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ABSTRACT

In this thesis, we study the subject of Handling Uncertainty in Recommendation Systems.
We implemented a Collaborative Filtering movie recommendation system using the Py-
thon programming language. We use Dempster-Shafer theory to propagate the uncer-
tainties arising from imperfections in user ratings to the decision-making process. By
converting ratings into mass functions and pignistic probabilities, we measure the similar-
ities between users and use the Dempster’s rule of combination to predict user ratings in
movies they have not rated.

SUBJECT AREA: Artificial Intelligence

KEYWORDS: Dempster-Shafer theory, Uncertainty, Recommendation system, Py-
thon



ΠΕΡΙΛΗΨΗ

Σε παρούσα πτυχιακή, μελετάμε το θέμα του Χειρισμού της Αβεβαιότητας στα Συστήματα
Συστάσεων. Υλοποιήσαμε ένα σύστημα συστάσεων για ταινίες με τη μέθοδο Collaborative
Filtering χρησιμοποιώντας τη γλώσσα προγραμματισμού Python. Χρησιμοποιούμε τη θε-
ωρία Dempster-Shafer για να μεταφέρουμε τις αβεβαιότητες που πηγάζουν από τις ατέ-
λειες στις αξιολογήσεις χρηστών στη διαδικασία λήψης αποφάσεων. Μετατρέποντας τις
βαθμολογίες σε συναρτήσεις μάζας και pignistic πιθανότητες μετράμε τις ομοιότητες με-
ταξύ των χρηστών και χρησιμοποιούμε τον κανόνα Dempster's rule of combination για να
προβλέψουμε την βαθμολογία των χρηστών σε ταινίες που δεν έχουν αξιολογήσει.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Τεχνητή Νοημοσύνη

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Θεωρία Dempster-Shafer, Αβεβαιότητα, Συστήματα συστάσεων,
Python
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Movie Recommendation System based on Dempster-Shafer theory

1. INTRODUCTION

In this day and age, with the rapid development of the internet, online sales continue to
grow exponentially. The term coined to describe online sales is e-commerce. Small on-
line stores up to large corporations on the internet are flourishing, with companies using
every means to better serve their online customers. A problem for these companies is the
enormous size of their products and their potential customers. Online stores fight not to be
absorbed into the enormous competition of the internet and try to keep their products up to
date and aimed at their consumers. In this chaotic context, using huge amount of informa-
tion, small and large businesses are trying to personalize their online stores for each user
who may have very different preferences. For this reason, the so-called Recommenda-
tion Systems (RS) [9] have been developed, which are systems that aim offering users
products according to their preferences.

Due to the current development of e-commerce, Recommendation Systems are at the
hotspot of research. RS’s task is to gather information about the general preferences of
the users and suggest products that meet these specifications. Themost commonmethod
that RS display information about users’ preferences is through their ratings and reviews.
The main approaches are either content-based or collaborative filtering. Content-based
methods try to combine users’ preferences and match them to existing product categories.
While collaborative filtering methods find similar users and assume that in the future they
will have similar preferences. However, these methods are not perfect as the scores can
lead to uncertain and imprecise results. Thus, systems, in order to handle the uncertainty
of user data, make assumptions that impair system performance.

One framework designed to reason with uncertainty is Dempster-Shafer theory [6], [17].
The theory is a generalization of the Bayesian theory of subjective probability, which was
firstly introduced by Arthur P. Dempster and later developed by Glenn Shafer. This frame-
work uses a function, referred to as mass function or basic probability assignment, in order
to represent the exact body of belief over a set of events. Also, additional measures, belief
and plausibility are used to express how likely or plausible an event is; and their range in-
terval expresses the range of uncertainty of the given event. Moreover, Dempster-Shafer
theory is widely used due to its ability to combine independent sources of evidence. This
tool is called the Dempster rule of combination and it is popular in statistical and classific-
ation problems.

One application where Dempster-Shafer theory can be used is Recommendation Sys-
tems [13], [11], [21]. Due to the imprecise user input, RS is possessed by uncertainty.
For this reason, methods have been proposed using Dempster-Shafer theory to handle
uncertainty.

In this thesis, we implement a movie recommendation system using Dempster-Shafer
theory. Movie RS is a classic RS problem initially since there are plenty of data with user
ratings and, on the one hand, because it is a major problem since there is a huge size of
active users and movies. The importance of the RS movie is also evident from the Netflix
competition [9] where they offered a prize of one million dollars for the first algorithm that
could outperform their recommendation system.

The purpose of our application is to process user data considering the imperfections and

I. Papasotiriou 12
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uncertainties contained, as well as to propagate them to the final result.

The thesis is structured as follows. The next chapter describes inmore detail the Dempster-
Shafer theory. The Chapter 3 illustrates the way that RS work as well as some existing
RS methods combined with the Dempster-Shafer theory. Next, Chapter 4 describes our
implementation and the results we reached. Finally, we present our conclusions and pro-
posals for future work.

I. Papasotiriou 13
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2. DEMPSTER SHAFER THEORY

Dempster-Shafer theory (DST) [6], [17], also referred to as evidence theory or theory of
belief functions is a general framework that first introduced by Arthur P. Dempster in con-
text of statistical inference and later developed by Glenn Shafer in a general framework of
epistemic uncertainty. The main possibilities of Dempster-Shafer theory are a) obtaining
degrees of belief for subjective probabilities of a specific question and b) the combination
of degrees of belief using Dempster’s rule of combining, when they are based on inde-
pendent evidence.
Dempster-Shafer theory is a generalization of the Bayesian theory of subjective probabil-
ity and was developed for handling uncertainty. Uncertainty does not mean ambiguity or
vagueness but expresses a degree of belief that may arise from a random process or lack
of knowledge [18].

2.1 Definitions

We define Universe (U) or frame of discernment (Θ) as the set of all possible states [17],
[18], therefore the powerset 2Θ is the set of all subsets of Θ, containing the empty set (∅).

Definition 2.1.1: (Mass Function)
For a frame of discernment Θ a function m : 2Θ → [0, 1] is called mass function or basic
probability assignment (bpa) if:

1) m(∅) = 0

2)
∑
A∈Θ

m(A) = 1

Then for a set A ∈ 2Θ the quantity m(A) is called basic probability number and represents
the exact quantity of belief over A.
A set A ∈ 2Θ with m(A) > 0 is called a focal element of a belief function over Θ [17].

Definition 2.1.2: (Belief Function)
For a frame of discernment Θ and a set A ∈ 2Θ the belief function bel : 2Θ → [0, 1] rep-
resents the total belief over A. The belief function is calculated by the sum of m(B) for all
proper subsets B of A:

Bel(A) =
∑
B⊆A

m(B) (2.1)

From the definition we can easily conclude that the total amount of belief of ∅ is 0 and the
belief for Θ is 1.

Definition 2.1.3: (Plausibility Function)
For a frame of discernment Θ and a set A ∈ 2Θ the plausibility function pl : 2Θ → [0, 1]
represents how plausible A is or the amount of belief not committed to the complement of
A:

pl(A) = bel(Θ)− bel(A) (2.2)

I. Papasotiriou 14
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Since bel(Θ) = 1:

pl(A) = 1− bel(A) (2.3)

The amount of belief not commited to Θ is 0 so pl(Θ) = 1 and respectively pl(∅) = 0

The plausibility function can also be defined for a set A ∈ 2Θ as the sum of the masses
intersecting with A, i.e. the intersection of the sets B ∈ 2Θ with A that are not ∅:

pl(A) =
∑

A∩B ̸=∅

m(B) (2.4)

It is important to understand the relation between the above definitions. The mass of
set A ∈ 2Θ is the exact belief that this event occurs, while the belief function expresses
the total belief that applies to A. The plausibility function shows how believable A is, i.e.
if pl(A) = 0, A is unlikely to happen. Definitions show that m(A) ≤ bel(A) ≤ pl(A). Fur-
thermore, interval [bel(A), pl(A)] represents the uncertainty of element A, the larger the
interval is the more uncertain we are about A.

Definition 2.1.4: (Pignistic probability distribution)
For a frame of discernment Θ and a set A ∈ 2Θ, the pignistic probability distribution
Bp : 2Θ → [0, 1] [19], is defined as:

Bp(θi) =
∑

θi∈A⊆Θ

m(A)

|A|
(2.5)

A pignistic probability distribution [13] is compatible with the mass functionm for the same
frame of discernment Θ. A probability distribution Pr is said to be compatible with a mass
function m when ∀A ⊆ Θ holds bel(A) ≤ Pr(A) ≤ pl(A).

2.1.1 Example

In a football game, the possible scenarios for a team are victory, draw, defeat; then the
frame of discernment isΘ = {victory, draw, defeat} and the powerset 2Θ = {{}, {victory},
{draw}, {defeat}, {victory, draw}, {victory, defeat}, {draw, defeat}, {victory, draw, defeat}}.
According to an experienced football analyst with knowledge of mathematics, the follow-
ing applies:

m({victory}) = 0.1

m({draw}) = 0.3

m({draw, defeat}) = 0.2

m({victory, draw, defeat}) = 0.4

The provided information describes the exact amount of belief for each possibility; for
instance, the total degree of belief for a draw or defeat is 0.2 and for draw, it is 0.3. These

I. Papasotiriou 15
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indications are governed by a significant degree of uncertainty and this is obvious from
m(Θ) = 0.4.

For every A ∈ 2Θ the Dempster-Shafer theory allows us to answer the questions:

1. How likely is event A?

2. How plausible is event A?

For the first question we need to calculate the belief function (Definition 2.1.2):

bel({victory}) = m({victory}) = 0.1

bel({draw}) = m({draw}) = 0.3

bel({draw, defeat}) = m({draw, defeat}) +m({draw}) = 0.5

bel({victory, draw}) = m({victory}) +m({draw}) = 0.4

and obviously:

bel({victory, draw, defeat}) = m({victory}) +m({draw}) +m({draw, defeat})
+m({victory, draw, defeat}) = 1

For the second question we need to calculate the Plausibility Function (Definition 2.1.3):

pl({victory}) = m({victory}) +m({victory, draw, defeat}) = 0.5

pl({draw}) = m({draw}) +m({draw, defeat}) +m({victory, draw, defeat}) = 0.9

pl({defeat}) = m({draw, defeat}) +m({victory, draw, defeat}) = 0, 6

pl({draw, defeat}) = m({draw}) +m({draw, defeat}) +m({victory, draw, defeat}) = 0.9

and:

pl({victory, draw, defeat}) = m({victory}) +m({draw}) +m({draw, defeat})
+m({victory, draw, defeat}) = 1

From the above calculations we can distinguish the degree of uncertainty for each possib-
ility. Specifically for the event {draw}, the range [bel(draw), pl(draw)] = [0.3, 0.9] shows
that there is enough uncertainty while in the event of a {draw, defeat} [bel(draw, defeat),
pl(draw, defeat)] = [0.5, 0.9] is more limited.

2.2 Dempster’s rule of combination

Dempster’s rule of combination (DRC) [6], [17], is a statistical method that allows the com-
bination of evidence from independent sources to reach in one conclusion. Specifically, if

I. Papasotiriou 16
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different masses exist in the same frame of discernment Θ, DRC allows their combination
in order to create a new mass function.

Definition 2.2.1: (Dempster’s rule of combination)
Suppose m1 and m2 two masses and A1, ..., Ak andB1, ..., Bl the corresponding focal ele-
ments in the same frame of discernment Θ. We can calculate the combination of the two
masses m1,2 according to the following formula:

m1,2(∅) = 0

m1,2(A) =

∑
Ai∩Bj=A

m1(Ai)m2(Bj)

1−
∑

Ai∩Bj=∅
m1(Ai)m2(Bj)

, for A ∈ Θ, A ̸= ∅

for K =
∑

Ai∩Bj=∅
m1(Ai)m2(Bj):

m1,2(A) =
1

1−K

∑
Ai∩Bj=A

m1(Ai)m2(Bj) , for A ∈ Θ (2.6)

The combination of m1, m2 is called joint mass and the operation is denoted by m1,2 =
m1 ⊕m2

The DRC operation creates a new mass function where the focal elements are a con-
sequence of the focal elementsA1, ..., Ak andB1, ..., Bl ofm1,m2 respectively in which there
are common elements i.e. Ai ∩ Bj = A. The constant K is a normalization factor and its
purpose is to introduce in equation the all empty intersections of m1, m2 focal sets. The
smaller K is, the less conflict there is between m1, m2 and in the case where K = 0 then
m1,2(A) =

1
1−0

∑
Ai∩Bj=A

m1(Ai)m2(Bj) =
∑

Ai∩Bj=A

m1(Ai)m2(Bj)

The weight of conflict [17], [15] is defined as:

Con(m1,m2) = −log(1−
∑

B∩C=∅

m1(B)m2(C)) (2.7)

2.2.1 Properties of Dempster’s rule of combination

DRC theory holds the following properties:

1. Commutative property: the order of operands does not change the result

m1 ⊕m2 = m2 ⊕m1

2. Associative property: rearranging the parentheses in an expression of DRC will not
change the result

(m1 ⊕m2)⊕m3 = m1 ⊕ (m2 ⊕m3)

3. Neutral element: when any mass function is combined with m0(Θ) = 1 it remains
unchanged

m1 ⊕m0 = m1

I. Papasotiriou 17
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2.2.2 Example

In the previous example, the football analyst provided us:

m({victory}) = 0.1 m({draw}) = 0.3 m({draw, defeat}) = 0.2 m(Θ) = 0.4

Suppose that another football analyst, just as experienced as the previous one, gives the
following information for the same match:

m({victory}) = 0.1

m({victory, draw}) = 0.3

m({victory, defeat}) = 0.4

m({victory, draw, defeat}) = 0.2

We use the DRC to combine the two views and reach a possible result of the match.
To calculate m1,2 we need to find all the intersections of m1, m2 focal sets. The focal sets
that are empty are required for the calculation of K and contribute to the conflict, while
those that are not empty will be the new focal elements of m1,2.

Table 2.1: Focal sets intersaction and their mass values

In each inner cell of table 1 is the intersection of focal elements m1, m2, and the multiplic-
ation of their masses.

I. Papasotiriou 18
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So:

K =
∑
A∩B

m1(A)m2(B) = m1({draw})m2({victory}) +m1({draw, defeat})m2({victory})

+m1({victory, defeat})m2({draw}) = 0.03 + 0.02 + 0.12 = 0.17

and the weight of conflict:

Con(m1,m2) = −log(1−
∑

B∩C=∅
m1(B)m2(C)) = −log(1− 0.17) = 0.08

we can also calculate:

m1,2({victory}) = 1/(1− 0.17)(0.01 + 0.03 + 0.04 + 0.04 + 0.02) = 0.169

m1,2({draw}) = 1/(1− 0.17)(0.09 + 0.06 + 0.06) = 0.253

m1,2({victory, draw}) = 1/(1− 0.17)(0.12) = 0.145

m1,2({defeat}) = 1/(1− 0.17)(0.08) = 0.096

m1,2({draw, defeat}) = 1/(1− 0.17)(0.04) = 0.048

m1,2({victory, defeat}) = 1/(1− 0.17)(0.16) = 0.193

m1,2(Θ) = 1/(1− 0.17)(0.08) = 0.096

2.3 Dempster rule of combination conflicts

The main criticism of the DRC lies in the counterintuitive results produced in cases where
the system is governed by conflict. In particular, Zadeh analyzed some cases where the
DRC seems to have a problem [25]. Suppose two meteorologists give the following data
for the same day, m1({sunny}) = 0.99, m1({snow}) = 0.01 and m2({cloudy}) = 0.99,
m2({snow}) = 0.01. We understand that meteorologists disagree, but it will probably rain
or the weather will be cloudy. Although they agree that it is almost impossible to snow,
the DRC results in m1,2({snow}) = 1. In case that meteorologists did not have a common
focal element, then K = 1 and DRC could not be calculated due to zero division. These
cases, of course, can be avoided by using a limit on K for high conflict detection.

2.4 Dempster rule of combination complexity

Despite its conflicts, Dempster’s rule of combination remains a powerful tool for combining
evidence from different sources. By detecting conflicts, DRC could be a reliable asset in
statistical analysis problems, however, one reason it is not so widely used lies in its com-
plexity.

Given a frame of discernment Θ, the powerset contains 2|Θ|−1 focal points consequently,
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the DRC must control up to 22|Θ| intersections. Thus, if the number of mass functions
m1, . . . ,mn, the calculation of m1,...,n = ⊕n

i=1mi in the worst-case scenario the complexity
is O(22|Θ|)

According to Pekka Orponen in [12], DRC belongs to the #P-complete complexity class.
We say that a function f mapping strings over an alphabet Σ to integers belongs to the #P
class if there is a nondeterministic polynomial-time Turing machine M that at each input
x ∈ Σ∗ has exactly f(x) accepting computational paths. The function f is #P-complete
if any other function in #P can be computed by some deterministic polynomial-time Tur-
ing machine that is allowed to access values of f at unit cost. The generic #P-complete
function is:

#SAT, the problem of computing number of satisfying truth assignments for a boolean
formula in conjuctive normal form.

The class #P can be viewed as the counting version of NP, and for each NP decision prob-
lem, there is a corresponding #P counting function that measures the number of accepted
solutions of the NP decision problem. Therefore, the calculation time of #P-complete prob-
lems is proportional to the NP problems and if P ̸= NP holds, the #P-complete problems
cannot be solved in polynomial time.

2.5 Approximation algorithms for DRC

In problems where the number of mass functions or focal points is large, DRC computation
time may be prohibitive. In order to overcome this difficulty, approximation algorithms
have been suggested that reduce the DRC complexity to the detriment of its accuracy. An
approximate algorithm tries to approach the actual result while reducing the computation
time. There are two main categories of these algorithms: the reduced input algorithms
and the Monte Carlo algorithms.

2.5.1 Input-size reducing algorithms

The input-size reducing algorithms as the name implies are efficient algorithms that try to
reduce the input size, which in DST theory is the number of focal elements of each mass
function. Listed below are the most well-known input size algorithms for DRC.

2.5.1.1 The Bayesian Approximation

The Bayesian approximation [22], reduces a given mass function m by allowing only
singleton subsets of the frame of discernment Θ to be focal elements of approximated
version m of m:

m(A) =



∑
B:A⊆B

m(B)∑
C:C⊆Θ

m(C) · |C|
, |A| = 1,

0 otherwise

(2.8)
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In this way, the initial mass function m is converted in a probability distribution with discrete
values. The number of values cannot surpass the number of the elements of the frame of
discernment |Θ|. Given the mass function m has n focal elements, the computation time
of Bayesian approximation is O(n|Θ|).

This method holds the following properties:

• The order of combination and approximation does not affect the final result,m1 ⊕m2 =
m1 ⊕m2.

• If a mass function has only singletons for focal elements (Bayesian mass function),
then m1 ⊕m2 = m1 ⊕m2.

2.5.1.2 The k-l-x Method

The k-l-x approximation keeps only the highest values   of the original mass function m for
a discriminant frame Θ. The new mass function mklx contains the focal elements with the
highest mass according to the following constraints:

• mklx cannot contain more than l focal elements

• mklx should have at least k focal elements

• the accumulated mass of all remaining focal elements can be at most x, where x ∈
[0, 1].

The algorithm of k-l-x approximation as presented in [2] by Mathias Bauer is given in Fig-
ure 2.1.

Figure 2.1: k-l-x algorithm

For a mass function m with n focal elements, the complexity of the k-l-x algorithm is
O(n logn)
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2.5.1.3 Summarization Method

The summarizationmethod (as reviewed in [2]) is similar to the k-l-x approximation with the
main difference that the accumulated mass of the remaining focal elements is assigned
to the union of the corresponding subsets of Θ.

The new mass function ms contains k focal elements, the set of k-1 focal elements with
the highest mass values in m is denoted by M, and the summarization approximation ms

is defined as:

mS(A) =



m(A), A ∈ M,∑
A′⊆A,A′ /∈M

m(A′), A = A0

0 otherwise

(2.9)

where
A0 =

∪
A′ /∈M

m(A′)>0

A′

For a mass function m with n focal elements, the summarization algorithm is computed in
time O(n).

2.5.1.4 The D1 Approximation

The D1 approximation [2] follows a similar idea  of the k-l-x and the summarization method
of maintaining the focal element with higher mass values. In the D1 approximation, M+

denotes the k-1 elements with the highest mass values for a given mass function m, and
M− the remaining focal elements of m.

M+ = {A1, . . . , Ak−1 ⊆ Θ| ∀A /∈ M+ : m(Ai) ≥ m(A), i = 1, . . . , k − 1}

M− = {A ⊆ Θ|m(A) > 0, A /∈ M+}

The main difference from the above methods is that the numerical values of the focal
elements of M− are allocated among the elements of M+. For a focal element A ∈ M−

of m, m(A) is shared uniformly among the MA, where MA is the superset of A in M+. In
case MA is empty, m(A) is distributed among M ′

A where:

M ′
A = {B ∈ M+| |B| ≥ |A|, B ∩ A ̸= ∅}

For a mass function m with n focal elements, the complexity of the D1 Approximation is
O(n)

2.5.2 Monte-Carlo Algorithms

Monte Carlomethods are computational algorithms that attempt to obtain numerical quant-
ities through repeated random sampling using the Law of Large Numbers and other meth-
ods of statistical inference. The idea of   Monte Carlo algorithms is to repeat an experiment
in order to approach the solution to a deterministic problem.
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Monte Carlo algorithms are widely used to approximate the result of Dempster’s rule of
combination for two or more mass functions over a frame of discernment Θ. The Monte
Carlo approximation algorithms perform L trials, each trial gives an estimation of belief for
a focal point A ∈ Θ that is either 0 or 1. The final belief of A is the average result of the L
trials. As L increases, the approach converges to the real solution.

Nick Wilson in [24] analyzes Monte Carlo approximation algorithms by Dempster’s frame-
work presented in Dempster’s lower probabilities induced by a multivalued mapping [6]. A
triple (Ω, P,Γ) where Ω is a finite set, P is a probability distribution on Ω and Γ is a function
from Ω to 2Θ where for all ω ∈ Ω, Γ(ω) ̸= ∅ and P (ω) ̸= 0, defines a source triple over Θ.
Any mass and belief function can be expressed by a source triple asm(A) =

∑
ω|Γ(ω)=A

P (ω)

and bel(A) =
∑

ω|Γ(ω)⊆A

P (ω) respectively. The combination of independent evidence is

defined by Dempster’s rule as a mapping sending a finite sequence of source triples
(Ωi, Pi,Γi) : i = 1, . . . , k, to a triple (Ω, PDS,Γ). Let Ω = Ω1×· · ·×Ωk, for ω ∈ Ω the ith com-
ponent is ω(i) so that ω = (ω(1), . . . , ω(k)). The function Γ′ : Ω → 2Θ and the probability

function P ′ are defined on Ω by Γ′(ω) =
k∩

i=1

Γi(ω(i)) and P ′(ω) =
k∏

i=1

Pi(ω(i)) respectively.

Let Ω be the set {ω ∈ Ω : Γ′(ω) ̸= ∅}, Γ be Γ′ restricted to Ω and PDS restricted to Ω so
PDS = P ′(ω)/P ′(Ω) for ω ∈ Ω. The 1/P (ω) represents the measure of the conflict. The
combined measure of belief for A ⊆ Θ is defined by Bel(A) = PDS({ω ∈ Ω : Γ(ω) ⊆ A}),
also cited as PDS(Γ(ω) ⊆ A).

2.5.2.1 Naive Monte-Carlo algorithm

NaiveMonte Carlo algorithm is a simple algorithm that tries to estimate the combined belief
for A ⊆ Θ that defined previously as Bel(A) = PDS(Γ(ω) ⊆ A). The algorithm according
to the distribution PDS picks independent ωl to form a sequence ω1, . . . , ωL, to perform tri-
als for each ωl in that sequence. If Γ(ω) ⊆ A then the trial succeeds and the value 1 is
assigned else the trial fails with value 0. The Bel(A) is estimated by the proportion of the
successful trials.

For a large number of trials the algorithm converges in Bel(A), the steps of the trial are
presented in [23] as follows:

Figure 2.2: Naive Monte Carlo algorithm

The Naive Monte Carlo algorithm is accurate considering that the measure of conflict re-
mains low.
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2.5.2.2 Markov Chain Algorithm

The Markov Chain algorithm follows a similar idea with Naive Monte Carlo algorithms to
make a large number of trials that are successful (if Γ(ω) ⊆ A) in order to estimate the PDS.
The main difference from the Naive Monte Carlo is that the trials are not independent. To
avoid picking ω ∈ Ω that do not belong to ΩMarkov Chain algorithm generates a sequence
ω0, ω1, . . . , ωL where ωi depends on ωi−1. For the algorithm to be successful and converge
to PDS, a condition called ”connectedness” must apply. This condition states that from one
element ωi of the sequence ω0, ω1, . . . , ωL, we can get any element of Ω.

2.6 Software tool for implementing DST

DST software tools help a lot in developing applications that use Dempster-Shafer theory.
Using a ready-made tool prevents errors in a new implementation and makes develop-
ment faster and easier. Some useful functions for a software tool are the computation of
the belief and plausibility function given a mass function, and the combination of two or
more mass functions with or without approximation algorithms.

In Chapter 4 we implemented our model in the Python programming language and we
used the py_dempster_shafer library [14] in order to perform Dempster-Shafer calcula-
tions. Specifically, the py_dempster_shafer library supports the following functions (and
operators):

MassFunction(data) Creates mass function, data can be a dictionary
or a list of tuples.

MassFunction.bel(self) Returns the belief of given mass function.

MassFunction.pl(self) Returns the plausibility of given mass function.

MassFunction.frame(self) Returns the frame of discernment of the given
mass function.

MassFunction & MassFunction Computes Dempster rule of combination of two
mass functions (exact method).

MassFunction.combine_conjunctive(self, Computes Dempster rule of combination of two
sample_count, importance_sampling) mass functions with Monte-Carlo method

MassFunction.conflict(self) Returns the weight of conflict between two mass
functions.

MassFunction.pignistic(self) Returns pignistic transformation of the given
mass function.

Some examples of the library are:
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Creating mass function:

>> m1 = MassFunction({'ab':0.4, 'b':0.3, 'cd':0.3})
>> print(m1)
{{'a', 'b'}:0.4; {'b'}:0.3; {'c', 'd'}:0.3}

Calculation of belief and plausibility functions:

>> print('m1.bel({a, b}) =', m1.bel({'a', 'b'}))
m1.bel({a, b}) = 0.7

>> print('m1.pl({a, b}) =', m1.pl({'a', 'b'}))
m1.pl({a, b}) = 0.7

Returns the frame of discernment and focal sets:

>> print('frame of discernment of m1 =', m1.frame())
frame of discernment of m1 = frozenset({'a', 'c', 'b', 'd'})

>> print('focal sets of m1 =', m1.focal())
focal sets of m1 = {frozenset({'c', 'd'}), frozenset({'a', 'b'}), frozenset({'

b'})}

DRC calculation:

>> print(DRC for m1 and m2 =', m1 & m2)
DRC for m1 and m2 = {{'a'}:0.40816326530612246; {'b'}:0.28571428571428575; {'c

', 'd'}:0.1836734693877551; {'c'}:0.12244897959183673}

>> print('DRC with Monte -Carlo for m1 and m2 =', m1.combine_conjunctive(m2,
sample_count = 1000))

DRC with Monte -Carlo for m1 and m2 = {{'a'}:0.4267241379310345; {'b'
}:0.2844827586206896; {'c', 'd'}:0.18318965517241378; {'c'
}:0.10560344827586207}

Conflict calculation and pignistic transformation:

>> print('weight of conflict between m1 and m2 =', m1.conflict(m2))
weight of conflict between m1 and m2 = 0.7133498878774648

>> print('pignistic transformation of m1 =', m1.pignistic())
pignistic transformation of m1 = {{'b'}:0.5; {'a'}:0.2; {'c'}:0.15; {'d'

}:0.15}
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3. RECOMMENDATION SYSTEMS

Recommendation Systems (RS) [9] are web applications that aim to offer users products
that they probably like. We can consider RS as sellers who aim to offer their customers
the products they may want to buy.

3.1 Long Tail Problem

A physical store, such as a bookstore, a video club, or a clothing store, has limited space
available for its products, so it selects certain products that considers popular or more
likely to sell. In contrast, an online store could have a larger variety of products in order
to satisfy more customers with different needs. The distinction between online and offline
stores in the number of products they have is called the long tail phenomenon [9] and is
shown in Figure 3.1 where the vertical axis represents the popularity of a product and the
horizontal axis the products sorted according to their popularity. The products on the left
of the vertical bar are the products that could be in a physical store while an online store
could host all the products of the line. The huge quantity of products that could be in an
online store makes it impossible for a user to see all the products and forces the store to
present specific suggestions to each user.

Figure 3.1: Long Tail

3.2 Types of Recommendation Systems

There are two main types of Recommendation Systems [9]:

• Content-based recommenders, the suggestion they make to users relate to the fea-
tures of products that have shown interest in the past.

• Collaborative-Filtering recommenders, make recommendations to users based on
the choices of other users with similar preferences.
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Other types of recommenders [21], are Demographic recommenders, which categorize
users according to some characteristics such as age, sex assuming that users with com-
mon categories have similar tastes, and Hybrid methods that combine some of the afore-
mentioned types. In the following, we will focus on Content-based and Collaborative-
Filtering recommenders.

3.2.1 Content-based recommenders

Content-based recommenders emphasize on product features and try to match those fea-
tures to users’ habits and preferences. A profile is created for each product that describes
it according to its features, the product will be recommended to the user if the users’ pref-
erences fit the products’ profile.

To implement a content-based recommendation system, the information and user ratings
for each product need to be available, in order to create object profiles and recommend
to users categories that may interest them.

For instance, in a movie recommendation system, the profile of each song can consist
of the following characteristics: type of music, the singers, the band, the producers, the
composer. Each item in an online store would be described by these, so when a user likes
a type of music or a singer, a good Content-based recommender system will trace songs
that fulfill one or more.

3.2.2 Collaborative-Filtering recommenders

Collaborative-Filtering recommenders focus on the similarities of users’ preferences. If
some users have common preferences, regarding the products they have used or evalu-
ated, it is reasonable to conclude that they have a common opinion on products that some
of them have tried. So for each user, we find a set of similar ones and suggest products
that the user has not tried but the others have a good opinion of them.

For a Collaborative-Filtering recommender, we need the users’ opinion on the products,
which is usually a matrix with the users’ ratings on the products. Usually, user ratings are
represented by a utility matrix where columns refer to products and rows to users. Table
3.1 shows the ratings for the books Don Quixote, The Great Gatsby, Moby Dick, Pride
and Prejudice, Frankenstein, and the ratings of users A, B, C, D from 1 to 5. We should
bear in mind that users have not rated most products, so the utility matrix will be empty in
many places.
From the utility matrix, we can calculate the distance of two users and find their similarity.

Table 3.1: Utility Matrix

Don Quixote Pride and Prejudice Moby Dick The Great Gatsby Frankenstein

A 5 2 3
B 5 4
C 4 2 3
D 2 5

The shorter the distance between two users in their ratings, the more similar they are.
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Some classic measures are Jaccard Distance and Cosine Distance.

3.2.2.1 Jaccard Distance

Jaccard similarity is defined as the size of the intersection divided by the size of the union
of the sample sets:

J(Ui, Uj) =
|Ii ∩ Ij|
|Ii ∪ Ij|

(3.1)

Τhe Jaccard distance, measures dissimilarity:

DJ(Ui, Uj) = 1− J(Ui, Uj) (3.2)

This method is not very efficient in cases where the utility matrix indicates a preference or
not, e.g. ratings, but can be applied when the utility matrix has a quantitative value, such
as the sales of a product.

To calculate the Jaccard similarity of users from Table 3, we have to count the number
of books that both users have rated and divided by the total number of books that have
been rated by the two users:

J(UA, UB) =
0

5
= 0, users A, B do not have any common evaluation, depending on the

application the result 0 may be the desired result.

J(UB, UC) =
2

2
= 1, users have rated the same books

J(UA, UD) =
2

3
, although users A, D have a completely different view, Jaccard similar-

ity fails to identify the disagreement.

We can see that Jaccard similarity is not suitable for this example because it can not
represent the difference in ratings. If instead of ratings the utility matrix represented the
number of times that users had read or bought the book Jaccard similarity would be ideal.

3.2.2.2 Cosine Distance

The cosine similarity is the inner product space between two non-zero vectors. In a RS
we can calculate cosiine similarity as:

Sc(Ui, Uj) = cos(θ) =
IiIj

∥Ii∥ ∥Ij∥
=

N∑
i=1

Ii,kIj,k√
n∑

i=1

I2i,k

√
n∑

i=1

I2j,k

(3.3)

where Ui, Uj are two users, Ii Ij are the rows of utility matrix and Ii,k Ij,k are the ratings of
the item k of users Ui, Uj respectively .
Cosine distance is defined as:

Dc(Ui, Uj) = 1− Sc(Ui, Uj) (3.4)

Because vectors should not have empty cells, we can complete non-existent ratings with
zero or average product scores.
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In our example for table 3.1 we will consider the non-existent ratings to be zero:

Sc(UA, UB) =
0√

38
√
41

= 0, users A, B have not rated any common book.

Sc(UB, UC) =
4× 5 + 5× 2√

52 + 42
√
42 + 22 + 32

= 0.99

Sc(UA, UD) =
2× 5 + 5× 2√

52 + 22 + 32
√
22 + 52

= 0.6

Although the difference in similarity B, C, and A, D is now noticeable, the indication 0.6 in
the case of A, D does not reflect disagreement. To express the difference more intensely,
we can round or normalize the ratings. One way to round the ratings is to match the pos-
itive scores of 3,4,5 to 1 and the negative 1.2 to 0 so:

Sc(UB, UC) =
1 + 1√
2
√
3
= 0.81

Sc(UA, UD) =
0× 1 + 1× 0√

1
√
1

= 0

3.2.3 Differences of Content-based and Collaborative-Filtering algorithms

Content-based recommenders relatemore to information about objects, while Collaborative-
Filtering recommenders base their results on users’ ratings and their differences. In gen-
eral, both algorithms can be applied, but usually Content-based ones are preferred when
there is plenty of information about the products or their characteristics determine the
users’ choices. While Collaborative filtering recommenders are preferred if there is a lack
of important information about the product, or the opinion of users has a greater impact.

Figure 3.2: Content-based vs Collaborative-Filtering RS
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3.3 Performance measures

It is very important to evaluate a recommendation system to improve the potential prob-
lems of a method and then compare its effectiveness with different approaches. From
beginning to the end of development of an RS, accuracy plays an important role; the most
well-known evaluation metrics are Mean Absolute Error (MAE), Root Mean Square Error
(RMSE), Precision, Recall, F1-score.

3.3.1 Calculating Error

Let R(u, i), P(u, i) be the actual and predicted scores respectively of the user u for the
object i. We can measure the mean absolute error as:

MAE =
1

N

N∑
i=1

|P (u, i)−R(u, i)| (3.5)

MAE is a linear score which means that all the individual differences are weighted equally
in the average.
Root Mean Square Error (RMSE) measures the average magnitude of the error:

RMSE =

√
1

N

∑
i=1

N(P (u, i)−R(u, i))2 (3.6)

3.3.2 Normalize Error

It is important in the implementation to take into account the range of possible solutions. In
the case where RS predicts a movie rating of 0-5, the deviation of 1 from the actual value
for a product is much more significant than the same deviation if the range was 0-10. So
to avoid this, we can normalize the error by dividing it by the range of possible scores:

NormalizedError =
Error

θmax − θmin

(3.7)

3.3.3 Precision and Recall

Usually, in an RS we are not so interested in predicting the precise rating that users will
give to a product, but the purpose is to suggest suitable products for them. Error calcula-
tion with indicators such as MAE and RMSE helps to implement a good RS that does not
make arbitrary predictions, but it may be insufficient to evaluate the final result. Suppose
that an RS has ratings 0-5 for each product; we can classify the ratings from 4-5 as pos-
itive and the rest as negative. To evaluate an RS [20], we can define:

True Positive (TP): - an interesting item is recommended to the user.

True Negative (TN): an uninteresting item is not recommended to the user.

False Negative (FN): an interesting item is not recommended to the user.
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False Positive (FP): an uninteresting item is recommended to the user.

Table 3.2: Results Classifications

Recommended Not recommended
Actually good TP FN
Actually bad FP TN

A good RS ought to suggest interesting products to users, so the measure TP has to
be high and the measure FP needs to be low. An indicator of good versus bad recom-
mendations is:

Precision =
TP

TP + FP
(3.8)

Another indication of the success of an RS is called recall (or sensitivity) and expresses
the overall success in distinguishing ”actually good” products:

Recall =
TP

TP + FN
(3.9)

A measure that combines precision and recall is called an F1-measure or F1-score:

F1 = 2 · Precision · recall
Precision+ recall

(3.10)

3.4 Uncertainty in Recommendation Systems

The traditional Recommendation systems with the growth of e-commerce have received
a great deal of attention and are now very effective. However, a problem with these al-
gorithms lies in the limited number of reviews. Specifically, product reviews using scor-
ing introduce a significant degree of ambiguity and imperfection into the system. In this
section, we will study approaches that introduce uncertainty handling through Dempster-
Shafer’s theory for dealing with the review’s incompleteness.

3.4.1 Dempster Shafer theory in Content-based approach

Dempster-Shafer theory is a very useful tool for combining different item characteristics in
order to make recommendations to users according to their preferences. In [21] authors
use DST in order to discover user preferences by estimating the probability interval of an
item by its features. The preferences of the users expressed in the past give an insight
into  each user’s favorite product features.

Let U = {U1, U2, . . . , Un} be the set of the users and I = {I1, I2, . . . , Im} the set of
the items. Let C = {C1, . . . , Cp} denote all the concepts with domain all the features
Φi = {ϕi,1, . . . , ϕi,ki}. Each item Ij is defined by a vector (c1,j, . . . , cp,j) where ci,j ∈ 2Φi . In
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this model is assumed that the number of all features (Φ =
p∪

i=1

Φi) is much smaller than

the number of items#(Φ) <<#(I). For each K ∈ 2Φi the mass function is defined as:

mi(K) =
#UK

#U
(3.11)

where UK ⊆ U beeing the users who selected items with features ci,j ∈ K.

For example, consider the usersU = {U1, U2, U3, U4} of a cinemawithmovies I = {I1, . . . , Im}.
Let the feature concepts be C = {Genre,Director, Actors} and let Genre have the do-
main Φ = {Action, Thriller, Animation,Western} . If only one user watches movies with
genres K = {Action,Western} then #UK = 1 and #U = 4 so m({Action,Western}) =
0.25.

Given a set of items Ψ = {I1, . . . , Is} and the set of their common features denoted as
pci(Ψ) = Kj ∈ 2Φi the Dempster rule of combination can be applied in order to obtain the
mass functions of other item sets as follows:

m(Ψ) =

{
1

1−Z

∑
A1∩···∩AK=Ψ

m1(pc1(A1)) . . .mk(pck(Ak)) ifA1 ∩ · · · ∩ AK = Ψ

0 ifA1 ∩ · · · ∩ AK = ∅
(3.12)

where Z =
∑

A1∩···∩AK=∅
m1(pc1(A1)) . . .mk(pck(Ak)).

Furthermore, the proposed model can calculate the belief and plausibility of a set of items
taking into account one or more feature concepts.

3.4.2 Dempster Shafer theory in Collaborative Filtering approach

In [13], [11] the authors propose an automated collaborative filtering model (ACF) that can
handle subjective or unreliable ratings and generate hard or soft predictions. By creat-
ing soft predictions, their model referred to as CoFiDS ( Collaborative Filtering based on
Dempster-Shafer belief-theoretic framework) propagates uncertainties from user ratings
to the final result.

Given a dataset with the users’ hard ratings the algorithm uses DST to express uncer-
tainty as follows. The frame of discernment equals to the set of possible rating Θ =
{θ1, θ2, . . . , θL} and the hard rating of user Ui of item Ik is transformed into the correspond-
ing soft rating as:

mi,k(A) =


αik(1− σik), A = θl
αikσik, A = B
1− αik, A = Θ
0, otherwise

with B =


(θ1, θ2), if l = 1
(θL−1, θL), if l = L
(θl−1, θl, θl+1), otherwise

(3.13)

where αik ∈ [0, 1] is the trust factor that reflects the user’s true perception and σik ∈ [0, 1]
is the dispersion factor that adjusts the rating span.

In the first step, CoFiDS uses contextual information to predict unrated entries based
on the assumption that users that are in the same group have similar preferences. Let
C = {C1, . . . , Cp} denote all the concepts and each concept Ci to have a Groupi (similar
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to feature domain from chapter 2). The group preferencem
Groupj
k : 2Θ → [0, 1]. for an item

Ik for a Groupj is defined as:

m
(Groupj)
k =

⊕
i:Ui∈Groupj ;

Ik∈Ri

mik (3.14)

where Ri are the rating items of user Ui. Respectively the concept preference of mik is
computed by:

m
(Concept)
ik =

⊕
j:Groupj∈fC(Ui)

m
(Groupj)
ik (3.15)

Given the concept preferences of all items CoFiDS predicts all not existing ratings of user
Ui on an item Ik:

rik = m
(Context)
ik =

⊕
AllConcepts

m
(Concept)
ik (3.16)

CoFiDS uses Chan-Darwiche (CD) distance measure [4] in order to measure the distance
of two mass functions and the total dissimilarity of two users:

CD(Bpi, Bpj) = lnmax
θ∈Θ

Bpj(θ)

Bpi(θ)
− lnmin

θ∈Θ

Bpj(θ)

Bpi(θ)
(3.17)

where Bp is the pignistic probability. So the distance between two users Ui, Uj is cal-

culated from the sum of their mass functions D(Ui, Uj) =
N∑
k=1

CD(Bpik, Bpjk). Moreover

instead of calculating the cross product θ = θl1 × · · · × θlN ≡
∏N

k=1 θlk ∈ Θ of frame of
discernment one may use θ ∈ {θ1, θ2, . . . , θL}.

Proof provided in [13]:

lnmax
θ∈Θ

Bpj(θ)

Bpi(θ)

= lnmax
l=1,L

∏N
k=1 Bpj(θlk)∏N
k=1 Bpi(θlk)

= max
l=1,L

ln
N∏
k=1

Bpj(θlk)

Bpi(θlk)

= max
l=1,L

N∑
k=1

ln
Bpj(θlk)

Bpi(θlk)
=

N∑
k=1

lnmax
l=1,L

Bpj(θlk)

Bpi(θlk)

Supposing that user Ui has not rated item Ik CoFiDS estimates the predicted rating rik
with DRC of the neighbor’s ratings. The neighborhood for a user Ui is formed by the K
nearest neighbor (KNN) and the minimum similarity thresholding (MST):

Nbhdik = {Uj ∈ U : Ik ∈ Rj, sij ≥ max
∀Ul /∈Nbhdik

{t, sil}} (3.18)

where sij is the similarity of users Ui, Uj and the size of the neighborhood does not exceed
K (ie |Nbhdik| ≤ K).

3.4.3 Data classification using the Dempster-Shafer theory

Classifiers are types of algorithms in the field of Statistics and Artificial Intelligence that
try to identify complex data into several finite classes. Dempster’s rule of combination
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is considered a classification methodology that combines different sets of evidence from
independent sources. Recommendation systems are statistical classification problems in
the sense that they attempt to classify items as ”interesting” or ”not interesting” for the
users. Usually, DRC is used to combine results from different classifiers, however, in [5]
authors propose three models that DRC is an independent classification system.

The first model in [5] is proposed for the WBCD standard benchmark dataset of the UCI
Machine Learning Repository [10], which classifies items as malignant or benign. Each
item contains nine integer attributes in the range of 1 to 10, with the assumption that lower
values represent normal data the mass functions are modeled using sigmoid functions as
follows:

m(normal) = (1 + e(v−t))−1

m(abnormal) = 1−m(normal)

where the frame of discernment is Θ = {normal, abnormal}, t is the median threshold of
each attribute obtained from the training set and v is the value for the test data for that
attribute. Using DRC one may combine the different attributes to reach one conclusion.

The second experiment [5] is the Iris Plant dataset [10] in which the frame of discernment
is Θ = {Setosa, V ersicolour, V irginica}, with every data item containing four numeric at-
tributes. From the training set is retrieved the maximum and the minimum values for each
attribute. From these values, each attribute of the validation set is assigned the classes
in Θ that the value is between the corresponding minimum and maximum and the mass
functions are denoted as:

m(C) = 0.9,m(Θ) = 0.1

if it is assigned in one class then C = {class x} else if there are two possible classes then
C = {class x ∪ class y} else if it belongs to all three possible classes m(Θ) = 1.

The third experiment [5] is for the Duke Outage Dataset (DOD) with the frame of dis-
cernment Θ = {tree, animal, lightning, others} and each data item containing six non-
numerical attributes. From the training set, the likelihood measure of fault i given a event
j is defined as:

Lij =
Nij

Nj

where Nij is the number of outages caused by fault i under event j and Nj the total num-
ber of outages under event j. Given the likelihood measure Lij, the mass function of each
attribute is computed as:

m(Θ) = 1, ifLij = LI

m(i) =
(Lij − Li)

1− Li

,m(Θ) = 1−m(i), if Lij > Li

m(¬i) = (Lij − Li)

Li

,m(Θ) = 1−m(¬i), if Lij < Li

Given the abovemass function for each attribute, themodel can combine them using DRC.
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Overall, all three experiments performed well and achieved high classification accuracy.
We can therefore conclude that DS theory provides the framework that is effective if it is
carefully designed with the right attributes.
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4. A RECOMMENDATION SYSTEM BASED ON DEMPSTER SHAFER
THEORY

In this chapter we present the movie recommendation system that we implemented, us-
ing the Dempster-Shafer theory with a collaborative filtering approach. The purpose of our
model is to design a simple collaborative filtering algorithm using DST in order to handle
imperfections or lack of information in user ratings and express them in the final results.
This purpose is achieved by converting the real ratings in mass functions that cover a
range of scores and using DRC in order to combine similar users’ views to reach a predic-
tion that is also expressed in a mass function. This work presents a model that takes user
ratings, converts them to mass functions and pignistic probabilities, calculates user-user
distances to form neighborhoods and finally predicts ratings for unrated movies (Figure
4.1). We also make a reference to the decision-making process.

Figure 4.1: General steps of the model

The overall architecture of the implementation is presented in Figure 4.2.

4.1 The model

Our model is based on [13], [11], which are presented in subsection 3.4.2, with the differ-
ence that we did not follow the proposed approach to use contextual information to rate
unrated data before computing user’s similarity and generating predictions. We imple-
mented a collaborative filtering RS which consists of three main steps:
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a) computing users similarity,

b) forming neighborhoods,

c) make predictions based on similar users.

At first, we convert user’s ratings into mass functions. Given the mass functions, we
calculate the similarity of each user pair and for each of them, we form a neighborhood
with the most similar users. Finally, we predict unrated movies for each user according to
their neighbors. In the next sections, we analyze these steps in our proposed method.

4.1.1 Input Data

For the implementation, we used two versions of the MovieLens dataset [1], [7]: the
Small version with 100,000 ratings to 9,000 movies by 600 users and the Full version
of 27,000,000 ratings to 58,000 movies by 280,000 users (due to space complexity, only
1,000,000 ratings were used). We used the ratings.csv file (Figure 4.2) that contains hard
ratings of the users in the set {0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5}; for the needs of the
implementation, ratings were scaled from 0 to 9, ie new_rating = 2 ∗ rating− 1. Then we
converted each hard rating to soft ratings accordingly with the Dempster-Shafer modeling
function:

mi,k(A) =


0.7, A = θl
0.2, A = B
0.1, A = Θ
0, otherwise

with B =


(θ1, θ2), if l = 1
(θL−1, θL), if l = L
(θl−1, θl, θl+1), otherwise

(4.1)

where in our implementation the frame of discernment is Θ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} and
L = 10.

Suppose a movie k by user i is rated 7 out of 9 then mi,k({7}) = 0.7, mi,k({6, 7, 8}) = 0.2
and mi,k(Θ) = 0.1 also denoted as mi,k = {{7} : 0.7, {6, 7, 8} : 0.2,Θ : 0.1}. Respectively if
the movie was rated 9 out of 9 then mi,k = {{9} : 0.7, {8.9} : 0.2,Θ : 0.1}.

Figure 4.2: Input

I. Papasotiriou 37



Movie Recommendation System based on Dempster-Shafer theory

4.1.2 Computing users similarity

We measure users dissimilarity with the distance first introduced in [4] and further de-
veloped by [13]. We define the distance between two users as:

D(Ui, Uj) =
N∑
k=1

(
lnmax

θ∈Θ

Bpj,k(θ)

Bpi,k(θ)
− lnmin

θ∈Θ

Bpj,k(θ)

Bpi,k(θ)

)
(4.2)

where Bpi,k is the pignistic probability of user Ui in item k.

In our model, we ignore the movies that have not been rated either from Ui or Uj, so
N = |Ii ∩ Ij| and because it can be different from each pair of users, we calculate the
average distance of each movie:

D(Ui, Uj) =
1

N

N∑
k=1

(
lnmax

θ∈Θ

Bpj,k(θ)

Bpi,k(θ)
− lnmin

θ∈Θ

Bpj,k(θ)

Bpi,k(θ)

)
(4.3)

4.1.3 Forming Neighborhoods

In our model for selecting neighbors, we used the algorithm K-nearest neighbor (KNN),
which selects for a user ui the K users who are more similar with ui. Since we do not
calculate the similarity, we select the users who have the shortest distance from the user
ui.

4.1.4 Predicting ratings

To predict whether a user will like an item or not, we look for ratings from neighbors who
have rated the item.
For an item Ik ∈ I and a user Ui ∈ U , the estimated rating in form mass function mi,k is
calculated from DRC of all Uj ∈ Nbhdi neighbors that have rated the product Ik:

mi,k =
⊕

j:Uj∈Nbhdi;
Ik∈Rj

mj,k (4.4)

The maximum pignistic probability can be selected as the predicted hard rating.

Neighbors who have not rated the product Ik are not included in the calculation of DRC,
so in case no neighbor has rated the product, we can not predict with the above method
the rating of user Ui.

4.1.5 Making Recommendations

As stated by [13], [11] there are two main strategies for producing recommendations.

In the first strategy, the choices are made according to the predicted hard rating, which is
the singleton with the maximum pignistic ratings.
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The second strategy, the maximum belief with overlapping interval strategy (maxBL) [3],
makes soft decisions. The soft ratings are the singletons, which their belief are greater
than all the plausibility of all others singletons. In case there is no such singleton, the soft
ratings with the highest belief, plausibility function are selected.

With either of these strategies, I believe that the extra information provided by belief and
plausibility functions can play a crucial role in the final stage of an RS. This is because
they are two indicators that guide us on how sure we can be for our choices.

4.1.6 Calculate Error

In Chapter 3, we referred to the measurements of MAE and RMSE, which we can use to
calculate the error using the predicted hard rating ri,k. However, it is useful to evaluate the
overall information expressed in the prediction of the mass function mi,k. For this reason,
we chose the evaluation method DS-MAE [13] which is defined as:

DS-MAE(θj) =
1

|Dj|
∑

(i,k)∈Dj ;
θl∈Θ

Bpi,k(θl) · |ri,k − θl| (4.5)

where Dj is the testing set and ri,k ∈ Θ is the actual rating.

We can also include the result of the mass function to calculate precision and recall:

DS-Precision(θj) =
TP (θj)

TP (θj) + FP (θj)
(4.6)

DS-Recall(θj) =
TP (θj)

TP (θj) + FN(θj)
(4.7)

where:
TP (θj) =

∑
(i,k)∈Dj

Bpi,k(θj) (4.8)

FP (θj) =
∑

(i,k)∈Dl
l ̸=l

Bpi,k(θj) (4.9)

FN(θj) =
∑

(i,k)∈Dj

l ̸=l

Bpi,k(θl) (4.10)

So:
DS-F1(θj) = 2 · DS-Precision(θj) ·DS-Recall(θj)

DS-Precision(θj) +DS-Recall(θj)
(4.11)

4.1.7 An example of application

Let’s look at the example for the following data:

For this example we will not scale the ratings.
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Table 4.1: example, ratings

Users Items Ratings
U1 I1 5
U1 I2 4
U1 I4 2
U2 I1 4
U2 I4 3
U3 I2 3
U3 I3 2
U3 I4 4

Table 4.2: example, computing soft ratings

Users Items Ratings Mass function ratings
U1 I1 5 {{5} : 0.7, {4, 5} : 0.2,Θ : 0.1}
U1 I2 4 {{4} : 0.7, {3, 4, 5} : 0.2,Θ : 0.1}
U1 I4 2 {{2} : 0.7, {1, 2, 3} : 0.2,Θ : 0.1}
U2 I1 4 {{4} : 0.7, {3, 4, 5} : 0.2,Θ : 0.1}
U2 I4 3 {{3} : 0.7, {2, 3, 4} : 0.2,Θ : 0.1}
U3 I2 3 {{3} : 0.7, {2, 3, 4} : 0.2,Θ : 0.1}
U3 I3 2 {{2} : 0.7, {1, 2, 3} : 0.2,Θ : 0.1}
U3 I4 4 {{4} : 0.7, {3, 4, 5} : 0.2,Θ : 0.1}

For a start we convert the hard ratings into soft ratings and create from the soft ratings
mass function, Table 4.2
For each rating we calculate the pignistic probabilities of the mass function and we calcu-
late the distances between the users, Table 4.3

Table 4.3: example, users distances

Users Users Distances
U1 U2 4.2
U1 U3 5.8
U2 U3 4.4

We choose for each user neighbors who have the shortest distance.
For this example, we assume that all users are neighbors, so we can make the following
predictions:

U1, I3 : m1,3 = m3,3 = {{2} : 0.7, {1, 2, 3} : 0.2,Θ : 0.1}

U2, I1 : m2,1 = m1,1 = {{2} : 0.7, {1, 2, 3} : 0.2,Θ : 0.1}

U2, I2 : m2,2 = m1,2 ⊕m3,2 = {{2} : 0.7, {1, 2, 3} : 0.2,Θ : 0.1}

U2, I3 : m2,3 = m3,3 = {{2} : 0.7, {1, 2, 3} : 0.2,Θ : 0.1}

U3, I1 : m3,1 = m1,1 ⊕m2,1 = {{2} : 0.7, {1, 2, 3} : 0.2,Θ : 0.1}

We can recommend users items that bel({4, 5}) and pl({4, 5}) is high.
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Table 4.4: exmaple, DRC results

Users Items m1.2 bel({4,5}) pl({4,5})
U1 I3 {{2} : 0.7, {1, 2, 3} : 0.2,Θ : 0.1} 0.0 0.1
U2 I1 {{5} : 0.7, {4, 5} : 0.2,Θ : 0.1} 0.9 1.0

U2 I2 {{4} : 0.41, {3} : 0.41, {3, 4} : 0.08,
{3, 4, 5} : 0.04,Θ : 0.02} 0.41 0.59

U2 I3 {{2} : 0.7, {1, 2, 3} : 0.2,Θ : 0.1} 0.0 0.1
U3 I1 {{4} : 0.91, {3, 4, 5} : 0.08,Θ : 0.01} 0.91 1.0

4.2 Implementation

We implement the model in Python 3.6 programming language, for the Dempster-Shafer
theory. We rely on the py_dempster_shafer library by Thomas Reineking [14], and we
use Pandas library to store and process the data. In this thesis, we developed a method
for calculating users distances, which takes advantage of the effectiveness of the Pandas
library. Pandas library is based on the Numpy library, which is very efficient in array op-
erations. Moving on, we will analyze step by step the implementation of the model.

Table 4.5: implementation, load ratings

Initially, the data are loaded in a dataframe, ratings are scaled from 0 to 9 and the timestamp
column is dropped, since we do not use it (Table 4.5). With the Pandas method apply, we
calculate and store in a different column the soft ratings (as a mass function) from the cor-
responding hard ratings (Table 4.6); respectively from the mass functions, we calculate
the pignistic probabilities for each rating (Table 4.7).

To calculate the distances of the users, we create a new dataframe where for columns are
the elements of Θ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} and it is filled with the pignistic values   of the
ratings (Table 4.8). We take the rows of the pignistic ratings of the products that each user
has rated from the new dataframe and apply a function that calculates the distances of
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Table 4.6: implementation,mass ratings

the user from the rest. The function divides the user part with the rest of the dataframe for
the movies they have in common, in this way, we have all the divisions need to calculate
Bpj,k(θ)

Bpi,k(θ)
for the distance type 4.3. So the sum of the difference of the logarithms of the

minimum and the maximum of the result is calculated. The final result of this process is a
pd.Series with the distances of each user (Table 4.9).

Table 4.7: implementation, pignistic ratings

The advantage of this method is that the time is drastically reduced, namely in an initial im-
plementation that was serially looking for the cost for each user finding the commonmovies
with the other users for the file with 100,000 ratings the calculation took 240 seconds while
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Table 4.8: implementation, expanded dataframe with pignistic values

with the implementation of dataframe in just 0.2 seconds. The huge difference is mainly
due to the vectorization of the problem and the Pandas functions for dividing arrays into
parameters.

Table 4.9: implementation, users distances

From the Pd.series (Table 4.9), which is the distances for each user pair, we select for
each user the K nearest neighbors and we use the exact DRC method to predict the rat-
ing of a movie that the user has not rated. We exclude users who have zero distance,
because either they have seen the same movies or they have not seen any common
movie and therefore we can not judge whether they are similar or not.

4.2.1 Problems in Implementation

The main problem we encountered in the implementation was its space complexity in the
large database of 27,000,000 ratings. Only the rating.csv file we had to load is 724 MB
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and to calculate the mass function and the pignistic ratings the necessary space is in-
creased extremely. To avoid the necessity of more space, we limited the implementation
to 1,000,000 ratings.

Another problem also mentioned in [16] lies in the underflow in some DRC calculations.
The problem occurs when mass functions with low conflict and a high degree of belief in
the same focal element are combined. In such a case, DRC returns very small value at
Θ, which due to underflow is zeroed. This can lead to mass functions that do not have
a common focal element. Τhe library pyds that implements the DRC, if there is no com-
mon focal element the exact DRC method (&) returns an error (Figure 4.3), while the
Monte-Carlo algorithm returns the empty set ({}). We encountered this problem when we
tried to implement the proposed method in [13], [11] in the first step, predicting unrated
data. Our final model is not affected by such significant underflows since all DRCs have
a non-zero value in Θ for at least one of the two mass functions. Let’s consider an ex-
ample where twenty users rate a movie k from 0 to 9. So the frame of discernment is Θ =
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Let half of the users h1 have rated the movie with 7 and the other
half h2 with 2. The mass functions for each rating is ri,k = {{7} : 0.7, {6, 7, 8} : 0.2,Θ : 0.1}
for i ∈ h1 and ri,k = {{2} : 0.7, {1, 2, 3} : 0.2,Θ : 0.1} for i ∈ h2. Due to associative
property, we can compute the DRC as follows: rk = ( ⊕

i∈h1

ri) ⊕ ( ⊕
i∈h2

ri). But, because of

the underflow ⊕
i∈h1

ri = {{7} : 1, {6, 7, 8} : 0,Θ : 0} and ⊕
i∈h2

ri = {{2} : 1, {1, 2, 3} : 0,Θ : 0}.

Thus there is no common focal element and rk cannot be computed.

Figure 4.3: error example

Another intention of this thesis was to compare the DRC approximation algorithm using
Constraint Programming, as presented in [8], in a real-life problem such as the work we
implemented. Unfortunately, the implementation of the DRC Constraint Programming ap-
proach has not been possible because it requires an ECLiPSe prolog environment to run,
and although there is a python library that connects ECLiPSe to Python it only seems to
work for Python 3.3 which is now obsolete. In an attempt to enable communication of Py-
thon and Eclipse possible, we tried to use Python external commands and we managed
to execute ECLiPSe source files, but this caused new problems.
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4.3 Results

To produce the results, we used the K-fold Cross-Validation method for K = 10, in which
we divided our data into K equal parts. For K repetitions, a different part is chosen each
time as the test set, i.e. we try to predict the ratings from 0 to 9, while all the other parts
consist the training set that we use to make the predictions. The final result is the average
score of the K repetitions. Note, the results are scaled from 0 to 5.

Table 4.10 presents the MAE, RMSE, and DS-MAE errors of the Small dataset for a dif-
ferent number of ratings and neighbors.

Table 4.10: Small dataset, error per number of ratings and neighbors

Table 4.11 presents the calculation time of mass ratings, pignistic ratings and users’ dis-
tances of the Small dataset for a different number of ratings.

Table 4.11: Small dataset, time per number of ratings
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Respectively Table 4.12 and Table 22 4.4 shows the errors and the times of the Full data-
set.

Table 4.12: Full dataset, error per number of ratings and neighbors

Table 4.13: Full dataset, time per number of ratings
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Figure 4.4: Full dataset, time of calculating distances per number of ratings

The results presented in the above tables are indicative of the fact that the model does not
make arbitrary predictions. We believe that the predictions produced have the advantage
of expressing more information than conventional recommendation systems. Thus the
main advantage of our model lies in the mass functions it produces as a result, which can
be useful in handling the uncertainty of a real-life recommendations system.
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5. CONCLUSIONS AND FUTURE WORK

It is clear that movie Recommendation Systems are an important field of research and will
be in the spotlight for a long time. One crucial characteristic that is to be addressed in the
future studies is the Uncertainty that the systems are called upon to manage by imprecise
user ratings. We deem that Dempster-Shafer’s theory provides the proper tools to handle
uncertainties emerging from an RS.

In this thesis, we implemented a model using Dempster-Shafer’s theory that takes into
consideration this uncertainty and expresses it in the final result. In the implementation
process, we met and faced many problems regarding the time complexity, the modeling
of Dempster-Shafer theory and the accuracy of the final result. We believe that the fore-
most advantage of our model is its capability to express the predicted ratings using mass
functions. Mass functions provide us with a measure of uncertainty about the predicted
rating that the system can take into account in deciding whether or not to recommend a
product to a user.

Future work will be focused on additional evaluation measures, performance improve-
ments and further evaluation of our model as a real-world application. Specifically, the
Precision, Recall and F-score accuracy measures play a vital role in the assessment of
classification problems as well as RS. We also consider it important, to further develop
methods to examine how a model can use the uncertainty of the predictions to make
more reliable suggestions.

As for our model, it is necessary to improve time and space complexity. In our imple-
mentation, we have already created optimizations that significantly reduce the time of
calculating the users’ distances. Ηowever, the calculation of suggestions needs optimiz-
ations in terms of time complexity. Finally, it would be worthwhile to use approximation
algorithms to further study their efficiency in a real-world application.
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ABBREVIATIONS - ACRONYMS

DST Dempster-Shafer theory

bpa basicprobability assignment

DRC Dempster rule of combination

RS Recommendation Systems

MAE Mean Absolute Error

RMSE Root Mean Square Error
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