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ABSTRACT

Data are gathered constantly, grow exponentially, and are considered a valuable asset.
The need for extensive analysis has emerged by various organizations and researchers.
However, they can be sensitive, private, and protected by privacy disclosure acts making
data processing by third-parties almost impossible. We propose a protocol for data pro-
cessing where data controllers can register their datasets and entities can request data
processing operations by data processors. A distributed ledger is used as the controller of
the system serving as an immutable history log of all actions taken by the participants. The
blockchain-based distributed ledger provides data accountability, auditability and prove-
nance tracking. We also use a Zero Knowledge Verifiable Computation scheme where
a data processor is enforced to produce a proof of correctness of computation without
revealing the dataset itself that the requestor verifies. This records the fact that correct
processing has taken place without disclosing any information about the data.

SUBJECT AREA: Blockchain

KEYWORDS: distributed ledger, accountability, privacy preserving, data processing, zero
knowledge proofs



ΠΕΡΙΛΗΨΗ

Ο όγκος των δεδομένων που συλλέγονται καθημερινά σημειώνει εκθετική αύξηση, ενώ
η κατοχή τους θεωρείται πολύτιμη. Η ανάγκη για εκτένη ανάλυση έχει αναδειχθεί μέσα
από το έργο διαφόρων ερευνητών και οργανισμών. Ωστόστο, τα δεδομένα αυτά μπορεί
να είναι ευαίσθητα και να υπάγονται σε ρυθμιστικές νομοθεσίες απορρήτου κάνοντας την
επεξεργασία από τρίτους αδύνατη. Προτείνουμε ένα πρωτόκολλο στο οποίο επεξεργαστές
δεδομένων (data processors) έχουν την δυνατότητα να καταχωρήσουν σύνολα δεδομένων
(datasets) για τα οποία μπορούν να γίνουν αιτήσεις επεξεργασίας οι οποίες διεκπαιρεώνονται
από επεξεργαστές δεδομένων (data processors). Ένα κατανεμημένο μητρώo (distributed
ledger) χρησιμοποιείται ως διαχειριστής του συστήματος λειτουργώντας ως ένα αμμετάβλητο
ιστορικό όλων των ενεργειών των συμμετεχόντων. Το κατανεμημένο μητρώο παρέχει
τις ιδιότητες της λογοδοσίας, του ελέγχου και της παρακολούθησης της προέλευσης των
δεδομένων. Επίσης, χρησιμοποιείται ένα σχήμα Μηδενικής Γνώσης Ορθότητας Υπολογισμού
(Zero Knowledge Verifiable Computation) μέσα από το οποίο οι επεξεργαστές δεδομένων
υποχρεούνται να παράξουν μια απόδειξη ορθότητας υπολογισμού, χωρίς να αποκαλείψουν
το ίδιο το σύνολο δεδομένων, την οποία ο αιτών (data requestor) και επαληθεύει. Κατά
αυτό τον τρόπο πιστοποιείται το γεγονός ότι πραγματοποιήθηκε η σωστή επεξεργασία
δεδομένων χωρίς να αποκαλυφθούν επιπλέον πληροφορίες σχετικά με αυτά.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Blockchain

ΛΕΞΕΙΣΚΛΕΙΔΙΑ: κατανεμημένο μητρώο, υπευθυνότητα, ιδιωτικότητα, επεξεργασία δεδομένων,
αποδείξεις μηδενικής γνώσης
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Αccountable and privacy preserving data processing via distributed ledgers

1. INTRODUCTION

1.1 Overview

Some say we live in the Big Data era where data are being created and gathered in a
rapid pace [181]. Technological breakthroughs over the past ten years in software and
hardware have given rise to unprecedented ability to store and analyze data from vari-
ous sources – digital or, digitized, wearables or IoT devices with all kinds of sensors – to
personal data collected from everyday routine activities, medical records, bank accounts,
mobility or CCTV. Such data are commonly used in statistical techniques which can iden-
tify patterns and relations that can lead to the predictions of otherwise unknown events.
They can, therefore, be beneficial for researchers and organizations, anyone who is in-
terested in making sense of complex behavioral, financial, climatic, anthropological, and
chemical phenomena. However, data related to people, personal data, are and should
remain sensitive in terms of privacy. Many countries have forced correspond legislation,
rendering such data legally inaccessible to anyone. The value of human data is huge,
in financial, scientific and political terms. Harvesting and processing data in a privacy
preserving manner is both very crucial and very challenging.

In 2008, the emergence of the blockchain technology highlighted new ways of data ex-
change. Its main property being its ability to achieve consensus among trustless entities
connected through a decentralized network [79], the blockchain could provide the corner-
stone technology and logic for data sharing without compromising privacy.

The blockchain utilizes the cryptographic primitives necessary for transaction trackability
and data provenance tracking. It is an immutable log that keeps record of all the partic-
ipants’s actions. It ensures the accountability of the participants consequently enforcing
non-repudiation. Such properties of the blockchain make it a useful tool for data exchange
and processing.

Choosing to use the blockchain to perform as a system controller means also having to
deal with its limitations. It is argued that the blockchain is unsuitable for high performance
transactions [158, 179] or as a database replacement. The existing technology behind
blockchain is not made for big data. The amount of data that blockchain can store and
process is very limited and off-chain data frameworks needs to be combined.

The implementation of the above concepts, trying to overcome the recurring problems, is
the main goal of this thesis. Alongside the previous goals, emphasis is put on zero knowl-
edge verifiable computations which can produce a proof of correctness of computation
over a dataset allowing the verification of the proof hiding sensitive input.

1.2 Thesis structure

The present thesis is organized as follows. In Section 2, we give common definitions and
basic properties of various cryptographic primitives used in the following sections. In Sec-
tion 3 the blockchain is presented – its history, its internal components, and how these
components work. In Section 4 we analyze the various obstacles of privacy preserving
data sharing and how the blockchain could be a useful component in the sharing ecosys-
tem. In Section 5 and 6 a solution is being developed and analyzed, including security
assumptions, high level architecture and implementation details. In Section 7, we present
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the results of various experiments regarding blockchain data storage and zkSNARK con-
struction. Various ideas for system improvement are presented in Section 8. Further and
related work is also discussed in Section 9. Finally, a concluding statement summing up
the findings of this research is included in Section 10.
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2. PRELIMINARIES

2.1 Overview

Cryptography is the art and science of securing digital information, transactions, and dis-
tributed computations in the presence of third parties [101]. Cryptography is directly re-
lated to data privacy and anonymity requirements. The blockchain is a good example of
cryptography embracement to enable the sought trust needed for the exchange of digital
assets. In this section we review the basic building blocks that cryptography provides to a
data sharing system when the blockchain is used. In this Section, cryptographic schemes
are introduced in order to lay the ground for the following research. As a result, the expo-
sition style will not be formal in well known cases.

2.2 Cryptographic Hash Functions

A hash function is a function which takes an input of arbitrary length and returns a fixed-
length value [30,101,102,119]. The hash output value is called digest.

Hash functions have many applications. They are used in data structures – such as hash
tables – in authentication schemes, password verification and data identifiers to name just
a few.

A hash function guarantees at a minimum that for the same input yields the same output.
The size of the output is fixed, thus the output range is finite. For this reason it is possible
two different inputs produce the same output. This phenomenon is called collision.

Cryptographic hash functions have much stronger properties than regular hash functions.
Ideal cryptographic hash functions should be easily computable, noninvertible and collision-
resistant [101,102,119]. A cryptographic hash function H is a deterministic polynomial al-
gorithm that takes as input any given string x ∈ {0, 1}∗ and outputs a string H(x) ∈ {0, 1}k
where k is of fixed size. In the case of a hash function H, a collision is a pair of distinct
messages m0,m1 where m0 ̸= m1 and H(m0) = H(m1). A hash function H is collision-
resistant if it is infeasible for any polynomial-time algorithm to find collisions.

Three levels of security [101] can be identified:

• Preimage resistance: Given a digest h it is hard to find any messagemwithH(m) =
h

• Second preimage resistance: For any given message m0 it is hard to find a second
message m1 ̸= m0 such as H(m0) = H(m1)

• Collision resistance: It is hard to find a pair of messages m0,m1 where m0 ̸= m1

and H(m0) = H(m1)

Collision resistance is the strongest security property and a requirement for cryptographic
hash functions.

In a data sharing system, cryptographic hash functions can be used to provide file integrity
verification and provenance tracking [13, 181]. File modifications in transit can be easily
detected, as all changes output a different digest. A digest of a dataset serves as a means
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of unique file identification; unique persistent identifiers (PID) can be used as pointers to
a data location. Any change to the PID is visible and trackable [83].

Cryptographic hash functions are heavily used in the blockchain. They are used to create
unique transactions and block IDs, to provide proofs of inclusion – meaning to prove if
a transaction is contained in a block – and, most importantly, to achieve decentralized
consensus among the participants. In particular, Bitcoin makes use of the SHA256 and
RIPEMD160 hash functions. That said, cryptographic hash functions play an important
role in the blockchain ecosystem.

2.3 Symmetric-key cryptography

In a symmetric cryptosystem two parties share a common secret key agreed prior to com-
munication. The key is used for both encryption and decryption. When a party wants to
securely send a message she has to use the secret key to encrypt it and then sent it. The
receiver uses the same secret key to decrypt and recover the message. More formally, a
symmetric cryptosystem is composed of the following algorithms [101,102]:

• A key generation algorithm G that takes as input a security parameter 1n and out-
puts a key k.

• An encryption algorithm E that takes as input a key k and a plaintext m and outputs
a ciphertext c.

• A decryption algorithmD that takes as input a key k and a ciphertext c and outputs
a plaintext m.

The set of all possible keys which can derive from the key generation algorithm G is called
the key space K. Respectively, the set of all possible plaintext is called the plaintext
message space denoted M, and the set of all possible ciphertexts is called ciphertext
message space denoted C. In practice, keys are usually of some fixed length; 256-bit
keys are very common. On the other hand, messages and ciphertexts can be of arbitrary
length. For example, a message may be a video or a music file or even a single bit.

A symmetric cryptosystem must satisfy the correctness property: for all m ∈M and k ∈ K,
it holds that:

Dk(Ek(m)) = m

Any deterministic cryptosystem can not be secure [101,102]. For this reason, randomness
is essential to any encryption scheme.

In the following chapters the notions of cipher and symmetric encryption scheme or sym-
metric scheme are identical and will be used interchangeably.

2.3.1 Block Ciphers

A block cipher is a deterministic algorithm that encrypts blocks – a sequence of bits – of
fixed length. The plaintext and the ciphertext is always of the same size. The size is fixed
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by the block cipher and is called the block size. The message space M and ciphertext
space C are the same finite set {0, 1}n and the key space is K = {0, 1}l.

Formally, a block cipher is a keyed permutation function F : {0, 1}n × {0, 1}l → {0, 1}n
where n is the block size and l the key size. Usually, the block size and the key size are
the same; common key and block sizes range from 128 to 512 bits. The function F must be
one-to-one for every key k ∈ K and both F and its inverse F−1 should be easily computed;
there is polynomial-time algorithm that given k computes F and F−1. The number of total
permutation a block cipher can produce is 2n!.

The security of a block cipher is much stronger than semantic security [30]: A permutation
produced by F is indistinguishable from a random permutation. Cryptographic schemes
based on block ciphers with rigorous proofs of security can, therefore, be constructed.

AES
128 bits

m
128 bits

c

128 bits

k

Figure 1: Block cipher AES

2.3.1.1 Modes of Operation [101]

A mode of operation is a way to encrypt arbitrary-length messages using block ciphers
of fixed message length. A message is broken into l blocks of size n, the block cipher
operating on each block. If the size of the last block is less than the block size, the block
is padded to a full size block. In most modes of operation, a random initial vector (IV) of
length n is required. The IV ensures distinct ciphertexts for each encryption even for the
same plaintext and key. The IV is not secret as it is crucial for completing decryption. For
a mode to be secure, the IV must be distinct and random in each encryption [101]

Several modes of operation are presented below. These modes are vulnerable either to
padding oracle attacks [168] – attacks that exploit the padding validation to decrypt the
ciphertext – or malleable [58] – the property of transforming one ciphertext into another
which decrypts to a different plaintext. To countermeasure padding oracle attacks, or
changes to the ciphertext, message authentication [101] should be used along with en-
cryption to detect tampering with the ciphertext. Notable modes that combine encryption
with authentication are Counter with CBC-MAC (CCM), Offset Codebook Mode (OCB) and
Galois/Counter Mode (GCM).

Electronic Codebook (ECB)

The Electronic Codebook (ECB) is the simplest mode of operation. Given a plaintext m =
m1,m2, . . . ,ml each block is encrypted separately. The ciphertext is c = Fk(m1), Fk(m2), . . . , Fk(ml).
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ECB mode is not secure and should never be used.

Cipher Block Chaining (CBC)

The Cipher Block Chaining (CBC) mode outputs a sequence of cipher blocks where each
plaintext block is XORed with the previous ciphertext block. Each ciphertext is dependent
on all preceding blocks. First, a random IV of length n is selected. The first plaintext block
is XORed with the IV. The second block is XORed with the first cipher block c1. In general,
let c0 = IV then ci = Fk(ci−1 ⊕mi), ∀i ∈ [1, l].

The main drawback of CBC mode is that encryption and decryption are sequential – mean-
ing that they cannot be parallelized.

Output Feedback (OFB)

The Output Feedback (OFB) mode uses the block cipher to generate a pseudorandom
stream which is then XORed with the plaintext. The stream is generated only by repeatedly
encrypting the IV independently of the plaintext. The stream is generated as follows. Set
the i-th block of the stream to ri = Fk(ri−1) where r0 = IV

r←− {0, 1}n. The ciphertext is
produced by XORing the plaintext with the appropriate stream block; that is, ci = mi ⊕ ri.

As in CBC, the encryption and decryption cannot be parallelized. On the other hand, the
pseudorandom stream can be computed independently of the actual message encryption
and can be prepared ahead of time.

Counter (CTR)

The Counter (CTR) mode, like OFB, also generates a pseudorandom stream. First, a
random CTR

r←− {0, 1}n is chosen – much like the IV in previous modes. The stream
is generated as ri = Fk(CTR + i) where r0 = CTR. Same as before, the ciphertext is
computed as ci = mi ⊕ ri.

CTR mode has many advantages. One of the main advantages of CTR mode is that both
encryption and decryption can be fully parallelized. Secondly, as with OFB, the stream can
be computed in advance. Finally, it is possible to decrypt the i-th block of the ciphertext
without having to decrypt any other cipher block. This property is called random access.

2.4 Public Key Cryptography

As we see in 2.3 a secret key needs to be agreed upon prior to communication. In 1976,
Whitfield Diffie and Martin Hellman published a paper called New Directions in Cryptog-
raphy [56] which changed completely the way we communicate. The two cryptographers
proposed a protocol that enabled two parties, having no prior communication, to establish
a secret key over an insecure channel in the presence of eavesdropping adversaries. The
protocol uses two keys, one for encryption and one for decryption. The encryption key is
called the public key and the decryption key is called the secret key (or private). Every
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Figure 2: ECB mode
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Figure 3: CBC mode

Fk Fk Fk

⊕ ⊕ ⊕

IV

c1

m1

c2

m2

c3

m3

IV

Figure 4: OFB mode

party has a key pair, consisting of a public and a secret key. The public is available to any-
one who wants to sent an encrypted message to the key holder – the receiver may post
the public key online beforehand. The receiver of the message decrypts the ciphertext
with the use of her private key. Only the owner of the private key can decrypt a message
that was encrypted using the corresponding public key. Any key pair is essentially an
identity and the blockchain smartly utilizes it to provide anonymous identities to the users
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Figure 5: CTR mode

of the system.

A public-key encryption scheme is composed of the following probabilistic, polynomial-
time algorithms [101,102]:

• The key generation algorithm G: Takes as input a security parameter 1n it and
outputs a key pair (pk, sk).

• The encryption algorithm E : Takes as input a public key pk and a plaintext m and
outputs a ciphertext c.

• The decryption algorithm D: Takes as input a private key sk and a ciphertext c and
outputs a plaintext m.

Likewise, a public-key cryptosystem must satisfy the correctness property: for all m ∈M
and (pk, sk) ∈ K, it holds that:

Dsk(Epk(m)) = m

Many important and widely used public-key schemes base their security on mathematical
problems that, under certain conditions, are assumed to be hard; they cannot be solved
in polynomial time. Such problems are the discrete logarithm and the factoring problem.

2.4.1 Discrete Logarithm and Diffie-Hellman Assumptions [101,102]

In cryptography a system is considered to be secure if it is provable secure. There are
cryptosystems which are perfectly secure [157], like the one-time pad [157], and others
that perfect security cannot be achieved. In the second case security can be proven by
computational security assumptions, in other words a reduction to a particular problem
which under certain conditions is assumed to be hard to solve in polynomial-time. Signif-
icant cryptographic schemes like the Diffie-Hellman key exchange and El Gamal encryp-
tion and signature protocol are built according to the discrete log computational hardness
assumption.

Definition 2.4.1.1. Let G be a cyclic group of order q and let g be a generator of G. The
discrete log problem (DLOG) is as follows: given a random element h ∈ G, find an integer
x ∈ Zq such that gx = h.
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Definition 2.4.1.2. The computational Diffie-Hellman problem (CDH) is as follows: given
a cyclic group G of order q, a generator g ∈ G, ga and gb where a, b

r←− Zq, compute gab.
Definition 2.4.1.3. The decisional Diffie-Hellman problem (DDH) is as follows: given a
cyclic group G of order q, a generator g ∈ G, and ga, gb, gc where a, b, c

r←− Zq, decide if
c = ab or c r←− Zq.

The DLOG problem is believed to be hard for specific group families of G. For example,
solving the DLOG for the subgroup of order q of Z∗

p, where p and q are primes of size
at least 2048-bits and 256-bits respectively, is considered infeasible. This assumption is
called the discrete log assumption.

The DDH problem is weaker than the CDH problem. It holds that DDH ≤ CDH; if an
adversary can solve CDH she can compute gab and compare it to gc and easily solve the
DDH.

2.5 Digital signatures

A digital signature is a fundamental cryptographic primitive. It is considered to be the
equivalent to a handwritten signature. It is a scheme that demonstrates the authenticity
of digital messages or documents.

In a digital signature scheme, each party holds a unique key pair (pk, sk). A message m
is uniquely signed with the signing key sk and the verification key pk is used to verify the
signature. Only someone who knows sk can sign a message, but all parties that have
access to pk can verify a signature.

Digital signatures have the following important properties:

• Authentication: The message is signed by a known sender

• Non-repudiation: The sender cannot deny sending the message

• Integrity: The message is not altered in transit

Digital signatures are commonly used for software distribution and financial transactions
and in cases where forgery detection is important. The blockchain uses digital signatures
to provide asset ownership; the rightful owner signs the transaction to prove her posses-
sion of the asset.

A digital signature scheme is composed of the following probabilistic polynomial-time al-
gorithms [101,102]:

• The key generation algorithm Gen: Takes as input a security parameter 1n and
outputs a key pair (pk, sk).

• A signing algorithm Sign: Takes a signing key sk and a message m and produce
a digital signature σ of m

• A deterministic verification algorithm V erify: Takes a verification key pk and a
signature σ. It outputs b = 1 or b = 0 (true or false) to indicate if the signature is
valid.

The primary goal of digital signatures is unforgeability; an adversary cannot create a new
valid message-signature pair without the corresponding signing key.

C. Nasikas 25



Αccountable and privacy preserving data processing via distributed ledgers

2.5.1 El Gamal Signature Scheme

The El Gamal Signature Scheme [65] is a digital signature scheme based on the difficulty
of the discrete logarithm problem (§ 2.4.1).

The scheme works as follows:

• Key Generation:

1. Choose a cryptographic hash function H where H : {0, 1}∗ → {0, 1}n

2. Choose a prime p such that the DLOG problem is difficult
3. Find a generator g of the group Z∗

p

4. Choose randomly x
r←− Zq

5. Compute h = gxmodp

6. Return (h, x) where h is the public key and x the private key

• Sign: Sign a message m ∈ {0, 1}∗ with a private key x

1. Choose randomly k
r←− Zq such that gcd(k, p− 1) = 1

2. Compute r = gkmodp

3. Compute s = k−1(H(m) + xr)mod(p− 1)

4. Return the signature (r, s)

• Verify: Verify a signature (r, s) of the message m with a public key h

1. Verify that r ∈ Zq and s ∈ Zq. Else ouput 0.
2. Compute v = H(m)

3. If v ?
= (hrrs)modp then output 1 else 0.

2.5.2 Digital Signature Algorithm (DSA)

The Digital Signature Algorithm (DSA) [78] is a variant of the El Gamal signature scheme.
The DSA was standardized by the National Institute of Standards and Technology (NIST).
The main advantage of DSA over El Gamal Signature is the size of the signature. DSA
produces signatures of 320-bit in size, in comparison to El Gamal where at least 2048-
bit signatures are required for it to be secure according to contemporary security stan-
dards [34].

The algorithm works as follows [34]:

• Key Generation:

1. Choose a cryptographic hash function H where H : {0, 1}∗ → {0, 1}n

2. Choose a prime q of size n

3. Choose a prime p such that p− 1 is a multiple of q of size l. The size of l must
be a multiple of 64 between 512 and 1, 024

4. Choose randomly a
r←− Zp
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5. Compute g = a(p−1)/qmodp

6. Choose randomly x
r←− Zq

7. Compute h = gxmodp

8. Return ((p, q, g), h, x) where (p, q, g) is the public parameters of the algorithm, h
is the public key and x the private key.

• Sign: Sign a message m ∈ {0, 1}∗ with a private key x

1. Choose randomly k
r←− Zq

2. Compute r = (gkmodp)modq

3. Compute s = k−1(H(m) + xr)modq

4. Return the signature (r, s)

• Verify: Verify a signature (r, s) of the message m with a public key h

1. Verify that r ∈ Zq and s ∈ Zq. Else ouput 0.
2. Calculate w = s−1modq

3. Calculate u1 = (H(m)w)modq

4. Calculate u2 = (rw)modq

5. Calculate v = ((gu1hu2)modp)modq

6. If v ?
= r then output 1 else 0.

2.6 Elliptic-curves

Elliptic curves (ECC) play an import role in cryptography. All cryptosystems presented in
previous chapters are built over multiplicative groups of integers modulo a sufficient large
prime p [30, 102]. Elliptic curves are additive abelian groups [102]; a group satisfying as-
sociativity, commutativity, and existence of identity element and of inverse element under
the addition group operation [88].

There are two apparent benefits for using curves over modular groups [102]. The first
is cost efficiency. In practice, cryptosystems that their security depends on the discrete
log problem or the factorisation problem on a modular group, such as the El Gamal or
the RSA, the primes have to be at least 2048 bits for the system to be secure. On the
other hand, elliptic curves offer similar security using much smaller key sizes. A 233-bit
elliptic curve key gives the same level of security as a 2,240-bit RSA key [114, 165] and
a 333-bit elliptic curve key as a 4096-bit RSA key [27]. The second reason is that a way
to generalize the attacks against the discrete logarithm problem on a modular group to
elliptic curves [102] has not been found yet.

Cryptography is primarily interested in elliptic curves over Fp: the field of integers modulo
p, where p is a prime number. An elliptic curve E over Fp is defined by the equation of the
form [88,170]:

y2 = x3 + ax+ b

where a, b ∈ Fp. A pair (x, y) where x, y ∈ Fp is a point on the curve if it satisfies the
equation where E is defined. There is a special point, called point at infinity and denoted
by∞, where is also on the curve and serve as the identity element [88].
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y2 = x3 − x+ 1

x

y

Figure 6: Elliptic curve

2.6.1 Points addition [170]

Let P = (x1, y1) and Q = (x2, y2) be two points on the elliptic curve E where P ̸= Q and
P,Q ̸= ∞. Any two points on a curve add to produce a third point on the curve. A third
point R = (x3, y3) on the curve E is defined as:

R = P +Q

We can find the third point R as follows:

1. Draw the line L through P and Q.

2. Find the third point −R that L intersects with.

3. Reflect −R across the x-axis to obtain R

The slope of the line L can be found as

m =
y2 − y1
x2 − x1

and assuming x1 ̸= x2 the equation of L is

y = m(x− x1) + y1

To find the intersection with E, substitute y to get

(m(x− x1) + y1)
2 = x3 + ax+ b

The three roots of cubic polynomial correspond to the three points of intersection of L with
E. As we already know the two of the tree roots, since P and Q are points on both L and
E, finding the third root is easy. For a cubic polynomial x3 + ax2 + bx+ c with roots r, s, t it
holds that [170]
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P

Q −R

R = P +Q

x

y

Figure 7: Addition of points on elliptic curves

x3 + ax2 + bx+ c = (x− r)(x− s)(x− t) = x3 − (r + s+ t)x2 + . . .

Therefore,

r + s+ t = −a

Knowing the two roots r, s we can recover the third as t = −a− r − s.

So, to find the third point where L intersects with E we obtain

x = m2 +−x1 − x2

and

y = m(x− x1) + y1

Finally, to reflect−R to the x-axis to obtain R we change the sign of y1. The final equations
that give the third point are

x3 = m2 +−x1 − x2, y3 = m(x1 − x3)− y1

2.6.2 Points doubling [170]

Let P = (x1, y1) a point on the elliptic curve E where P ̸= −P and P ̸= ∞. Then 2P =
(x3, y3). Unlike 2.6.1 where there are two points, in point doubling we have only one point,
thus we cannot draw the line L. In that case, we use the tangent line L to the curve E at
point P .

The slope of L can be found as:
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m =
dy

dx
=

3x2
1 + a

2y1

Assuming y1 ̸= 0 the equation of L is

y = m(x− x1) + y1

Therefore, proceeding as in 2.6.1, we obtain

x3 = m2 +−2x1, y3 = m(x1 − x3)− y1

2.6.3 Elliptic curve discrete logarithm problem (ECDLP)

Cyclic subgroups of some elliptic curve groups can be used to implement secure sys-
tems based on the discrete logarithm problem. The DLOG is assumed to be hard, like in
multiplicative groups.

Definition 2.6.3.1. The elliptic curve discrete logarithm problem (ECDLP) is as follows:
given an elliptic curve E over a finite field Fp and two points P,Q ∈ E, find an integer
d ∈ Zp such that Q = dP .

The parameters that describe an elliptic curve E defined over a finite field Fp, a base
(generator) point P ∈ E, and its order q should be chosen carefully so that the ECDLP is
resistant to all known attacks.

2.6.4 Key generation [88]

Let E be an elliptic curve over Fp and P a generator point in E of order q. The key pair
generation algorithm is defined as follows:

1. Select a random integer d r←− ∈ Zq

2. Compute Q = dP

3. Return the tuple (Q, d) where Q is the public key and d the secret key

The prime p, the curve E the generator point P , its order q and the public key Q are public.
Finding the secret key d is equivalent to solving the ECDLP.

2.6.5 Elliptic Curve Digital Signature Algorithm (ECDSA)

The Elliptic Curve Digital Signature Algorithm (ECDSA) [98] is a variant of the Digital Sig-
nature Algorithm (DSA) which uses elliptic Curves. It is the most widely adopted elliptic
curve-based signature scheme [88].

Let E be an elliptic curve over Fp, a generator point P of order q and H a cryptographic
hash function where H : {0, 1}∗ → {0, 1}q. The ECDSA is defined as follows [88]:
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• Key generation: Run elliptic curve key generation algorithm defined in 2.6.4 and
get a key pair (Q, d).

• Sign: Sign a message m with a private key d

1. Choose randomly k
r←− Zq

2. Compute the point kP = (x1, y1)

3. Compute r = x1modq. If r ?
= 0 then go to step 1

4. Compute e = H(m)

5. Compute s = k−1(e+ dr)modq. If s ?
= 0 then go to step 1

6. Return the signature (r, s)

• Verify: Verifies a signature (r, s) of the message m with a public key Q

1. Verify that r ∈ Zq and s ∈ Zq. Else ouput 0.
2. Compute e = H(m)

3. Compute w = s−1modq

4. Compute u1 = (ew)modq and u2 = (rw)modq

5. Compute X = u1P + u2Q

6. If X ?
=∞ output 0

7. Take x1 cordinate of X and compute v = x1modq

8. If v ?
= r then output 1 else 0.

Blockchain uses elliptic curves for key pair generation and transaction signing (ECDSA).
Bitcoin and Ethereum use a specific elliptic curve for ECDSA [98] whose parameters are
defined in the secp256k1 standard [142].

2.7 Homomorphic Encryption

Homomorphic encryption allows to perform specific types of computation on encrypted
data. Computations performed over a ciphertext return encrypted results. When the re-
sults are decrypted they match the results of the operations as if they had been performed
on the plaintext. An encryption scheme is called homomorphic when it has the homo-
morphic property. In particular, if for all m1,m2 ∈ M and k ∈ K (secret key or public
key):

Enck(m1)⊗ Enck(m2) = Enck(m1 ⊕m2)

then the encryption scheme is homomorphic.

Homomorphic encryption schemes are by nature malleable and have weaker security
properties than non-homomorphic schemes. Various known encryption schemes are ho-
momorphic such as the unpadded RSA and El Gamal.
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2.8 Zero Knowledge Proofs [102]

A proof of knowledge is a protocol that enables one party to convince another of the validity
of a statement. In a zero-knowledge proof [82] this is accomplished without revealing any
information beyond the legitimacy of the proof [102]. In other words, one party can prove
to another party that a given statement is true, without conveying any information apart
from the fact that the statement is indeed true.

Let P be a prover and V the verifier. P must convince V that she has some knowledge of
a statement x without explicitly stating what she knows. We call this knowledge a witness
w. Both parties are aware of a predicate R that will attest to w being a valid witness to
x [102]. In general,

• The predicate R is assumed to be polynomial-time computable.

• The prover P has R, x, and w such that R(x,w) = 1. She wishes to prove possesion
of w by producing a proof of knowledge π.

• The verifier V has R, x, and π.

• Given R it is hard to find a corresponding w such as R(x,w) = 1

• The prover P is unwilling to reveal w; otherwise the solution is trivial.

• The verifier V can efficiently check the validity of π.

2.8.1 Examples

2.8.1.1 The strange cave of Ali Baba

Let’s bring in all cryptographers’ old friends, Alice and Bob, and let them play the following
game: at the bottom of the cave [143] of figure 8 there is a magic door that can only
open with a secret password. The cave has one entrance on one side and a magic door
blocking the entrance on the opposite side. Bob knows the secret password and he wants
to prove that to Alice without revealing the password. Bob proposes the following game
to prove that he can open the magic door: Alice has to wait outside of the cave, while Bob
enters the cave and takes either the left or the right path. Alice cannot see which path Bob
is taking. Then, Alice enters; standing at the entrance of the cave, she calls Bob to come
out from either the left or the right passage. Bob does so, using the secret password if
necessary.

If Bob does not know the secret password he has 1/2 change of guessing correctly as
Alice chooses at random which path Bob is taking. If this process is repeated k times
the probability of Bob convincing Alice that he knows the secret password without actually
knowing is exponentially reduced – at most 1/2k.

2.8.1.2 The colour-blind friend

Now, suppose that Bob is color-blind [39] and Alice keeps two balls of the same size in
her hands, one red and one green. To Bob they seem identical and he is not sure which
one is which. Alice wants to prove him that indeed they are of different colour, without
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Alice

Bob

(a) Alice stands outside
and Bob choose randomly

a path, left or right

Alice
Bob

Left

(b) Alice calls to Bob,
asking him to come out
either the left or the right

passage

Alice

Bob

OK

(c) Bob complies
appearing at the exit

Alices names

Figure 8: Ali Baba Cave

revealing which one is red and which is green. To prove her knowledge, she tells Bob to
hold the two balls, one on each hand. Alice can see at this point which ball is in which
hand. Next, he can either switch hands behind his back or leave them be. Finally, he
reveals them. Alice can say with certainty whether he switched hands or not. Have the
balls had the same color, they would have been indistinguishable. There would have been
no way Alice could guess the right answer with probability higher than 1/2. If they repeat
this k times the probability that Alice succeeds when the balls are identical is at most 1/2k.

2.8.2 Formal Definition [102]

Let < P ,V > be a pair of interactive programs. Define outPP,V(x,w, z) to be the output of
P when both P and V are executed with the public input x and private inputs w and z (P
determines w and V choose z); outVP,V(x,w, z) is similar defined for V. The PPT interactive
protocol < P ,V > is a zero-knowledge proof for a language L ∈ NP with knowledge error
k and zero-knowledge distance ε if the following properties hold [102].

1. Completeness: If x ∈ L and R(x,w) = 1 for some witness w, then outVP,V(x,w, z) =
1 for all string z with overwhelming probability in v.

2. Soundness: For any polynomial-time program P∗ define for arbitrary x,w, z,

πx,w,z = Prob[outVP∗,V(x,w, z) = 1].

A protocol< P ,V > satisfies soundness if there are non-negligible functions s(v), q(v)
such for all P∗ here exists a probabilistic Turing machine (PTM) program K, called
a knowledge extractor with the following property. Suppose that

π̃ = Prob[K(x,w, z) = w
′
: R(x, x

′
) = 1].

Then it holds that πx,w,z ≥ s(|x|) implies that π̃x,w,z ≥ q(|x|).

3. (Statistical) Zero-knowledge: For each polynomial-time program V∗, there is a
PTM program S, called the simulator, such that for all x,w with R(x,w) = 1, the
random variables S(x, z) and outV

∗

P,V∗(x,w, z) are statistically indistinguishable for all
strings z:

∀A
∣∣∣Prob[A(S(x, z) = 1)]− Prob[A(outV

∗

P,V∗(x,w, z)) = 1]
∣∣∣ < ε.
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Completeness is very similar to correctness. Assuming both the prover and verifier fol-
low the protocol faithfully, completeness guarantees that the protocol will succeed with a
sufficiently high probability. Soundness ensures that if the statement is false, no cheating
prover can convince the honest verifier that it is true, except with some small probability.
Intuitively, statistical zero-knowledge is a property that prohibits a verifier from extracting
information from an honest prover. A weaker version of zero-knowledge is honest-verifier
zero-knowledge (HVZK) where it is assumed that the verifier executes the protocol faith-
fully, but makes additional computations.

2.8.3 Verifiable Computation (VC)

In devices such as mobiles or IoT devices where the computational power is often limited,
the need to outsource computation to one or more powerful workers on the cloud emerges.
Yet, confidence is required for the working entity to assure computation is done properly.
The client should be able to verify the correctness of the output. This way, the client is
protected from malicious or malfunctioning workers, and the legitimate worker is no longer
accountable for the computation [138]. This scheme is called public verifiable computation
(VC) [138].

In a public verifiable computation scheme the client outsources the evaluation of a function
F on input u – for example, a query. The client then can verify the correctness of the
computation of F (u) doing less work than the initial computation of F (u). The outsource
function F can take two inputs u and w, where w is the worker’s private input – for example,
a data set. In this case, the scheme is a Zero-Knowledge Verifiable Computation (or non-
interactive zero knowledge (NIZK) proof [29]) if the client learns nothing about the worker’s
input except the computation’s output [138].

Such schemes are not interactive, which means that no interaction is necessary between
prover and verifier (worker and client), and a common reference string (CRS) shared be-
tween them is enough to achieve computational zero-knowledge [29].

Formally, as defined by Parno et. al [138], a public Zero-Knowledge verifiable computation
scheme VC consists of a set of three polynomial-time algorithms:

• (EKF , V KF ) ← KeyGen(F, 1λ): The randomized key generation algorithm. It
takes as input the outsourced function F and a security parameter λ; it outputs a
public evaluation key EKF and a public verification key V KF .

• (y, πy)← Compute(EKF , u): The deterministic worker algorithm. It takes as input
the public evaluation key EKF and a public input u; it outputs y ← F (u,w), where w
is an auxiliary private input, and a proof π of y’s correctness.

• {0, 1} ← Verify(V KF , u, y, πy): The deterministic verification algorithm. It takes
as input the public verification key V KF , the public input u, the output y and the proof
πy; It outputs 1 if F (u) = y and 0 otherwise.

2.8.4 zk-SNARKs

A Non-interactive Zero-Knowledge proof (NIKZ) [29] is a zero-knowledge proof where
sharing a common reference string (CRS) between the prover and the verifier ahead of
time is enough to implement zero knowledge protocols without the need for interaction
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between the participants of the protocol. The zkSNARKs protocols are non-interactive
zero-knowledge proof protocols which have some extra properties regarding the size of
proof and the verification time.

The acronym zkSNARK stands for ‘Zero-Knowledge Succinct Non-Interactive Argument
of Knowledge’ in which each individual part – informally defined – have the following mean-
ing [21,25,120,147,152]:

• Zero-Knowledge: The verifier learns nothing but the validity of the computation

• Succinct: The proofs are sort and easy to verify in comparison to the actual com-
putation (constant size, and polynomial verifiable in the size of the proof).

• Non-Interactive: There is no or little interaction in one step. Anyone can verify the
proof, no need for new interaction (publicly verifiable).

• ARgument: Soundness (§ 2.8.2) holds only against computationally bounded provers.

• of Knowledge: If the verifier accepts a proof output by a computationally bounded
prover, then the prover has a witness for the given instance.

The first zkSNARKs constructions where inspired by the PCP theorem allowing faster
and shorter proofs [120]. In this section an analysis of the zk-SNARK model proposed by
Gennaro et al [80] and the Pinnochio protocol proposed by Parno et al [138] is attempted,
without getting into rigorous mathematical proofs, security assumptions or implementa-
tions. The purpose of this chapter is to provide a high level understanding of zkSNARKs
and their core mechanisms.

2.8.5 Main idea

In order to be able to construct a zkSNARKs for a computation problem it has to be en-
coded in a specific form, an equivalent to the original problem, from which zkSNARKs can
derive. This form is called Quadratic Arithmetic Program (QAP).

At a high level, zkSNARKs consists of four basic steps (Figure 9):

1. Computation to Arithmetic circuit [138]

2. Arithmetic circuit to Rank 1 Constraint System (R1CS) [80]

3. R1CS to Quadratic Span Program (QAP) [80]

4. QAP to zkSNARK [138]

Computation Arithmetic Circuit R1CS QAP zkSNARK

Figure 9: Steps of zk-SNARK
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2.8.5.1 Arithmetic circuits

An arithmetic circuit C over a finite field Fp is a circuit that contains only addition and
multiplication gates. It takes as inputs elements in Fp and its gates output elements in
Fp [21, 152]. The outputs are determined by the inputs which pass through the gates
where their values are changed accordingly. Any program can be reduced to an arithmetic
circuit [20, 137] and normally the circuit is associated to the function it computes – the
outsource function upon which the prover works.

A legal or a valid assignment for an arithmetic circuit C is a tuple (c1, c2, . . . , cn) ∈ Fp such
that C(c1, c2, . . . , ck) = (ck+1, c2, . . . , cn) where k is the number of all input and n − k the
number of all outputs of the circuit. Given a circuit evaluation, the task of the prover is to
convince the verifier that evaluations of intermediate gates exist, so that the circuit indeed
produces such an output with such an input [137]. For example, if Alice wants to prove to
Bob that she knows c1, c2, c3 ∈ Fp, such that (c1c2)(c1+ c3) = 7, first she has to encode the
computation to an arithmetic circuit C (the presentation of C is shown in Figure 10). Then
she wants to prove that she knows a valid assignment (c1, c2, c3, c4, c5), where c4 = c1c2
and c5 = c4(c1 + c3), such that c5 = 7.

c1 c2 c3

∗ +

∗

Figure 10: A simple arithmetic circuit

2.8.5.2 Quadratic Arithmetic Program (QAP) [120,177]

Geranno et. al [80] showed how to efficiently encode computations to quadratic programs
called Quadratic Arithmetic Programs (QAP), to obtain zk-SNARKs. QAPs play an im-
portant role as they enable the prover to construct the proof π where she claims that she
knows a valid assignment of a circuit C.

A QAP Q(C) = (L,R,O, T ) for a given circuit C is a set of three polynomials

L =
m∑
i=1

ciLi R =
m∑
i=1

ciRi O =
m∑
i=1

ciOi (m ≥ n)

and a target polynomial T such that T divides the polynomial:

P = LR−O
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if and only if (c1, c2, . . . , cn) is a valid assignment for C. The prover constructs the polyno-
mial for its proof π and the verifier checks the divisibility of P by T . Identically, P = TH
for some polynomial H.

To translate the C into a QAP the wires and gates must be labeled in a specific way:

• Each multiplication gate has exactly two input wires: a left and a right wire

• Each multiplication gate has a unique label

• Addition gates are not labeled

• Outgoing wires to more than one gate are labeled as one wire

• Outgoing wires from an addition gate to a multiplication gate are not labeled; the
inputs of an addition gate go directly to the multiplication gate

A label assignment of the circuit of Figure 10 is shown in Figure 11.

c1 c2 c3

∗g1 +

∗ g2

w1 w2 w3

w4

w5

Figure 11: Circuit label assignment

The circuit is ready to be transformed into a QAP. Let M be the set that contains the
indexes of the multiplication gates and W the set that contains the input and output wires.
The points in M are called target points. For each gate g ∈ M we construct a set of
left, right, and output polynomials as follows: for each wire a polynomial is constructed in
such way that it evaluates at zero on each target point except those that correspond to
the multiplication gate.

QAP construction of circuit of Figure 11: Gate g1, with target point 1, has w1 as left wire, w2

as right wire and w4 as output label. As the polynomial on point 1 that corresponds to g1
evaluates to 1 and on point 2 corresponding to g2 evaluates to 0, we construct L1 = R2 =
O4 = 2− x. Similar, for gate g2 L4 = R1 = R3 = O5 = x− 1. Note that the wires w2 and w3

are both right inputs of g2.

The wire polynomials:

L1 = (2− x) L2 = 0 L3 = 0 L4 = (x− 1) L5 = 0

R1 = (x− 1) R2 = (2− x) R3 = (x− 1) R4 = 0 R5 = 0
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O1 = 0 O2 = 0 O3 = 0 O4 = (2− x) O5 = (x− 1)

The total left, right and output polynomials:

L =
5∑

i=1

ciLi R =
5∑

i=1

ciRi O =
5∑

i=1

ciOi

= c1L1 + c4L4 = c1R1 + c2R2 + c3R3 = c4O4 + c5O5

= c1(2− x) + c4(x− 1) = c1(x− 1) + c2(2− x) + c3(x− 1) = c4(2− x) + c5(x− 1)

If we evaluate these polynomials at target points 1 and 2 we get:

P (1) = L(1)R(1)−O(1) P (2) = L(2)R(2)−O(2)

= c1c2 − c4 = c4(c1 + c3)− c5

Hence, T (x) = (x− 1)(x− 2) divides P (x) if and only if 1, 2 are roots of P (x). Identically,
the tuple (c1, c2, . . . , c5) is a valid assignment for C.

C. Nasikas 38



Αccountable and privacy preserving data processing via distributed ledgers

3. BLOCKCHAIN

A blockchain is a distributed transaction ledger [128]. It consists of a continuously growing
list of blocks which are linked, ordered, and immutable. Each block typically contains
a hash pointer being a link to a previous block, a timestamp and a list of transactions.
Transactions describe the transfer of assets from one entity to another. A distributed
network is formed by the users of the system without central control. Each node of the
network contains a local copy of the blockchain; the transaction ledger. To come to an
agreement on the correct ledger, the network uses a decentralized consensus mechanism
with which integrity is achieved and malicious activity is prevented.

Blockchains are potentially suitable for financial activities, the recording of events, medical
records [13,176], and other record management activities, such as identity management,
transaction processing or documenting provenance. Blockchain can be seen as a dis-
tributed immutable, tamper-proof, and audit log that records all data transactions. As a
result any attempt to tamper blockchain is immediately evident and easily detectable.

Bitcoin [128] is the first decentralized cryptocurrency, a monetary system without central
authority invented by an unknown person or a group of people under the name of Satoshi
Nakamoto [128]. Its ability to provide a solution to the double spending problem [100,
128] made it a powerful digital currency among physical currencies in less that 10 years,
triggering an explosion of more than 800 other digital coins.

The goal of this chapter is to present of the basic operating principles of the blockchain,
which are based on the foundation of cryptography – without getting to unnecessary details
or rigorous mathematical proofs. As Bitcoin was the first decentralized blockchain system
that put the bases for others to be made and involve [31, 36, 79], we mainly focus on
blockchain internals. Notable variations of blockchains that support features of our interest
are mentioned selectively further in this chapter.

3.1 History

Credit card transactions are the dominant payment method that is used on the web to-
day [130]. This system is handled by a financial system involving processors, banks,
credit card companies and other intermediaries. Normally a credit card transaction is re-
alized as follows: first, the buyer sends over his credit card details to the merchant; then
the merchant sends and validates the data in the financial system.

Buyers may not want to handle their credit card details to an unknown vendor over an
insecure channel. Intermediate services – such as Paypal – sits between the buyer and
the seller and the intermediate service approves the transaction and notify the seller. This
allows the buyer to keep his anonymity and avoid security risks.

The idea of digital cash was first introduced by David Chaum in his paper [40], entitled
“Blind Signatures for Untraceable Payments”, in 1983. In 1990 Chaum proposed the first
off-line e-cash system [42] and founded DigiCash [41], an electronic money corporation
that sent the first electronic payment in 1994.

Digital cash schemes are vulnerable to that is called double-spending [31, 79]. It comes
up when the same digital token is spent more than once. Chaum found a way to both keep
the system anonymous and prevent double-spendings with the use of blind signatures [40,
42]. Yet still, Chaum’s solution needed a centralized trusted oracle which validated the
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transactions. Many cryptographers attempted to improve Chaum’s scheme over the years.
Okamoto and Ohta [171], for example, in 1996 implemented coin subdivisions with the use
of Merkle trees [125].

About the same time, a group of cryptographers called Cypherpunks [94,129] was formed
and advocate the widespread use of strong cryptography and privacy-enhancing tech-
nologies [94] as a way to social and political change. Cypherpunks electronic mailing list,
through which they communicating originally, was the predecessor to the mailing list where
Satoshi Nakamoto would announce later Bitcoin [128]. Chaum’s ideas are supposed to
have set the technical roots of the vision of the Cypherpunk movement [129]. Chaum
patented the blind-signature scheme preventing others from developing ecash system
that use the same protocol. Violating Chaum’s patents, Cypherpunks implemented an
e-cash system called Magic Money [49] which further developed his technology.

However, DigiCash failed to gain public attraction. Its main problem was that banks and
merchants would not adopt it for commercial and financial purposes.

In 1991, Haber et al. [87] proposed a scheme for secure timestamping of digital documents
using digital signatures and hash pointers in previous documents, thus creating a chain
of document certificates. In an improvement which was proposed later documents were
collected into a block, all the blocks linked together in a chain. This data structure form of
the skeleton for Bitcoin’s blockchain.

A year later, cryptographers Dwork and Naor came up with a solution to email spam-
ming [62] by using computational puzzles.They created the idea ofProof-of-Work. In 1997,
Adam Back proposed a similar idea that he called Hashcash [15]. Back’s Proof-of-Work
system set the basis for Bitcoin’s consensus mechanism.

Wei Dai at 1998 proposed b-money [50], an anonymous distributed electronic cash sys-
tem, in which everyone could create money using a Proof-of-Work mechanism like Ηash-
cash. B-money used the notion of a secured timestamp ledger as used by Haber et al.
for digital documents [87].

In 2008, Satoshi Nakamoto published a paper under the title “Bitcoin: A Peer-to-Peer
Electronic Cash System” on The Cryptography Mailing list at metzdowd.com [8] describing
the Bitcoin protocol. The Bitcoin network came into existence on 3 January 2009 with the
release of the first Bitcoin client, wxBitcoin, and the issuance of the first Bitcoins [9, 69].
Bitcoin represents a decade long work of research in cryptography combining several prior
inventions [7].

Bitcoin is the first decentralized digital currency. The Bitcoin network is a fully distributed
peer-to-peer network that anyone can freely join by running an open source implementa-
tion of the bitcoin protocol. Bitcoin does not rely on a trusted central authority and was he
first applied solution to overcome the Byzantine Generals’ Problem [113]. Bitcoin makes
use a Proof-of-Work consensus mechanism that keeps the public ledger consistent, pre-
vents double-spends and confirms transactions. It can also be used to achieve consensus
on decentralized networks for elections, lotteries, asset registries, and more [7].

Running from 2009, Bitcoin is the most well studied Blockchain network [79] with various
published papers on different topics such as privacy [32, 148, 149, 153], economics [14,
24,37,115], attacks [17,70], network [59,91] and scalability [46,103,104]. Over the years,
Bitcoin’s blockchain has grown significantly is size making it difficult for certain devices to
store all of it and run as a full node. Specifically, In April 2018 the Bitcoin’s blockchain size
is over 160GB [28].
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Bitcoin does not scale efficiently. There is a limit on the amount of transactions the bitcoin
network can process. The maximum transaction processing capacity is estimated be-
tween 3.3 and 7 transactions per second [46]. The limit is related to the block size limit –
the total number of transactions a block can contain – that was introduced as an anti-spam
measure. Various solutions proposed to address this issue. One implemented solution is
Segregated Witness (SegWit, BIP 141) [26]. The SegWit implementation increased the
block size by a factor of approximately of two.

3.2 Identity

The identity of a blockchain user is defined as a cryptographic key pair (sk, pk), where sk is
the private key and pk the public key. The private key is used for spending a “coin” and the
public key is used as the receiving address of the user. No real-world name or identifying
information are required [31,128].

In Bitcoin, due to the public nature of the blockchain, it is possible to trace the flow of
money between addresses and conclude that they are likely controlled by the same individ-
ual [31,92]. For that reason, Bitcoin’s identity system is considered pseudonymous. The
underlaying non-anonymous Internet infrastructure – nodes leak their IP address when
broadcasting transactions – together with the availability of all bitcoin transactions in the
blockchain can be a threat to anonymity [31, 92, 124, 132, 146, 148]. Although Bitcoin let
users to create new addresses at any time for any transaction, various techniques, such as
transaction graph analysis, can be utilized to link together different addresses controlled
by the same user [31,124,132,146,148].

Different cryptocurrencies, such as Zerocash [152] and CryptoNote [167], were built dif-
ferently in ways that improve bitcoin’s anonymity. In particular, Zerocash utilize zero-
knowledge proofs (zkSNARKs [20]) which reveal no information at all about the amount
or recipients enabling a completely untraceable ledger. On the other hand, CryptoNote
uses ring signatures creating a mixing protocol satisfying both untraceability – for each
incoming transaction all possible senders are probable – and unlinkability. CryptoNote
compared to Zerocash has better performance but weaker anonymity [31].

3.3 Network

Blockchain networks are peer-to-peer networks. Anyone who wants to and spend and
receive coins can freely join and participate in the network by running a software on their
computer. All the nodes of the network are equal. There is no central server or trusted
authority, neither hierarchy within the network. Both the protocol as well as the software
are open. Every node connects to other peers of the network using peer-to-peer discov-
ery schemes. In Bitcoin, there are some nodes called seed nodes, that their IP address
is hardcoded in the code. This nodes can be used to quickly discover other nodes. Alter-
natively, a known IP address of a bitcoin node can be given manually.

3.4 Transactions

The basic data structure of the blockchain is transaction (tx). A transaction transfers assets
from one party to another. When a user wants to transfer coins to another user she must
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sign a transaction. The signature certify that the sender owns the coins.

A blockchain transaction can be described as a node with two edges, one incoming edge
and one outcoming edge [178]. The incoming edge describes the sender (from) and the
outcoming edge the recipient (to). Each edge have each entity’s address; its public key.
Every bitcoin transaction has a unique transaction id (txid)which is derived by double hash-
ing the transaction with the use of the SHA-256 cryptographic hash function. Payments
are done by linking transaction nodes and money can be view as a chain of transactions
where monetary value pass [178]. All transactions together form a transaction graph which
is public. Every participant of the network can access and add a new transaction to the
transaction graph.

tx
Alice

5mBTC
Bob

5mBTC

(a) Simplified

tx
1BvBMSEYstWetqTFn5Au4m4GFg7xJaNVN2

5mBTC
1J98t1WpEZ73CNmQviecrnyiWrnqRhWNLy

5mBTC

(b) Addresses are public keys

Figure 12: A bitcoin transaction

tx
Alice

5mBTC
Bob

5mBTC
txid = SHA2562( )

Figure 13: Bitcoin Transaction ID

When a transaction is occured, each node on the network should be able to confirm that
the user making the transaction, has indeed the amount of transfer. Otherwise, anyone
could produce money arbitrarily, sign it and create a valid transaction. As there is no
central authority the whole network have to maintain exactly who has how much coin.

A transaction can have outgoing unlinked edges, edges that are not connected to another
node transaction. These edges are unspent coins, owned by various users and ready to
be spent. This type of edges are called unspent transaction outputs (UTXO). The UTXO
set, the list of all outgoing unlinked edges, describes how much coins each user owns and
is kept by every node of the network. In this way, the network can confirm, by checking
the UTXO set, that the sender owns the money at the time of the transaction.

When a user wants to transfer money to another user, she have to find a previous trans-
action with a UTXO that she owns. Then she creates one transaction with one incoming
and one outgoing edge and connects the incoming edge of the new transaction with the
UTXO of the previous transaction. The previous UTXO is removed from the UTXO set.
The outgoing edge of the new transaction is unconnected and becomes a new UTXO. The
new UTXO specifies the value and the owner (address) of that edge. Finally she signs
the transaction. The signing of the transaction is a way of declaring asset ownership. The
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user have to prove that for a public key – the address where the UTXO points to – she
holds the corresponding private key. Only the owner of the private key can produce valid
signatures that are verifiable under the corresponding public key.

The UTXO set is maintained collectively by the network. When a full node is connected
for the first time to the network, the nodes with which it connects inform it about the UTXO
set and the history of all transactions that occurred from the begging of time. If a full node
reconnects after a period on inactivity the node is informed about the new transactions
that took place since the last time the node was connected to the network.

Each transaction is published on the network. This is achieved through a mechanism
called broadcasting. When a transaction is created, the participants broadcast the details
of the transaction to their neighbors. The neighbors publish the transaction to their neigh-
bors and recursively the transaction is being published until the whole network becomes
aware of it.

In Bitcoin a user cannot give changes. This is due to the lack of accounts and balances.
The only way of keeping track money ownership is with the use of the UTXO set. For
that reason, the total value of the income edge must be consumed at once. To overcome
this problem bitcoin uses multiple incoming and outcoming edges for each transaction to
create a changing system. In particular, when a user wants to transfer money to another
user and the value of the UTXO edge is bigger than the desired amount, she can create
a transaction with two outcoming edges, one for the recipient and one to give changes to
herself.

tx
Alice

1mBTC
Bob

0.1mBTC

Alice
0.9mBTC

Figure 14: Change exchange

tx

tx

tx

tx

Alice
1mBTC

Alice
2mBTC

Alice
1.5mBTC

Bob
4.5mBTC

Figure 15: Transaction multiple inputs
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tx tx
Wage

1mBTC

Rent
0.6mBTC

Electricity
0.2mBTC

Gas
0.2mBTC

Figure 16: Transaction multiple outputs

In Bitcoin each transaction must satisfy the Kirchhoff’s property. Kirchhoff’s property man-
dates that the total outputs of a transaction are at most equal to the total inputs. In particu-
lar, let txs be all transactions of the network, out(tx) all the output edges of the transaction
tx, in(tx) all the input edges of the transaction tx and w(e) the value of that edge, it holds
that:

∀tx ∈ txs :
∑

o∈out(tx)

w(o) ≤
∑

i∈in(tx)

w(i)

tx tx tx
Alice

1mBTC
Bob

1mBTC
Charlie
1mBTC

Eve
1mBTC

utxo

Figure 17: Transaction graph and UTXO

3.5 Blocks & Blockchain

A double spent or a double spent attack is the action where a user sends the same trans-
action twice; transactions that spend the same UTXO. For example, Eve buys a coffee
from Alice and creates a transaction that pays Alice. At the same time, Eve creates a
transaction that sent the same amount to herself. Eve get her coffee and leave. Alice
learn about the double spent later. Both transactions are valid: the signatures are valid
and the Kirchhoff’s property holds for both transactions.

As the network is decentralized and there is latency, a double spending may not be im-
mediately noticed. In this case, it is impossible to tell which transaction occurred first and
which second. To prevent double-spending the transaction must be put in chronological
order. This way nodes of the network are sure if transaction A precedes transaction B.
Furthermore, the order must be common for everyone.

To achieve chronological order Bitcoin utilize a data structure called blockchain. The
blockchain is an ordered back-linked list of blocks. Each block contains a set of trans-
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tx
Alice

1mBTC

utxo

(a) Alice finds one UTXO that belongs to her

tx
Alice

1mBTC
tx

Bob
1mBTC

utxo

(b) Alice create a transaction with recipient
Bob

tx tx
Alice

1mBTC
Bob

1mBTC

not utxo anymore new utxo

(c) Alice connects the incoming edge of the
new transaction with the old UTXO

tx tx
Alice

1mBTC
Bob

1mBTC

Alice signs

(d) Alice signs the transaction. No one else
can forge this signature

Figure 18: Speding money

tx
Eve

1mBTC
Alice

1mBTC

Eve
1mBTC

Figure 19: A double spent

actions. A block cannot contain double spends and each transaction can appear only
once in a block. A transaction is called confirmed if it is in a valid block. A valid block
cannot contain a transaction that spends an already spent UTXO by another transaction
in a preceding block. Transaction A precedes transaction B if A is contained in a previous
block from B. To ensure that a transaction is not a double spent, a user have to wait until
the transaction contained in a valid block and thus confirmed. In the bitcoin network a
block is set to be created approximately once every ten minutes and every newly created
block contains the most recent transactions that did not exist in previous blocks.

Every bitcoin’s block has a unique block id which is derived from the double hash of the
header of the block with the use of the SHA-256 cryptographic hash function. Each block
references to the previous block id known as the parent block through a pointer. Thus,
every next block contains the hash of the previous block. This results in every next block
in the chain requiring the previous block to have been already computed [178].
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blockid = SHA2562( )

(b) Bitcoin Block ID

Figure 20: Blocks
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Figure 21: The blockchain
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Figure 22: The blockchain timeline

3.6 Consensus mechanisms

The use of the blockchain data structure achieves transaction chronological order. What
remains is a global agreement on the order of the blocks among the participants of the
network. Someone can easily change the order of two blocks within the chain by changing
the respective hashes or producing new ones wherever required [178]. This would allow
an adversary to fake the order of transactions in time, which is an undesired outcome.

The global agreement on a common truth, the global blockchain (ledger), is called consen-
sus – a single universal “truth”. The consensus mechanism is the core mechanism of the
blockchain. Through consensus, the shared state of the ledger comes to an agreement
allowing all the nodes of the network to reach the same ledger state. Through consensus
the users of the network agree on a common order of the blocks in the blockchain and
therefore on the order of the transactions. Achieving consensus in a distributed system is
challenging. A consensus mechanism has to be resilient to node failures, network delays
and the existence of malicious nodes.

At high level, every public consensus mechanism works as follows: A “game”, involving
randomness, is taken place where each node of the network participates. The winner of
the game is eligible to propose the new block that will be adopted in the blockchain. The
probabilistic nature of the process is paramount to its security [79].

There are three basic consensus mechanism categories:

1. Proof-of-Work (PoW).
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2. Proof-of-Stake (PoS).

3. Practical Byzantine Fault Tolerance (PBFT)

3.6.1 Proof of Work (PoW)

A Proof-of-Work (PoW) consensus mechanism, is a consensus mechanism where each
node of the network tries to solve a computational puzzle that is computational hard, but
feasible to find, and easy to verify correctness. Assuming that cryptographic hash func-
tions are hard to invert, proof of work usually is established by seeking a range-collision
of the hash function on the block [178].

Alice Bob

H(K||x)
?

≤ ϵ pow(K, e)

K, ϵ

x

Figure 23: The Proof-of-Work protocol

Bitcoin [179] is the first blockchain system that uses Proof-of-Work for achieving consen-
sus among the nodes of the network. A target ϵ is given and is asked that the hash of
the block is smaller than the target. The node can only modify a nonce. By changing
the nonce the node can change the block’s hash (id). As cryptographic hash functions
is assumed to be one-way, the only way to find a hash value smaller than the target is
with a series of brute-force trials of different nonce values. Bitcoin’s proof-of-work can be
summarized as:

H(txs||nonce||parent_blockid) ≤ ϵ

The network evaluates collectively the target value using a predefined algorithm. Thus,
the difficulty of proof-of-work and the frequency with which the blocks are generated are
controlled by the network. In Bitcoin the expected block generation rate is one block per
10 minutes.

All the nodes of the network simultaneously try to produce a new block, meaning they
try to find a correct nonce satisfying the proof-of-work requirements. The block the node
produces includes all the valid transactions – transactions that are not in a previous block
– and a reference to a parent block. Each block has to meet the target proof-of-work
requirements. If not the block is considered invalid.

When a node finds a hash value less than the target, it gets to add the proposed block
to the blockchain. It broadcasts the new block to all its neighbors which, in turn, transmit
it to the whole network. When a block is found by another node, all the nodes stop the
block production and start over upon the new block. A block is valid if it contains valid
transactions, a valid proof-of-work and a reference to a known valid parent block.

The existence of a transaction in a block makes the transaction valid. The deeper the
block is in the blockchain the more difficult is for an adversary to alter the block. The
reason is that the time an adversary needs to alter a block grows exponentially in the
number of blocks that have followed [79] – she will need to reproduced those blocks and
the blockchain is constantly extended. Waiting 6 confirmation blocks to appear after the
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block in which the transaction is confirmed is enough for a transaction to be considered
secure.

A PoW system is based on randomness. Each node has a small change to win the block
which is approximated proportionally to the computational power of each node. PoW
depends on having a majority of the miners acting honestly out of self-interest [7].

PoW consensus mechanism works very well in public blockchain systems where trust
of the nodes is low. It eliminates the double-spend problem and guards against Sybil at-
tacks [60]. However, the transaction confirmation time is longer compared to conventional
financial services (such as VISA) [57,158,179] resulting in slower transaction confirmation
rates. Lastly, the energy waste attributed to the mining process can be very high – the
energy requirements of the Bitcoin protocol are estimated to be comparable to those of a
small country [133].

x = rand();

do {
++x;

} while (H(K||x) >= ϵ);

return x;

Code 1: A simple Proof-of-Work Algorithm

3.6.2 Proof of Stake (PoS)

Proof-of-Stake algorithms are designed to overcome the disadvantages of PoW in terms
of the high electricity consumption involved in block generation [18] and provide equal
security guarantees [105]. Unlike PoW where the nodes of the network solve compu-
tational puzzles in order to create a new block, in PoS the choice of the block creator
among the miners is random, yet relative to the stake the node possesses according to
the current ledger. Maintaining the blockchain relies on the stakeholders themselves and
assigns work to them based on the amount of stake that each possesses as reported in
the ledger [105]. The higher the stake participant, the higher the possibility to be chosen.

Proof-of-Stake algorithms suffer from the so-called “nothing at stake” problem. The “noth-
ing at stake” problem refers to attacks against PoS blockchain systems where share-
holders do not have incentives to follow the protocol and vote simultaneously on multi-
ple blockchains exploiting the fact that little computational effort is needed to build a PoS
blockchain [105]. Blockchains with PoS as a consensus mechanism can be either permis-
sioned or permissionless in the sense of stake availability rather than node authorization.
A node to participate in block election has to possess a stake. If the market where the stake
is available for sale is public and accessible for anyone then the blockchain is considered
as truly permissionless. Otherwise, the initial stakeholders can sell stake selectively to
participants of their choice making it permissioned. Ouroboros is the first provable secure
PoS algorithm [105] and is the main consensus algorithm of the Cardano blockchain [71].

3.6.3 Practical Byzantine Fault Tolerance (PBFT)

The Practical Byzantine Fault Tolerance algorithm (PBFT) [38] is a high-performance
Byzantine Fault Tolerance [113] consensus mechanism. It is based on the concept of
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state machine replication and replication state voting, and is able to process tens of thou-
sands of requests per second with minimal latency. PBFT has only a 3% overhead over
a typical filesystem [38].

PBFT and state-machine replication protocols’ downside is poor scalability. The number
of nodes (replicas) [169] that can be supported is very limited. PBFT has only been scaled
and studied up to 20 replicas [18, 169]. To overcome this limitation, without compromis-
ing security, various PBFT variants, such as Ripple and Stellar, partition the network into
smaller groups called federates and each one runs a local consensus protocol among its
members. A global consensus is achieved when certain conditions are being met [57].

Table 1: Blockchain consensus mechanisms. Adapted and modified from [18,169]

PoW PoS PBFT
Blockchain Type Permissionless Both Permissioned
Scalability of nodes High High Low
Scalability of clients High High High
Transaction rate Low High High
Latency High Low Minimal
Power consumption High Low Low
Token needed Yes Yes No
Cost of participation Yes Yes No

3.7 Mining & incentives

The process of creating a block in a PoW consensus system is known as mining and
the participants as miners. Miners contribute their computation resources to validate and
generate blocks. This process can be costly. For that reason incentives motivates the
miners of the network to mine blocks. In permissionless blockchains such as Bitcoin or
Ethereum a monetary incentive in the form of cryptocurrency incentivize the miners while
in permissioned blockchains incentives can be financial or acquiring access to valuable
information [107].

In Bitcoin a reward is given to the miner who its proposed block got into the blockchain.
This happens through a specific type of transaction called coinbase. This type of trans-
action has an unconnected income edge without a sender and an outcoming edge with
recipient the miner that produced the particular block. This is how new bitcoins are gen-
erated. The amount of coin mined in each block is pre agreed by the network and every
four years is reduced by half. At the moment of writing, the reward is 12,5 BTC.

tx
12.5 BTC

miner
12.5 BTC

Figure 24: Coinbase transaction

Another way a miner is rewarded is by collecting transactions fees. A transaction fee
is the difference between the total value of all incoming edges and the total value of all
outcoming edges. In particular, the total fees a miner collects by a block are defined as:
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fees =
∑

tx∈block

[
∑

i∈in(tx)

w(i)−
∑

o∈out(tx)

w(o)]

3.8 Blockchain fork

Due to network latency and the distributed nature of the system, it is possible that two
miners will find a block around the same time and some nodes will accept the first block and
some others the second one. Both blocks are valid, containing a valid proof of work, valid
transactions and both extent the same parent block. In such cases there is a temporary
fork in the blockchain, where some nodes are adding blocks to one branch while other
nodes are adding blocks to another branch. As a result, two competitive versions of the
blockchain will emerge [7]. Similarly to transactions the order of the blocks cannot be
decided.

To resolve this, each node always selects the longest brach to extent. At some point, one
of the two branches will be extended by a new block. The nodes that were working on the
first branch will see that the new branch is the longest and start working immediately on
that. Eventually the system will come to an agreement, the longest branch will be accepted
and other blocks will be discarded. The process of chain selection can be likened to voting
where mining nodes “vote” with their mining power by choosing which chain to extend by
mining the next block; the new block itself represents the voting result [7].

block block block block block block

block block

Figure 25: A blockchain fork

If a malicious adversary wants to double spent or execute a denial-of-service, she has to
produce a malicious blockchain longer than the honest. To achieve that, an adversary
would need to control the majority of the CPU power of the network and specifically more
than 51% of the total network’s hashing power. This is called the 51% attack. It is im-
portant to note that this kind of consensus attack affects at best the most recent blocks.
Beyond a certain depth blockchain is absolute immutable. In addition, this type of at-
tacks cannot steal or spend coins. The adversary cannot forge a signature to produce a
valid transaction impersonating another user. Bitcoin’s security has been formalized and
rigorously explored [79] over the last years.

Ethereum is designed to produce blocks very fast (around 12-15 second) in comparison
to Bitcoin (around 10 minutes). Blockchains with fast block confirmation times, suffer from
reduced security due to high stale rate [36]. To counterpart that, Ethereum use a variant
of the GHOST protocol [158]. The GHOST protocol rule picks the chain that has had the
most computation done upon it and not the chain with the longest depth.
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Honest common prefix Honest blockchain

Malicious blockchain

Figure 26: Double spent attack

3.9 Blockchain Types

There are various types of blockchains varying in restrictions on data access and partici-
pation in the consensus process. Each one has its own advantages and disadvantages.

• Public Blockchain: A public blockchain is a blockchain, in which there are no re-
strictions on reading blockchain data – encrypted or not – and validating transac-
tions [86]. The most common implementation of public blockchain is Bitcoin [128]
and Ethereum [72].

• Federated or Consortium blockchain: In a federated blockchain transaction vali-
dation is limited to a predefined list of entities with known identities to the network.
Data access can either be public or restricted [86].

• Private blockchain: A private blockchain is a blockchain where consensus mech-
anism is centralized to one single entity regardless of data access [86].

3.10 Consensus defined types of Blockchain

• Permissionless blockchain: A permissionless blockchain is a blockchain, in which
there are no restrictions on participation to the network [86].

• Permissioned blockchain: A permissioned blockchain is a blockchain, in which
transaction processing is performed by a predefined list of subjects with known iden-
tities [86].

Table 2: Blockchain Types. Source [93]

Public Permissioned
(Multiple Entities)

Private
(Single Entity)

Participants Permissionless
Anonymous

Permissioned
Identified
Trusted

Permissioned
Identified
Trusted

Data Access Public Public or Restricted Restricted
Consensus PoW, PoS FBTA, PoS FBTA
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3.11 Smart Contracts

The idea of smart contracts proposed in the early 1990s [163], by Nick Szabo. He de-
fined them as a computer protocol intended to facilitate, verify, or enforce the negotiation
or performance of a contract [162, 163]. They have been used primarily in association
with cryptocurrencies enabling parties to formally specify a cryptographically enforceable
agreements [31]. A smart contract consists of a set of promises including protocols within
which the parties perform on these promises. It can define rules and penalties around
an agreement and automatically enforce those obligations. The contractual rules may be
partially or fully self-executed, self-enforcing or both. Regarding blockchain a smart con-
tract is any computer program that is executed on the blockchain – a general purpose
computation.

3.11.1 Bitcoin scripts

Bitcoin is the first blockchain that implements smart contract functionality. It provides a
scripting language for expressing simple smart contracts such as ownership of an amount
of coins by one or multiple entities. Bitcoin’s language is a stack-based scripting language
inspired by Forth [144]. It offers a set of simple serial commands supporting cryptographic
primitives such as hash functions and signature verification. The main disadvantage of
Bitcoin’s language is that is not Turing-complete limiting the type of smart contracts one
can create. Furthermore, adding new commands to extent functionality requires either a
soft-fork which implements the new functionality or the creation of a blockchain anew. A
soft fork has to be decided by the majority of Bitcoin’s network. There is no guarantee that
the nework will adopt the new change. On the other hand, the implementation of a new
blockchain has the disadvantage that Bitcoin’s mining power is lost. Numerous previous
smart contract application atop Bitcoin (e.g., lottery [6, 23], verifiable computation [109])
have demonstrated the difficulty of Bitcoin’s scripting language [106].

In 3.4, a transaction is defined as a graph node with two edges, one incoming and one
outcoming and each edge contains an address. In reality, each edge contains a program
which decides whether the edge can be spent or not. The program is written in Bitcoin’s
scripting language and is called scriptPubKey. This allows the expression of more com-
plicated ownership of assets such as multi-signatures or micropayments. The script is
executed on a stack machine and containes a series of simple serial commands. When
a UTXO is spent, every node of the network executes the script. If the output of the pro-
gram is 1, then the transaction is valid and can be spent. Otherwise, the transaction is
considered invalid.

tx
5mBTC

OP_DUP
OP_HASH160
1FdtUtvK5vZxwo8jzjzid5EwGAB7paqX4n
OP_EQUALVERIFY
OP_CHECKSIG

5mBTC
OP_DUP
OP_HASH160
128MZKqUsvg2kYJQ5LCVDx8Mdn8xrijzQY
OP_EQUALVERIFY
OP_CHECKSIG

Figure 27: A Bitcoin script
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3.11.2 Ethereum smart contracts

The need of user defined open source blockchain applications have been emerged. As
a result, Ethereum [36, 174] was born. Ethereum is an open-source, public, blockchain-
based distributed computing platform and a smart contract framework that enables anyone
to build distributed applications. It provides a decentralized Turing-complete virtual ma-
chine, the Ethereum Virtual Machine (EVM) in which smart contracts are executed by all
nodes of the network. In Ethereum, one can create smart contracts in a high level lan-
guage, such as Solidity [74], which in turn is compiled to bytecode that is executable on
the EVM. Ethereum provides a cryptocurrency called Ether which can be transferred be-
tween accounts, and gas, an internal pricing mechanism used to execute contracts and
allocate resources on the network. Like Bitcoin, Ethereum use a Proof-of-Work consen-
sus mechanism called Ethash and has been designed to be ASIC-resistant [72]. Soon
Ethereum will be moved to a Proof-of-Stake consensus mechanism called Casper.

With Ethereum launch, the notion of DApps (decentralized applications) arisen and a lot
of developers and companies are building numerous applications atop Ethereum such as
prediction markets [11, 81], social media platforms [5, 16], online gambling [43, 68] and
video games [47]. As of January 2018, there are more than 250 live DApps.

Before describing how smart contracts are deployed in Ethereum, a thorough analysis of
Ethereum’s core mechanisms must be made. Ethereum constitute of a set of one global
object, that of account. Each account has a state, in which the nodes of the network must
agree upon with the use of a consensus mechanism. A 20-byte address is associated for
each account. The state of an account can only be changed by a transaction. The global
state of Ethereum is made up of accounts. For that reason, Ethereum is often described
as a state machine [36] where the state transition function takes as input a transaction
and outputs a different state.

Each account is composed by the following fields: address, balance, and nonce. The
address is a 160-bit account identifier derived from a public key. The balance contains
the total amount the account holds in Wei; the smallest denomination of ether. Ethereum
instead of using UTXOs to keep track of coin ownership, adopted the traditional notion
of balances as in financial systems. The choice of balances over UTXOs was a design
decision by the Ethereum foundation. Each option has its advantages and disadvantage.
According to Ethereum founders, the advantages of accounts massively outweigh the
alternatives [73]. The nonce is the total number of transactions sent from the account.
The nonce is used as a replay-attack prevention mechanism. In the absence of nonce, a
malicious adversary may send the same transaction twice and amount of the transaction
will be deducted twice from the user’s balance.

Similar to Bitcoin, anyone can send ethers from one account to another. The principles of
the transaction described in 3.4 are also applicable to Ethereum. Each transaction consist
of the following fields: from, signature, to, and amount. The from and to fields describe
the sender and the receiver respectively. The signature field contains the valid signature
of the transaction where the nodes of the network verify. Lastly, the amount contains the
amount to be sent in Wei.

There are two type of accounts: personal (or external own accounts) and contract ac-
counts. A contact account is an account dedicated for smart contracts. They contain two
extra fields: code and storage. The code field contains the code of the smart contract
and the storage field the internal persistent storage of the smart contract. Those fields are
empty, and optional, when it comes to personal accounts.
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address code storage balance nonce

Figure 28: An Ethereum account

Transactions contain an extra field, called data field. To create a contact, a user has
to sent a transaction with empty recipient and data field the code of the smart contract.
When the nodes of the network hear a transaction, where the field of the recipient is empty,
they treat the transaction as a smart contract creation transaction. They create a contract
account with code, the string that is contained in the data field of the transaction, and
empty storage. After the creation of the contract account an address is returned to the
creator of the contract. The address is created from the concatenation of the creator’s
public key and her account current nonce. Anyone knowing the address of the contract
can interact with it. In particular, to call a smart contract function, the interested party has
to send a transaction with recipient the smart contract’s address and data the function’s
name along with its arguments.

Table 3: Ethereum accounts

Personal account Contract account
address H(pk) H(creator, nonce)

code ∅ Code to be executed
storage ∅ Data of the contract
balance ETH
nonce # transaction sent

When a contract account is activated the contract’s code runs. The contract can read
or write to internal storage, do various computations, send messages or create new con-
tracts. A contract account can not initiate new transactions on its own but only in response
to a transaction initiated by a personal account – only personal accounts can change the
state of the accounts.

Contract accounts can send messages to other contracts accounts. Messages are like
transactions except it is produced by a contract and exist only in the Ethereum’s execution
environment. The network never sees the messages neither are stored in the blockchain.
This way, contracts can have relationships with other contracts.

Table 4: Ethereum transactions

create send call
from creator sender caller

signature σ σ σ
to ∅ receiver contract

amount ETH
data code ∅ f, args

The code of a smart contract is run by all nodes of the network. The code can change
the state of the contract or the state of another contract or personal account. The nodes
must agree on a global common state, the state of each account. Similar to Bitcoin, the
transactions, that change the state of each account, are contained in a block. A proof-
of-work consensus mechanism is used by the network to agree upon the block that will
extent the blockchain. The new block contains the new state of all accounts.
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Personal Account

Personal Account

Contract Account

Contract Account Contract Account

Figure 29: Transactions & messages

All nodes evaluate all transactions, execute code and store all state. Because Ethereum
is turing-complete, infinite loops or computational heavy code could make all the nodes of
the system to be occupied for a very long period of time, or even infinitely. Furthermore,
storage requirements can be grown very fast making unable to fulfil and maintain that
demand. To address this issues, Ethreuem use a unit called gas as a measurement of
computation usage. It acts as an anti-denial of service mechanism. The intent of gas, is
to enforce a malicious adversary to pay proportionately for every resource that consumes,
including computation, bandwidth and storage [36].

Each gas unit has a gas price that is expressed in gwei (1 × 109 Wei). Every node in
the Ethereum network executes instructions (opcodes), that represent the code of the
contract, within the Ethereum Virtual Machine (EVM). Each of these instructions has an
associated cost in gas. The cumulative sum of all the operations is the total gas cost for
a transaction and is the fee that is being paid to the miners.

The cost of each opcode (operation code) of EVM is defined in Ethereum’s yellow pa-
per [174] and a gas cost summarization of basic opcodes are be shown in Table 5. For
storing data, Ethereum offers two opcodes: the SLOAD opcode which loads a word from
the storage and the SSTORE opcode which saves a word to storage. The size of an EVM
word is 32 bytes (256 bit) and to store one EVM word using the SSTORE opcode costs
20.000 gas. Due to that reasons, storing data is expensive and for the moment blockchain
technologies cannot be used for data storage or data processing.

An Ethereum transaction has two extra fields: the start gas and gas price. The start gas
is the maximum amount of gas willing to pay and the gas price is the price willing to pay
per gas unit. The start gas (or gas limit) acts as a protection to computational wastage
or malicious code. Even if the code needs more gas to terminate, when the gas limit
is reached the execution is stoped and all state changes are revert. An extra benefit of
gas limit is, that a miner seeing the gas limit field can estimate the needed computational
time beforehand and act accordingly. The gas price is not defined by any central trusted
authority but is regulated by the network itself. By setting the gas price, the user in a sense
“votes” for the value of the gas. Gas price determines how quickly a transaction will be
mined; the higher the price is, the more likely is the transaction to be in the next block.

from signature to amount data startgas gasprice

Figure 30: An Ethereum transaction

The start gas can be larger than the cost of the computation. In this case, all unused gas
is refunded at the end of the transaction to the sender. If the computation exceed the
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Table 5: Ethereum opcodes gas costs

Operation Gas Description
ADD/SUB 3 Arithmetic operation
MUL/DIV 5 Arithmetic operation
ADDMOD/MULMOD 8 Arithmetic operation
AND/OR/XOR 3 Bitwise logic operation
LT/GT/SLT/SGT/EQ 3 Comparison operation
POP 2 Stack operation
PUSH/DUP/SWAP 3 Stack operation
MLOAD/MSTORE 3 Memory operation
JUMP 8 Unconditional jump
JUMPI 10 Conditional jump
SLOAD 200 Storage operation
SSTORE 5.000 / 20.000 Storage operation
BALANCE 400 Get balance of an account
CREATE 32.000 Create a new account using CREATE
CALL 25.000 Create a new account using CALL
LOG 375 Logging operation

gas limit then a out of gas exception is triggered and the state is reverted to the previous
one. Out of gas exceptions are not refundable. The miner still claims the fee for each
computational step performed.

Sender

250

Start
Transaction

Operation

200

Operation

170

End
Transaction

170

Receiver

Remaing
gas

Start
gas

Use -50 gas Use -30 gas

Figure 31: Smart contract execution

Each miner at code execution perform the following steps:

1. If start_gas ∗ gas_price > balance then halt

2. Deduct start_gas ∗ gas_price from balance

3. Set gas = start_gas

4. Run code deducting from gas
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Figure 32: Out of gas exception

5. After termination return remaining gas to balance

The total gas cost of the transaction is paid to miner that mined the block. The maximum
fee a miner could take by a transaction is calculated as:

feemax = startgas× gasprice

For example if the start gas is set to 50.000 and the gas price to 20 Gwei the maximum fee
is 0.001 ETH.

As discussed earlier, the code of the contract is executed within the Ethereum Virtual
Machine (EVM). EVM is a stack-based machine and uses 32-bytes (256-bit) words. It
reads a series of bytecode instructions (EVM code) where each bytecode represents an
operation (opcode). Lastly, it provides various built-in cryptographic primitives.
PUSH1 0
CALLDATALOAD
SLOAD
NOT
PUSH1 9
JUMPI
STOP
JUMPDEST
PUSH1 32
CALLDATALOAD
PUSH1 0
CALLDATALOAD
SSTORE

Code 2: EVM bytecode

Writing smart contract on bytecode can be challenging. For that reason, various high
level programming language that compile to EVM code have been implemented. The
most wide used is Solidity [74]. From the perspective of a developer, Solidity is much
alike to JavaScript as it supports most of its structures. Every contact have to be declared
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with the keyword contract at the begging of the file. It is the same as declaring a class
or an object in object-oriented programming languages.

Solidity supports two types of variables: state variables and local variables. State vari-
ables are contract variables that are permanently stored in contract storage and have to
be declared at compilation time. Local variables are function variables that cannot be ac-
cessed outside the scope of the function and they can be stored either in storage or in
memory.

Solidity supports the following variable value types:

• Boolean: true of false.

• Integers: Signed and unsigned integers of various sizes. Keywords uint8 to uint256
in steps of 8 (unsigned of 8 up to 256 bits) and int8 to int256.

• Fixed-size byte arrays: bytes1 to bytes32 in steps of one.

• Dynamically-sized byte array: bytes or string.

• Address: 20-byte value holding an Ethereum address.

• Enum: Enumerated type.

• Mapping: A key-map type similar to hash tables. mapping(keyType => valueType).

• Structs: A structure. It can be used to define new types.

• Function: Variables that hold a function reference.

EVM supports a built-in logging mechanism which can be used by smart contracts to notify
for various events. Services outside the blockchain can register listeners to this events
and act accordingly. In solidity, an event is declared by the event keyword along with its
arguments.

Lastly, Solidity supports multiple inheritance including abstract class and interfaces. Con-
tracts can extend another contract with the keyword is and access internal functions and
non-private members.

Since smart contracts deal directly with currency exchange, security of smart contract is
of the utmost importance [54, 118]. The DAO bug [1, 51] is a perfect example. At least
60 millions US dollars was lost leading to a hard fork in Ethereum and the creation of
Ethereum Classic.

In contrast to traditional application that can be patched when bugs are detect, smart
contracts, due to the nature of blockchain, are irreversible and immutable. Various anal-
ysis [54, 118] have shown that most of the deployed smart contracts on Ethereum are
vulnerable. In particular, an analysis tool called Oyente [118], created by Loi Luu et. al,
marked 8,833 out of 19,336 smart contracts as vulnerable. Is believed that these bugs
arise from the gap in understanding the actual mechanisms of the underlying platform of
Ethereum [118]; developers make false assumptions of the semantics of the system.
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3.11.3 Cardano

Another platform for smart contract implementation is Cardano. Cardano is a security
focused blockchain that utilize the latest research and engineering insights to build a plat-
form suitable for the highest value applications [71]. It supports distributed applications
creation and smart contracts verifiable by a method called formal verification allowing log-
ical proof of correctness of code providing high security. Cardano addresses the need for
regulatory oversight while maintaining consumer privacy and security. Cardano is the first
blockchain project to be peer reviewed by academic researchers [71] and its consensus
mechanism, Ouroboros, is the first Proof of Stake algorithm to be provably secure [105].
Cardano consists of two main layers, one for accounting and one for computation. The
accounting layer is calledCardano Settlement Layer (CSL) and the computation layerCar-
dano Computation Layer (CCP) where distributed application can be built and run upon.
The CCP layer has not been implemented yet and there is a plan to be released as a beta
by the first quarter of 2018 [139].
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pragma solidity ^0.4.16;

contract Namespace{

struct NameEntry {
address owner;

}

uint32 constant REGISTRATION_COST = 100;
uint32 constant UPDATE_COST = 10;
mapping(bytes32 => NameEntry) data;

function nameNew(bytes32 hash){
if (msg.value >= REGISTRATION_COST){

data[hash].owner = msg.sender;
}

}

function nameUpdate(bytes32 name, bytes32 newValue , address newOwner){
bytes32 hash = sha3(name);
if (data[hash].owner == msg.sender && msg.value >= UPDATE_COST) {

data[hash].value = newValue;
if(newOwner != 0) {

data[hash].owner = newOwner;
}

}
}

function nameLookup (bytes32 name) {
return data[sha3(name)]

}
}

Code 3: An Ethereum Smart Contract
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4. PROBLEM STATEMENT

4.1 Overview

The continuous discussions about Big Data over the past few years has drawn the at-
tention of researchers and individuals who try to understand their complex meaning and
effects in people’s lives. The new Data Age we live in has surely caused great shifts in pre-
existing understandings of the world. It has transformed the way information is produced,
transmitted, processed and stored, thus altering its value as well as the whole mode of
operation of the global markets.

The evolution of computer power processing, hardware capacity and, later, cloud storage
contributed to the creation of information economy. Technological advancements led to
the creation of handheld devices able to run multiple applications, use sensors, and pro-
duce, transmit and store huge amounts of data. The amount of existing data is rapidly
increasing and it is estimated that 20% of the world’s data have been collected over the
past few years [156,181]. Commercial use of data is only one of the many and diverse in-
dustries that big data have decisively influenced. Some examples of data intensive fields
are marketing and advertising, healthcare, transportation, energy regulation and distribu-
tion, retail and demographics, and sensors embedded in products for control, or IoT [108].

The value of raw data varies from a hundred cents to over several hundred dollars per
individual [48, 63, 66]. The more it is being analyzed, the more its value increases. As
some put it [10, 53, 55, 89, 110, 123, 123, 136, 159, 166]: data is the new oil. And like with
all sources of wealth, they are related to multiple interests and, thus they should be given
the attention required.

Personal Data

People constantly produce and publish data about themselves leaving a constant moving
digital fingerprint all over the Internet; their personal data. The type, quantity and value
of personal data being collected are vast [155]: bank accounts, medical records, em-
ployment data, web searches, sites visited, likes and dislikes, product purchase histories,
quotes, tweets, texts, emails, phone calls, photos, videos, personal moments, emotions
as well as coordinates of real-world locations.

Personal data can be gathered in three ways [155]:

• Volunteered data: data shared explicitly by the individuals

• Observed data: data captured by recording actions of individuals

• Inferred data: data based on analysis of individuals

Big data cannot exist without personal input and user cooperation. Companies create free
services in return for user input leading to consumer-driven big data collection.

Personal data are typically gathered by a few big tech companies that own and privatize
them. This happens as personal data belong to the institutions that collects them. This
condition gave rise to the data broker and mining industry creating data marketplaces [117,
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141, 161] and trade platforms where data can be sold and bought for a price. All data is
potentially for sale without the consent of the rightful owners, the users.

The existing centralized models in which third-parties collect and control vast amounts of
personal data can be questionable. Individuals have little or no control over their personal
data and what these data are used for. Public concern about user privacy and protection
is raised as related new research is being published [181]. When personal data are not
controlled by their producers, the rightful owners, individuals are not protected against
market and state policies. The invasion of privacy is a severe offense that derives from
unregulated data exploitation. All users connected to platforms and data harvesting ap-
plications should be empowered with the ability to own their personal data, to control how
data are being collected, used, shared and by whom.

Open Data

Nevertheless, the ability to have access and process large volumes of information can
still be beneficial for individuals and the societies at large. Creating Open Data is an
important goal of the research community and has a lot of advantages. By allowing re-
searchers to perform their research on datasets referring to public data records account-
ability, fault detection and trust in the validity of prior research can be achieved [64]. The
Open Data Movement [172] is a paradigm of free data distribution without limits, copyrights
and patents. However, there is a growing public concern about privacy preservation of re-
search participants, which can become subversive for data collection. As legislation in the
form of privacy disclosure acts is forced, data become private, sensitive and protected. At
the same time though, data processing is rendered impossible, inefficient or false.

4.2 Regulations

The EU Data Protection Directive 95/46/EC (DPR) [134] defines personal data as follows:

personal data shall mean any information relating to an identified or identifiable
natural person (’data subject’); an identifiable person is one who can be identi-
fied, directly or indirectly, in particular by reference to an identification number
or to one or more factors specific to his physical, physiological, mental, eco-
nomic, cultural or social identity;

However there has been a clear notion that the data subject can potentially be identified
by pseudo-identifiers [121]. In the new General Data Protection Regulation (GDPR) [135]
forced by the EU this has been formalized as:

a data subject is one who can be identified, directly or indirectly, by means
reasonably likely to be used by the controller or by any other natural or legal
person

The recent approval of GDPR [135] in 2016 by the European Commission (EC) imposes
new obligations on data controllers and processors in contrast to the previously adopted
Data Protection Directive (DPD) [134]. New legislation aims in the extension of responsi-
bility and accountability requirements of organizations also demanding explicit consent of
the data subject (person) while securing her right to withdraw, and to be forgotten [131].
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Key changes of the new data protection law introduced in GDPR in contrast to the DPR
are presented below [131]:

• organizations based outside EU that process personal data of EU residents are
bound by the new legislation

• All EU member states are obliged to comply to a single set of rules

• The responsibility and accountability requirements of organizations are extending

• EU residents are empowered with explicit consent over their data, maintaining their
right to be forgotten

Data controllers and processors are now required to demonstrate the implementation of
technical and organizational measures they have taken in order to ensure data secu-
rity [127]. The GDPR attempts to increase self-responsibility, and therefore accountability,
with a particular reference to the processing of sensitive data, such as health and medical
data [127]. Data controllers are required to take measures to ensure that any product or
service they provide is fully in line with the key principles of GDPR.

Finally, the data subject is empowered with total control over her data. Consent rules and
a number of fundamental rights such as the right to be forgotten have been reinforced or
introduced in the GDPR. The data subject’s will has become a priority.

Data controllers can outsource data processing activities to data processors. This relation-
ship can be established though contracts or any binding legal act. Personal data should
not be made available to third parties without the consent of the data subject. Data proces-
sors are not considered as a third-party but rather as an extension of the data controller.
In this sense, any activity put in place by the processors with the approval and instructions
of the controller is considered to be carried out within the premises of the organization
itself [127]. For example, a hospital may act as a data controller of collected personal
data of the hospital’s patients and outsource an anonymized operation to a trusted data
processor without any need to ask anew for the patients’ consent.

4.3 Motivations for applications

Blockchain is decentralized, which means that there is no central authority that regulates
and governs the recording of the transactions in the ledger. The ledger is maintained by
the network participants, in which participation is free, and the global state of the ledger
is agreed by a consensus mechanism (§ 3.6). Data on the blockchain are stored in every
node of the network. so that each node keeps a copy of the public ledger. Due to data
replication there is no single point of failure (SPOF) and the system becomes fault-tolerant
and resistant to malicious and denial-of-service attacks (DoS attacks). The users of the
network are empowered with total ownership over their assets – ranging from a token,
a contract, datasets, medical records, chain-of-evidence documents, or citizenship doc-
uments – through a system that guarantees security even in the presence of malicious
users.

Blockchain is immutable, meaning that all transactions are irreversible and they can not
be altered or deleted once they are confirmed and recorded on the blockchain. The real-
ized transactions are stored in chronological order specifying if a transaction A precedes a
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transaction B. That allows the creation of a distributed digital timestamping service. Times-
tamping is useful for example in financial contracts, establishing precedence for copyright
and auction bids [85].

The combination of a timestamping service and the immutability property of the blockchain,
along with its consensus mechanism, can lead to the creation of various important prop-
erties such as accountability [35], auditability and non-repudiation [122] – the ability to
definitively verify authenticity of statements recorded in the blockchain [85]. These prop-
erties make the blockchain a distributed immutable, tamper-proof, transparent and audit
log that any attempt to tamper with it can be immediately evident and easily detectable.
And the users are allowed to confirm and prove whether the service operates in the in-
tended way or not.

Blockchain technology can be used to support a wide variety of applications including doc-
ument provenance tracking, digital assets, financial services, copyright, voting, distributed
storage, donation, education, medical records, data exchange, and Internet of Things
(IoT). Distributed consent for research trials can increase anonymous data samples [164]
allowing Big Data Analytics in compliance with the GDPR. In addition, blockchain can
significantly reduce data transaction costs between entities and increase transaction ef-
ficiency. Blockchain technology can be seen as a data sharing and processing system
where privacy is mandatory.

Like all technology, blockchain has limitations. It is argued that blockchain is not suited for
high performance transactions or as a database replacement. Due to the decentralized
nature of the blockchain and its necessity for a consensus mechanism the transaction rate
remains quite low compared to financial services [158, 179]. Blockchain is not made for
big data. The amount of data that a blockchain can store and process is very limited so
off-chain data frameworks are needed.

Private and sensitive data cannot be transmitted outside the premises of the organization
responsible for them. Computations over the data must be made by the organization it-
self. Yet, organizations must be trusted to assure computation is done properly. Outputs
of computations can be false either by a malfunction or intentionally. Zero knowledge ver-
ifiable computation schemes (§ 2.8.3) can generate proofs of correct computation without
revealing private inputs. The proofs can be verified efficiently and with almost no extra
overhead [138]. The ability to construct publicly verifiable proofs without exposing sensi-
tive information is crucial to a data processing system which guarantees the privacy of the
datasets.

In this thesis we try to address the privacy concerns stemming from data exploitation
and data regulation described above. We attempt to utilize the blockchain and a Zero
Knowledge verifiable computation scheme and adapt it to our needs in order to provide a
solution which can enable data sharing and the data processing in a privacy preserving
manner, making anyone accountable for their actions and ensuring proper computation.
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5. SOLUTION

In our solution we use a protocol where datasets can be registered to the system and be
made available for processing. Anyone can request a data processing over a registered
dataset and a processing algorithm of their choice. A request is fulfilled by a data processor
to whom the dataset is transferred by the data controller.

A public blockchain is used as the controller of the application. It is responsible for keeping
an audit, immutable, tamper-proof and transparent log of all actions of the participants. All
participants are accountable for their actions and cannot challenge the validity of them.
Dataset are stored off-chain and data controllers, the owners of datasets, are responsible
for their quality, availability and security. To increase trust to data processors, a zero
knowledge verifiable scheme is used. The data processors are obligated to produce a
proof of correctness of computation, along with the output of the processing, that the
requestor in turn verifies.

It has to be noted that the blockchain does not provides an extra security layer concern-
ing datasets. The datasets are stored off-chain, data controllers are responsible for the
security of their system and the participants can still collaborate outside the blockchain
network. Nevertheless, the use of the blockchain can guarantee accountability, auditabil-
ity and provenance tracking of the datasets increasing the trust to the system.

5.1 Participants

There are three main roles consisting the application: the data controller, the data proces-
sor and the data requester. The first two are also defined in the context of GDPR (§ 4.2).
GDPR defines another role, that of data subject; the owner of the data. In our scheme we
assume that the data controller already has consent to access or forward the data or she
is at the same time the data subject and the data controller.

5.1.1 Data Controller

The data controller is in charge of keeping and managing a data set. It runs on behalf
of a data subject (person) that authorizes the data controller to access its personal data,
with the possibility of forwarding them to a data processor that will be responsible for
processing the data on behalf of controller [131].

5.1.2 Data Processor

The data processor is responsible for processing datasets on behalf of the data controller.
It listens for data processing requests and returns, along with the output of the process, a
Zero Knowledge Proof of correct computation over the requested data set without reveal-
ing the dataset itself.
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5.1.3 Data Requester

The requester can be any entity that requests a computation over a dataset with the use
of a specific algorithm. It can be a research center, a university, a machine learning al-
gorithm or any individual. The requester expects, along with the output, a proof of correct
computation over the requested dataset that verifies at the end of the processing.

5.2 Threat model

Before we explain in detail our architecture, we would like to introduce our thread model
and what exactly our goals are. It is important to understand the possible roles of adver-
saries, their strengths and their resources.

In our model we assume a public blockchain where the involved entities that interact with
a dataset – the data controller and the data processor – are identified and verified through
a public key infrastructure (PKI) [3]. Furthermore, each of the authenticated entities has
certain trust properties. Τhe data controller is trusted for integrity and confidentiality and
the data processor only for confidentiality.

Adversaries can be divided in 4 categories:

• Malicious data controller

• Malicious data processor

• Malicious requester

• Malicious public user

Each of these entities have different resources and goals. These are explained below.

5.2.1 Malicious data controller

A malicious data controller is a controller who tries to manipulate the results of the process-
ing by either crafting fabricated datasets or working in collusion with the data processor.
For example, an adversary could manipulate the dataset to make a classifier produce
false negatives [52] or to alter the image representations in a deep neural network (DNN)
to mimic those of other natural images [150].

In our solution we do not address those issues. We assume that a data controller is honest
and is authorized by a PKI that ensures the quality of the datasets.

5.2.2 Malicious data processor

Similarly to data controllers, data processors may want to manipulate the results of the
processing. A malicious data processor could influence the results of the processing with
the following means:

• Fake computation
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• Process a different dataset

• Use a different algorithm

• Fake results

• Expose a dataset to the public

We aim to fully protect requestors from such malicious actors except of data disclosure.

5.2.3 Malicious requester

The role of a requestor is certain: it can only make requests. Therefore, the only type of
attack a malicious requestor can perform is a distributed denial-of-service attack (DDoS)
by flooding the network with requests in an attempt to overload data processors and pre-
vent other requests from being fulfilled. DDoS attacks are not addressed in this work and
are left for future work (§ 8.3).

5.2.4 Malicious public user

As the blockchain is public, malicious external users should be taken into account. Exter-
nal actors can perform Sybil attacks [60] by impersonating the various actors of the system.
All the possible attacks that can be performed by the previous malicious actor they can
also be performed by an external user. The PKI assumption prevents a malicious public
user to forge data controller and data processor identities.

5.3 Blockchain

Α public blockchain is used to keep track the actions of each participant of the system.
Each action of the participants is logged in the blockchain, a log that is immutable and
irreversible. No one can alter or modify the records and every action can be auditable by
anyone. This way, each entity is accountable for each of their action which they cannot
later denied it. The blockchain can also serve as a public bulletin board where each action
is ordered by time of occurrence and provide dataset timestamping in a decentralized
manner. The hash of the dataset can be stored in the blockchain, which serve as a secure
proof of the creation and modification time of the dataset.

5.4 Algorithms

The system should support only a set of open-source algorithms that have been ana-
lyzed and constructed to be privacy-preserving with the use of techniques such as k-
anonymity [151] and l-diversity [4]. This algorithms should return only de-identified aggre-
gated results.

For the moment the supported algorithms by the system are:

1. Sum
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2. Average

3. Count

4. Maximum

5. Median

6. Minimum

The above algorithms are not considered to be privacy-preserving as it is outside the
scope of the initial prototype and should be considered on future work (§ 8.4).

5.5 Zero-Knowledge Verifiable Computation

Every data processor provides a proof of correctness of execution of a computation on a
given dataset without revealing the dataset itself. As the processor is obligated to provide a
proof – a rational verifier rejects a computation without it – it is impossible for the processor
a) to pretend that it done a processing without actually make any computation at all; b)
to process a different dataset of its choice; c) to execute a different algorithm other than
the requested one; d) to return another result other than the one that returned by the
computation. It is evident that a Zero-Knowledge proof of computation plays a crucial role
as it address various threats by malicious processors and enforce them to be honest.

Constructions of zkSNARKs require a one-time trusted setup in which a common-reference
string (CRS) is generated; the public parameters of the system. The CRS is used to con-
struct and verify proofs. Proof generation and verification requires two publicly available
keys which derived from the CRS: the evaluation key ekf and the verification key vkf . The
CRS is different for each function F for which the prover wants to produce a proof of com-
putation. For that reason, a key pair (ekf , vkf ) needs to be generated one for each of the
available algorithms that the processors use.

Anyone who obtains the trapdoor information corresponding to the CRS can produce fake
proofs. For that reason, whomever runs the setup should be a trusted entity. Various
alternatives to bypass the trusted party – such as secure multi-party computation for CRS
generation [33] or multi-string models [84] where a set of untrusted authorities generate a
random trusted string – have been proposed. In our solution, we assume that the trusted
entity, that registers and verifies the parties through the PKI, is also responsible for key
generation and distribution. The distribution can be done either by saving the public pa-
rameters on the blockchain or in a publicly available server.

In our scheme, the processor executes an algorithm F with public input u and private input
w. With the use of the evaluation key ekf it generates a zero knowledge proof. Then, the
requestor with the use of the verification key vkf can verify that the processor executed
correctly the algorithm F on inputs u and w.

First, the data processor want to prove to the verifier that the computation is indeed done
on the requested dataset without disclosing the dataset. The dataset is the private input
w. For better understanding of the construction of the proof we define a game where tree
participants are involved: a trusted oracle, a computationally bounded processor and re-
questor. The trusted oracle has a list of datasets and the corresponding digests (hashes).
The oracle cannot cheat or collaborate with any of the participant and for the same dataset
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it produces the same digest. At any moment the oracle selects randomly a dataset, gives
it to the processor and announce the hash of the dataset to the requestor. The requestor
wants to know if the processor holds the dataset that produce the same digest as the one
that was given to it by the oracle. To do that, the requestor ask the processor to compute
the hash of the dataset. The computation of the digest of the dataset serves as a proof
that shows that the data processor holds the corresponding dataset. The requestor ac-
cepts the proof if and only if the hash of the processor match the hash of the oracle and
rejects otherwise. The processor is forced to correctly compute the hash of the dataset as
it is the only way to convince the requestor – hash functions are one-way and the oracle
is trusted.

Let’s modify our game and assume now that the oracle gives the hash of the dataset
to both the processor and requestor. The processor can easily convince the requestor
without computing the hash; it knows the hash beforehand. To countermeasure that, the
requestor demands from the processor to produce a proof of verifiable computation. It
gives as function F the same hash function H the oracle used to produce the digests of
the datasets. Then, it asks the processor to generate a proof for F (h, d) = H(d) where
d is the dataset given by the oracle and h the hash of it. The hash is the public input u
and the dataset d the private input w. As the processor wants to disclose the dataset d
it produces a zero knowledge proof. The requestor verifies the proof and accept if and
only if the proof is valid. Again, the processor can not do anything else but to comply and
compute the digest.

Ideally, we would like the trusted oracle to be the data controller and make an indistin-
guishability assumption between them. That is not the case. The data controller is trusted
to publish the correct digest of the dataset in the blockchain and the immutability property
of the blockchain prevent a malicious processor to change the digest to its preferences.

What remains, is to include inside F the processing procedure of the dataset. The al-
gorithm F with private inputs d and public input h, for which a zero knowledge proof of
correct computation is generated, consists of a) hash generation of dataset d; b) dataset
processing.

Let d be a private dataset, H a cryptographic hash function and h = H(d) the digest of d
over H. Let P be the prover (data processor) and V the verifier (data requestor). Prover
P produces a zkSNARK proof (§ 2.8.4) π for the following NP statement:

Given the public digest h, an outsourced function F and an output y I know a private
dataset d such that:

1. H(d) = h

2. F (d) = y

The irreversibility of cryptographic hash function in conjunction with the immutability of the
blockchain and the trust for data integrity to the data controller, that produced the digest of
the dataset in the first place, guarantees that indeed the proverP processed the requested
dataset without revealing it.

The proof π is publicly available for anyone to verify. In our solution, the result of the com-
putation remains private and is encrypted with the public key of the requestor. Thus, only
the requestor can verify the proof – the raw output is needed by the verification algorithm.
A malicious adversary who wants to learn the output y can potentially do this by brute-
force attacking y using the public parameters of the zkSNARK setting. A realistic example
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could be when F computes the summation of a list of integers and return 0 if the sum is
even and 1 if it is odd. An adversary can use the verification algorithm for both possible
outputs and guess y correctly. To avoid this, a random salt s r←− {0, 1}l, with security pa-
rameter l, is used as an additional input of the proof. Each proof should use a unique salt.
Although, the processor generates the salt before constructing a proof and is private to
anybody than the requestor, in the zkSNARK setting it is considered as a public input.

The proof generation procedure is summarized in Algorithm 1.

Algorithm 1 Zero Knowledge Proof
1: function compute(F,d, h, ekf , s)
2: h

′ ← H(d) ▷ Compute the digest of the dataset
3: y ← F (d) ▷ Process dataset
4: out← (y, h

′
, s)

5: return (π, out) ▷ Return results
6: end function
7: procedure zkp(ekf , F , u, w)
8: d← w ▷ Private input
9: (h, s)← u ▷ Public input

10: (π, out)← compute(F , d, h, ekf , s)
11: end procedure

5.6 Dataset Registration

Naturally, for datasets to be available for processing a data registration process is needed.
Anyone who register a dataset automatically becomes a data controller who is responsible
for the availability and quality of it. The dataset should be publicly available on any location
of their choice provided that the controller expose an API for data retrieval. The location
can be in a distributed file system [22], a decentralized cloud storage [173] or a central
server. As long as the involved participants communicate over the same protocol the
choice is irrelevant; the system is agnostic concerning data storage.

The confidentiality of the dataset must rely solely on cryptographic primitives with strong
guarantees. Therefore, every dataset, before stored, is encrypted using the symmetric
encryption algorithm AES with 256-bit key length and CTR as mode of operation. For each
dataset a different encryption key is created and used. This approach bear the burden of
key generation and management but on the other hand if an attacker manages to obtain
a key the security of other datasets is not compromised [154].The hash of contents of the
unencrypted dataset is computed, and stored in the blockchain, using the cryptographic
hash function SHA256. As discussed in 5.5 the hash of the dataset plays an important role
in the application.

A dataset is actually registered and available when a register transaction is sent to the
blockchain signed by the data controller. The transaction needs to include the name of
the dataset, a category, the location (URI) and the digest (hash) of the file. The hash of
the dataset is used as a unique persistent identifier to which all participants refer to.

The data registration procedure is summarized in Algorithm 2.
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Algorithm 2 Dataset registration
1: function save(file)
2: h← H(file) ▷ Compute the digest of the dataset
3: k ← G ▷ Generate symmetric key
4: c← Enck(file) ▷ Encrypt dataset
5: uri← store(c) ▷ Store dataset
6: return (h, k, uri)
7: end function
8: function broadcast(name, uri, category, hash)
9: hmeta ← H(name || uri || category || hash) ▷ Compute the hash of the metadata

10: tx← (name, uri, category, hash, hmeta) ▷ Create transaction
11: tx.send() ▷ Send transaction
12: return tx
13: end function
14: procedure register(name, file, category)
15: (h, k,uri)← save(file) ▷ Save dataset
16: tx← broadcast(name, uri, category, h) ▷ Register dataset
17: return (tx, k)
18: end procedure

Blockchain

Data Controller

Datastore

Enck(data)

Tx({name, location, category, digest, hashMeta}, ”register_data”)

Figure 33: Data registration

5.7 Entity Registration

The entity registration procedure can be done only by the trusted entity that deploys the
smart contracts on the blockchain. The smart contracts are implemented in a way that only
the creator of them can call the registration function. The trusted entity can register a data
controller or a data processor by signing a transaction that call the registration function
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with arguments the entity’s name and public key. Only registered entities can register or
process a dataset.

Algorithm 3 Entity registration
1: procedure register_entity(name, pk)
2: tx← (name, pk)
3: tx.send()
4: return tx
5: end procedure

Blockchain

PKI

Tx({name, pubKey}, ”register_entity”)

Figure 34: Entity Registration

5.8 Request for processing

A request for processing is the procedure where a participant of the network request a
specific processing algorithm to be performed on a dataset of its choice. The requestor
can only choose datasets that are registered on the network and publicly available on
the blockchain. A request for data processing is registered when the requestor signs and
sent a request transaction to the network. In its payload the public key of the requestor
must be included. The public key is needed by the processor to be able to encrypt data
processing results as they must remain private from other parties. When a request is
registered, a request event is emitted notifying the interested parties. All data controllers
are listening to request events and are responsible for notifying a data processor of their
choice that in turn will fulfill the request. The data controller, responsible of the requested
dataset, selects randomly a data processor and encrypts the symmetric key of the dataset
with the public key of the data processor. The choice of the data processor could also be
done sequentially; the data controller choose the next in line data processor; selection by
popularity in the existence of a decentralized ranking system is a another viable option. A
transaction is sent to the blockchain to notify the selected data processor passing along
the id of the request and the encrypted symmetric key.

The request for processing procedure is summarized in Algorithm 4.

C. Nasikas 72



Αccountable and privacy preserving data processing via distributed ledgers

Algorithm 4 Request for processing
1: function notify(e)
2: p

r←− {p1, p2, . . . pn} ▷ Select randomly processor
3: (requestID)← e
4: tx← (p)
5: (pkp)← tx.send() ▷ Get processor public key
6: c← Encpkp(k) ▷ Encrypt symmetric key
7: tx← (requestID, c) ▷ Notify processor
8: tx.send()
9: return tx

10: end function
11: procedure watch()
12: while e ∈ events[’request’] do ▷ Listen data processing requests
13: ▷ Check if the controller is the owner of the dataset
14: if isOwner(e.datasetOwner) then
15: notify(e) ▷ Notify processor
16: end if
17: end while
18: end procedure
19: procedure request(datasetID, algorithmID, pk)
20: tx← (datasetID, algorithmID, pk) ▷ Request for processing
21: tx.send()
22: return tx
23: end procedure

5.9 Dataset processing

As it has already been mentioned, the role of a data processor is crucial. They decrease
the pressure over data controllers which they exploit them by entrusting specific data pro-
cessing operations on behalf of data requestors. Data processors can only perform pre-
agreed algorithms (§ 5.4) on registered datasets. A processor is constantly listening for
process events related to it. As seen in § 5.8, the controller notify the processor by emit-
ting those events including the ID of the request and the encrypted symmetric key of the
dataset. The processor, having all the needed information, signs a transaction to get the
details of that request; the dataset ID and the algorithm ID. Another transaction is made
to get the location and the hash of the dataset. As all informations are saved only in the
blockchain this transactions are needed. The processor is ready to process the dataset.
At first, it decrypts the symmetric key with its private key skp, it downloads the dataset
from the provided location and decrypts it. Assuming no errors, the computation is started
and a proof, as analyzed in 5.5, is generated with the evaluation key ekf . The results
are encrypted with the public key of the requestor pkr. Final, a transaction is sent to the
blockchain with the proof π and the encrypted results and an event is emitted to notify the
requestor for the completion of the data processing.

The data processing procedure is summarized in Algorithm 5.
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Blockchain

Data Controller

listen(”request_processing”)

Data Processor

Tx({requestID,EncpkP (k)}, ”notify_processor”)

listen(”processing”)

Requester

Tx({dataSetID, queryID, pubKey}, ”request_processing”)

Figure 35: Request for processing

5.10 Proof verification

Αs zkSNARKs are non-interactive, the requestor can verify at any time the correctness of
the processing. It can either watch for process_done events or by manually checking in
the blockchain if the processing request has finished. Either way, is in its best interest to
verify the proof. Providing the request ID the requestor can get the proof and the encrypted
results which in turn decrypts and verifies the proof with the verification key vkf . In case
of verification failure the processing results should be rejected.

The verification procedure is summarized in Algorithm 6.
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Algorithm 5 Dataset processing
1: procedure process(e)
2: (requestID,algorithmID, ck, pkr)← e
3: tx← (requestID) ▷ Get dataset id
4: (datasetID,algorithmID)← (tx) ▷ Get dataset info
5: (location, h)← (tx)
6: k ← Decskp(ck) ▷ Decrypt symmetric key
7: cd ← get(location) ▷ Get encrypted dataset
8: d← Deck(cd) ▷ Decrypt dataset
9: ▷ Process dataset and get proof of computation

10: s
r←− {0, 1}l ▷ Salt generation with security parameter

11: F ← algorithms[’algorithmID’]
12: u← (h, s) ▷ Public input
13: w ← d ▷ Private input
14: (π, out)← zkp(ekf , F, u, w) ▷ Algorithm 1
15: tx← (π,Encpkr(out)) ▷ Send results to requestor
16: tx.send()
17: end procedure
18: procedure watch()
19: while e ∈ events[’process’] do ▷ Listen data processing notifications
20: process(e) ▷ Process request
21: end while
22: end procedure

Algorithm 6 Proof verification
1: procedure verify(e)
2: (requestID)← e
3: (π, c, datasetID)← tx(requestID).send() ▷ Get request info
4: h← tx(datasetID).send() ▷ Get dataset info
5: (π, (y, h

′
, s))← Decskr(c) ▷ Decrypt results

6: if h′ !== h then ▷ Reject if digest not match
7: reject
8: end if
9: valid← _verify(π, (y, h′

), (h, s), vkf ) ▷ Verify proof
10: if !valid then ▷ Reject if not valid
11: reject
12: end if
13: end procedure
14: procedure watch()
15: while e ∈ events[’process_done’] do ▷ Listen data processing completion
16: verify(e) ▷ Process request
17: end while
18: end procedure
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Blockchain

Data Processor

Tx({requestID,EncpkR(π, y)}, ”notify_requester”)

Compute

(y, π) dataset

Requester

V erifyvk(π, y)

Figure 36: Data processing
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Blockchain

Data Controller

Database

Enck(data)

EncpkP (k,metadata)

Data Processor

EncpkR(result, π)

Requester

Request(pkR,metadata) V erifyvk(π)

Figure 37: Architecture
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6. IMPLEMENTATION

To cover the needs of the data sharing and processing ecosystem the application is sep-
arated in two parts: the off-chain network and the blockchain network. The off-chain net-
work is responsible for dataset storage, dataset distribution, and dataset processing. The
blockchain is responsible for recording dataset registrations, requests for data processing
and data processing outputs along with their proofs of computations. For that reason,
every node of the network – a data share node – is connected to the blockchain and track
every transaction related to the application. The node can track and index every registered
dataset, all requests for data processing and all processing outputs and proofs. A node,
depending on its role, acts accordingly when a blockchain transaction is broadcasted in
the network.

A variety of tools and APIs are made to implement the protocol as described in Chapter 5.
They are analyzed in the following sections.

6.1 API

A server is implemented to aid developers and users and is responsible to: a) expose a
RESTful API that facilitates the interaction with the application, and b) listen and record to
a relational database all the events of the application emitted by the blockchain.

The existence of such server is not a threat to the decentralization of the system. The
application is governed by the smart contracts deployed on the blockchain. Anyone can
interact directly with the blockchain or implement their own server or client.

6.1.1 RESTful API

A RESTful API is provided to facilitate communication between any application, that fol-
lows the REST architecture, and the data sharing application. The REST API expose
the blockchain business network that can be easily consumed by HTTP or REST clients.
That way, any developer familiar with existing web technologies and frameworks is not ob-
ligated to learn the interval mechanisms of the blockchain system to develop and deploy
applications atop.

Through the REST API one can:

• Get all datasets

• Register a dataset (as pending)

• Get a specific dataset

• Get all processing requests

• Register a request for processing (as pending)

• Get a specific request

• Get all processors
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• Register a processor (as pending)

• Get all controllers

• Register a controller (as pending)

• Get all blockchain accounts

The REST API expose a set of routes each one having an HTTP method and a URI. All
available routes are shown at Table 6.

Table 6: RESTful API Routes

Method URI
GET /
GET /contracts
GET /datastore
GET /datastore/{data}
POST /datastore
GET /accounts
GET /accounts/{account}
GET /requests
GET /requests/{request}
POST /requests
GET /processors
POST /processors
GET /controllers
POST /controllers

All blockchain transaction made by a user must be sign with her signing key. As keys
should be private and be managed only by the user itself, the server exposing the REST
API cannot make a transaction on behalf of the user. For that reason, all POST actions
create a database record where the status of the action is set as pending.

6.1.2 Database

The server is registered to all available events (§ 6.7.7) of the system that are emitted by
the blockchain. When an event is triggered a record of the action is saved to a relational
database. The database’s scheme is shown in Figure 38.

6.2 Distributed Application

The distributed application is a web-based application providing a graphical user interface
(UI) to facilitate the data sharing platform usage. The goal of the distributed application is
to provide to the end-user an easy, self-explanatory and efficient way of interacting with
the data sharing ecosystem. As most users are already familiar with the use of web appli-
cations and platforms, such as webmails, cloud services and social media, such interfaces
makes the user feel accustomed. The only requirement is to have an ethereum account
and installed the metamask wallet [126].

The distributed application consumes the REST API and yields the same functionalities.
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id firstName lastName email

Users

id hash userId

Addresses

id addressId name location category hash txId metaHash status

Datasets

id datasetId addressId algorithmId processed pubKey txId status

Requests

id name

Algorithms

id name pubKey addressId txId status

Processors

id name pubKey addressId txId status

Controllers

Figure 38: Database scheme

6.3 Controller

The controller is a data sharing node that is responsible for providing a dataset for data
processing. It listens for processing requests and forwards datasets to data processors.
Is implemented as described in § 5.1.1 and § 5.8.

C. Nasikas 80



Αccountable and privacy preserving data processing via distributed ledgers

6.4 Processor

The processor is a data sharing node that listens to data processing notifications pushed
by a data controller. It processes datasets and produces Zero Knowledge proofs of cor-
rectness of computation. Is implemented as described in § 5.1.2 and § 5.9.

6.5 Libraries

Various libraries have been build to facilitate the interaction with the various components
of the system. Each one is analyzed in the following sections.

6.5.1 Blockchain

The blockchain library offers a set of functionalities that makes the communication with any
blockchain implementation easier. Is a wrapper library over blockchain specific libraries,
such as Ethereum’s web3, and it’s main purpose is to be blockchain agnostic allowing the
use of different Blockchains. For the moment only the Ethereum blockchain is supported.

Abstract Functions:

• isConnected: Return true if a connection to a blockchain node exists and false oth-
erwise.

• getProvider: Get the current provider (blockchain node)

• setProvider: Set provider (blockchain node)

• getBalance: Get the balance of an address

• setDefaultAccount: Set the default address

• getDefaultAccount: Get the default address

• getAccounts: Get all accounts

• getLibInstance: Get the instance of the blockchain library

• getFilter: Get a filter object

• toBytes: Covert a string to bytes

• fromBytes: Covert bytes to a string

• registerDataSet: Register a dataset

• registerProcessor: Register a processor

• registerController: Register a controller

• requestProcessing: Request a data processing

• notifyProcessor: Notify a data processor for data processing
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6.5.2 Crypto

The crypto library provides various cryptographic functionalities. It wraps the SJCL and the
Node.js Crypto module libraries.

Functions:

• generateKeyPair: Generate an asymmetric encryption key pair

• generateKey: Generate a symmetric encryption key

• pubEncrypt: Encrypt a string with a public key with the use of ECC

• pubDecrypt: Decrypt a ciphertext with a secret key with the use of ECC

• encryptFile: Encrypt a file with a symmetric key with the use of AES256

• decryptFile: Decrypt a file with a symmetric key with the use of AES256

• bytesToHex: Convert bytes to hex

• hextoBytes: Convert hex to bytes

• hashFile: Hash a file with the use of SHA256

• hash: Hash an array of values with the use of SHA256

6.6 Command-line interface

A command-line interface that provides a set of useful commands for the data sharing
application.

Usage:

$ node data-cli <options>

Options:

• -v or --version: Output the version number

• -g or --generate-keys: Generate an asymmetric

• -k or --generate-key: Generate a symmetric key

• -d or --dummy-file <file>: Generate a 45MB dummy file

• -e or --encrypt-file <file>: Encrypt a file

• -a or --evaluation <bytes>: Evaluate gas cost of bytes on Ethereum

• -s or --hash <hash>: Hash an array of values with SHA256

• -f or --hash-file <file>: Hash a file with SHA256

• -h or --help: Output usage information
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6.7 Smart contracts

The data sharing application is governed by a smart contract deployed on the Ethereum
network. The smart contract contains the logic of the application. Thought the smart con-
tract one can register a new dataset, request for data processing, register a data controller
or a data processor, and save a ZKP proof along with the output of the computation. The
data sharing smart contract is publicly available and can be used by any other contract in
the network.

6.7.1 Data set registration

A data controller registers a new dataset to the application by calling the registerDataSet
function with the following arguments:

• hash: The SHA256 of the raw data set. It serves as a unique identifier of the dataset:
the dataSetID.

• name: The name of the dataset. It can be an arbitrary string

• location: The URI of the location of the data set

• category: The category of the data set. It can be an arbitrary string

• metaHash: The SHA256 of the submitted values: hash, name, location and category

function registerDataSet(
bytes32 hash,
bytes32 name,
string location ,
bytes32 category ,
bytes32 metaHash

) public returns (bool success);

Code 4: Data set registration function

The address of the controller is taken from the msg.sender field.

6.7.2 Request for processing

A request for data processing consists of two parts: Requesting for data processing and
notifying the data processor of that request.

A data processing request is made by calling the requestProcessing function with the
following arguments:

• _dataSetID: The id of the dataset of interest

• algorithmID: The id of the algorithm that the processor will apply over the data set

• pubKey: The public key of the requestor
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A unique identifier of the request is created by applying the SHA256 hash function to
the concatenation of the dataset’s id with the address of the requestor. In particular,
as SHA256(_dataSetID, msg.sender). The address of the requestor is taken from the
msg.sender field.

In order to notify a data processor that a request for data processing is pending, a data
controller calls the notifyProcessor function with the following arguments:

• _processorAddress: The address of the data processor that will process the dataset

• _requestID: The id of the request

• encryptedKey: The encrypted symmetric key with which the dataset has been en-
crypted

function requestProcessing(
bytes32 _dataSetID ,
bytes32 algorithmID ,
string pubKey

) public returns (bool success);

function notifyProcessor(
address _processorAddress ,
bytes32 _requestID ,
string encryptedKey

) public returns (bool success);

Code 5: Request for processing functions

6.7.3 Processor Registration

A data processor can be registered by a transaction that invokes the registerProcessor
function with the following inputs:

• _processorAddress: The address of the data processor

• name: The name of the data processor. It can be an arbitrary string

• pubKey: The public key of the data processor

Only the contract creator can execute the registerProcessor function.
function registerProcessor(

address _processorAddress ,
bytes32 name,
string pubKey

) public returns (bool success);

Code 6: Data processor registration function
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6.7.4 Data Controller Registration

Likewise, a data processor can be registered by a transaction that invokes the registerController
function with the following inputs:

• _controllerAddress: The address of the data controller

• name: The name of the data controller. It can be an arbitrary string

• pubKey: The public key of the data controller

Again, only the contract creator can execute the registerController function.
function registerController(

address _controllerAddress ,
bytes32 name,
string pubKey

) public returns (bool success);

Code 7: Data controller registration function

6.7.5 General functions

Various general function are provided to facilitate the usage of the system.

• getDataSetInfo: Given a data set id it returns all the information of the specific data
set

• getRequestInfo: Given a request id it returns all the information of the specific re-
quest

• getController: Given a data controller address it returns all the information of the
specific data controller

• getProcessor: Given a data processor address it returns all the information of the
specific data processor

function getDataSetInfo(bytes32 _dataSetID)
public
view
returns(

bytes32 name,
string location ,
bytes32 category ,
bytes32 metaHash ,
address controller

);

function getRequestInfo(bytes32 _requestID)
public
view
returns(

bytes32 dataSetID ,
address requestor ,
bool hasProof ,

C. Nasikas 85



Αccountable and privacy preserving data processing via distributed ledgers

bool processed ,
bytes32 algorithmID ,
string pubKey

);

function getController(address _controller)
public
view
returns(

bytes32 name,
string pubKey

);

function getProcessor(address _processor)
public
view
returns(

bytes32 name,
string pubKey

);

Code 8: General functions

6.7.6 Zero Knowledge Proof

A data processor can save the ZKP proof and the output of the computation by calling the
addProof function with the following arguments:

• _requestID: The request id

• proof: The proof in hex format

• output: The encrypted output

function addProof(
bytes32 _requestID ,
string proof ,
string output

) public returns (bool success);

Code 9: Data sharing application events

6.7.7 Events

Every function that is invoked by a signed transaction emits an event notifying the occur-
rence of the action by a specific participant. Every node of the network can register and
listen to this events.

In particular:

• NewDataSet: A data set is registered

• NewProvider: A data controller is registered
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• NewProcessor: A data processor is registered

• NewRequest: A request for data processing is made

• Process: A notification for data processing is sent to a specific processor

event NewDataSet(
bytes32 hash,
bytes32 name,
string location ,
bytes32 category ,
bytes32 metaHash ,
address controller

);

event NewController(
address _controllerAddress ,
bytes32 name,
string pubKey

);

event NewProcessor(
address _processorAddress ,
bytes32 name,
string pubKey

);

event NewRequest(
bytes32 _requestID ,
bytes32 _dataSetID ,
address _requestor ,
bytes32 algorithmID ,
string pubKey

);
event Process(

address _processorAddress ,
bytes32 _requestID ,
string encryptedKey

);

Code 10: Data sharing application events

6.8 Zero Knowledge Proofs

To generate and verify zkSNARKs proofs the Pequin library [140] is used. Pequin is
a toolchain to verifiably execute programs expressed in the C programming language.
Pequin consists of a front-end and a back-end. The front-end takes C programs and
transforms them to a set of arithmetic constraints as described in 2.8.4. The back-end in
Pequin is a zk-SNARK. Pequin uses SCIPR Lab's libsnark [111], which is an optimized
implementation of the back-end of Pinocchio [138], itself a refinement and implementation
of GGPR [80].

Each of the supported algorithm (§ 5.4) is written in the C programming language. A
trusted setup has been run and a key pair (ek, vk) has been generated for each of the
available algorithms. The evaluation keys and the compiled programs are available to all
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data processors as they are necessary components for proof generation and data compu-
tation. The verification keys are also publicly available to all requestors important to proof
verification.

A set of various bash scripts are made to facilitate the data processors and the data re-
questors. They provide simple commands that abstract the interaction with the Pequin
library.

6.9 Programming details

The data sharing ecosystem (§ 5) required various frameworks, technologies, program-
ming languages and libraries.

In particular:

1. RESTful API: Node.js v8.9.4 [76], Express 4.16.2 [75]

2. Command-line interface: Node.js v8.9.4

3. Distributed application: React 15.6.1 [95], Redux 3.7.2 [145] and Bootstrap 4.0.0 [12]

4. Processor node: Node.js v8.9.4

5. Controller node: Node.js v8.9.4

6. Libraries:

(a) Blockchain: web3 0.20.4 [67]
(b) Crypto: SJCL 1.0.7 [160] and Node.js v8.9.4 Crypto Module

7. Smart contracts: Truffle 4.1.0 [45] and Solidity 0.4.24 [74]

8. Zero Knowledge Proofs: Pequin [140] and libsnark [111]

9. Ethereum Blockchain: Ganache CLI v6.0.3 (ganache-core: 2.0.2) [44]

All code written in JavaScript follows the ES6 (ECMAScript 2015) [96] standard and the
StandardJS [2] style guide.
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Figure 39: REST API & Dapp implemenation scheme
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Figure 40: Data processor and data controller implemenation scheme
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7. EVALUATION

We measure the efficiency of our solution via various experiments. Storing data on Ethereum,
and in blockchain in general, is expensive. For that reason, the first series of experiments
are made to measure the cost of saving data in smart contracts by comparing and an-
alyze various methods and alternatives. Second, we measure the cost of deploying the
application on Ethereum and the cost of each of the individual operations of it. Lastly, a
series of benchmarks are made to measure the time and the size of computational proofs
for each of the predefined algorithms supported by the data processors.

All experiments are conducted on MacBook Pro 2016 having a 2GHz Intel Core i5 (2 cores)
CPU with 8GB (1867 MHz LPDDR3) of memory and a 256GB PCI-Express SSD. We use
Ganache CLI v6.0.3 (ganache-core: 2.0.2) as local Ethereum blockchain testnet and
all smart contract are compiled with Solidity 0.4.24.

7.1 Benchmarks

7.1.1 Data storage

We measure the cost of storing raw data on the blockchain for each one of the following
sizes: 32 bytes, 1KB, 1MB, 10MB, 100MB and 1GB. The size of 32 bytes is included as EVM
words are of 256-bits. Table 7 reports the results.

As size grows in multiples of ten the cost is growing significantly. Storing 1GB of data
in Ethereum costs around 13.000.000 US dollars make it impossible and unpractical to
store big data in the blockchain. An alternative is to store the data in an off-chain infras-
tructure (i.e IPFS [22], Storj [173] or Filecoin [112]) and store a reference to the data in
the blockchain – a hash pointer. Storing a fixed size reference is much cheaper than sav-
ing arbitrary size datasets. Another alternative is to use the logging system of Ethereum
whose cost of use is much cheaper than direct storage.

In an attempt to reduce storage costs, various experiments were conducted to compare
different storage techniques. Four basic technique have been evaluated: data storage,
data hash pointer storage, data logging, data hash pointer logging. Tables 8 to 12 shows
the cost of the four possible ways of storing data for sizes of 32 bytes, 1KB, and 1MB. The
size of hash value is constant and 32 bytes. Logging instead of saving the hash value to
storage is cheaper by 35.42%. Logging raw data far exceeds direct data storage by an
average of 700%.

At the time of the experiments the price of Ether is 942.99 US dollars and the gas price is
set at 2 Gwei.

7.1.2 Application costs

Each action of the participants has a cost in gas. Table 13 shows the costs of each action
of the application. The most expensive action is dataset registration. It costs 233.487 gas.
The reason is that various dataset’s metadata are saved upon registration. Nevertheless,
is a negligible cost considering the advantages of data sharing in privacy preserving man-
ner.
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Table 7: Data storage costs.
ETH Price: $942.99 (Feb 18, 2018) - Gas Price: 2 Gwei

Size Gas USD
32 bytes 20.000 $0.037
1KB 724.664 $1.357
1MB 697.325.562 $1,305.393
10MB 7.000.000.000 $13,104
100MB 70.000.000.000 $131,040
1GB 700.000.000.000 $13,104,000
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Figure 41: Data storage costs.
ETH Price: $942.99 (Feb 18, 2018) - Gas Price: 2 Gwei

Table 8: Comparing methods of data storage.
ETH Price: $942.99 (Feb 18, 2018) - Gas Price: 2 Gwei - Data Size: 32 bytes

Type Size Gas USD
Data storage 32 bytes 34.916 $0.065
Hash pointer storage 32 bytes 34.850 $0.065
Data logging 32 bytes 25.995 $0.048
Hash pointer logging 32 bytes 25.995 $0.048

Table 9: Comparing methods of data storage.
ETH Price: $942.99 (Feb 18, 2018) - Gas Price: 2 Gwei - Data Size: 1KB

Type Size Gas USD
Data storage 1KB 724.730 $1.347
Hash pointer storage 32 bytes 34.850 $0.065
Data logging 1KB 104.310 $0.194
Hash pointer logging 32 bytes 25.995 $0.048

7.1.3 Zero Knowledge Proofs

A series of benchmarks are performed to measure the performance of the basic parts of
the construction and verification of zero knowledge proofs. Proof generation is divided in
three phases: Setup, Compute and Verify. Setup phase consists of the compilation of a C
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Table 10: Comparing methods of data storage.
ETH Price: $942.99 (Feb 18, 2018) - Gas Price: 2 Gwei - Data Size: 10KB

Type Size Gas USD
Data storage 10KB 6.668.509 $12.39
Hash pointer storage 32 bytes 34.850 $0.065
Data logging 10KB 832.604 $1.547
Hash pointer logging 32 bytes 25.995 $0.048

Table 11: Comparing methods of data storage.
ETH Price: $942.99 (Feb 18, 2018) - Gas Price: 2 Gwei - Data Size: 100KB

Type Size Gas USD
Data storage 100KB 66.454.178 $123.472
Hash pointer storage 32 bytes 34.850 $0.065
Data logging 100KB 8.186.883 $15.211
Hash pointer logging 32 bytes 25.995 $0.048

Table 12: Comparing methods of data storage.
ETH Price: $942.99 (Feb 18, 2018) - Gas Price: 2 Gwei - Data Size: 1MB

Type Size Gas USD
Data storage 1MB 666.092.228 $1,237.599
Hash pointer storage 32 bytes 34.850 $0.065
Data logging 1MB 88.857.033 $165.096
Hash pointer logging 32 bytes 25.995 $0.048
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Figure 42: Storage methods

programm to QAP (§ 2.8.4) and the generation of the keys needed for proof construction
and verification. Setup phase is executed once at application bootstrap and per process-
ing algorithm. Compute phase consists of circuit evaluation, polynomial solving and proof
generation with the use of the evaluation key. Lastly, Verification phase consists of
proof verification by the verifier with the use of the verification key.

C. Nasikas 93



Αccountable and privacy preserving data processing via distributed ledgers

Data
storage

Hash
pointer

Data
logging

Hash
pointer
logging

0

2

4

6

·106

6.67 · 106

34,850
8.33 · 105

25,995

G
as

(a) Size: 10KB

Data
storage

Hash
pointer

Data
logging

Hash
pointer
logging

0

2

4

6

·107

6.65 · 107

34,850
8.19 · 106

25,995

G
as

(b) Size: 100KB

Figure 43: Storage methods

Data
storage

Hash
pointer

Data
logging

Hash
pointer
logging

0

2

4

6

·108

6.66 · 108

34,850
8.89 · 107

25,995

G
as

Figure 44: Storage methods - Size: 1MB

Table 13: Application Costs.
ETH Price: $942.99 (Feb 18, 2018) - Gas Price: 2 Gwei

Type Gas ETH USD
App deployment 3.004.253 0.00601 $5.66
Register data set 233.487 0.000467 $0.44
Request for processing 89.206 0.0001784 $0.15
Register processor 83.274 0.0001665 $0.15
Notify processor 25.279 0.00005 $0.04

Tables 14 to 16 shows ZKP performance of the supported algorithms of the application.
For each algorithm, we measure the time execution of each one of the three phases and
the size of the generated keys and proofs. The keys are reasonably sized, with the eval-
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uation key to typically range from 10 to 100 MB. The verification key is always constant
size of 100KB. Due to the succinctness property of zkSNARKs the size of the proof is
very small and constant for all programs regardless input size. The size of the evalua-
tion keys and the execution time of each one of the phases are proportional to program’s
complexity.

Table 14: ZKP Performance: 100 values

Setup (s) Compute (s) Verify (ms) Eval Key (MB) Ver Key (KB) Proof (B)
Sum 10 8 28 0.016 100 304
Count 16 8 26 0.005 100 304
Max 17 9 28 1.7 100 304
Median 65 30 28 64 100 304
Min 17 9 51 1.7 100 304
Mean 16 8 19 0.054 100 304

Table 15: ZKP Performance: 1.000 values

Setup (s) Compute (s) Verify (ms) Eval Key (MB) Ver Key (KB) Proof (B)
Sum 10 8 27 0.144 100 304
Count 15 9 37 0.036 100 304
Max 29 14 34 17 100 304
Min 28 14 49 17 100 304
Mean 17 8 41 0.182 100 304
Median 1701 - 12 64 100 304

Table 16: ZKP Performance: 10.000 values

Setup (s) Compute (s) Verify (ms) Eval Key (MB) Ver Key (KB) Proof (B)
Sum 10 8 21 1.44 100 304
Count 17 8 32 0.335 100 304
Max 130 67 28 171 100 304
Min 126 67 27 171 100 304
Mean 22 9 27 1.5 100 304
Median - - - - - -
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8. FUTURE WORK

8.1 Publicly verifiable zero knowledge proof

In the scheme presented in Chapter 5, only the requestor can verify the proof produced by
the data processor crafted for her request. The output of the processing must be remain
private. For that reason, is stored encrypted in the blockchain. As the output is a crucial
input to the verification algorithm, only the requestor can validate the proof. This gives
the requestor an opportunity to defy data processor’s legitimacy and validity forcing the
data processor to resort to a third part trusted entity that will enforce the data requestor
to disclose the output of the process. To eliminate this, the verification algorithm must be
run on the blockchain, where anyone can validate the proof, without revealing the output
of the processing. The input of the verification algorithm must be encrypted. To achieve
this, the proof generation algorithm must include the encryption procedure that encrypts
the output. This ensures that the ciphertext corresponds to the output of the processing.
Implementing the verification algorithm in the blockchain eliminates, also, the need of the
salt (§ 5.5). The output is encrypted and an adversary cannot brute-force it efficiently.

8.2 Secure Multi party computation

In the setting of multiparty computation [19], sets of two or more parties with private in-
puts wish to jointly compute some (predetermined) function of their inputs [90]. Secure
multiparty computation assume malicious behavior by a subset of participant entities.

The two important requirements of any secure computation protocol are privacy and cor-
rectness. The privacy requirement states that the parties should not learn anything else
than the output of the computation and the correctness requirement states that each party
should receive its correct output [90].

Informally, consider n parties with private inputs x1, x2, . . . , xn. The parties want to compute
the outcome of the function f(x1, x2, . . . , xn) where the respective inputs remain private.

The first secure multiparty computation problem was described by Yao in [175] and is
called the Yao’s Millionaires’ problem. The problem discusses two millionaires, Alice and
Bob, who are interested in knowing which of them is richer without revealing their actual
wealth. Specifically, Yao’s millionaires’ problem is the problem of computing the predicate,
a ≥ b where a is Alice’s holding and b is Bob’s holding, without disclosing anything more
than the result to either party [97].

Multi-party computation protocols have a wide range of applications. They can be used
in voting systems where each party votes for a candidate and they want to compute the
winner of the voting without revealing their vote. Another use case it that of auctions.
Several parties are bidding for a product where the winning party and maximum bid should
be determined, without revealing bids of other parties

Most MPC protocols make use of secret sharing. A secret sharing scheme allows a value
to be shared among n parties where some of the parts or all of them are needed in order
to reconstruct the secret [99]. Usually, there is a threshold t so that at least t part of the
secret are needed to reconstruct the original secret.

Using an MPC protocol based on secret sharing eliminates the need of symmetric key
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exchange and dataset decryption and exposition (§ 5.8, § 5.9). Data queries can be
computed in a distributed way with the use of an MPC cluster of data processors. In
addition, datasets can be split between data processors without them having access to
the data in its entirety [180]. This way, the need for a trusted processor is eliminated as
the data processors do not have access to the unciphered dataset.

8.3 Fees

As discussed in 5.2.3 a malicious requestor can threat the system by overflowing the net-
work with multiple requests aiming to prevent other request to be fulfilled. A scalable
payment system could be used as a countermeasure to this type of attacks where a re-
questor pays a fixed price per byte processed. The price can decrease as the data size
increases.

A payment system helps to prevent DDoS attacks as each request has a cost and the
attack becomes more expensive as the requests are increasing. A rational malicious re-
questor has to significantly gain more than the cost of the attack to be profitable. Moreover,
a payment system will incentivize the data processors to follow the protocol honestly and
contribute to the prosperity of the network.

8.4 Privacy Preserving Queries

The algorithms (queries) the system supports are not privacy-preserving. The privacy of
the individuals in the dataset must be protected with various privacy-preserving techniques
such as differential privacy [61], k-anonymity [151] and l-diversity [4]. This techniques can
be either applied by the data controllers before handing over the dataset to the proces-
sor or by the processors themselves where a requestor wants the de-identification of the
dataset as a processing procedure.

8.5 Reputation system

A decentralized reputation system [116], resilient to Sybil attacks, could eliminate the need
of a centralized trust model of a public key infrastructure (PKI), which relies on a trusted
entity to authenticate, identify and verify the participants of the system. The users in such
systems built trust relationships among them and measure trustworthiness in a setting
where assets can be exchanged between them [116]. The benefits of such systems are
pseudonymity of the participants, truly decentralization and the increasing trust for the
system itself.

A data controller, whom its dataset are of bad quality or fabricated with malicious intents,
could be identified by the users of the system and gain bad reputation. It is evident, that
the users of the network should choose datasets where their owners have high trust. The
same applies to data processors and even the requestor themselves.
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8.6 Analytics

The activity of the system could be analyzed by various tools to measure the functionality
and the prosperity of the system. To achieve that, blockchain should be indexed and
be monitored constantly by an analytic node that stores in a database all the needed
information. Various charts and results can be derived by such analysis. For example:

• Transaction chart

• Address growth chart

• Hash rate growth chart

• Block difficulty

• Pending transactions per minute

• Network transaction fees

• Total dataset processing requests

• Total datasets

• Total processors

• Total data controllers

• Most trusted processors or controllers

• Most used datasets

• Most used algorithms

• Top 10 charts

8.7 Consent

A key aspect that is missing from the current solution is the implementation of dynamic
consent which can empower the data owners. With the use of smart contracts data access
policies could be implemented where data controllers are obligate to comply to them. That
way, data owners have total control over their data and can decide when and by whom
their data are accessed.

Modeling dynamic consent in smart contracts should be carefully analyzed taking into
account design issues that are related to smart contracts lifecycle, required state variables
for storing contract’s information, and access restrictions to those variables.

Neisse et al. [131] proposed the following three models for data accountability and prove-
nance tracking that comply with the GDPR(§ 4.2):

1. Contract for a specific controller: A contract where the data subject creates a contract
tailored for each data controller
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2. Contract for specific data: A contract where each subject’s data instance is shared
among all data controllers

3. Contract for multiple data subjects: A contract where the data controller specifies
how the data from all subjects are treated from the controller

The first contract is more adequate for sensitive data [131], such as health data, since
a subject-controller relationship [13] is being created where each patient has a different
contract for each controller accessing their data, providing fine grained access control
and provenance information. On the other hand, it has the highest cardinality among the
others two types [131]. The second contract suffers from direct linkability as a unique
subject address is needed compromising patients’ privacy [131]. Lastly, the third one has
the lowest cardinality among the others but also has the lower level of customization due
to the limited number of contract options [131].
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9. RELATED WORK

9.1 Enigma

Enigma is a blockchain-based protocol where decentralized applications can be deployed.
It combines a blockchain with an off-chain storage where data are stored and enables
different parties through a peer-to-peer network to run computation on them in a privacy
preserving manner. Data are stored in a distributed hash-table (DHT) that is accessible
through the blockchain. Data are not stored directly in the DHT as they are private. The
DHT stores only references to the data that are encrypted and stored on the client side.
The blockchain is used as an access-control manager and a log system which manages
data access and identity verification. For computation an optimize verifiable secure MPC
is used between computational nodes of the network where queries run, without a trusted
third party.

9.2 MedRec

MedRec is a decentralized record management system to handleElectronic Health Records
(EHRs) with the use of the Ethereum blockhain. Its purpose is to address the various prob-
lems the health care industry faces especially when it comes to medical records exchange
between various organizations. With the use of smart contracts a dynamic consent mech-
anism is created where patients form contracts with various providers that enforce them
to follow the various access permissions the patient authorized. The medical records are
stored on providers without any need to change their infrastructure. A gatekeeper node is
installed in each provider and is responsible to listen to queries, that are predefined and
crafted based on patient access permissions, and fulfill them. When a request for query
execution arrives the provider checks the blockchain for access permissions and then it
executes it locally and return the results.

9.3 Datum

Datum is a decentralized market place where users can share or sell their data. Data
are encrypted and stored in a decentralized data store running by storing nodes. Storing
nodes are paid by the users for their service in a token called DAT. Data, before leaving
the client storage, are cleaned from personally identifying information and then saved
to the network. Data consumers can request and buy datasets that are stored in the
network. When a user accepts a buy request from a data consumer, it authorized it and
the decryption key is sent to the data consumer which in turn pays the user with DAT. The
procedure of data exchange is governed by a smart contract responsible for fairness in
the system.

9.4 ADSNARK

Succinct Non-Interactive Arguments of Knowledge on Authenticated Data (AD-SNARK)
is a cryptographic primitive in which privacy-preserving proofs on authenticated data can
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be generated and verified. In a AD-SNARK setting a party is requested for a proof of
computation over a dataset acquired from a trusted source who vouch for the quality and
legitimacy of the data. The verifier is able to check the validity of the dataset authenticated
by the source. The creators of ADSNARK are inspired by ZQL [77], a query language for
expressing simple computations on private data. ADSNARK is achieved by embedding
digital signatures into SNARKs. The data source, which is trusted, authorizes the data by
producing a valid digital signature which is taken as public input to the proof generation
algorithm.
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10. CONCLUSION

In this work, we presented a data sharing and processing in a privacy preserving man-
ner platform. Through the platform data controllers can register their datasets and make
them available for processing. Data processors can process datasets on behalf of data
requestors. Anyone can be a data requestor and request a data processing on a specific
dataset and for a specific algorithm.

We use a distributed ledger as the controller of the system. The use of distributed ledger
helps to unite trustless entities with shared interests – the data processing of sensitive
datasets. Utilizing the blockchain as the coordinator of the system all actions of partici-
pants are recorded. Thus, trasparency, accountability, non-repudation, data provenance,
and auditability is enabled. In addition to the blockchain, we use a Zero Knowledge verifi-
able computation scheme with which the data processors can produce a proof of correct
computation without revealing the dataset itself. Requestors can verify proofs and be
assured of the validity of the output.

We aim to a fully decentralized data sharing ecosystem where researchers and organiza-
tion can extract all the valuable information of datasets without compromising privacy.
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ABBREVIATIONS - ACRONYMS

SET Secure Electronic Transaction

NIZK Non-interactive zero knowledge

SNARK Succinct Non-Interactive Argument of Knowledge

zkSNARK Zero-Knowledge Succinct Non-Interactive Argument of Knowledge

UTXO Unspent transaction output

SHA Secure Hash Algorithm

PoW Proof of Work

PoS Proof of Stake

PBFT Practical Byzantine Fault Tolerance

EVM Ethereum Virtual Machine

ASIC Application-specific Integrated Circuit

MPC Multi-party Computation

DHT Distributed Hash Table

Dapp Decentralised Application

GDPR General Data Protection Regulation

DPR Data Protection Directive

EU European Union

Opcode Operation Code

VC Verifiable Computation

CLI Command-line interface

PKI Public Key Infrastructure

CRS Common Reference String

QSP Quadratic Span Program

QAP Quadratic Arithmetic Program

R1CS Rank 1 Constraint System

URI Uniform Resource Identifier

REST Representational State Transfer

HTTP Hypertext Transfer Protocol

UI User Interface
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SegWit Segregated Witness

SPOF Single Point of Failure

DoS Denial-of-service

DDoS Distributed denial-of-service

IoT Internet of Things

DDH Decisional Diffie Hellman

PPT Probabilistic polynomial-time

PID Persistent identifiers

ECC Elliptic curves

OTP One-time pad

PRG Pseudorandom generator

ECDLP Elliptic Curve Discrete Logarithm Problem

ECDSA Elliptic Curve Digital Signature Algorithm

ECDH Elliptic Curve Diffie–Hellman

DSA Digital Signature Algorithm

NIST Digital Signature Algorithm

DLGO Discrete logarithm

CDH Computational Diffie-Hellman

DDH Decisional Diffie-Hellman

ECB Electronic Codebook

CBC Cipher Block Chaining

OFB Output Feedback

CTR Coutner

IV Initial Vector

P2P Peer-to-peer

IP Internet Protocol

ETH Ether

GHOST Greedy Heaviest Observed Subtree

DNN Deep Neural Network

EHR Electronic Health Record

CCTV Closed-circuit television

AD-SNARK Succinct Non-Interactive Arguments of Knowledge on Authenticated Data
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MAC Message Authentication Code

OCB Offset Codebook Mode

GCM Galois/Counter Mode

CBC-MAC Cipher Block Chaining Message Authentication Code
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APPENDIX A. SOURCE CODE UNDER MIT LICENCE

MIT License

Copyright (c) 2017 Christos Nasikas

Permission is hereby granted, free of charge, to any person obtaining a copy of this soft-
ware and associated documentation files (the S̈oftware)̈, to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish, dis-
tribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED ÄS IS,̈ WITHOUT WARRANTY OF ANY KIND, EX-
PRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MER-
CHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CON-
TRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH
THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
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APPENDIX B. CREATIVE COMMONS ATTRIBUTION 4.0
INTERNATIONAL PUBLIC LICENSE

By exercising the Licensed Rights (defined below), You accept and agree to be bound
by the terms and conditions of this Creative Commons Attribution 4.0 International Public
License (”Public License”). To the extent this Public License may be interpreted as a
contract, You are granted the Licensed Rights in consideration of Your acceptance of
these terms and conditions, and the Licensor grants You such rights in consideration of
benefits the Licensor receives from making the Licensed Material available under these
terms and conditions.

B.1 Section 1 – Definitions.

a. Adapted Material means material subject to Copyright and Similar Rights that is
derived from or based upon the Licensed Material and in which the Licensed Mate-
rial is translated, altered, arranged, transformed, or otherwise modified in a manner
requiring permission under the Copyright and Similar Rights held by the Licensor.
For purposes of this Public License, where the Licensed Material is a musical work,
performance, or sound recording, Adapted Material is always produced where the
Licensed Material is synched in timed relation with a moving image.

b. Adapter’s License means the license You apply to Your Copyright and Similar
Rights in Your contributions to Adapted Material in accordance with the terms and
conditions of this Public License.

c. Copyright and Similar Rights means copyright and/or similar rights closely related
to copyright including, without limitation, performance, broadcast, sound recording,
and Sui Generis Database Rights, without regard to how the rights are labeled or
categorized. For purposes of this Public License, the rights specified in Section
2(b)(1)-(2) are not Copyright and Similar Rights.

d. Effective Technological Measures means those measures that, in the absence
of proper authority, may not be circumvented under laws fulfilling obligations under
Article 11 of the WIPO Copyright Treaty adopted on December 20, 1996, and/or
similar international agreements.

e. Exceptions and Limitations means fair use, fair dealing, and/or any other excep-
tion or limitation to Copyright and Similar Rights that applies to Your use of the Li-
censed Material.

f. Licensed Material means the artistic or literary work, database, or other material to
which the Licensor applied this Public License.

g. Licensed Rights means the rights granted to You subject to the terms and condi-
tions of this Public License, which are limited to all Copyright and Similar Rights that
apply to Your use of the Licensed Material and that the Licensor has authority to
license.

h. Licensor means the individual(s) or entity(ies) granting rights under this Public Li-
cense.
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i. Share means to provide material to the public by any means or process that re-
quires permission under the Licensed Rights, such as reproduction, public display,
public performance, distribution, dissemination, communication, or importation, and
to make material available to the public including in ways that members of the public
may access the material from a place and at a time individually chosen by them.

j. Sui Generis Database Rights means rights other than copyright resulting from Di-
rective 96/9/EC of the European Parliament and of the Council of 11 March 1996 on
the legal protection of databases, as amended and/or succeeded, as well as other
essentially equivalent rights anywhere in the world.

k. You means the individual or entity exercising the Licensed Rights under this Public
License. Your has a corresponding meaning.

B.2 Section 2 – Scope.

a. License grant.

1. Subject to the terms and conditions of this Public License, the Licensor hereby
grants You a worldwide, royalty-free, non-sublicensable, non-exclusive, irre-
vocable license to exercise the Licensed Rights in the Licensed Material to: A.
reproduce and Share the Licensed Material, in whole or in part; and B. produce,
reproduce, and Share Adapted Material.

2. Exceptions and Limitations. For the avoidance of doubt, where Exceptions and
Limitations apply to Your use, this Public License does not apply, and You do
not need to comply with its terms and conditions.

3. Term. The term of this Public License is specified in Section 6(a).
4. Media and formats; technical modifications allowed. The Licensor authorizes

You to exercise the Licensed Rights in all media and formats whether now
known or hereafter created, and to make technical modifications necessary
to do so. The Licensor waives and/or agrees not to assert any right or au-
thority to forbid You from making technical modifications necessary to exercise
the Licensed Rights, including technical modifications necessary to circumvent
Effective Technological Measures. For purposes of this Public License, sim-
ply making modifications authorized by this Section 2(a)(4) never produces
Adapted Material.

5. Downstream recipients.
A. Offer from the Licensor – Licensed Material. Every recipient of the Licensed

Material automatically receives an offer from the Licensor to exercise the
Licensed Rights under the terms and conditions of this Public License.

B. No downstream restrictions. You may not offer or impose any additional or
different terms or conditions on, or apply any Effective Technological Mea-
sures to, the Licensed Material if doing so restricts exercise of the Licensed
Rights by any recipient of the Licensed Material.

6. No endorsement. Nothing in this Public License constitutes or may be con-
strued as permission to assert or imply that You are, or that Your use of the Li-
censed Material is, connected with, or sponsored, endorsed, or granted official
status by, the Licensor or others designated to receive attribution as provided
in Section 3(a)(1)(A)(i).

C. Nasikas 108



Αccountable and privacy preserving data processing via distributed ledgers

b. Other rights.

1. Moral rights, such as the right of integrity, are not licensed under this Public
License, nor are publicity, privacy, and/or other similar personality rights; how-
ever, to the extent possible, the Licensor waives and/or agrees not to assert
any such rights held by the Licensor to the limited extent necessary to allow
You to exercise the Licensed Rights, but not otherwise.

2. Patent and trademark rights are not licensed under this Public License.
3. To the extent possible, the Licensor waives any right to collect royalties from You

for the exercise of the Licensed Rights, whether directly or through a collect-
ing society under any voluntary or waivable statutory or compulsory licensing
scheme. In all other cases the Licensor expressly reserves any right to collect
such royalties.

B.3 Section 3 – License Conditions.

Your exercise of the Licensed Rights is expressly made subject to the following conditions.

a. Attribution.

1. If You Share the Licensed Material (including in modified form), You must:

A. retain the following if it is supplied by the Licensor with the Licensed Mate-
rial:

i. identification of the creator(s) of the Licensed Material and any others
designated to receive attribution, in any reasonable manner requested
by the Licensor (including by pseudonym if designated); a copyright
notice;

ii. a notice that refers to this Public License;
iii. a notice that refers to the disclaimer of warranties;
iv. a URI or hyperlink to the Licensed Material to the extent reasonably

practicable;
B. indicate if You modified the Licensed Material and retain an indication of

any previous modifications; and
C. indicate the Licensed Material is licensed under this Public License, and

include the text of, or the URI or hyperlink to, this Public License.

2. You may satisfy the conditions in Section 3(a)(1) in any reasonable manner
based on the medium, means, and context in which You Share the Licensed
Material. For example, it may be reasonable to satisfy the conditions by pro-
viding a URI or hyperlink to a resource that includes the required information.

3. If requested by the Licensor, You must remove any of the information required
by Section 3(a)(1)(A) to the extent reasonably practicable.

4. If You Share Adapted Material You produce, the Adapter’s License You apply
must not prevent recipients of the Adapted Material from complying with this
Public License.
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B.4 Section 4 – Sui Generis Database Rights.

Where the Licensed Rights include Sui Generis Database Rights that apply to Your use
of the Licensed Material:

a. for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse,
reproduce, and Share all or a substantial portion of the contents of the database;

b. if You include all or a substantial portion of the database contents in a database in
which You have Sui Generis Database Rights, then the database in which You have
Sui Generis Database Rights (but not its individual contents) is Adapted Material;
and

c. You must comply with the conditions in Section 3(a) if You Share all or a substantial
portion of the contents of the database.

For the avoidance of doubt, this Section 4 supplements and does not replace Your obli-
gations under this Public License where the Licensed Rights include other Copyright and
Similar Rights.

B.5 Section 5 – Disclaimer of Warranties and Limitation of Liability.

a. Unless otherwise separately undertaken by the Licensor, to the extent possible, the
Licensor offers the Licensed Material as-is and as-available, and makes no rep-
resentations or warranties of any kind concerning the Licensed Material, whether
express, implied, statutory, or other. This includes, without limitation, warranties of
title, merchantability, fitness for a particular purpose, non-infringement, absence of
latent or other defects, accuracy, or the presence or absence of errors, whether or
not known or discoverable. Where disclaimers of warranties are not allowed in full
or in part, this disclaimer may not apply to You.

b. To the extent possible, in no event will the Licensor be liable to You on any legal
theory (including, without limitation, negligence) or otherwise for any direct, spe-
cial, indirect, incidental, consequential, punitive, exemplary, or other losses, costs,
expenses, or damages arising out of this Public License or use of the Licensed Ma-
terial, even if the Licensor has been advised of the possibility of such losses, costs,
expenses, or damages. Where a limitation of liability is not allowed in full or in part,
this limitation may not apply to You.

c. The disclaimer of warranties and limitation of liability provided above shall be in-
terpreted in a manner that, to the extent possible, most closely approximates an
absolute disclaimer and waiver of all liability.

B.6 Section 6 – Term and Termination.

a. This Public License applies for the term of the Copyright and Similar Rights licensed
here. However, if You fail to comply with this Public License, then Your rights under
this Public License terminate automatically.
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b. Where Your right to use the Licensed Material has terminated under Section 6(a), it
reinstates:

1. automatically as of the date the violation is cured, provided it is cured within 30
days of Your discovery of the violation; or

2. upon express reinstatement by the Licensor.

c. For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor
may have to seek remedies for Your violations of this Public License.

d. For the avoidance of doubt, the Licensor may also offer the Licensed Material under
separate terms or conditions or stop distributing the Licensed Material at any time;
however, doing so will not terminate this Public License.

e. Sections 1, 5, 6, 7, and 8 survive termination of this Public License.

B.7 Section 7 – Other Terms and Conditions.

a. The Licensor shall not be bound by any additional or different terms or conditions
communicated by You unless expressly agreed.

b. Any arrangements, understandings, or agreements regarding the Licensed Material
not stated herein are separate from and independent of the terms and conditions of
this Public License.

B.8 Section 8 – Interpretation.

a. For the avoidance of doubt, this Public License does not, and shall not be interpreted
to, reduce, limit, restrict, or impose conditions on any use of the Licensed Material
that could lawfully be made without permission under this Public License.

b. To the extent possible, if any provision of this Public License is deemed unenforce-
able, it shall be automatically reformed to the minimum extent necessary to make it
enforceable. If the provision cannot be reformed, it shall be severed from this Public
License without affecting the enforceability of the remaining terms and conditions.

c. No term or condition of this Public License will be waived and no failure to comply
consented to unless expressly agreed to by the Licensor.

d. Nothing in this Public License constitutes or may be interpreted as a limitation upon,
or waiver of, any privileges and immunities that apply to the Licensor or You, includ-
ing from the legal processes of any jurisdiction or authority.
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