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ΠΕΡΙΛΗΨΗ

Υπόβαθρο: Εκατομμύρια επιστημονικά άρθρα και επιστημονικές εργασίες δημοσιεύονται
κάθε χρόνο, καθιστώντας την έρευνα για σχετική βιβλιογραφία όλο και πιο δύσκολη με κάθε
μέρα που περνά. Ως εκ τούτου, οι σαφείς και ενημερωτικές περιλήψεις έχουν καταστεί
απαραίτητο μέσο για να εντοπίζουν οι ερευνητές τις επιθυμητές πληροφορίες εγκαίρως
και με αποτελεσματικό τρόπο. Πολλές περιλήψεις, ωστόσο, εξακολουθούν να στερούνται
κοινών ρητορικών δομικών στοιχείων τα οποία θα βελτίωναν τους επικοινωνιακούς τους
σκοπούς στο πλαίσιο του ακαδημαϊκού λόγου.

Στόχος: Στην παρούσα διατριβή στοχεύουμε να εξετάσουμε την αποτελεσματικότητα των
μοντέλων ταξινόμησης προτάσεων για την εξαγωγή ρητορικών ενοτήτων σε περιλήψεις
διαφορετικών τομέων και δομών και να δημιουργήσουμε ένα εργαλείο που αυτοματοποιεί
αυτήν τη διαδικασία.

Μέθοδος: Τα μοντέλα ταξινόμησης προτάσεων που χρησιμοποιήθηκαν εδώ βασίστηκαν
σε ένα ιεραρχικό νευρωνικό δίκτυο (HNN) που έχει εκπαιδευτεί σε τρία διαφορετικά σύνολα
δεδομένων.

Αποτέλεσμα: Τα αποτελέσματά μας δείχνουν ότι τα μοντέλα μας επιβεβαιώνουν την
”state of the art” απόδοσή τους (SOTA) σε περιλήψεις του ίδιου επιστημονικού πεδίου με
εκείνες που εκπαιδεύτηκαν, αλλά η διαπεδιακή ακρίβειά τους μειώνεται σημαντικά ειδικά
όταν εφαρμόζονται σε μη κλασσικά δομημένες περιλήψεις.

Συμπέρασμα: Ένα ακριβές εργαλείο για την απόκτηση των ρητορικών τμημάτων των
περιλήψεων μπορεί να αποτελέσει τη βάση για ένα μεγαλύτερο σύστημα που θα μπορεί
να συνοψίζει τις πληροφορίες, βοηθώντας έτσι σε μεγάλο βαθμό την επιτάχυνση της
διαδικασίας της βιβλιογραφικής έρευνας.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Επεξεργασία Φυσικής Γλώσσας

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Διαδοχική Ταξινόμηση Προτάσεων, Εξαγωγή Ρητορικών Ενοτήτων,
Ιεραρχικά Νευρωνικά Δίκτυα





ABSTRACT

Background: Millions of scholarly articles and scientific papers are being published each
year, making the search for relevant literature harder with each passing day. Clear and
informative abstracts have therefore become an essential medium for researchers to lo­
cate their desired information in a timely and efficient manner. Many abstracts however,
still lack common rhetorical structural elements that would improve their communicative
purposes within the context of academic discourse.

Objective: In the present thesis we aim to review the efficacy of sentence classification
models for rhetorical sections extraction on abstracts of different domains and structures
and create a tool that automates this process.

Method: The sentence classification models used here were based on a hierarchical
neural network (HNN) that has been trained on three different datasets.

Result: Our results show that our models manage to confirm their state of the art (SOTA)
performance on abstracts of the same scientific field with the ones they were trained in,
but their inter­domain accuracy drops significantly especially when applied to unordinarily
structured abstracts.

Conclusion: An accurate tool for obtaining the rhetorical sections of abstracts can be­
come the basis for a larger framework that could summarize information, helping tremen­
dously to speed up the process of literature research.

SUBJECT AREA: Natural Language Processing

KEYWORDS: Sequential Sentence Classification, Rhetorical Sections Extraction,
Hierarchical Neural Networks
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Sentence Classification with Hierarchical Neural Networks for Rhetorical Sections Extraction

1. INTRODUCTION

1.1 Problem Description and Motivation

In the course of this thesis we will be tackling the sentence classification problem, within
the context of research article abstracts. What we are trying to achieve precisely, is to cre­
ate artificial neural network (ANN) models that are able to correctly identify and categorize
the sentences of a scientific abstract to a set of given labels. It is also important that these
models retain the ability to generalize. To test this we will be using completely different
scientific abstracts than the ones used to train them, therefore adding to this text classifi­
cation problem the domain adaptation perspective. Finally, as a proof of concept, we will
try to bring everything together in an Application Programming Interface (API) through the
Flask module 1 in Python, which will include our trained models to an easy­to­use web­
based tool for making predictions. This will serve as an attempt to identify its usefulness
and limitations as a standalone tool and in consideration as part of a larger framework for
information retrieval.

The main motivation behind our project could be identified as the easy and fast acqui­
sition of required information for research. Every passing year the size of the scientific
literature corpus is increasing at a rapid pace [2]. It is therefore becoming increasingly
hard for researchers to find relevant literature, to help further their work, in a timely and
efficient manner. This has shifted the focus towards abstracts, as their small and infor­
mative nature makes them ideal for quickly navigating through a lot of information. Not all
abstracts however, have the necessary rhetorical structural elements that would improve
their communicative purposes within the context of academic discourse. Consequently, an
automatic tool that would identify those structural elements would be something extremely
helpful and valuable as well as serve as the basis for a larger framework that would allow
users of all scientific fields to easily locate their desired information and present it in a clear
way.

Another, more subtle goal involves raising awareness in the researchers community about
the importance of following a standardized scientific discourse. With abstracts becoming
increasingly important, identification of the impeding factors for the accuracy of our model
could provide important educational insights on future researchers regarding the steps
they could take to improve the readability of their abstracts.

For the remainder of this chapter we will be providing some general background contextual
information as well as a more formal definition of the problem through its individual tasks
and describe our action plan. In the next chapter, we will discuss related approaches to
this problem, while afterwards we will be focusing on the specifics of the methodology
we followed to obtain our results. Finally, we will present these results and conclude by
offering our comments and our closing remarks.

1https://flask.palletsprojects.com/en/2.0.x/
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1.2 Background information

Deep learning (DL) is part of the broader research area of machine learning (ML), which
is in turn considered part of artificial intelligence (AI) (Figure 1.1 2). Its applications use
ANN models combined with an approach called deep contextual representations to solve
problems in the fields of computer vision (CV), speech recognition (SR), natural language
processing (NLP), precision medicine and many others ([3], [4], [5]). More specifically, DL
is solving a central problem in representation learning, the fact that sometimes it is equally
difficult to obtain a representation due to variation factors. It does so by using representa­
tions that are a combination of simpler representations, breaking down the more complex
concepts into simpler ones [6].

Figure 1.1: The relationship between AI, ML and DL.

As the main subject of this thesis falls within the field of NLP, we would like to provide at
this point some more context by briefly describing its history and the tasks it addresses
giving a little more detail. NLP has its roots in the 1950’s 3 as a subfield of linguistics,
computer science, and artificial intelligence [7]. It is concerned with the way machines
perceive and generate language in written text form.

Early NLP models are known today as Symbolic NLP. They used rather pattern­based
or rule­based approaches, such as hand­crafted rules or context­free grammars (CFG),
for tasks like word­for­word translation which ultimately failed due to lack of coverage,
ambiguity and the complexity of language in general. During late 1980’s Statistical NLP
emerged, with models that used probabilistic machine learning algorithms (which Chom­
sky’s theoretical analysis had been skeptical about) and large annotated corpora to effi­
ciently train them. One suchmodel was theMarkov­based n­gram languagemodel, an ap­
proach that uses the previous words to predict the upcoming word, letter or phonemes in a
sequence. These models are used in more practical applications such as auto­completion
or spelling correction tasks. In an effort to address some of the shortcomings of thesemod­

2Image taken from this IBM post: https://ibm.co/3cG8pEQ
3Alan Turing published an article in 1950, titled ”Computing Machinery and Intelligence”, proposing what

is now known as the ”Turing test” for measuring intelligence which involves the automated interpretation
and generation of natural language

A. Ntargaras 20
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els Kneser and Ney [8] proposed a smoothing method to deal with unseen n­grams that
would otherwise get a probability of 0.0.

With the dawn of the 21st century we moved forward to the current Neural NLP era. Con­
ditional random fields (CRFs) [9], one of the most influential models for sequential classi­
fication, as well as the first large­scale modern feed­forward neural network for language
modeling [10] were both proposed in 2001. During that time, bag­of­words models were
also replaced by dense vector representations of words called word embeddings, which
in 2013 were introduced by Mikolov et al. [11] approximating the objective function and
making their training more efficient. Along with the word2vec implementation [12, 13],
large scale training of word embeddings was made possible. One of the latest innova­
tions in word embeddings is the projection of word embeddings from different languages
into the same space enabling (zero­shot) learning [14, 15] opening a lot of applications
for low­resource languages. From 2013­2014 until today, convolutional neural networks
(CNNs, [16]) and more often recurrent neural networks (RNN, [17]) as well as (bidirec­
tional) long short­term memory networks ((bi)­LSTM, [18, 19]) are still regarded as the
go­to network architectures for state­of­the­art performance in NLP tasks, although the
new Transformer architecture [20] is rapidly gaining ground on that regard [21]. Some of
the more common NLP tasks include but are not limited to Text­to­Speech, Word Segmen­
tation (Tokenization), Named Entity Recognition, Text Classification, Sentiment Analysis,
Discourse Analysis, Text Summarization and many others.

1.3 Sequential Sentence Classification

Sentence classification is considered part of the broader task of text classification in NLP.
Text classification is the task of assigning a sentence or document an appropriate category
[22]. The categories depend on the chosen dataset and can range from topic to topic.
Sequential text classification is the task where the whole sequence or context is taken
into consideration for tagging the current token/ entity to be classified. Although it is one
of the simpler tasks of the field, it is a precursor of many interesting applications such
as spam detection or sentiment analysis. The true value of text classification models
however comes from being able to perform unsupervised labeling of unstructured data,
which accounts for the vast majority of the data found online. This holds true for scientific
literature as well, so as we discussed in section 1.1, an accurate automated sentence
classification tool would therefore be of high value.

As a sentence wewill define the number of words between each consecutive period except
the first. Although this is a simple enough definition for any human to understand, this can
prove difficult for a sentence tokenizer as a lot of exceptions that we consider automatically
need to be taught to the tokenizer in the form of rules (e.g. acronyms can have periods).
Each sentence is assigned a label or as it is specifically called in the discourse analysis
task a rhetorical move. As rhetorical move its considered a ”discoursal or rhetorical unit
that performs a coherent communicative function in a written or spoken discourse” [23].
The moves proposed by Santos’ model in 1996 are illustrated in table 1.1. As we can see
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common sections in abstracts include BACKGROUND,OBJECTIVE,METHOD, RESULT
and CONCLUSION, which remains so until today. These sections are also presented in
our datasets as well and are the exact labels we will be trying to predict.

Table 1.1: Framework for a five­move structure analysis of research article abstracts. [23]
Moves Functions Questions to ask
1. Situating the research Setting the scene, topic gener­

alization
What has been known about
the field/topic of research?

2. Presenting the research Setting the purpose of
the study, research ques­
tions/hypotheses

What is the study about?

3. Describing the methodology Describing the materials, sub­
jects, variables, procedures

How was the research done?

4. Summarizing the findings Reporting the main findings of
the research

What did the research find?

5. Discussing the findings Interpreting the results, giv­
ing recommendations, implica­
tions, applications

What do the results mean? So
What?

1.4 Domain Adaptation

In a typical machine learning application, the test set is drawn from the same distribution as
the train and validation sets. This would mean that you would have a manually annotated
dataset for your specific task that you would split into three parts (typical ratios include
60% / 20% / 20%, 70% / 15% / 15% or 80% / 10% / 10% for train / validation / test) to use
with your model. In some cases however, one might lack the amount of data required to
fully train a model from the ground up for a particular task. In such a case, one could take
a model trained in a source domain and transfer any relevant features from it to his task
on another target domain.

From [24, 25] we get the definition of a domain D, as a feature space X ⊂ Rd with a
marginal probability distribution P (X) or D = {X , P (X)} . A task T is defined as a
label space Y with the conditional probability distribution P (Y |X), so we can write T =
{Y , P (Y |X)}. X and Y are random variables. Now, a source domain DS is defined
as DS = {XS, P (XS)} with a corresponding task TS = {YS, P (Y S|XS)}. In a similar
manner a target domain DT is defined as DT = {XT , P (XT )} with a corresponding task
TT = {YT , P (Y T |XT )}. Transfer learning is defined as the process of improving the
outcome of task TT by using information from DS and TS where DS ̸= DT and TS ̸= TT . In
the case where the source and target domains have the same feature space, XS = XT ,
we have a homogeneous transfer learning problem. Finally, the special case, where both
domains share a common label space, YS = YT , is defined as domain adaptation.

Given the above formal definitions, our problem can be interpreted as a homogeneous
domain adaptation problem in which a model trained on a source distribution is used in
the context of a different yet related target distribution.
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1.5 The Problem

Given the definitions in the previous sections, our problem is considered a complex mix
of sentence classification and domain adaptation problems. Specifically, we are in the
setting of the relaxed domain adaptation because the YS = YT condition holds true. Our
general action plan therefore, would be to train a deep learning model on one or more task
specific datasets from a source domain and then test their efficacy on target domains.

The best and largest datasets are the PubMed RCT datasets, which refer to randomized
controlled trials, curated by Dernoncourt and Lee [26]. The high level of curation of these
datasets as well as their size, especially when compared to the older NICTA­PIBOSO
dataset from Amini et al. [27], made them fitting for our needs. Also, having abstracts
from a domain where we had more intimate knowledge increased their value for us and
made these datasets a natural choice as our source domain. Finally, we opted to use
some hand­made datasets of our own that also belonged to this domain. One was exactly
like the PubMed RCT datasets, but at a larger scale of 1 million abstracts (400% increase),
while the other had two more specialized labels pertaining to the PICO 4 framework used
in Evidence Based Medicine for framing and answering of health care related questions
[28, 29].

The choice of deep learningmodel to train with these datasets was equally straightforward,
as we used the State­of­the­art (SOTA) sentence classification model on the aforemen­
tioned PubMed abstract datasets 5. The model is called ”Hierarchical Sequential Labeling
Network (HSLN)” and was presented by D. Jin and P. Szolovits [1] in 2018. It is based
on a hierarchical neural network (HNN) architecture which uses a CRF layer to account
for the inter­dependence between consecutive labels along with a bi­LSTM layer atop the
representation of each sentence to encode context and semantics from preceding and
succeeding sentences for better label prediction.

As target domains we searched for ones that are as different as possible from our source
domain while retaining the same label space. The energy and sociology domains satisfied
these criteria so they served as our target domains of choice. However, to our knowledge
there was no readily available datasets, therefore we needed to manually create them
through data­mining open access repositories. Our repository of choice was the ”Directory
of Open Access Journals” archive 6, which is a community­curated online directory with
good indexing of its vast array of high­quality, open access, peer­reviewed journals and
articles.

Our final goal would be to construct a web­based API tool for automatic abstract sentence
classification in both source and target domains, to use as a proof of concept for a larger
framework of information retrieval.

4”PICO elements”: Participants/Problem (P), Intervention (I), Comparison (C) and Outcome (O)
5https://bit.ly/3xnG5PN
6https://doaj.org/
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2. RELATED WORK

Before presenting in greater detail the model that we used, it is important to go over the
other systems that were previously or are currently available for our task of sentence
classification. This can help give more insight on the differences between them and our
model of choice, by discussing some advantages and disadvantages of each system.

2.1 Different Models for the task

Through the years, a number of different models were used for the task of sequential
sentence classification. In the pre­CNN and RNN era, the systems used were mainly
based on either naive Bayes (NB), support vector machines (SVM), Hidden Markov Mod­
els or CRFs. One of the earliest successful attempts was reported in 2003 by McKnight
and Srinivasan [30], who used an SVM to perform classification on both structured and
unstructured abstracts utilizing a novel sentence location feature. Although it performed
extensively better than traditional linear classifiers used previously, achieved an average
F­score of 80% on structured and 74% on unstructured data. As ”structured”, the au­
thors define the abstracts in which there where already structure labels present and as
”unstructured” the abstracts that were lacking those labels. An example of a structured
abstract can be seen in figure 2.1.

A comparable effort using HMM was reported by Lin et al. [31] in 2006. Although their
generative approach system of HMM coupled with Linear Discriminant Analysis (LDA)
yielded similar results with McKnight and Srinivasan, the advantage of their approach
is the linear complexity for training and testing their model compared to the quadratic
complexity of SVMs. The use of an NB­based system proposed by Ruch et al [32] in 2007
showed more promise than the other two approaches, reporting an F­score of about 85%
overall. Their biggest problems were the missclassification between the RESULTS and
CONCLUSIONmoves, which was reported by other researchers as well and the very poor
performance on unstructured data that fell bellow 70%. As unstructured data we mean
abstracts that have no adherence to a formal format, with minimal or zero sensible links
between the sentences. By the strict definition of the term, any abstract that is written in a
single paragraph format and is not split into sections is considered unstructured. However,
since such abstracts are still not widely adopted, for the purpose of this thesis we will
consider as unstructured abstracts those that have amore narrative form, are often smaller
and tend to be less informative about the contents of the paper they summarize.

The final, pre­deep learning, leap forward came in the form of CRFs [33] which saw an
average of above 83% F­score in identifying PICO elements and above 94% on regular
RCT moves. As it is evident from the above data, the latest models managed to achieve
impressive scores in this given task however all of them lacked generalization properties.
This is due to the fact that they rely heavily on carefully hand­crafted lexical, structural,
statistical and sequential features and the fact that they are trained with smaller datasets.
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Figure 2.1: Example of structured abstract from the research article
”Long­term clinical and echocardiographic outcome of percutaneousmi­
tral valvuloplasty: randomized comparison of Inoue and double­balloon
techniques.”. ( https://europepmc.org/article/med/10636276)

These problems were largely solved by the emergence of deep learning models, which
removed the need for hand­picked features and use enormous datasets for their training.
Many models based on CNNs and RNNs have achieved SOTA performances on var­
ius NLP tasks including our particular sentence classification task [34, 35, 36]. All these
models consistently report results close to about 90% F­score and experience very good
generalizability.What is more, depending on the architecture there are models that can
utilize and operate at the smallest text unit i.e the character level as well as models, such
as bi­LSTMs, which were capable of learning long­term dependencies and as such make
very good candidates for our particular task.

Since their first introduction in 2017, transformer models [37] have taken the NLP field by
storm improving the SOTA on various tasks including sentence classification mostly utiliz­
ing novel datasets tailored to their architecture such as SciCite [38]. The main advantage
of a transformer is the fact that it can learn long­term dependencies regardless of distance
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between elements and contrary to RNNs it has parallelization capabilities. A frequently
used transformer model for NLP tasks is BERT [39] introduced in 2019 by Devlin J. et al..
Using its unique ability to pre­train deep bidirectional representations it can be fine­tuned
with little effort to create new SOTA models. The current best performing model is Ope­
nAI’s GPT­3 [40]. It is the 3rd generation of the GPT model series and its full version has
a capacity of 175 billion parameters, which is 10 times larger than the previously largest
model Microsoft’s Turing NLG 1.

Despite the above advantages BERT has some significant problems that later variations
tried to solve and have mostly succeeded. First and foremost the fine­tuning and pre­
training aspects are a bit inconsistent due to a lack of mark in the fine­tuning data. This
has been partially solved by XLNet [41], which successfully addressed the problem of
interdependence between mark words. The second problem lies with a corpus that is
incomplete. Multiple variations such as ALBERT, RoBERTa and ERNIE [42, 43, 44] have
been developed successfully addressing this issue. The last major problem is that the
amount of calculations needed is too large leading to long training times. Although there
are workarounds for this, by first calculating the attention to a low­dimentional space and
then project to a high­dimensional space, it is certainly something not optimal.

In the biomedical field, the BioBERT [45] variation offers improvements in the NLP tasks
of named entity recognition, relation extraction and question answering. In our particular
task of sentence classification however, the HSLN model by Jin et al. has retained its
SOTA performance and therefore was preferred over the alternatives. Another variation
that is not specific to biomedical data but is used with scientific data in general is SciBert
[46]. Although this variation achieved SOTA results on many different task in the computer
science and multidomain fields of study, in the biomedical field it achieved better or similar
results to BioBert on only the task of relation classification when tested on the ChemProt
dataset [47] and of named entity recognition when tested on the BC5CDR [48] and the
JNLPBA [49] datasets.

2.2 Different Datasets for the task

For our specific task of sentence classification on scientific abstracts, to our knowledge,
there is no other dedicated datasets than the PubMed RCT and the NICTA­PIBOSO that
we discussed in the previous chapter (section 1.5). If we move the focal point however
from scientific abstract sentences in general to sentences with citation for intent classifi­
cation, which is a related and very interesting task, there are two suitable datasets. The
first of its kind was ACL­ARC [50], which is a collection of 10.920 (10.628 after cleaning)
academic papers from the ACL Anthology. The newest and larger version, addressing
multiple scientific domains is SciCite[38]. This dataset, which is five times larger than
ACL­ARC, has solved not only the problem of domain­specificity but also the problem of
sparse labels by combining a lot of the less frequent to more broad categories. This has
greatly improved the generalizability of the dataset.

1https://bit.ly/3zlXcC0
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3. METHODS

3.1 Model

As we discussed in section 1.5 of our introductory chapter, the deep learning model we
chose for our problemwas the HSLNmodel presented by Jin et al [1]. It was preferred over
other models due to its SOTA performance on biomedical abstracts. In this section we will
discuss in greater detail the model architecture. For convenience we will decompose the
model into components based on the action they perform. These components are: the
word embedding layer, the sentence encoding layer, the context enriching layer, and the
label sequence optimization layer. A schema of the architecture of the model can be seen
in Fig 3.1, along with indication of said components.

Figure 3.1: Model architecture as presented in Jin et al. [1]. w: original
word; e: word embedding vector; h: sentence­level hidden state out­
put by the bi­RNN or CNN layer; s: sentence representation vector; h0 :
abstract­level hidden state output by the bi­LSTM layer; r: sentence label
probability vector; y: predicted sentence label.
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The word embedding layer, takes a sentence of N words, w = [w1w2 · · · wN ] and maps
each word to a vector of real values that serves as a representation of that word. Word
representations are then encoded in an embedding matrix Wword ∈ Rdw ×|V |, where dw is
the dimension of the word vector and V is the vocabulary of the dataset. Each column
j of the embedding matrix is the representation of jth word in the vocabulary. Although
a word embedding matrix can be randomly initialized, most models use pre­trained word
embedding vectors such as word2vec, fastText and GloVe [51, 52, 53].

The sentence encoding layer accepts the embedding vector of all words in a sentence and
produces the final encoding vector s of that sentence. This is achieved through the use of
a bi­RNN or CNN layer that processes each embedding vector and outputs a sequence
of hidden states h1:N (each state corresponds to one word and N is the number of words).
The final encoding vector results from attention­based pooling by reshaping the matrix S,
coming from the use of the following equations, into a vector:

A = softmax(Us tanh(WsH + bs)) (3.1)
S = AHT (3.2)

where H = [h1 h2 · · · hN ] ∈ Rdhs ×N , Ws ∈ Rda ×dhs is a transformation matrix for soft align­
ment, bs ∈ Rda is a bias vector, Us ∈ Rr×da is a token­level content matrix for measuring
the importance in the context of the whole sentence, softmax is performed along the sec­
ond dimension of its input matrix and A ∈ Rr×N is an attention matrix. Each row of Us is
a context vector us ∈ Rda representing part of the semantics of the sentence. In our case
we opted for the RNN variation of this layer as it has been shown to perform better than
the CNN variant.

The context enriching layer takes the output of the previous layer for each sentence be­
longing to an abstract and enriches each vector with contextual information from nearby
sentences. The sequence of sentence encoding vectors is input into a bi­LSTM layer to
produce new hidden state vectors h′

1:N that will pass through a feed­forward NN with a
single hidden layer to produce the probability vector r ∈ Rl of the sentence. This vector
depicts the probability of the sentence belonging to each label l.
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Finally, the label sequence optimization layer uses the CRF algorithm to represent the
dependencies between consecutive labels in order to boost overall model performance.
The score of a label sequence is given by:

s(y1:n) =
n∑

i=1

ri(yi) +
n∑

i=2

T [yi−1, yi] (3.3)

where T is a transition matrix whose T [i, j] element corresponds to the probability of a
labelled i token being followed by a labeled j token. The above score can be transformed
into a probability by applying a softmax over the possible label sequences using the equa­
tion:

p(y1:n) =
es(y1:n)∑

ŷ1:n∈Y es(ŷ1:n)
(3.4)

where Y represents the set of all possible label sequences.

3.2 Datasets

The datasets we used were comprised of abstracts, where each sentence is preceded by
its annotated label reffering to one of the five moves of rhetorical structure and the PMID
is used as an identification number. A typical example of an abstract is shown in table 3.1

Table 3.1: Example of typical abstract contained in the Pubmed 200K rct dataset (PMID: 16192451)
# Gold label Sentence

1 BACKGROUND Iseganan , an antimicrobial peptide , is active against aerobic and anaerobic gram­positive and gram­
negative bacteria as well as fungi and yeasts .

2 BACKGROUND The drug has shown little resistance in vitro and to be safe and well tolerated in 800 patients with
cancer treated for up to 6 wk .

3 OBJECTIVE To determine the efficacy of iseganan for the prevention of ventilator­associated pneumonia ( VAP ) .

4 METHODS

Mechanically ventilated patients in the United States and Europe were randomized to oral topical
iseganan or placebo ( 1:1 ) and treated six times per day while intubated for up to 14 d. Patients were
eligible if randomized within 24 h of intubation and estimated to survive and remain mechanically
ventilated for 48 h or more .

5 METHODS The primary efficacy endpoint of the study was VAP measured among survivors at Day 14 .
6 RESULTS A total of 709 patients were randomized and received at least one dose of study drug .

7 RESULTS The two groups were comparable at baseline except iseganan­treated patients were , on average ,
3 yr older .

8 RESULTS The rate of VAP among survivors at Day 14 was 16 % ( 45/282 ) in patients treated with iseganan
and 20 % ( 57/284 ) in those treated with placebo ( p = 0.145 ) .

9 RESULTS Mortality at Day 14 was 22.1 % ( 80/362 ) in the iseganan group compared with 18.2 % ( 63/347 ) in
the placebo group ( p = 0.206 ) .

10 RESULTS No pattern of excess adverse events in the iseganan group compared with placebo was observed .
11 CONCLUSIONS Iseganan is not effective in improving outcome in patients on prolonged mechanical ventilation .
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The initial datasets available to us were the 20K and 200K PubMed RCT datasets (20K,
200K datasets) which are the largest published datasets for sequential sentence classi­
fication. They are based on the PubMed database. The sentences are categorized into
one of the following five classes: BACKGROUND, OBJECTIVE, METHOD, RESULT and
CONCLUSION.

Later we introduced two new and proprietary datasets, which we called 1M and 100K
PubMed RCT datasets (1M, 100K datasets). These datasets where curated in­house and
as their names suggest they are comprised of 1 million and 100 thousand abstracts in total
respectively. Of those, the most interesting dataset is the 100K which includes two more
labels belonging to the PICO framework of clinical discourse, namely INTERVENTION
and POPULATION. Our goal with the inclusion of these two datasets is the inspection of
any changes in the models accuracy compared to the other two standard datasets. All
four datasets would serve as our source domain.

Finally, as target domains we chose abstracts pertaining to the energy and sociology fields
from the ”Directory of Open Access Journals” archive. Our intention was to use abstracts
that were as different as possible from the biomedical abstracts, in both written format and
scientific discourse used. With that in mind, we utilized their API and we downloaded 919
energy and 605 sociology abstracts to create our initial datasets. By pre­processing the
downloaded abstracts, we cleared the datasets of any non­English abstract translations
that they had attached as well as disposed of any bad abstracts resulting in 860 energy
and 290 sociology final abstracts. Then, we randomly picked 20% of the abstracts we
downloaded to create two new test sets. This percentage was regarded as adequate for
our needs, due to the fact that we would be annotating the abstracts in­house, therefore we
needed a small yet representative test set that would serve as proof of concept. The quality
of the abstracts within the test sets was not up to par with the highly curated source domain
datasets, which can be seen from the amount of abstracts removed during preprocessing,
however in their current form they would serve as invaluable real world samples to test
the efficacy of our models.

In the last parts of this section, we will present some statistics regarding the datasets de­
scribed above. Table 3.2 outlines the basic statistics regarding the datasets we used, such
as the number of classes and the sizes of the vocabulary for each set. The development
and test set sizes are kept small, especially for the 100K and 200K datasets, however
we did not want to change the ratios provided by Dernoncourt and Lee [26]. In table 3.3
we present the statistics regarding the number of sentences per abstract and the average
sentence length for each dataset (counted in whitespace tokens). As it is evident from the
table, sentence length is comparable between all datasets whereas the abstract length is
almost twice as long in the source domain compared to the target domains. This justifies
our choice of very differently formatted abstracts. Last but not least, table 3.4 presents
the statistics regarding the number of times each label appears in the train set for each
dataset (in the energy and sociology dataset it is the test set since there was no train set).
As we can see there is heavy class imbalance, with as much as 5­fold increase in some
cases, which will influence our choice of the model accuracy metric.
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Table 3.2: Statistics for the datasets used. Vocabulary measured in
word tokens, Train ­ Development ­ Test sets in abstract tokens

Dataset Classes Vocabulary Train Development Test
20K 5 46 k 15 k 2.5 k 2.5 k
200K 5 168 k 190 k 2.5 k 2.5 k
1M 5 613 k 1 m 100 k 100 k
100K 7 154 k 95 k 2.5 k 2.5 k

Table 3.3: Sentence (in word tokens) and abstract (in sentence tokens) lengths per dataset
20K 200K 1M 100K Energy Sociology

Mean sentence length 26.34 26.23 20.75 20.82 25.04 26.19
Min sentence length 1 1 1 1 1 1
Max sentence length 296 338 72 125 136 81
Average doc length 12 11.6 11.3 11.57 7.44 6.76
Min doc length 4 3 5 5 1 2
Max doc length 31 51 30 30 25 23

Table 3.4: Number of sentences in train set for each label per dataset
Labels 20K 200K 1M 100K

BACKGROUND 18402 196689 1449519 114759
OBJECTIVE 13838 186601 790496 85001
METHOD 59281 722586 2872361 264659
RESULT 57953 766271 4262478 399754

CONCLUSION 27168 339714 1911280 183610
INTERVENTION ­ ­ ­ 15622
POPULATION ­ ­ ­ 36148

3.3 Experiments

The final section of this chapter is dedicated to describing our experimental process. In the
pre­train part of the experiment we followed some basic pre­processing steps to prepare
the datasets for the coming tests. At first, we performed a check of whether the train set
of each dataset contained abstracts in common with the development and test sets, elim­
inating any duplicates from the train sets. This would help us avoid overfitting and miss­
evaluating the performance of our models. Then, we annotated 20% of the downloaded
energy and sociology abstracts, using two highly specialized and experienced annotators.
Using the Python module ”Scikit­Learn” 1, we were able to calculate the inter­annotator
agreement using Cohen’s kappa score [54] close to 0.7, which was deemed as adequate
for the needs of this thesis.

1https://scikit-learn.org/stable/index.html

33 A. Ntargaras

https://scikit-learn.org/stable/index.html


Sentence Classification with Hierarchical Neural Networks for Rhetorical Sections Extraction

For model training we used a system equipped with an NVIDIA Titan X GPU (Pascal
architecture, 12 GB of memory), which is one of the best GPUs regarding NLP tasks.
Our batch size was 40, while the rest of the parameters were kept in their default values
proposed by Jin et al. [1]. This meant that the sizes of the RNN layer for the sentence
encoding layer and the bi­LSTM for the context enriching layer were 200 and the drop
penalty and dropout were 0.01 and 0.5 respectively. The utilized Adam optimizer had an
initial learning rate of 0.003, which decayed by 0.9 per epoch. Early stopping was set for
a 5 epoch window with no improvement. All models took a long time to complete training,
with time increasing proportionally with the train set size. One problem we faced during
training was in regard to the 1M dataset which proved to be too large to train with this
specific model as the TensorFlow 2 graph exceeded the 2GB hard limit. To circumvent
this hurdle we rebuild the model in Keras 3. In order to be confident about the switch we
compared the results of the two versions on the 20K and 200K datasets and found that
they were similar enough so that we could use them interchangeably (20K: TensorFlow
wF1 = 92.20 ­ Keras wF1 = 92.03, 200K: TensorFlow wF1 = 94.07 ­ Keras wF1 = 93.97).
Each pre­trained model was named after the dataset used to train it, i.e. the model trained
with the 200K dataset is the 200K model. For accuracy we used the weighted­F1 score,
because as we saw in table 3.4 there is heavy class imbalance, so it would serve as the
optimal accuracy metric.

As our second goal was to prove that a larger framework for information retrieval is possi­
ble with these models as its base, we sought to create a Flask­based API which would run
the models in the background and serve to the user a list of all the abstracts he uploaded
with the models annotation for each sentence. To do so, we combined the Flask python
module, along with CSS 4 and HTML 5 code to create a minimalistic yet functional API to
serve as the proof of concept we required. Our tool requires from the user to chose the
model he would like to use for the inference based on the dataset it was trained and to
input the abstract or abstracts he would like to analyze either as singleton or in bulk. Then,
the API runs at inference mode using the loaded model and returns the abstract with the
predicted labels at the start of each sentence. Although the API could be deployed online,
e.g. on a cloud service, for the purposes of this thesis we set it up to run on localhost.
More information on the APIs structure and operation can be found in appendix A.

2https://www.tensorflow.org/
3https://keras.io/
4https://www.w3.org/TR/CSS/
5https://html.spec.whatwg.org/
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4. RESULTS

4.1 Source domain results

After each successful model train, we compile all the different accuracy measures into
a single comprehensive report table. Each of those tables contains results in terms of
precision (P), recall (R) and F­measure (F1) for each label and overall accuracy values,
given in percentages, obtained by a model based on a specific test set. The formulas
for calculating those values are given in appendix B. Accompanying these tables there
are also confusion matrices. Their rows correspond to predicted labels while columns
correspond to true labels, giving us an indication in absolute numbers of how well the
model classified each label. Our measure of choice for determining the accuracy of the
models is the weighted F1­score. The reason for this is the heavy class imbalance that
was evident in table 3.4. Due to this we needed a metric that would take into account the
total number of instances of each class.

4.1.1 Per model intra­dataset test set results

In the following tables 4.1 ­ 4.4, we record the results for each of our models given their
own test set.

Table 4.1: Consolidated results for the 20K­Model

20K­Model results on 20K test set
P R F1 Sup

B 73.20 86.09 79.12 3077
C 97.59 96.59 97.09 4571
M 95.37 97.29 96.32 9884
O 78.69 57.61 66.52 2333
R 96.35 95.67 96.01 9713

Total
acc 92.35 29578
macro 88.24 86.65 87.01 29578
weighted 92.41 92.35 92.20 29578

(a) These are the results given by our model,when trained on
the 20K dataset and evaluated on its own test set. Presented
as percentages are the values for precision (P), recall (R)

and F­measure (F1), while the last column gives the Support
(Sup). B stands for Background, C for Conclusions, M for

Methods, O for Objective and R for Results.

20K­Model Confusion Matrix
B C M O R

B 2649 4 67 347 10
C 1 4415 10 3 142
M 49 9 9616 14 196
O 918 0 67 1344 4
R 2 96 323 0 9292

(b) This is the confusion matrix given by our model,
trained on the 20K dataset. B stands for Background, C
for Conclusions, M for Methods, O for Objective and R

for Results.
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Table 4.2: Consolidated results for the 200K­Model

200K­Model results on 200K test set
P R F1 Sup

B 79.50 82.73 81.08 2663
C 97.82 96.43 97.12 4426
M 96.52 97.51 97.01 9751
O 81.08 76.44 78.69 2377
R 96.92 96.84 96.88 10276

Total
acc 94.08 29493
macro 90.37 89.99 90.16 29493
weighted 94.07 94.08 94.07 29493

(a) These are the results given by our model, when trained
on the 200K dataset and evaluated on its own test set.

Presented as percentages are the values for precision (P),
recall (R) and F­measure (F1), while the last column gives

the Support (Sup). B stands for Background, C for
Conclusions, M for Methods, O for Objective and R for

Results.

200K­Model Confusion Matrix
B C M O R

B 2203 3 44 410 3
C 21 4268 11 0 126
M 33 10 9508 14 186
O 509 0 50 1817 1
R 5 82 238 0 9951

(b) This is the confusion matrix given by our model,
trained on the 200K dataset. B stands for Background,
C for Conclusions, M for Methods, O for Objective and

R for Results.

Table 4.3: Consolidated results for the 1M­Model

1M­Model results on 1M test set
P R F1 Sup

B 74.93 89.53 81.58 105064
C 96.62 96.28 96.45 189007
M 96.61 95.85 96.23 279152
O 86.04 64.78 73.91 86725
R 96.14 97.01 96.57 417100

Total
acc 93.26 1077048
macro 90.07 88.69 88.95 1077048
weighted 93.46 93.26 93.18 1077048

(a) These are the results given by our model, when trained on
the 1M dataset and evaluated on its own test set. Presented as
percentages are the values for precision (P), recall (R) and

F­measure (F1), while the last column gives the Support (Sup).
B stands for Background, C for Conclusions, M for Methods, O

for Objective and R for Results.

1M­Model Confusion Matrix
B C M O R

B 94063 34 1695 8695 577
C 128 181972 86 40 6781
M 2438 120 267580 373 8641
O 28434 33 1821 56183 254
R 477 6171 5797 10 404645

(b) This is the confusion matrix given by our model, trained on the 1M
dataset. B stands for Background, C for Conclusions, M for Methods,

O for Objective and R for Results.
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Table 4.4: Consolidated results for the 100K­Model

100K­Model results on 100K test set
P R F1 Sup

B 76.43 81.19 78.74 691
C 96.50 96.11 96.30 4881
I 83.20 75.59 79.21 1815
M 91.62 92.89 92.25 5389
O 95.38 92.65 93.99 2720
P 89.64 83.19 86.30 3569
R 93.63 96.98 95.28 11263

Total
acc 92.46 30328
macro 89.49 88.37 87.87 30328
weighted 92.41 92.46 92.39 30328

(a) These are the results given by our model, when trained
on the 100K dataset and evaluated on its own test set.

Presented as percentages are the values for precision (P),
recall (R) and F­measure (F1), while the last column gives

the Support (Sup). B stands for Background, C for
Conclusions, I for Intervention, M for Methods, O for

Objective, P for Population and R for Results.

100K­Model Confusion Matrix
B C I M O P R

B 561 0 0 6 113 8 3
C 1 4691 3 0 0 2 184
I 0 1 1372 214 0 91 137
M 13 0 128 5006 8 143 91
O 151 0 3 33 2520 11 2
P 7 8 94 164 1 2969 326
R 1 161 49 41 0 88 10923

(b) This is the confusion matrix given by our model, trained on the 100K
dataset. B stands for Background, C for Conclusions, I for Intervention, M

for Methods, O for Objective, P for Population and R for Results.

Considering the accuracy report tables (4.1a ­ 4.4a), we will at first examine the overall
model accuracies using the weighted F1­score as discussed earlier. By comparing the
F1­scores between our 20K and 200K model results and their equivalents presented by
Jin et al. [1], we see that the percentage difference between their reported accuracy
and ours is about 0.4% for the 20K (our model: 92.20, Jin et al.: 92.6) and 0.2% for
the 200K (our model: 94.07, Jin et al.: 93.90) dataset respectively. Given the stochastic
nature of the Adam optimizer and the fact that we don’t know the specific hardware setup
they used for training their model, we can safely assume that our results are comparable
which means that our training process has worked as intended. This is an important
confirmation, as we needed to be certain of the validity of our actions before moving to our
novel datasets for training and comparison. Viewing the F1 scores of all our models side
by side, it shows that having a larger dataset leads to better accuracy scores in general
(20K w­F1: 92.20, 100K w­F1: 92.39, 200K w­F1: 94.07). However, having too large
of a dataset can spoil the accuracy (1M w­F1: 93.18) in favor of better generalization.
Another interesting finding that arose from looking at the precision and recall values for
each label per different model, is that all the models seem to be very capable of accurately
classifying sentences belonging to the class ofCONCLUSION, while they are having some
trouble distinguishing between RESULT and METHOD and more trouble distinguishing
between OBJECTIVE and BACKGROUND. This can be also confirmed by the confusion
matrices, where we see nearly a third to a fifth of the background sentences (depending
on the model) are mislabeled as OBJECTIVE. This phenomenon can be attributed to a
number of reasons. One major problem could be the presence of imbalanced classes
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in the training dataset, like INTERVENTION and POPULATION which have an order of
magnitude lower representation compared to the other classes. Another problem could
be due to the discoursal and structural similarities between sentences belonging to some
classes. One such case is illustrated on table 4.5, where we see the results of the 20K
model on one of its own test sets abstract. We can see that sentence 3 has been miss­
classified as BACKGROUND instead of OBJECTIVE. A possible cause to this, that is a
separate problem as well, might be the golden­true labels themselves. As seen on table
4.6 sometimes the sentence annotators have trouble themselves correctly identifying the
golden­true labels as is the case in the first three sentences which should have been
labeled as BACKGROUND.

Table 4.5: Example for label confusion
# Predicted label Gold label Sentence
1 BACKGROUND BACKGROUND Recurrent aphthous stomatitis ( RAS ) is the most common oral mucosal disease.

2 BACKGROUND BACKGROUND However , the available therapies for RAS only relieve symptoms and do not
provide a cure.

3 BACKGROUND OBJECTIVE This study assessed the response to treatment with levamisole and low­dose
prednisolone drug combination in patients with RAS.

4 METHODS METHODS Fifty RAS subjects were enrolled in the single­blind randomized placebo­
controlled trial.

5 METHODS METHODS Study medications were administered thrice daily for 3 consecutive days/week
for 3 consecutive weeks.

6 METHODS METHODS Patients in Group 1 received placebo , Group 2 received levamisole ( 50 mg )
and Group 3 received levamisole ( 50 mg ) and low­dose prednisolone ( 5 mg ).

7 METHODS METHODS Patients were followed up for 60 days after treatment.

8 METHODS METHODS
Response to treatment was assessed using the following clinical parameters :
pain due to ulcers , number of ulcers/episode , size of ulcers , duration of ulcers
, and frequency of ulcers ( episodes/month ).

9 METHODS METHODS MannWhitney U­test.

10 RESULTS RESULTS
A statistically significant improvement was noted in all parameters except for the
size of ulcers in patients treated with levamisole alone and with combination of
levamisole and low­dose prednisolone.

11 RESULTS RESULTS There was no statistically significant improvement in the placebo group.

12 RESULTS RESULTS
Both active groups had significantly better improvement when compared to
placebo group , while there was no significant difference between the two ac­
tive groups.

13 CONCLUSIONS CONCLUSIONS Levamisole alone and combination of levamisole and low­dose prednisolone are
effective modes of therapy for RAS.
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Table 4.6: Example for bad golden­true label annotation
# Gold label Sentence

1 OBJECTIVE Depressive disorders are one of the leading components of the global burden of disease with a preva­
lence of up to 14 % in the general population.

2 OBJECTIVE Numerous studies have demonstrated that pharmacotherapy combined with non­pharmacological
measures offer the best treatment approach.

3 OBJECTIVE Psycho­education as an intervention has been studied mostly in disorders such as schizophrenia and
dementia , less so in depressive disorders.

4 OBJECTIVE The present study aimed to assess the impact of psycho­education of patients and their caregivers
on the outcome of depression.

5 METHODS A total of 80 eligible depressed subjects were recruited and randomised into 2 groups.

6 METHODS The study group involved an eligible family member and all were offered individual structured psycho­
educational modules.

7 METHODS Another group ( controls ) received routine counselling.

8 METHODS

The subjects in both groups also received routine pharmacotherapy and counselling from the treating
clinician and were assessed at baseline , 2 , 4 , 8 , and 12 weeks using the Hamilton Depression
Rating Scale ( HDRS ) , Global Assessment of Functioning ( GAF ) , and Psychological General
Well­Being Index ( PGWBI ).

9 METHODS
Results from both groups were compared using statistical methods including Chi­square test , Fisher
’s exact test , Student ’s t test , Pearson ’s correlation coefficient , as well as univariate and multiple
regression analyses.

10 RESULTS Baseline socio­demographic and assessment measures were similar in both groups.

11 RESULTS The study group had consistent improvement in terms of outcome measures with HDRS , GAF , and
PGWBI scores showing respective mean change of ­15.08 , 22 , and 60 over 12 weeks.

12 RESULTS The comparable respective changes in the controls were ­8.77 , 18.1 , and 43.25.

13 CONCLUSIONS Structured psycho­education combined with pharmacotherapy is an effective intervention for people
with depressive disorders.

14 CONCLUSIONS Psycho­education optimises the pharmacological treatment of depression in terms of faster recovery
, reduction in severity of depression , and improvement in subjective wellbeing and social functioning.
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4.1.2 Transition matrices

To better understand how the ”Label Sequence Optimization Layer” described in sec­
tion 3.1 is encoding the possible sequence of the labels in each model, we have generated
transition matrices, which are given in tables 4.7 ­ 4.10. They reveal the transition prob­
abilities between subsequent labels, with the rows representing the label of the previous
sentence and the columns representing the label of the current sentence. Looking at the
various tables for the 5­class models we see that the starting sentence is interchangeable
between BACKGROUND and OBJECTIVE. Then come the sentences of the METHOD
label followed by RESULT and finally the CONCLUSION. Concerning the 100K model,
we see that the exclusive classes POPULATION and INTERVENTION are placed in this
order between METHOD and RESULT labels. All of these results are consistent with our
expectations. They also explain the difficulty all the models have in distinguishing be­
tween the BACKGROUND and OBJECTIVE labels as well as theMETHOD and RESULT
labels. This is indicative of the negatives this rigid form of sequence encoding has despite
an overall improvement of the results.

Table 4.7: Transition matrix for 20K model
5 classes BACKGROUND METHOD CONCLUSION RESULT OBJECTIVE END
START 0.49 0.01 0.00 0.00 0.50 0.00

BACKGROUND 0.52 0.25 0.00 0.02 0.08 0.12
METHOD 0.00 0.75 0.01 0.23 0.00 0.00

CONCLUSION 0.10 0.01 0.45 0.00 0.00 0.44
RESULT 0.00 0.00 0.24 0.76 0.00 0.00

OBJECTIVE 0.02 0.65 0.00 0.01 0.32 0.00

Table 4.8: Transition matrix for 200K model
5 classes BACKGROUND METHOD CONCLUSION RESULT OBJECTIVE END
START 0.42 0.01 0.00 0.00 0.57 0.00

BACKGROUND 0.51 0.29 0.00 0.02 0.12 0.06
METHOD 0.00 0.74 0.01 0.25 0.00 0.00

CONCLUSION 0.03 0.00 0.44 0.00 0.00 0.52
RESULT 0.00 0.00 0.24 0.76 0.00 0.00

OBJECTIVE 0.02 0.67 0.00 0.01 0.29 0.00
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Table 4.9: Transition matrix for 1M model
5 classes BACKGROUND METHOD CONCLUSION RESULT OBJECTIVE END
START 0.57 0.00 0.00 0.00 0.42 0.00

BACKGROUND 0.60 0.29 0.00 0.03 0.07 0.00
METHOD 0.00 0.67 0.00 0.33 0.00 0.00

CONCLUSION 0.00 0.00 0.48 0.00 0.00 0.52
RESULT 0.00 0.00 0.23 0.77 0.00 0.00

OBJECTIVE 0.01 0.65 0.00 0.01 0.33 0.00

Table 4.10: Transition matrix for 100K model
7 classes BACKGROUND METHOD CONCLUSION RESULT OBJECTIVE INTERVENTION POPULATION END
START 0.48 0.00 0.00 0.00 0.52 0.00 0.00 0.00

BACKGROUND 0.60 0.26 0.00 0.03 0.10 0.00 0.01 0.00
METHOD 0.00 0.64 0.00 0.27 0.00 0.00 0.08 0.00

CONCLUSION 0.00 0.00 0.49 0.00 0.00 0.00 0.00 0.51
RESULT 0.00 0.00 0.23 0.76 0.00 0.00 0.00 0.00

OBJECTIVE 0.01 0.66 0.00 0.01 0.29 0.00 0.04 0.00
INTERVENTION 0.00 0.01 0.01 0.61 0.00 0.37 0.00 0.00
POPULATION 0.00 0.20 0.01 0.25 0.00 0.25 0.30 0.00
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4.1.3 Per model inter­dataset test set results

As a final step, before moving to the different domain datasets, we tested the accuracy
of the models when they are evaluated on a different test set. This would give us a good
sense on the robustness of each model generalization capabilities, by using data that
are closely related to their own before moving to completely different data. Table 4.11
presents the results of these tests. We have included the original papers results as a
reference wherever it was provided to ascertain that the values are very close to ours.
Due to having the two extra classes the 100K model test set could not be used to test the
5­class models, however the opposite was feasible.

As can be seen from the table, the 200K model seems to be the best overall. This is the
second indication that there exists an optimal size for the training dataset in order to be as
accurate as possible for sentence classification within a specific domain. This robustness
however tends to spoil the results when one tries to generalize the model on different
domains. Having a bigger or more diverse training set will prove to be more important in
those situations.

Table 4.11: Consolidated accuracy results for all the models
Consolidated Results

Trained On Tested On Dev Size Test Size Dev score (F1) Test Score (F1) Jin et al. Score (F1)

1M
1M

100000
100000

92.96
93.18 ­

200K 2500 91.65 ­
20K 2500 90.34 ­

200K
1M

2500
100000

94.23
91.36 ­

200K 2500 94.07 93.9
20K 2500 93.22 ­

20K
1M

2500
100000

92.47
88.51 ­

200K 2500 91.66 ­
20K 2500 92.20 92.6

100K

1M

2500

100000

92.47

85.86 ­
200K 2500 82.91 ­
20K 2500 83.55 ­
100K 2500 92.39 ­

Another interesting observation is the very bad accuracy results exhibited by the 100K
model when evaluated on the other models’ test sets. Although this might seem alarming
at first glance, it was to be expected considering the fact that it incorporates two more
labels in prediction that the golden­true labels of the other test sets do not account for. To
illustrate this point more clearly we used an abstract that is part of the test set of the 200K
dataset, and we run it individually through our API with the 100Kmodel to obtain the results
shown in table 4.12. As expected, the predicted labels are almost identical to the golden­
true labels, however on top of the regular BACKGROUND ­ OBJECTIVE confusion the
model has ”incorrectly” identified sentence 8 as POPULATION. Upon closer inspection
one can identify that this is actually correct, however since this is an abstract from the
200K dataset it could never have had this golden­true label in the first place making these
cross evaluations less impactful.
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Table 4.12: Example for label changes based on the model used
# Predicted label Gold label Sentence

1 BACKGROUND BACKGROUND
The efficacy and safety of regular­strength beclomethasone dipropionate MDI
prescribed within its recommended dosing range of 2 to 5 puffs three to four
times daily has been well established in more than 25 years of worldwide use.

2 BACKGROUND BACKGROUND A more concentrated formulation delivering 84 microg per puff was developed to
provide for a more convenient twice­daily dosing regimen.

3 BACKGROUND OBJECTIVE

This randomized , single­blinded , positive and placebo­controlled , parallel­
group , multiple­dose bioactivity study was conducted to assess the potential
of a new beclomethasone dipropionate 84 microg double­strength metered­dose
inhaler ( Vanceril 84 microg Double Strength Inhalation Aerosol/Key ) to cause
hypothalamic­pituitary­adrenocortical axis suppression.

4 METHODS METHODS

Beclomethasone dipropionate double­strength 84 microg was compared with be­
clomethasone dipropionate regular­strength 42microg , orally administered pred­
nisone , and placebo inhaler after 36 consecutive days of administration in adults
with moderate asthma.

5 METHODS METHODS
Beclomethasone dipropionate double­strength was administered as 5 puffs BID
and beclomethasone dipropionate regular­strength was administered as 10 puffs
BID for the same total daily dose of 840 microg of beclomethasone dipropionate.

6 METHODS METHODS Oral prednisone was administered by mouth at 10 mg once a day.

7 METHODS METHODS

The potential for hypothalamic­pituitary­adrenocortical axis suppression was
evaluated by an adrenocorticotropic hormone ( ACTH ) stimulation test using
cosyntropin 250 microg in 500 mL normal saline infused over six hours on the
36th day of treatment.

8 POPULATION METHODS Sixty­four patients completed this study.

9 RESULTS RESULTS
No clinically significant post­study findings were observed from physical exam­
ination , electrocardiogram , or clinical laboratory evaluation for any treatment
group.

10 RESULTS RESULTS No serious or unexpected adverse events were reported.

11 RESULTS RESULTS
On the 36th day of treatment , there was a significant ( P <.01 ) difference in the
plasma cortisol concentration response to cosyntropin stimulation between the
prednisone and placebo treatment groups at the sixth hour of infusion.

12 RESULTS RESULTS

There was no significant difference in the plasma cortisol concentration response
to cosyntropin stimulation between the beclomethasone dipropionate double­
strength and beclomethasone dipropionate regular­strength treatment groups
and the placebo group.

13 RESULTS RESULTS
In addition , comparison of the response between the beclomethasone dipropi­
onate double­strength and beclomethasone dipropionate regular­strength groups
showed no significant difference.

14 CONCLUSIONS CONCLUSIONS

Beclomethasone dipropionate , administered either via a double­strength ( 84 mi­
crog/puff ) or regular­strength ( 42 microg/puff ) inhaler dosed at 840 microg/day
showed no evidence of hypothalamic­pituitary­adrenocortical axis suppression in
adults with moderate asthma.

4.1.4 Per test set common label results

In an effort to extract deeper insights about the test sets, we have generated scatter plots
indicating the average percentage of common labels per abstract sentence length for each
test set. The graphs are presented in Figure 4.1.

The first observation to be made is that the more sentences an abstract has the better the
chances of each model achieving a higher accuracy in identifying the correct label. This
holds true for all test sets, but it is more evident in the results for 1M test set (Fig 4.1c).
A possible explanation for this behaviour could be that a higher number of sentences
ensures a better abstract format, which the models can more easily recognize. Another
interesting observation is that the results for the 20K, 200K and 100K test sets (Figs 4.1a
­ 4.1c) seem to indicate a more robust performance overall of each model compared to
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(a) Results for 20K test set (b) Results for 200K test set

(c) Results for 100K test set (d) Results for 1M test set

Figure 4.1: Scatter plots indicating the percentage of average common results between golden­true and
predicted labels across all models based on number of abstract sentences for each test set.

the results for the 1M test set (Figs 4.1d). This is evident in the fact that for the first three
test sets the average accuracy of the models rarely drops below 40%, while on the 1M
test set there can be seen cases where the accuracy is close to 0%. In an effort to explain
this behaviour one can assume that one factor contributing to its appearance could be
the volume of this laters test set. Having so many abstract could inevitably lead to the
appearance of such bad results. As, however, an accuracy of 0% is rather extreme one
should consider the possibility of those specific abstracts having bad golden­true labels.
Although such a phenomenon is rare, it is not entirely impossible. Finally, having terrible
abstract format is another valid consideration.
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4.2 Target domain results

For the target domain tests we will report both the model accuracies as well as our other
results for the annotated abstracts that we randomly selected from the sum of processed
abstracts for each category.

4.2.1 Energy and Sociology domain per model results

Considering again the accuracy report tables (4.19a ­ 4.24a) first, we will focus on the
weighted F1 scores to determine the overall model accuracies when faced with the novel
abstracts.

As it is evident the accuracy of all the models has significantly dropped compared to the
accuracies they all exhibited with the test sets of the source domain datasets. Although
the results are not optimal, due to the fact that the number of abstracts considered is
relatively small, we can observe from the tables that the models have a relatively good
classification capacity. The best performing models for both domains seem to be the 100K
and 1M, which were indicated as the most robust from table 4.11. By observing the confu­
sion matrices one can identify a possible problem. Due to an apparent absence of easily
identifiable abstract format traditionally good classified labels such as CONCLUSION and
METHOD exhibit a larger than usual mislabeling. This was expected to some degree as
real world data are vastly different to carefully curated data, however since we want to
see if this tool could serve as part of a larger information summarization framework we will
attempt to discover all the factors that contribute to this result and discuss them in depth.

The first and most important problem that contributes to the poorer sentence classification
is the absence of a standardized scientific discourse that is similar between the biomedical
abstracts used for training the models and the ones coming from the energy and sociology
domain. In cases where the abstract had a format closer to the one expected by the ”Label
Sequence Optimization Layer” the models performed best, to the point of even achieving
100% accuracy. However, in abstracts where this was not the case, the CRF tried to
enforce the sequence it had encoded, forcibly ”discovering” incorrect labels to try and
mimic the sequence of labels it was expecting. One such case was the energy abstract
seen in table 4.13, where the results were spoiled by a combination of the non­standard
discourse and the ambiguity in the way the sentences are tied which the models fail to
recognise. This is clearly evident in sentences no. 3 and 4 where the wording used
is more related to BACKGROUND but the meaning of the sentences is clearly towards
CONCLUSION.

The results also showed that another problem which affects the model stability is the num­
ber of abstract sentences. From the scatter plots presented in figure 4.2, we can see that
abstracts which are 10 ­ 15 sentences long exhibit more stable results. This is expected
as it has also been previously observed in figure 4.1 and can be clearly observed in ta­
bles 4.14 ­ 4.15. More sentences generally relate to a better and more complete abstract
format, in turn leading to better classification as shown by the example in table 4.17. How­
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Table 4.13: Negative example of energy abstract with non­standard discourse
# Sentences Gold

label
100K model
Predicted label

1M model
Predicted label

200K model
Predicted label

1
”This article states basics of the “green economy” concept and the role of trans­
ferring from industrial to ecologically responsible development of renewable
power sources.”,

OBJECTIVE OBJECTIVE OBJECTIVE OBJECTIVE

2
”The main aim of this article is to determine principle regularities that stipulate
and restrict abilities of the BRICS countries to use the renewable energy sector
in order to replace high­carbon consumption in economic and social sector.”,

OBJECTIVE OBJECTIVE OBJECTIVE OBJECTIVE

3
”Basic conclusions of this work are the following: 1) The aggregate of economic,
social, ecological, and energetic problems faced by the modern civilization are
directly interrelated.”,

CONCLUSION BACKGROUND METHOD RESULT

4
”That is why in order to preserve the environment and natural resources for
future generations, it is necessary to refuse from resources of unsustainable
and high­carbon areas of development.”,

CONCLUSION RESULT RESULT BACKGROUND

5

”2) The concept of green economy lies in the fact that needs of the humankind
must be rationalized, above all, in the power context, through ensuring a rea­
sonable refusal from using economically destructive carbons by replacing them
with renewable power sources.”,

CONCLUSION RESULT RESULT RESULT

6 ”3) A lot of European countries made the power breakthrough simultaneously
developing traditional and renewable energetic.”, CONCLUSION RESULT RESULT RESULT

7 ”However, it is impossible to make the same conclusion in relation to the BRICS
countries.”, CONCLUSION RESULT RESULT RESULT

8 ”In the BRICS coalition only one country – China ­ can be acknowledged as a
leader in using the renewable energy sector.”, CONCLUSION CONCLUSION RESULT CONCLUSION

9 ”However, at the same time this country is an “anti­leader” in polluting the en­
vironment.”, CONCLUSION RESULT RESULT CONCLUSION

10 ”4) At the present time economy of the BRICS countries cannot be yet acknowl­
edged as green.”, CONCLUSION CONCLUSION CONCLUSION CONCLUSION

11
”However, along with this, India, China, RSA, Russia, and Brazil have a consid­
erable natural, climatic, and geographical potential for efficient use of benefits
of the renewable energy sector.”,

CONCLUSION CONCLUSION CONCLUSION CONCLUSION

12 ”In the future it will allow them to transfer from the industrial and unsustainable
vector of development to ecologically responsible development.” CONCLUSION CONCLUSION CONCLUSION CONCLUSION

ever, as we see from table 4.18 all models retain their accuracy when the sentences are
clearly worded with a format in mind. Along with those domain­specific problems, the
models are still burdened by the problems they were exhibiting before. Namely they still
exhibit for the most part METHOD ­ RESULT as well as BACKGROUND ­ OBJECTIVE
label confusion, which is further amplified by the first problem.

Lastly, the final problem that contributes to errors in the results has to do with the sentence
splitter used. Although the tool of choice in our case is a proprietary one that has superior
performance compared to other generic choices (like the NLTK tokenizer), there are some
edge cases (ex. word abbreviations and others) that are incorrectly causing it to decide
that the end of the sentence has been reached as seen in table 4.16. Although this is
generally a serious problem, especially for an automated tool, it can be somewhat avoided
by requiring a more specific input format from the user. As such, it has lower severity factor
than the others.

A. Ntargaras 46



Sentence Classification with Hierarchical Neural Networks for Rhetorical Sections Extraction

Table 4.14: Negative example of energy abstract
# Sentences Gold

label
100K model
Predicted label

1M model
Predicted label

200K model
Predicted label

1 This paper presents the issues of electromagnetic interactions in a four­circuit
and dual­voltage power line. OBJECTIVE OBJECTIVE OBJECTIVE CONCLUSION

2 Such solutions are increasingly used in practice due to difficulties in land ac­
quisition for the construction of new power lines. BACKGROUND OBJECTIVE CONCLUSION CONCLUSION

3 Lines of this type, however, have some disadvantages, incl., BACKGROUND OBJECTIVE CONCLUSION CONCLUSION

4 the electromagnetic interactions between the circuits and voltages induced as
their consequence. BACKGROUND OBJECTIVE CONCLUSION CONCLUSION

5 These issues are considered in relation to an existing four­circuit, 110 kV and
15 kV line. METHOD OBJECTIVE CONCLUSION CONCLUSION

6
Results of the studies of the interaction effects in a real system, and an anal­
ysis of selected ways to reduce the voltage induced in 15 kV line circuits are
presented.

CONCLUSION CONCLUSION CONCLUSION CONCLUSION

Table 4.15: Negative example of sociology abstract
# Sentences Gold

label
100K model
Predicted label

1M model
Predicted label

200K model
Predicted label

1 January 24, 2012, may not go down as a particularly noteworthy day overall, but
for the growing sustainable food systems field it marked an important milestone. BACKGROUND BACKGROUND BACKGROUND BACKGROUND

2

On this day, the Community Food Security Coalition’s venerable COMFOOD
listserv (http://www.foodsecurity.org/list.html) announced it was separating job
announcements that were routinely posted on the list into a new listserv, COM­
FOOD JOBS.The emergence of a dedicated vehicle for posting jobs in sustain­
able food systems is a coming­of­age event for our field.

OBJECTIVE BACKGROUND BACKGROUND BACKGROUND

3 In the few short months since the listserv came online, over 400 jobs and related
posts have gone on the list. RESULT BACKGROUND BACKGROUND BACKGROUND

4 The diversity of job titles, geographies, and education and experience require­
ments is extraordinary. CONCLUSION BACKGROUND BACKGROUND BACKGROUND

5

Consider that in just June of this year job announcements have been made
for positions ranging from a driver for a mobile livestock program in Taos, New
Mexico, to a healthy food access expert in California, to a business manager
for a New York–based food systems consulting firm.

CONCLUSION OBJECTIVE CONCLUSION BACKGROUND

6 Farms, businesses, and community­based organizations are looking for every­
thing from interns to experienced experts in creating the new food system.... CONCLUSION CONCLUSION CONCLUSION METHOD

Table 4.16: Negative example of energy abstract with bad splitting
# Sentences Gold

label
100K model
Predicted label

1M model
Predicted label

200K model
Predicted label

1

”The desire to reduce carbon emissions due to transportation sources has led
over the past decade to the development of new propulsion technologies, fo­
cused on vehicle electrification (including hybrid, plug­in hybrid and battery
electric vehicles).”,

BACKGROUND BACKGROUND BACKGROUND BACKGROUND

2
”These propulsion technologies, along with advances in telecommunication and
computing power, have the potential of making passenger and commercial ve­
hicles more energy efficient and environment friendly.”,

BACKGROUND BACKGROUND BACKGROUND BACKGROUND

3 ”In particular, energy management algorithms are an integral part of plug­in
vehicles and are very important for achieving the performance benefits.”, BACKGROUND BACKGROUND BACKGROUND BACKGROUND

4 ”The optimal performance of energy management algorithms depends strongly
on the ability to forecast energy demand from the vehicle.”, BACKGROUND BACKGROUND BACKGROUND BACKGROUND

5 ”Information available about environment (temperature, humidity, wind, road
grade, etc.)”, BACKGROUND METHOD RESULT METHOD

6 ”and traffic (traffic density, traffic lights, etc.”, BACKGROUND METHOD METHOD METHOD
7 ”), is very important in operating a vehicle at optimal efficiency.”, BACKGROUND RESULT RESULT RESULT

8 ”This article outlines some current technologies that can help achieving this
optimum efficiency goal.”, CONCLUSION CONCLUSION CONCLUSION CONCLUSION

9

”In addition to information available from telematic and geographical information
systems, knowledge of projected vehicle charging demand on the power grid is
necessary to build an intelligent energy management controller for future plug­
in hybrid and electric vehicles.”,

CONCLUSION CONCLUSION CONCLUSION CONCLUSION

10

”The impact of charging millions of vehicles from the power grid could be sig­
nificant, in the form of increased loading of power plants, transmission and dis­
tribution lines, emissions and economics (information are given and discussed
for the US case).”,

CONCLUSION CONCLUSION CONCLUSION CONCLUSION

11
”Therefore, this effect should be considered in an intelligent way by control­
ling/scheduling the charging through a communication based distributed con­
trol.”

CONCLUSION CONCLUSION CONCLUSION CONCLUSION
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Table 4.17: Positive example of sociology abstract with optimal number of sentences
# Sentences Gold

label
100K model
Predicted label

1M model
Predicted label

200K model
Predicted label

1 ”Minas Jaya is one of the villages adjacent to Sultan Syarif Hasyim Forest Park
(Tahura SSH).”, BACKGROUND BACKGROUND BACKGROUND BACKGROUND

2
”Tahura SSH is one of the conservation areas in Riau Province which is cur­
rently in critical condition due to forest encroachment, illegal logging, forest fires
and illegal land conversion.”,

BACKGROUND BACKGROUND BACKGROUND BACKGROUND

3 ”In order to restore it requires an approach that combines conservation and
community empowerment.”, BACKGROUND BACKGROUND BACKGROUND BACKGROUND

4 ”One is the concept of Conservation Village.”, BACKGROUND BACKGROUND BACKGROUND BACKGROUND

5 ”The initial stage in Conservation Village development needs to be a priority
class map of conservation.”, BACKGROUND BACKGROUND BACKGROUND BACKGROUND

6
”The problems faced by partners to produce such maps require special exper­
tise in spatial planning, mapping, and understanding of conservation village
concepts.”,

BACKGROUND BACKGROUND BACKGROUND BACKGROUND

7
”Based on the mapping identification showing that data of the conservation pri­
ority area 1, were identified it consisted of 243.92 hectares, then the conserva­
tion priority area 2 consisted of 257.87 hectares.”,

RESULT RESULT RESULT RESULT

8
”Further, the conservation priority area 3 also identified and consisted of 504.28
hectares, moreover the conservation level 4 conservation area around 1,868.57
hectares, and conservation priorities 5 identified around 1,082.79 hectares.”,

RESULT RESULT RESULT RESULT

9 ”Conservation program directives were linked to each priority of conservation
classes.”, RESULT RESULT RESULT RESULT

10 ”It generally includes a good forest covers protection activities, enrich the land
with tree crops.”, CONCLUSION CONCLUSION CONCLUSION CONCLUSION

11
”Furthermore, critical land rehabilitation with agroforestry patterns has the
choice of species and proportion of annual crops and trees adapted to the de­
gree of land criticality and gradient.”

CONCLUSION CONCLUSION CONCLUSION CONCLUSION

Table 4.18: Positive example of small energy abstract with good format
# Sentences Gold

label
100K model
Predicted label

1M model
Predicted label

200K model
Predicted label

1 This study investigates the energy consumption­growth nexus in Algeria.”, OBJECTIVE OBJECTIVE OBJECTIVE OBJECTIVE

2

”The causal relationship between the logarithm of per capita energy consump­
tion (LPCEC) and the logarithm of per capita GDP (LPCGDP) during the 1965­
2008 period is examined using the threshold cointegration and Granger causal­
ity tests.”,

METHOD METHOD METHOD METHOD

3
”The estimation results indicate that the LPCEC and LPCGDP for Algeria are
non cointegrated and that there is a uni­directional causality running from
LPCGDP to LPCEC, but not vice versa.”,

RESULT RESULT RESULT RESULT

4 ”The research results strongly support the neoclassical perspective that energy
consumption is not a limiting factor to economic growth in Algeria.”, CONCLUSION CONCLUSION CONCLUSION CONCLUSION

5

”Accordingly, an important policy implication resulting from this analysis is that
government can pursue the conservation energy policies that aim at curtailing
energy use for environmental friendly development purposes without creating
severe effects on economic growth.”,

CONCLUSION CONCLUSION CONCLUSION CONCLUSION

6 ”The energy should be efficiently allocated into more productive sectors of the
economy.” CONCLUSION CONCLUSION CONCLUSION CONCLUSION
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(a) Energy domain results. (b) Sociology domain results.

Figure 4.2: Scatter plot indicating the percentage of average common results between golden­true and
predicted labels across all models based on number of abstract sentences.
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Table 4.19: Consolidated results for the 200K­Model on the Energy abstracts

200K­Model results on the Energy abstracts
P R F1 Sup

B 64.94 88.42 74.88 354
C 67.80 74.74 71.10 293
M 72.14 65.02 68.40 223
O 81.82 45.00 58.06 140
R 72.96 53.16 61.51 269

acc 69.04 1279
macro 71.93 65.27 66.79 1279
weighted 70.38 69.04 68.23 1279

(a) These are the results given by our model, when trained on the 200K dataset
and evaluated on the Energy abstracts. Presented in percentage are the values
for precision (P), recall (R) and F­measure (F1). B stands for Background, C for

Conclusions, M for Methods, O for Objective and R for Results.

200K­Model Energy Confusion Matrix
B C M O R

B 313 13 11 6 11
C 48 219 8 2 16
M 35 14 145 6 23
O 56 8 10 63 3
R 30 69 27 0 143

(b) This is the confusion matrix given by our model, trained on the
200K dataset. B stands for Background, C for Conclusions, M for

Methods, O for Objective and R for Results.

Table 4.20: Consolidated results for the 1M­Model on the Energy abstracts

1M­Model results on the Energy abstracts
P R F1 Sup

B 77.25 82.49 79.78 354
C 80.28 79.18 79.73 293
M 77.98 58.74 67.01 223
O 85.19 49.29 62.44 140
R 62.81 84.76 72.15 269

acc 74.43 1279
macro 76.70 70.89 72.22 1279
weighted 75.90 74.43 74.04 1279

(a) These are the results given by our model, when trained on the 1M dataset
and evaluated on the Energy abstracts. Presented in percentage are the values
for precision (P), recall (R) and F­measure (F1). B stands for Background, C for

Conclusions, M for Methods, O for Objective and R for Results.

1M­Model Energy Confusion Matrix
B C M O R

B 292 24 10 9 19
C 1 232 2 0 58
M 29 11 131 3 49
O 45 8 9 69 9
R 11 14 16 0 228

(b) This is the confusion matrix given by our model, trained on the
1M dataset. B stands for Background, C for Conclusions, M for

Methods, O for Objective and R for Results.
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Table 4.21: Consolidated results for the 100K­Model on the Energy abstracts

100K­Model results on the Energy abstracts
P R F1 Sup

B 78.09 78.53 78.31 354
C 78.85 83.96 81.32 293
I 00.00 00.00 00.00 0
M 79.82 40.81 54.01 223
O 57.78 74.29 65.00 140
P 00.00 00.00 00.00 0
R 68.30 77.70 72.70 269

acc 72.56 1279
macro 51.83 50.75 50.19 1279
weighted 74.28 72.56 72.12 1279

(a) These are the results given by our model, when trained on the 100K dataset
and evaluated on the Energy abstracts. Presented in percentage are the values
for precision (P), recall (R) and F­measure (F1). B stands for Background, C for
Conclusions, I for Intervention, M for Methods, O for Objective, P for Population

and R for Results.

100K­Model Energy Confusion Matrix
B C I M O P R

B 278 16 1 15 38 1 5
C 6 246 0 0 7 0 34
I 0 0 0 0 0 0 0
M 30 13 4 91 27 5 53
O 22 8 0 1 104 0 5
P 0 0 0 0 0 0 0
R 20 29 0 7 4 0 209

(b) This is the confusion matrix given by our model, trained on the 100K
dataset. B stands for Background, C for Conclusions, I for Intervention,
M for Methods, O for Objective, P for Population and R for Results.

Table 4.22: Consolidated results for the 200K­Model on the Sociology abstracts

200K­Model results on the Sociology abstracts
P R F1 Sup

B 54.61 78.30 64.34 106
C 77.89 71.84 74.75 103
M 66.67 66.67 66.67 60
O 73.53 51.02 60.24 49
R 70.59 48.65 57.60 74

acc 65.82 392
macro 68.66 63.30 64.72 392
weighted 67.95 65.82 65.65 392

(a) These are the results given by our model, when trained on the 200K dataset
and evaluated on the Sociology abstracts. Presented in percentage are the

values for precision (P), recall (R) and F­measure (F1). B stands for
Background, C for Conclusions, M for Methods, O for Objective and R for

Results.

200K­Model Sociology Confusion Matrix
B C M O R

B 83 4 4 4 11
C 20 74 6 1 2
M 13 2 40 3 2
O 20 2 2 25 0
R 16 13 8 1 36

(b) This is the confusion matrix given by our model, trained on the
200K dataset. B stands for Background, C for Conclusions, M for

Methods, O for Objective and R for Results.
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Table 4.23: Consolidated results for the 1M­Model on the Sociology abstracts

1M­Model results on the Sociology abstracts
P R F1 Sup

B 82.41 83.96 83.18 106
C 86.52 74.76 80.21 103
M 75.00 70.00 72.41 60
O 66.67 73.47 69.90 49
R 69.41 79.73 74.21 74

acc 77.30 392
macro 76.00 76.38 75.98 392
weighted 77.93 77.30 77.40 392

(a) These are the results given by our model, when trained on the 1M dataset
and evaluated on the Sociology abstracts. Presented in percentage are the

values for precision (P), recall (R) and F­measure (F1). B stands for
Background, C for Conclusions, M for Methods, O for Objective and R for

Results.

1M­Model Sociology Confusion Matrix
B C M O R

B 89 4 1 10 2
C 2 77 2 2 20
M 5 3 42 6 4
O 9 2 2 36 0
R 3 3 9 0 59

(b) This is the confusion matrix given by our model, trained on the
1M dataset. B stands for Background, C for Conclusions, M for

Methods, O for Objective and R for Results.

Table 4.24: Consolidated results for the 100K­Model on the Sociology abstracts

100K­Model results on the Sociology abstracts
P R F1 Sup

B 76.24 72.64 74.40 106
C 89.13 79.61 84.10 103
I 00.00 00.00 00.00 0
M 70.21 55.00 61.68 60
O 50.65 79.59 61.90 49
P 00.00 00.00 00.00 0
R 77.78 66.22 71.53 74

acc 71.43 392
macro 52.00 50.44 50.52 392
weighted 75.80 71.43 72.90 392

(a) These are the results given by our model, when trained on the 100K dataset
and evaluated on the Sociology abstracts. Presented in percentage are the

values for precision (P), recall (R) and F­measure (F1). B stands for
Background, C for Conclusions, I for Intervention, M for Methods, O for

Objective, P for Population and R for Results.

100K­Model Sociology Confusion Matrix
B C I M O P R

B 77 3 0 4 17 2 3
C 4 82 0 2 4 2 9
I 0 0 0 0 0 0 0
M 5 3 4 33 11 2 2
O 8 1 0 1 39 0 0
P 0 0 0 0 0 0 0
R 7 3 1 7 6 1 49

(b) This is the confusion matrix given by our model, trained on the 100K
dataset. B stands for Background, C for Conclusions, I for Intervention,
M for Methods, O for Objective, P for Population and R for Results.
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4.2.2 Best performing model per domain

In the previous section we saw that the more robust 100K and 1M models achieved better
results in these novel domains. In this section we will elaborate more in depth about which
model performs best and why.

For each abstract we kept track of the model that correctly identified the most common la­
bels. In the case of ties we considered both models as winners. We present the results in
the two bar plots in figures 4.3a and 4.4a, given as percentages for better interpretability.
These plots confirm the accuracy results from the tables in the previous section and give
us some new insights. A very interesting observation is that the 100K model performed
very well, even managing to come up ahead in the energy domain, even though the golden
labels were lacking the two specific PICO labels exclusive to th 100K dataset, i.e. POPU­
LATION and INTERVENTION. This could possibly be attributed to the fact that the ”Label
Sequence Optimization Layer” of the 100K model is more flexible when it comes to the
possible label sequence than the other models due to the two extra labels. The 1M model
however is the clear winner in the sociology test set as it managed to achieve a percent­
age of common labels that is 26.83% and 41.47% increased compared to the 100K and
200K models respectively.

To further clarify as well as justify these results we drew a Kernel Density Estimation (KDE)
plot for each domain, which are presented in 4.3b and 4.4b, where we illustrate the model
wins based on the number of sentences in the abstracts. Unlike the scatter plots in figure
4.2a, here we distinguish each models performance instead of combining all the results
together. The interesting finding in the energy graph, that could help explain bar plot
results, is that the 100K model and to some smaller extent the 200K model have better
accuracy than the 1Mmodel for abstracts containing 10­15 sentences. As this is the range
for the most stable and good results,it is apparent why the 100K model performed better
even though overall it had a lower accuracy result than the 1M model.

From the above results it is evident that to increase the accuracy of the results one would
need to diversify and enrich the training dataset as much as possible, which is some­
thing that holds true for most deep learning models, as well as try to fine tune the ”Label
Sequence Optimization Layer” to account for a more diverse discourse.
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(a) Bar plot indicating the number of wins per
model on the Energy dataset.

(b) KDE graph of model wins vs the number of
sentences in the abstract.

Figure 4.3: Energy domain results

(a) Bar plot indicating the number of wins per
model on the Sociology dataset.

(b) KDE graph of model wins vs the number of
sentences in the abstract.

Figure 4.4: Sociology domain results
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5. CONCLUSIONS

During the course of this thesis our goal was twofold. The primary goal was to explore
the capabilities of a neural network model in correctly classifying abstract sentences of a
specific research field as well as their ability to generalize to other fields. The secondary,
yet equally important, goal was to create a web­based tool, which would encompass all
the models we have created, to identify its potential both as a standalone application and
as a basis to a larger information retrieval framework.

To achieve these goals, we started with deploying the current SOTA model in Sentence
Classification of PubMed publications, which is based on a Hierarchical Neural Network
architecture consisting of 4 layers for word embedding, sentence encoding, context en­
riching and label sequence optimization. Along with the two bench­marking datasets,
PubMed 20K and 200K, we trained the network with two novel proprietary datasets both
of which were curated with generalization in mind. One was the PubMed 1M which had
a larger amount of data and the other was the 100K which had seven classes instead of
the usual five, adding ”POPULATION” and ”INTERVENTION” as two clinical discourse
specific classes referring to the PICO framework. The potency of the models was tested
on a wealth of abstracts of both the source and target domains, the second of which were
curated by us.

Based on our results, we can conclude that all the models had similar performance when
it came to their own datasets with only the 200K and 1M models achieving somewhat
higher results. As we saw from table 4.11, all the 5­class models retained most of their
accuracy when bench­marked with the test sets of other datasets, while the 7­class model
was the least successful mainly due to the other test sets not having the corresponding
extra labels in their annotated abstracts. In the inter­domain results however we see that,
although these abstracts lack the labels as well, the 100K model is tied with the 1M for
highest accuracy. This is indicative of the generalization capability a better encoding of the
label sequencing layer offers to the robustness of a model considerably smaller than the
other best performer. Finally, based on the scatter plots in Fig 4.1 we can conclude that the
larger an abstract was the better the models could identify labels of its sentences. This is
most probably due to the label sequence optimization layer achieving better results due to
having more sentences to work with. Another factor however is the fact that researchers
who write larger abstracts have a better format structure in their mind, therefore making it
easier for the model to identify it and proceed to the labeling of the sentences.

After extracting and analyzing all the results while using the API we have gathered a few of
the potential hurdles one must overcome to integrate this web­based tool, which was cre­
ated for the purposes of the current thesis, to a larger framework for information retrieval.
These can be categorized into two broad categories, the datasets used for training and
abstracts in general and the software itself.

In the first category, lack of a standardized scientific discourse across all fields is one,
if not the biggest, problem that has detrimental effects on the capabilities of any such
potential tool. Educating accordingly researchers of various fields on the advantages of
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adhering to such a standardized discourse, would not only benefit their readership but
also help promote their work through specialized automated frameworks. This can also
have the added effect of reaching a point where the number of sentences in an abstract
will not factor in the effectiveness of that abstract relaying information successfully. An
easy way of implementing something similar would be to standardize the creation of struc­
tured abstracts. This way, by having a specific format with clear and intuitive rules (e.g
Background ­ Objective ­ Method ­ Results ­ Conclusion) the readability and indexing ca­
pabilities of the abstracts by automated tools will increase by a fair amount. The other big
problem in this category is the absence of a more generalized training dataset. The two
proprietary datasets we used, proved that having a larger or a highly curated dataset can
lead to increased model robustness to the point of even solving the problem of lack of a
standardized discourse. This venture however, would require a lot of highly skilled people
annotating and curating such a dataset.

For the second category, regarding the software, all the models exhibited some form of
label confusion problems as can be seen from our confusion matrices. One reason be­
hind this could something inherent in the way the models word embedding and sentence
encoding layers work, as the problem mostly appears in sentences that have similar se­
mantics. However another, greater problem could be the main source behind this. This
problem could be attributed to errors the annotators make during initial labeling of the ab­
stracts that are used for the training of the models. It is highly probable that the reason
the models mix certain labels is because the annotators themselves were mixing those
labels, therefore transferring this error to the models. This noise in annotation can only be
addressed by educating annotators upon a robust set of rules for correctly identifying and
labelling each potential sentence. Another problem in this category pertains to abstract
tokenization in sentences. If the tool is to be truly automated and easy to use, the end user
needs to be able to simply paste an abstract and get their results. Consequently, a highly
efficient sentence tokenizer would be required to be included in the software. The propri­
etary one used as part of the API created for this thesis serves as an excellent starting
point for any such solution. Another excellent consideration would be the ScispaCy [55]
developed by the Allen Institute for Artificial Intelligence (AI2), which is a custom tokenizer
trained on biomedical data specifically, enhancing spaCy’s rule based tokenizer.

To further build upon the work that has been presented here, apart from the suggestions we
listed above for the individual problems one can try a number of other things to improve the
performance. One such solution could involve the use of some form of ensemble model
combining various different models together to improve the overall accuracy. Another
course of action could involve the retraining of all or some layers of the model, with new
application specific data. This would help the model perform better on abstracts that have
no related discourse to the ones used to initially train it. Lastly, one could try and merge
similar labels wherever possible to help the model avoid label confusions, however this
might require the design and implementation of a whole new rhetorical structure schema.

As a final remark, we could claim that the major contributions of this thesis are with regard
to the two proprietary datasets and the API tool. The datasets showed that a solid network
architecture can exhibit good generalizability with the right training set. Also, within the
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limited time of conducting this thesis, we demonstrate that a basic yet fully functional
user interface can be achieved for automatically generating the sentence labels for one or
multiple abstracts. Supporting this with a web scrapping tool, e.g. using the Beautiful Soup
1 module from python to build such a tool, while adding more functionality after acquiring
the sentence labels such as identification of specific words pertaining to identification of
who did what in the abstract could lead to a framework that could really help researchers
in their work. Although a fully optimized model and such a complicated framework were
beyond the scope of our current work, our results can serve as a strong proof of concept
for the further exploration of this idea in a way that would contribute to the more complex
problems of text summarization and information extraction.

1https://www.crummy.com/software/BeautifulSoup/
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APPENDIX A. THE FLASK API

An Application Programming Interface is a software intermediary that allows two applica­
tions to communicate with each other. In our case the we wanted to create a front end user
interface that would run our models in the background in inference mode and then serve
the results to the user. For this reason we employed the Flask Python module, which is
a lightweight framework designed for quick and easy API builds that can be scaled up to
complex applications.

A.1 App structure

The Python version required in the virtual environment for running the API is 3.7.7 while
the rest of the required packages are included in a requirements.txt file for easy and fast
deployment in any local or cloud­based server. A collapsed diagram of the file structure of
the API can be seen on Fig A.1. All files except the ones pertaining to the models, those
included to the data, model and results directories have been written or curated by us.
More specifically, the hsln_api.py file is the main app file that contains the Flask­related
code and serves as the link between the trained models and the front­End, whose code is
contained in the templates directory. The static directory contains the supplementary CSS
styling files for the pages displayed, along with the Java Script files for displaying the final
results and the images used throughout the API. File my_sentence_splitting.py contains
the proprietary code that is used in the API to tokenize abstracts into their sentences.

A.2 Front­End structure

The Front­End part of the tool consists of six HTML files as shown in Fig A.2. The in­
dex.html and the abstract_input.html files are the core pages that all API users will en­
counter and they have the outline for the home page ­ model selection and the abstract
input forms respectively. Depending on the input the model runs in inference mode and
the user is redirected to one of the three results_display_{}.html pages where he can view
and download his results. Finally, the show_graphs.html page displays a scatter plot such
as the ones presented in Fig 4.1 or Fig 4.2.

A.3 How to use

The flowchart diagram in Fig A.3 displays a rough estimate of the way the API is operating.
As described in the previous subsection A.2 the first page the API user encounters is the
home page where he will be prompted to select a model out of the pre­trained models
available in order to label his chosen abstract. A depiction of the home page can be seen
on figure A.4.
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Figure A.1: File structure of the API

After the model selection has beenmade the user is redirected to the page seen in Fig A.5.
There, he has three possible input methods. The leftmost method can be used to paste
the text from a single abstract that the user would like to be labeled. This is the easiest,
fastest and most straightforward method of input for users that want to try one or two
abstracts for labeling. The middle method allows the user to input one or more abstracts
for labeling using the json format. The abstracts can be as many as the user wants and
they should be in the form of ”abstract name”:”abstract text” within the file. Otherwise this
method is the same as the previous one, except it is best used when one wants to label
many abstracts to avoid unnecessary back and forth. The rightmost method is reserved
for when the user would like to test the results of a model against an already annotated
abstract or abstracts. This is why in the end the user, apart from the usual download
button he is prompted with a second ”Show Graphs” button that displays the scatter plot.
A possible results page can be seen in Fig A.6.
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Figure A.2: File structure of the Front­End

Figure A.3: Flowchart of the functionality of the API tool
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Figure A.4: Home page of our proprietary API

Figure A.5: Abstract input page of our proprietary API
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Figure A.6: Output page of our proprietary API
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APPENDIX B. FORMULAS FOR THE RESULTING ACCURACY
TABLES IN CHAPTER 4

Precision =
TPc

TPc + FPc

(B.1)

Recall =
TPc

TPc + FNc

(B.2)

F1 = 2× Precision×Recall

Precision+Recall
(B.3)

=
TPc

TPc +
1
2
(FPc + FNc)

(B.4)

where TPc = True positives of class c, FPc = False positives of class c and FNc = False
negatives of class c

Acc =

∑C
c=1 TPc∑C
c=1 Supc

(B.5)

Macro =

∑C
c=1 F1c
C

(B.6)

Weighted =

∑C
c=1 F1c · Supc∑C

c=1 Supc
(B.7)

where Supc = Support for each class c and C = total number of classes c
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ABBREVIATIONS ­ ACRONYMS

ANN Artificial Neural Network

API Application Programming Interface

DL Deep Learing

ML Machine Learning

AI Artificial Intelligence

CV Computer Vision

SR Speech Recognition

NLP Natural Language Processing

CFG Context­Free Grammar

CRF Conditional Random Field

CNN Convolutional Neural Network

RNN Recurrent Neural Network

(bi)­LSTM (bidirectional) Long Short­Term Memory

RCT Randomized Controlled Trial

SOTA State­of­the­Art

HSLN Hierarchical Sequential Labeling Network

HNN Hierarchical Neural Network

NB Naive Bayes

SVM Support Vector Machines

HMM Hidden Markov Model

LDA Linear Discriminant Analysis

GPT­3 Generative Pre­trained Transformer 3

20K (dataset) PubMed 20K RCT dataset

200K (dataset) PubMed 20K RCT dataset

1M (dataset) PubMed 1 million abstracts dataset

100K (dataset) PubMed 7­class 100K abstracts dataset
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20K model Model trained on the 20K dataset

200K model Model trained on the 200K dataset

1M model Model trained on the 1M dataset

100K model Model trained on the 100K dataset

KDE plot Kernel Density Estimation plot
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