are going to see later in this
section, the interpretation that captures the meaning of the above program is J = {(p, T0),
(q, F0), (r, F1), (s, T1), (t, 0)}.

We will use ∅ to denote the infinite-valued interpretation that assigns the value F0 to all
propositional variables of a program. If v ∈ V∞ is a truth value, we will use I ∥ v to denote
the set of variables which are assigned the value v by I. In order to define the notion of
“model”, we need the following definitions:

Definition 21. Let I be an infinite-valued interpretation of a given propositional program
P. For every negative literal ∼p appearing in P we extend I as follows:

I(∼p) =


Tα+1, if I(p) = Fα

Fα+1, if I(p) = Tα

0, if I(p) = 0

Moreover, for every conjunction of literals L1, . . . , Ln appearing as the body of a clause in
P, we extend I by I(L1, . . . , Ln) = min{I(L1), . . . , I(Ln)}.

Definition 22. Let P be a propositional program and I an infinite-valued interpretation of
P. Then, I satisfies a clause p ← L1, . . . , Ln of P if I(p) ≥ I(L1, . . . , Ln). Moreover, I is a
model of P if I satisfies all clauses of P.

As it is demonstrated in [30], every program has a minimum infinite-valued model under
an ordering relation ⊑, which compares interpretations in a stage-by-stage manner. To
formally state this result, the following definitions are necessary:

Definition 23. The order of a truth value is defined as follows: order(Tα) = α, order(Fα) =
α and order(0) = +∞.

Definition 24. Let I and J be infinite-valued interpretations of a given propositional pro-
gram P and α be a countable ordinal. We write I =α J, if for all β ≤ α, I ∥ Tβ = J ∥ Tβ and
I ∥ Fβ = J ∥ Fβ. We write I ⊑α J, if for all β < α, I =β J and, moreover, I ∥ Tα ⊆ J ∥ Tα

and I ∥ Fα ⊇ J ∥ Fα. We write I <α J, if I ⊑α J but I =α J does not hold.

Definition 25. Let I and J be infinite-valued interpretations of a given propositional pro-
gram P. We write I < J, if there exists a countable ordinal α such that I <α J. We write
I ⊑ J if either I = J or I < J.
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It is easy to see [30] that ⊑ is a partial order, ⊑α is a preorder, and =α is an equivalence
relation. As in the case of positive programs, the minimum model of a program P coin-
cides with the least fixed-point of an operator TP. This operator is defined through the
notion of the “least upper bound” of a set of truth values.

Definition 26. Let S be a set with a partial order ≤ and let A ⊆ S. We say that u ∈ S is
an upper bound of A, if for every v ∈ A we have v ≤ u. Moreover, u is called the least
upper bound of A, if for every upper bound u′ of A we have u ≤ u′.

If the least upper bound of A exists then it is unique and we denote it by lub(A). In [30] it
is shown that every subset of V∞ has a least upper bound and the operator TP can then
be defined as below:

Definition 27. Let P be a propositional program and let I be an interpretation of P. The
immediate consequence operator TP of P is defined as follows:

TP(I)(p) = lub({I(L1, . . . , Ln) | p← L1, . . . , Ln ∈ P})

The least fixed-point MP of TP is constructed as follows. We start with ∅, namely the
interpretation that assigns to every propositional variable of P the value F0. We iterate
TP on ∅ until the set of variables having a F0 value and the set of variables having a T0

value, stabilize. Then we reset the values of all remaining variables to F1. The procedure
is repeated until the F1 and T1 values stabilize, and we reset the remaining variables to
F2, and so on. It is shown in [30] that there exists a countable ordinal δ for which this
process will not produce any new variables having Fδ or Tδ values. At this point we reset
all remaining variables to 0. The following definitions formalize this process.

Definition 28. Let P be a propositional program and let I be an infinite-valued interpreta-
tion of P. For each countable ordinal α, we define the infinite-valued interpretation T ω

P,α(I)
as follows:

T ω
P,α(I)(p) =


I(p), if order(I(p)) < α
Tα, if p ∈

∪
n<ω(T

n
P (I) ∥ Tα)

Fα, if p ∈
∩

n<ω(T
n
P (I) ∥ Fα)

Fα+1, otherwise

Definition 29. Let P be a propositional program. For each countable ordinal α, we define
Mα = T ω

P,α(Iα) where I0 = ∅, Iα = Mα−1 if α is a successor ordinal, and

Iα(p) =

{
Mβ(p), if order(Mβ(p)) = β for some β < α
Fα, otherwise

if α is a limit ordinal. TheM0,M1, . . . ,Mα, . . . are called the approximations to theminimum
model of P.

In [30] it is shown that the above sequence of approximations is well-defined. We will
make use of the following lemma from [30]:

Lemma 1. Let P be a propositional program and let α be a countable ordinal. For all
n < ω, T n

P (Iα) ⊑α Mα.

The following lemma from [30] states that there exists a certain countable ordinal, after
which new approximations do not introduce new truth values:
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Lemma 2. Let P be a propositional program. Then, there exists a countable ordinal δ,
called the depth of P, such that:

1. for all countable ordinals γ ≥ δ, Mγ ∥ Tγ = ∅ and Mγ ∥ Fγ = ∅;

2. for all β < δ, Mβ ∥ Tβ ̸= ∅ or Mβ ∥ Fβ ̸= ∅.

Given a propositional program P that has depth δ, we define the following infinite-valued
interpretation MP:

MP(p) =
{

Mδ(p), if order(Mδ(p)) < δ
0, otherwise

The following two theorems from [30], establish interesting properties of MP:

Theorem 4. The infinite-valued interpretationMP is a model of P. Moreover, it is the least
(with respect to ⊑) among all the infinite-valued models of P.

Theorem 5. The three-valued interpretation NP obtained by collapsing all true values of
MP to T and all false values to F , coincides with the well-founded model of P.

The next lemma states a fact already implied earlier, namely that new approximations do
not affect the sets of variables stabilized by the preceding ones.

Lemma 3. Let P be a propositional program and let α be a countable ordinal. For all
countable ordinals β > α, Mα =α Mβ. Moreover, Mα =α MP.
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4. POSITIVE HIGHER-ORDER LOGIC PROGRAMS
In this chapter we define the syntax and semantics of positive higher-order logic pro-
grams. We present the two extensional approaches to the semantics of such programs,
namely the domain-theoretic approach defined by W. W. Wadge in [31] and later ex-
tended and refined in [21, 9], on the one hand, and the more syntax-oriented approach
taken by Bezem in [2, 3], on the other. Then we proceed to investigate the relationships
between the two approaches and show that they coincide for the class of definitional
programs, originally defined in [31]. Moreover, we show that this does not hold for the
more general class of programs that we consider, i.e. programs with existentially quanti-
fied predicate variables in clause bodies. We identify the reasons behind this divergence
and propose an additional assumption, under which the approaches continue to coincide
even for programs with existential predicate variables.

4.1 Syntax
In this section we define the syntax of the higher-order language H. This language is
a strict superset of the language considered by Wadge in [31] and a strict subset of the
language of Bezem [3].

H is based on a simple type system with two base types: o, the boolean domain, and
ι, the domain of data objects. The composite types are partitioned into three classes:
functional (assigned to function symbols), predicate (assigned to predicate symbols) and
argument (assigned to parameters of predicates).

Definition 30. A type can either be functional, predicate, or argument, denoted by σ, π
and ρ respectively and defined as:

σ := ι | (ι→ σ)

π := o | (ρ→ π)

ρ := ι | π

We will use τ to denote an arbitrary type (either functional, predicate, or argument). As
usual, the binary operator→ is right-associative. A functional type that is different than ι
will often be written in the form ιn → ι, n ≥ 1. Moreover, it can be easily seen that every
predicate type π can be written in the form ρ1 → · · · → ρn → o, n ≥ 0 (for n = 0 we
assume that π = o). We proceed by defining the syntax of H:

Definition 31. The alphabet of H consists of the following:

• predicate variables of every predicate type π (denoted by capital letters such as
Q,R, S, . . .);

• individual variables of type ι (denoted by capital letters such as X,Y,Z, . . .);

• predicate constants of every predicate type π (denoted by lowercase letters such
as p,q, r, . . .);

• individual constants of type ι (denoted by lowercase letters such as a,b, c, . . .);

• function symbols of every functional type σ ̸= ι (denoted by lowercase letters such
as f,g,h, . . .);
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• the inverse implication constant←; the comma; the left and right parentheses; and
the equality constant ≈ for comparing terms of type ι.

Arbitrary variables will be usually denoted by V and its subscripted versions.

Definition 32. The set of terms of H is defined as follows:

• every predicate variable (respectively, predicate constant) of type π is a term of type
π;

• every individual variable (respectively, individual constant) of type ι is a term of type
ι;

• if f is an n-ary function symbol and E1, . . . ,En are terms of type ι then (f E1 · · ·En)
is a term of type ι;

• if E1 is a term of type ρ→ π and E2 a term of type ρ then (E1 E2) is a term of type π.

Terms of type o will also be referred to as atoms.

Definition 33. The set of expressions of H is defined as follows:

• A term of type ρ is an expression of type ρ;

• if E1 and E2 are terms of type ι, then (E1 ≈ E2) is an expression of type o.

We will omit parentheses when no confusion arises. To denote that an expression E
has type ρ we will often write E : ρ. We will write vars(E) to denote the set of all the
variables in E. Expressions (respectively, terms) that have no variables will be referred
to as ground expressions (respectively, ground terms).

Next, we define the set of H programs and its subset of definitional programs.

Definition 34. A clause ofH is a formula p V1 · · ·Vn ← E1, . . . ,Em, where p is a predicate
constant of type ρ1 → · · · → ρn → o, V1, . . . ,Vn are distinct variables of types ρ1, . . . , ρn
respectively and E1, . . . ,Em are expressions of type o. The term p V1 · · ·Vn is called the
head of the clause, the variables V1, . . . ,Vn are the formal parameters of the clause and
the conjunction E1, . . . ,Em is its body.

A definitional clause is a clause that additionally satisfies the following restriction: the only
predicate variables that can appear in the body of the clause are its formal parameters.

A program P of H is a finite set of clauses. A definitional program is a finite set of defini-
tional clauses.

Notice that for uniformity reasons, the above definition requires that all formal parameters
are distinct, even the type ι ones. This is not a restriction, because two occurrences of the
same individual variable in the head of a clause can be replaced by distinct variables,
which are then explicitly equated in the body of the clause using the constant ≈ (see
Example 9 that follows).

We will often refrain from referring to the languageH and we will usually talk with respect
to a given program P. For example, when we are considering a given program P and
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discuss an expression E, we will always mean an expression that can be created with
syntactic elements that appear specifically in P (and not more generally with elements
that appear in H).

The syntax of programs given in Definition 34 differs slightly from the Prolog-like syntax
that we have used in Chapter 1. However, one can easily verify that we can transform
every program from the former syntax to the latter.

Example 9. Consider the following program in Prolog-like syntax:

p(a).
q(X,X).
r(P,Q,f(X)):-P(X),Q(Y).

In our more formal notation, this can be written as:

p X ← (X ≈ a)
q X Y ← (X ≈ Y)
r P Q Z ← (Z ≈ f(X)),(P X),(Q Y)

Notice that the formal parameters of every clause are now distinct.

The ground instantiation of a program is described by the following definitions:

Definition 35. A substitution θ is a finite set of the form {V1/E1, . . . ,Vn/En} where the
Vi’s are different variables and each Ei is a term having the same type as Vi. We write
dom(θ) to denote the domain {V1, . . . ,Vn} of θ. If all the terms E1, . . . ,En are ground, θ
is called a ground substitution.

Definition 36. Let θ be a substitution and E be an expression. Then, Eθ is an expression
obtained from E as follows:

• Eθ = E if E is a predicate constant or individual constant;

• Vθ = θ(V) if V ∈ dom(θ); otherwise, Vθ = V;

• (f E1 · · ·En)θ = (f E1θ · · ·Enθ);

• (E1 E2)θ = (E1θ E2θ);

• (E1 ≈ E2)θ = (E1θ ≈ E2θ).

If θ is a ground substitution such that vars(E) ⊆ dom(θ), then the ground expression Eθ
is called a ground instance of E.

In the case of first-order logic programs, the Herbrand Universe comprises ground terms
of type ι. In the higher-order setting a Herbrand Universe is needed for each argument
type ρ.

Definition 37. For a program P, we define the Herbrand universe for every argument
type ρ, denoted by UP,ρ, to be the set of all ground terms of type ρ that can be formed
out of the individual constants, function symbols and predicate constants in the program.
Moreover, we define U+

P,o to be the set of all ground expressions of type o, that can be
formed out of the above symbols, i.e. the set U+

P,o = UP,o ∪ {(E1 ≈ E2) | E1,E2 ∈ UP,ι}.
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Definition 38. Let P be a program. A ground instance of a clause p V1 · · ·Vn ← E1, . . . ,Em

of P is a formula (p V1 · · ·Vn)θ ← E1θ, . . . ,Emθ, where θ is a ground substitution whose
domain is the set of all variables that appear in the clause, such that for every V ∈ dom(θ)
with V : ρ, it is θ(V) ∈ UP,ρ. The ground instantiation of a program P, denoted by Gr(P),
is the (possibly infinite) set that contains all the ground instances of the clauses of P.

4.2 Domain Theoretic Semantics
In this section we introduce the main concepts behind Wadge’s semantics of [31] as they
were extended and refined in [21]. The key idea behind this semantics is (intuitively) to
assign to program predicates monotonic relations.

Note that the original semantics of [31] was defined on the class of definitional programs.
However, it straightforwardly extends to apply to ourH programs, i.e., all the results men-
tioned in this section are easily shown to also hold for programs with existential predicate
variables. Actually, the language HOPES [9] that has been built based on Wadge’s se-
mantics, makes heavy use of programs that allow existential predicate variables in bodies
of clauses or in queries.

Given a program P of H, we define the semantics of types with respect to the Herbrand
universe UP,ι of P. More specifically, we define simultaneously and recursively two things:
the semantics JτKW 2 of a type τ and a corresponding partial order ≤W

τ on the elements
of JτKW . Given posets A and B, we write [A

m→ B] to denote the set of all monotonic
functions from A to B.

Definition 39. Let P be a program. Then,

• JιKW = UP,ι and ≤W
ι is the trivial partial order that relates every element to itself;

• Jιn → ιKW = Un
P,ι → UP,ι. A partial order for this case is not needed;

• JoKW = V2 and ≤W
o is the partial order ≤ on truth values;

• Jρ→ πKW = [JρKW m→ JπKW ] and ≤W
ρ→π is the partial order defined as follows: for all

f, g ∈ Jρ→ πKW , f ≤W
ρ→π g iff f(d) ≤W

π g(d) for all d ∈ JρKW .

We now proceed to define Herbrand interpretations and states.

Definition 40. Let P be a program. A Herbrand interpretation I of P consists of the
following assignments:

1. to each individual constant c that appears in P, of the element I(c) = c;

2. to each predicate constant p : π that appears in P, of an element I(p) ∈ JπKW ;

3. to each n-ary function symbol f that appears in P, of the element I(f) ∈ Jιn → ιKW
such that for all t1, . . . , tn ∈ UP,ι, I(f) t1 · · · tn = f t1 · · · tn.

2The superscript W , which annotates various symbols used in this section, stands for “Wadge”. It is used
to distinguish these symbols from the respective symbols (introduced in the next section) for analogous
concepts of Bezem’s semantics.
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Definition 41. A Herbrand state s of a program P is a function that assigns to each
argument variable V of type ρ, an element s(V) ∈ JρKW .

A (Herbrand) interpretation under Wadge’s semantics may be referred to as a “domain-
theoretic (Herbrand) interpretation”, when we need to distinguish it from other types of
higher-order interpretations that we will present in the following sections. On the other
hand, it may be referred to simply as a “(Herbrand) interpretation” when no confusion
arises, e.g. in the remainder of the present section. Similarly, a state of the above form
may be referred to as a “domain-theoretic (Herbrand) state” in the former situation, or
simply a “(Herbrand) state” in the latter.

In the following, s[V1/d1, . . . ,Vn/dn] is used to denote a state that is identical to s the only
difference being that the new state assigns to each Vi the corresponding value di.

Definition 42. Let P be a program, I be a Herbrand interpretation of P and s be a Her-
brand state. Then, the semantics of expressions is defined as follows:

1. JVKWs (I) = s(V) if V is a variable;

2. JcKWs (I) = I(c) if c is an individual constant;

3. JpKWs (I) = I(p) if p is a predicate constant;

4. J(f E1 · · ·En)KWs (I) = I(f) JE1KWs (I) · · · JEnKWs (I);

5. J(E1 E2)KWs (I) = JE1KWs (I) JE2KWs (I);

6. J(E1 ≈ E2)KWs (I) = T if JE1KWs (I) = JE2KWs (I) and F otherwise.

For ground expressions E we will often write JEKW (I) instead of JEKWs (I) since in this case
the meaning of E is independent of s.

It is straightforward to confirm that the above definition assigns to every expression an
element of the corresponding semantic domain, as stated in the following lemma:

Lemma 4. Let P be a program and let E : ρ be an expression. Also, let I be a Herbrand
interpretation and s be a Herbrand state. Then JEKWs (I) ∈ JρKW .

Definition 43. Let P be a program and M be a Herbrand interpretation of P. Then, M is
a Herbrand model of P iff for every clause p V1 · · ·Vn ← E1, . . . ,Em in P and for every
Herbrand state s, it holds Jp V1 · · ·VnKWs (M) ≥ min{JE1KWs (M), . . . , JEmKWs (M)}.

In the following we denote the set of Herbrand interpretations of a program P with IntP.
We define a partial order on IntP as follows: for all I, J ∈ IntP, I ≤W

IntP J iff for every predicate
constant p : π that appears in P, I(p) ≤W

π J(p). Similarly, we denote the set of Herbrand
states with SP and we define a partial order as follows: for all s1, s2 ∈ SP, s1 ≤W

SP
s2 iff

for all variables V : ρ, s1(V) ≤W
ρ s2(V). The following lemmata are straightforward to

establish:

Lemma 5. Let P be a program. Then, (IntP,≤W
IntP) is a complete lattice.

Lemma 6. Let P be a program and let E : ρ be an expression. Let I, J be Herbrand
interpretations and s, s′ be Herbrand states. Then,
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1. If I ≤W
IntP J then JEKWs (I) ≤W

ρ JEKWs (J).

2. If s ≤W
SP

s′ then JEKWs (I) ≤W
ρ JEKWs′ (I).

We can now define the immediate consequence operator for H programs, which gener-
alizes the corresponding operator for classical (first-order) programs [23].

Definition 44. Let P be a program. The mapping TP : IntP → IntP is called the immediate
consequence operator for P and is defined for every predicate constant p : ρ1 → · · · →
ρn → o and di ∈ JρiKW as

TP(I)(p) d1 · · · dn =


T, if there exists a clause p V1 · · ·Vn ← E1, . . . ,Em and

a Herbrand state s such that JEiKWs[V1/d1,...,Vn/dn]
(I) = T

for all i ∈ {1, . . . ,m}
F, otherwise.

It is not hard to see that TP is a monotonic function, and this leads to the following theo-
rem [31, 21]:

Theorem 6. Let P be a program. Then MP = lfp(TP) is the minimum, with respect to
≤W

IntP, Herbrand model of P.

4.3 Bezem’s Semantics
M. Bezem [2, 3] developed a semantics for higher-order logic programswhich generalizes
the familiar Herbrand-model semantics of classical (first-order) logic programs. Note that
the class of programs considered in [2, 3] (named hoapata programs) is a strict superset
of the class defined in Section 4.1. In particular, the head of a clause in a hoapata
program, may be an atom whose left-most predicate is a variable. However, we will
restrict attention to H programs.

We begin by specifying the semantic domains in which the expressions of each type τ
are assigned their meanings. The following definition is a slightly modified version of the
corresponding definition of Bezem [2, 3] and it implies that the expressions of predicate
types should be understood as representing functions. We use [S1 → S2] to denote the
set of (possibly partial) functions from a set S1 to a set S2. The possibility to have a
partial function arises due to a technicality which is explained in the remark just above
Definition 46.

Definition 45. A functional type structure S forH consists of two non-empty setsD andA
together with an assignment JτKB3 to each type τ ofH, so that the following are satisfied:

• JιKB = D;

• Jιn → ιKB = Dn → D;

• JoKB = A;

3The superscript B stands for “Bezem”.
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• Jρ→ πKB ⊆ [JρKB → JπKB].
Given a functional type structure S, any function val : JoKB → V2 will be called a (two-
valued) valuation function for S.

As in the previous section, we apply the usual practice in the study of the semantics
of logic programming languages and restrict attention to interpretations that have the
Herbrand universe of the program as their underlying universe. Following Bezem [2, 3],
we take D and A in Definition 45 to be equal to UP,ι and U+

P,o respectively. Then, for each
predicate type ρ → π, each element of UP,ρ→π can be perceived as a function mapping
elements of JρKB to elements of JπKB, through syntactic application mapping. That is,
E ∈ UP,ρ→π can be viewed as the function mapping each term E′ ∈ UP,ρ to the term
(EE′) ∈ UP,π. Similarly, every n-ary function symbol f appearing in P can be viewed as
the function mapping each element (E1, . . . ,En) ∈ Un

P,ι to the term (f E1 · · · En) ∈ UP,ι.

Remark: There is a small technicality here which we need to clarify. In the case where
ρ = o, E ∈ UP,o→π is a partial function because it maps elements of UP,o (and not of U+

P,o)
to elements of UP,π; this is due to the fact that our syntax does not allow an expression of
type o→ π to take as argument an expression of the form (E1 ≈ E2) (nor negated atoms
– see Chapter 5). In all other cases (i.e., when ρ ̸= o), E represents a total function.

We can now define the notion of (Herbrand) interpretation under Bezem’s semantics. We
may also refer to such an interpretation as a “Bezem-type (Herbrand) interpretation” or
simply as a “(Herbrand) interpretation”, when the type of interpretation is obvious from
context.

Definition 46. A Herbrand interpretation I of a program P consists of:

1. the functional type structure SP, such thatD = UP,ι,A = U+
P,o and Jρ→ πKB = UP,ρ→π

for every predicate type ρ→ π, called the Herbrand type structure of P;

2. the assignment to each individual constant c in P, of the element I(c) = c; to each
predicate constant p in P, of the element I(p) = p; to each function symbol f in P,
of the element I(f) = f;

3. a valuation function valI(·) for SP, assigning to each element of U+
P,o an element in

V2, while satisfying:

valI((E1 ≈ E2)) =

{
F, if E1 ̸= E2

T, if E1 = E2

.

for all E1,E2 ∈ UP,ι.

We call valI(·) the valuation function of I and omit the reference to SP, since the lat-
ter is common to all Herbrand interpretations of a program. In fact, individual Herbrand
interpretations are only set apart by their valuation functions. As in Section 4.2, a (Her-
brand) state is again defined as a function that assigns to each argument variable of the
program, an element in the appropriate semantic domain.

Definition 47. A Herbrand state s of a program P is a function that assigns to each
variable V of type ρ an element of UP,ρ.
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Given a Herbrand interpretation I and state s , we can define the semantics of expres-
sions with respect to I and s .

Definition 48. Let P be a program. Also, let I be a Herbrand interpretation and s a
Herbrand state of P. Then the semantics of expressions with respect to I and s is defined
as follows:

• JcKBs (I) = I(c) = c, for every individual constant c;

• JpKBs (I) = I(p) = p, for every predicate constant p;

• JVKBs (I) = s(V), for every variable V;

• J(f E1 · · · En)KBs (I) = (I(f) JE1KBs (I) · · · JEnKBs (I)) = (f JE1KBs (I) · · · JEnKBs (I)), for
every n-ary function symbol f;

• J(E1 E2)KBs (I) = (JE1KBs (I) JE2KBs (I));
• J(E1 ≈ E2)KBs (I) = (JE1KBs (I) ≈ JE2KBs (I)).

It is easy to see that the semantic function J·KB is well defined, in the sense that, for every
Herbrand state s and every expression E of every argument type ρ, we have JEKBs (I) ∈JρKB. Note that this makes JEKBs (I) a ground expression of the language. Also, note that
if E is a ground expression then JEKBs (I) = E; therefore, if E is moreover of type o, we can
write valI(E) instead of valI(JEKBs (I)). Stretching this abuse of notation a little further, we
can extend a valuation function to assign truth values to ground conjunctions of literals;
this allows us to define the concept of Herbrand models for our higher-order programs in
the same way as in classical logic programming.

Definition 49. Let P be a program and I be a Herbrand interpretation of P. We define
valI(E1, . . . ,En) = min{valI(E1), . . . , valI(En)} for all E1, . . . ,En ∈ U+

P,o. Moreover, we
say I is a model of P if valI(JAKBs (I)) ≥ valI(JE1KBs (I), . . . , JEmKBs (I)) holds for every
clause A← E1, . . . ,Em and every Herbrand state s of P.

Bezem’s semantics is based on the observation that, given a positive higher-order pro-
gram P, we can use the minimum model of its ground instantiation as a (two-valued)
valuation function defining a Herbrand interpretationMP for the initial program itself.

Remark: One small concern when using the minimum model of the ground instanti-
ation as a valuation function, is the way in which expressions of the form (E1 ≈ E2)
should be handled. Recall that Definition 46 requires that such atoms are given fixed
truth values by all Herbrand interpretations, so they cannot be treated as propositional
variables. Instead, it makes more sense that they are treated as logical constants, by the
following convention: for all E1,E2 ∈ UP,ι, (E1 ≈ E2) is equivalent to the constant true if
E1 = E2, otherwise it is equivalent to the constant false. This way, every interpretation of
the ground program will assign the truth value T in the first case and the value F in the
second, conforming to the restrictions imposed by Definition 46. This technicality is the
reason behind allowing the logical constants to appear in clause bodies in propositional
programs.

Definition 50. Let P be a program and let Gr(P) be the ground instantiation of P. Also,
let MGr(P) be the minimum model of Gr(P). ThenMP is the Herbrand interpretation of P
such that for every A ∈ UP,o, valMP(A) = MGr(P)(A).
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A main contribution of [3] is demonstrating that, for H (or more generally, hoapata) pro-
grams,MP is a model of the higher-order program. Moreover, Bezem showed that the
above model is also monotonic [4], extensional [2, 3] and the minimum model of P [2, 3].
These three properties are discussed in Section 4.3.1 that follows.

4.3.1 Properties ofMP

The notion of minimum model is defined (in the usual way) with respect to ≤B
IP, i.e. an

ordering on the set of interpretations IP of a given program P based on the standard truth
ordering ≤.

Definition 51. If I and J are two Herbrand interpretations of a higher-order program P,
we say I ≤B

IP J if, for all atoms A in UP,o we have valI(A) ≤ valJ (A).

The minimum model property ofMP, stated in the following theorem, is a special case
of a more general result that is given in [3] (Lemma 2, Case 3, page 209).

Theorem 7 (Minimum model property). MP is the minimum, with respect to ≤B
IP, Her-

brand model of P.

The extensionality property is formally defined in [2, 3] through relations∼=val,τ over the set
of expressions of a given type τ and under a given valuation function val. These relations
intuitively express extensional equality of type τ , in the sense discussed in Section 1.5.
For our purposes, only extensional equality of argument types will be needed, for which
we give a slightly modified definition below:

Definition 52. Let S be a functional type structure and val be a valuation function for S.
For every argument type ρ we define the relations ∼=val,ρ on JρKB as follows: Let d, d′ ∈JρKB; then d ∼=val,ρ d

′ if and only if

1. ρ = ι and d = d′, or

2. ρ = o and val(d) = val(d′), or

3. ρ = ρ′ → π and d e ∼=val,π d′ e′ for all e, e′ ∈ Jρ′KB, such that e ∼=val,ρ′ e
′ and d e, d′ e′

are both defined.

One can easily verify that, for all d, d′ ∈ Jρ1 → · · · → ρn → oKB, e1, e′1 ∈ Jρ1KB, …, en, e′n ∈JρnKB, if d ∼=val,ρ1→···→ρn→o d
′, e1 ∼=val,ρ1 e

′
1, …, en ∼=val,ρn e′n and d e1 · · · en, d′ e′1 · · · e′n are

both defined, then val(d e1 · · · en) = val(d′ e′1 · · · e′n).

Generally, it is not guaranteed that such relations will be equivalence relations; rather they
are partial equivalences (they are shown by Bezem [2] to be symmetric and transitive).
Whether they are moreover reflexive, depends on the specific valuation function. The
above discussion leads to the notion of extensional interpretation:

Definition 53. Let P be a program and let I be a Herbrand interpretation of P with valua-
tion function valI . We say I is extensional if for all argument types ρ the relations ∼=valI ,ρ

are reflexive, i.e. for all E ∈ JρKB, it holds that E ∼=valI ,ρ E.
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In [3] it is shown that for a program P of H (actually, of the broader class of hoapata
programs),MP is extensional in the sense of the above definition. Then, this property
is used in order to collapse MP to an interpretation which is extensional in the usual
set-theoretic sense (this construction goes beyond our scope and will not be discussed
here).

Theorem 8 (Extensionality property). Let P be a program of the language H. ThenMP
is extensional.

Finally, we conclude this section with the monotonicity property of MP, defined and
proven in [4].

Definition 54. Let S be a functional type structure and val be a valuation function for S.
For every argument type ρ we define the relations ≤B

val,ρ on JρKB as follows: Let d, d′ ∈JρKB; then d ≤B
val,ρ d

′ if and only if

1. ρ = ι and d = d′, or

2. ρ = o and val(d) ≤ val(d′), or

3. ρ = ρ′ → π and d e ≤B
val,π d′ e for all e ∈ Jρ′KB, such that d e, d′ e are both defined.

Definition 55. Let P be a program, let I be a Herbrand interpretation of P with valuation
function valI . We say I is monotonic if for all predicate types ρ → π, ED ≤B

valI ,π
ED′

holds for all E ∈ Jρ→ πKB and all D,D′ ∈ JρKB such that D ≤B
valI ,ρ

D′.

Theorem 9 (Monotonicity property). Let P be a program of the language H. ThenMP is
monotonic.

The fact thatMP enjoys the extensionality property ensures its suitability for providing
extensional semantics for higher-order logic programs. Moreover, the minimum model
property and the monotonicity property will play an important role for the developments
of the next section.

4.4 Relationship between the two semantics
In this section we investigate the connections and the differences between the two se-
mantic approaches presented in the previous sections.

Recall that the modelMP, which captures the intended meaning of a program P in the
view of Bezem’s semantics, by definition assigns to all ground atoms the same truth
values as MGr(P), i.e. the minimum model of the ground instantiation of the program. It
is therefore justified that we restrict our attention to MGr(P), instead ofMP, in our attempt
to compare Bezem’s semantics and the domain theoretic semantics of Section 4.2. As
a result, we will not need to consider Bezem-type interpretations. In this section (and its
Subsections 4.4.1 and 4.4.2), whenwe talk about “an interpretation (respectively, state) of
program P” we will always mean “an interpretation (respectively, state) under the domain
theoretic semantics”; similarly, any reference to “an interpretation of Gr(P)”, will always
mean “an interpretation of the form of Definition 4”.

To help us transcend the differences between the two semantic approaches when com-
paring them, we introduce two key notions, namely that of the ground restriction of a
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domain-theoretic interpretation and its complementary notion of the semantic extension
of MGr(P).

But first we present the following Substitution Lemma, which will be useful in the proofs
of later results.

Lemma 7 (Substitution Lemma). Let P be a program and I be an interpretation of P. Also
let E be an expression and θ be a ground substitution with vars(E) ⊆ dom(θ). If s is a
Herbrand state such that, for allV ∈ vars(E), s(V) = Jθ(V)KW (I), then JEKWs (I) = JEθKW (I).

Proof. By a structural induction on E.

For the basis case, if E = p or E = c then the statement reduces to an identity and if
E = V then it holds by assumption.

For the induction step, we first examine the case that E = (f E1 · · · En); then JEKWs (I) =
I(f) JE1KWs (I) · · · JEnKWs (I) and JEθKW (I) = I(f) JE1θKW (I) · · · JEnθKW (I). By the induction
hypothesis, JE1KWs (I) = JE1θKW (I), . . . , JEnKWs (I) = JEnθKW (I), thus we have JEKWs (I) =JEθKW (I).

Now consider the case that E = (E1 E2). We have JEKWs (I) = JE1KWs (I) JE2KWs (I) andJEθKW (I) = JE1θKW (I) JE2θKW (I). Again, applying the induction hypothesis, we conclude
that JEKWs (I) = JEθKW (I).

Finally, if E = (E1 ≈ E2) we have that JEKWs (I) = T iff JE1KWs (I) = JE2KWs (I), which, by the
induction hypothesis, holds iff JE1θKW (I) = JE2θKW (I). Moreover, we have JEθKW (I) = T
iff JE1θKW (I) = JE2θKW (I), therefore we conclude that JEKWs (I) = T iff JEθKW (I) = T .

Given a Herbrand interpretation I of a program of H, it is straightforward to devise a
corresponding interpretation of the ground instantiation of the program, by restricting I to
only assigning truth values to ground atoms. As expected, such a restriction of a model
of the program produces a model of its ground instantiation. This idea is formalized in
the following definition and theorem.

Definition 56. Let P be a program, I be a Herbrand interpretation of P and Gr(P) be the
ground instantiation of P. We define the ground restriction of I, which we denote by I|Gr(P),
to be an interpretation of Gr(P), such that, for every A ∈ UP,o, I|Gr(P)(A) = JAKW (I).

Theorem 10. Let P be a program and Gr(P) be its ground instantiation. Also let M be a
Herbrand model of P and M|Gr(P) be the ground restriction of M. Then M|Gr(P) is a model
of Gr(P).

Proof. By definition, each clause in Gr(P) is of the form pE1 · · · En ← B1θ, . . . ,Bkθ, i.e.
the ground instance of a clause pV1 · · · Vn ← B1, . . . ,Bk in P with respect to a ground
substitution θ, such that dom(θ) includes V1, . . . ,Vn and all other variables appearing in
the body of the clause and θ(Vi) = Ei, for all i ∈ {1, . . . , n}. Let s be a Herbrand state such
that s(V) = Jθ(V)KW (M), for all V ∈ dom(θ). By the Substitution Lemma (Lemma 7) and
the definition of M|Gr(P), JpV1 · · · VnKWs (M) = JpE1 · · · EnKW (M) = M|Gr(P)(pE1 · · · En).
Similarly, for each atom Bi in the body of the clause, we have JBiKWs (M) = JBiθKW (M) =
M|Gr(P)(Biθ) by the same argument. For each Bi that is of the form (E1 ≈ E2), we haveJBiKWs (M) = JBiθKW (M) = J(E1θ ≈ E2θ)KW (M) by the Substitution Lemma and J(E1θ ≈
E2θ)KW (M) = T iff E1θ = E2θ; because M|Gr(P)(Biθ) = M|Gr(P)((E1θ ≈ E2θ)) = T , iff E1θ =
E2θ, it follows again that JBiKWs (M) = M|Gr(P)(Biθ). Consequently, if M|Gr(P)(Biθ) = T for
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all i ∈ {1, . . . , k}, we also have that JBiKWs (M) = T, 1 ≤ i ≤ k. As M is a model of P,
this implies that JpV1 · · · VnKWs (M) = M|Gr(P)(pE1 · · · En) = T and therefore M|Gr(P) is a
model of Gr(P).

Corollary 1. Let P be a program and Gr(P) be its ground instantiation. Then, MGr(P) ≤
MP|Gr(P).

Proof. By Theorem 10,MP|Gr(P) is a model of Gr(P). The corollary follows because MGr(P)
is the minimum model of Gr(P).

Corollary 1, which is actually an alternative form of the minimum model property ofMP
(see Theorem 7), describes the one direction of the relation between the ≤W

IntP-minimum
Herbrand model of a program and the≤-minimummodel of its ground instantiation. In or-
der to prove the equivalence of the two semantics under consideration, we also introduce
the concept of semantic extensions.

Definition 57. Let P be a program and MGr(P) be the ≤-minimum model of Gr(P). Let
E ∈ UP,ρ be a ground expression of an argument type ρ and d be an element of JρKW . We
will say that d is a semantic extension of E and write d�ρ E if one of the following cases
applies:

• ρ = ι and d = E;

• ρ = o and d = MGr(P)(E);

• ρ = ρ′ → π and for all d′ ∈ Jρ′KW and E′ ∈ UP,ρ′, such that d′ �ρ′ E′, it holds that
d d′ �π EE′.

Also, we say that a Herbrand interpretation I of P is a semantic extension of MGr(P) and
write I� MGr(P), if for each predicate p of type π appearing in P it holds that I(p)�π p.

Compared to that of the ground restriction presented earlier, the notion of extending a
syntactic object to the realm of semantic elements, is more complicated. In fact, even
the existence of a semantic extension is not immediately obvious. The next lemma guar-
antees that not only can such an extension be constructed for any expression of the
language, but it also has an interesting property of mirroring the ordering of semantic
objects with respect to ≤W

τ in a corresponding ordering of the expressions with respect
to ≤B

MGr(P),τ
.

Lemma 8. Let P be a program, Gr(P) be its ground instantiation and MGr(P) be the ≤-
minimum model of Gr(P). For every argument type ρ and every ground term E ∈ UP,ρ:

1. There exists e ∈ JρKW such that e�ρ E.

2. For all e, e′ ∈ JρKW and all E′ ∈ UP,ρ, if e�ρE, e′�ρE′ and e ≤W
ρ e′, then E ≤B

MGr(P),ρ
E′.

Proof. We prove both statements simultaneously, performing an induction on the struc-
ture of ρ. Specifically, the first statement is proven by showing that in each case we
can construct a function e of type ρ, which is monotonic with respect to ≤W

ρ and satisfies
e�ρ E.
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In the basis case, the construction of e for types ι and o is trivial. Also, if ρ = ι, then
both �ρ and ≤W

ρ reduce to equality, so we have E = E′, which in this case is equivalent
to E ≤B

MGr(P),ρ
E′. On the other hand, for ρ = o, �ρ identifies with equality, while ≤W

ρ

and ≤B
MGr(P),ρ

identify with ≤, so we have that MGr(P)(E) = e ≤ e′ = MGr(P)(E′) implies
E ≤B

MGr(P),ρ
E′.

For a more complex type ρ = ρ1 → · · · → ρn → o, n > 0, we can easily construct e, as
follows:

e e1 · · · en =


F, if there exist d1, . . . , dn and ground terms D1, . . . ,Dn such that,

for all i, ei ≤W
ρi

di, di �ρi Di and MGr(P)(ED1 · · · Dn) = F

T, otherwise.

To see that e is monotonic, consider e1, . . . , en, e′1, . . . , e′n, such that e′1 ≤W
ρ1

e1, . . . , e
′
n ≤W

ρn en
and observe that e e1 · · · en = F implies e e′1 · · · e′n = F , due to the transitivity of ≤W

ρi
. We

will now show that e�ρE, i.e. for all e1, . . . , en and E1, . . . ,En such that e1�ρ1E1, . . . , en�ρn

En, it holds e e1 · · · en = MGr(P)(EE1 · · · En). This is trivial if MGr(P)(E E1 · · · En) = F ,
since ei ≤W

ρi
ei. Consider the case that MGr(P)(E E1 · · · En) = T . For the sake of contra-

diction, assume e e1 · · · en = F . Then, by the construction of e, there must exist d1, . . . , dn
and D1, . . . ,Dn such that, for all i, ei ≤W

ρi
di, di �ρi Di and MGr(P)(ED1 · · · Dn) = F . By

the induction hypothesis, we have that Ei ≤B
MGr(P),ρi

Di, for all i ∈ {1, . . . , n}. This, by
the monotonicity property of MGr(P) (Theorem 9), yields that MGr(P)(EE1 · · · En) = T ≤
MGr(P)(E D1 · · · Dn) = F , which is obviously a contradiction. Therefore it has to be that
e e1 · · · en = T .

Finally, in order to prove the second statement and conclude the induction step, we
need to show that for all terms D1 ∈ UP,ρ1 , . . . ,Dn ∈ UP,ρn, it holds E D1 · · · Dn ≤B

MGr(P),o

E′ D1 · · · Dn. By the induction hypothesis, there exist d1, . . . , dn, such that d1 �ρ1 D1, . . .,
dn �ρn Dn. Because e �ρ E and E D1 · · · Dn is of type o, by definition we have that
e d1 · · · dn = MGr(P)(E D1 · · · Dn). Similarly, we have e′ d1 · · · dn = MGr(P)(E′ D1 · · · Dn).
Moreover, by e ≤W

ρ e′ we have that e d1 · · · dn ≤W
o e′ d1 · · · dn. This yields the desired

result, since ≤W
o identifies with ≤B

MGr(P),o
.

The semantic extension constructed as part of the proof of the above lemma, is one
of possibly many that an expression may possess. In fact, even for simple programs
such as the one of the following example, an expression may often have more than one
semantic extensions.

Example 10. Assume that q : ι→ o and r : (ι→ o)→ o. Then the program:

q a←
r Q←

has the following ground instantiation:

q a←
r q←

The only semantic extension of q is the relation {a}, however r has two semantic exten-
sions, namely the relations {{a}} and {{}, {a}}.
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The following variation of the Substitution Lemma states that if the building elements
of an expression are assigned meanings that are semantic extensions of their syntactic
counterparts, then the meaning of the expression is itself a semantic extension of the
expression.

Lemma 9. Let P be a program, Gr(P) be its ground instantiation and I be a Herbrand
interpretation of P. Also, let E be an expression of some argument type ρ and let s be a
Herbrand state and θ be a ground substitution, with domain vars(E). If, for all predicates p
of type π appearing in E, I(p)�πp and, for all variables V of type ρ′ in vars(E), s(V)�ρ′θ(V),
then JEKWs (I)�ρ Eθ.

Proof. The proof is by induction on the structure of E. The basis cases E = p and E = V
hold by assumption and E = c : ι is trivial. For the first case of the induction step, let
E = (f E1 · · · En), where E1, . . . ,En are of type ι. By the induction hypothesis, we have
that JE1KWs (I) �ι E1θ, . . . , JEnKWs (I) �ι Enθ. As �ι is defined as equality, we have thatJEKWs (I) = I(f) JE1KWs (I) · · · JEnKWs (I) = f E1θ · · · Enθ = Eθ and therefore JEKWs (I) �ι Eθ.
For the second case, let E = (E1 E2), where E1 is of type ρ1 = ρ2 → π and E2 is of type ρ2;
then, JEKWs (I) = JE1KWs (I) JE2KWs (I). By the induction hypothesis, JE1KWs (I)�ρ2→π E1θ andJE2KWs (I)�ρ2E2θ, thus, by definition, JEKWs (I) = JE1KWs (I) JE2KWs (I)�πE1θ E2θ = (E1 E2)θ =
Eθ. Finally, we have the case that E = (E1 ≈ E2), where E1 and E2 are both of type ι. The
induction hypothesis yields JE1KWs (I) �ι E1θ and JE2KWs (I) �ι E2θ or, since �ι is defined
as equality, JE1KWs (I) = E1θ and JE2KWs (I) = E2θ. Then JE1KWs (I) = JE2KWs (I) iff E1θ = E2θ
and, equivalently, JEKWs (I) = T iff Eθ = T , which implies JEKWs (I)�o Eθ.

The above lemma verifies an anticipated property of the semantic extensions of MGr(P),
made explicit in the next corollary.

Corollary 2. Let P be a program, Gr(P) be its ground instantiation and I be a Herbrand
interpretation of P. Let MGr(P) be the ≤-minimum model of Gr(P). If I � MGr(P) then
I|Gr(P) = MGr(P).

Proof. We need to show that, for any ground atom A ∈ UP,o , I|Gr(P)(A) = MGr(P)(A),
which, by definition, is equivalent to JAKW (I) = MGr(P)(A). The latter is immediate from
the above lemma, as I� MGr(P) implies that I(p)�π p for every predicate p of every type
π and, A being ground, we can take θ to be empty.

Maybe a little less apparent is the fact that the converse is not necessarily true; that is,
an interpretation whose ground restriction coincides with MGr(P), is not always a semantic
extension of MGr(P). This is demonstrated in the following example.

Example 11. Consider again the program of Example 10 and suppose we augment it by
adding one more clause, as follows:

q a←
r Q←
p R←

where p : ((ι → o) → o) → o. Then the ground instantiation of the program takes the
following form:

q a←
r q←
p r←
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The semantic extensions of q and r are as in Example 10. Let e be the relation {{}, {a}}
and I be an interpretation of the higher-order program such that I(q) = {a}, I(r) = e and
I(p) = {e}. It is easy to check that I is a legitimate interpretation, i.e. it assigns monotonic
relations to both r and p, and that I|Gr(P) = MGr(P). Because MGr(P)(pr) is true, every
semantic extension of p should be true of all semantic extensions of r, however this is
not the case for I(p). Indeed, even though the relation d = {{a}} is a semantic extension
of r, I(p) d evaluates to false. Therefore I is not a semantic extension of MGr(P).

4.4.1 Equivalence of the two Semantics for Definitional Programs
In this section we demonstrate that the domain theoretic semantics of [31, 9] and Bezem’s
semantics of [2, 3] are equivalent for definitional programs.

The next theorem establishes the equivalence of the two semantics under consideration,
in stating that their respective minimum models assign the same meaning to all ground
atoms.

Theorem 11. Let P be a definitional program and let Gr(P) be its ground instantiation.
Let MP be the ≤W

IntP-minimum Herbrand model of P and let MGr(P) be the minimum model
of Gr(P). Then, for every A ∈ UP,o it holds JAKW (MP) = MGr(P)(A).

Proof. We will construct an interpretation N for P and prove some key properties for
this interpretation. Then we will utilize these properties to prove the desired result. The
definition of N is as follows:

For every p : π where π is of the form ρ1 → · · · → ρn → o and all d1 ∈ Jρ1KW , . . . , dn ∈JρnKW ,

N(p) d1 · · · dn =


F, if there exist e1, . . . , en and ground terms E1, . . . ,En such that,

for all i, di ≤W
ρi

ei, ei �ρi Ei and MGr(P)(pE1 · · · En) = F

T, otherwise

Observe that the above construction is the same as the one used in the proof of Lemma
8 (in the special case that the expression E of Lemma 8 consists of a single predicate
constant p). Recall that this function was shown to be monotonic with respect to ≤W

π and
a semantic extension of the corresponding expression; in this case p. Therefore N is a
valid Herbrand interpretation of P and, moreover, N� MGr(P).

Next we prove thatN is a model of P. Let pV1 · · · Vn ← B1, . . . ,Bk be a clause in P and let
{V1, . . . ,Vn,X1, . . . ,Xm}, with Vi : ρi, for all i ∈ {1, . . . , n}, and Xi : ι, for all i ∈ {1, . . . ,m},
be the set of variables appearing in the clause. Then, it suffices to show that, for any
tuple (d1, . . . , dn) of arguments and any Herbrand state s such that s(Vi) = di for all i ∈
{1, . . . , n}, N(p) d1 · · · dn = F implies that, for at least one j ∈ {1, . . . , k}, JBjKWs (N) = F .
Again, by the definition of N, we see that if N(p) d1 · · · dn = F , then there exist e1, . . . , en
and ground terms E1, . . . ,En such that MGr(P)(pE1 · · · En) = F , d1 ≤W

ρ1
e1, . . . , dn ≤W

ρn en
and e1 �ρ1 E1, . . . , en �ρn En. Let θ be a ground substitution such that θ(Vi) = Ei for
all i ∈ {1, . . . , n} and, for all i ∈ {1, . . . ,m}, θ(Xi) = s(Xi); then there exists a ground
instance pE1 · · · En ← B1θ, . . . ,Bkθ of the above clause in Gr(P). As MGr(P) is a model
of the ground program, MGr(P)(pE1 · · · En) = F implies that there exists at least one
j ∈ {1, . . . , k} such that MGr(P)(Bjθ) = F . We are going to show that the latter implies
that JBjKWs (N) = F , which proves that N is a model of P. Indeed, let s′ be a Herbrand
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state such that s′(Vi) = ei �ρi θ(Vi) = Ei for all i ∈ {1, . . . , n} and s′(Xi) = θ(Xi) = s(Xi)
for all i ∈ {1, . . . ,m}. As we have shown earlier, N(p′) �π′ p′ for any predicate p′ : π′,
thus by Lemma 9 we get JBjKWs′ (N) �o Bjθ. Since Bj is of type o, the latter reduces toJBjKWs′ (N) = MGr(P)(Bjθ) = F . Also, because di ≤W

ρi
ei, i.e. s ≤W

SP s′, by the second part
of Lemma 6 we get JBjKWs (N) ≤W

o JBjKWs′ (N), which makes JBjKWs (N) = F .

Now we can proceed to prove that, for all A ∈ UP,o, JAKW (MP) = MGr(P)(A). Let A be of
the form p E1 · · · En, where p : ρ1 → · · · → ρn → o ∈ P and let d1 = JE1KW (MP), . . . , dn =JEnKW (MP). As we have shown, N is a Herbrand model of P, while MP is the minimum,
with respect to ≤W

IntP, of all Herbrand models of P, therefore we have that MP ≤W
IntP N.

By definition, this gives us that MP(p) d1 · · · dn ≤W
o N(p) d1 · · · dn (1) and, by the first

part of Lemma 6, that d1 ≤W
ρ1

JE1KW (N), . . . , dn ≤W
ρn JEnKW (N) (2). Moreover, for all

predicates p′ : π′ in P, we have N(p′) �π′ p′ and thus, by Lemma 9, taking s and θ to
be empty, we get JEiKW (N) �ρi Ei, 1 ≤ i ≤ n. In conjunction with (2), the latter implies
that if MGr(P)(p E1 · · · En) = F then N(p) d1 · · · dn = F , or, in other words, that
N(p) d1 · · · dn ≤ MGr(P)(p E1 · · · En). Because of (1) and the fact that ≤W

o identifies
with ≤, this makes it that MP(p) d1 · · · dn ≤ MGr(P)(p E1 · · · En) (3). On the other
hand, by Corollary 1, MGr(P)(p E1 · · · En) ≤ MP|Gr(P)(p E1 · · · En). By the definition
of MP|Gr(P) and the meaning of application, the latter becomes MGr(P)(p E1 · · · En) ≤
MP|Gr(P)(p E1 · · · En) = Jp E1 · · · EnKW (MP) = MP(p) JE1KW (MP) · · · JEnKW (MP) =
MP(p) d1 · · · dn. The last relation and (3) can only be true simultaneously, if all the above
relations hold as equalities, in particular if MGr(P)(p E1 · · · En) = Jp E1 · · · EnKW (MP).

The importance of the above theorem lies in the fact that it demonstrates that for a sig-
nificant class of higher-order programs, two different semantic approaches coincide. We
feel that this result strengthens the importance of definitional programs, and it also sug-
gests that the two alternative semantic approaches are useful tools for the further study
of higher-order logic programs.

4.4.2 Programs with Existential Predicate Variables
We have considered the two existing extensional approaches to the semantics of higher-
order logic programming and demonstrated that they coincide for the class of definitional
programs. In this section we show that, if we allow higher-order predicate variables
that are not formal parameters of a clause, to appear in its body, then the two semantic
approaches do not continue to coincide.

Example 12. Consider the following (non definitional) H program:

p a← Q a

Under Bezem’s semantics, the above program intuitively states that p is true of a if there
exists a predicate that is defined in the program that is true of a. Following Bezem’s
semantics, we initially take the ground instantiation of the program, namely:

p a← p a

and then compute the least model of the above program which assigns to the atom p a
the value F .

Under the domain theoretic semantics, the atom p a has the value T in the minimumHer-
brand model of the initial program. This is because in this semantics, our initial program
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reads (intuitively speaking) as follows: “p a is true if there exists a relation that is true of
a”; actually, there exists one such relation, namely the set {a}. This discrepancy between
the domain theoretic semantics and Bezem’s semantics is due to the fact that the former
is based on sets and not on the syntactic entities that appear in the program.

The discussion in the above example leads to the following lemma:

Lemma 10. For H programs, Bezem’s semantics and the domain theoretic semantics
do not in general coincide.

This implies that Theorem 11 fails for non definitional programs: in Example 12 notice
that Jp aKW (MP) ̸= MGr(P)(p a). It comes as a natural question whether there exist any
nontrivial sufficient conditions under which the two semantics coincide even for non defi-
nitional programs. An examination of Example 12 reveals that the discrepancy between
the two semantics is due to the fact that there does not exist in the program any predicate
which is true of the term “a”. More generally, atoms in the bodies of clauses that start
with existentially quantified predicate variables (such as Q in Example 12) are (intuitively
speaking) possible to lead to failure during execution of a program under Bezem’s se-
mantics; this is due to the fact that there does not always exist a predicate defined in the
program that can take the place of such existential variables and succeed.

The above discussion suggests that a possible idea which would bring closer the domain
theoretic and Bezem’s semantics for H programs, would be to insist that our programs
contain a top predicate for every possible type.4 The addition of all such predicates
in the program guarantees that any body atoms that start with existentially quantified
variables, will never fail during execution. As it turns out, under this assumption the two
semantics coincide again (see Theorem 12 below). However, the arguably strong quality
of this assumption highlights an important difference rather than signifies a convergence
between Bezem’s and the domain theoretic semantics in the case of H programs.

Given any type π = ρ1 → · · · → ρn → o, a predicate topπ can be defined by a fact:

topπ V1 · · · Vn ←

where V1, . . . , Vn are distinct variables of types ρ1, . . . , ρn respectively. We then have the
following theorem:

Theorem 12. Let P be a program ofH that contains a topπ predicate for every predicate
type π. Let Gr(P) be the ground instantiation of P, let MP be the ⊑IP-minimum Herbrand
model of P and let MGr(P) be the ≤-minimum model of Gr(P). Then, for every A ∈ UP,o it
holds JAKW (MP) = MGr(P)(A).

Proof. In exactly the same way as in the proof of Theorem 11, we can construct an
interpretation N for P and we can demonstrate that N�MGr(P). It suffices to show that N
is a model of P. The proof of this fact differs from the one given for Theorem 11 due to the
possible existence of predicate variables in the bodies of clauses that do not necessarily
appear in the heads of the clauses.

4Such top relations are also used in λProlog in order to answer queries with uninstantiated predicate
variables (see the relevant discussion in [26][page 50]).
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Let pV1 · · · Vn ← B1, . . . ,Bk be a clause in P and let {V1, . . . ,Vn,V′
1, . . . ,V′

m} be the
set of variables of the clause, where Vi : ρi, for all i ∈ {1, . . . , n}, are the formal pa-
rameters of the clause, and V′

i : ρ
′
i, for all i ∈ {1, . . . ,m}, are the variables that appear

in the body of the clause but not in the head. Then, it suffices to show that, for any
tuple (d1, . . . , dn) of arguments and any Herbrand state s such that s(Vi) = di for all
i ∈ {1, . . . , n}, N(p) d1 · · · dn = F implies that, for at least one j ∈ {1, . . . , k}, JBjKWs (N) =
F . By the definition of N, we see that if N(p) d1 · · · dn = F , there exist e1, . . . , en and
ground terms E1, . . . ,En such that MGr(P)(pE1 · · · En) = F , d1 ⊑ρ1 e1, . . . , dn ⊑ρn en
and e1 �ρ1 E1, . . . , en �ρn En. Let θ be a ground substitution such that θ(Vi) = Ei for all
i ∈ {1, . . . , n}; moreover, for all i ∈ {1, . . . ,m}, if V′

i : ι then θ(V′
i) = s(V′

i) and if V′
i : ρ

′
i ̸= ι

then θ(V′
i) = topρ′i

. Then there exists a ground instance pE1 · · · En ← B1θ, . . . ,Bkθ of
the above clause in Gr(P). As MGr(P) is a model of Gr(P), MGr(P)(pE1 · · · En) = F im-
plies that there exists at least one j ∈ {1, . . . , k} such that MGr(P)(Bjθ) = F . We are
going to show that the latter implies that JBjKWs (N) = F , which proves that N is a model
of P. Indeed, let s′ be a Herbrand state such that s′(Vi) = ei for all i ∈ {1, . . . , n} and
s′(V′

i) = Jθ(V′
i)KW (N) for all i ∈ {1, . . . ,m}. Then, for all i ∈ {1, . . . , n}, s′(Vi)�ρiθ(Vi) = Ei

and, for all i ∈ {1, . . . ,m} such that V′
i is of type ι, s′(V′

i) = θ(V′
i) = s(V′

i), which
is equivalent to s′(V′

i) �ι θ(V′
i). Also, since N � MGr(P), N(p′) �π′ p′ for any predicate

p′ : π′ and this also implies that, for all i ∈ {1, . . . ,m} such that V′
i is of some predi-

cate type π, s′(V′
i) = N(topπ) �π θ(V′

i) = topπ. By these remarks, Lemma 9 can be
applied and yields that JBjKWs′ (N) �o Bjθ. Since Bj is of type o, the latter reduces toJBjKWs′ (N) = MGr(P)(Bjθ) = F . Also, because di ⊑ρi ei, i.e. s ⊑SP s′, by the second part of
Lemma 6 we get JBjKWs (N) ⊑o JBjKWs′ (N), which makes JBjKWs (N) = F .

Since N is a model of P, it is now straightforward to establish, in exactly the same way
as in the proof of Theorem 11, that for all A ∈ UP,o, JAKW (MP) = MGr(P)(A).

The above result suggests that we can retrieve an equivalence between Bezem’s se-
mantics and the domain theoretic semantics for all programs of the language H, in the
special case where topπ predicates exist for all types. We should however stress that
this assumption would be of no consequence if the semantic approaches under consid-
eration were not monotonic, as for example in the case that our source language allowed
negation-as-failure.
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5. GENERAL HIGHER-ORDER LOGIC PROGRAMS
In this chapter we consider the extension of our higher-order languageH so as to include
negation and we define the concepts of stratification and local stratification in the higher-
order case. Moreover, we study different approaches to the semantics of such extended
programs, which we will call general higher-order logic programs. Focusing on Bezem’s
semantics, we discuss different choices of valuation functions and whether each one
enjoys the extensionality property. We conclude that only the infinite-valued approach is
suitable for defining an extensional semantics for general higher-order programs when
used in conjunction with Bezem’s technique.

5.1 Syntax
We extend the syntax of the higher-order languageH by adding the negation constant ∼
to the alphabet and augmenting the set of expressions of the language H with negated
atoms:

Definition 58. If E is a term of H of type o then (∼E) is an expression of H of type o.
Moreover, if θ is a substitution, then (∼E)θ = (∼Eθ).

Expressions of type o will collectively be called literals. In particular, expressions of the
form (∼E) will be called negative literals. Literals that do not contain negation, i.e. atoms
and expressions of the form (E1 ≈ E2), will be called positive literals. A ground literal
(respectively, ground positive literal or ground negative literal) is a literal (respectively,
positive literal or negative literal) that contains no variables.

The next definition describes the form of the program clauses of our extended language.

Definition 59. A general clause of H is a formula p V1 · · ·Vn ← L1, . . . , Lm, where p is a
predicate constant of type ρ1 → · · · → ρn → o, V1, . . . ,Vn are distinct variables of types
ρ1, . . . , ρn respectively and L1, . . . , Lm are literals. A general program P ofH is a finite set
of general clauses.

From now on, when we refer to a program (respectively, clause) ofHwewill always mean
a general program (respectively, general clause) of the form of the above definition. So
that no confusion arises, programs (respectively, clauses) that do not contain negation,
as they were defined in Section 4.1, will be called positive programs (respectively, positive
clauses).

Recall that for a positive program P, U+
P,o, is defined as the set of all ground expressions of

type o, that can be formed out of the individual constants, function symbols and predicate
constants in the program. In the case of general programs, this definition also includes
ground negative literals.

Definition 60. For a general program P, we define U+
P,o to be the set UP,o ∪ {(E1 ≈ E2) |

E1,E2 ∈ UP,ι} ∪ {(∼E) | E ∈ UP,o}.

Example 13. The program below defines the subset relation over unary predicates:

subset S1 S2 ← ∼(nonsubset S1 S2)
nonsubset S1 S2 ← (S1 X), ∼(S2 X)

Given unary predicates p and q, subset p q is true iff p is a subset of q.
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Example 14. For amore “real-life” higher-order logic programwith negation, assume that
we have a unary predicate movie M and a binary predicate ranking M R which returns
the ranking R of a given movie M. Consider also the following first-order predicate that
defines a preference over movies based on their ranking:

prefer M1 M2 ← movie M1, movie M2, ranking M1 R1, ranking M2 R2, R1>R2

The following higher-order predicate winnow (see for example [13]) can be used to select
all the “best” tuples T out of a given relation R based on a preference relation P:

winnow P R T ← R T, ∼(bypassed P R T)
bypassed P R T ← R T1, P T1 T

Intuitively, winnow returns all the tuples T of the relation R such that there does not exist
any tuple T1 in the relation R that is better from T with respect to the preference relation
P. For example, if we ask the query ?- winnow prefer movie T. we expect as answers
all those movies that have the highest possible ranking. Notice that since winnow is a
higher-order predicate, it can be invoked with different arguments; for example, it can be
used to select out of a book relation, all those books that have the lowest possible price,
or out of a flight relation all those flights that go to London, and so on.

5.2 Extended Bezem’s Semantics
In Chapter 4, we exhibited how Bezem’s semantics makes use of the traditional least
fixed-point semantics of positive first-order logic programs, in order to provide an exten-
sional semantics for higher-order positive programs. In this section, we attempt to do the
same for general higher-order programs, by combining Bezem’s technique with each of
the three approaches to the semantics of first-order programs with negation, presented
in Chapter 3. As we are going to see, this is not such a straightforward task: only the
infinite-valued semantics proves to be a viable option, as both the well-founded and the
stable model semantics fail to preserve extensionality. However, the class of stratified
programs is found to be a remarkable exception, since the well-founded model of every
stratified higher-order program is extensional and, moreover, two-valued. Note that the
domain-theoretic technique of Section 4.2 has also been applied to general programs
under both the infinite-valued semantics [8] and, more recently, the well-founded seman-
tics [10].

The key idea behind extending Bezem’s semantics in order to apply to higher-order logic
programs with negation, is straightforward to state: given such a program, we first take its
ground instantiation. The resulting program is a (possibly infinite) propositional program
with negation and any of the standard models that might capture the meaning of such
programs, could be used as a valuation function defining a Herbrand interpretation for the
initial program itself. Then we proceed to examine whether the resulting interpretation is
an extensional model of the program.

In Section 4.3 we defined a two-valued valuation function as a function of type JoKB → V2.
Because each of the approaches that we will consider is based on a different set of truth
values, we need to respectively consider valuation functions with different domains.

Definition 61. Let S be a functional type structure and V be a domain of truth values.
Any function val : JoKB → V will be called a valuation function for S over V. Moreover, val
is called:
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• two-valued, if V = V2 = {F, T};

• three-valued, if V = V3 = {F, 0, T};

• infinite-valued, if V = V∞.

Similarly, we can extend the notion of Herbrand interpretation, by considering interpre-
tations with different types of valuation functions. As in the case of positive programs,
all the interpretations we consider are built upon the Herbrand type structure, for whichJoKB = U+

P,o. Again, any E ∈ UP,o→π is a partial function, because it does not map ex-
pressions of the form (E1 ≈ E2) nor of the form (∼E), while any E ∈ UP,ρ→π where ρ ̸= o
represents a total function.

We will appropriately restrict the valuation functions of two-valued, three-valued and
infinite-valued interpretations so that they conform to the way that negation is interpreted
under the respective semantic approaches; in a way, we ensure that our interpretations
are “consistent”. Therefore, a Herbrand interpretation I for a general program P is called
two-valued, if the valuation function valI(·) of I is two-valued and satisfies the following:

1. for all E1,E2 ∈ UP,ι, valI((E1 ≈ E2)) =

{
F, if E1 ̸= E2

T, if E1 = E2

and

2. for all E ∈ UP,o, valI((∼E)) =

{
F, if val(E) = T

T, if val(E) = F
.

On the other hand, I is called three-valued, if valI(·) is a three-valued valuation function
which satisfies all of the above, and, for all E ∈ UP,o, if val(E) = 0 then valI((∼E)) = 0.
Finally, I is called infinite-valued, if valI(·) is infinite-valued and satisfies:

1. for all E1,E2 ∈ UP,ι, valI((E1 ≈ E2)) =

{
F0, if E1 ̸= E2

T0, if E1 = E2

and

2. for all E ∈ UP,o, valI((∼E)) =


Tα+1, if val(E) = Fα

Fα+1, if val(E) = Tα

0, if val(E) = 0

.

It is straightforward to extend the semantic function J·KB so as to define the semantics of
expressions of the form (∼E).

Definition 62. Let P be a program and let E be a term of type o. Also, let I be a Herbrand
interpretation and s a Herbrand state of P. We define J(∼E)KBs (I) = (∼JEKBs (I)).
Given that a truth ordering ≤ is defined on every one of the truth domains we consider,
i.e. the two-valued, three-valued and infinite-valued domain, Definition 49 of a higher-
order model can be applied to interpretations of general programs with two-valued, three-
valued or infinite-valued valuation functions.

The same holds for Definition 51 of the ordering of interpretations. For simplicity, we write
≤ (instead of variations of ≤B

IP) for all the orderings on all sets of interpretations that we
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consider (i.e., two-valued, three-valued and infinite-valued ones). The following theorem
generalises Bezem’s minimum model result (see Theorem 7). Again, for all E1,E2 ∈ UP,ι,
(E1 ≈ E2) is equivalent to the constant true if E1 = E2, otherwise it is equivalent to the
constant false.

Theorem13. LetP be a program and letGr(P) be its ground instantiation. Also, letM be a
two-valued (respectively, three-valued or infinite valued) interpretation ofGr(P) and letM
be the two-valued (respectively, three-valued or infinite valued) Herbrand interpretation
of P, such that valM(A) = M(A) for every A ∈ UP,o. Then,M is a Herbrand model of P if
and only if M is a model of Gr(P). Moreover,M is minimal with respect to ≤ if and only
if M is minimal.

Proof. Let M andM be two-valued interpretations of P and Gr(P) respectively.

Step 1 M is a model of Gr(P)⇒M is a Herbrand model of P: For every Herbrand state
s of P there exists a ground substitution θ such that θ(V) = s(V), and therefore
s(V) = Jθ(V)KBs ′(M), for all states s ′ and variables V in P. Also, for every clause
A ← L1, . . . , Lm in P there exists a respective ground instance Aθ ← L1θ, . . . , Lmθ
in Gr(P). As M is a model of Gr(P), M(Aθ) ≥ min{M(L1θ), . . . ,M(Lmθ)}. By
assumption, valM(Aθ) = M(Aθ) and valM(Liθ) = M(Liθ) for all i ≤ m. More-
over, it is easy to see (by a trivial induction on the structure of the expression)
that Aθ = JAKBs (M), which implies that valM(Aθ) = valM(JAKBs (M)). Similarly,
valM(Liθ) = valM(JLiKBs (M)), for all i ≤ m. Then it follows immediately that
valM(JAKBs (M)) ≥ min{valM(JL1KBs (M)), . . . , valM(JLmKBs (M))} which implies that
M is a model of P.

Step 2 M is a Herbrand model of P⇒ M is a model of Gr(P): Every clause in Gr(P) is a
ground instance of a clause A← L1, . . . , Lm in P and is therefore of the form Aθ ←
L1θ, . . . , Lmθ for some ground substitution θ. Consider a Herbrand state s, such that
s(V) = θ(V) for every variable V in P. BecauseM is a model of P, we have that
valM(JAKBs (M)) ≥ min{valM(JL1KBs (M)), . . . , valM(JLmKBs (M))}. Again, it is easy
to see that Aθ = JAKBs (M) and therefore valM(Aθ) = valM(JAKBs (M)). Similarly,
valM(Liθ) = valM(JLiKBs (M)) for all i ≤ m. Additionally, valM(Aθ) = M(Aθ) and
valM(Liθ) = M(Liθ) for all i ≤ m, so M(Aθ) ≥ min{M(L1θ), . . . ,M(Lmθ)}, which
implies that M is a model of Gr(P).

Step 3 M is minimal ⇒ M is minimal: Assume there exists a model N of P, distinct
fromM, such that N ≤ M. Then we can construct an interpretation N for Gr(P)
such that for every ground atom A, N(A) = valN (A). It is obvious that N ≤ M,
since N(A) = valN (A) ≤ valM(A) = M(A). Also, N is distinct from M, since N(B) =
valN (B) ̸= valM(B) = M(B) for at least one ground atom B. As we showed in Step
2, the fact that N is a model of P implies that N is a model of Gr(P), which is of
course a contradiction, since M is a minimal model of Gr(P). Therefore,M must
be a minimal model of P.

Step 4 M is minimal ⇒ M is minimal: By the reverse of the argument used in Step 3:
Assume there exists a model N of Gr(P), distinct fromM, such that N ≤ M. Then we
can construct an interpretation N for P such that for every ground atom A, N(A) =
valN (A). It is obvious that N ≤M, since valN (A) = N(A) ≤ M(A) = valM(A) Also,
N is distinct fromM, since their valuation functions are distinct. As we showed in
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Step 1, the fact that N is a model of Gr(P) implies that N is a model of P, which is
of course a contradiction, sinceM is a minimal model of P. Therefore, M must be
a minimal model of Gr(P).

For three-valued and infinite-valued interpretations, the proof is identical.

However, the ordering of infinite-valued interpretations based on the truth ordering on
V∞ is of no consequence for our developments. Instead, it will be more useful to extend
the more relevant ⊑ ordering of first-order infinite-valued interpretations. We adopt the
notation I ∥ v from Section 3.5, to signify the set of atoms which are assigned a certain
truth value v ∈ V∞ by an infinite-valued Herbrand interpretation I; that is, I ∥ v = {A |
A ∈ UP,o and valI(A) = v}. Then the relations ⊑α, <α, =α, ⊑ and < on infinite-valued
Herbrand interpretations of a higher-order program can be defined in exactly the same
manner as in Section 3.5.

Eventually, the following counterpart of the previous theorem is obtained:

Theorem 14. Let P be a program and let Gr(P) be its ground instantiation. Also, letM be
an infinite-valued interpretation of Gr(P) and letM be the infinite-valued Herbrand inter-
pretation of P, such that valM(A) = M(A) for every A ∈ UP,o. Then,M is the minimum,
with respect to ⊑, model of P if and only if M is the minimum, with respect to ⊑, model
of Gr(P).

Proof. By Theorem 13, we already have that M is a model of Gr(P) iffM is a model of
P. It remains to show that M is minimum iffM is minimum.

Step 1 M is minimum⇒M is minimum: Assume there exists a model N of the higher-
order program P, distinct fromM, which does not satisfyM < N . Then we can
construct an interpretation N for Gr(P) such that for every ground atom A, N(A) =
valN (A). It is obvious that M ̸< N, since N(A) = valN (A) and valM(A) = M(A) for
every ground atom A imply that N ∥ v = N ∥ v and M ∥ v =M ∥ v for every truth
value v ∈ V∞. Also, N is distinct from M, since N(B) = valN (B) ̸= valM(B) = M(B)
for at least one ground atom B. By Theorem 13, the fact that N is a model of P
implies that N is a model of Gr(P), which is of course a contradiction, since M is the
minimum model of Gr(P) with respect to ⊑. Therefore,M must be the minimum
model of P.

Step 2 M is minimum ⇒ M is minimum: By the reverse of the argument used in Step
1: Assume there exists a model N of Gr(P), distinct from M, which does not satisfy
M < N. Then we can construct an interpretationN for P such that for every ground
atom A, N(A) = valN (A). It is obvious thatM ̸< N , since valN (A) = N(A) and
M(A) = valM(A) Also, N is distinct from M, since their valuation functions are
distinct. By Theorem 13, the fact that N is a model of Gr(P) implies that N is a
model of P, which is of course a contradiction, sinceM is a minimal model of P.
Therefore, M must be a minimal model of Gr(P).
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5.2.1 Stable Model Extension
In this section we consider the extension of Bezem’s technique under the stable model
semantics. We demonstrate that this extension does not lead to an extensional seman-
tics for the programs of our source language H, by discussing examples of programs
whose stable models are not extensional.

The stable model semantics, in its original form introduced in [19], is applied on the
ground instantiation of a given first-order logic program with negation, which is a possibly
infinite propositional program. In this respect, the stable models of the ground instan-
tiation of a given higher-order program (which is again a possibly infinite propositional
program), can obviously be used as valuation functions for the program. Recall that
stable models are always two-valued.

Definition 63. Let P be a program and let Gr(P) be the ground instantiation of P. Also,
let M be a stable model of Gr(P) and letM be the two-valued Herbrand interpretation of
P, such that valM(A) = M(A) for every A ∈ UP,o. ThenM is called a stable model of P.

Clearly, by Theorem 13,M is a two-valued minimal model of P.

To demonstrate the non-extensionality of the stable models approach in the case of
higher-order programs, it suffices to find a program that produces non-extensional stable
models. The following very simple example does exactly this.

Example 15. Consider the higher-order program:

r Q← ∼(s Q)
s Q← ∼(r Q)
q a←
p a←

where the predicate variable Q of the first and second clause is of type ι→ o. We at first
take the ground instantiation of the above program:

r p← ∼(s p)
r q← ∼(s q)
s p← ∼(r p)
s q← ∼(r q)
q a←
p a←

Consider now the interpretation M = {(p a), (q a), (s p), (r q)}. One can easily check
that M is a model of the ground instantiation of the program. However, the respective
higher-order model is not extensional: since p and q are extensionally equal, the atoms
(s q) and (r p) should also belong to M in order to ensure extensionality. It remains to
show that M is also a stable model. Consider the reduct of the above program based on
M:

r q←
s p←
q a←
p a←

Obviously, the least model of the reduct is the interpretation M, and therefore the inter-
pretation of the initial program, that has M as its valuation function, is a stable model of
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that program. In other words, we have found a program with a non-extensional stable
model.

Continuing the discussion on the above example, one can easily verify that the above pro-
gram also has two extensional stable models, namely the Herbrand interpretations with
valuation functions M1 = {(p a), (q a), (s p), (s q)} and M2 = {(p a), (q a), (r p),
(r q)}. This creates the hope that we could somehow adapt the standard stable model
construction procedure in order to produce only extensional stable models. The following
example makes this hope vanish.

Example 16. Consider the program:

r Q← ∼(s Q), ∼(r p)
s Q← ∼(r Q), ∼(s q)
q a←
p a←

where, in the first two clauses, Q is of type ι→ o. The ground instantiation of the program
is the following:

r p← ∼(s p), ∼(r p)
r q← ∼(s q), ∼(r p)
s p← ∼(r p), ∼(s q)
s q← ∼(r q), ∼(s q)
q a←
p a←

This program has the non-extensional stable model with valuation function M = {(p a),
(q a), (s p), (r q)}. However, it has no extensional stable models: there are four ex-
tensional interpretations that are potential candidates, namely the interpretations with val-
uation functions M1 = {(p a), (q a)}, M2 = {(p a), (q a), (r p), (r q)}, M3 = {(p a),
(q a), (s p), (s q)}, and M4 = {(p a), (q a), (s p), (s q), (r p), (r q)}; one can
easily verify that none of these interpretations is a stable model of the ground instantiation
of the program. The conclusion is that there exist general higher-order logic programs
which have only non-extensional stable models.

The above examples seem to suggest that the extensional approach of [2, 3] is incom-
patible with the stable model semantics.

5.2.2 Well-founded Extension
In this section we demonstrate that utilizing the well-founded model [18] of their ground
instantiation as the valuation function, also fails to provide extensional models for our
higher-order programs.

Definition 64. Let P be a program and let Gr(P) be the ground instantiation of P. Also,
let MWF

Gr(P) be the well-founded model of Gr(P). We defineMWF
P to be the three-valued

Herbrand interpretation of P such that valMWF
P

(A) = MWF
Gr(P)(A) for every A ∈ UP,o. We call

MWF
P the well-founded model of P.

By Theorem 13,MWF
P is a three-valued minimal model of P. However, as the following

example proves, it is not always extensional.
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Example 17. Consider the higher-order program P:

s Q ← Q (s Q)
p R ← R
q R ← ∼(w R)
w R ← ∼R

where the predicate variable Q is of type o → o and the predicate variable R is of type o.
Before stating formally the non-extensionality result, certain explanations at an intuitive
level are in order. Consider first the predicate p of type o → o. One can view p as rep-
resenting the identity relation on truth values, i.e., as the relation {(v, v) | v ∈ {F, 0, T}}.
It is not hard to see that the predicate q of type o→ o, represents exactly the same rela-
tion. However, the definition of q involves two applications of negation, while p is defined
directly (without the use of negation).

Consider now the predicate s of type (o→ o)→ o which can take as a parameter either
p or q. When s takes p as a parameter, we get the following two clauses (by substituting
p for Q and (s p) for R in the above program):

s p ← p (s p)
p (s p) ← (s p)

A recursive definition of this form assigns to (s p), under the well-founded semantics,
the value F . Consider on the other hand the case where s takes q as a parameter. Then,
by doing analogous substitutions, we get the following three clauses:

s q ← q (s q)
q (s q) ← ∼(w (s q))
w (s q) ← ∼(s q)

Under the well-founded semantics, (s q) is assigned the value 0. In other words, despite
the fact that p and q are extensionally equal (see also below), (s p) and (s q) have
different truth values. In conclusion, the adaptation of the well-founded semantics under
Bezem’s technique does not lead to an extensional model in all cases.

Of course, the above discussion is based on intuitive arguments, but it is not hard to
formalize it. The main difficulty lies in establishing that p and q are extensionally equal
because the above program has an infinite ground instantiation Gr(P) (see the proof
of Lemma 11 that follows). The following lemma suggests that the well-founded model
MWF

P of our example program P is not extensional.

Lemma 11. The well-founded modelMWF
P of the program of Example 17 is not exten-

sional.

Proof. Recall that the predicate variable Q is of type o → o and the predicate variable R
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is of type o. The ground instantiation of the program is infinite, as so:

s p ← p (s p)
s q ← q (s q)
s w ← w (s w)
p (s p) ← (s p)
p (s q) ← (s q)
p (s w) ← (s w)
q (s p) ← ∼(w (s p))
w (s p) ← ∼(s p)
q (s q) ← ∼(w (s q))
w (s q) ← ∼(s q)
q (s w) ← ∼(w (s w))
w (s w) ← ∼(s w)
. . .

The well-founded model MWF
Gr(P) of the above (infinite) propositional program is the valua-

tion function ofMWF
P . It has already been argued in the discussion of Example 17, that

MWF
Gr(P)(s p) ̸= MWF

Gr(P)(s q) and this should be obvious to the reader who is familiar with
the well-founded model semantics; however, for reasons of completeness, we present
a formal argument in the second part of this proof. We also claimed that this is despite
the fact that p ∼=MWF

Gr(P),o→o q, which we will immediately proceed to prove. Of course, by
Definitions 52 and 53, the facts that MWF

Gr(P)(s p) ̸= MWF
Gr(P)(s q) and p ∼=MWF

Gr(P),o→o q, render
MWF

P not extensional.

First, we show that p ∼=MWF
Gr(P),o→o q, i.e. that for all A,A′ ∈ UP,o such that A ∼=MWF

Gr(P),o
A′,

p A ∼=MWF
Gr(P),o

q A′ holds. By definition MWF
Gr(P) is a fixed-point of the operator ΘMWF

Gr(P)
(·),

therefore for any ground atom B we have that MWF
Gr(P)(B) equals to T , if there exists a

clause B ← L1, . . . , Ln in Gr(P), such that MWF
Gr(P)(Li) = T for all i ≤ n; it equals to F

if for every clause B ← L1, . . . , Ln in Gr(P), we have that MWF
Gr(P)(Li) = F for at least

one i ≤ n; and it equals to 0 otherwise. Observe that there exists only one clause in
Gr(P) such that p A is the head of the clause, in particular it is the ground instance
p A ← A of the clause p R ← R of P. This suggests that MWF

Gr(P)(p A) = MWF
Gr(P)(A) (1).

Similarly, the ground instance q A′ ← ∼(w A′) of the clause q R ← ∼(w R) is the only
clause in Gr(P) with q A′ as its head atom and from this we can infer that MWF

Gr(P)(q A′) =

MWF
Gr(P)(∼(w A′)) = ¬MWF

Gr(P)(w A′) (2). Finally, the only clause in Gr(P), such that w A′ is
the head of the clause, is the ground instance w A′ ← ∼A′ of the clause w R← ∼R of P,
which implies that MWF

Gr(P)(w A′) = MWF
Gr(P)(∼A′) = ¬MWF

Gr(P)(A′) (3). By (2) and (3) we have
MWF

Gr(P)(q A′) = MWF
Gr(P)(A′), and, in conjunction with (1), that MWF

Gr(P)(p A) = MWF
Gr(P)(q A′),

because A ∼=MWF
Gr(P),o

A′ implies, by Definition 52, that MWF
Gr(P)(A) = MWF

Gr(P)(A′). Therefore,
we also have p A ∼=MWF

Gr(P),o
q A′ and, in consequence, p ∼=MWF

Gr(P),o→o q.

For the second part, we show that MWF
Gr(P)(s p) ̸= MWF

Gr(P)(s q). We do this in two steps;
first we show that MWF

Gr(P)(s p) = F and then that MWF
Gr(P)(s q) = 0.

For the first step, it suffices to show that M1(s p) = Θ↑ω
M0
(s p) = F . For this, we prove

that Θ↑n
M0
(s p) = F and Θ↑n

M0
(p (s p)) = F , for all n < ω, by an induction on n. The basis

case is trivial, as Θ↑0
M0

= ⟨∅, UP,o⟩, assigns the value F to every atom. For the induction
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step, we show the statement for n + 1 assuming that it holds for n. We see that there
exists only one clause in Gr(P) such that s p is the head of the clause; this is the ground
instance s p← p (s p) of the clause s Q← Q (s Q) of P. By the induction hypothesis,
we have that Θ↑n

M0
(p (s p)) = F , therefore Θ

↑(n+1)
M0

(s p) = F . Similarly, the only clause
in Gr(P) with p (s p) as the head of the clause is the ground instance p (s p)← (s p)
of the clause p R ← R of P. By the induction hypothesis, we have that Θ↑n

M0
(s p) = F ,

therefore Θ
↑(n+1)
M0

(p (s p)) = F .

For the second step, we perform an induction on α, during which we simultaneously show
that Mα(s q) = 0, Mα(q (s q)) = 0 and Mα(w (s q)) = 0, for all countable ordinals α.
The basis case is trivial, as M0 = ⟨∅, ∅⟩ assigns the value 0 to all atoms. For the induc-
tion step, we first prove the statement for a successor ordinal α + 1, assuming that it
holds for all countable ordinals up to α. Indeed, there exists exactly one clause in Gr(P)
with w (s q) as its head atom, in particular the ground instance w (s q) ← ∼(s q)
of the clause q R ← ∼(w R). As ∼(s q) is a negative literal, for every n < ω the
value of Θ↑(n+1)

Mα
(w (s q)) is defined by Mα(∼(s q)). By the induction hypothesis, we

have Mα(s q) = Mα(∼(s q)) = 0, therefore it follows that Θ↑(n+1)
Mα

(w (s q)) = 0 and,
because this holds for every n < ω, that Mα+1(w (s q)) = 0. Moreover, the ground
instance q (s q) ← ∼(w (s q)) of the clause q R ← ∼(w R) is the only clause in
Gr(P) with q (s q) as its head atom. Again, ∼(w (s q)) is a negative literal and so
for every n < ω the value of Θ↑(n+1)

Mα
(q (s q)) only depends on Mα(∼(w (s q))). By

the induction hypothesis, we have Mα(w (s q)) = Mα(∼(w (s q))) = 0, therefore it
follows that Θ↑(n+1)

Mα
(q (s q)) = 0. Since this holds for every n < ω, we also have

that Mα+1(q (s q)) = 0. Finally, there exists only one clause in Gr(P) such that s
q is the head of the clause, in particular the ground instance s q ← q (s q) of the
clause s Q ← Q (s Q) of P. We have already shown that Θ↑(n+1)

Mα
(q (s q)) = 0 for all

n < ω; moreover, by the induction hypothesis, Mα(q (s q)) = 0. Consequently, for all
n < ω, Θ↑(n+2)

Mα
(s q) = 0 and thus Mα+1(s q) = 0. It remains to show Mα(s q) = 0,

Mα(q (s q)) = 0 and Mα(w (s q)) = 0 for a limit ordinal α. In this case, we have that
Mα = ⟨

∪
β<α Tβ,

∪
β<α Fβ⟩. By the induction hypothesis, Mβ(s q) = 0 for all β < α, which

means that s q ̸∈ Tβ and s q ̸∈ Fβ. In other words, s q ̸∈
∪

β<α Tβ and s q ̸∈
∪

β<α Fβ,
therefore Mα(s q) = 0. In the same way we can show that Mα(q (s q)) = 0 and
Mα(w (s q)) = 0. This concludes the induction and sowe have proven that MWF

Gr(P)(s q) =
0.

Despite the above negative result, there exists a broad and useful class of programs
that are extensional under the well-founded semantics. As we are going to see in Sec-
tion 5.3.1, this class is the class of stratified programs.

5.2.3 Infinite-valued Extension
In this section we argue that the infinite-valued model adaptation of Bezem’s technique
is a more suitable candidate for capturing the extensional semantics of general H pro-
grams. The definition of the infinite-valued model of such a program is analogous to the
definitions of stable models and the well-founded model of the previous sections:
Definition 65. Let P be a program. Also, let Gr(P) be the ground instantiation of P and
let MIV

Gr(P) be the infinite-valued model of Gr(P). We defineMIV
P to be the infinite-valued

Herbrand interpretation of P such that valMIV
P
(A) = MIV

Gr(P)(A) for every A ∈ UP,o and we
call it the infinite-valued model of P.
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Theorem 14 guarantees thatMIV
P is the minimum Herbrand model of P, with respect to

⊑. However, unlike the stable and well-founded models of P,MIV
P is extensional.

Theorem 15. The infinite-valued modelMIV
P of every general program P is extensional.

Proof. Since the valuation function ofMIV
P is MWF

Gr(P), essentially we need to show that
E ∼=MWF

Gr(P),ρ
E, for every ground expression E of every argument type ρ. We perform

an induction on the structure of ρ. For the base types ι and o the statement holds by
definition. For the induction step, we prove the statement for a predicate type π = ρ1 →
· · · → ρm → o, assuming that it holds for all types simpler than π (i.e., for the types
ρ1, . . . , ρm, o and, recursively, the types that are simpler than ρ1, . . . , ρm). Let A be any
atom of the following form: A is headed by a predicate constant and all variables in
vars(A) are of types simpler than π. Let θ, θ′ be ground substitutions, such that vars(A) ⊆
dom(θ), dom(θ′) and θ(V) ∼=MWF

Gr(P),ρ
θ′(V) for any V : ρ in vars(A). We claim it suffices to

show the following two properties P1(α) and P2(α), for all ordinals α:

P1(α): if Mα(Aθ) = Tα then MWF
Gr(P)(Aθ′) = Tα;

P2(α): if Mα(Aθ) = Fα then MIV
Gr(P)(Aθ′) = Fα.

To see why proving the above properties is enough to establish that E ∼=MIV
Gr(P),π

E, ob-
serve the following: first of all, we assumed that π is of the form ρ1 → · · · → ρm → o, so
if V1 : ρ1, . . . ,Vm : ρm are variables, then E V1 · · · Vm is an atom of the form described
above. Also, by Lemma 3 we have that MIV

Gr(P)(E θ(V1) · · · θ(Vm)) = Tα if and only if
Mα(E θ(V1) · · · θ(Vm)) = Tα. IfP1(α) holds, this implies that MIV

Gr(P)(E θ′(V1) · · · θ′(Vm)) =
Tα. Because the relations ∼=MIV

Gr(P),ρi
are symmetric, θ and θ′ are interchangeable. There-

fore, by the same argument, the reverse implication (i.e. MIV
Gr(P)(E θ′(V1) · · · θ′(Vm)) =

Tα ⇒ MIV
Gr(P)(E θ(V1) · · · θ(Vm)) = Tα) can be inferred, thus resulting to an equiva-

lence. If P2(α) holds, the analogous equivalence can be shown for the value Fα, in the
same way. Finally, the equivalence for the 0 value follows by a simple elimination ar-
gument: if for example MIV

Gr(P)(E θ(V1) · · · θ(Vm)) = 0, we make the assumption that
MIV

Gr(P)(E θ′(V1) · · · θ′(Vm)) = Tα (respectively, Fα) for some ordinal α. Then, by Lemma
3, Mα(E θ′(V1) · · · θ′(Vm)) = Tα (respectively, Fα), so if property P1(α) (respectively,
P2(α)) holds, it gives us that MIV

Gr(P)(E θ(V1) · · · θ(Vm)) = Tα (respectively, Fα), which is
a contradiction. It follows that MIV

Gr(P)(E θ′(V1) · · · θ′(Vm)) = 0. Again, we can show the
reverse implication by the same argument.

We will proceed by a second induction on α.

Second Induction Basis (α = 0) We have M0 = T ω
P,0(∅). Observe that T ω

P,0(∅)(Aθ) will
evaluate to T0 if and only if there exists some n < ω for which T n

P (∅)(Aθ) = T0. On the
other hand, it will evaluate to F0 if and only if there does not exist a n < ω for which
T n
P (∅)(Aθ) ̸= F0. Therefore, in order to prove P1(0) and P2(0), we first need to perform a

third induction on n and prove the following two properties:

P ′
1(0, n): if T n

P (∅)(Aθ) = T0 then MIV
Gr(P)(Aθ′) = T0;

P ′
2(0, n): if T n

P (∅)(Aθ) > F0 then MIV
Gr(P)(Aθ′) > F0.
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Third Induction Basis (n = 0) Both P ′
1(0, 0) and P ′

2(0, 0) hold vacuously, since T 0
P(∅) = ∅,

i.e. the interpretation that assigns F0 to every atom.

Third Induction Step (n+ 1) First we show P ′
1(0, n+ 1), assuming that P ′

1(0, n) holds. If
T n+1
P (∅)(Aθ) = T0, then there exists a clause Aθ ← L1, . . . , Lk in Gr(P) such that for each

i ≤ k, T n
P (∅)(Li) = T0. This implies that each Li is a positive literal, since a negative one

cannot be assigned the value T0 in any interpretation. This clause is a ground instance
of a clause pV1 · · · Vm ← B1, . . . ,Bk in the higher-order program and there exists a
substitution θ′′, such that (pV1 · · · Vm)θ

′′ = A and, for any variable V ̸∈ {V1, . . . ,Vm}
appearing in the body of the clause, θ′′(V) is an appropriate ground term, so that Li =
Biθ

′′θ for all i ≤ k. Observe that the variables appearing in the clause (pV1 · · · Vm)θ
′′ ←

B1θ
′′, . . . ,Bkθ

′′ are exactly the variables appearing in A and they are all of types simpler
than π. We distinguish the following cases for each Biθ

′′, i ≤ k:

1. Biθ
′′ is of the form (E1 ≈ E2): By definition, T n

P (∅)(Li) = T n
P (∅)(Biθ

′′θ) = T0 implies
that E1θ = E2θ. Since E1 and E2 are expressions of type ι, all variables in E1

and E2 are also of type ι and, because ∼=MIV
Gr(P),ι

is defined as equality, we will have
E1θ = E1θ

′ and E2θ = E2θ
′. Therefore E1θ

′ = E2θ
′ and MIV

Gr(P)(Biθ
′′θ′) = T0 will also

hold.

2. Biθ
′′ is an atom and starts with a predicate constant: As we observed, the variables

appearing in Biθ
′′ are of types simpler than π. By the third induction hypothesis,

Biθ
′′ satisfies property P ′

1(0, n) and therefore T n
P (∅)(Li) = T n

P (∅)(Biθ
′′θ) = T0 implies

that MIV
Gr(P)(Biθ

′′θ′) = T0.

3. Biθ
′′ is an atom and starts with a predicate variable: Let Biθ

′′ = VE1 · · · Em′ for
someV ∈ vars(A). Then B = θ(V)E1 · · · Em′ is an atom that begins with a predicate
constant and, by vars(Biθ

′′) ⊆ vars(A), all of the variables of B are of types simpler
than π. Also, T n

P (∅)(Bθ) = T n
P (∅)(Biθ

′′θ) = T0, which, by property P ′
1(0, n) yields

that MIV
Gr(P)(Bθ′) = MIV

Gr(P)(θ(V)E1θ
′ · · · Em′θ′) = T0 (1). Observe that the types of all

arguments of θ(V), i.e. the types of Ejθ
′ for all j ≤ m′, are simpler than the type

of V and consequently, since V ∈ vars(A), simpler than π. For each j ≤ m′, let
ρj be the type of Ej and let ρ be the type of V; by the first induction hypothesis,
Ejθ

′ ∼=MIV
Gr(P),ρj

Ejθ
′. Moreover, by assumption we have that θ(V) ∼=MIV

Gr(P),ρ
θ′(V).

Then, by definition MIV
Gr(P)(θ(V)E1θ

′ · · · Em′θ′) = MIV
Gr(P)(θ

′(V)E1θ
′ · · · Em′θ′) and, by

(1), MIV
Gr(P)(θ

′(V)E1θ
′ · · · Em′θ′) = T0.

In conclusion, the clause Aθ′ ← B1θ
′′θ′, . . . ,Bkθ

′′θ′ is in Gr(P) and for each i ≤ k, we have
MIV

Gr(P)(Biθ
′′θ′) = T0, therefore MIV

Gr(P)(Aθ′) = T0 must also hold.

This concludes the proof for P ′
1(0, n). Next we prove P ′

2(0, n+1), assuming P ′
2(0, n) holds.

If T n+1
P (∅)(Aθ) > F0, then there exists a clause Aθ ← L1, . . . , Lk in Gr(P) such that for

each i ≤ k, T n
P (∅)(Li) > F0. This clause is a ground instance of a clause pV1 · · · Vm ←

K1, . . . ,Kk in the P and there exists a substitution θ′′, such that (pV1 · · · Vm)θ
′′ = A and, for

any variable V ̸∈ {V1, . . . ,Vm} appearing in the body of the clause, θ′′(V) is an appropriate
ground term, so that Li = Kiθ

′′θ for all i ≤ k. Observe that the variables appearing in
the clause (pV1 · · · Vm)θ

′′ ← K1θ
′′, . . . ,Kkθ

′′ are exactly the variables appearing in A and
they are all of types simpler than π. We can distinguish the following cases for each Kiθ

′′,
i ≤ k:
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1. Kiθ
′′ is a positive literal: A positive literal may take one of the three forms that we

examined in our proof for property P ′
1(0, n+1). We can show that MIV

Gr(P)(Kiθ
′′θ′) > F0

by the same arguments we used in each case.

2. Kiθ
′′ is a negative literal: A negative literal cannot be assigned the value F0 in any

interpretation. Therefore MIV
Gr(P)(Kiθ

′′θ′) > F0 holds by definition.

In conclusion, the clause Aθ′ ← K1θ
′′θ′, . . . ,Kkθ

′′θ′ is in Gr(P) and for each i ≤ k, we have
MIV

Gr(P)(Kiθ
′′θ′) > F0, therefore MIV

Gr(P)(Aθ′) > F0 must also hold.

This concludes the proof for P ′
2(0, n). We will now use properties P ′

1(0, n) and P ′
2(0, n) in

order to show P1(0) and P2(0). By definition, if M0(Aθ) = T ω
P,0(∅)(Aθ) = T0, then there

exists some n < ω such that T n
P (∅)(Aθ) = T0. Applying P ′

1(0, n) to Aθ we immediately
conclude that MIV

Gr(P)(Aθ′) = T0, which establishes property P1(0). Now let M0(Aθ) =

F0 and assume MIV
Gr(P)(Aθ′) ̸= F0. By Lemma 3, the latter can only hold if M0(Aθ′) =

T ω
P,0(∅)(Aθ′) ̸= F0 and this, in turn, means that there exists at least one n < ω such that

T n
P (∅)(Aθ′) > F0. Then, reversing the roles of θ and θ′, we can apply property P ′

2(0, n) to
Aθ′ and conclude that MIV

Gr(P)(Aθ) > F0, which, again by Lemma 3, contradicts M0(Aθ) =
F0. Therefore it must be MIV

Gr(P)(Aθ′) = F0.

Second Induction Step Now we prove properties P1(α) and P2(α) for an arbitrary count-
able ordinal α, assuming that P1(β) and P2(β) hold for all β < α.

We have Mα = T ω
P,α(Iα). Again, we first perform a third induction on n and prove two

auxilary properties, as follows:

P ′
1(α, n): if T n

P (Iα)(Aθ) ≥ Tα then MIV
Gr(P)(Aθ′) ≥ Tα;

P ′
2(α, n): if T n

P (Iα)(Aθ) > Fα then MIV
Gr(P)(Aθ′) > Fα.

Third Induction Basis (n = 0) We have T 0
P(Iα) = Iα. Observe that, whether α is a

successor or a limit ordinal, Iα does not assign to any atom the value Tα or any value
that is greater than Fα and smaller than Tα So if T 0

P(Iα)(Aθ) ≥ Tα (respectively, > Fα), it
must be T 0

P(Iα)(Aθ) = Tβ for some ordinal β < α. By Lemma 1, Mα(Aθ) = Tβ and so,
by Lemma 3, Mβ(Aθ) = Tβ. Then, by the second induction hypothesis, property P1(β)
holds and yields MIV

Gr(P)(Aθ′) = Tβ ≥ Tα (respectively, > Fα). Therefore property P ′
1(α, 0)

(respectively, P ′
2(α, 0)) also holds.

Third Induction Step (n + 1) First we show P ′
1(α, n + 1), assuming that P ′

1(α, n) holds.
If T n+1

P (Iα)(Aθ) ≥ Tα, then there exists a clause Aθ ← L1, . . . , Lk in Gr(P) such that for
each i ≤ k, T n

P (Iα)(Li) ≥ Tα. This clause is a ground instance of a clause pV1 · · · Vm ←
K1, . . . ,Kk in P and there exists a substitution θ′′, such that (pV1 · · · Vm)θ

′′ = A and, for
any variable V ̸∈ {V1, . . . ,Vm} appearing in the body of the clause, θ′′(V) is an appropri-
ate ground term, so that Li = Kiθ

′′θ for all i ≤ k. As we observed earlier, the variables
appearing in the clause (pV1 · · · Vm)θ

′′ ← K1θ
′′, . . . ,Kkθ

′′ are exactly the variables ap-
pearing in A and they are all of types simpler than π. We can distinguish the following
cases for each Kiθ

′′:

1. Kiθ
′′ is a positive literal: A positive literal may take one of the three forms that we

examined in our proof for propertyP ′
1(0, n+1). We can show that MIV

Gr(P)(Kiθ
′′θ′) ≥ Tα

by the same arguments we used in each case.
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2. Kiθ
′′ is a negative literal and its atom starts with a predicate constant: Let Kiθ

′′

be of the form ∼B, where B is an atom that starts with a predicate constant. It
is T n

P (Iα)(∼Bθ) = T n
P (Iα)(Kiθ

′′θ) = T n
P (Iα)(Li) ≥ Tα. Then T n

P (Iα)(Bθ) < Fα, i.e.
T n
P (Iα)(Bθ) = Fβ for some ordinal β < α. By Lemma 1, Mα(Bθ) = Fβ and thus,

by Lemma 3, Mβ(Bθ) = Fβ. By vars(Kiθ
′′) ⊆ vars(A), all the variables of B are of

types simpler than π, so we can apply the second induction hypothesis, in particular
property P2(β), to Bθ and conclude that MIV

Gr(P)(Bθ′) = Fβ. Then MIV
Gr(P)(Kiθ

′′θ′) =

MIV
Gr(P)(∼Bθ′) = Tβ+1 ≥ Tα.

3. Kiθ
′′ is a negative literal and its atom starts with a predicate variable: Let Kiθ

′′ =
∼(VE1 · · · Em′) for some V ∈ vars(A). Then B = θ(V)E1 · · · Em′ is an atom that
begins with a predicate constant and, by vars(Kiθ

′′) ⊆ vars(A), all the variables of B
are of types simpler than π. Also, T n

P (Iα)(∼Bθ) = T n
P (Iα)(Kiθ

′′θ) = T n
P (Iα)(Li) ≥ Tα.

Then T n
P (Iα)(Bθ) < Fα, i.e. T n

P (Iα)(Bθ) = Fβ for some ordinal β < α. By Lemma 1,
Mα(Bθ) = Fβ and thus, by Lemma 3, Mβ(Bθ) = Fβ. By the second induction hypoth-
esis, property P2(β) gives us that MIV

Gr(P)(Bθ′) = MIV
Gr(P)(θ(V)E1θ

′ · · · Em′θ′) = Fβ (1).
The types of all arguments of θ(V), i.e. the types of Ejθ

′ for all j ≤ m′, are simpler
than the type of V and consequently, since V ∈ vars(A), simpler than π. For each
j ≤ m′, let ρj be the type of Ej and let ρ be the type of V; by the first induction hypoth-
esis, Ejθ

′ ∼=MIV
Gr(P),ρj

Ejθ
′. Moreover, by assumption we have that θ(V) ∼=MIV

Gr(P),ρ
θ′(V).

Then, by definition MIV
Gr(P)(θ(V)E1θ

′ · · · Em′θ′) = MIV
Gr(P)(θ

′(V)E1θ
′ · · · Em′θ′) and, by

(1), MIV
Gr(P)(θ

′(V)E1θ
′ · · · Em′θ′) = Fβ. Therefore, it follows that MIV

Gr(P)(Kiθ
′′θ′) =

MIV
Gr(P)(∼(θ′(V)E1θ

′ · · · Em′θ′)) = Tβ+1 ≥ Tα.

We can conclude that MIV
Gr(P)(Aθ′) ≥ Tα, as the clause Aθ′ ← K1θ

′′θ′, . . . ,Kkθ
′′θ′ is in Gr(P)

and we have shown that, for each i ≤ k, MIV
Gr(P)(Kiθ

′′θ′) ≥ Tα.

This concludes the proof of P ′
1(α, n). Next we prove P ′

2(α, n+1), assuming P ′
2(α, n) holds.

If T n+1
P (Iα)(Aθ) > Fα, then there exists a clause Aθ ← L1, . . . , Lk in Gr(P) such that for

each i ≤ k, T n
P (Iα)(Li) > Fα. This clause is a ground instance of a clause pV1 · · · Vm ←

K1, . . . ,Kk in P and there exists a substitution θ′′such that (pV1 · · · Vm)θ
′′ = A and, for

any variable V ̸∈ {V1, . . . ,Vm} appearing in the body of the clause, θ′′(V) is an appropri-
ate ground term, so that Li = Kiθ

′′θ for all i ≤ k. Again we observe that the variables
appearing in the clause (pV1 · · · Vm)θ

′′ ← K1θ
′′, . . . ,Kkθ

′′ are exactly the variables ap-
pearing in A, which are all of types simpler than π, and distinguish the following cases for
each Kiθ

′′:

1. Kiθ
′′ is a positive literal: A positive literal may take one of the three forms that we

examined in our proof for property P ′
1(0, n+ 1). We can show that MIV

Gr(P)(Kiθ
′′θ′) >

Fα by the same arguments we used in each case.

2. Kiθ
′′ is a negative literal and its atom starts with a predicate constant: Let Kiθ

′′

be of the form ∼B, where B is an atom that starts with a predicate constant and,
by vars(Kiθ

′′) ⊆ vars(A), all the variables of B are of types simpler than π. It is
T n
P (Iα)(∼Bθ) = T n

P (Iα)(Kiθ
′′θ) = T n

P (Iα)(Li) > Fα and we claim that MIV
Gr(P)(∼Bθ′) >

Fα. For the sake of contradiction, assume thatMIV
Gr(P)(∼Bθ′) ≤ Fα. ThenMIV

Gr(P)(Bθ′) >
Tα, i.e. MIV

Gr(P)(Bθ′) = Tβ for some ordinal β < α. Therefore, Lemma 3 implies that
Mβ(Bθ′) = Tβ. This means that, if we reverse the roles of θ and θ′, we can apply
the second induction hypothesis to Bθ′ and use property P1(β) to conclude that
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MIV
Gr(P)(Bθ) = Tβ. By Lemma 3, this implies that Mα(Bθ) = Tβ and, by Lemma 1,

T n
P (Iα)(Bθ) = Tβ. Then T n

P (Iα)(∼Bθ) = Fβ+1 ≤ Fα, which is obviously a contradic-
tion. So it must be MIV

Gr(P)(Kiθ
′′θ′) = MIV

Gr(P)(∼Bθ′) > Fα.

3. Kiθ
′′ is a negative literal and its atom starts with a predicate variable: Let Kiθ

′′ =
∼(VE1 · · · Em′) for some V ∈ vars(A). Then B = θ(V)E1 · · · Em′ is an atom that be-
gins with a predicate constant and, by vars(Kiθ

′′) ⊆ vars(A), all the variables of B
are of types simpler than π. Also, T n

P (Iα)(∼Bθ) = T n
P (Iα)(Kiθ

′′θ) = T n
P (Iα)(Li) >

Fα. We claim that MIV
Gr(P)(∼Bθ′) > Fα. Again, assume that this is not so, i.e.

MIV
Gr(P)(∼Bθ′) ≤ Fα; then MIV

Gr(P)(Bθ′) = Tβ > Tα for some ordinal β < α. By Lemma
3, Mβ(Bθ′) = Tβ and the second induction hypothesis applies. So if we reverse
the roles of θ and θ′ property P1(β) gives us that MIV

Gr(P)(Bθ) = Tβ. By Lemma 3,
Mα(Bθ) = Tβ and thus, by Lemma 1, T n

P (Iα)(Bθ) = Tβ. This is a contradiction, as
it implies that T n

P (Iα)(∼Bθ) = Fβ+1 ≤ Fα. Hence it must hold that MIV
Gr(P)(∼Bθ′) =

MIV
Gr(P)(∼(θ(V)E1θ

′ · · · Em′θ′)) > Fα (1). The types of all arguments of θ(V), i.e. the
types of Ejθ

′ for all j ≤ m′, are simpler than the type of V and therefore simpler
than π. For each j ≤ m′, let ρj be the type of Ej and let ρ be the type of V; by
the first induction hypothesis, Ejθ

′ ∼=MIV
Gr(P),ρj

Ejθ
′ and by assumption θ(V) ∼=MIV

Gr(P),ρ

θ′(V). Then, by definition MIV
Gr(P)(θ(V)E1θ

′ · · · Em′θ′) = MIV
Gr(P)(θ

′(V)E1θ
′ · · · Em′θ′)

and, consequently, MIV
Gr(P)(∼(θ(V)E1θ

′ · · · Em′θ′)) = MIV
Gr(P)(∼(θ′(V)E1θ

′ · · · Em′θ′)).
Therefore by (1), MIV

Gr(P)(∼(θ′(V)E1θ
′ · · · Em′θ′)) > Fα and so we can conclude that

MIV
Gr(P)(Kiθ

′′θ′) = MIV
Gr(P)(∼(θ′(V)E1θ

′ · · · Em′θ′)) > Fα.

Observe that the clause Aθ′ ← K1θ
′′θ′, . . . ,Kkθ

′′θ′ is in Gr(P) and we have shown that, for
each i ≤ k, MIV

Gr(P)(Kiθ
′′θ′) > Fα. So MIV

Gr(P)(Aθ′) > Fα must also hold.

This concludes the proof for P ′
2(α, n). We will now use properties P ′

1(α, n) and P ′
2(α, n)

in order to show P1(α) and P2(α). By definition, if Mα(Aθ) = T ω
P,α(Iα)(Aθ) = Tα, then

there exists some n < ω such that T n
P (Iα)(Aθ) = Tα. As we have shown above, property

P ′
1(α, n) yields MIV

Gr(P)(Aθ′) ≥ Tα. However, if it wasMIV
Gr(P)(Aθ′) = Tβ > Tα for some ordinal

β < α, then, by Lemma 3 we would also have Mβ(Aθ′) = Tβ. By the second induction
hypothesis we would be able to apply property P1(β) to Aθ′ and infer that MIV

Gr(P)(Aθ) = Tβ,
which, again by Lemma 3, contradicts Mα(Aθ) = Tα. So MIV

Gr(P)(Aθ′) can only be equal
to Tα and property P1(α) holds. Now let Mα(Aθ) = Fα and assume MIV

Gr(P)(Aθ′) ̸= Fα,
i.e. either MIV

Gr(P)(Aθ′) < Fα or MIV
Gr(P)(Aθ′) > Fα. In the first case, MIV

Gr(P)(Aθ′) = Fβ

and, by Lemma 3, Mβ(Aθ′) = Fβ for some β < α. By the second induction hypothesis,
property P2(β) gives us that MIV

Gr(P)(Aθ) = Fβ < Fα. In the second case, Lemma 3 implies
that Mα(Aθ′) = T ω

P,α(Iα)(Aθ′) > Fα and this, in turn, means that there exists at least
one n < ω such that T n

P (Iα)(Aθ′) > Fα. Then, reversing the roles of θ and θ′, we can
apply property P ′

2(α, n) to Aθ′ and conclude that MIV
Gr(P)(Aθ) > Fα. In both cases, our

conclusion constitutes a contradiction, because, by Lemma 3, Mα(Aθ) = Fα implies that
MIV

Gr(P)(Aθ) = Fα. Therefore it must also be MIV
Gr(P)(Aθ′) = Fα and this proves property

P2(α).

5.3 Stratified and Locally Stratified Programs
In this section we define the notions of stratified and locally stratified higher-order logic
programs and show that the class of stratified programs is well-behaved with respect to
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extensionality. The notion of local stratification is a straightforward generalization of the
corresponding notion for classical (first-order) logic programs. However, the notion of
stratification is a genuine extension of the corresponding notion for first-order programs.

Definition 66. A program P is called locally stratified if and only if it is possible to decom-
pose the Herbrand base UP,o of P into disjoint sets (called strata) S1, S2, . . . , Sα, . . . , α < γ,
where γ is a countable ordinal, such that for every clause H← A1, . . . ,Am,∼B1, . . . ,∼Bn

in Gr(P), we have that for every i ≤ m, stratum(Ai) ≤ stratum(H) and for every i ≤ n,
stratum(Bi) < stratum(H), where stratum is a function such that stratum(C) = β, if the
atom C ∈ UP,o belongs to Sβ, and stratum(C) = 0, if C ̸∈ UP,o and is of the form (E1 ≈ E2).

Since Definition 66 generalizes the corresponding one for classical logic programs, the
undecidability result [12] for detecting whether a given program is locally stratified, ex-
tends directly to the higher-order case.

Lemma 12. The problem of determining whether a given logic program P is locally strat-
ified, is undecidable.

However, there exists a notion of stratification for higher-order logic programs that is
decidable and has as a special case the stratification for classical logic programs [1].
In the following definition, a predicate type π is understood to be greater than a second
predicate type π′, if π is of the form ρ1 → · · · → ρn → π′, where n ≥ 1.

Definition 67. A program P is called stratified if and only if it is possible to decompose
the set of all predicate constants that appear in P into a finite number r of disjoint sets
(called strata) S1, S2, . . . , Sr, such that for every clause H ← A1, . . . ,Am,∼B1, . . . ,∼Bn in
P, where the predicate constant of H is p, we have:

1. for every i ≤ m, if Ai is a term starting with a predicate constant q, then stratum(q) ≤
stratum(p);

2. for every i ≤ m, if Ai is a term starting with a predicate variable Q, then for all
predicate constants q that appear in P such that the type of q is greater than or
equal to the type of Q, it holds stratum(q) ≤ stratum(p);

3. for every i ≤ n, if Bi starts with a predicate constant q, then stratum(q) < stratum(p);

4. for every i ≤ n, if Bi starts with a predicate variable Q, then for all predicate con-
stants q that appear in P such that the type of q is greater than or equal to the type
of Q, it holds stratum(q) < stratum(p);

where stratum(r) = i if the predicate constant r belongs to Si.

Example 18. In the following program:

p Q← ∼(Q a)
q X← (X≈a)

the variable Q is of type ι→ o and X is of type ι. The only predicate constants that appear
in the program are p, which is of type (ι→ o)→ o, and q, which is of type ι→ o. Note that
the type of p is neither equal nor greater than the type of Q, while the type of q is the same
as that of Q. It is straightforward to see that the program is stratified, if we choose S1 = {q}
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and S2 = {p}. Indeed, for the first clause, we have stratum(p) > stratum(q) and in the
second clause there are no predicate constants or predicate variables appearing in its
body. However, if Q and X are as above and, moreover, Y is of type ι, it can easily be
checked that the program:

p Q← ∼(Q a)
q X Y← (X≈a), (Y≈a), p (q a)

is not stratified nor locally stratified, because if the term q a is substituted for Q we get a
circularity through negation. Notice that the type of q is ι → ι → o and it is greater than
the type of Q which is ι→ o.

Since the set of predicate constants that appear in a program P is finite, and since the
number of predicate constants of the program that have a greater or equal type than the
type of a given predicate variable is also finite, it follows that checking whether a given
program is stratified, is decidable. Moreover, we have the following theorem:

Theorem 16. If P is stratified then it is locally stratified.

Proof. Consider a decomposition S1, . . . , Sr of the set of predicate constants of P such
that the requirements of Definition 67 are satisfied. This defines a decomposition S ′

1, . . . , S
′
r

of the Herbrand base of P, as follows:

S ′
i = {A ∈ UP,o | the leftmost predicate constant of A belongs to Si}

We show that S ′
1, . . . , S

′
r corresponds to a local stratification of UP,o. Consider a clause

in P of the form H′ ← A′
1, . . . ,A′

m,∼B′
1, . . . ,∼B′

n and let H ← A1, . . . ,Am,∼B1, . . . ,∼Bn

be one of its ground instances. Let p be the predicate constant of H (and H′). Consider
any A′

i. If A′
i starts with a predicate constant, say qi, by Definition 67, it is stratum(p) ≥

stratum(qi). By the definition of the local stratification decomposition we gave above, it
is stratum(H) = stratum(p) and stratum(Ai) = stratum(qi), and therefore stratum(H) ≥
stratum(Ai). If A′

i starts with a predicate variable, say Q, then Q has been substituted in
A′

i with a term starting with a predicate constant, say qi, that has a type greater than or
equal to that of Q. By Definition 67, it is stratum(p) ≥ stratum(qi) and by the definition of
the local stratification decomposition we gave above, it is stratum(H) = stratum(p) and
stratum(Ai) = stratum(qi), and therefore stratum(H) ≥ stratum(Ai). The justification for
the case of negative literals, is similar and omitted.

5.3.1 Semantics of Stratified Programs
In this section we focus on stratified higher-order programs and show that this class of
programs has some nice properties under the extensions of Bezem’s semantics, which
we defined in Section 5.2.

First of all, as in the first-order case, all atoms in the infinite-valued and well-founded
model of a locally stratified program have non-zero values. Recall that, by Theorem 16,
stratified programs are a subset of locally stratified ones, therefore the lemma also holds
for stratified programs.

Lemma 13. Let P be a locally stratified logic program. Then, for every atom A ∈ UP,o it
holds valMWF

P
(A) ̸= 0 and valMIV

P
(A) ̸= 0.
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Proof. Theorem 5 implies that the infinite-valued model MIV
Gr(P) of the ground instantiation

of P assigns the truth value 0 to an atom iff this atom is assigned the truth value 0 by the
well-founded model of Gr(P). Notice now that, by Definition 66, if P is a locally stratified
higher-order program, then Gr(P) is in turn a locally stratified propositional program (hav-
ing exactly the same local stratification as P). Recall that the well-founded model of a
locally stratified propositional program does not assign the truth value 0 to any atom [18],
so neither doesMWF

P , or MIV
Gr(P) or, consequently,MIV

P .

However, the most interesting property of stratified programs is the fact that their well-
founded models are always extensional, even though this is not true in the general case
(see Lemma 11). This is demonstrated in Theorem 17 and the next lemma is the basis
for our proof of this theorem:

Lemma 14. Let P be an H program. If P is stratified then it has a unique stable model,
which coincides with its well-founded model and with the collapse of its infinite-valued
model.

Proof. Let Gr(P) be the ground instantiation of P. By Theorem 16, Gr(P) is locally strat-
ified. Therefore, by Theorem 2, Gr(P) has a unique stable model which coincides with
the perfect model of Gr(P). As a consequence, P also has a unique stable model. By
Theorem 5, the interpretation obtained by collapsing all true values of the infinite-valued
model of Gr(P) to T and all false values to F , coincides with the well-founded model of
Gr(P). Again, because Gr(P) is locally stratified, by Theorem 3, the well-founded model
of Gr(P) coincides with its perfect model. In conclusion, the unique stable model, the
well-founded model and the collapse of the infinite-valued model of P are all two-valued
and coincide with each other, because the valuation function of each of these models
coincides with the perfect model of Gr(P).

Theorem 17. The well-founded modelMWF
P of a stratified program P is extensional.

Proof. By Theorem 16, if P is stratified then Gr(P) is locally stratified. Therefore the
unique perfect model MPe

Gr(P) of Gr(P) exists (Theorem 1). Moreover, the perfect model
of a locally stratified propositional program coincides with its well-founded model MWF

Gr(P)
(Theorem 3), i.e. the valuation function ofMWF

P . So, to show thatMWF
P is extensional

in the case of stratified programs, we can rely upon the constructive definition of MPe
Gr(P)

from [28] presented in Section 3.4.

Consider a stratification S1, . . . , Sr of the set of predicate constants of P. As argued in
the proof of Theorem 16, the following decomposition S ′

1, . . . , S
′
r of UP,o:

S ′
i = {A ∈ UP,o | the leftmost predicate constant of A belongs to Si}

corresponds to a local stratification of Gr(P). So, whenever a ground atom A begins with
a predicate constant p, we will have stratum(A) = stratum(p). Moreover, by Theorem 1,
MPe

Gr(P) = Nr.

Since the valuation function ofMWF
P is MPe

Gr(P), essentially we need to show that E ∼=MPe
Gr(P),ρ

E, for every ground expression E of every argument type ρ. We perform an induction on
the structure of ρ. For the base types ι and o the statement holds by definition. For the
induction step, we prove the statement for a predicate type π = ρ1 → · · · → ρm → o,
assuming that it holds for all types simpler than π (i.e., for the types ρ1, . . . , ρm, o and,
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recursively, the types that are simpler than ρ1, . . . , ρm). Let A be any atom of the following
form: A is headed by a predicate constant p and all variables in vars(A) are of types
simpler than π. Let θ, θ′ be ground substitutions, such that vars(A) ⊆ dom(θ), dom(θ′)
and θ(V) ∼=MPe

Gr(P),ρ
θ′(V) for any V : ρ in vars(A). We claim it suffices to show the following

two properties P1(α) and P2(α), for all finite ordinals (i.e., natural numbers) α:

P1(α): If Nα(Aθ) = T then MPe
Gr(P)(Aθ′) = T .

P2(α): If Nα(Aθ) = F then MPe
Gr(P)(Aθ′) = F .

To see why proving the above properties is enough to establish that E ∼=MPe
Gr(P),π

E, observe
the following: first of all, we assumed that π is of the form ρ1 → · · · → ρm → o, so if
V1 : ρ1, . . . ,Vm : ρm are variables, then EV1 · · · Vm is an atom of the form described
above. As MPe

Gr(P) = Nr, if MPe
Gr(P)(E θ(V1) · · · θ(Vm)) = Nr(E θ(V1) · · · θ(Vm)) = T and

property P1(r) holds, then we can infer that MPe
Gr(P)(E θ′(V1) · · · θ′(Vm)) = T . Because

the relations ∼=MPe
Gr(P),ρi

are symmetric, θ and θ′ are interchangeable. Therefore the same
argument can be used to infer the reverse implication, i.e. MPe

Gr(P)(E θ′(V1) · · · θ′(Vm)) =

T ⇒ MPe
Gr(P)(E θ(V1) · · · θ(Vm)) = T , thus resulting to an equivalence. If P2(r) holds, the

analogous equivalence can be shown for the value F in the same way and so it follows
that E ∼=MPe

Gr(P),π
E. Finally, r is determined by the stratification of the higher-order program

and is therefore finite, so we only need to prove properties P1(α) and P2(α) for finite
ordinals.

We will proceed by a second induction on α.

Second Induction Basis (α = 0) We have N0 = ⟨∅, ∅⟩. As this interpretation does not
assign the value T or the value F to any atom, both properties P1(0) and P2(0) hold
vacuously.

Second Induction Step (α+1)We first show P1(α+1). We have that Nα+1 = ⟨Ψ↑ω
Nα
,Bα+1−

Ψ↑ω
Nα
⟩; observe thatΨ↑ω

Nα
(Aθ) = T if and only if there exists some n < ω for whichΨ↑n

Nα
(Aθ) =

T . Therefore, in order to prove P1(α + 1), we first need to perform a third induction on n
and prove the following property:

P ′
1(α + 1, n): If Ψ↑n

Nα
(Aθ) = T then MPe

Gr(P)(Aθ′) = T .

Third Induction Basis (n = 0) Property P ′
1(α+1, 0) holds vacuously, since Ψ↑0

Nα
= ∅, i.e.

it does not assign the value T to any atom.

Third Induction Step (n + 1) We now show property P ′
1(α + 1, n + 1), assuming that

P ′
1(α+1, n) holds. If Ψ↑(n+1)

Nα
(Aθ) = T , then there exists a clause Aθ ← L1, . . . , Lk in Gr(P)

such that, for each i ≤ k, either Nα(Li) = T or Li is an atom and Ψ↑n
Nα
(Li) = T . This clause

is a ground instance of a clause pV1 · · · Vm ← K1, . . . ,Kk in the higher-order program
and there exists a substitution θ′′, such that (pV1 · · · Vm)θ

′′ = A and, for any variable
V ̸∈ {V1, . . . ,Vm} appearing in the body of the clause, θ′′(V) is an appropriate ground
term, so that Li = Kiθ

′′θ for all i ≤ k. Observe that the variables appearing in the clause
(pV1 · · · Vm)θ

′′ ← K1θ
′′, . . . ,Kkθ

′′ are exactly the variables appearing in A and they are
all of types simpler than π. We distinguish the following cases for each Kiθ

′′, i ≤ k:
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1. Kiθ
′′ is of the form (E1 ≈ E2): An expression of the form (E1 ≈ E2) has the same

value in any interpretation. If Nα(Kiθ
′′θ) = Ψ↑n

Nα
(Kiθ

′′θ) = T , by definition we have
E1θ = E2θ. Since E1 and E2 are expressions of type ι, all variables in E1 and E2 are
also of type ι and, because ∼=MPe

Gr(P),ι
is defined as equality, we will have E1θ = E1θ

′

and E2θ = E2θ
′. Therefore E1θ

′ = E2θ
′ and MPe

Gr(P)(Kiθ
′′θ′) = T will also hold.

2. Kiθ
′′ is an atom and starts with a predicate constant: As we observed, the variables

appearing in Kiθ
′′ are of types simpler than π. Because Kiθ

′′θ is an atom, either
Nα(Li) = Nα(Kiθ

′′θ) = T or Ψ↑n
Nα
(Li) = Ψ↑n

Nα
(Kiθ

′′θ) = T may hold. In the former
case, by the second induction hypothesis we can apply property P1(α) and it follows
that MPe

Gr(P)(Kiθ
′′θ′) = T . Similarly, in the latter case, the same conclusion can be

reached by the third induction hypothesis and property P ′
1(α + 1, n).

3. Kiθ
′′ is an atom and starts with a predicate variable: As in the previous case, it may

be Nα(Li) = Nα(Kiθ
′′θ) = T or Ψ↑n

Nα
(Li) = Ψ↑n

Nα
(Kiθ

′′θ) = T . Let Kiθ
′′ = VE1 · · · Em′

for some V ∈ vars(A). Then B = θ(V)E1 · · · Em′ is an atom that begins with a pred-
icate constant and, by vars(Kiθ

′′) ⊆ vars(A), all of the variables of B are of types
simpler than π. Hence, by the second induction hypothesis, B satisfies property
P1(α) and if Nα(Kiθ

′′θ) = Nα(Bθ) = T then it follows that MPe
Gr(P)(Bθ′) = T (1). Sim-

ilarly, by the third induction hypothesis, B also satisfies property P ′
1(α + 1, n), so if

Ψ↑n
Nα
(Kiθ

′′θ) = Ψ↑n
Nα
(Bθ) = T , then the same conclusion, that MPe

Gr(P)(Bθ′) = T (1), is
reached again. Observe that the types of all arguments of θ(V), i.e. the types
of Ejθ

′ for all j ≤ m′, are simpler than the type of V and consequently, since
V ∈ vars(A), simpler than π. For each j ≤ m′, let ρj be the type of Ej and let
ρ be the type of V; by the first induction hypothesis, Ejθ

′ ∼=MPe
Gr(P),ρj

Ejθ
′. Moreover,

by assumption we have that θ(V) ∼=MPe
Gr(P),ρ

θ′(V). Then, by definition and by (1)
MPe

Gr(P)(θ(V)E1θ
′ · · · Em′θ′) = MPe

Gr(P)(θ
′(V)E1θ

′ · · · Em′θ′) = MPe
Gr(P)(Kiθ

′′θ′) = T .

4. Kiθ
′′ is a negative literal and its atom starts with a predicate constant: Let Kiθ

′′

be of the form ∼B, where B is an atom that starts with a predicate constant. It is
Nα(∼Bθ) = Nα(Kiθ

′′θ) = Nα(Li) = T and therefore Nα(Bθ) = F . Moreover, by
vars(Kiθ

′′) ⊆ vars(A), all the variables of B are of types simpler than π, so we
can apply the second induction hypothesis, in particular property P2(α), to B and
conclude that MPe

Gr(P)(Bθ′) = F . Then MPe
Gr(P)(∼Bθ′) = MPe

Gr(P)(Kiθ
′′θ′) = T .

5. Kiθ
′′ is a negative literal and its atom starts with a predicate variable: Let Kiθ

′′ =
∼(VE1 · · · Em′) for some V ∈ vars(A). Then B = θ(V)E1 · · · Em′ is an atom that
begins with a predicate constant and, by vars(Kiθ

′′) ⊆ vars(A), all of the variables
of B are of types simpler than π. Also, Nα(∼Bθ) = Nα(Kiθ

′′θ) = Nα(Li) = T and
therefore Nα(Bθ) = F . Hence, by the second induction hypothesis and in particular
property P2(α), it follows that MPe

Gr(P)(Bθ′) = MPe
Gr(P)(θ(V)E1θ

′ · · · Em′θ′) = F (1).
Observe that the types of all arguments of θ(V), i.e. the types of Ejθ

′ for all j ≤ m′,
are simpler than the type of V and consequently, since V ∈ vars(A), simpler than
π. For each j ≤ m′, let ρj be the type of Ej and let ρ be the type of V; by the first
induction hypothesis, Ejθ

′ ∼=MPe
Gr(P),ρj

Ejθ
′. Moreover, by assumption we have that

θ(V) ∼=MPe
Gr(P),ρ

θ′(V). Then, by definition and by (1), MPe
Gr(P)(θ(V)E1θ

′ · · · Em′θ′) =

MPe
Gr(P)(θ

′(V)E1θ
′ · · · Em′θ′) = F . So, obviously, MPe

Gr(P)(∼(θ′(V)E1θ
′ · · · Em′θ′)) =

MPe
Gr(P)(Kiθ

′′θ′) = T .
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We have shown that, for each i ≤ k, MPe
Gr(P)(Kiθ

′′θ′) = T . Since the clause Aθ′ ←
K1θ

′′θ′, . . . ,Kkθ
′′θ′ is in Gr(P) andMPe

Gr(P) is amodel of Gr(P), we conclude that MPe
Gr(P)(Aθ′) =

T .

This concludes the proof for P ′
1(α + 1, n). Notice that property P ′

1(α + 1, n) immediately
implies property P1(α + 1): as mentioned before, Nα+1(Aθ) = Ψ↑ω

Nα
(Aθ) = T if and only if

there exists some n < ω for which Ψ↑n
Nα
(Aθ) = T and then MPe

Gr(P)(Aθ′) = T follows from
property P ′

1(α + 1, n). It remains to prove property P2(α + 1). Observe that the atoms
Aθ and Aθ′ both start with the same predicate constant p and recall that we have chosen
a local stratification for Gr(P), such that stratum(Aθ) = stratum(Aθ′) = stratum(p).
Moreover, we have that Nα+1 = ⟨Ψ↑ω

Nα
,Bα+1 − Ψ↑ω

Nα
⟩, so if Nα+1(Aθ) = F , it follows that

Aθ ∈ Bα+1. Because stratum(Aθ) = stratum(Aθ′), it must also be Aθ′ ∈ Bα+1, which
implies that Nα+1(Aθ′) can be either T (if Aθ′ ∈ Ψ↑ω

Nα
) or F (if Aθ′ ̸∈ Ψ↑ω

Nα
), but not 0.

For the sake of contradiction, assume that Nα+1(Aθ′) = T . As the relations ∼=MPe
Gr(P),ρi

are symmetric, θ and θ′ are interchangeable, so property P1(α + 1) applies and yields
MPe

Gr(P)(Aθ) = T . Because (by Theorem 1) Nα+1 ≼ MPe
Gr(P), this contradicts our initial

assumption that Nα+1(Aθ) = F . Therefore, it must be Nα+1(Aθ′) = F and so, again by
Nα+1 ≼ MPe

Gr(P), it follows that MPe
Gr(P)(Aθ′) = F .

An immediate consequence of the above theorem, is that the unique stable model and
the collapse of the infinite valued model of a stratified program are also extensional, since
they coincide with its well-founded model by Lemma 14.
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6. CONCLUSIONS AND FUTURE WORK
We have shown that the two existing extensional approaches to positive higher-order
logic programming ([31, 9] and [2, 3]) coincide for the programs of the language consid-
ered in [31], but differ in general when existential predicate variables are allowed in clause
bodies. We have presented an additional condition under which the two approaches con-
tinue to coincide even for this more general class of programs.

Moreover, we have for the first time adapted Bezem’s technique of [2, 3] to define an
extensional semantics for higher-order programs with negation. For this purpose, we
have utilized the infinite-valued approach to negation-as-failure [30]. On the other hand,
we have shown that an adaptation of the technique under the well-founded or the stable
model semantics does not in general lead to an extensional semantics. Finally, we have
defined the notions of stratification and local stratification and proven that the class of
stratified programs is a notable exception to the previous negative result.

Despite the fact that stratified programs lead to an extensional well-founded model, we
have not been able to verify that the same property holds for locally stratified higher-order
logic programs. On the other hand, our attempts to find a locally stratified program with
a non-extensional well-founded model have also been unsuccessful, and therefore it is
not at present clear to us whether this class of programs is well-behaved with respect to
extensionality, or not.

Another matter worth looking into is the relationships between the extensions of Bezem’s
semantics presented in Chapter 5 and their domain theoretic counterparts. For exam-
ple, we would expect that the infinite-valued semantics that we have developed and the
domain theoretic infinite-valued semantics of [8] have close connections similar to those
shared by the respective semantics for positive programs. A more intriguing question,
however, arises from considering the three-valued extensions of Bezem’s semantics and
the domain theoretic semantics. It is natural to wonder if the failure of Bezem’s approach
under the well-founded (and the stable model) semantics is an inherent shortcoming of
the technique or a more general problem.

We re-examine the counterexample of Section 5.2.2 but now with this broader question
in mind. In particular, we indicate that in order to achieve an extensional three-valued se-
mantics for higher-order logic programs with negation, one has to make some (arguably)
non-standard assumptions regarding the behaviour of negation in such programs. In this
respect, a logic with an infinite number of truth values appears to be a more appropriate
vehicle for achieving extensionality. In the following discussion, we assume some basic
familiarity with the main intuition behind the approach described in [8].

Consider again the program of Section 5.2.2. Under the infinite-valued adaptation of
Bezem’s approach given in Section 5.2.3 and also under the domain-theoretic infinite-
valued approach of [8], the semantics of that program is extensional. The reason is that
both of these approaches differentiate the meaning of p from the meaning of q. The truth
domain in both approaches is the set V∞, where Fα and Tα represent different degrees
of truth and falsity. Under this truth domain, predicate p (intuitively) corresponds to the
infinite-valued relation:

p = {(v, v) | v ∈ V∞}
while predicate q corresponds to the relation:

q = {(Fα, Fα+2) | α < Ω} ∪ {(0, 0)} ∪ {(Tα, Tα+2) | α < Ω}
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where Ω is the first uncountable ordinal. Obviously, the relations p and q are different as
sets and therefore it is not a surprise that under both the semantics of Section 5.2.3 and
of [8], the atoms (s p) and (s q) have different truth values. Notice, however, that if we
collapse p and q in three-valued logic (i.e., if we map each Fα to F , each Tα to T , and 0
to 0), the collapsed relations become identical.

Assume now that we want to devise an (alternative to the one presented in Section 5.2.2)
extensional three-valued semantics for H programs. Under such a semantics, it seems
reasonable to assume that p and q would correspond to the same three-valued relation,
namely {(v, v) | v ∈ {F, 0, T}}. Notice however that from a logic programming perspec-
tive, p and q are expected to have a different operational behaviour when they appear
inside a program. In particular, given the program:

s Q ← Q (s Q)
p R ← R

we expect the atom (s p) to have the value F (due to the circularity that occurs if we try
to evaluate it), while given the program:

s Q ← Q (s Q)
q R ← ∼(w R)
w R ← ∼R

we expect the atom (s q) to have the value 0 due to the circularity through negation. At
first sight, the above discussion seems to suggest that there is no way we can have a
three-valued extensional semantics for all higher-order logic programs with negation.

However, the above discussion is based mainly on our experience regarding the be-
haviour of first-order logic programs with negation. One could argue that we could devise
a semantics under which (s q) will also return the value F . One possible justification for
such a semantics would be that the definition of q uses two negations which cancel each
other, and therefore we should actually expect q to behave exactly like p when it appears
inside a program. It is worth noting that such cancellations of double negations appear
in certain semantic approaches to negation. For example, for certain extended proposi-
tional programs, the semantics based on approximation fixpoint theory has the effect of
canceling double negations (see for example [15][page 185, Example 1]). This approach
is used as the basis of the three-valued extensional semantics developed in [10].

We believe that a comparative evaluation of the merits of the approach of [10] and the
infinite-valued approaches of Section 5.2.3 and of [8] is an interesting project for future
research.
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