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Abstract

Revenue Management is concerned with demand-management decisions, i.e., decisions

about product availability and price that are taken with the objective to maximize

revenue. This master thesis is on optimazation techniques that are employed in Rev-

enue Management.

In the first part, we are dealing with the case of Single Resource Capacity Con-

trol. Our aim is to optimally allocate capacity of a single resource to various classes,

namely different product categories. In order to achieve this we had developed the

theory behind the cases of discrete and continuous demands, as well as some com-

putational approaches by using ”Matlab”. And, also, we have analysed for different

cases of demands and revenues the modification of protection levels.

Consequently, in the second part we are interested in maximizing the revenues in

the case of a Network, i.e., when a company sells products that use multiple resources

with limited capacity. Thus, since resources aren’t independent we can’t achieve this

by maximizing the revenue from each resource. Again, we have developed the theory

for different categories of network controls and some examples for the majority of

them.

In the last part, our goal is to find out how we can increase capacity utilization,

namely we are dealing with the case of Overbooking. Every airline books more seats

than actual has because of the fact that there are cases of no-showing or cancellations

which will cause revenue loss for the airlines. In order to analyse the case of Over-

booking we have developed the legal issues concerning it and, also, the theory for

different types of models and some computational approaches for finding the optimal

overbooking limit.
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Chapter 1

Introduction

Every seller of a product or service faces a number of fundamental decisions. You

want to sell at a time when market conditions are most favourable, but who knows

what the future might hold? You want the price to be right - not so high that you

put off potential buyers and not so low that you lose out on potential profits. You

would like to know how much buyers value your product, but more often than not

you must just guess at this number. Anyone who has ever faced such decisions knows

the uncertainty involved. Indeed, it is hard to find anyone who is entirely satisfied

with pricing and selling decisions. Even if you succeed in making a sale, you often

wonder whether you should have waited for a better offer or whether you accepted a

price that was too low.

Businesses face even more complex selling decisions. For example, how can a firm

segment buyers by providing different conditions and terms of trade that profitably

exploit their different buying behaviour or willingness to pay? How can a firm design

products to prevent cannibalization across segments and channels? Once it segments

customers, what prices should it charge each segment? If the firm sells in different

channels, should it use the same price in each channel? How should prices be ad-

justed over time based on seasonal factors and the observed demand to date for each

product? If a product is in short supply, to which segments and channels should it

allocate the products? How should a firm manage the pricing and allocation deci-

sions for products that are complements (seats on two connecting airline flights) or

substitutes (different car categories for rentals)?

Revenue Management is concerned with such demand-management decisions and

the methodology and systems required to make them. It involves managing the firm’s
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“interface with the market” as it were - with the objective of increasing revenues. Rev-

enue Management can be thought of as the complement of supply-chain management,

which addresses the supply decisions and processes of a firm, with the objective of

lowering the cost of production and delivery.

Revenue Management has to deal with three basic demand-management cate-

gories. The first one is the structural decisions, such as, which selling format to use,

which segmentation or differentiation mechanisms to use, which terms of trade to

offer and so on. Secondly, businesses have to take price decisions considering product

categories, as time goes by and discount over the product lifetime. Last but not least

are the quantity decisions, which are whether to accept or reject an offer to buy, how

to allocate output or capacity to different segments and so on.

In Chapter 2, we examine the problem of quantity-based Revenue Management

for a single resource; specifically, optimally allocating capacity of a resource to dif-

ferent classes of demand. The units of capacity are assumed to be homogeneous and

customers demand capacity only for the single resource. This is to be contrasted

with the multiple-resource - or network - problems in Chapter 3, in which customers

require a set of different resources (e.g. two connecting flights or a sequence of nights

at the same hotel) to satisfy their demand. In reality many problems are in fact

network problems, but in practice, they are still frequently solved as a collection of

single-resource problems (treating the resources independently). For this reason, it is

important to study single-resource Revenue Management models. Moreover, single-

resource models are useful as building blocks in heuristics for the network case.

In the third Chapter, we examine quantity-based Revenue Management of mul-

tiple resources, namely network Revenue Management. This class of problems arises

whenever customers buy bundles of resources in combination under various terms and

conditions. Customers may require several resources at once to satisfy their needs.

Thus, the lack of availability of one resource may cause a loss of demand for comple-

mentary resources. Consequently, there are interdependencies among the resources

and for this reason to maximize total revenues, it becomes necessary to jointly man-

age the capacity controls on all resources.

Lastly, we look, a somewhat distinct subject but quiet relative to the above, over-

booking. Overbooking is concerned with how much capacity to provide in the first

place. Namely, its focus is increasing the total volume of sales in the presence of

cancellations or no-shows. Here is important to note the difference between cancel-
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lation and no-show. A cancellation is defined as a reservation that is terminated by

a customer strictly prior to the time of service, so the firm has some opportunity to

compensate for a cancellation by accepting more reservations after the fact. A no-

show, in contrast, occurs when a customer does not cancel his reservation but rather

just fails to show up at the time of service and the firm has no opportunity to replace

them.

1.1 Origins in the airline industry

Before 1970, the only service options offered by commercial airlines were first class

and coach class service. Fares were identical and set by the Civil Aeronautics Board

(or by the International Air Transport Association (IATA) on international flights)

based on standard costs. The airline industry was deregulated in the U.S. in the mid

1970’s. Shortly after the deregulation appears the problem of controlling the capacity

for the discounted airfares. However, the writers Ingold and Huyton (1997) say that

they had observed some kind of Revenue Management since 1920. The airlines were

using statistical techniques for forecasts and mathematical methods for optimization,

they had developed automatic systems which can control the tickets availability and

allocate them right so the maximize their profits.

When the first innovative fares occurred, they offered travellers the option of buy-

ing a coach-class seat with a discount fare. These fares were attractive for many

travellers but they came with restrictions, i.e., they required round trip travel, ad-

vance purchase and minimum stay. Even though, these fares were attractive to leisure

travelers, the restrictions made them unattractive to business travellers, since they

often could not meet one or more of them.

After deregulation “People Express” was one of the first airlines arise. It offers

fares up to 70% below the major airlines. That was a serious threat for American

Airlines. In 1975 American Airlines introduced “Super Saver” fares, which had a 7-

day advance purchase requirement, minimum stay conditions and required round trip

travel. After 10 years they introduced “Ultimate Super Saver” fares that required a

30-day advance purchase. People Express experienced 4 years of phenomenal growth.

By August 1985, it was on the verge of bankruptcy. Obviously, People Express failed.

Where did it go wrong? They had great people, tremendous value, terrific growth,

but they didn’t use Revenue Management correctly.
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Two years after the “Ultimate Super Saver” fares, in 1987, Texas Air Corpora-

tion introduced a “Max Saver” fares. These fares had the extra restriction of being

non-refundable, which became widly used practice really soon. Moreover, by the mid

1980s, instead of minimum stay, most airlines applied a “Saturday night stay” re-

quirement. Through this restriction airlines achieved to prevent business travellers

from using discount fares.

Presently, many U.S. airlines observed that even though, discount fares had sig-

nificantly increased the demand, they also had reduced the revenues on some flights.

Popular flights, which both leisure and business travellers want, were selling out early

because of the discount tickets demand. Thus, there were no or little capacity for the

full-fare travelers.

This was a widly known dilemma in the airlines industry. In order to face it,

airlines introduced capacity-controlled fares-discounts that were sold only in limited

quantities on each flight. Firstly, these capacity controls were set by purely informal

methods, but it was obvious that more sophisticated methods were needed for setting

the number of discount fares that they were going to offer. The Boeing Aircraft Com-

pany was the first one that developed a software package called the “Surplus Seat

System”, which predicted the demand for full-fare tickets. Moreover, internally, air-

lines also experimented with simple statistical methods to set their capacity controls.

These efforts mark the origins of the practice of Revenue Management as we know it

today.

Donald Burr was Former Chairman and CEO at People Express Airlines, which

we saw, it failed. As he said, although they did a lot of things right they didn’t get

their hands around Revenue Management and it was extremely lethal. Additionally

he said: “If starting an airline today,the number one priority on my list would be

information technology. In my view, that’s what drives airline revenue today more

than any other factor. More than service. More than planes. More than routes.”.

1.2 Types of Control

Revenue Management is applicable when the stock is fixed, the product is perishable,

customers book capacity prior to “departure”, the seller can offer a set of fare classes,

each of which has a fixed price (at least in the short run) and also he can change the
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availability of fare classes over time.

Reservation systems may provide different mechanisms for controlling fare class

availability. These mechanisms are typically deeply embedded in the software logic of

the reservation system itself and can be quite expensive (if not impossible) to change

as a result. Therefore, the control mechanism itself is frequently an important practi-

cal constraint faced when implementing a Revenue Management strategy. The most

common types of controls are booking limits, protection levels and bid prices.

Definitions 1. Booking limits are controls that limit the amount of capacity that can

be sold to any particular demand class at a given point in time.

Protection levels are in many ways equivalent to booking limits. A protection level

specifies an amount of capacity to reserve (protect) for a particular demand class or

set of classes.

A bid-price control sets a threshold price (which may depend on variables such as the

remaining capacity or time), such that a request is accepted if its revenue exceeds the

threshold price and rejected if its revenue is less than the threshold price.

Booking limits and protection levels are either partitioned or nested. A partitioned

protection level is trivially equivalent to a partitioned booking limit. A partitioned

booking limit logically divides the available capacity into separate blocks - one for

each demand class - which can be sold only to the designated class. With a nested

booking limit, the capacity available to different classes overlaps in a hierarchical

manner - with higher revenue classes having availability to all the capacity reserved

for lower-revenue classes (and perhaps then some). The nested booking limit for

Class j is denoted by bj. Also, in the nested case, protection levels are defined for

sets of demand classes - again ordered in a hierarchical manner according to revenue.

Suppose Class 1 is the highest revenue class, Class 2 the second highest, etc. Then

the protection level j, denoted by yj, is defined as the amount of capacity to save for

Classes j, j − 1, .., 1; that is, for Classes j and higher (in terms of revenue).

Nested booking limits avoid the problem of capacity being simultaneously

unavailable for a high-revenue class yet available for lower-revenue clas-

ses. Most reservations systems that use booking limit controls, quite sen-
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sibly, use nested rather than partitioned booking limits for this reason.

Example 1. (Partitioned)

We suppose that we have 100 seats availiable to sell. A partitioned booking limit

may set a booking limit of

• 50 seats for Class 1,

• 20 seats for Class 2 and

• 30 seats for Class 3.

If the 50 seats of Class 1 are sold, Class 1 would be closed regardless of how much

capacity is available in the remaining Classes. This could obviously be undesirable if

Class 1 has higher revenues than Classes 2 and 3.

Example 2. (Nested)

Again we suppose that we have 100 seats availiable to sell, the nested booking limit

could be

• b1 = 100 on Class 1 (all the available capacity),

• b2 = 50 on Class 2 and

• b3 = 20 on Class 3.

We would accept at most 20 customers from Class 3, at most 50 Class 2 customers,

but as many Class 1 customers as possible.

Equivalently, suppose we set a protection level

• y1 = 50 for Class 1, i.e., 50 units of capacity would be protected for sale only to

Class 1,

• y2 = 80 for Classes 1 and 2 combined and

• y3 = 100 for Classes 1, 2 and 3 combined.

Assuming that p1 = $150, p2 = $120, p3 = $80, when there are 50 or fewer units

remaining, the bid price is over $120 but less than $150, so only Class 1 demand is

accepted. With 51 to 80 units remaining, the bid price is over $80 but less than $120
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so either Class 1 either 2 are accepted. With more than 80 units of capacity available,

the bid price drops below $80 so all three classes are accepted.

The booking limit for Class j, bj, is simply the capacity minus the protection level

for Classes j − 1 and higher. That is, bj = C − yj−1, j = 2, .., n where C is the

capacity. For convenience, we define b1 = C (e.g. the highest revenue class has a

booking limit equal to the capacity) and yn = C (all classes have a protection level

equal to capacity). Moreover, bid prices can usually be used to implement the same

nested allocation policy as booking limits and protection levels. Also, the bid price

π(x) is plotted as a function of the remaining capacity x.

To be effective bid prices must be updated after each sale - and possibly also with

time as well - and typically this requires storing a table of bid-price values that can

be indexed based on the current available remaining capacity, current time or both.

If the bid price is a function of the current remaining capacity, then it performs ex-

actly like a booking limit or protection level,closing off capacity to successively higher

revenue classes as capacity is consumed, otherwise the system will sell an unlimited

amount of capacity to any class whose revenues exceed the bid-price threshold.

One potential advantage of bid-price controls is that if actual revenue information

is available for a request and there are multiple revenue values in a fare class, then

a bid-price control can selectively accept only the higher revenue requests in a class,

whereas a control based on class designation alone can at best simply accept or reject

all requests in a class.

In order to propose a way to determine optimal controls, we need to introduce the

notion of displacement or opportunity cost.

Definition 1. Displacement cost - or opportunity cost - is the expected losses in fu-

ture revenue from using the capacity now rather than using it in the future.

Example 3. Suppose we have 100 seats availiable and only two classes

• a full-fare class (Class 1) which costs $180 and

• a discount-fare class (Class 2) which costs $70.
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Also, we know for certain that demand for Class 1 will be 30 and the demand for

Class 2 will be 85.

Ideally, since Class 1 generates bigger revenues, we would like to sell 30 seats to Class

1 and sell the remaining seats to Class 2, i.e., we would set a booking limit of 70 for

Class 2 or a protection level of 30 for Class 1.

Another way to decide how to allocate capacity is by evaluating the displacement cost

of each seat. Since, Class 2 customers generate less revenue, they are the best dis-

placement option. Namely, the displacement cost of the 100th, 99th, .., 21st seat is the

revenue of a Class 2 customer.

If we have 15 units of capacity remaining the displacement cost is $180, so if we re-

ceive a request for the discounted fare we would reject it, because its revenue is less

than the displacement cost of capacity. On the other hand, with 50 seats remaining

the displacement cost is only $70, so a request for a discount-fare would be accepted.

At each point in time, we can evaluate the decision of whether to accept a re-

quest by simply comparing the revenue of the request to the displacement cost. The

displacement cost is easy to compute if demand is known for certain,but much more

complex to compute when demand is uncertain. To calculate displacement cost we

use value function

Definition 2. A value function, V (x), measures the optimal expected revenue as a

function of the remaining capacity x.

The displacement cost is then the difference between the value function at x and

the value function at x− 1, or V (x)− V (x− 1).
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Chapter 2

Single Resource Capacity Control

2.1 Introduction

In this section we will discuss the problem of allocating the capacity of a single resource

to various demand classes. For example, controlling the availability of discounted seats

on a single flight leg or different rate classes for hotel rooms on a single night. The

units of capacity are assumed to be homogeneous and customers demand capacity only

for the single resource. We will assume the sales conditions of the single resource have

been differentiated to form n distinct products - or classes - as they are traditionally

called in the airline context. In most cases, we will assume that these products appeal

to different segments of the market and effectively segment the market into n classes,

one for each product. The central problem of the chapter is how to optimally allocate

the capacity of the single-resource to these various demand classes. This allocation

must be done, typically, in a dynamic fashion as demand arrives and with considerable

uncertainty about the demand that will be arriving in the future.

2.2 Static Models

In this section, we examine one of the first models for quantity-based Revenue Man-

agement, the static single-resource model. The static model makes several assump-

tions that are worth examining in some detail.

The first is that demand for the different classes arrives in non-overlapping inter-

vals in the order of increasing prices of the classes. For example, in the airline case
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advance-purchase discount demand typically arrives before full-fare coach demand, so

this assumption is a reasonable approximation. Moreover, the strict low-before-high

assumption represents the worst case, for instance, if high-revenue demand arrives

before low-revenue demand, the problem is trivial because we simply accept demand

first come.

The second main assumption is that the demands for different classes are indepen-

dent random variables. Largely, this assumption is made for analytical convenience.

To make some justification of the assumption note that to the extent that there are

systematic factors affecting all demand classes, these are often reflected in the fore-

cast and become part of the explained variation in demand in the forecasting model.

A potential weakness of the independence assumption is the residual, unexplained

variation in demand.

A third assumption is that demand for a given class does not depend on the avail-

ability of other classes. Its only justification is if the multiple restrictions associated

with each class are so well designed that customers in a high revenue class will not

buy down to a lower class and if the prices are so well separated that customers in a

lower class will not buy up to a higher class if the lower class is closed. The assump-

tion that demand does not depend on the capacity controls is a weakness, because

the price differences between the classes are rarely that dispersed.

Fourth, the static model assumes an aggregate quantity of demand arrives in a

single stage and the decision is simply how much of this demand to accept. Yet in

a real reservation system, we typically observe demand sequentially over time, or it

may come in batch downloads. However, fortunately, the form of the optimal control

is not sensitive to this assumption and can be applied quite independently of how the

demand is realized within a period.

A fifth assumption of the model is that either there are no groups, or if there are

group bookings, they can be partially accepted.

Finally, the static models assume risk-neutrality. This is a reasonable assumption

in practice, since a firm implementing Revenue Management typically makes such

decisions for a large number of products sold repeatedly. Maximizing the average

revenue, therefore, is what matters in the end.
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2.3 The two-class problem

In this subsection we consider the case of 2 classes, First, we examine the discrete

demand case. Then we consider the case of continuous demand and finally the special

case of normally distributed demand.

2.3.1 Discrete Demand

Suppose we have a flight with a limited number of C seats. There are two classes of

customers: the discount customers who book early and the full-fare customers who

book later. Note that all discount booking requests occur before any full-fare pas-

sengers seek to book. Discount customers pay pd > 0 and full-fare customers pay

pf > pd. Discount demand is a random variable Dd with c.d.f. (cumulative distri-

bution function) Fd(x) = Pr[Dd ≤ x] and full-fare demand is a random variable Df

with c.d.f. Ff (x) = Pr[Df ≤ x]. The central problem is to decide how much of

discount customers demand to accept prior to the realization of full-fare customers

demand, i.e., to find the optimal booking limit b∗2, or, equivalently, to decide how

many units of capacity to keep for full-fare customers, i.e., to find the protection level

y∗1 (y∗1 = C − b∗2).

The challenge of capacity allocation is to balance the risks of spoilage and dilu-

tion to maximize expected revenue. Setting a booking limit might cause one of the

following problems. On the one hand, if the booking limit setted too low, that will

turn away discount customers but not see enough full-fare demand to fill the plane

(spoilage), on the other hand if the booking limit setted too high, that runs the risk

of turning away full-fare customers (dilution).

To find the optimal decision we can think as follows: Suppose we have x units

of capacity remaining and receive a request from discount customers. If we accept

the request, we collect revenues of pd, but if we do not accept it, we will sell seat

x at pf iff demand for full fare is x or higher (Df ≥ x). Thus, the expected gain

from reserving the xth seat is pfPr[Df ≥ x]. Therefore, it makes sense to reject a

discount request as long as the current revenue does not exceed this marginal value,

i.e., pd ≤ pfPr[Df ≥ x].

Note the right-hand side of pd ≤ pfPr[Df ≥ x] is decreasing in x, namely as the

remaining capacity increases, the probability that full-fare demand is greater than or
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equal to x decreases. Thus, the optimal protection level is

y∗1 = max{y ∈ {0, 1, ..., C} : pd ≤ pfPr[Df ≥ y]}.

Since, b∗2 = C − y∗1, the optimal booking limit is

b∗2 = min{b ∈ {0, 1, ..., C} : pd ≤ pfPr[Df ≥ C − b]}.

The results are summarized in the following theorem.

Theorem 1. In the capacity allocation problem with 2 classes, the optimal booking

limit is

b∗2 = min{b ∈ {0, 1, ..., C} : pd ≤ pfPr[Df ≥ C − b]},

and the optimal protection level is

y∗1 = C − b∗2 = max{y ∈ {0, 1, ..., C} : pd ≤ pfPr[Df ≥ y]}.

2.3.2 Continuous Demand

Next corollary gives the optimal protection level and the optimal booking limit when

demand is continuous.

Corollary 1. When Df is continuous random variable, the optimal booking limit is

given by b∗2 = max{0, ⌈b∗⌉}, where b∗ is the solution of

pd = pfPr[Df ≥ C − b],

and the optimal protection level is given by y∗1 = min{C, ⌊y∗⌋}, where y∗ is the solution
of

pd = pfPr[Df ≥ y]. (2.1)

The last equation is known as Littlewood’s rule.

A moment of reflection shows that the optimal protection level:
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1. Is independent of the distribution of discount demand, but it depends on the

distribution of full-fare demand.

2. Does not depend on the capacity.

3. Depends on the two fares through their ratio pd
pf
. Specifically, the optimal pro-

tection level decreases as the ratio increases.

Also, the optimal booking limit:

1. Is independent of the distribution of discount demand, but it depends on the

distribution of full-fare demand.

2. Depends on the capacity.

3. Depends on the two fares through their ratio pd
pf
. Specifically, the optimal book-

ing limit increases as the ratio increases. This makes sense because while the

ratio increase this means that the discount fare is close to full fare, so there is

no need for more seats at full fare since it cost approximately the same money

as the discount fare.

2.3.3 Independent Normal Demands

To gain additional insight into Littlewood’s rule (2.1), it is useful to examine the case

of normally distributed demand.

If the demand for full fare is normally distributed with mean µf and standard

deviation σf , Littlewood’s rule (2.1) gives:

pd = pfPr[Df ≥ C − b]
pd
pf

= 1− Pr[Df ≤ C − b]

Pr[Df ≤ C − b] = 1− pd
pf

Pr

[
Df − µf

σf

≤ C − b− µf

σf

]
= 1− pd

pf

Pr

[
Z ≤ C − b− µf

σf

]
= 1− pd

pf
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Φ

(
C − b− µf

σf

)
= 1− pd

pf
C − b− µf

σf

= Φ−1

(
1− pd

pf

)
b = C − σfΦ

−1

(
1− pd

pf

)
− µf ,

where Z is normally distributed with mean 0 and standard deviation 1 (Standard

Normal distribution). Hence, b∗ = C − µf − σfΦ
−1(1 − pd

pf
) and b∗2 = max{0, ⌈b∗⌉}.

Also, y∗ = µf+ σf Φ −1(1 − pd
pf
) and y∗1 = min{⌊y∗⌋, C}. Thus, we reserve enough

capacity to meet the mean demand for full-fare customers (µf ) plus or minus a factor

that depends both on the fare ratio and the demand variation σf .

At first, we examine the effect of pd
pf

on the protection level.

• If pd
pf

= 0.5, then the optimal is to set the protection level equal to the expected

full-fare demand (y = µf ).

• If pd
pf

> 0.5, the optimal is to protect fewer seats than the expected full-fare de-

mand.

• If pd
pf

< 0.5, the optimal is to protect more seats than the expected full-fare de-

mand.

The inequality pd
pf

> 0.5 means that the difference between pd and pf is relatively

small, i.e., the discount fare is quite big, so the airline doesn’t lose a big amount of

money by selling at the discount customers. In general, the lower the ratio pd
pf
, the

more capacity we reserve for full-fare. This makes intuitive sense, because we should

be willing to take very low prices only when the chances of selling at a high price are

remote.

Next, we examine the effect of σf on the protection level.

• If σf = 0 the optimal is to set the protection level equal to the expected full-fare

demand.

• If σf > 0, we have the following cases:

• If pd
pf

= 0.5, then ys is independent of σf ( Φ −1(0.5) = 0). As the uncertainty

for the full-fare demand increases the protection level remains equal to the expected

full-fare demand.

• If pd
pf

> 0.5, then ys is decreasing in σf . As the uncertainty for the full-fare
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demand increases the protection level decreases.

• If pd
pf

< 0.5, then ys is increasing in σf . As the uncertainty for the full-fare

demand increases the protection level increases.

Figure 2.1: Littlewood function for Normal demand

Below we see Figure 2.2 that shows how y∗ changes as σf increases for fixed µf .

The blue line is for
pd
pf

< 0.5, the red one for
pd
pf

= 0.5 and the orange for
pd
pf

> 0.5.

Figure 2.2: The relation of y∗ and σf for fixed µf and different
pd
pf

2.4 n-Class Models

Now we will expand our research in the case that we have n classes, n ≥ 2. We assume

that demand for the n classes arrives in stages in increasing order of their revenue

values. We express the fee of class i as pi, so that p1 > p2 > ... > pn. Hence, class n

(the lowest price) demand arrives in the first stage (stage n), followed by class n− 1

demand in stage n− 1 and so on, with the highest price class (class 1) arriving in the

last stage (stage 1). Moreover, as Dj we denote the demand at stage j. Demand and
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capacity are most often assumed to be discrete, but occasionally we model them as

continuous variables when it helps simplify the analysis and optimality conditions.

2.4.1 Discrete Case

In the case that we have discrete demand and capacity we can formulate this problem

by using a dynamic program in the stages (equivalently, classes). The remaining ca-

pacity x is the state variable. At the start of each stage j we do not know the demand

Dj, Dj−1, ..., D1. Thus, at stage j, we know the remaining capacity x, the demand

Dj and only the distribution of the demand for the remaining stages Dj−1, ..., D1.

By using these information we have to decide how much of Dj demand we will accept.

The following theorem gives Bellman equation for the problem with n classes.

Theorem 2. (Bellman equation) Let Vj(x) denote the value function at the start

of stage j. That is, the maximum expected revenue that can be obtained starting in

stage j with x units of capacity remaining. The Bellman equation is:

Vj(x) = E

[
max

0≤u≤min{Dj ,x}
{pju+ Vj−1(x− u)}

]
(2.2)

with boundary conditions V0(x) = 0, x = 0, 1, ..., C.

Proof. Within stage j, the realization of the demand Dj occurs and we observe its

value. We decide on a quantity u of this demand to accept. The amount accepted

must be less than the capacity remaining, so u ≤ x. The optimal control u∗ is therefore

a function of the stage j, the capacity x, and the demand Dj. Thus, u
∗ = u∗(j, x,Dj),

though we often suppress this explicit dependence in what follows. The revenue pju

is collected, and we proceed to the start of the stage j − 1 with a remaining capacity

of x− u.

Once the value Dj is observed, the value of u is chosen to maximize the current

stage j revenue plus the revenue to go, or pju+ Vj−1(x− u) subject to the constraint

0 ≤ u ≤ min{Dj, x}. The value function entering stage j, Vj(x), is then the expected

value of this optimization with respect to the demand Dj.
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We first consider the case where demand and capacity are discrete. To analyse

the form of the optimal control in this case, define

∆Vj(x) = Vj(x)− Vj(x− 1),

which is the marginal value of capacity at j stage. A key result concerns how these

marginal values change with capacity x and the stage j.

The following lemma helps us find the monotonicity of ∆Vj(x) with respect to x.

Lemma 1. Suppose g : Z+ → R is concave. Let f : Z+ → R be defined by

f(x) = max
a=0,1,...,m

{ar + g(x− a)}

for any given r ≥ 0 and non-negative integer m ≤ x. Then f(x) is concave in x ≥ 0

as well.

Proof. We define y = x− a, then we have f(x) = f̂(x) + rx, where

f̂(x) = max
x−m≤y≤x

{−yr + g(y)}.

We know that if f̂(x) is concave, then so is f(x). To analyse f̂(x), let y∗ denote the

value that attains themax in maxy≥0{−yr+g(y)}. Since g(x) is concave, −yr+g(y) is

also concave and moreover it is non-decreasing for values of y ≤ y∗ and non-increasing

for values of y > y∗. Therefore,

f̂(x) =


−xr + g(x) x ≤ y∗

y∗r + g(y∗) y∗ ≤ x ≤ y∗ +m

−(x−m)r + g(x−m) x ≥ y∗ +m.

Therefore, in the range x ≤ y∗ and using the fact that g(x) is concave

f̂(x+ 1)− f̂(x) = −r + g(x+ 1)− g(x)

≤ −r + g(x)− g(x− 1)

= f̂(x)− f̂(x− 1).

For y∗ ≤ x ≤ y∗ +m, it follows that f̂(x+ 1)− f̂(x) = 0 so f̂(x) is trivially concave

in this range.

Finally, for x ≥ y∗ +m, from the concavity of g(x)

f̂(x+ 1)− f̂(x) = −r + g(x+ 1−m)− g(x−m)
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≤ −r + g(x−m)− g(x− 1−m)

= f̂(x)− f̂(x− 1).

Thus, f̂(x) is concave in x ≥ 0 and since f(x) = f̂(x) + rx, f(x) is concave in x ≥ 0

as well.

Proposition 1. The marginal values ∆Vj(x) of the value function Vj(x) ∀x, j satisfy:

∆Vj(x+ 1) ≤ ∆Vj(x),

that is at a given stage j the marginal value is decreasing in the remaining capacity.

Proof. We should show that Vj(x) is concave in x, ∀j. We know that for the terminal

stage (stage 0), V0(x) = 0 ∀x, which is trivially concave. Now assume that Vj−1(x) is

concave in x and consider

Vj(x) = E

[
max

0≤u≤min{Dj ,x}
{pju+ Vj−1(x− u)}

]
.

The inner maximization for any realization of Dj is concave function in x (Lemma

1: for r = pj ≥ 0 and m = min{Dj, x} ≤ x). Since Vj(x) is a weighted average of

concave functions, it follows that Vj(x) is concave as well.

Corollary 2. We can write

Vj+1(x) = Vj(x) + E

[
max

0≤u≤min{Dj+1,x}

u∑
z=1

(pj+1 −∆Vj(x+ 1− z))

]
, j = 1, .., n− 1,

where we take the sum above to be empty if u = 0.

Proof. From Bellman equation (2.2) for the j + 1 stage we have:

Vj+1(x) = E

[
max

0≤u≤min{Dj+1,x}
{pj+1u+ Vj(x− u)}

]
= E

[
max

0≤u≤min{Dj+1,x}
{pj+1u+ Vj(x− u)− Vj(x) + Vj(x)}

]
.

Vj(x) is independent of u, so we can move it out of the average. Hence, we have:

Vj+1(x) = Vj(x) + E

[
max

0≤u≤min{Dj+1,x}
{pj+1u+ Vj(x− u)− Vj(x)}

]
.
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We know that ∆Vj(x) = Vj(x)− Vj(x− 1).

Moreover, we have

Vj+1(x) = Vj(x) + E

[
max

0≤u≤min{Dj+1,x}

u∑
z=1

(pj+1 −∆Vj(x+ 1− z))

]

= Vj(x) + E

[
max

0≤u≤min{Dj+1,x}
{pj+1u−

u∑
z=1

∆Vj(x+ 1− z)}

]

= Vj(x) + E

[
max

0≤u≤min{Dj+1,x}
{pj+1u−∆Vj(x)−∆Vj(x− 1)− ...−∆Vj(x+ 1− u)}

]
= Vj(x) + E

[
max

0≤u≤min{Dj+1,x}
{pj+1u− Vj(x) + Vj(x− 1)− Vj(x− 1) + Vj(x− 2)

− Vj(x− 2) + Vj(x− 3)− ...− Vj(x+ 1− u) + Vj(x− u)}
]

= Vj(x) + E

[
max

0≤u≤min{Dj+1,x}
{pj+1u− Vj(x) + Vj(x− u)}

]
.

Theorem 3. For the static model with n classes, the optimal protection levels are

given by

y∗j = max{u : pj+1 < ∆Vj(u)}, j = 1, .., n− 1 and yn ≡ C.

Also, the nested booking limits are given by

b∗j = C − y∗j−1, j = 2, ..., n and b1 ≡ C.

Proof. Proposition 1 gives that ∆Vj(x) is decreasing in x. So, ∆Vj(x + 1 − z) is

increasing in z. Thus, pj+1 − ∆Vj(x + 1 − z) is decreasing in z, that is while z

increases it decreases until it becomes negative.

We would like to maximize
∑u

z=1(pj+1 −∆Vj(x + 1 − z)),thus we would like to add

only positive values. Therefore, the optimal policy is

u∗ = max{u ≤ min{Dj+1, x} : pj+1 −∆Vj(x+ 1− u) ≥ 0}

or, equivalently,

u∗ = min{u ≤ min{Dj+1, x} : pj+1 −∆Vj(x− u) < 0}.

Hence, the optimal protection level is

y∗j = max{u : pj+1 < ∆Vj(u)}.
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The equation for optimal booking limits is apparent from their definition.

In other words, the optimal control in stage j+1, when the remaining capacity is x

seats, is to keep accepting demand (give the u-th seat) as long as pj+1 ≥ ∆Vj(x+1−u)

and stop accepting once this condition is violated or the demand Dj+1 is exhausted,

whichever comes first.

We can see that, similarly to the n = 2 case, that the optimal protection level y∗j :

1. Depends on the distribution of demand only at stages j, j − 1, j − 2, ..., 1.

2. Depends on the fares pj+1, pj, pj−1, ..., p1.

3. Is independent of the capacity.

Comment 1. We derive the optimal control u∗ “as if” the decision on the amount

to accept is made after knowing the value of demand. In reality, of course, demand

arrives sequentially over time, and the control decision has to be made before observ-

ing all the demand. However, it turns out that optimal decisions do not use the prior

knowledge as we show below. Hence, the assumption that is known is not restrictive.

Comment 2. Since ∆Vj is decreasing in x, if p1 > p2 > .. > pn, then the protection

levels are ordered y∗1 ≤ y∗2 ≤ ... ≤ y∗n.

2.4.2 Continuous Case

Next, consider the case where capacity is continuous and demand at each stage has

a continuous distribution. In this case, the dynamic program is still given by

Vj(x) = E

[
max

0≤u≤min{Dj ,x}
{pju+ Vj−1(x− u)}

]
,

however Dj, x and u are now continuous quantities. The analysis of the dynamic

program is slightly more complex than it is in the discrete-demand case, but many of

the details are quite similar. Hence, we only briefly describe the key differences.

The main change is that the marginal value ∆Vj is now replaced by ∂
∂x
Vj(x).
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This derivative is still interpreted as the marginal expected value of capacity and is

decreasing in x, equivalently Vj(x) is concave in x. Similarly to the discrete case, the

optimal control in stage j+1 is to keep increasing u as long as pj+1 ≥ ∂
∂x
Vj(x−u) and

to stop accepting once this condition is violated or the demand Dj+1 is exhausted,

whichever comes first.

One of the chief virtues of the continuous model is that it leads to simplified

expressions for the optimal vector of protection levels.

First, for an arbitrary vector of protection levels y, define the following n− 1 fill

events

Aj(y,D) = {D1 > y1, D1 +D2 > y2, ..., D1 + ...+Dj > yj}, j = 1, ..., n− 1.

Then Aj(y,D) is the event that demand to come in stages 1, 2, ..., j exceeds the

associated protection levels. A necessary and sufficient condition for y∗ to be an

optimal vector of protection levels is that it satisfies the n− 1 equations

P (Aj(y
∗, D)) =

pj+1

p1
, j = 1, 2, ..., n− 1.

That is, fill event Aj should occur with probability equal to the ratio of Class j + 1

revenue to Class 1 revenue. As it should, this reduces to Littlewood’s rule in the

n = 2 case, since

P (A1(y
∗, D)) = P (D1 > y∗1) =

p2
p1
.

Note that Aj(y,D) = Aj−1(y,D)∩{D1+ ...+Dj > yj}, so Aj(y,D) can occur only if

Aj−1(y,D) occurs. Also, if yj = yj−1 then Aj(y,D) = Aj−1(y,D). Thus, if pj < pj−1,

we must have y∗j > y∗j−1 in order to satisfy P (Aj(y
∗, D)) =

pj+1

p1
, j = 1, 2, ..., n − 1.

Thus, the optimal protection levels are strictly increasing in j if the revenues are

strictly decreasing in j.

2.5 Computational Approaches

At first glance it may appear that the optimal nested allocations are difficult to

compute. However, computing these values is in fact quite easy and efficient algo-

rithmically. There are two basic approaches: dynamic programming and Monte Carlo

integration.
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2.5.1 Dynamic Programming

The first approach is based on using the dynamic programming recursion

Vj(x) = E

[
max

0≤u≤min{Dj ,x}
{pju+ Vj−1(x− u)}

]
directly and requires that demand and capacity are discrete, or in the continuous case

that these quantities can be suitably discretized. The inner optimization is simplified

by expressing it with respect to y∗j−1 from the previous stage.

We know that u∗(j, x,Dj) = min{(x−y∗j−1)
+, Dj}. Thus, substituting u∗(j, x,Dj)

into Bellman equation we obtain the recursion:

Vj(x) = E[pj min{Dj, (x− y∗j−1)
+}+ Vj−1(x−min{Dj, (x− y∗j−1)

+})]

where y∗j = max{x : pj+1 < ∆ Vj(x)}, j = 1, 2, .., n − 1 and we define y∗0 = 0. This

procedure is repeated starting from j = 1 and working backward to j = n.

For discrete demand distributions, computing the expectation above for each state

x requires evaluating at most O(C) terms since min{Dj, (x − y∗j−1)
+} ≤ C . Since

there are C states (capacity levels), the complexity at each stage is O(C2). The crit-

ical values y∗j can then be identified in log(C) time by binary search since ∆ Vj(x)

is non-increasing. Indeed, since we know y∗j ≥ y∗j−1, the binary search can be further

constrained to values in the interval [y∗j−1, C]. Therefore, computing y∗j does not add

to the complexity at stage j. Since these steps must be repeated for each of the n− 1

stages (stage n need not be computed as mentioned above), the total complexity of

the recursion is O(nC2).

Figure 2.3 shows a matlab function that applies dynamic programming approach.

Now we adduce some examples for the dynamic program.

Example 4. We consider the following demand matrices:
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Figure 2.3: The function of the Dynamic Programming

Applying the algorithm for different sets of parameters we obtain the following

results:

As we can see in every case we have kept the same capacity and the same number of

classes. In the first six cases, we have, also, kept the same demand matrix.

1. In the second case, comparing to the first one, we have increased p1, which

means that we have a more expensive first-class fee. As we see we get bigger

protection levels for class 1 and for class 1 and 2, which is logical since if a

first-class fee is much more expensive than the other ones we want to sell them

in order to have bigger profit. Moreover, as we can see in the third and the

fourth line of the matrix if we increase the value of p1 even more we get even

bigger protection levels.
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2. In the fifth case, comparing to the first one, we have increased both p1, p2, but

we have keep their values close enough. We can see that the protection level of

classes 1,2 has been increased, but the protection level for class 1 remains the

same, which is logical since their values are close enough we will have no big

difference in the profit if we sell fees of class 1 or 2. Then in the sixth case, we

see that if we decrease p2 and keep it close to p3 the protection level y1 increases,

but the protection level y3 decreases, since now we want to sell more fees from

class 1.

Now in the last three cases we have kept the same capacity and the number of classes,

but we have also kept the same fees for each class.

3. In case 7, we have the D2 matrix for demand, in which we have increased the

demand for the first class. As we can see, the probability for demanding 12

seats in class 1 is equal to the probability for demanding 12 seats in class 2. If

we compare the protection levels from the first case, the ones we got here are

higher. More specific, y2 has been doubled, which is logical since the demand for

class 1 has been increased, so obviously we want to sell more seats in class 1.

4. In case 8, we have reduce the spread of the demand and we have also decreased

the demand for every class, so we have the same protection levels with the ones

we had in the first case.

5. In the last case, we have spread even more the probabilities of demand, i.e. we

have smaller probabilities in each row but for more different seat demands. As

we can see the protection level for class 1 is really small, which is expected since

the probability of demanding many seats in class 1 is small, only 10%.

2.5.2 Monte Carlo integration

The second approach to computing optimal protection levels is based on using

Pr[Aj(y
∗, D)] =

pj+1

p1
, j = 1, 2, ..., n− 1,

together with Monte Carlo integration. It is most naturally suited to the case of

continuous demand and capacity, though the discrete case can be computed (at least

heuristically) with this method as well.

The idea is to simulate a large number K of demand vectors D = (D1, ..., Dn).
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One then progressively sorts through these values to find thresholds y1, y2, ..., yn−1

that approximately satisfy the Pr[Aj(y
∗, D)].

In what follows, it is convenient to note that

Pr[Aj(y,D)] = Pr[D1 + ..+Dj > yj|Aj−1(y,D)]Pr[Aj−1(y,D)]

Thus, the optimal y∗ must satisfy

Pr[D1 + ..+Dj > y∗j |Aj−1(y
∗, D)] =

pj+1

pj
, j = 1, 2, .., n− 1.

Indeed, we have

Pr[D1+..+Dj > y∗j |Aj−1(y
∗, D)] =

1

Pr[Aj−1(y∗, D)]

pj+1

p1
=

1
pj
p1

pj+1

p1
=

pj+1

pj
, j = 1, ..., n−1.

The algorithm in Figure 2.4 computes the optimal y∗ approximately using the empir-

ical conditional probabilities derived from a sample of simulated demand data.

The complexity of this method is O(nKlogK), which is nearly linear in the number

of simulated demand vectors K. Thus, it is relatively efficient even with large sam-

ples. It is also quite simple to program and can be used with any general distribution.

2.6 Heuristic Methods

As we have seen, computing optimal controls for the static single resource model is

not mathematically difficult, but they can be computationally intensive when need to

be applied to thousands of flights in a limited period of time. For this reason, exact

optimization models are not widely used in practice. Indeed, most single resource

airline revenue management systems use one of several heuristics to compute booking

limits and protection levels.

There are two main reasons for this state of affairs. The first is simply a case of

practice being one step ahead of the underlying theory. Heuristics are also widely

used because they are simpler to code, quicker to run, and generate revenues that in

many cases are close to optimal.

The most popular of these heuristics are the expected marginal seat revenue

(EMSR) approaches, especially EMSR-a and EMSR-b. Both heuristics are based

on the n-class, static, single-resource model defined above. Static model assumptions

apply: classes are indexed so that p1 > ... > pn, Fj(x) denotes the c.d.f. of class j
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Figure 2.4: Monte-Carlo Algorithm

demand, and low revenue demand arrives before high-revenue demand in stages that

are indexed by j as well. Moreover, for ease of exposition we assume that capacity

and demand are continuous and that the distribution functions Fj(x), j = 1, .., n, are

continuous as well, though these assumptions are easily relaxed.
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2.6.1 EMSR-a

EMSR-a is based on the idea of adding the protection levels produced by applying

Littlewood’s rule to successive pairs of classes. Consider stage j+1 in which demand

of class j + 1 arrives with price pj+1. We are interested in computing how much

capacity to reserve for the remaining classes j, j − 1, .., 1 that is the protection level

yj, for classes j and higher. To do so, suppose there was only one class remaining,

call it k. Considering only classes k, for each k = j, j − 1, ..., 1, and j + 1, solving

Pr[Dk ≥ yj+1
k ] ≤ pj+1

pk
we reserve capacity yj+1

k for class k. Now we have computed

protection level for each class k in isolation. To approximate the total protection

level yj for classes j and higher we have yj =
∑j

k=1 y
j+1
k . Then we repeat the same

calculation for each stage j.

EMSR-a can be excessively conservative and produce protection levels yj+1
k that

are larger than optimal in certain cases. This is because adding the individual pro-

tection levels ignores the statistical averaging effect (pooling effect) produced by ag-

gregating demand across classes.

Figure 2.5: EMSR-a Algorithm
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2.6.2 EMSR-b

EMSR-b again reduces the problem at each stage to two classes, but now the ap-

proximation is based on aggregating demand, no protection levels like in EMSR-a.

Specifically, the demand from future classes is aggregated and treated as one class

with a revenue equal to the weighted average revenue.

This heuristic assumes that the demand in all classes follows normal distribution.

Specifically, the demand for class j is Dj ∼ Normal(µj, δ
2
j ). It is based on the idea

of finding the protection level yj by creating an “artificial class” with demand equal

to the sum of the demands for the future periods, i.e., D(j) ∼ Normal(µ(j), (δ(j))2)

and a fare equal to the average expected fare from the future bookings, i.e., p(j) =∑j
i=1

piµi

µ(j)
, where µ(j) =

∑j
i=1 µi and δ(j) =

√∑j
i=1 δ

2
i . Then, it uses Littlewood’s

rule (2.1) to find the protection level for this artificial class. So, yj is given as

yj = µ(j) + δ(j)Φ(1− pj+1

p(j)
).

EMSR-b avoids the lack-of-pooling defect in EMSR-a mentioned above. How-

ever, using the weighted average revenue is a somewhat crude approximation that

can distort the protection levels produced.

Figure 2.6: EMSR-b Algorithm
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2.6.3 Comparison EMSR and Monte Carlo

EMSR-a and EMSR-b generally capture a high percentage of optimal control. There

are cases where EMSR-a approximates the optimal protection level better than EMSR-

b. Also, there are cases where EMSR-b approaches the optimal protection level better.

Below we see one example of its case.

Example 5. We assume that there are four classes with fares $1150, $965, $750 and

$530 and the capacity is 120. The demand for every class is normally distributed.

Class 1 has mean 15 and standard deviation 6, class 2 has mean 45 and standard

deviation 12, class 3 has mean 37 and standard deviation 9 and class 4 has mean 29

and standard deviation 15.

In Monte Carlo algorithm for 1000 simulated data points we have y =


9.1530

52.8609

96.9874

120

,

while in EMSR-a and EMSR-b we get y =


9.05466

48.49949

91.21203

120

 and y =


9.05466

51.29999

93.68057

120

, respec-
tively.

Example 6. As in the above example we assume four classes with fares $1150, $465,

$450, and $430. We keep the same capacity and demand distribution for every class.

Again we simulate 1000 data points in Monte Carlo algorithm and we get y =
16.722

41.874

79.787

120

, while in EMSR-a and EMSR-b we get y =


16.45265

39.47237

66.36583

120

 and y =


16.45265

52.68236

85.54854

120

,
respectively.
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Chapter 3

Network Capacity Control

3.1 Introduction

Network Revenue Management is applied when a company sells products that use

multiple resources and each resource has limited capacity. We first give two examples

where an airline company and a hotel need to apply Network Revenue Management.

Example 7. Suppose we have to manage the capacities of a set of flights in a hub-

and-spoke airline network with connecting and local traffic. At the following figure we

can see the connection among the flights:

We assume that we can move only from the left to the right. Man can see that

• from town A and B we can go to town C, D, E, and F,

• from town C we can go to town D, E, and F, and

• from town D we can go to town E and F.
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Thus, we have 13 flights totally. Moreover, we let every flight have only full-fare and

discount-fare. The combination of our flights and fees is our products, so here we

have 26 products. Every flight, without a stop, is a resource, i.e., here we have 5

resources A → C, B → C, C → D, D → E and D → F . We should allocate the

capacity of each resource to the products that use this resource. For example, the

capacity of resource B → C should be allocated to the following 8 products: B → C,

B → D, B → E and B → F full and discount-fare. Then in order to accept a

demand for a particular product, we should check the booking limits of every resource

that this product uses.

Example 8. Assume now we have to manage hotel capacity on consecutive days where

customers have varying lengths of stay. Here, resources are each day and products

are the combination of the days, i.e., the arrival date, and the length of stay. For

example, a hotel accepting reservations for customers arriving for the next 365 days

with stays from 1 to 10 days in length and only one room type offers

1× 10× 365 = 3, 650 products.

We have to deal with the following problem: if a demand from Monday till Friday

comes should we accept it or not? A reservation from Thursday till Monday will be

much more expensive than the aforementioned, due to it includes weekend. So, if we

accept the first one maybe we will lose money.

Again, to solve this problem we should allocate the capacity of each resource to the

products that use this resource.

From the above examples it is obvious that our challenge is to allocate capacity

from every resource to every product. Then when demand of a product arrives we

should check the remaining capacity of each resourse it uses. In the example above

we see a very simple airline network, however, someone can notice that for even less

resources it is very difficult to decide which resource to sell to each product. Imagine

having even more fees, not only the full and the discount ones, as well as even more

towns, which is actually what happens in practice.

Due to the above, the need to develop Network Capacity Control arises. Here

the demand of a resource isn’t independent of the demand of the other resources,

because of the fact that customers may demand more than one resource concurrently

to accommodate their needs, so limiting availability of one resource may cause a loss
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of demand for complementary resources. Thus, we can no longer maximize total rev-

enue by maximizing revenue from each resource independently, as we did in single

resource problems. Rather, we need to consider the interactions among the various

products we sell and their effect on our ability to sell other products.

Making control decisions at network level can provide significant revenue benefits.

Simulation studies have shown that improvements start from 0.5% and they can be

as high as 2% or more. The potential benefit may be high, however, network Rev-

enue Management has some drawbacks as well. Firstly, on the implementation side,

network Revenue Management increases the complexity and variety of data that one

must collect, store, and manage. Secondly, there are organizational challenges, since

revenue decisions and their effects now span an entire network and revenue losses at

one point in the network may be offset by gains elsewhere in the network. Next, one

will face methodological challenges as well. The forecasting system now must produce

forecasts for each individual itinerary and price-class combination, i.e. for each prod-

uct, at each point in the booking process. Lastly, optimization is more complex too.

As long as, exact optimization is, for all practical purposes, impossible optimization

methods necessarily require approximations of various types.

3.2 Types of controls

In network allocation problems there are a variety of ways one can control the avail-

ability of capacity. The main purpose is to find an effective and easy to apply method

to allocate capacity. We next look at the major categories of network controls.

3.2.1 Partitioned Booking Limits

In the network case, partitioned booking limits allocate a fixed amount of capacity on

each resource for every product that is offered. Demand for a product has exclusive

access to its allocated capacity, and no other product may use this capacity.

Partitioned booking-limit control for network is an extension of the partitioned

control for single-resource, thus they have all the defects mentioned in single resource

section and some more. First of all, the number of products in even a small-size net-

work, like in our example, can be very large. Therefore, allocating fixed amounts of

capacity to each product results in dividing the capacity of each resource into a very
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large number of small allocations. As a result maybe there is a severe loss, since many

products may go unsold because they use up their meagre allocations if demand is

even slightly higher than the allocation, while many others may have excess capacity

if demand is slightly less than their allocation. Apart from inefficiencies, the tremen-

dous number of product combinations makes the storing and checking allocations for

each combination impractical.

Example 9. For the airline example above, suppose that at each aeroplane we have

100 seats. As we said above we have 14 products. Let A → C be the aeroplane goes

from town A to C, B → C the one goes from B to C, etc., namely the resources.

Resource A → C can be used at 8 products, resource B → C at 8 as well, resource

C → D at 10, resource D → E and D → F at 8. Thus, in partitioned booking limits

many of these products will have only a few seats.

For all the reasons above, partitioned booking limits are seldom used in practice.

Nevertheless, partitioned allocation do have an important role to play both theoreti-

cally and computationally. Theoretically, they are used to provide bounds on the op-

timal network revenue. Computationally, they are used in many approximate models.

3.2.2 Greedy Heuristic Method

Here we will introduce a heuristic method called Greedy Heuristic that can be used

when only one resource has capacity that is less than the total expected demand.

A Greedy Methodology is a procedure were we take under consideration only the

resource that its demand exceeds its capacity and solve this problem by using EMSR

algorithms from the previous chapter.

In general, many mathematical methods of operation research may fail to solve a

problem, thus we use greedy methods which can provide high quality solution very

fast and are applicable to huge problems. But the disadvantage of these algorithms

is that they don’t always produce the optimal solution just a very good one.

Example 10. Suppose we have an airline that offers two flights. Flight 1 goes from

town A to B and flight 2 from town B to C. The airline has assigned a 100-seat

aircraft on flight 1 and a 300-seat aircraft on flight 2. Moreover, suppose we have
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only full and discount fares. The demand of each product is normally distributed.

The fare of each product, the mean and standard deviation of its demand are given

in the following table:

We notice that here, expected demand exceeds capacity only on flight 1. All the demand

of products that use only the other resource (i.e., products 3 and 4) will be accepted.

One approach to maximize our revenues is to limit the number of discount fares

booking any product that includes flight 1 in order to protect availability for full fare

customers. This approach has an obvious drawback. Full fare customers that buy a

ticket for flight A → B pay $350, but discount customers for flight A → C pay $550.

Namely, we have the risk of losing $200.

A more sophisticated approach, which considers both flight rate and combinations

of flights, is called Greedy heuristic. Here we order all products that use flight 1 by

total rate paid and solve the multi-class problem using EMSR heuristic.

We will order the products that use the constrained recourse by their fare and use

EMSR heuristics to find the optimal allocation.

By applying the above to EMSR algorithms from Chapter 2, we have:
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Thus, according to EMSR-A algorithm we should protect 43.66 seats for flight A → C

full-fare, 115.81 seats for flights A → C full-fare and discount and 157.54 seats for

flights A → C full-fare and discount and for flight A → B full-fare. The remaining

seats will go to the flight A → B discount. Accordingly for the EMSR-B algorithm.

Since, our capacity is 100, it is obvious that 43.66 seats will be protected for flight

A → C full-fare, and 100 for flight A → C full-fare and all the remaining.

Here, we should note that Greedy heuristic is optimal if there is only a single

resource that is expected to be constrained and breaks down quickly for more than

one constrained resources.

3.2.3 Linear Programming

Linear programming provides an exact solution to the network management problem,

if we know the exact future demands and they are independent. On the one hand, we

know that uncertainty is a key element of revenue management decision making, so

this solution is not entirely sufficient. On the other hand, it provides a good starting

point for a fully optimal solution.

Suppose we have m resources and n products, which are using combinations of

these resources, with n ≥ m. We represent with i the resources for i = 1, 2, ..,m and

with j the products for j = 1, 2, .., n. Moreover, the resource i has capacity ci and

the product j has a known demand dj and price pj. We define:

aij =

{
1, if resource i is used by product j

0, otherwise.

Lastly, we have the decision variable xj, which is the number of product j units that

we will sell. So, now we have to solve the following linear program:

max
n∑

j=1

pjxj

subject to
n∑

j=1

aijxj ≤ ci, i = 1, 2, ..,m,

xj ≤ dj, j = 1, 2, .., n,

xj ≥ 0, j = 1, 2, .., n.
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3.2.4 Virtual nesting controls

In network case the ordering of classes is no straightforward and because of the dif-

ferent capacities of the resources it is difficult to specify protection levels or booking

limits for products that are consistent across the resources in the network. Thus, it’s

difficult to adjust booking limits and protection levels from the single-resource case.

Contrary to partitioned controls, nested controls have the advantage to dynami-

cally share the capacity of a resource, namely it allows products to be nested. More-

over, companies want a control, which allows them to adapt the pre-existing, leg-based

control structures in its reservation system to the network management problem with

minimal changes. Hence, it is desirable to have a control with these features, so

American Airlines developed virtual nesting controls.

Virtual nesting uses single-resource nested-allocation controls for each resource

in the network. But here, we use virtual classes in nested allocation, which group

together sets of products that use a given resource. Products are assigned to a virtual

class through a process known as indexing, which fundamentally provides a table

that maps every product to a virtual class on each resource. We don’t use product’s

total fares for the indexing process, because a product with a high fare but a high

opportunity cost on its other resources should potentially be placed below a product

with lower fare but no opportunity cost on its other resources. For this reason, the

indexing process associates a network revenue benefit called net leg fare to each

product defined as:

net leg fare for product j on resource i =

fare for product j

−
sumof opportunity costs on all resources other than i

.

The 3 parts of virtual nesting are initialization, operation and re-optimization. We

describe each one below.

I) Initialization: The initialization of virtual nesting consists of 3 steps.

Step 1

We define a set of buckets on each resource and we map each product into a bucket

on each of its resources based on an estimation of the product’s value, i.e., the net

leg fare, to the company. The number of buckets is based on the number of products

that use the resource, but there is no strict rule on it. Each bucket should contain

products of similar value.

Step 2

For each resource bucket, we estimate the mean and the standard deviation of the

total demand and a corresponding fare.
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Step 3

We use EMSR to determine booking limits and protection levels for each bucket on

each resource.

Comment 3. We have the following characteristics for buckets:

1. Each bucket contains products of similar value.

2. The bucket 1 on each resource contains the most expensive products and the last

bucket the cheapest products.

3. The buckets are nested, namely bucket 1 has access to the entire capacity, bucket

2 has access to all the capacity except that protected for bucket 1, and the lowest

bucket has access only to its own allocation.

II) Operation: Once initialization is done the booking process starts. When a

request comes for a particular product combination, its virtual class is identified and

the system checks for availability of this virtual class on each resource required by

the product.

• If all the virtual classes are available, the request is accepted and we reduce

bucket availabilities on all resources in the booked product, else, the request is

rejected.

• If a cancellation occurs we increase bucket availabilities for each resource in the

cancelled product.

III) Re-optimization: We periodically rerun EMSR based on the new forecasts

and capacity remaining on each resource.

Virtual nesting has proven to be quite effective and popular in practice, on account

of its ability to preserve the single-resource, nested allocation structure of control.

However, it has a few remarkable disadvantages. First of all, if data is collected at

the virtual class level, then re-indexing can alter which products are mapped into

each virtual class. So, due to indexing the virtual class demand statistics may shift

dramatically even when the underlying product-level demand is unchanged. Virtual

classes can also cause confusion for analysts, who may not be able to easily interpret

virtual class demand.
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Example 11. As in the above example in Greedy Heuristic section, suppose we have

an airline that offers two flights. Flight 1 goes from town A to B and flight 2 from

town B to C. The airline has assigned a 100-seat aircraft on flight 1 and a 250-seat

aircraft on flight 2. Moreover, suppose we have only full and discount fares. The

demand of each product is normally distributed. The fare of each product, the mean

and standard deviation of its demand are given in the following table:

The opportunity cost for flight 1 is $150 and for flight 2 is $300. As we can see

here, the expected demand exceeds capacity on both flights, thus we can’t use Greedy

Heuristic. So, we should do the initialization of virtual nesting:

I) Initialization:

Step 1.Indexing Here we have decided to use 3 buckets for each flight.

Step 2.For each leg bucket, estimate the mean and the standard deviation of the total

forecasted demand and a corresponding fare.

For bucket 3 we have:

mean = 55 + 85 = 140
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SD =
√
152 + 122 ≃ 19.209

fare =
55 ∗ 280 + 85 ∗ 250

140
≃ 261.7857

For bucket 2 we have:

mean = 75 + 85 = 160

SD =
√
102 + 122 ≃ 15.62

fare =
400 ∗ 75 + 400 ∗ 85

160
= 400

Step 3. Using EMSR-a and EMSR-b, for the mean and the standard deviation of

demand by bucket and flight capacity, we get the following protection levels for each

bucket on each flight:

II) Operation:

The operation starts. Suppose we have the following booking request and cancellations:

1. Request 2 tickets for A-B full-fare

2. Request 6 tickets for A-C discount

3. Request 6 tickets for A-C full-fare

4. Cancellation 2 tickets for A-C full-fare

5. Request 3 tickets for B-C full-fare

Firstly, we should calculate the nested booking limits:

Flight 1
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b1 = C = 100

b2 = C − 65 = 35

b3 = C − 104.23 = C − 100 = 0

Flight 2

b1 = C = 250

b2 = C − 65 = 185

b3 = C − 215.9 = 34.1

A request for 2 tickets for the product “A-B full-fare” arrives. We see that this product

belongs to bucket 2 at flight 1. Since, we have the requested demand (b2 = 35) we

accept the request and we reduce each booking limit at flight 1 by 2.

Then, a request for 6 tickets for the product “A-C discount” arrives. This product

belongs to bucket 3 at flight 1, which, as we can see, has booking limit b3 = −2, thus

we should reject the request.

Continuing, we receive another request for 6 tickets for the product “A-C full-fare”,

which belongs at bucket 1 at flight 1 and 2. In order to accept this request we should

have available capacity in both flights, so we check the booking limit for bucket 1 in

both flights, which is 98 and 250, respectively. Thus, we accept the request and reduce

all booking limits by 6.

Now, a cancellation for 2 tickets at product “A-C full-fare” arrives. Thus, we increase

all booking limits by 2, since this product belongs in both flights.

Finally, a request for 3 tickets for the product “B-C full-fare” arrives, which belongs

at bucket 2 at flight 2. We accept it (b2 = 182) and reduce all booking limits by 3.
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3.2.5 Bid Price controls

Contrary to nesting controls, single resource bid-price controls are easy to translate

directly into a network setting. Here, in network case, a bid-price control sets a

threshold price (bid price) for each resource in the network defined as:

bid price =
estimate of the marginal cost to the network of consuming

the next incremental unit of the resource’s capacity

When a request for a product comes in, if the revenue of the request exceeds the

sum of the bid prices, the request is accepted else, it is rejected.

One can notice that the bid-price controls get over a lot of the problems we had

in virtual nesting. Namely, first of all the number of parameters involved is minimal,

since one only has to specify a single value for each resource and not for each product

as we had in virtual nesting. Furthermore, they have a natural economic interpreta-

tion as the marginal cost to the network of each resource, so business analysts can

easily understand and manage network revenue management systems. Finally, as we

saw above, evaluating each request only requires a simple comparison of revenue to

the sum of bid prices for the requested resources, apart from the fact that the trans-

action processing task is quick, this comparison provides a measure of the net benefit

of accepting a request.

Bid prices can have very good revenue performance in simulation studies and

can even be shown to be theoretically near-optimal under certain conditions. De-

spite these advantages, bid-price controls had gained some bad criticism. The debate

about bid prices being “unsafe” was discussed in Chapter 2 in the single-resource

context, initially one deals with the same issues in network case. Namely, in bid-price

control if there is a rush of discount demand, the entire inventory may be sold out;

this is not the case regarding the nesting controls because of their inherent limits on

discount availability. An other criticism, concerns the overall revenue performance of

bid-price methods. Indeed, bid-prices can perform badly, worse than virtual nesting

and sometimes worse than even single-resource control methods.

The bid-price disadvantages described above affect only the most simple imple-

mentation of bid-price controls. Bid-prices and capacity are dependent, so bid-prices

should be updated with every change in capacity, every sale or cancellation, and ide-
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ally they should be updated over time as well. One way to implement these updates

is through dynamic bid-price controls, i.e. capacity-time dependent tables.

3.3 Dynamic programming approach for optimal

network controls

We will describe the basic model of the network allocation problem. The network has

m resources which can be used to supply n products. We define

aij =

{
1, if resource i is used by product j, and

0, otherwise.

Moreover, let A = [aij] be the m × n incidence matrix. Thus, Aj, the jth column of

A, is the incidence vector for product j, namely has an entry of one in every resource

that is used by product j. Equally, Ai, the ith row, denote the set of products that

use resource i. In other words, the notation i ∈ Aj indicates that resource i is used

by product j, and likewise j ∈ Ai that the product j uses resource i.

We define the vector x = (x1, x2, ..., xm), where xi is the capacity for the resource

i. This vector describes the state of the network. If product j is sold, the state of the

network changes to x−Aj (i.e. xi−aij), namely we abstract from the capacity of the

resource i one if product j uses resource i. To simplify our analysis, we will ignore

cancellations or no-shows and also we will omit the possibility of booking requests for

multiple units of capacity.

We discretize the time, i.e., we divide the time horizon into small slots such that

within each time slot at most one request for a product can arrive. We assume that

there are T periods and index t represents period (slot) t. The time of service is

t = T .

Demand in period t is modelled as the realization of a single random vector R(t) =

(R1(t), ..., Rn(t)).

Rj(t) =

{
rj, if a request for product j occurred, and

0, if no request for product j occurred,

where Rj(t) > 0 is the associated revenue. A realization R(t) = 0 (all components

equal to zero) indicates that no request from any product occurred at time t. Since
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the probability of more than one request is negligible, at most one component of R(t)

can be positive.

Once again we deal with the quantity-based revenue management decision:

“Do we or do we not accept the current request?”

We define the n-vector u(t), which denotes this decision. The component uj(t) =

uj(t, x, rj) depends on the current time t, the current remaining capacity x and the

current request’s price rj. Specifically,

uj(t) =

{
1, if we accept a request for product j in period t, and

0, otherwise.

Since we can accept at most one request in any period and resources cannot be

oversold, if the current seat inventory is x, then u(t) is restricted to the set U(x) =
{u ∈ En : Au ≤ x}, where En = {e0, .., en} and ej is the jth unit n-vector.

3.3.1 The structure of the optimal controls

In order to formulate a dynamic program to determine optimal decisions u∗(t, x, r),

we have the following theorem:

Theorem 4. (Bellman equation) Let Vt(x) denote the maximum expected revenue-

to-go given remaining capacity x in period t. Then Vt(x) must satisfy the Bellman

equation:

Vt(x) = E

[
max
u∈U(x)

{
RT (t)u(t, x, R(t)) + Vt−1(x− Au)

}]
,

with the boundary condition VT+1(x) = 0, ∀x.

Comment 4. One can notice that Vt(x) is finite for every finite x.

Corollary 3. An optimal control u∗ satisfies:

u∗
j(t, x, rj) =

{
1, rj ⩾ Vt+1(x)− Vt+1(x− Aj) and Aj ⩽ x

0, otherwise.

Namely, an optimal policy is to accept revenue rj for product j if and only if we have

sufficient remaining capacity and rj ⩾ Vt+1(x) − Vt+1(x − Aj), where Rj(t) = rj is

the revenue value of the request for product j.

47



Comment 5. Intuitively, an optimal control is to accept a revenue of rj for a given

product only when it exceeds the opportunity cost of the reduction in resource capaci-

ties required to satisfy the request, which is reflected exactly in the above equation.
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Chapter 4

Overbooking

4.1 Introduction

In the aspect that we saw Revenue Management in the previous chapters, it was

mainly concerned with how best to price tickets or allocate capacity. However, over-

booking is concerned how we can increase capacity utilization. Overbooking occurs

when an airline with limited capacity sells more units than it can offer. The reason

that airlines book more seats than they actually have, is obviously to avoid revenue

lost due to no-showing passengers or cancellations. It has been shown that, in fi-

nancial terms, overbooking is among the most successful of Revenue Management

practices. Indeed, without a form of overbooking a big percentage of the seats from

cancellations or no-shows will remain unsold.

Figure 4.1: Monthly rate of no-shown passengers
https://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=8903812&fileOId=8903813
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Consider a flight with 100 seats that has a higher demand than 100. Also, assume

that passengers on this flight on average have a 10% no-show or cancellation rate.

If the airline never overbooks, it would, on average, depart with 10 empty seats on

every flight and at the same time deny reservations to passengers who wanted to be

on this flight. If a cancellation occurs last minute and the passengers have refundable

ticket this will cause to the airline the lost of the tickets’ fee and also it will be very

hard to find another passenger. On the other hand, a no-show will not cost to the

airline, but they maybe had denied selling tickets to other passengers, which causes

bad reputation for the airline.

Figure 4.2: Number of passengers denied boarding from 2000-2020
https://www.statista.com/statistics/186198/passengers-voluntary-and-involuntary-not-boarded-since-1990/

Overbooking has a lot of risks. The biggest challenge in overbooking is to control

the level of reservations to balance the potential risks of denied service against the

rewards of increased sales. Obviously, when overbooking too much, there is a penalty,

which is usually more expensive for the airlines than to have an empty seat. More-

over, it involves dealing with the resulting legal and regulatory issues. Theoretically,

this involves controlling parameters of a probability distribution, which introduces

somewhat unique methodology that is not encountered in other areas of Revenue

Management.

We use the following terminology:

No show is a booking that does not appear on the day of service.

Cancellation is a booking that is cancelled before the day of service.
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Denied boarding is a booking that shows up on the day of service and does not

receive service because of overbooking.

4.1.1 Reservation Mechanism

We can consider a fee reservation as a contract between a customer and the airline.

When a customer books a fee, he directly has the claim to use the service he has

paid for. Namely, he has the right to use the ticket in the date for which he made

the reservation at a fixed price. Moreover, often the customer has also the option to

cancel before the flight and many times they pay extras for this specific service. The

cancellation option in a reservation gives customers the benefit of locking in availabil-

ity in advance and many times in low prices, and also having the flexibility to cancel

and refund if their plans or preferences change.

Most of the customers prefer reservations with a cancellation option, in order not

to risk losing their money. But this type of reservations cause a two-sided risk for the

airline. Firstly, in the case that customers show up they should honour the reserva-

tion or provide a suitable reimbursement. In the case where customers cancel or not

show-up the airline should cope the opportunity cost of wasted capacity. They have

two ways to counterbalance the economic losses. The first one is to impose penalties

in the cases of cancellations in order to make this option less desirable. Obviously,

if the penalties are too large this will make the cancellation choice pointless. The

point of these penalties is to make the customers and the firms to share the risk of

cancellations, otherwise customers could book many different fees and in the end keep

the one they want.

Another approach is airlines to offer more seats than the capacity they really have.

This of course has the risk the number of show up customers to be more than the

capacity. In essence, this is the planned overbooking. Choosing the overbooking

strategy makes the airline to face several important problems. One is confronting

the legal implication of failing to deliver a service. Furthermore, they should have

developed strategies in order to deal with the denied service situations, i.e., offering

customers another flight soon in order to go to their destination and also offer them

cheaper tickets. In many cases, where customers should stay in a hotel, the airline

should pay for these expenses, too. So, a denied service implies costs to the company.
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4.1.2 Legal issues in Overbooking

Since 1965, overbooking was an officially approved practice with the requirement

of being “carefully controlled”. This happens because of some studies, which have

been conducted, shown that there is a no-show rate of 1 out of every 10 passengers

booked contrary to the small denied boarding rate of 7.69 per 10, 000 passengers. No

shows created real economic problems for the airlines. Through carefully controlled

overbooking the airlines can reduce the number of empty seats and at the same time

serve the public interest by accommodating more passenger.

Legally, overbooking involves the risk of potentially failing to deliver on a contract

to provide service. Thus, for the airlines to be legally right, they should involve the

following overbooking notification statement on all airline tickets:

Moreover, there were the following regulations for overbooking:

1. Denied boarding compensation was of 200% of the coupon.

2. Airlines were required to seek volunteers first before denying boarding to any

passenger involuntarily.

3. The travelling public was to be notified of the deliberate overbooking practices

of the airlines.

4. A statement warning passengers that their flight may be overbooked and in-

forming them of their rights was to be printed on every ticket.

These basic rules are still in existence since 1974, where a passenger was denied

boarding, who sued the airline and won with the claim that the airline did not in-

form passengers of its practice of overbooking. Thereafter, airlines in order to find

volunteers to give up their seats on oversold flights they use vouchers and payments.

As a result, involuntary denied boardings have been decreased nowadays comparing

to the time when overbooking was a secret practice.
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4.1.3 Managing over-sales occurrences

In the event of over-sales they should choose the customers carefully, since managing

the compensations and the selection of customers can have a significant impact on

the expenses for the airline when they denied a service. Also, it affects the customers’

perception for the airline.

As for compensation, in the case of denied service legally the company should give

the customer a monetary compensation. But this compensation does not attract cus-

tomers in order they to give up their seat. It has been proved that it is more effective

to offer customers a substitute service plus supplementary services that may make

the short-run delay in their schedule more acceptable. Compensation that is targeted

to substitute for the denied service and perhaps improve it somewhat in most cases

is less expensive for a provider and it seems to be more desirable from the customers

than monetary compensation.

Selecting which customers are to be denied service also can have a significant im-

pact on both the firm’s direct costs and customer’s goodwill, i.e., they should target

on customers that they could delay their plans, namely not business travellers. From

a legal standpoint, airlines current regulations state that:

The default option for allocating service to customers is usually to do it on a first-

come, first-serve (FCFS) basis. A FCFS allocation is perceived as fair and encourages

customers to arrive on time. But airlines do not always use this way of allocation.

According to some researches young, student travellers are eager to receive a nice

hotel room and a good meal in exchange for taking a flight the following day. There-

fore, gate agents see which passengers have arrived for the flight and selectively target

specific passengers for denied-boarding offers, which is possible on the grounds that

customers gather to the gate before departure.

An alternative method of managing over-sales is to conduct an auction to attract

volunteers to give up their reservations in exchange for monetary or other compen-

sation. At 1968, when this idea appears for the first time, the airlines object to the

scheme and none of them offers to experiment with it on even a single flight. The

scheme continued to flounder until 1977 when an economist adopted it under the
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heading of a “volunteer” denied-boarding plan. The happiest result of the volunteer

plan is that airlines now have a fair and efficient way to avoid denying seats to peo-

ple who have a pressing need to make their flights as planned. Moreover, it enables

airlines to reduce costs while maintaining customer goodwill and thereby protecting

future revenue. This practice is now widespread in airlines and familiar to most trav-

ellers.

To sum up, overbooking practices takes time to establish, because consumers have

to get used to and accept overbooking practices, and providers in turn have to learn

how to develop strategies and operational practices that make overbooking as pain-

less as possible for customers. Moreover, overbooking is a well-developed and refined

practice, it remains a primary source of dissatisfaction for customers. Even at its

best, overbooking is a somewhat awkward compromise between economic efficiency

and service quality.

4.2 Static Overbooking Models

In this section, we will analyse the methodology for making overbooking decisions

based on static overbooking models, which is the simplest and most widely used

methodology. In practice, static models are used to compute overbooking limits,

which are then used as inputs to capacity-allocation models. The models simply de-

termine the maximum number of fees to offer at the current time given estimates of

cancellation probabilities from the current time until the day of service. These static

overbooking models are typically re-solved periodically to account for changes in the

cancellation and no-show probabilities over time, resulting in overbooking limits that

decline over time, since while we are approaching the date of the flight is less possible

a cancellation to arise. The current overbooking limit gives the maximum number of

reservations one will accept at any time.

There are two types of events that affect the overbooking decisions, cancellations

and no-shows. While both result in a situation where a reservation does not “sur-

vive” to the time of service their difference is related to the time each event occurs.

Essentially, a no-show is a cancellation, which happened on the time of service. The

main difference, between cancellation and no-show, is that with a cancellation, the

firm has an opportunity to possibly replace the cancelled reservation, since they have

more available time to find another customer in contrast to a no-show. Moreover,
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many fees offer to the customer the capability to cancel and take his money back, so

the firm will lose these money if they don’t find replacement. Contrary, in a no-show

there is no refund, so the seat will be empty but paid. Under a static model, all that

matters is the probability that a reservation survives to the time of service.

4.2.1 The Binomial Model

The simplest static model is based on a binomial model of cancellations in which a

no-show is treated simply as a cancellation that occurs at the day of service. We

make the following assumptions:

1. Customers cancel independently of one another.

2. Each customer has the same probability of cancelling.

3. The cancellation probability depends only on the time remaining to service and

is independent of the age of the reservation.

Let t denote the time remaining until service, C denote the physical capacity, u denote

the number of reservations on hand and q the probability that a reservation currently

on hand shows up at the time of service, so 1− q is the probability that a customer

cancels prior to the time of service. In general the more time remaining the more

likely it is that customers cancel before the time of service, so q decreases in the

remaining time t.

Under the assumptions stated above and suppressing the notation regarding the

remaining time t, the number of customers who show up at the time of service given

there are u reservations on hand, denoted Z(u) “the show demand”, is binomially

distributed with p.m.f.

pu(z) = Pr[Z(u) = z] =

(
u

z

)
qz(1− q)u−z, z = 0, 1, .., u,

c.d.f.

Fu(z) = Pr[Z(u) ≤ z] =
z∑

k=0

(
u

k

)
qk(1− q)u−k, z = 0, 1, .., u,

and mean and variance

E[Z(u)] = qu & V ar[Z(u)] = uq(1− q).
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It is convenient to work with the complement of the distribution Fu, denoted by F u,

which is defined by

F u(z) = 1− Fu(z) = Pr[Z(u) > z].

Several studies have showed that group-cancellation behaviour does invalidate the

binomial model for certain cabins on certain flights, overall its concluded that the

binomial model adequately fits the data.

Overbooking Based on service level criteria

There are two types of service levels. Type 1 service level is the probability of over-sale

at the time of service. Given that there are u reservations on hand, this probability

is denoted s1(u) and is given by

s1(u) = F u(C).

A matlab function that calculates Type 1 service level is shown in Figure 4.3.

Figure 4.3: Matlab function for Type 1 service level

A more intuitive measure of service is the Type 2 service level, which is the frac-

tion of customers who are denied service and denoted by s2(u). This fraction is given

by

s2(u) =
E[(Z(u)− C)+]

E[Z(u)]

=

∑u
k=C+1(k − C)pu(k)

uq

=

∑u
k=C+1 kpu(k)− C

∑u
k=C+1 pu(k)

uq
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=

∑u
k=C+1 k

(
u

k

)
qk(1− q)u−k − CF u(C)

uq

=

∑u
k=C+1 u

(
u− 1

k − 1

)
qqk−1(1− q)(u−1)−(k−1) − CF u(C)

uq

=

uq
∑u−1

k′=C

(
u− 1

k′

)
qk

′
(1− q)(u−1)−k′ − CF u(C)

uq

= F u−1(C − 1)− C

qu
F u(C).

A matlab function that calculates Type 2 service level is shown in Figure 4.4.

Figure 4.4: Matlab function for Type 2 service level

Setting an overbooking limit of u ensures that, at most, a fraction of s2(u) customer

will be denied service. In practice, we must first specify the service level we want,

namely the fraction of customers that will be denied the service, and then find the

largest booking level u∗ satisfying this standard. The resulting u∗ is the overbook-

ing limit. The quantity u∗ − C (the excess over capacity) is typically referred to as

the overbooking pad.

Quantities s1(u
∗) and s2(u

∗) predict the service level in cases in which demand

exceeds u∗, but service will be better if demand is strictly less than u∗. Thus, we are

considering a worst-case service level, i.e. demand exceeding the overbooking limit.

For this reason, we may result in low overbooking limits if average service levels are

what matters.

The average service level can be easily determined given a distribution of reserva-

tion demand. Let the random variable D denote the number of reservations. Then by

the renewal-reward theorem, the average Type 2 service given an overbooking level u
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is given by

s2(u) =
E[min{D, u}s2(min{D, u})]

E[min{D, u}]

=

∑u−1
d=0 dPr[D = d]s2(d) + uPr[D ≥ u]s2(u)∑u−1

d=0 dPr[D = d] + uPr[D ≥ u]
.

One then searches for the largest value of u that provides an average service level

s2(u) that is within a given standard.

A matlab function that calculates the average service level is shown in Figure 4.5.

Figure 4.5: Matlab function for the average Type 2 service level

As we said above, we want to find the overbooking limit, i.e., the max u∗, for which

our service criteria are fulfilled. So, a matlab function has been developed (Figure

4.6) that has the desired service level as input and the resulting optimal overbooking

limit as output.

Example 12. With C = 100 we have used the algorithm for finding max u for dif-

ferent cancellation probabilities and service levels. The distribution for the requests is

given from following vector:
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In the following table we can see the maximum overbooking levels for each case and

service type.

Let’s take a closer look at our results:

1. Generally, we can see that s1 gives tighten booking limits comparing to s2 and

s2. The last one gives the bigger ones.

2. We can see that while the probability of cancellation decreases, i.e., we approach-

ing the flight day, u decreases, as well. This result makes sense since there is big

probability everyone to show up, so we want to deny service in the less customers

possible.

3. Also, as the threshold decreases, u decreases again, which is expected, too, since

we want to deny service in less customers, so we should sell less fees.

Overbooking Based on Economic Criteria

In the previous part we saw how we can calculate overbooking limit based on service

level. Here we will analyse another way for finding overbooking limits. Here, we want

to maximize revenues and minimize losses. Thus, there is a need to estimate the

revenue loss from not accepting additional reservations and the cost of denied service.

Suppose the number of shows is z and let c(z) denote the denied-service cost. We

shall assume that it is an increasing convex function of z. A common assumption in

practice is

c(z) = h(z − C)+, (4.1)

where h > 0 constant, but undoubtedly an more realistic one is to assume strictly in-

creasing marginal costs. This derives from the fact that for each additional customer,
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Figure 4.6: Matlab function for finding the max u for each service Type

who is denied service, the compensation should be increased.

Let r denote the fixed marginal revenue generated by accepting an additional

reservation. Then the total expected profit from having u reservations on hand is

given by

π(u) = ru− E[c(Z(u))],

where, as before, the random variable Z(u) denotes the number of customers who

show up on the day of service out of u reservations.

Proposition 2. For the binomial model if c(z) is convex, then π(u) is concave in u.

The following definitions and lemma will help with the proof of the above propo-

sition.

Definition 3. X(θ) is stochastically convex in the sample-path sense if for any four

values θi for i = 1, 2, 3, 4 satisfying θ2− θ1 = θ4− θ3 and θ4 ≥ max{θ2, θ3}, there exist

random variable Xi for i = 1, 2, 3, 4, such that Xi is equal in distribution to X(θi)

and

X4(ω)−X3(ω) ≥ X2(ω)−X1(ω), ω ∈ Ω.

Lemma 2. The sum of Bernoulli random variables is stochastically convex.
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Proof. Let X(k) =
∑k

i=1 Yi, where Yi are i.i.d. Bernoulli random variables. Let θi,

for i = 1, 2, 3, 4, be integers satisfying θ2 − θ1 = θ4 − θ3 and θ4 ≥ max{θ2, θ3}. Note

that θ1 ≤ max{θ2, θ3} (else θ4 < max{θ2, θ3}) and define

X1 =

θ1∑
i=1

Yi

X3 =

θ3∑
i=1

Yi

X4 =

θ4∑
i=1

Yi

X2 = X1 + (X4 −X3)

Note Xi is equal in distribution to X(θi) since each is the sum of θi i.i.d. Bernoulli

random variables, and by construction

X4 −X3 = X2 −X1,

so X(θ) is stochastically convex in the sample path sense.

We know that showing X(θ) is stochastically convex in the sample path sense, implies

that is stochastically convex.

Definition 4. If X(k) is stochastically convex, then for any real valued, convex func-

tion g(x), E[g(X(k))] is convex in k.

Proof. (for proposition 2)

We know that Z(u) is Binomially distributed, namely is the sum of u i.i.d Bernoulli

random variables, so Z(u) is stochastically convex. Moreover c(z) is a convex function,

thus the E[c(Z(u))] is convex in u.

Note 1. As a result we have that a maximizing u∗ is the largest value of u satisfying

π(u)− π(u− 1) ≥ 0

ru− E[c(Z(u))]− r(u− 1) + E[c(Z(u− 1))] ≥ 0

E[c(Z(u))]− E[c(Z(u− 1))] ≤ r.
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Calculating overbooking limits based on economic criteria has some difficulties be-

cause of the fact that it requires the estimation of the marginal revenues and costs. In

the case of one class, marginal revenue is simply the common price, but for n-classes

is more complex to estimate. A heuristic approach is to use the weighted-average

revenue. But this approach faces the problem that generally the marginal revenue

produced by an additional unit of capacity is not equal to the weighted-average rev-

enue. Furthermore, the marginal revenue is typically decreasing while the available

capacity decreases, thus the linearity assumption for the marginal revenue is violated.

As for the denied-boarding cost, in the case of monetary compensations, for ex-

ample refund of the purchase price, is easy to quantify. On the other hand, if auctions

are used to determine compensation, then this must be taken under consideration.

As we can understand, in the case of auctions, it is more difficult to estimate marginal

cost, since we should estimate the compensation. Moreover, vouchers for free service

in the future require a more careful accounting, since the actual cost of providing the

service is often less than the face value of the voucher.

The last component of calculating overbooking limits according to economic cri-

teria is the goodwill loss of upsetting a customer. This is the impact that a denied-

service will have in the customers future behaviour. For example, a customer may

not trust this airline again, because he will be afraid of the possibility to be denied-

service again. Another customer may give a bad review for the airline, which is also

harmful for the company. As we can understand, due to the fact that this component

is directly linked to the customer is the most difficult to quantify. However, it is

usually worth an attempt to make this calculation to at least get the correct order of

the importance of goodwill losses.

4.2.2 Static Model Approximations

As we saw in the previous section, binomial model is quite simple, but here we will

analyse even simpler expressions for the overbooking limits.

Deterministic Approximation

At the deterministic approximation we set the overbooking limit so that the average

show demand is exactly equal to the capacity, namely,

u∗ =
C

q
.
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This approximation is really simplistic, however there are several Revenue Manage-

ment implementations that use it. Indeed, absent detailed service standards or cost

information, a value around the deterministic level is not an unreasonable heuristic

to use.

Normal Approximation

Another common approximation is to use the normal distribution, in which Fu(x) is

replaced by the normal distribution with mean, µ, and variance, σ2, chosen to match

the binomial, i.e.,

µu = qu

σ2
u = uq(1− q).

The Type 1 service level is then approximated by

s1(u) = 1− Φ(zu),

where zu = C−µu

σu
and Φ(z) is the standard normal distribution.

A matlab function that calculates Type 1 service level for the normal approximation

is shown in Figure 4.7.

Figure 4.7: Matlab function for Type 1 service level

The p.d.f. of the standard normal distribution is

ϕ(z) =
1√
2π

e−
z2

2

and the c.d.f is

Φ(z) =

∫ z

−∞

1√
2π

e−
x2

2 dx.

63



Lemma 3. The Type 2 service level is then approximated by

s2(u) =
σu

µu

[ϕ(zu)− zu(1− Φ(zu))].

Proof. This follows from the fact that if the random variable Z ∼ N(µ, σ2), then

E[(Z − C)+] =

∫ ∞

C

(Z − C)
1√
2πσ2

e−
(Z−µ)2

2σ2 dZ

= σ

∫ ∞

C−µ
σ

(z′σ + µ− C)
1

σ
√
2π

e−
z′2
2 dz′, where z′ =

Z − µ

σ

= σ

[∫ ∞

C−µ
σ

z′σ
1

σ
√
2π

e−
z′2
2 dz′ −

∫ ∞

C−µ
σ

(C − µ)
1

σ
√
2π

e−
z′2
2 dz′

]

= σ

[
−
∫ ∞

C−µ
σ

2z′

2

1√
2π

e−
z′2
2 dz′ − C − µ

σ

[
1− Φ

(
C − µ

σ

)]]

= σ

[
−
[

1√
2π

e−
z′2
2

]∞
C−µ
σ

− C − µ

σ

[
1− Φ

(
C − µ

σ

)]]

= σ

[
ϕ

(
C − µ

σ

)
− C − µ

σ

[
1− Φ

(
C − µ

σ

)]]
= σ [ϕ(z)− z(1− Φ(z))] ,

where z =
(C − µ)

σ
. Thus,

s2(u) =
E[(Z(u)− C)+]

E[Z(u)]

=
σu(ϕ(zu)− zu(1− Φ(zu))

µu

.

A matlab function that calculates Type 2 service level for the normal approxima-

tion is shown in Figure 4.8.

Example 13. Implementing again Example 12 for the normal approximation, we got

the following results:

Compared to the results from Example 12 we can see that for the Type 1 service level

we got smaller overbooking limits and for Type 2 service level we got the same as

before.
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Figure 4.8: Matlab function for Type 2 service level

In Figure 4.9 we have a matlab function for finding the max u for each service

Type for the normal approximation

The economic-based overbooking limit (??) for the constant-marginal-cost function

(4.1) is approximated by choosing u∗ to satisfy

Φu∗(C) = 1− r

qh
. (4.2)

4.2.3 Group Cancellations

As mixed-classes so groups, affect cancellation models. There is a positive correlation

in cancellations between the members of a group, namely if a group decides to cancel

then there is not only one cancellation, since all the members of the group will cancel.

There are two techniques, we use in practice, to adjust for group size.

The first one, is to simply inflate the variance of the show distribution by a factor

that accounts for group size. For the normal approximation to the binomial model

the variance estimate is modified as σ2
u = kuq(1− q), where k is a factor to account

for group cancellations.
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Figure 4.9: Matlab function for finding the max

The other technique is based on moment-generating functions.

Definition 5. A moment-generating function for a random variable X is

Gx(t) = E[etX ].

Note 2. We know that

E[Xn] =
d

dt
Gx(t)

∣∣∣
t=0

.

Let u be the number of total reservations and ui denote the number of groups

of size i, i = 1, 2, .., n. Then, u =
∑n

i=1 uii. Also, Z(u) is the number of survivals

from u total reservation, Zi(ui) the number of survivals from ui reservations of size i

and qi the probability of a group of size i to survive. Then, assuming that Zi(ui) are

independent random variables for i = 1, 2, .., n, the generating function of Z(u) is

GZ(u)(t) = E
[
etZ(u)

]
= E

[
et

∑n
i=1 iZi(ui)

]
= E

[
etZ1(u1)et2Z2(u2)...etnZn(un)

]
=

n∏
i=1

E
[
etiZi(ui)

]
=

n∏
i=1

Pzi(ui)(e
it)

=
n∏

i=1

(1− qi − qie
it)ui
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4.3 Combined Capacity-Control and Overbooking

Models

We now have to analyse the overbooking problem taking into consideration the inter-

action of overbooking decisions with capacity controls. Due to the fact that including

cancellations and no-shows is too difficult theoretically, one makes the following set

of assumptions:

1. The cancellation and no-show probabilities are the same for all customers.

2. Cancellations and no-shows are mutually independent across customers and in

any period are independent of the time a reservation was accepted.

3. The refunds and denied service costs are the same for all customers.

From the above man can notice that the number of no-shows and the costs incurred

are only a function of the total number of reservations on hand, so we only need to

retain a single state variable.

As a result of the fact that cancellation options and penalties are often linked

directly to a booking class, i.e. rates and costs can be vary significantly from one

class to the other, the assumptions 1 and 2 are restrictive. Ideally, we should take

account of these differences when we make allocation decisions, however, this signifi-

cantly complicates the problem. Moreover, we have already see that reservations from

people in groups typically cancel at the same time, so the assumption of independence

among customers is unrealistic.

Mainly, the overbooking problem is separated from the capacity-allocation prob-

lem, because in a approximate static overbooking model we are able to relax some or

all parts of the above assumptions.

4.3.1 Exact Methods for No-Shows Under Assumptions

Here we consider that there are only no-shows without cancellations. We define as

q0 the probability of a show-up, thus 1 − q0 is the no-show probability. Due to the

above assumptions, we know that q0 is assumed to be the same for all customers and

independent of when the reservation was made.
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Given x reservations on hand at the time of service, we denote as

Z0(x) =
x∑

i=1

Zi

the number of customers who show up at time zero, where

Zi =

{
1, if customer i shows up for service

0, otherwise.

As it emerges from our assumptions, Z0(x) is a Binomial (q0,x) random variable, with

Pr[Z0(x) = z] =

(
x

z

)
qz0(1− q0)

x−z, z = 0, 1, ..., x,

and, moreover, the total cost of denied service is only a function of the show demand.

Let c(z) denote the overbooking cost given z. We will require the c(z) be increasing

and convex with c(0) = 0, which is quite natural since the marginal cost of denying

service to customers tends to increase with the number denied.

Specifically, we assume that we have a simple linear cost per denied customer

c(z) = h(z − C)+. Suppose we have x reservations on hand at the time of service,

then the expected cost of service is given by

V0(x) = E[−c(Z(x))], x ≥ 0.

Proposition 3. V0(x) is concave in x if c(·) is convex.

Proof. We know that if c(·) is convex, then −c(·) is concave. Thus, E[−c(·)] is

concave.

Static Model

Here we will use again the static n-class model from Chapter 2. Recall: in an n-class

model the classes are ordered r1 > r2 > ... > rn and we assume that first arrives the

class with the lowest revenues and last the one with the highest revenue. Classes and

stages are indexed by j. Now, the state variable, x, is defined to be the number of

reservations on-hand and not the remaining capacity.

The Bellman equation (2.2) for the static model with no-shows is the following

Vj(x) = E

[
max

0≤u≤Dj

rju+ Vj−1(x+ u)

]
,
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with boundary conditions V0(x) = E[−c(Z(x))], x ≥ 0, where here Vj(x) is now

interpreted as the expected net benefit, i.e. expected revenue minus the expected

terminal cost, of operating the system from period j onward given that there are x

reservations on hand. In this case, Vj(x) is a decreasing function of x, since the more

reservations we have on hand now, the fewer future opportunities to collect revenue

and/or the higher the expected future terminal costs.

As in Chapter 2, considering that V0(x) is concave, we can show that the value

function Vj(x) is concave in x for all j and x. In this case we will express the optimal

policy using booking limits, due to the fact that we don’t have any capacity constraint.

The optimal nested booking limits are given by

b∗j = min{x ≥ 0 : rj < ∆Vj−1(x)}, j = 1, ..., n− 1,

where ∆Vj−1(x) = Vj−1(x) − Vj−1(x + 1) now is the marginal opportunity cost of

holding another reservation in Stage j− 1. It is then optimal to accept Class j if and

only if the number of reservations on hand, x, is strictly less than b∗j , i.e. x < b∗j .

4.3.2 Class-dependent no-show refunds

By relaxing one or more assumptions, then the problem becomes significantly diffi-

cult, because of the increase in dimensionality of the dynamic problem. For instance,

if no-show rates or costs depend on customer class or the time of purchase (or both),

then we have to retain a state variable for each class or each time period (or both).

However, it occurs that class-dependent refunds can be easily integrated through an

appropriate change of variable.

Thus, we relax this assumption but we still keep all the others. Suppose a cus-

tomer of Class j who no-shows in period 0 is given a refund hj0 , with hj0 < rj. An

unsophisticated way is to keep in track each class separately so that refunds can be

properly awarded at the time of service. We know that a given customer no-shows is

completely independent of all other decisions and events in the system, thus we can in

fact charge for the expected refund at the time the reservation is accepted. Namely,

if we accept a customer of Class j, they will yield an reduced revenue of

r̂j = rj − (1− q0)hj0

independent of everything else in the system. Therefore we simply use r̂j in place of

rj. Man can notice that depending on the refund, the ordering of r̂j may be different
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than rj, thus it’s possible the optimal policy in this case may reject the high gross

revenue customer in favour of the high net revenue one.

4.3.3 Exact Methods for Cancellations Under Assumptions

The cancellation model is quite more difficult than the no-shows one, but under our

assumptions we can manage it.

Static Model

Let qj denote the probability that a reservation in the system at the start of period j

survives to period j + 1. Then 1− qj is the probability that a reservation cancels in

period j, which are the same and independent for all customers and are independent

of the age of the reservation. Let Zj(x) denote the number of reservations that survive

period j given that there are x reservations on-hand, thus x− Zj(x) are the number

of cancellations.

We alter the Bellman equation (2.2) for the static model, so it accounts for can-

cellations:

Vj(x) = E

[
max

0≤u≤Dj

{rjy +Hj−1(x+ u)}
]
,

with boundary conditions V0(x) = E[−c(Z(x))], x ≥ 0, where

Hj−1(x) = E[Vj−1(Zj(x))] =
x∑

z=0

(
x

z

)
qzk(1− qk)

x−zVj−1(z),

is the expected value function after cancellations in period j.

Comment 6. We know that if Vj−1(z) is concave in z, then Hj−1(x) is concave in x

and hence the value function Vj(x) is concave in x.

As before is optimal to use nested booking limits. The optimal booking limits are

given by

b∗j = min{x ≥ 0 : rj < Hj−1(x)−Hj−1(x+ 1)}, j = 1, ..., n− 1,

where it is optimal to accept Class j if and only if the number of reservations on

hand, x, is strictly less than b∗j .
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4.3.4 Class-dependent cancellation refunds

As in no-shows case, relaxing the assumption that no-show rates or costs depend on

customer class or the time of purchase (or both) requires expanding the state space.

Again, a change of accounting can be used to allow for class-dependent refunds.

Again we hold all the assumptions except the one for class-dependent. Suppose a

customer of Class j who cancels in period t is given a refund hjt , with hjt < rj. In

the same manner as the no-show case, we can charge for the expected refund at the

time the reservation is accepted, rather than at the time of service. We define Gt(j)

the expected refund given to a Class j reservation from period t through to the time

of service, and is given by:

Gt(j) = (1− qt)hjt + qtGt−1(j), t = 1, 2, ..., T,

with boundary condition

G0(j) = (1− q0)hj0 .

We then form the reduced revenue

r̂jt = ri −Gt(j)

again we simply use r̂it in place of ri and the ordering may be different.

Comment 7. In both cases, no-shows and cancellations, we should use the r̂it, because

even if though a class gives a higher current revenue, much of that revenue may be

forfeited on average, so the net benefit of accepting it can be quite different from the

gross revenue.
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