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ABSTRACT

A recommender system is a tool that filters information and suggests content to users
which is relevant to their interests. Recommender systems have seen a rise in their use in
the recent years as a result of the increasing internet use which provides researchers with
huge amounts of user data. The purpose of this thesis is to study the various techniques
that are applied to recommender systems as well as the deep learning models that are
used to enhance those systems. Moreover, the evaluation methods of the recommender
systems are described along with the challenges they face. Followingly, an implementa
tion of a recommender system for video games which employs deep learning algorithms
is provided followed by the interpretation of the results. At the end, some concerns and
suggestions about the future in the field of recommendations are mentioned.

SUBJECT AREA: Recommender Systems

KEYWORDS: recommender system, recommendations, deep learning, machine
learning, artificial intelligence, challenges, steam, games



ΠΕΡΙΛΗΨΗ

Ένα σύστημα συστάσεων είναι ένα εργαλείο που φιλτράρει πληροφορίες και προτείνει
στους χρήστες περιεχόμενο που σχετίζεται με τα ενδιαφέροντά τους. Έχει παρατηρηθεί
αύξηση στην χρήση των συστημάτων συστάσεων τα τελευταία χρόνια ως αποτέλεσμα
της αυξανόμενης χρήσης του διαδικτύου η οποία παρέχει στους ερευνητές τεράστιες πο
σότητες δεδομένων για τους χρήστες. Ο σκοπός αυτής της πτυχιακής εργασίας είναι να
μελετήσει τις διάφορες τεχνικές που εφαρμόζονται στα συστήματα συστάσεων καθώς και
τα μοντέλα βαθιάς μάθησης που χρησιμοποιούνται για την ενίσχυση αυτών των συστη
μάτων. Επιπλέον, οι μέθοδοι αξιολόγησης των συστημάτων συστάσεων περιγράφονται
μαζί με τις προκλήσεις που αυτά αντιμετωπίζουν. Στην συνέχεια αυτής της μελέτης, περι
γράφεται η υλοποίηση ενός συστήματος συστάσεων για βιντεοπαιχνίδια που χρησιμοποιεί
αλγόριθμους βαθιάς μάθησης, ακολουθούμενη από την ερμηνεία των αποτελεσμάτων της.
Στο τέλος παρουσιάζονται μερικά προβλήματα και προτάσεις που σχετίζονται με το μέλλον
του χώρου των συστάσεων.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Συστήματα Συστάσεων

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: σύστημα συστάσεων, συστάσεις, βαθιά μάθηση, μηχανική
μάθηση, τεχνητή νοημοσύνη, steam, παιχνίδια
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Deep Learning Techniques on Recommender Systems

1. INTRODUCTION

The rapid development of web services in recent years has led to an increase in the in
formation that internet users come across everyday. In 2008, the average person was
estimated to consume 34GB of information per day [1]. Therefore, it seems impossible
for a user to choose the most suitable content for them by considering all the options
that are available to them. Both companies and users desire to offer or get personalized
suggestions respectively, in order to improve their online experience. The former want to
increase sales and user engagement by displaying content to a targeted audience, while
the latter want to save time and minimize their effort of searching among the vast options
offered by an online service.

A recommender system (RS) is the modern solution to solving these problems. It is an in
telligent system that filters the offered content or services and presents users with options
that most closely match their preferences. Companies have already seen the value in the
use of recommender systems. In 2006, Netflix announced the ”Netflix Prize” competition
that was awarding 1,000,000 USD to the team with an algorithm that would be at least
10% more accurate than the company’s. Nowadays, recommender systems are used in
ecommerce, online learning platforms, social networking websites, even in medicine to
help healthcare professionals improve their decisionmaking process [2].

Recently, deep learning has gained attention due to the increase in the computational
processing power, in the data storage capabilities and in the data volumes which usually
originate from the web users. Deep learning models for RSs are able to achieve a better
feature learning of the interaction between items and users and exploit contextual inform
ation from heterogeneous data sources. Researchers have already seen the potential in
applying deep learning techniques to predict user preferences.

The purpose of this study is to provide and review the different RS techniques according
to their recommendation approach and survey how deep learning models are applied on
RSs. Also the challenges that RSs face will be mentioned along with proposed solutions.
Finally, some algorithms are implemented to produce video game recommendations.

This thesis is structured in the following fashion: section 2 introduces the several categor
ies of RSs, section 3 describes the different deep learning models that are mostly used
in RSs, section 4 deals with the problems and challenges RSs face and their possible
solutions, section 5 describes the experiment on the video game recommendations along
with its results and section 6 includes future approaches concerning the RSs.

K. Stoikou 13
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2. RECOMMENDER SYSTEM

As alreadymentioned, a recommender system is ameans to assist people in their decision
making. The use of such systems attempts to solve the problem of information overload
that occurs increasingly, especially on web applications. A typical RS includes some char
acteristics that need to be defined.

• Usage context: it includes the contextual factors that can affect the how and why an
item is recommended or presented to the user. For example, a RS for music might
suggest songs based on the popularity of the song but this cannot apply to RSs that
recommend medicines to patients because some popular medicines are dangerous
for people with a certain medical history.

• Users: the endusers to whom the system tries to provide suggestions that match
their preferences.

• Items: the content or services that are provided to a user and will be rated or re
commended by the system.

2.1 Recommendation process

There are usually three phases in the recommendation process before an item is recom
mended to a user [3].

2.1.1 Phase 1: Information collection

Gathering relevant user information is crucial for preference prediction tasks. The more
data the system has for a user profile, the more accurate predictions it will provide. That
data usually originates either from explicit feedback required from the user concerning their
interest in an item or from implicit feedback by following user behavior and speculating
on the user’s inclination to certain items. In some systems a combination of the two is
employed which results in a hybrid feedback strategy.

• Explicit feedback: the user is asked from the system to rate an item that they have
already experienced (bought, used, watched etc.). This type of feedback, although it
requires some effort from the user, it collects more reliable information since it does
not infer the likings of a user.

• Implicit feedback: the preferences are deduced by the system from the actions of
a user such as clicks, history of content/services used, duration of web page visits
etc. It does not require user effort but the recommendations of the system might not
be approved by the user since they are inferred rather than stated. However, there is
an argument that indirect collection of data might be more accurate since there is no
influence from the socially approved behaviors that a user might be biased towards.

• Hybrid feedback: many systems use a combination of the two aforementioned
methods to leverage the advantages of both. In this way, the system can still provide
suggestions even if the user has declined to provide explicit feedback or in case they
do provide it, implicit feedback can be used to verify the preferences that were stated
in the explicit one.

K. Stoikou 14
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2.1.2 Phase 2: Learning

An algorithm is used to learn the user’s preferences from the data that were previously
collected.

2.1.3 Phase 3: Prediction/recommendation

The system predicts the items that might correspond to the user interests or it ranks them
based on the relevance to those interests.

2.2 Recommendation system techniques

The recommendation problem is usually defined either as the problem of predicting whether
a user will like a certain item or ranking items based on the user preferences. According
to the recommendation approach and the information they use, RS have been classified
into multiple categories. The three major categories are collaborative filtering, content
based and hybrid systems. Besides those there are various other techniques such as
graphbased, knowledgebased, demographicbased and communitybased.

2.2.1 Collaborative filtering

A collaborative filtering (CF) based system recommends items to users based on the in
terests of similar users. It depends on the previous useritem interactions and after finding
likeminded users, it exploits their interests or ratings to recommend the same items to the
target user. This technique is the most commonly used and it is usually employed in ap
plications that might include music, movie or restaurant recommendations. CF algorithms
are divided into two main subcategories:

• Memorybased: use nearestneighbor algorithms to find similar entities in the user
item ratingsmatrix. In userbased approaches, also called useritem filtering, an item
is recommended to a user if similar users have liked it. In itembased approaches,
also called itemitem filtering, based on a target item, the system finds users who
liked that item and then it finds other items that those users also liked [4]. A list is
created with the topN of those items based on relevance.

• Modelbased: CF models are built based on machine learning or data mining al
gorithms. Those algorithms include Bayesian models, clustering, decision trees,
SVD, Matrix Factorization, Multicriteria Recommender Systems etc. [5]

2.2.2 Contentbased

Contentbased (CB) systems take into consideration the prior preferences of a user and
recommend items that are similar to the ones the user previously liked. Systems that use
CB techniques exploit the item’s descriptive information and that’s why they are suitable for
textintensive domains where keywords are important such as elearning [6]. CB methods
offer user independence since user ratings are used for recommendations only for the
same user and they are also very convenient when a new item is introduced because

K. Stoikou 15
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instead of depending on item ratings, the algorithm takes advantage of the descriptive
data of the item.

2.2.3 Knowledgebased

Knowledgebased systemsmake use of the explicitly stated interests of the users to create
recommendations. In this way, the system knows whether a specific item corresponds to
a specific user’s preferences because it takes into consideration and compares the user
defined needs and the item attributes. Such techniques are beneficial in domains where
ratings are pretty limited such as luxurious cars, houses etc. or where it is essential for
a user to specify some requirements such as allergies in specific products in a food re
commendation domain. This method takes into account the changing user preferences
and the system can create accurate recommendations even for new users. On the other
hand, creating and updating a knowledge base requires expertise and such systems usu
ally produce static recommendations if the users interests are constant over time.

2.2.4 Graphbased

A graphbased system constructs a graph where each node represents a user or an item
and each edge is the interaction between users or between user and item. After the
construction of such a graph model, graph analysis is employed to generate recommend
ations. The advantage is that it is easy to find similar users or items and items that have
been rated or used by users. Also, adding new users and items is easy since it requires
only the insertion of the corresponding nodes and edges. However, where this technique
lacks is in discovering new items in the graph.

2.2.5 Demographicbased

A demographicbased recommendation system looks into the demographic attributes of a
user to make recommendations such as the age, the country, the gender, the profession
etc. This technique is based on stereotypes because the main idea behind it is that people
who share similar demographic characteristics will have similar interests. Additionally to
the negative aspects, extracting demographic details of a user might be against privacy
laws. Such a technique is normally combined with other techniques such as knowledge
based ones to produce more accurate predictions.

2.2.6 Communitybased

A communitybased system exploits the friendship and trust between users. It bases the
recommendations on the interests and rankings of users in the social circle of a certain
user. This method benefits from social networks since typically there is abundant data
about those relations.

K. Stoikou 16
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2.2.7 Sessionbased

A sessionbased system depends on the user’s recent information related to their be
havior within the current session. This technique solves the problem when the system
lacks historical data on the user’s preferences. Session clicks and content information,
such as item descriptions, can be integrated in the system combined with deep learning
approaches to improve performance.

2.2.8 Hybrid

A hybrid system combines more than one recommendation approach to benefit from the
advantages of them and minimize the shortcomings. To give an example, new items in
the system can drive the recommender system to use a CB algorithm, while new users
will trigger the CF algorithms. The several hybridization techniques that are mostly used
are the following:

• Weighted: the output scores of the different recommendation algorithms are com
bined by a weighted linear formula to generate the recommendations or predictions.
The advantage of this is that all the recommendation methods are being used each
time.

• Switching: the system selects one of the recommendation methods to use depend
ing on the situation. For example, for a new user it would swap to a collaborative
filtering algorithm for suggesting items. The advantage is that the system can avoid
the weaknesses of a specific recommendation method and exploit another one. The
disadvantage lies in the fact that the system has to decide when to switch the method
and as a result the number of parameters increases and so does the complexity.

• Mixed: instead of producing one recommendation per item, the results of all recom
mendation methods are combined and form a list. It is the simplest hybridization
technique.

• Feature combination: the features produced by one recommendation algorithm
are fed into the algorithm of the other recommendation method as supplementary
feature data.

• Feature augmentation : the predictions or ratings of one of the recommendation al
gorithms are used as an input for another algorithm. This technique is ordersensitive
since the input of the second algorithm depends on the output of the first.

• Cascade: one of the recommendation algorithms is applied first to produce a rough
list of recommendations or rankings. Then a second algorithm is employed to refine
that list. This technique is also ordersensitive.

• Metalevel: the first recommendation algorithm generates an internal model which is
passed as an input to the second algorithm. Again, this technique is ordersensitive.

2.3 Social recommender systems

An interesting subcategory of recommender systems based on the domain that they are
employed into are social recommender systems (SRS). In recent years, the vast use of
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social network applications has offered rich sources of data that were not available before.
The users of such platforms disclose information about their interests, their occupation and
they connect with friends or like pages with content similar to their interests, they comment
and react on posts, tag their friends or rate content. All this information can be used by RSs
to increase prediction accuracy. Social networks can employ SRSs that make use of the
users’ data in order to promote ads, recommend new friends or suggest new communities
to join. SRSs can be classified based on the distinctive features that are leveraged to build
the system. Those features are the following:

• Context: recommendations are based on the user’s contextual information such as
time, location, mood etc. Such recommendations might be relevant for a short time
period before the user’s context changes.

• Trust: the system detects genuine and malicious users by the level they behave in
an expected way. A trust network is created from users that have formed trust re
lationships between them and then the SRS is generating recommendations based
on the ratings and preferences of the trusted users.

• Tag: content recommendations are based on the user’s tagging information and
behavior to find similar users and similar items. Personalized tags can be also re
commended to users by always taking into account the current popularity of the tags.

• Group: identical recommendations are given to a particular group of users with
certain similarities, such as users that have all attended a specific event or who work
on the same project. Sometimes, users of social networks can join communities to
become part of a group without the need of an automatic grouping by an algorithm,
while in other cases an algorithm is used to group users according to their data and
relations. In this category also fall the SRSs which recommend groups to users.

• Cross social media: information about the user from different social network plat
forms is used in order to enhance the recommendations. After a user is identified
in another platform, the knowledge about their item interactions and ratings can be
transferred to another platform.

• Temporal dynamics: user preferences change over time as well as their relations
with other users such as their friendships. The system will consider those changes
and make suggestions based on the new and updated data.

• Heterogeneous social connections: recommendations are based on the different
types of relations between users. For example, a user might trust a specific net
work to get similar recommendations for attending a sports event and a different
network for watching movies. Also, relations with negative influence, which means
nontrustworthy relations, are also weighted in the RS.

• Semantic filtering: actual entities are identified from textual data and they are used
to make recommendations that match longlasting preferences of users. This way
insignificant information is filtered out so that the meaningful relations will be har
nessed.
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2.4 Evaluation metrics

It is important to define how we measure the quality of a RS. The metrics have to do with
accuracy or coverage. Accuracy is the fraction between correct recommendations and
all possible recommendations. Coverage is the percentage of the items and users in the
search space which the system is able to recommend. Specifically the metrics are the
following [7]:

2.4.1 Statistical accuracy metrics

The statistical accuracy metrics, also called rating prediction metrics, compare the pre
dicted ratings with the real user ratings. These metrics evaluate the correctness of a
recommendation algorithm based on its error. The metrics used are Mean Square Error
(MSE), Root Mean Square Error (RMSE) and Mean Absolute Error (MAE). Since the error
formulas are calculating the difference between predicted and actual user ratings, a lower
value implies better accuracy.

2.4.2 Decision support accuracy metrics

Also called classification accuracy metrics. These metrics measure the ability of the RS
to classify items according to how they match the user preferences. Metrics that are used
in this category are Reversal rate, Weighted errors, Receiver Operating Characteristics,
Precision Recall Curve, Precision, Recall and F1score. For example, precision is the per
centage of items that were recommended to the user which are relevant to their interests
towards the total number of recommended items.

2.4.3 Ranking metrics

These metrics evaluate the RS based on the recommendations they generate from a
significantly ordered list of items. Ranking metrics for deep learningbased RS include
Normalizeddiscountedcumulative gains, Hit Ratio, Mean Reciprocals Ranks and Mean
Average Precision. The last one, for example, is evaluating the precision of the topK
ranked recommended items.
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3. DEEP LEARNING FOR RECOMMENDER SYSTEMS

Deep Learning (DL) is a subclass of machine learning and it uses artificial neural networks
of three or more layers in hierarchical order to simulate the human brain behavior. The
key points that have encouraged the use of deep learning architectures in many domains
are the huge amounts of data, or commonly called big data and the modern infrastructure
that can store this data, since deep learning algorithms learn better when there is more
data fed to them. Also the recent development in the GPUs increases the computational
power which is needed for the complex computations of those algorithms [8]. Deep mod
els have been exploited to solve scalability problems because they offer dimensionality
reduction and feature extraction. Deep neural networks are excellently performing su
pervised and unsupervised tasks. In supervised learning the algorithm learns the labeled
data as it iterates through them to make predictions and it adjusts to fit the model correctly.
In unsupervised learning the algorithm works on its own to discover hidden patterns and
cluster unlabelled data. Some human interaction is still needed for validating the out
put and whether the clustering makes sense [9]. The models that are typically used by
researchers in RSs will be discussed in the following paragraphs.

3.1 Autoencoders

An Autoencoder (AE) is a feedforward network which is used for unsupervised learning
tasks. Feedforward means that the data moves into a forward direction from the input
nodes without any cycles. An AE has three layers: the input, the hidden and the output
layer, as seen in Fig. 3.1. This model is used for learning dimensionality reduction of the
dataset. The purpose is to encode the input into a more compact representation and then
decode it to reconstruct the input data into the output. The hidden layer which is placed
between the input and output layers contains the compressed representations of the data.
The compressed data is considered corrupted.

The math behind the AEs is quite easy to understand. The encoder and decoder are
defined by the transitions ϕ and ψ respectively, such that:

ϕ : X −→ F

ψ : F −→ X

ϕ,ψ : argminϕ,ψ ∥X − (ψ ◦ ϕ)X∥2

In the simplest scenario, given one hidden layer, the above definitions mean that the en
coder function (ϕ) takes the input x ϵRd = X which represents the original data and maps
it to the latent vector h ϵ Rp = F . The encoding network can be represented by:

h = σ(Wx+ b)

where σ is the activation function e.g. sigmoid or Rectified Linear Unit (ReLU), W is a
weight matrix and b is a bias vector. W and b are usually randomly initialized and then
adjusted through backpropagation during training.
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Conversely, the decoding function (ψ) maps h to x′ which is the reconstruction of the input
vector x. Both x and x′ have the same shape. The decoding network can be represented
by:

x′ = σ′(W ′h+ b′)

where σ′, W ′ and b′ might differ from the σ, W and b of the encoder.

The autoencoder are trained by minimizing the reconstruction error (such as squared er
ror) which is also called the loss [10, 11]:

L(x, x′) = ∥x− x′∥2 = ∥x− σ′(W ′(σ(Wx+ b)) + b′∥2

Sometimes, the AE might fail to select and extract useful features and as result the input
might equal the output and overfit the training dataset [12]. To overcome this problem
the Denoising Autoencoder (DAE) was introduced. A DAE uses the input data after they
have been corrupted by adding noises to the input vector. The DAE is trained to produce
the original uncorrupted data in the output. This way, overfitting is prevented. Multiple
DAEs can be stacked on top of each other to compose a Stacked Denoising Autoencoder
(SDAE) which can be useful in extracting more hidden features.

AEs are great in learning feature representations and that is a reason why they are used
in RSs. They can improve the accuracy of an RS by providing a better user and item
representation learning. DAEs are also useful in predicting missing values from corrupted
data in an RS. SDAEs, on their part, can discover a denser form of the matrix of the
input data and they can merge additional helpful information in the RS from different data
sources. Stacked AEs are better than simple AEs because stacking is better at feature
learning.

Figure 3.1: An autoencoder
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3.2 Restricted Boltzmann machines

A Restricted Boltzmann Machine (RBM) has two layers of units, the first consists of the
visible units and the second of the hidden units. As illustrated in Fig. 3.2, the structure
resembles a bipartite graph since there are no connections between units of the same
layer. For example, for images with handwritten digits, a visible unit represents one pixel
and a hidden unit represents a dependency between pixels. RBMs can be used for both
supervised and unsupervised learning.

The hidden and visible units of an RBM are boolean. The RBM consists of W which
similarly to AEs is a weight matrix of size m × n. Each connection between a visible unit
vi and a hidden unit hj is associated with a weight element wi,j ofW . Also, there is a bias
weight ai and bj for vi and hj respectively. The energy of a pair of boolean vectors (also
called configuration) v, h is the following:

E(v, h) = −
∑
i

aivi −
∑
j

bjhj −
∑
i

∑
j

viwi,jhj

The marginal probability of a visible vector v is the sum of the joint probability distribu
tion for the visible and hidden vectors over all the possible hidden layer configurations.
Specifically:

P (v) =
1

Z

∑
{h}

e−E(u,h)

where Z is a partition function, defined as the sum of e−E(u,h) over all possible configura
tions, which ensures that the probabilities sum to 1.

The RBMs are trained by maximizing the expected log probability of the random sample
v from the training set V :

argmaxW E [log P (v)]

The algorithm that is mostly used for optimizing the weight matrix W is called Contrastive
Divergence (CD) which performs Gibbs sampling and uses a gradient descent proced
ure to update the weights similarly to how backpropagation is used in feedforward neural
networks such as the AE [13].

RBMs can be exploited to improve the performance of an RS. Specifically, they can be
used to extract latent features of the user’s preferences or of an item’s ratings. Additionally,
they are useful for creating joint models of both the correlations between the items a user
has rated and the correlation between the users who rated a specific item. As a result
of this modeling, the accuracy of an RS can be improved. A similar modeling can be
used in group recommendations by modeling collectively the features and profiles of the
group. RBMs also allow the integration of additional data from various sources. RBMs
are inferior in the accuracy of the user preferences compared to an AE because RBMs
produce predictions using the loglikelihood maximization function while AE minimizes the
squared error.

K. Stoikou 22



Deep Learning Techniques on Recommender Systems

Figure 3.2: A restricted Boltzmann machine

3.3 Deep belief networks

A Deep Belief Network (DBN) is a multilayer architecture that consists of stacked RBMs.
Specifically, the hidden layer of a subnetwork works as the visible layer for the next sub
network. The original data are passed into the visible units of the bottom layer, then the
parameters are adjusted and the hidden units of the first RBM are used as input for the
second RBM as shown in Fig. 3.3. The learning process continues up to the top of the
stacked RBMs. This process is unsupervised, so usually a new supervised learning net
work is added to the last layer to execute tasks such as classification or regression.

Specifically, the training process is the following. Each RBM starts training only after the
previous RBM is completely trained, which means the training algorithm is greedy. The
weights W learned by a RBM define both P (v|h,W ) and the prior distribution over the
hidden vectors P (h|W ), where h is a sampled vector from P (h|v,W ) that will be used as
input data for the next stacked RBM. So, the probability of generating a visible vector v is:

P (v) =
∑
h

P (h|W )P (v|h,W )

After learning the weights W, the P (h|W ) is replaced by a better model of the aggregated
posterior distribution over the hidden vectors. This model is learned by using the hidden
vectors as training data for the next RBM [14].

In RSs, DBNs are utilized to extract highlevel features on user preferences from lowlevel
features. Besides this, DBNs can be used for classification,usually on text and audio data,
for the purpose of analyzing user preferences.

3.4 Generative adversarial networks

A Generative Adversarial Network (GAN) consists of two neural networks: the generator
and the discriminator. The former generates new data instances from random variables.
The latter approximates the probability that a sample data comes from the real training data
instead of the generator output. This is an iterative process so that both the generator and
the discriminator improve on their respective jobs each time.

The loss function of the GAN is derived from the binary crossentropy loss which can be
written as:
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Figure 3.3: A deep belief network

L(ŷ, y) = [y · logŷ + (1− y) · log(1− ŷ)]

where y is the original data and ŷ is the reconstructed data. For the training of the discrim
inator (D), the label of the data from the original data distribution Pdata(x) is y = 1 because
the data are real, and ŷ = D(x). If we substitute this in the above loss function, the result
is:

L(D(x), 1) = log(D(x))

and for the generator (G), the label is y = 0 because the data are fake and ŷ = D(G(z)),
where z is the noise vector. So:

L(D(G(z)), 0) = log(1−D(G(z)))

As mentioned previously, the purpose of the discriminator is to classify the real and fake
data correctly. So, the above loss functions should bemaximized and the final loss function
for the discrimination becomes:

L(D) = max[log(D(x)) + log(1−D(G(z)))]

The generator is competing against the discriminator, so it will try to minimize the above
function:

L(G) = min[log(D(x)) + log(1−D(G(z)))]
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If the loss functions of the discriminator and the generator are combined we get the loss
function of the GAN for a single data point which is the following:

L = minG maxD[log(D(x)) + log(1−D(G(z)))]

The loss function for the entire dataset derives if we get the expectation of the above
equation [15, 16]. So, in the end:

minG maxDV(D,G) = minG maxD(Ex∼Pdata(x)[logD(x)] + Ez∼Pz(z))[log(1−D(G(z)))])

RSs benefit from GANs due to the fact that there is no need for negative samples in the
training dataset. Also, they can provide a distribution of ratings for all the options each
user has [17].

Figure 3.4: A generative adversarial network

3.5 Convolutional neural networks

A Convolutional Neural Network (CNN) is inspired by the organization of the animal visual
cortex. It contains at least five layers: input, convolutional, pooling, fully connected and
output layer. The convolutional layer applies convolutional operation to extract features,
also called feature maps, from the input data. To introduce nonlinearity to the data, a
nonlinear activation function is used, such as ReLU. The pooling operation subsamples
the output of the previous convolutional layer, which means it reduces the features to
improve computational time. The convolutional and pooling layers are stacked together
in pairs. The fully connected layer takes the high level features of the last pooling layer
and uses them for classification. Backpropagation is also employed to adjust the weights
and improve accuracy.

CNNs are usually used with images as inputs. Let’s see the mathematical representation
of a CNN. An image can be represented as:
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dim(image) = (nH , nW , nC)

where nH and nW are the size of height and width respectively and nC the number of
channels (e.g. for RBG images: nC = 3). The kernel K (also called filter) has the same
number of channels, is squared and has an odd dimension f . So the dimensions of the
filter are:

dim(filter) = (f, f, nC)

CNNs are based on the convolution product operation which results in a twodimensional
matrix where each element is the sum of the elementwise multiplication of the filter and
the subcube of an image. Specifically, for an image I and a filter K:

conv(I,K)x,y =

nH∑
i=1

nW∑
j=1

nC∑
k=1

Ki,j,kIx+i−1,y+j−1,k

and the resulted dimensions this operation are:

dim(conv(I,K)) = (⌊nH + 2p− f

s
+ 1⌋, ⌊nW + 2p− f

s
+ 1⌋) , s > 0

dim(conv(I,K)) = (nH + 2p− f, nW + 2p− f) , s = 0

where s is the stride and p is the padding. The pooling operation is downsampling the
image’s features. This operation is applied to each channel so it affects only the nH and
nW dimensions and not the nC . Given an image and a filter f :

dim(pooling(image)) = (⌊nH + 2p− f

s
+ 1⌋, ⌊nW + 2p− f

s
+ 1⌋, nC) , s > 0

dim(conv(I,K)) = (nH + 2p− f, nW + 2p− f, nC) , s = 0

The CNN is learning by performing forward propagation and evaluating the function:

J(θ) =
1

m

m∑
i=1

L(ŷi
θ, yi)

where m is the size of the training set, θ the model parameters and L the cost function
which calculates the distance between the real and predicted values on a single data point.
CNN is also performing back propagation and applies a descent method (such as gradient
descent) to update the parameters θ [18].

The advantage of CNNs is the reduction in the training data dimensionality. However, the
need for a large amount of hyperparameter tuning is considered a disadvantage. CNNs
are effective when employed in an RS because they can extract the semantic meaning of
text which is valuable especially in context aware systems. CNNs are mostly leveraged
for drawing out latent factors and features, usually from images or textual data.
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Figure 3.5: A convolutional neural network

3.6 Recurrent neural networks

A Recurrent Neural Network (RNN) is convenient for sequential data such as data from
time series or sound. Unlike feedforward networks, RNNs have feedback loops and in
ternal memory that remembers information about the previous steps. That information is
actually the hidden state which specifies the previous classifications. In each next step,
the previous and next hidden states are combined to get a new classification.

If we symbolize the state of the memory of the RNN at time t as ht and the output at time
t as yt then:

ht = ϕ(U · xt +W · ht−1)

yt = ψ(V · ht)

where h−1 is randomly initialized, ϕ and ψ are nonlinear functions and xt is the input at time
t. U ,W and V are parameters of the linear regressions that are preceding the nonlinear
functions. Those parameters are the same in the whole architecture.

The training is executed by performing forward propagation which evaluates the function:

J(θ) =
1

m

m∑
i=1

N
(i)
y∑
t=1

L(ŷt
θ, y

(i)
t )

where L is the cost function which calculates the distance between the real and the pre
dicted value on a single data point, y(i) is the ith output sequence, N (i)

y is the length of
y(i), y(i)t is the tth element of the output y(i) and θ are the model parameters. The RNN
also performs backpropagation through time to update the θ [19].

The problems of RNNmodels are the vanishing gradient, which prevents the weights from
changing their values, and the exploding gradient, which results in very large updates to
the weights. These problems can be overcome by variations of RNNs such as Gated
Recurrent Unit (GRU) and LSTM (Long Short Term Memory). Another shortcoming is the
high amount of parameter tuning which increases the computation time.

RNNs can take into account the browsing history of a user and the order of sequence
of their actions for the sake of improving RS accuracy. RNNs have also been used to
combine latent factors of user preferences with representations of temporal, contextual
features of user’s behaviors. RNNmodels are capable of representing, in a non linear way,
how users’ and items’ latent features influence each other. If the problem of the evolution
of the user preferences is transformed into a sequence prediction problem, a RNN can
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be utilized to enhance the RS’s predictions of this evolution. Because of these reasons,
RNNs are very effective on shortterm predictions and they can prove advantageous in
sessionbased systems.

Figure 3.6: A recurrent neural network

3.7 Multilayer perceptrons

A Multilayer Perceptron (MLP) is considered the simplest deep learning architecture. It
is a feedforward neural network which consists of at least three layers: the input layer,
the hidden layers, which can be multiple, and the output layer. This structure can be
seen in Fig. 3.7. Except for the input nodes, each node is considered a neuron, also
called perceptron, that uses a nonlinear activation function [20]. MLPs use supervised
learning by applying backpropagation to adjust the weights and biases to minimize the
error (usually the MSE).

A MLP with two hidden layers can be expressed mathematically as:

h
(1)
i = ϕ(1)(

∑
j

w
(1)
ij xj + b

(1)
i )

h
(2)
i = ϕ(2)(

∑
j

w
(2)
ij h

(1)
j + b

(2)
i )

yi = ϕ(3)(
∑
j

w
(3)
ij h

(2)
j + b

(3)
i )

where h(l)i are the units in the lth hidden layer, xj are the activations of the input units, y is
the activation of the output unit, ϕ(1) and ϕ(2) are the activation functions which can differ
since different layers have different activation functions. Each unit has its own bias bi and
each pair of units in two consecutive layers has its own weight wij [21]. The vectorized
form of the above computations is:
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h(1) = ϕ(1)(W (1)x+ b(1))

h(2) = ϕ(2)(W (2)h(1) + b(2))

y = ϕ(3)(W (3)h(2) + b(3))

MLPs are used to transform the linearity of RSs to non linear models that can be used in
neural networks, which means MLPs can model user and item information with respect to
their correlation and with close to zero amount of linearities.

Figure 3.7: A multilayer perceptron

3.8 Attention networks

An attention network tries to imitate the human cognitive attention. It highlights the im
portant subsets of features of the input data and deemphasizes the rest of them. Which
features require attention is learned usually by using gradient descent on the training data.
By separating the important features the network will reserve more computation power for
that subset instead of the whole set of features [22].

By using attention, a context vector ci is produced based on the hidden states s1, ..., sm
that are used together along with the current hidden state hi:

ci =
∑
j

aijsj

ai = softmax(fatt(hi, sj))

where fatt is the attention function which calculates an unnormalized alignment score
between the current hidden state (hi) and the previous hidden state (sj). For example,
fatt can be vT tanh(W [hi; sj]) which represents addictive attention. v and W are learned
attention parameters [23, 24].
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Attention is often combined with deep learning models CNN, MLP or RNN instead of be
ing a standalone technique. Some RSs use attention on the review level to filter the
textual features which are not highly informative in an item review. For itembased CF
approaches, attention is employed to define which items in the history of a user’s profile
are more considerable for predictions.

3.9 Hybrid architecture

Different deep learning methods can be combined in order to leverage the advantages of
each method and improve the RS’s performance and efficiency. An example of the above
is a combination of DBN and RNN which extracts valuable comments and uses a shared
layer to succeed in rating prediction [25].
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4. CHALLENGES OF RECOMMENDER SYSTEMS

There are some challenges that need to be addressed when building a RS in the interest of
making it as useful as possible to the users and achieving the goals of the application that
uses them. The most important and frequent problems will be discussed in this section.

4.1 Accuracy

The first and foremost challenge for RSs is accuracy. As mentioned before, accuracy
is used as a metric for evaluating a RS, so researchers continuously try to find ways to
improve it as much as possible. The measures to evaluate the objective accuracy are
usually error formulas such as MSE. Deep learning techniques are successfully achieving
high accuracy results. This happens due to the ability of deep learning models to extract
hidden features of users and items, to create joint models and to combine additional in
formation from different data sources as stated in the previous chapter. However, besides
objective accuracy, the user’s perception of accuracy is also important. To elaborate on
that, it means the extent at which the user considers that the generated recommendations
meet their interests. If the user believes the recommendations are accurate, their trust
in the system and consequently in the recommended items is influenced positively. Al
though at some level perceived accuracy is correlated with objective accuracy, displaying
information about how the system makes recommendations and designing a better user
interface can increase user’s perceived accuracy [26].

4.2 Coldstart

Another major problem of some RSs is coldstart. It is the situation where a new user
or a new item is introduced to the system and there is no adequate information to make
reliable recommendations on them. When a new user is entered into the system, there is
no data about their preferences and therefore they can not get proper suggestions. This
type of user is called a grey sheep. When a new item is added to the system, there are no
ratings provided for this item and as a result the system does not know which users should
receive this item as a recommendation [27]. Cross domain recommendation can solve the
problem about new users as the system can utilize knowledge about the user which was
learned from different domains. Another solution are knowledgebased methods which
require the new user to explicitly define their interests. CB systems can provide a solution
for coldstart issues related to new items. They take advantage of the item’s descriptive
data instead of relying on its ratings from other users.

4.3 Data sparsity

Data sparsity is a problem closely related to coldstart. Users usually rate only a small
fraction of the available items which leads to a sparse useritem rating matrix as seen
in Fig. 4.1. As a result of the lack of an adequate amount of data, the system fails to
recognize similar users or items. This also raises the coverage issue since a percentage
of the items in the system will not be recommended to any user. Data sparsity occurs
especially on CFRSs because they are based on similar users’ ratings. To solve this, deep
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learning techniques can be used to transform the highdimensional and sparse matrix into
a lowdimensional and dense matrix. For example, autoencoders can be used to produce
lowdimensional latent representations of context features in contextaware RSs. Cross
domain recommendations can be used similarly to how they are used in the coldstart
problem. Another solution is to handle each useritem rating as a means to predict the
missing useritem ratings. The missing rating can be estimated based on the merging of
different user ratings of the same item or different item ratings by the same user.

Figure 4.1: A sparse useritem rating matrix

4.4 Scalability

Scalability is an issue related to the number of items and users a system was designed
to cope with. A RS that is performing great with a small number of users and items might
not be efficient if the items and users increase up to a million. One method to make an
RS scalable is to find the nearest and furthest neighbors of a user with the purpose of
reducing the dataset. Deep learning approaches can deal with scalability problems. They
can map high dimensional features into lower ones, select the topk relevant features and
use kmeans algorithms to cluster similar features. Parallel and distributed computing can
also achieve better scalability for the system.

4.5 Synonymy

Sometimes very similar items have different titles, features or entries. It is difficult for
RSs to find the similarity between those items and that’s when the problem of synonymy
is raised. For example, a typical RS might not find a similarity between two items titled
”pants” and ”trousers” although semantically they refer to the same thing. Solutions to
this issue include the creation and use of a thesaurus by the system and Latent Semantic
Indexing which finds patterns in the relationships between concepts in textual data [28].

4.6 Data noise

Noisy data are considered corrupted because the user’s ratings might be biased or un
truthful. Sometimes, the rankings are not representative of the user’s liking towards an
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item because the user might not be able to transform their emotions into a number of the
rating scale. Or the user’s ratings may be affected by the social norms instead of reflecting
the true preferences of the user. This issue can be handled by using implicit feedback from
the user in order to avoid noise in the dataset. Fuzzy logic can also be used to express
the level of dishonesty in user preferences. Trustaware systems can also be employed
to detect malicious users from authentic ones. Attentionbased RNN models have also
been used to deal with noisy input data.

4.7 Diversity

Recently, diversity in recommendations has been rendered important, even if it risks caus
ing a decrease in the overall accuracy. Diversity can also overcome the popularity bias,
which is the issue caused when the recommendation list is filled with items similar to each
other that are following a popular trend. If a user doesn’t like one of the trending items,
they will probably not be interested in the rest of them, thus making the recommenda
tion list useless. Contentbased approaches might limit the diversity because if a user
has never chosen an item with a particular keyword, then most probably they will never
get recommendations of items with this keyword. Researchers are trying to find the bal
ance between similarity and diversity. A KFurthest Neighbors model has been used to
recommend more diverse items. Another method has also been used which exploits the
concept of experts. Some of the users are labelled as ”experts” for a certain preference
because the system detects they are the most knowledgeable on this preference. The
rest of the users are recommended items from the experts recommendation list relevant
to that specific item preference [29].

4.8 Familiarity

When users receive recommendations about items that they are familiar with, their trust to
the RS increases and consequently their willingness to interact with the recommendations.
An example of such familiarity is when users get recommendations for clothes from a
vendor they have already chosen and rated positively in the past. However, if a large
percentage of the recommendations are directly related to the user’s previous ratings,
then users are not able to discover new products.

4.9 Novelty

Novelty is used to balance familiarity. Users should get recommendations for items that
are new and surprising so that they can discover new content. Those recommendations
can benefit from shortterm contextual occasions such as the mood of the user or the
location.

4.10 Privacy

Some recommendation approaches, such as demographicbased systems, might violate
the privacy rules. Especially in the European Union those rules are stricter since compan

K. Stoikou 33



Deep Learning Techniques on Recommender Systems

ies have to comply with the General Data Protection Regulation (GDPR). Cross domain
recommendation should also be applied carefully so as not to expose user’s sensitive
information to other domains.

4.11 User’s effort

The user’s effort to get reliable recommendations should be minimized. One purpose
of the RSs is to help users save time instead of trying to find interesting items on their
own. Asking users to state their preferences or to rate and review items must be done in
moderation. Implicit feedback can be used when there is no need for the user to insert
explicit feedback.

4.12 Changing preferences

Users tend to change preferences from time to time, particularly when they are exposed
to new domain information. The RS should be able to monitor those changes and adjust
accordingly.

K. Stoikou 34



Deep Learning Techniques on Recommender Systems

5. IMPLEMENTATION OF A RECOMMENDER SYSTEM FOR VIDEO
GAMES

This section will describe the implementation of a RS for video games and its results. A CB
filtering algorithm is applied which uses an autoencoder to compress each game’s feature
vectors before finding their similarities. Additionally, a CF approach is also implemented
that uses a neural network to learn the useritem interactions and make predictions on the
games that the user has not interacted with. In the end, both approaches are combined
in a hybrid algorithm which uses mixed hybridization to produce recommendations.

5.1 Dataset

The dataset includes data from the Steam game library [30, 31, 32]. It was provided
by Professor Julian McAuley of University of California, San Diego, on his website [33].
Specifically, it includes 32,136 games with their metadata such as publisher, title, release
date, genres etc. It includes another dataset with the users and the games that they own
or have played (if a game is free to play). Those users are from the region of Australia
and in total they are 88,310. This dataset will be called the interactions dataset since it
includes useritem interactions. For each usergame interaction, the dataset contains the
total playtime and the playtime over the last two weeks. Because of the large number of
interactions and the lack of a professional runtime environment, this dataset was reduced
to 10,000 users and their interactions with the games they have played. Furthermore,
after some data exploration, most users owned the top 1000 games and for the rest of the
games the interactions became very sparse. After this observation and to achieve faster
computations, it was decided to reduce the games to the top 1000 most popular and keep
only the interactions that included those games.

There is also another dataset with the reviews of the users on some of the games (in
Steam to review a game, the user has to either own it or, if it’s free, to have played it).
The reviews were missing for 99% of the useritem interactions so they were not included
in the final dataset. From the final dataset fields such as metascore and early access
were removed since they were missing for more than 75% of the entries. Title was also
removed since it was missing for some games and instead the app name was used as an
identifier besides the item id.

In the end, after some data cleaning, the final useritem interactions matrix was composed
of 9887 rows (users) and 1001 columns (items, 1 of the items is the None item when a user
hasn’t interacted with any games) with 90% sparsity and a total of 635,859 interactions.

In the end, the fields that were kept were the following:

• user_id, item_id: identifiers for users and games

• playtime, playtime_2weeks: the total playtime and the playtime over the last two
weeks of an interaction between a user and a game

• genres: a list of genres that the game belongs to

• tags: a list of tags that are related to the game

• specs: options that the game offers (single player, controller support etc.)
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• sentiment: the overall appreciation of the game from the Steam community (cat
egorical data)

• publisher, developer, app_name, release_date, price: self explanatory

5.2 Libraries

Some of the worthmentioning libraries used in this implementation are the following:

• pandas: offers data structures such as DataFrame and Series for data manipulation
and analysis. In this project they were used for handling the various datasets.

• scikitlearn: includes machine learning algorithms for classification, regression and
clustering, as well as functions that can be used in the process of implementing
machine learning and deep learning algorithms.

• keras: provides implementations for basic neural networks structures such as lay
ers, activation functions etc. Here it was used to build the autoencoder for the CB
approach.

• pytorch: machine learning library with similar functionality as keras. It focuses
mostly on tensor computing and deep neural networks.

• pytorch lightning: provides a high level interface for PyTorch to run deep learning
experiments easier.

• matplotlib, pyplot: plotting library inspired by MATLAB

5.3 Runtime environment

The runtime environment that was used was the one provided by the basic plan (free of
charge) of Google Colaboratory. It’s specifications are the following [34]:

• 2 x CPUs Intel Xeon 2.2GHz

• 1 x GPU Nvidia Tesla K80 12GB

• 13GB RAM

• 12 hours maximum execution time (when the browser is opened)

The above specifications also depend on current availability.
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5.4 Implementation approaches

5.4.1 Content based filtering

In the contentbased approach, the game descriptive data (e.g. publisher, tags) are all
combined into one text field, which is called document and then the TFIDF (Term Fre
quency  Inverse Document Frequency) embeddings are created for each game based
on this field. TFIDF is expressed via the following formulas [35]:

if t is a term and d is a document then:

TF (t, d) =
count of t in d

total number of words in d

DF (t) = number of documents in which t is present

IDF (t) = log total number of documents
DF (t) + 1

TF IDF = Term Frequency (TF ) ∗ Inverse Document Frequency (IDF )

The document of each game is vectorized on the vocabulary which is the list of all words in
the corpus. So, in the end each game is represented by a onedimensional vector of size
equal to the vocabulary size. Those embeddings are passed into an autoencoder which
compresses them. This is needed because some terms are very similar, for example war
and wargame which we encounter in tags. This means, a single concept (in this case
the concept of war) is dispersed over multiple dimensions in the vector. Compressing
the TFIDF vectors into a lower dimensional space would provide better results as the
concepts would be fuzed into one dimension. The expectations of this method are each
dimension to represent a solid, complex concept. The architecture of the autoencoder can
be seen in Fig. 5.1. Then, for each game that a user has interacted with (owned/played),
we find the games with the highest cosine similarity between their embedding and the
embedding of the user’s game. We keep only the top 20 most similar games and then
we apply some evaluation metrics, that will be mentioned later, to estimate the success of
the recommendations. The cosine similarity will be explained in the section of the results
along with other metrics that will be used later. The initial TFIDF embeddings (without
compression from an autoencoder) have also been tested and compared with the results
of the autoencoder approach. This approach was inspired by [36].

5.4.2 Collaborative filtering

In the collaborative filtering approach, a model based implementation was chosen to avoid
manually computing the similarity between games or users. Specifically, the training data
set is created by keeping the positive usergame interactions (positive means that the user
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Figure 5.1: The autoencoder used in the content based implementation

has interacted with a game) and for each user we add 4 random negative interactions
(games that the user hasn’t interacted with). The model that was implemented was based
on the Neural Collaborative Filtering (NCF) by [37, 38] and it is shown in Fig. 5.2. The
input of the model is the onehot encoded user and item vectors. Those vectors are fed
into the user and item embedding layers respectively. The output of those layers are the
user and item embeddings which are smaller and denser vectors. The two embeddings
are concatenated into one and passed into a series of fully connected layers. In the end
the model returns the probability that the user has interacted with the item. We then run
the model for the test users against all games that each user has not interacted with and
keep the top 10 games (sorted by the generated probability).

5.4.3 Hybrid

For the hybrid method, the mixed hybridization technique has been used. As mentioned
in a previous chapter it is the simplest form of hybridization since the results of the two
recommendation methods are combined and form a list. From that list we keep the top 10
most similar games. However, in the previous methods we use different metrics to pick
the top 20 recommendations. In CB we use cosine similarity and in CF we use prediction
probability. To be able to combine the results in a fair way, we normalize the values of the
metrics.
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Figure 5.2: The neural model used in the CF implementation

5.5 Results and interpretation

5.5.1 Metrics

5.5.1.1 Cosine similarity

We used cosine similarity to calculate the similarity between the TFIDF embeddings. The
formula for two vectors A and B is:

cos(θ) =
A ·B

|A| · |B|

Cosine similarity ranges between 1 and 1 and as seen above it is the dot product of the
two vectors divided by their magnitude. Embedding vectors that point in the same direction
have high similarity.

5.5.1.2 Mean average precision

We used Mean Average Precision (MAP) when testing the recommendations in a users
subset. It is a common metric used in RSs. MAP calculates the mean of the average
precision over all the test users. The average precision compares a list of N ranked re
commendations to the set of the actually relevant recommendations [39]. Specifically:
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precision = P (k) =
number of our recommendations that are relevant

number of all recommended items

Average precision at cutoff N, where N is the number of recommended items, m is the
number of all possible items and rel(k) = 1 if kth recommended item is relevant, otherwise
rel(k) = 0:

average precision = AP@N =
1

m
·
N∑
k=1

P (k) · rel(k)

Mean average precision averages the AP@N over all the test users |U |:

mean average precision =MAP@N =
1

|U |
·

|U |∑
u=1

(AP@N)u

5.5.2 Results

To run the experiments, we have picked a subset of users and split their items into train
and test. We use the same users and test items across the different methods to achieve
more reliable results.

In Table 5.1 we can see the table with the different approaches and their evaluation results:

Table 5.1: Results from the experiments

Approach Max cosine similarity Max probability MAP Epochs Batch size
CB (without AE) 0.092  0.05  
CB (with AE) 0.099  0.14 20 8

CF  0.98 0.10 5 512
Hybrid   0.11  

5.5.3 Observations

We notice that the MAP values are pretty low. This is due to a flaw in how we split the train
and test sets. In the dataset we don’t have any information about the date that an item
was bought or first played by a user. Therefore, the splitting of the dataset is happening
randomly and we might be using earlier bought items for testing and the most recently
bought for training. If we could split the games by date we would have achieved better
results.

We noticed that in a similar experiment [40], a limit of 5 hours of playtime was set to
differentiate between preference or not of a user towards an item. In our case, this dif
ferentiation is based on whether an item was bought (or played if it is a free game). Also
in [41], the achievements accomplished by a user in the game were integrated into the
dataset and the authors pointed out that the achievement information may prove extra
useful. In [40], the achieved accuracy of the deep algorithms was around 0.89 which is
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8 times better than ours. Probably the playtime limit was important for the training pro
cess. However, in that work, a method based on matrix factorization called Alternating
Least Squares was implemented that achieved a MAP value less than the ones we have
achieved, specifically 0.107. That means our deep learning algorithms were a bit better
than a traditional, nondeep method which supports the theoretical claims.

In the CB approach there is a clear advantage in the use of the autoencoder versus using
the initial TFIDF vectors. This is noticeable from the difference in the MAP values. Also,
calculation of the recommendations was significantly faster when using the compressed
TFIDF embeddings. If we incorporated additional data related to the games (e.g. a de
scription) we would have achieved even better results.

The hybrid approach has less accuracy than CB but better than CF. This might be due to
the fact that the normalization of the cosine similarity and the prediction probability in the
CB and CF recommendations respectively is not the best way to combine and rank the
results. It would be better if both methods used the same metrics. The shortcoming of the
CF algorithmmight be due to the fact that the embeddings were created using only the user
and item id. In other studies such as [40] that were using either pure deep neural networks
or a combination of them with factorization machines, the embeddings also contained
other features such as genres and as a result they provided better recommendations.
However, our CF method is still providing good results compared to other works such as
[42] which has a mean precision of 0.014640 for a CF model that uses a neural network
that multiplies the user embeddings with the item embeddings and adds bias values before
applying a sigmoid layer. A hybrid approach combines this with a CB method that uses
video game vector cosine similarity and keyword similarity. The hybrid approach of [42]
has a precision 0.015960 which is still lower than ours. The precision of 6 CF algorithms
implemented in [43] for ecommerce ranged from 0.0041 to 0.0268 which renders the
results of our RS promising.

The RS is sensitive to coldstart issues related to new users. If a user has interacted with
close to zero items then the CB method will have a very small set of game vectors to com
pare with the vectors of all the games in the dataset. The authors of [44] tried to solve the
coldstart problem by asking the users through the user interface to rank at least 3 games
if they have not done that already. In our case, since we do not provide any interface
for the users but instead use a static dataset, we cannot generate recommendations to
users that haven’t interacted with any game at all. A solution would be to simply remove
from the dataset the users who owned less than 5 games as in [41]. We avoided this
because we wanted to experiment with the cold start issues and how they are handled by
the algorithms.

It is important to mention that MAP is only one of the metrics that can be used to determ
ine whether an RS is good or not. Measuring the diversity and the novelty also plays a
significant role in the success of the recommendations as mentioned in [40].

5.6 Steam recommendation pages

After this demonstrative implementation which gives some insight on how a basic game
RS works, it is worth mentioning how the Steam app displays the recommendations to the
users and what does the interface reveal about the implementation of their RS.
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5.6.1 New users

In Fig. 5.3 we can see a screenshot of how the cold start problem is addressed, which
means what a user sees when they haven’t played any games or viewed any content on
the Steam website. The recommendations are guessed instead of predicted and they
could be based on location information, current trends or the popularity of the games.

Figure 5.3: Guessed recommendations for a new user on Steam

5.6.2 Recommendations by friend activity

On Steam, users can connect with each other and become friends. As a result, they can
see which games their friends are playing or have bought and which they have recom
mended. When a user reviews a game they can recommend it to their friends and it will
appear as in Fig. 5.4. This type of recommendation could increase the familiarity level.

Figure 5.4: Steam recommendations by friend activity

5.6.3 Recommendations by tags

Games are also recommended based on the popularity of their tags and the relativity to
the user’s previous gaming history. Users can propose tags for a game title and if a tag
is proposed frequently then it becomes a featured category [45]. That means a user can
also get recommendations based on custom tags they have used. An example can be
seen in Fig. 5.5.

K. Stoikou 42



Deep Learning Techniques on Recommender Systems

Figure 5.5: Steam recommendations by popular tags

5.6.4 Recommendations by curators

Curators are either users or organizations that can recommend games. Users have the
option to follow curators they like (Fig. 5.6). Steam can also recommend curators based
on the relevance between the games they recommend and the games the user has been
playing recently [46].

Figure 5.6: Steam recommendations by curators

5.6.5 Recommendations by the community

On this page, reviews of other users are displayed based on how many users have voted
them as ”helpful”, meaning that those reviews might be not only positive but also negative.
Both curator recommendations and community recommendations can provide the users
with novel and surprising recommendations and help them discover new games.

5.6.6 Interactive recommender

The most interesting recommendation mechanism that Steam offers is the interactive re
commender. Users can select the balance between popularity and nicheness. According
to [47], the recommender is trained on the playtime histories of millions of users. Instead
of being affected by the reviews and tags (content of a game), it looks into the users’ play
ing habits. From this information we deduce that it is a collaborative filtering model based
recommender system.
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Figure 5.7: Steam recommendations by the community

Figure 5.8: Steam’s interactive recommender
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6. CONCLUSIONS AND FUTURE WORK

In this thesis, a concise review was provided on how RSs work and what is the use and
the benefits of deep learning techniques on RSs. Some basic recommendation algorithms
were implemented using content based and collaborative filtering methods combined with
deep learning models.

There are still improvements that can be made to those algorithms. Incorporating more
information about the users and the games, even from different sources, would provide
more accurate recommendations. This applies not only to game RSs but any other RS
since more data leads to better prediction models. This additional information could also
be used for sentiment analysis to analyze the user’s current mood and predict the future
one. Since a user’s choices are affected by their current state of mind, this prediction
would result in better suggestions. Sentiment analysis can also address the problem of
the user’s changing preferences as they depend on the user’s changing temper.

We could go even further and apply personality detection techniques to infer the user’s
personality traits based on data from various sources. Those traits could be used to predict
the longterm preferences of users and consequently produce more reliable recommend
ations.

Certainly, there is room for improvement concerning optimization. Distributed optimization
algorithms can be used in the future to reduce the computational time costs.

RSs solve the problem of information overload which is very common nowadays because
of the increasing amounts of data produced. Consequently, the need for recommendations
will remain in the future and probably grow even more, so improvements will definitely
be necessary. Although deep learning has very promising results, there are still open
challenges such as achieving better results in accuracy and scalability.
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ABBREVIATIONS  ACRONYMS

RS Recommender System

CF Collaborative Filtering

CB Content Based

SRS Social Recommender System

MSE Mean Square Error

RMSE Root Mean Square Error

MAE Mean Absolute Error

DL Deep Learning

AE Autoencoder

ReLU Rectified Linear Unit

DAE Denoising Autoencoder

SDAE Stacked Denoising Autoencoder

RBM Restricted Boltzmann Machine

CD Contrastive Divergence

DBN Deep Belief Network

GAN Generative Adversarial Network

RNN Recurrent Neural Network

CNN Convolutional Neural Network

GRU Gated Recurrent Unit

LSTM Long Short Term Memory

TFIDF Term Frequency — Inverse Document Frequency

NCF Neural Collaborative Filtering

MAP Mean Average Precision
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