
NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATION

BSc THESIS

Spatial and Temporal information
in the

Semantic Web

George Ε. Mandilaras

Supervisor: Koubarakis Manolis, Professor

ATHENS

MARCH 2019

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Χωρική και Χρονική πληροφορία
στον

Σημασιολογικό Ιστό

Γεώργιος Ε. Μανδηλαράς

Επιβλέπων: Κουμπαράκης Μανόλης, Καθηγητής

ΑΘΗΝΑ

ΜΑΡΤΙΟΣ 2019

BSc THESIS

Spatial and Temporal information

in the

Semantic Web

George E. Mandilaras
S.N.: 1115201200097

SUPERVISOR: Manolis Koubarakis, Professor

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Χωρική και Χρονική πληροφορία
στον

Σημασιολογικό Ιστό

Γεώργιος Ε. Μανδηλαράς
Α.Μ.: 1115201200097

ΕΠΙΒΛΕΠΩΝ: Κουμπαράκης Μανόλης, Καθηγητής

ABSTRACT

The main purpose of this thesis is the enhancement of the Semantic Web with geospatial
and temporal information by extending the YAGO knowledge graph with such information.
It is composed of three parts. The first part refers to the conversion of OpenStreetMap
data into RDF triples. OpenStreetMap is a collaborative project of a free editable map of
the whole world. It contains a lot of useful information which is prerequisite for several
applications and therefore its transformation into RDF triples is of significant importance.
The second part concerns the conversion of big geospatial data in RDF triples. In this
implementation, an ETL utility is extended to work on top of Spark which enables the
parallelization of the conversion which results in the reduction of the execution cost. The
third part is about the extension of the YAGO knowledge base with temporal and
geospatial information the former administrative division of Greece.

SUBJECT AREA: Semantic Web

KEYWORDS: YAGO, Temporal Information, Geospatial information, Spark, RDF

ΠΕΡΙΛΗΨΗ

Ο κύριος σκοπός της πτυχιακής εργασίας είναι η ενίσχυση του Σημασιολογικού Ιστού με
χρονική και χωρική πληροφορία επεκτείνοντας τον γράφο γνώσης YAGO με τέτοια
πληροφορία. Η εργασία αποτελείται από τρία μέρη. Το πρώτο μέρος αναφέρεται στην
μετατροπή των δεδομένων του OpenStreetMap σε RDF τριπλέτες. Το OpenStreetMap
είναι ένας χάρτης με ελεύθερη άδεια ο οποίος αναπτύσσεται από μια κοινότητα εθελοντών
και περιέχει πληροφορίες για όλο τον κόσμο. Τα δεδομένα του είναι ιδιαίτερα χρήσιμα και
απαραίτητα για πολλές εφαρμογές, και για αυτό η παροχή τους σε μορφή RDF είναι
ιδιαίτερα σημαντική. Το δεύτερο σκέλος της πτυχιακής αφορά αφορά την μετατροπή
μεγάλων χωρικών δεδομένων σε RDF τριπλέτες. Σε αυτήν την υλοποίηση επεκτείνουμε
ένα ETL εργαλείο με την τεχνολογία Spark η οποία μας επιτρέπει να παραλλιλοποιήσουμε
την μετατροπή των δεδομένων σε RDF με αποτέλεσμα να μειωθεί σημαντικά ο χρόνος
εκτέλεσης. Το τρίτο κομμάτι έχει να κάνει με την επέκταση της γνωσιακής βάσης YAGO με
χρονική και χωρική πληροφορία σχετικά με την πρώην διοικητική διαίρεση της Ελλάδας.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Σημασιολογικός Ιστός

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: YAGO, Χρονική Πληροφορία, Χωρική Πληροφορία, Spark, RDF

ACKNOWLEDGEMENTS

Firstly I would like to thank Prof. Manolis Koubarakis for giving me the opportunity to work
on this subject and for his guidance. Furthermore, I would like to thank Prof. Kostas
Patroumpas and Nikos Karalis, for constantly advising me during the whole procedure.
Last but not least, I would like to thank Spiros Athanasiou and the ATHENA research lab
for providing me with the necessary resources and data, in order to make it possible.

CONTENTS

1. INTRODUCTION..12

1.1 The Semantic Web.. 12

1.2 Resource Description Framework...12

1.3 Knowledge Bases... 15

1.4 Goal and Structure.. 15

2. RELATED WORK..17

2.1 Spatio-Temporal Information in KBs...17

 2.1.1 Spatio-Temporal Information in YAGO...17

 2.1.2 Spatio-Temporal Information in DBpedia and Wikidata..18

2.2 OpenStreetMap... 20

 2.2.1 LinkedGeoData.. 21

 2.2.2 GeoQA... 21

2.3 Transforming spatial data of various sources into RDF..21

 2.3.1 TripleGeo... 21

 2.3.2 GeoTriples... 22

3. CONVERSION OF OPENSTREETMAP DATA INTO RDF...23

3.1 OpenStreetMap data to RDF.. 23

3.2 TripleGeo_Forwarder.. 24

 3.2.1 Purpose.. 24

 3.2.2 Geofabrik’s Download Server..24

 3.2.3 Description... 24

 3.2.4 Performance Results... 26

4. SPARK EXTRACTOR...28

4.1 The Issue... 28

4.2 Spark.. 28

4.3 Why Spark?... 29

4.4 Application Description.. 30

4.5 Evaluation.. 32

 4.5.1 Experimental Setup.. 32

 4.6.2 Performance Results... 32

5. YAGO EXTENSION WITH SPATIO-TEMPORAL KNOWLEDGE..................................37

5.1 Greek Administrative Division...37

5.2 Kapodistrias Dataset Construction...37

 5.2.1 Kapodistrias’ Administrative Units..37

 5.2.2 The boundaries of Administrative Units..39

 5.2.3 Administrative Units’ Temporal Information..39

5.3 YAGO Extension.. 40

5.4 Temporal Information in YAGO..44

6. CONCLUSION AND FUTURE WORK..45

ABBREVIATIONS - ACRONYMS...46

REFERENCES...47

LIST OF FIGURES

Figure 1: RDF triple..13

Figure 2: Examples of temporal facts in YAGO...17

Figure 3: Examples of spatial facts in YAGO...18

Figure 4: Flow of the Execution of Fowarder...26

Figure 5: Performance of TripleGeo_Forwarder..27

Figure 6: Directed Acyclic Graph (DAG) of SparkExtractor...31

Figure 7: Scale-up for dataset OSM_POIS_GR..33

Figure 8: Scale-up for dataset OSM_POIS_SP...33

Figure 9: Scale-up for dataset OSM_ROADS_GR..34

Figure 10: Scale-up for dataset OSM_ROADS_SP..35

Figure 11: Scale-up for dataset OSM_ROADS_GER..35

Figure 12: Scale-Out Experiment...36

Figure 13: Triples of the Kapodistrias dataset...38

Figure 14: Geometries of the Administrative Units..39

Figure 15: Example of Matched Entities..42

Figure 16: Example of Unmatched entities..43

LIST OF TABLES

Table 1: Spatio-Temporal Facts of KBs..19

Table 2: Resutls of TripleGeo_Forwarder..27

Table 3: Experimental Setup..32

Table 4: Matching Phase Results...41

Spatial and Temporal information in the Semantic Web

1. INTRODUCTION

1.1 The Semantic Web

The Semantic Web [1] is a vision about an extension of the existing World Wide Web,
which provides software programs with machine-interpretable metadata of the published
information and data. In other words, the existing content and data on the Web will be
further extended with data descriptors. As a result, computers will able to make meaningful
interpretations similar to the way humans process information to achieve their goals

The ultimate ambition of the Semantic Web, as its founder Tim Berners-Lee sees it, is to
enable computers to better manipulate information on our behalf. He further explains that,
in the context of the Semantic Web, the word “semantic” indicates machine-processable or
what a machine is able to do with the data. Whereas “web” conveys the idea of a
navigable space of interconnected objects with mappings from URIs (Uniform Resource
Identifiers) to resources.

Fundamental for the adoption of the Semantic Web vision was the development of a set of
standards established by the international standards body – the World Wide Web
Consortium (W3C) [2]:

● Resource Description Framework(RDF) [3] – a simple language for describing
objects and their relations in a graph;

● SPARQL Protocol and RDF Query Language (SPARQL) [4] – a protocol and query
language for RDF data;

● Uniform Resource Identifier(URI) – a string of characters designed for unambiguous
identification of resources and extensibility via the URI scheme.

1.2 Resource Description Framework

The Resource Description Framework (RDF) is a family of World Wide Web Consortium
(W3C) specifications originally designed as a metadata data model. It has come to be
used as a general method for conceptual description or modelling of information that is
implemented in web resources, using a variety of syntax notations and data serialization
formats.

The RDF data model is similar to classical conceptual modelling approaches (such as
entity–relationship or class diagrams). It is based on the idea of making statements about
resources (in particular web resources) in expressions of the form subject–predicate–
object, known as RDF triples (see Figure 1). The subject denotes the resource, and the
predicate denotes traits or aspects of the resource and expresses a relationship between
the subject and the object. In plain English, an RDF statement states facts, relationships,
and data by linking resources of a different kind. With the help of an RDF statement, just
about anything can be expressed by a uniform structure, consisting of three linked data
pieces. For example the phrase "Paule lives in San Francisco" can be modelled as follows:
Paul is the subject, lives in is the predicate and San Francisco is the object of the triple.

G.Mandilaras 12

https://en.wikipedia.org/wiki/Statement_(programming)
https://paperpile.com/c/fdwpEJ/WKoG
https://paperpile.com/c/fdwpEJ/D0xq
https://paperpile.com/c/fdwpEJ/MtSb
https://paperpile.com/c/fdwpEJ/tYI4

Spatial and Temporal information in the Semantic Web

Figure 1: RDF triple

RDF is the key part of the Semantic Web since it is built around resources with URIs,
which can be entities that exist within the web. Using HTTP URIs in RDF statements
makes information more structured and more meaningful to software programs allowing
them to interact with the web the same way as people do. Furthermore, it will facilitate the
process of exchanging data across the web without the intervening of human action. This
movement is also known as Linked Open Data (LOD).

RDF is a very important part of the Semantic web and its advantages are listed below.

Data Interoperability

It is in data exchange and interoperability that RDF really shines. RDF can capture and
convey the metadata or information in unstructured (text), semi-structured (HTML
documents) or structured sources (standard databases). This makes RDF almost a
“universal solvent” for data representation. Once in a common RDF representation, it is
easy to incorporate new datasets or new attributes. It is also easy to aggregate disparate
data sources as if they came from a single source. This enables meaningful composition of
data from different applications regardless of format or serialization.

Schema Unbound

Α major advantage of RDF is that there are not schema boundaries. Schema rigidity or
schema fragility is one of the major burdens of data integration. Once data relationships
are set, they remain and they can not easily be changed in a conventional data
management systems nor in the applications that use them. Even though relational
database management systems(RDBMS) are tremendously useful and enable the addition
of more data records, they are neither adaptive nor flexible. RDF has no such limitations.
RDF is well suited and can provide a common framework to represent both data instances
and the schema that describe them.

Increment, Evolve, Extend, Adapt

The fluidity of RDF is another key strength. Since a basic RDF model can be processed
even in the absence of more detailed information, input data and basic inferences can
proceed early and logically as a simple fact basis. This means that the data or the schema
can be extended. Partial representations can be incorporated as readily as complete ones,
and the schema can extend and evolve as the new structure is discovered or encountered.
RDF provides a data and schema representation framework that can evolve and adapt to
what data exists and what structure is known. As new data with new attributes are

G.Mandilaras 13

Spatial and Temporal information in the Semantic Web

discovered, or as new relationships are found, these can be added to the existing model
without any change to the prior existing schema. This very adaptability is what enables
RDF to be viewed as data-driven design. By replacing the rigid relational data model with
one based on RDF, we gain robustness, flexibility, universality and structural persistence
over fragility.

Data-driven Applications

Two fundamental tools are the RDF query language, SPARQL, and inferencing. SPARQL
provides a generalized basis for driving reports and templated data displays, as well as
standard querying. Utilizing the simple triple structure of RDF, SPARQL can also be used
to query a dataset without knowing anything in advance about the data. This provides a
very useful discovery mode. Simple inferencing can be applied to broaden and
contextualize search, retrieval, and analysis. Inference tables can also be created in
advance and layered over existing RDF datastores for automatic invoking of inferencing.
More complicated inferencing means that RDF models can also perform as complete
conceptual views of the world or knowledge bases.

A Graph Representation

An RDF graph, which is a directed graph, consists of multiple RDF triples. A graph
structure has many advantages. Graphs are modular and can be both readily combined
and broken apart. From a computational standpoint, this can lend itself to parallelized
information processing (and, therefore, scalability). With specific reference to RDF, it also
means that graph extractions are themselves valid RDF models. Graph algorithms are a
significant field of interest in mathematics and computer science. Graphs also have some
unique aspects in search and pattern matching. Besides options like finding paths between
two nodes, depth-first search, breadth-first search, or finding shortest paths, emerging
graph and pattern-matching approaches may offer entirely new paradigms for search.
Graphs also provide new approaches for visualization and navigation, useful for both
seeing relationships and framing information from the local to global contexts. The
interconnectedness of the graph allows data to be explored via contextual facets, which is
revolutionizing data understanding.

RDF as a Relational Model

Despite the differences in fragility and robustness, there are many logical affinities
between the relational model and RDF. RDF can be modelled relationally as a single table
with three columns corresponding to the subject–predicate–object triple. Conversely, a
relational table can be modelled in RDF with the subject IRI derived from the primary key
or a blank node; the predicate from the column identifier; and the object from the cell
value. Because of these affinities, it is also possible to store RDF data models in existing
relational databases. Moreover, these affinities also mean that RDF stored in this manner
can also take advantage of the historical learnings around RDBMS and SQL query
optimizations.

G.Mandilaras 14

Spatial and Temporal information in the Semantic Web

1.3 Knowledge Bases

There is a continuous effort in order to make data publicly available and this attempt has
been assisted by the emerging of Knowledge Bases. A Knowledge Base (KB) is a
computer-processable collection of knowledge, that contains entities which represent
objects of the real world and facts about them. In most cases, their information is
structured in order special designed softwares to be able to utilize it. Knowledge Bases
can either contain encyclopedic content or information about a particular subject.
Furthermore, most of them follow the RDF data model which allows them to be interlinked
with other knowledge bases and datasets. This results in the construction of a graph that
connects the entities of the KB, known as the knowledge graph. Moreover, many KBs
contain information from different sources and from other KBs, interlinking their Knowledge
Graphs and creating a network of accumulated knowledge. As a result, a vast network of
interconnected KBs has been created, which is known as Linked Data Cloud [5] and it is
one of the principals and integral parts of the Semantic Web.

Some of the most famous knowledge bases are the following:

DBpedia [6] is probably the most popular KB. Its content is collected by the structured
information that exists in the Wikipedia pages like info-boxes and articles metadata.
DBpedia is interlinked with other knowledge bases (e.g. YAGO) and it is part of the Linked
Data Cloud. Its data is accessible and can be queried via its online SPARQL endpoints.

Wikidata [7] is a free collaboratively edited knowledge base hosted by the Wikimedia
Foundation and its content represents entities of the real world like people, places and
objects. It is the successor of Freebase which powered Google’s Knowledge Graph.
Wikidata provides a graphical user interface where users can edit its current information or
add a new one. This triggered people interest and has led to significantly increase its size
and to provide its information in multiple languages. Wikidata is also part of the Linked
Data Cloud and its data is accessible and can be queried via its online SPARQL endpoints.

YAGO [8] is a knowledge base developed by the Max Planck Institute and It is one of the
first knowledge bases, that was created from multiples sources. Its content contains more
than 14 million entities and more than 447 million facts. Its first version was released in
2007 and it was created by extracting and combining knowledge from two different
sources, WordNet and Wikipedia. In 2011, the second version of YAGO was released
known as YAGO2 [9], where its knowledge graph was enriched with temporal and spatial
facts. The spatial facts were extracted by Wikipedia pages and from a new source
GeoNames. GeoNames is a gazetteer, whose data and accuracy have been studied
extensively [10]. Temporal information was added mainly to entities that represent people,
groups, artefacts or events. YAGO3 [11] is the latest version of YAGO and it was released
in 2015. In this version was added information from Wikipedia pages with different
languages.

1.4 Goal and Structure

The main goal of this thesis is to contribute to the YAGO knowledge base by extending it
with temporal and geospatial information regarding the former administrative division of
Greece. OpenStreetMap is a rich source of geospatial information. Another goal of this
work is the conversion of OpenStreetMap data into RDF so that it can be used in to further
extend not only YAGO but also the Semantic Web in general. This is accomplished by
constructing a routine that automates the conversion of OpenStreetMap data into RDF
using the ETL tool TripleGeo. Since the volume of OSM data is large, we also extending

G.Mandilaras 15

https://paperpile.com/c/fdwpEJ/iKDZ
https://paperpile.com/c/fdwpEJ/CRSu
https://paperpile.com/c/fdwpEJ/yrZ1

Spatial and Temporal information in the Semantic Web

TripleGeo to work on top of Apache Spark in order to make it capable of handling such
data. The extension of YAGO’s knowledge graph is part of a greater project conducted by
Prof. Manolis Koubarakis and Nikos Karalis. In this project, YAGO’s knowledge graph is
extended with spatial information from multiple data sources [12].

The rest of this thesis is structured as follows. Chapter 2 discusses related work. Chapter
3 presents the conversion of OpenStreetMap data into RDF triples using the ETL utility
TripleGeo. Chapter 4 analyzes the extension of TripleGeo to work on top of Spark in order
to parallelise the process of conversion of big geospatial data. Chapter 5 describes the
enrichment of the knowledge graph of YAGO with spatial and temporal information about
the former Greek administrative division. Finally, chapter 6 is dedicated to the conclusion
and future work.

G.Mandilaras 16

https://paperpile.com/c/fdwpEJ/ixg1

Spatial and Temporal information in the Semantic Web

2. RELATED WORK

2.1 Spatio-Temporal Information in KBs

All the entities of the real world have a direct connection with time and space. People are
born and die in specific time points, structures are built and destroyed and events occur in
a day or last a time span. Moreover, all physical objects have a location in space, for
example, countries, cities, mountains, and rivers have a permanent physical location and
shape on Earth. Therefore, it is important that KBs contain such information as it will
enable us to perform queries that take into account the spatio-temporal dimension.

2.1.1 Spatio-Temporal Information in YAGO

Regarding the temporal information, YAGO uses the data type yagoDate in order to denote
timepoints. This type follows the ISO 8601 [13] which is based on the Gregorian calendar
(i.e. YYYY-MM-DD) and it provides the resolution to express not only days but also cruder
time points like years and months. If we want to represent a year we use the wildcard # in
order to omit the digits that refer to day and month, so we just write “YYYY-##-##”. Dates
are also declared as literals followed by the xsd:date which is the schema definition for
dates, recommended by the World Wide Web Consortium (W3C).

Facts can only express time points, however, many entities come into existence into a
certain point of time and cease to exist in another. Therefore, time spans are represented
by two relations that together form a time interval, for instance, the predicates
wasBornOnDate and diedOnDate are used in order to express the lifespan of a person.
There are several predicates that YAGO uses in order to express the temporal information
and they are used according to the type of the entity. The former predicates are used to
entities that represent living beings. In case that the represented entity is still alive, it is
associated only with its date of birth. The time span of artefacts such as buildings, books,
music songs, or albums is expressed using the predicates wasCreatedOnDate and
wasDestroyedOnDate (for entities that ceased to exist like buildings). Events that lasted
for a period of time like wars or festivals are expressed using the predicates
startedOnDate and endedOnDate, but in the cases where the event occurred in a single
day, it is prefered the use of happenedOnDate. All of these relations are declared as sub-
properties of the generic entity-time relations which are startsExistingOnDate and
endsExistingOnDate. Figure 2 depicts some temporal facts of YAGO.

G.Mandilaras 17

@base <http://yago-knowledge.org/resource/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema>.
<In_Mexico> <wasCreatedOnDate> "2010-##-##"^^xsd:date.
<Supernatural_Love> <wasCreatedOnDate> "1984-10-##"^^xsd:date.
<55_Day_War> <happenedOnDate> "1993-##-##"^^xsd:date.
<Runciman_railway_station> <wasDestroyedOnDate> "1918-##-##"^^xsd:date.
<I'm_Your_Man_(Leonard_Cohen_album)><wasCreatedOnDate> "1987-11-##"^^xsd:date.
<Hallelujah_(Leonard_Cohen_song)> <wasCreatedOnDate> "1984-06-##"^^xsd:date.
<Leonard_Cohen> <wasBornOnDate> "1934-09-21"^^xsd:date.
<Leonard_Cohen> <diedOnDate> "2016-11-07"^^xsd:date.

Figure 2: Examples of temporal facts in YAGO

https://paperpile.com/c/fdwpEJ/x9ob

Spatial and Temporal information in the Semantic Web

Furthermore, facts too can have a temporal dimension. The fact BarackObama
holdsPoliticalPosition PresidentOfTheUnitedStates denotes an epoch from the time
Obama was elected until either another president is elected or Obama resigns. Therefore
this fact can be connected with the time span of this epoch. In order to implement this
YAGO introduced in YAGO2 two new relations, occursSince and occursUntil and assigned
all the facts with a unique ID. So if the above fact had the fact id #1, YAGO would express
its time span like “#1 occursSince 2009-01-20”. For facts that are denoted by a single time
point, the shorthand notation occursOnDate is used. Moreover, If the same fact occurs
more than one time, then YAGO will contain it multiple times with different fact ids. For
example, since Bob Dylan has won two Grammy awards, the fact BobDylan hasWonPrize
GrammyAward is associated with two different fact ids and each id is assigned with a
corresponding date using the relation occursOnDate.

In YAGO2, the knowledge graph of YAGO was extended with spatial information from
Wikipedia and GeoNames. Its constructors introduced the new class yagoGeoEntity,
which groups together all geo-entities. Each instance of yagoGeoEntity is directly
connected to its geographical coordinates by the hasGeoCoordinates relation or to its
longitude and latitude by the hasLatitude and hasLongitude predicates. The geographical
coordinates are declared by the type yagoGeoCoordinates which is consisted of a pair of
longitude and latitude. Therefore YAGO2 only knows about coordinates, not polygons, so
even locations that have a physical extent are represented by a single geo-coordinate pair.
Figure 3 depicts some spatial facts of YAGO.

Similarly, with the temporal information, facts can also be associated with spatial
information. For example, the fact that Leonard Cohen was born in 1934 happened in his
city of birth, Montreal. YAGO connects facts with their spatial information, using the same
strategy that uses for the connection of facts with their temporal information. It utilises facts
ids and the relation occursIn, which holds between a (reified) fact and a geo-entity.
Therefore, the statement LeonardCohen wasBornOnDate 1934 is associated with a fact id
which is then connected with the entity Montreal via the relation occursIn.

2.1.2 Spatio-Temporal Information in DBpedia and Wikidata

In contrary to YAGO, both DBpedia and Wikidata have a less strict schema for expressing
the spatio-temporal information. They use more predicates to connect entities with their
spatial and temporal information, from which some of them are dedicated to a specific
range of entities.

Temporal and spatial information in DBpedia originates mostly from Wikipedia’s infoboxes
and from other sources like GeoNames. It uses a big variety of predicates for expressing
the temporal information, from which the most used of them are the deathDate and
birthDate. DBpedia’s drawback is in the representation of dates. YAGO represents years

G.Mandilaras 18

@base <http://yago-knowledge.org/resource/> .
<Lyons,_New_York> <hasLatitude> "43.05972222222222"^^<degrees>.
<Lyons,_New_York> <hasLongitude> "-76.9925"^^<degrees> .
<Omonoia,_Athens> <hasLatitude> "37.98388888888889"^^<degrees>.
<Omonoia,_Athens> <hasLongitude> "23.727777777777778"^^<degrees>.
<Rainbow_Bridge_(Tokyo)> <hasLatitude> "35.63638888888889"^^<degrees>.
<Rainbow_Bridge_(Tokyo)> <hasLongitude> "139.76361111111112"^^<degrees>.
<Finland> <hasLatitude> "64.0"^^<degrees>.
<Finland> <hasLongitude> "26.0"^^<degrees>.

Figure 3: Examples of spatial facts in YAGO

Spatial and Temporal information in the Semantic Web

as incomplete dates so that there is a single unified way of expressing a date. DBpedia
has different relations for complete dates and for years. This yields a number of relations
that are semantic duplicates but are not synchronized with each other. Regarding
DBpedia’s geospatial information, the location of entities is assigned as a pair of
geographic coordinates. Furthermore, even though DBpedia supports the connection of
geo-entities with their geographic shape using the predicate geo:geometry, all the
geometries that it contains are just points that represent entities’ coordinates in a different
way.

Wikidata is a free and open knowledge base that can be read and edited by both humans
and machines. For expressing dates it uses the data type “point in time” which is very
similar to yagoDate.This data type stores a date in Gregorian or Julian calendar, and can
be used to express days, months and years. Since Wikidata is crowdsourced and can be
edited freely, it currently contains 43 different predicates for expressing the temporal
information. Most of them are not universal and are dedicated to entities of certain types.
Regarding geospatial information, WikiData uses two different data types to express the
geographic location of entities, the Geographic coordinates and the Geographic shapes.
The Geographic coordinates are expressed as points that contain the pair of longitude and
latitude of the entities. The Geographic shapes are stored as GeoJSON and can be
visualized in a map.

The following table (Table 1) provides statistics about the temporal and spatial facts that
are provided by each knowledge base. These stats were found by querying their KBs
using the SPARQL query language. Regarding the temporal information, we chose to
depict these relations (date of birth and date of death) because they are used the most.
The numbers of date facts of YAGO and DBpedia are quite close because the main source
of their temporal information is the same (i.e. Wikipedia). Furthermore, we can observe
that YAGO contains excessively more geographic locations than the other KBs, however, it
doesn’t contain geographic shapes. Only Wikidata contains a small number of geographic
shapes regarding the geometries of countries and big cities.

Table 1: Spatio-Temporal Facts of KBs

Description of
the relation

YAGO’s Total Facts DBpedia’s Total
Facts

Wikidata’s Total
Facts

Date of Birth 1 661 704

wasBornOnDate

1 740 612

dbo:birthDate

3 507 905

date of birth

Date of death 797 564

diedOnDate

721 196

dbo:deathDate

1 733 224

date of death

Longitude 12 085 028

hasLongitude

1 023 236

geo:long

7 254 130

coordinates location

Latitude 12 085 028

hasLatitude

1 023 228

geo:lat

7 254 130

coordinates location

G.Mandilaras 19

Spatial and Temporal information in the Semantic Web

2.2 OpenStreetMap

OpenStreetMap1(OSM) is a collaborative project to create a free editable map of the whole
world. It was inspired by Wikipedia and as such it provides well-known wiki features such
as an edit-tab and a full revision history of the edits. However, rather than editing articles,
users edit geographic entities. The three fundamental ones are as follows:

● Nodes are the most primitive entities and represent geographic points with a
latitude and longitude relative to the WGS84 reference system.

● Ways are entities that have a list of at least two node references associated with
them. Depending on whether the first reference equals the last one, a way is called
closed or open, respectively.

● Relations relate points, ways and potentially other relations to each other, thereby
forming complex objects. Each entity participating in a relation plays a certain role in
it. Multipolygons are modelled with relations.

Each of these entities has a numeric identifier (called OSM ID), a set of generic attributes,
and most importantly is described using a set of key-value pairs, known as tags. An
example of a relation is the administrative boundary of Germany having the OSM identifier
51477 It is comprised by more than 1000 ways, which represent certain segments of the
German border; the German border with Luxembourg e.g. is composed of approx. 40-way
segments. The relation currently has about 30 associated tag-value pairs, which, for
example, contain the name of Germany in different languages. One of those tag-value
pairs (boundary=administrative) indicates that this relation represents an administrative
boundary. This information is used by the OSM map renderer to decide how this relation
should be rendered on the map. Further tags are used for timezone, currency, and ISO
country. The relation has also a few metadata entries (such as the timestamp of the last
edit and the last editor) attached [14].

Rather than the map itself, the data generated by the project is considered its primary
output. The creation and growth of OSM have been motivated by restrictions on use or
availability of map information across much of the world, and the advent of inexpensive
portable satellite navigation devices. Furthermore, the fact that OSM’s crowdsourced data
is available to the public under the Open Database License, it has significantly assisted the
construction of various open-source applications like routing machines and distance
calculator, but more importantly, it has motivated people to contribute to the enrichment of
its content. However, the quantity of its data varies amongst regions. In countries like the
United States and Germany where their people are more interested in contributing to the
OSM project, it contains a larger quantity of information, in contrast with other countries
like in Central Africa. In spite of this fact, OSM is a very rich database containing numerous
useful geospatial information about the overall world.

2.2.1 LinkedGeoData

LinkedGeoData2 [14] is an effort to add a spatial dimension to the Semantic Web by
collecting information from OpenStreetMap and converting it into RDF. The RDF triples are
stored in a large spatial KB that follows the Linked Data principles and it consists of more
than 3 billion nodes and 300 million ways and the resulting RDF data comprises
approximately 20 billion triples. The data is available according to the Linked Data

1 https://www.openstreetmap.org/
2 http://linkedgeodata.org/

G.Mandilaras 20

https://paperpile.com/c/fdwpEJ/ggZT
https://paperpile.com/c/fdwpEJ/ggZT

Spatial and Temporal information in the Semantic Web

principles and it is interlinked with DBpedia, GeoNames and therefore with the Linked
Open Data Cloud. Furthermore, LinkedGeoData provides a SPARQL endpoint which
allows queries in GeoSPARQL that enables us to perform complex geospatial calculations.
Unfortunately, LinkedGeoData is no longer maintained, hence its data is not up-to-date.

2.2.2 GeoQA

GeoQA [15] is an attempt to offer a question answering service on top of linked geospatial
data sources. This system has been implemented as re-usable components of the Qanary
[16] question answering architecture. It provides a natural language interface for common
users to express their information needs. Users commonly pose questions or information
requests with a geospatial dimension to search engines, e.g., “Christmas market in
Germany”, “Schools in London”, “Which countries border Greece?”, which will be
transformed into queries in GeoSPARQ or in stSPARQL [17]. Those queries are asked
over a large dataset which has been constructed by linking various geospatial data
sources such as GADM, OSM and DBpedia. The OSM data was collected by converting
the non-commercial shapefiles provided by the company GEOFABRIK into RDF triples
using GeoTriples [18]. Then they interlinked the OSM entities with their equivalent entities
of DBpedia by comparing them both nominally and geographically. However, the non-
commercial shapefiles provided by GEOFABRIK contain deficient information in
comparison with other OSM data sources. This motivated us to study alternative data
sources (e.g., binary OSM files).

2.3 Transforming spatial data of various sources into RDF

2.3.1 TripleGeo

TripleGeo3 [19] is an open-source ETL(Extract Transform Load) utility that can extract
geospatial features from various sources and transform them into triples for subsequent
loading into RDF stores. TripleGeo can directly access both geometric representations and
thematic attributes either from standard geographic formats like OSM PBF, ESRI
shapefiles, CSV and GeoJSON or widely used DBMSs. It can also reproject input
geometries on-the-fly into a different Coordinate Reference System, before exporting the
resulting triples into a variety of notations. Most importantly, TripleGeo supports the recent
GeoSPARQL [20] standard endorsed by the Open Geospatial Consortium, although it can
extract geometries into other vocabularies as well. This tool has been validated against
OpenStreetMap layers with millions of geometries, opening up perspectives to add more
functionality and to address much bigger data volumes.

Before attempting any conversion using TripleGeo, a configuration file must be prepared.
This file lists crucial properties that define how input data will be accessed, where they will
be exported and into which format, as well as optional features (e.g., reprojection into
another spatial reference system).

3 https://github.com/SLIPO-EU/TripleGeo.

G.Mandilaras 21

https://paperpile.com/c/fdwpEJ/g838
https://paperpile.com/c/fdwpEJ/ZTkP

Spatial and Temporal information in the Semantic Web

2.3.2 GeoTriples

Similarly to TripleGeo, there is another ETL utility that can extract geospatial features from
various sources and transform them into RDF triples, known as GeoTriples4 [18].
GeoTriples is developed by the Department of Informatics and Telecommunications of the
National and Kapodistrian University of Athens and it is capable of converting data from
various data sources like spatially-enabled relational databases (PostGIS and MonetDB),
ESRI shapefiles and XML, GML, KML, JSON, GeoJSON and CSV documents. GeoTriples
comes in two forms: a single-node implementation and an implementation that supports
the parallelization of the process using Apache Hadoop5 [21] for dealing with big geospatial
data.

4 http://geotriples.di.uoa.gr/
5 https://hadoop.apache.org/

G.Mandilaras 22

https://paperpile.com/c/fdwpEJ/RYyw
https://paperpile.com/c/fdwpEJ/zW7u

Spatial and Temporal information in the Semantic Web

3. CONVERSION OF OPENSTREETMAP DATA INTO RDF

This implementation refers to the construction of a wrapper of TripleGeo [19] known as
TripleGeo_Forwarder, which simplifies the conversion of OpenStreetMap data into RDF
triples. This is accomplished by automating the procedure of collecting the input OSM
data. Its main routine is to download the requested OSM datasets from Geofabrik, and
then to forward them to TripleGeo in order to convert them into RDF triples. The
downloaded datasets are in the PBF file format which is the most complete OSM data
source (Section 2.2.2). Also, the information is compressed in PBF datasets and hence
processing them faster.

3.1 OpenStreetMap data to RDF

Nowadays, geospatial information is incredibly useful. It is required in a wide range of
applications like weather pattern predictions and satellite navigation services. However,
geospatial information was not available to the public due to restrictions on the use or
availability of map information across much of the world. As a result, this motivated many
people to construct and to contribute to OpenStreetMap which is a crowd-sourced project
that provides geospatial information freely to the public.

OpenStreetMap contains a huge amount of useful information about the whole world such
as points of interest (POI), administrative units, geometries, railways systems, waterways,
and other geospatial information. This information is accessible to the public to utilize it,
but its content is only provided in certain proprietary formats like XML, PBF or ESRI
shapefiles. Those formats follow a predefined schema making them hard to integrate with
other geospatial or regular data from different data sources. As a result, the integration
process becomes time-consuming and complex, and usually requires manual integration
and programming efforts to ensure that the meaning of the provided information will be
processable. This data integration problem prevents the users to better utilize their data by
complicating the process of constructing a unified dataset, that would allow the users to
better understand the provided information.

RDF can efficiently solve this problem. Having the data stored in RDF triples makes
information seeking easier by allowing exploration, editing, and interlinking of
heterogeneous information sources with a spatial dimension. Furthermore, it facilitates the
integration process with the view to produce a unified dataset and provides a series of
beneficial tools like querying and inferencing which can improve the analysis of the data.
Also, users have the capability to use GeoSPARQL [20] in order to perform not only
regular queries but also complex spatial calculations similar to those in a Geographic
Information System (GIS). Last but not least, RDF triples can be transformed back to any
file format using TripleGeo or other relevant software, allowing users to design their
desired schema of their produced dataset.

Moreover, OSM data in the form of RDF triples will contribute to the enrichment of the
Semantic Web with geospatial information [22]. Traditional GIS offer rigid sets of
geographic features, thus integrating external datasets into these systems is a complex
task. However, combining the strengths of Linked Data and GIS systems could spur the
transition from islands of isolated GIS to a geospatially enriched Linked Data Web where
geographic information can easily be integrated and processed. This will enable
particularly designed softwares and users to be capable of producing new information by
better utilizing the geospatial dimension, like aggregations based on certain area.

G.Mandilaras 23

https://paperpile.com/c/fdwpEJ/ZTkP
https://paperpile.com/c/fdwpEJ/gnWO
https://paperpile.com/c/fdwpEJ/g838

Spatial and Temporal information in the Semantic Web

This implementation enhances the attempt of providing OSM data in the form of RDF, by
utilizing the TripleGeo tool and massively converting ΟΣΜ PBF files into RDF triples.

3.2 TripleGeo_Forwarder

3.2.1 Purpose

TripleGeo_Forwarder’s primary purpose is to massively convert OSM data into RDF
triples. This is accomplished by downloading the PBF datasets of the requested areas and
forwarding them to TripleGeo which will convert them into RDF triples. The PBF datasets
contain all the OSM entities and all of their tags, so the produced triples will not lack
information. Therefore, it is an add-on of TripleGeo that simplifies the conversion of OSM
data by automating the process of collecting and storing it, and by executing TripleGeo for
a series of datasets.

3.2.2 Geofabrik’s Download Server

Geofabrik provides a server known as Geofabrik’s Download Server6 which contains data
extracts from the OpenStreetMap project in PBF, XML and ESRI shapefile formats. Its
datasets are normally updated every day by an automated process. Geofabrik provides
two versions of shapefiles, one free of charge, and a commercial one. The free shapefiles
contain just a subset of the feature classes of OSM such as POIs, roads, waterways and
railway system, while the commercial ones contain additional feature classes and more
information about the entities. In this implementation, we use this server in order to
download the PBF datasets of the requested regions, since those contain the most
information.

3.2.3 Description

The user specifies in the configuration file the names of the regions he wants to convert
into triples, separated by semicolons(“;”). For those regions, TripleGeo_Forwarder will
download from the Geofabrik download server the PBF datasets, since those contain the
most information, and then it will forward them to TripleGeo. Before executing TripleGeo
for each downloaded dataset, it will construct a temporary configuration file which will
contain all the necessary information for the related dataset likes its location and its format,
and it will be used as an argument for the execution. The produced triples will be located in
the location which was specified in the configuration file.

Since Geofabrik’s download server updates its content daily, it is urgent to always use the
most recent ones as they could probably hold new or more accurate information.
Therefore, if a set of data for a requested region already exists but it was downloaded on a
previous day, TripleGeo_Forwarder will ignore it and it will start the process of
downloading a new set. Thus, in this way we reassure that TripleGeo will always be
executed with the most recent and the most updated datasets.

Regarding the process of downloading, a list of regions must be specified for which their
OSM data will be extracted from Geofabrik and then transformed. This list must contain
the names of the regions for which Geofabrik must provide a dataset, and the URL to their
dataset. This list must be stored in an external file. TripleGeo_Forwarder advises this list in
order to find the locations of the requested datasets and to download them. Furthermore,
this file can be manually constructed, or otherwise, it will be generated by a procedure

6 https://www.geofabrik.de/data/download.html

G.Mandilaras 24

Spatial and Temporal information in the Semantic Web

which is executed only when it is absent. This procedure implements web scraping
techniques that parse recursively all the tables and the sub-tables that exist in the
Geofabrik download server, constructing this file. This way we ensure that the produced
file contains all the URL of all the existing datasets, but more importantly, it makes the
process of its construction automated. Hence, in case Geofabrik enriches its tables by
adding new datasets for new regions, for instance, creating a sub table containing all the
sub-regions of Greece, it will be effortless to reconstruct the file. However, this procedure
is strictly designed and based on the current structure of the website, so in case that it
dramatically changes it will render this process incompetent of constructing this file and it
will require to be adjusted to the new schema of the website.

Figure 4 describes the whole procedure and the functionality of its modules. The
Forwarder is the primary module and gets as its input a configuration file that contains all
the necessary information for its execution, such as the requested areas and the location
where the downloaded datasets will be exported. Its main job is to download the datasets
and then to execute TripleGeo with the necessary arguments. In case geofabrik_areas.ini
file doesn’t exist, Forwarder will call Ini_Constructor which is responsible for its
construction. TripleGeo will convert the input dataset into RDF triples and it will store them
to the location that was specified in the configuration file.

G.Mandilaras 25

Spatial and Temporal information in the Semantic Web

Figure 4: Flow of the Execution of Fowarder

3.2.4 Performance Results

TripleGeo_Forwarder was tested against OSM data extracted for multiple regions. The
virtual machine in which the tests were implemented has 16 CPU cores of 2.3 GHz, 32Gb
RAM and 16Gb swap space. “Records” is a database terminology used to express real-
world entities, represented in OSM. Table 2 and Figure 5 describes the tests that were
implemented and their performances. In Figure 5 we can observe that the execution cost
increases proportionally to the input dataset. However, not only the size of the input affects
the execution cost, but also the complexity of the content of dataset.

While performing the conversion, TripleGeo indexes all OSM elements in memory.
However, if the size of the input dataset is more than 2% of the JVM heap size, it is
expected that memory will not be sufficient and the execution could probably lead to
memory errors. The developers of TripleGeo were aware of this danger and implemented
it in such a way that the indexing will be performed in the Disk in case the memory is
expected to be insufficient. Fortunately, the VM that these tests were implemented,
contained sufficient resources in order to avoid this situation and use only the RAM.

G.Mandilaras 26

Spatial and Temporal information in the Semantic Web

Table 2: Resutls of TripleGeo_Forwarder

Regions Dataset’s
Size

(Mb)

Input
Records

Output
Triples

Execution
Time (sec)

Cyprus 12.3 13237 241578 14.327

Latvia 58 98337 1746977 59.838

Serbia 64 27328 605801 64.015

Ireland and
Northern Ireland

141 74790 1340096 208.515

Greece 162 103473 2032970 213.712

Portugal 180 127278 2196691 264.298

Belgium 308 183863 3269995 449.314

Figure 5: Performance of TripleGeo_Forwarder

G.Mandilaras 27

Spatial and Temporal information in the Semantic Web

4. SPARK EXTRACTOR

While TripleGeo is very effective in the transformation of geospatial data into RDF triples,
its performance regarding the conversion of big files is poor and discouraging. Its multi-
threaded execution supports only the conversion of multiple datasets and not the
parallelization of a big dataset. In this implementation, TripleGeo is extended with the
Spark technology that enables the parallelization of the execution in clusters. This enables
the parallelization of the conversion of big geospatial data which led to significantly reduce
the transformation time.

4.1 The Issue

TripleGeo is very effective in the transformation of several file formats into RDF triples
concerning the geospatial information. It is capable of converting CSV, JSON, GeoJSON,
PBF, ESRI shapefiles and data exported by widely used Database Management Systems
(DBMS). However, TripleGeo does not support the parallelization of the process in order to
reduce the execution time, hence large files containing complex geometrical structures
require an excessive amount of time to complete their transformation. Nonetheless,
TripleGeo offers the possibility to concurrently execute multiple files of the same format, in
different Java threads. So users can split their data in separate individual datasets and
instruct TripleGeo to convert them simultaneously. This function is provided for every
geospatial format but requires from the users to have manually split the data into several
pieces which is a hard task especially for complex file formats like ESRI shapefiles. This
splitting is not executed by TripleGeo so it must be carried out externally, using other
softwares, and therefore the user must be involved which may lead to deformations and
corrupted files.

In an attempt to improve the performance of the conversion of big geospatial datasets, we
extended TripleGeo to work on top of Spark. This enables the parallelization of the
execution without requiring any pre-process by the user. More importantly, it significantly
reduced the execution time of big complex datasets.

4.2 Spark

Apache Spark7 [23] is an open-source, distributed, general-purpose, cluster-computing
framework, which was developed by the AMP lab8 of UC Berkeley and it was later donated
to the Apache Software Foundation9 which has been maintaining it ever since. Spark
provides an ease of use APIs for many programming languages like Java, Scala, and
Python and also powers a stack of libraries including SQL, DataFrames, and Datasets,
MLlib for machine learning, GraphX for graph processing, and Spark Streaming. It is able
to access diverse data sources including HDFS and can be run in a cluster or in a
standalone mode.

Spark uses a master/worker architecture. There is a driver that talks to a single coordinator
called master which manages workers in which executors run. A Spark driver (aka an
application’s driver process) is a JVM process that hosts the SparkContext for a Spark
application and it is the master node. It is responsible to split the job into tasks, to schedule

7 https://spark.apache.org/
8 https://amplab.cs.berkeley.edu/
9 https://www.apache.org/

G.Mandilaras 28

https://paperpile.com/c/fdwpEJ/d0b1

Spatial and Temporal information in the Semantic Web

them to run on executors and to coordinate the overall execution. Executors run in
different JVM processes and they are distributed agents that execute the tasks in parallel
(or sequentially).

At the core of Apache Spark is the notion of data abstraction as a distributed collection of
objects. This data abstraction, called Resilient Distributed Dataset (RDD), allows users to
write programs that transform these distributed datasets. RDDs are an immutable
distributed collection of elements of the data that can be stored in memory or disk across a
cluster of machines. The data is partitioned across machines in the cluster, which can be
operated in parallel using a high-level API that offers transformations and actions.
Transformations are functions that take an RDD as input and produce one or multiple
RDDs as output. They do not change the input RDD since RDDs are immutable, but
always produce one or more new RDDs by applying computations. The result RDD(s) will
always be different from the input. According to the computation, the size can be either
bigger (in case of a union) or smaller(in case of a filter) or even the same (in case of a
map). By applying transformations the user incrementally builds an RDD lineage with all
the parent RDDs of the final RDD(s) and they will not be executed before calling an action
since transformations are lazy processes. Actions are RDD operations that produce non-
RDD values and evaluate the RDD(s) lineage graph by triggering the execution of the
transformations. Also one of their main purposes is to send the data from executors to the
driver. RDDs are fault tolerant as they track data lineage information to rebuild lost data
automatically on failure. Similarly to RDDs, Dataframes are an immutable collection of data
but the information is organized into named columns, like a table in a relational database.
DataFrame allows developers to impose a structure onto a distributed collection of data
allowing them to use higher-level functions like SQL queries.

4.3 Why Spark?

Nowadays, the world of Big Data is evolving rapidly leading to the of emerging new
technologies that offer the promise of managing and analyzing large volumes of data
faster, in a more scalable way, with cheaper implementation and maintenance costs.
Apache Spark is one of the most notable of such technologies because it is probably one
of the fastest, with a very easy way to use API and with a large active community. Next, we
outline the main reasons for choosing Apache Spark as big data infrastructure for
TripleGeo.

Very fast Platform

It is proved that Spark is way faster than its predecessor MapReduce of Hadoop [24].
Spark is designed in a way that it transforms data in-memory and not in disk I/O. Hence, it
cuts off the processing time of read/write cycle to disk and storing intermediate data in-
memory. This reduces processing time and cost of memory at a time. Moreover, Spark
supports parallel distributed processing of data, hence it is almost 100 times faster in
memory and 10 times faster on disk. Furthermore, Apache Spark is developed using the
Scala programming language which is faster than Java. Scala provides immutable
collections rather than Threads in Java that helps in inbuilt concurrent execution.

Great API

Apache Spark provides a native easy way to use API for Java which contains plenty of
transformations and actions allowing programmers to more effectively reach their goals.
Also, it comes up with a graphical user interface accessible through the browser, which
informs the user about the status of the execution and about helpful information, which can
assist in improving the application. Furthermore, it is important to mention that it is

G.Mandilaras 29

https://paperpile.com/c/fdwpEJ/sDkw

Spatial and Temporal information in the Semantic Web

supported by a large active community, which facilitates and encourages learning and the
overall engagement with this technology.

GeoSpark

GeoSpark10 [25] is an extension of Spark core implemented by the Data Systems Lab11, in
order to support spatial data types, indexes, and geometrical operations at scale. It is
enriched with a set of out-of-the-box Spatial Resilient Distributed Datasets (SRDDs) that
efficiently load, process, and analyze large-scale spatial data across machines.

4.4 Application Description

Before explaining the process of this implementation, it is important to explain the principal
routine and the execution flow of TripleGeo. TripleGeo’s primary module is Extractor which
reads the input configuration file and initializes all the fundamental variables. Then for
each input dataset, it creates a Task in a different thread which will perform the conversion.
The execution of these datasets will be in parallel but the dataset must be of the same file
format. If only one file is given as input then the whole procedure will be executed in a
single thread and therefore it will be sequential. According to the type of the input file, the
Task will call the proper converter which will collect the data from the dataset, convert them
into triples and store them in the specified destination. As it is already mentioned, the
execution will be in parallel only if multiple files of the same format will be given as input. In
case of conversion of big files, users are required to split them is separates datasets which
is a troublesome procedure.

In this implementation, we support the parallelization of CSV, GeoJSON and ESRI
shapefiles and we have refactored the whole procedure by introducing new modules in
order to not affect the flow of execution of the current version of TripleGeo. The whole
process starts with SparkExtractor which performs similarly to Extractor but instead of
constructing Tasks for the given datasets, it constructs a SparkTask which implements the
Spark functionalities. Firstly, it initializes all the necessary Spark variables and then
according to the data source it parses them properly. In cases of GeoJSON and CSV, the
information is parsed is such a way in order to create a dataframe which will contain all the
features of the initial source. In the case of ESRI shapefiles, in which we will focus on, the
information is read using GeoSpark which converts it in a Spatial RDD. This SRDD
contains the content of the shapefile in records of Java Topologies Suite (JTS) [26]
Geometries instances. Then the procedure is the following:

● A Spark transformation is applied which transforms the input records into Maps.

● Using a Spark action the produced Maps are passed to a new specially designed
converter.

● The converter performs the conversion into RDF triples.

The whole execution is performed in parallel because during the initialization of the RDD
(or the Dataframe) the input dataset is split into data chunks which are treated individually.
Those data chunks known as Partitions are logical chunks of a large distributed set of data
that an RDD represents. The input dataset will be read and stored in partitions in different
Workers and then each Worker will perform an independent conversion. The number of
partitions is specified by the user in the configuration file and the performance of the whole
procedure is highly related to it. More partitions mean the more parallelize the whole
procedure will be and each Worker will have to convert a smaller chunk as the initial

10 http://geospark.datasyslab.org/
11 https://www.datasyslab.net/

G.Mandilaras 30

https://paperpile.com/c/fdwpEJ/iKlY
https://paperpile.com/c/fdwpEJ/3X64

Spatial and Temporal information in the Semantic Web

dataset will be divided into more partitions of fewer records. However, that does not
significantly mean that more partitions will lead to a faster execution. The optimal number
of partitions highly depends on the available resources of the cluster or of the machine (in
case Spark runs in a standalone mode) the application is executed in.

The transformation of the datasets can be parallelized because each partition can be
converted individually from the others. The chunks of the dataset which are held in
partitions contain independent records that TripleGeo will convert them into RDF triples
and store them in separate files. Therefore the execution of each partition does not affect
the execution of the rest, so there is no need for data reshuffling or inner communication
during the process. Each partition will produce its own RDF file containing the triples
generated by its dataset chunk. These files can be easily concatenated since integration is
a simple process for data that follows the RDF model.

The whole process is divided into two stages, as it is represented in Figure 6. GeoSpark,
first, loads the shapefile in a distinct partition, so the first stage is dedicated to
repartitioning it to the requested number of partitions. In the second stage, the Spark
transformations and actions are performed, which in our case are a map transformation
and a forEachPartition action. During the map transformation, the input instances are
transformed into Maps and during the action, TripleGeo is executed for each partition.

It is important to mention that GeoSpark reads a folder which must contain all the requisite
files of a shapefile like the .shp, .shx and .dbf. As a result, the input path must be the
location of the folder that contains the shapefiles. Furthermore, each partition will produce
a separate RDF file which will hold the triples that were generated by the records of its
chunk.

Figure 6: Directed Acyclic Graph (DAG) of SparkExtractor

G.Mandilaras 31

Spatial and Temporal information in the Semantic Web

4.5 Evaluation

4.5.1 Experimental Setup

The application was assessed with multiple files of diverse sizes. The following tests were
conversions of ESRI shapefiles provided by the OSM download server. Those tests were
implemented in a Virtual Machine (VM) with 4 CPU cores of 2.1GHz, 4Gb memory and
2Gb of swap space. Furthermore, all tests were conducted with “cold cache” which means
that the cache memory was empty or contained irrelevant with the procedure data. It is
also important to mention that the case of one (1) partition stands for the traditional routine
of TripleGeo, the Extractor which does not support the parallelization of ESRI shapefiles
and does not apply any Spark operation. The tested datasets and their features are listed
in Table 3.

Table 3: Experimental Setup

Name Description Type Size Records

(Input)

Produced
Triples

OSM_POIS_GR Contains the
POIs of
Greece.

Shapefile 15M 76835 1043040

OSM_POIS_SP Contains the
POIs of
Spain.

Shapefile 106M 373088 5122008

OSM_ROADS_
GR

Contains the
road system
of Greece.

Shapefile 453M 776386 7745024

OSM_ROADS_
SP

Contains the
road system
of Spain.

Shapefile 1.6G 3260622 34372473

OSM_ROADS_
GER

Contains the
road system
of Germany.

Shapefile 3.7G 11107532 115999413

4.6.2 Performance Results

The performance of the application was evaluated by executing it with various datasets of
diverse sizes and contents as its input. The evaluation was twofold:

● Scale-up: The transformation time of each dataset was examined by varying the
number of partitions in order to find when the application offers the best utilization of
the available system resources (CPU cores).

● Scale-out: The scaling of the application was also examined against varying input
data sizes by fixing the number of partitions in each test.

G.Mandilaras 32

Spatial and Temporal information in the Semantic Web

Scale-Up

Figure 7: Scale-up for dataset OSM_POIS_GR

Figure 8: Scale-up for dataset OSM_POIS_SP

G.Mandilaras 33

Spatial and Temporal information in the Semantic Web

From Figure 7, we can deduce that the simple Extractor (case of one partition) is more
effective against the SparkExtractor for small datasets. This is probably happening
because SparkExtractor consumes some time in order to initialize the fundamental
variables of Spark and in order to partition and distribute the data. Also, OSM_POIS_GR
contains exclusively only POIs where all geometries are simple points and their
transformation is an easy task for TripleGeo. However, as the size of the input dataset
increases then we can observe the scalability provided by Spark. In Figure 8, we can
observe the significant reduction of the execution cost, especially when we use 4
partitions. We reckon that the usage of 4 partitions is the optimal option because it makes
the best out of the four CPU cores of the VM and because it performs the conversion of all
the partitions completely in parallel.

It is very intriguing and very important to mention that when we split the dataset into more
than four partitions (more than the amount of the available CPU cores), Spark doesn’t
execute all of them concurrently. Instead, Spark assigns the first four partitions to the CPU
cores and executes them in parallel, while the rest of the partitions await for a core to
complete its operations in order to be assigned to it. Therefore, in the case of five (5)
partitions, the first four were executed simultaneously while the fifth was waiting and
started when a core was released. This is not utterly a bad thing because it gives us the
option to divide the initial dataset into more small partitions and thus to reduce their
required execution time. We can observe from Figure 9 and from the following bar charts
that the execution time is reduced after 5 partitions and it produces significantly decent
results in the case of 8 partitions.

Figure 9: Scale-up for dataset OSM_ROADS_GR

G.Mandilaras 34

Spatial and Temporal information in the Semantic Web

Figure 10: Scale-up for dataset OSM_ROADS_SP

Figure 11: Scale-up for dataset OSM_ROADS_GER

G.Mandilaras 35

Spatial and Temporal information in the Semantic Web

It is beyond the shadow of a doubt that the performance of SparkExtractor regarding big
datasets is remarkable. In Figure 11 where input dataset is relatively big, Spark managed
to complete the execution in less than half of the time that it is required by the Extractor.

Scale-Out

Figure 12 depicts the performance of the application for specific numbers of partitions
against datasets of varying sizes. Each bullet represents the performance of the model
using a dataset of a corresponding size. The datasets that were used are the ones that
were stated in the setup section. Standalone stands for the execution of TripleGeo’s main
module, Extractor. The performances of the executions using 4 and 2 partitions are
displayed because the case of 4 partitions has the optimal outcome and the execution cost
using 2 partitions is almost half of the Standalone mode. There is no reason to display the
performances of the executions with more than 4 partitions because they do not offer the
best utilization of the available CPU cores.

In Figure 12, we can observe that the escalation of the transformation time over the input
size is almost linear in every case. However, larger datasets have a more negative impact
in the Standalone mode than in the other modes. In the end, the Standalone mode
requires almost twice the time needed by the execution that used 2 partitions in order to
complete its transformation. Since Spark requires a small period of time partitioning and
distributing the input dataset, the performance of the Standalone is superior when the size
of the input dataset is relatively small.

Figure 12: Scale-Out Experiment

G.Mandilaras 36

Spatial and Temporal information in the Semantic Web

5. YAGO EXTENSION WITH SPATIO-TEMPORAL KNOWLEDGE

In this chapter, we describe an extension of YAGO with temporal and spatial information
about the former Greek administrative division that was described in the Kapodistrias plan.
The first step was to collect the data from official sources and then to construct the
Kapodistrias dataset that follows the RDF data model. Then we use this dataset to extend
YAGO with official data about the former administrative divisions of Greece.

5.1 Greek Administrative Division

The former administrative division of Greece was based on the Kapodistrias plan and it
was in effect from 1997 till 2011. Then it was replaced by the Kallikratis reform which
implemented several changes and ιs in effect ever since. The Kapodistrias reform
consisted of 910 Municipalities (Δήμοι) and 124 Communities (Κοινότητες), 54 Prefectures
(Νομοί) and 13 Regions (Περιφέρειες). In the Kallikratis reform, there was a lot of changes
but the most significant was that the majority of the prefectures were transformed into
regional units and the rest were split up into multiple regional units. (Περιφερειακές
Ενότητες). Moreover, many Municipalities and Communities were merged, while Regions
remained intact. In more detail, the Kallikratis reform consists of 325 Municipalities (Δήμοι),
74 Regional Unis (Περιφερειακές Ενότητες) and 13 Regions (Περιφέρειες).

5.2 Kapodistrias Dataset Construction

5.2.1 Kapodistrias’ Administrative Units

The first step towards the extension of YAGO was to collect the information about the
former Greek administrative division. The main source from which the information was
collected is the Wikipedia page that refers to the Kapodistrias plan. Even though,
Wikipedia is known to be a reliable source we wanted to ensure that its information is
credible. So its content was manually evaluated using the Greek legislation about the
Kapodistrias plan. In the end, it was proved that it is a reliable source as it strictly follows
the Greek legislation.

The desired information was collected using a Python script which was recursively
scraping the Wikipedia pages collecting all the necessary information. In more detail, the
collected are entities (administrative units) were

● 13 Regions (Περιφέρειες)

● 54 Prefectures (Νομοί)

● 1034 Municipalities and Communities (Δήμοι & Κοινότητες)

● 6166 Districts (Διοικητικές διαιρέσεις)

The next step was to construct an RDF graph that contains information about the former
Greek administrative units, as stated in the Kapodistrias plan This dataset will follow the
RDF data model so each administrative unit will be represented by a unique Uniform
Resource Identifier (URI). The properties and relations that are contained in the dataset
are:

● <http://kr.di.uoa.gr/kapodistrias/ontology/officialName> assigns the entities with their
label.

G.Mandilaras 37

Spatial and Temporal information in the Semantic Web

● <http://kr.di.uoa.gr/kapodistrias/ontology/id> assigns the entities with a unique id.

● <http://kr.di.uoa.gr/kapodistrias/ontology/division> connects the entities with the
type of their division (District, Community, Municipality, Prefecture or Region).

● <http://kr.di.uoa.gr/kapodistrias/ontology/upperLevel> assigns an entity with the
upper level unit it belongs to.

● <http://www.opengis.net/ont/geosparql#hasGeometry> connects an entity with a
geometry id. The geometry id works as an intermediate between the entities and
their geometries.

● <http://www.opengis.net/ont/geosparql#asWKT> connects a geometry id with their
geographical shape in the form of Well Known Text (WKT).

● <http://kr.di.uoa.gr/kapodistrias/ontology/OfficialCreationDate> assigns the entities
with their creation date.

● <http://kr.di.uoa.gr/kapodistrias/ontology/OfficialTerminationDate> assigns the
entities with the date they ceased to exist.

Figure 13 depicts some triples of the Kapodistrias dataset.

G.Mandilaras 38

@prefix kapo_o: <http://kr.di.uoa.gr/kapodistrias/ontology/>.
@prefix kapo_r: <http://kr.di.uoa.gr/kapodistrias/resource/>.
@prefix geo: <http://www.opengis.net/ont/geosparql#>.

kapo_r:Περιφέρεια_Αττικής kapo_o:division "Region".
kapo_r:Περιφέρεια_Αττικής kapo_o:id "Kapodistrias_01000000".
kapo_r:Περιφέρεια_Αττικής kapo_o:officialName "Περιφέρεια Αττικής".
kapo_r:Περιφέρεια_Αττικής kapo_o:upperLevel "Greece".
kapo_r:Περιφέρεια_Αττικής kapo_o:OfficialCreationDate "1997-##-##".
kapo_r:Περιφέρεια_Αττικής geo:hasGeometry kapo_r:Geometry_Kapodistrias_01000000 .
kapo_r:Geometry_Kapodistrias_01000000 geo:asWKT "MULTIPOLYGON (((...)))” .

kapo_r:Νομαρχία_Αθηνών kapo_o:division "Prefecture" .
kapo_r:Νομαρχία_Αθηνών kapo_o:id "Kapodistrias_01010000" .
kapo_r:Νομαρχία_Αθηνών kapo_o:officialName "Νομαρχία Αθηνών" .
kapo_r:Νομαρχία_Αθηνών kapo_o:upperLevel kapo_r:Περιφέρεια_Αττικής .
kapo_r:Νομαρχία_Αθηνών kapo_o:OfficialCreationDate "1997-##-##" .
kapo_r:Νομαρχία_Αθηνών kapo_o:OfficialTerminationDate "2011-##-##" .
kapo_r:Νομαρχία_Αθηνών geo:hasGeometry kapo_r:Geometry_Kapodistrias_01010000 .
kapo_r:Geometry_Kapodistrias_01010000 geo:asWKT "POLYGON ((...))” .

kapo_r:Δήμος_Αθηναίων(Αθηνών) kapo_o:division "Municipality" .
kapo_r:Δήμος_Αθηναίων(Αθηνών) kapo_o:id "Kapodistrias_01010100" .
kapo_r:Δήμος_Αθηναίων(Αθηνών) kapo_o:officialName "Δήμος Αθηναίων" .
kapo_r:Δήμος_Αθηναίων(Αθηνών) kapo_o:upperLevel kapo_r:Νομαρχία_Αθηνών .
kapo_r:Δήμος_Αθηναίων(Αθηνών) kapo_o:OfficialCreationDate "1997-##-##" .
kapo_r:Δήμος_Αθηναίων(Αθηνών) geo:hasGeometry kapo_r:Geometry_Kapodistrias_01010100 .
kapo_r:Geometry_Kapodistrias_01010100 geo:asWKT "POLYGON ((..))” .

Figure 13: Triples of the Kapodistrias dataset

Spatial and Temporal information in the Semantic Web

5.2.2 The boundaries of Administrative Units

In order to enrich YAGO’s spatial information, we extend YAGO with the geographic
shapes of the administrative units in the form of polygons instead of points. The ATHENA12

research centre provided us with an ESRI shapefile containing the geometries of every
Municipality of the Kapodistrias plan. The geometries of the Prefectures were constructed
by unifying the geometries of the Municipalities of each Prefecture. The same procedure
was used in order to construct the geometries of the Regions. We transformed the
geometries into Well Known Texts (WKT) and then we mapped them with the entities of
our dataset. Unfortunately, we didn’t manage to find the geographic shapes of the
Districts. Figure 14 depicts the produced geometries.

Figure 14: Geometries of the Administrative Units

5.2.3 Temporal Information of Administrative Units

The contained temporal information in the data concerns the construction and
termination(if it exists) dates of the administrative units. All the administrative units were
constructed in 1997 when the Kapodistrias plan was set in effect. In 2011 the Kapodistrias
plan was replaced by the Kallikratis reform, and therefore there were several changes in
the administrative division of Greece. Many of them remained intact while others
significantly changed. Those that altered in any way by the Kallikratis plan are assigned

12 https://www.athena-innovation.gr/

G.Mandilaras 39

Spatial and Temporal information in the Semantic Web

with a termination date. In more details, the date facts of each administrative order are the
following:

● The Regions were not affected by the Kallikratis plan, so they are not assigned with
a termination date. Therefore the only date fact that was inserted to them is:

kapo_r:OfficialCreationDate "1997-##-##"^^xsd:date

● All the Prefectures transformed into Regional Units in the Kallikratis plan so they
significantly changed. Therefore, all of them are assigned with a creation and a
termination date. Their date facts are:

kapo_r:OfficialCreationDate "1997-##-##"^^xsd:date
kapo:_rOfficialTerminationDate "2011-##-##"^^xsd:date

● Municipalities are the most complex situation. Most of them were altered by the
Kallikratis plan (either merged with other units or they utterly changed), while others
remained untouched. In order to assign the Municipalities with their appropriate
date facts, we constructed a set containing all the Municipalities that were not
affected by the reform. The Municipalities that were in this set were assigned to only
a construction date, while the rest were assigned with also a termination date. All
the Communities were significantly changed so they are assigned with both a
construction and a termination date.

● All the Districts were transformed into Municipal Communities. Similarly to
Prefectures, their assigned date facts are

kapo_r:OfficialCreationDate "1997-##-##"^^xsd:date
kapo_r:OfficialTerminationDate "2011-##-##"^^xsd:date

5.3 YAGO Extension

After the construction of the Kapodistrias dataset, we extend YAGO with its information.
However, YAGO already contains entities that represent the administrative units of
Greece, so it is urgent to avoid duplicating its existing information. Thus, it is important to
find the entities of YAGO that are equivalent to Kapodistrias entities and extend them with
their new properties. The matching phase serves exactly this purpose by matching the
entities of these two sources that represent the same administrative unit. This is
accomplished by comparing them based on two factors, label similarity and geometrical
distance, using the methodology proposed in [12]. Similar approaches are proposed in [9]
[14]

During the label similarity process, entities that have similar names are matched. The
similarity between two labels is expressed as a value and it is calculated using the
Levenshtein distance. We accept that the labels refer to nominally the same entity, only
when their similarity exceeds a threshold which we set in 0.82 after a lot of
experimentation.

After the completion of label similarity follows the geometrical distance comparison, which
is applied only to entities that pass the label similarity procedure. Many administrative units
around the world share common names, so in this stage, we want to ensure that the
matched entities refer to the same administrative units instead of different with the same
names. For instance, an entity with the name “Athens” can refer to the Greek Prefecture of
Athens or to the Athens city of Alabama of the US. This procedure checks if the Euclidean
distance in the WGS:84 coordinate system between the geometry of the administrative
units of Kapodistrias and the point provided by YAGO is smaller than a specific threshold,

G.Mandilaras 40

https://paperpile.com/c/fdwpEJ/ggZT
https://paperpile.com/c/fdwpEJ/e2jj
https://paperpile.com/c/fdwpEJ/ixg1

Spatial and Temporal information in the Semantic Web

which is set at 0.2 degrees. In case there are multiple entities of YAGO that are matched
with the same resource, the entity that is closest, in terms of distance, to that resource is
kept.

This procedure was executed separately for each administrative order in order to prevent
matches among entities of different levels (e.g. Kapodistrias Regions were tested against
the first-order administrative units of YAGO, etc.). The results are depicted in Table 4.
Since the number of the entities was small, the correct matches were evaluated manually

Table 4: Matching Phase Results

Administrative
Orders

YAGO geo-class Kapodistrias
Entities

Matches Correct
Matches

Regions first-order_AD 13 12 12

Prefectures second-order_AD 54 51 51

Municipalities &
Communities

third-order_AD 1033 218 216

Districts populated_places 6166 3471 196/200

The results are very satisfying for the first and second orders as almost all the entities
were matched correctly. Regarding the third order, YAGO’s entities about the Greek
administrative division follow exclusively the Kallikratis plan, so only the administrative
units of the Kapodistrias plan that were not changed by the Kallikratis reform were
matched. Furthermore, the two wrong matches in the third order are administrative units
that matched with their corresponding units that follow the Kallikratis plan, as they have
similar labels and are located in the same place.

Moreover, some of YAGO’s entities are declared as second and third order and as a result,
they were matched in both cases. For instance, <Grevena_(regional_unit)> which is a
YAGO entity, is declared as second and third order and it was matched with Grevena
Prefecture and the Municipality of Grevena, which they are different entities. In order to
avoid this issue, the priority was given to the highest administrative level, so in this case
<Grevena_(regional_unit)> will only be matched with the Prefecture of Grevena.

The next step was to extend the matched entities by inserting them the properties of their
matched Kapodistrias entities. Furthermore, we insert the unmatched Kapodistrias entities
in YAGO in order to contain complete information about the former Greek administrative
division.

G.Mandilaras 41

Spatial and Temporal information in the Semantic Web

Figure 15 displays the extension of two YAGO entities with properties from their matched
Kapodistrias entities. The YAGO entity yago:Attica_(region) was matched with the
Kapodistrias entity wiki:Περιφέρεια_Αττικής, and therefore it was extended with its
properties. Similarly the YAGO entity yago:geoentity_Nomarchía_Athínas_445408 was
matched with wiki:Νομαρχία_Αθηνών. The inserted properties are those that were stated
in section 5.2.1, however the predicates are different. The predicates changed in such a
way in order to indicate their relation to the Kapodistrias plan.

G.Mandilaras 42

@prefix kapo_r: <http://kr.di.uoa.gr/kapodistrias/resource/>.
@prefix yagoext_ont: <http://kr.di.uoa.gr/yago-extension/ontology/>.
@prefix yagoext_res: <http://kr.di.uoa.gr/yago-extension/resource/>.
@prefix yago: <http://yago-knowledge.org/resource/>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix geo: <http://www.opengis.net/ont/geosparql#>.

kapo_r:Περιφέρεια_Αττικής owl:sameAs yago:Attica_(region) .
yago:Attica_(region) yagoext_ont:hasKapodistrias_Name "Περιφέρεια Αττικής" .
yago:Attica_(region) yagoext_ont:hasKapodistrias_Type "Region" .
yago:Attica_(region) yagoext_ont:hasKapodistrias_ID "Kapodistrias_01000000" .
yago:Attica_(region) yagoext_ont:hasKapodistrias_OfficialCreationDate "1997-##-##" .
yago:Attica_(region) geo:hasGeometry yagoext_res:Geometry_Kapodistrias_01000000 .
yagoext_res:Geometry_Kapodistrias_01000000 geo:asWKT "MULTIPOLYGON (((...)))” .

kapo_r:Νομαρχία_Αθηνών owl:sameAs yago:geoentity_Nomarchía_Athínas_445408 .
yago:geoentity_Nomarchía_Athínas_445408 yagoext_ont:hasKapodistrias_Name
"Νομαρχία Αθηνών" .
yago:geoentity_Nomarchía_Athínas_445408 yagoext_ont:hasKapodistrias_Type "Prefecture" .
yago:geoentity_Nomarchía_Athínas_445408 yagoext_ont:hasKapodistrias_UpperLevel
yago:Attica_(region) .
yago:geoentity_Nomarchía_Athínas_445408 yagoext_ont:hasKapodistrias_ID
"Kapodistrias_01010000" .
yago:geoentity_Nomarchía_Athínas_445408 yagoext_ont:hasKapodistrias_OfficialCreationDate
"1997-##-##".
yago:geoentity_Nomarchía_Athínas_445408 yagoext_ont:hasKapodistrias_OfficialTerminationDate
"2011-##-##".
yago:geoentity_Nomarchía_Athínas_445408 geo:hasGeometry
yagoext_res:Geometry_Kapodistrias_01010000 .
yagoext_res:Geometry_Kapodistrias_01010000 geo:asWKT "POLYGON ((…))”.

Figure 15: Example of Matched Entities

Spatial and Temporal information in the Semantic Web

Figure 16 depicts triples about Kapodistrias entities that did not match with any YAGO
entities during the matching phase. Therefore we can deduce that the unmatched entities
are unknown to YAGO and it does not contain any information about them. Those entities
and their properties will be appended to its knowledge graph in order to further extend its
content. We did not use the previous URIs but instead, we constructed and used new ones
that indicate their reference to the Kapodistrias plan. Moreover, It is important to mention
that even though the entity yagoext_res:kapodistriasentity_Νομαρχία_Πειραιώς did not
match, its upper level matched with a YAGO entity, hence the upper-level predicate points
to the matched YAGO entity.

G.Mandilaras 43

@prefix yagoext_ont: <http://kr.di.uoa.gr/yago-extension/ontology/>.
@prefix yagoext_res: <http://kr.di.uoa.gr/yago-extension/resource/>.
@prefix geo: <http://www.opengis.net/ont/geosparql#>.

yagoext_res:kapodistriasentity_Περιφέρεια_Ιονίων_Νήσων yagoext_ont:hasKapodistrias_Name
"Περιφέρεια Ιονίων Νήσων" .
yagoext_res:kapodistriasentity_Περιφέρεια_Ιονίων_Νήσων yagoext_ont:hasKapodistrias_ID
"Kapodistrias_08000000" .
yagoext_res:kapodistriasentity_Περιφέρεια_Ιονίων_Νήσων yagoext_ont:hasKapodistrias_Type
"Region" .
yagoext_res:kapodistriasentity_Περιφέρεια_Ιονίων_Νήσων yagoext_ont:OfficialCreationDate
"1997-##-##" .
yagoext_res:kapodistriasentity_Περιφέρεια_Ιονίων_Νήσων geo:hasGeometry
yagoext_res:Geometry_Kapodistrias_08000000 .
yagoext_res:Geometry_Kapodistrias_08000000 geo:asWKT "MULTIPOLYGON (((...)))”.

yagoext_res:kapodistriasentity_Νομαρχία_Πειραιώς yagoext_ont:hasKapodistrias_Name
"Νομαρχία Πειραιώς" .
yagoext_res:kapodistriasentity_Νομαρχία_Πειραιώς yagoext_ont:hasKapodistrias_ID
"Kapodistrias_01020000" .
yagoext_res:kapodistriasentity_Νομαρχία_Πειραιώς yagoext_ont:hasKapodistrias_Type
"Prefecture" .
yagoext_res:kapodistriasentity_Νομαρχία_Πειραιώς yagoext_ont:hasKapodistrias_UpperLevel
yago:Attica_(region) .
yagoext_res:kapodistriasentity_Νομαρχία_Πειραιώς
yagoext_ont:hasKapodistrias_OfficialCreationDate "1997-##-##" .
yagoext_res:kapodistriasentity_Νομαρχία_Πειραιώς
yagoext_ont:hasKapodistrias_OfficialTerminationDate "2011-##-##" .
yagoext_res:kapodistriasentity_Νομαρχία_Πειραιώς geo:hasGeometry
yagoext_res:Geometry_Kapodistrias_01020000 .
yagoext_res:Geometry_Kapodistrias_01020000 geo:asWKT "MULTIPOLYGON (((..))” .

Figure 16: Example of Unmatched entities

Spatial and Temporal information in the Semantic Web

5.4 Temporal Information in YAGO

During the construction of the matched and unmatched triples, we decided to not use the
predicates that YAGO provides for the expression of the temporal information. The main
reason that led us to this decision is the fact that some of the matched YAGO entities
already have date facts. Therefore, in order to avoid collisions among the date facts and to
not affect their existing temporal properties we constructed and used the new predicates
yagoext_ont:hasKapodistrias_OfficialCreationDate and
yagoext_ont:hasKapodistrias_OfficialTerminationDate. Using these new predicates
enabled us to compare our new date facts with the existing ones and to evaluate them.
Most of the entities are not assigned with any date fact and the temporal information of
those few varies. Some of the date facts are based on the Kallikratis plan, while others are
associated with dates that are not related to the Kapodistrias or Kallikratis plans. For
instance the entity yago:Icaria contains as its creation date the date that it was freed from
the Ottoman empire. The following paragraphs explain the origins of some of the date
facts of YAGO about the Greek administrative units and mention their new inserted date
facts.

An intriguing fact about many entities of YAGO is that even though they are described as
Prefectures by their own labels, their creation date is set to “2011-##-##” which is the date
that the Kallikratis plan was set in effect and therefore all the Prefectures ceased to exist.
Furthermore, some of them contain the string “regional unit” (Περιφιερειακή Ενότητα) in
their URIs which strengthens the fact that they refer to the Kallikratis plan. However, they
contained multiple labels that indicate that they are Prefectures and therefore they were
treated as Prefectures. For instance the entity yago:Florina_(regional_unit) contains the
labels "Νομός Φλώρινας", "Nomós Florínis"@eng and "Nomos Florinas". As a result, it was
matched with the entity kapo_r:_Νομός_Φλώρινας and therefore it was assigned with a
creation and a termination date. Similar cases were the entities
yago:Euboea_(regional_unit), yago:Lasithi, yago:Lefkada_(regional_unit) and many more.

Some of the first-order entities of YAGO such as the yago:Epirus_(region) and the
yago:Attica_(region) have as their creation date the year “1987-##-##”. This date fact
probably originates from Wikipedia which states that in this year these entities were
established as Regions of Greece. We extended these entities with their Kapodistrias
creation date only, since Regions did not alter by the Kallikratis plan.

The entity yago:Magnesia_Prefecture has as its creation date the year “1899-##-##” and
the entity yago:Samos_Prefecture has as its creation date the year “1915-##-##”. Both of
these dates are stated in the Greek version of these entities’ Wikipedia page and claim
that in these dates they were established as Prefectures. There are plenty of other
occasions which are quite similar to them. Both of them were extended with a creation and
a termination date as all the Prefectures transformed into Regional Units by the Kallikratis
plan in 2011.

It is important to mention that there is a lot of date facts for which we could not detect their
origins. They do not originate from the Wikipedia pages and we were unable to find
something relevant searching in the web.

G.Mandilaras 44

Spatial and Temporal information in the Semantic Web

6. CONCLUSION AND FUTURE WORK

To sum up, in this thesis we presented some implementations that enhance the Semantic
Web with spatial and temporal information. Its primary purpose is to assist in the extension
of YAGO by enriching its knowledge graph with spatiotemporal information about the
former Greek administrative division. Moreover, the development of routines that
contribute to the conversion of OSM data in RDF triples which will be used in a further
extension of YAGO with spatial information. Furthermore, OSM data available in RDF
triples are of major importance and it will be probably used by several other applications.

In more details, the first part is dedicated to the conversion of OSM data into RDF triples
by constructing a routine that massively collects and converts OSM data into RDF. It is
important to mention that the implementation converts the PBF datasets which is the most
complete OSM data source, in contrast with other like Geofabrik’s non-commercial
shapefiles. In the second part, we extended TripleGeo to work on top of Spark. This
enables the parallelization of the conversion of big geospatial data which offers magnitude
performance gains compared to standalone execution. The third part of this thesis refers to
the enrichment of YAGO’s knowledge graph with temporal and spatial information about
the former Greek administrative division. This is a small part of a bigger project conducted
by prof. Koubarakis and N. Karalis, in which they extend YAGO’s knowledge graph with
spatial information from several data sources.

As future work, we plan to convert a big portion of OSM data into RDF and to use it in
order to extend YAGO’s knowledge graph more spatial information. Additionally, to further
extend YAGO’s knowledge graph with more temporal information about other countries
administrative division and to develop a question answering system over the extended
knowledge graph which will enable querying over the geographical and the temporal
dimensions. Last but not least to adjust the data to fit in the SPOTLX data model of YAGO.
SPOTLX is a data model in which every fact is directly assigned with its temporal and
spatial information.

Regarding the provision of OSM data in RDF, we can construct a platform which will
extend Geofabrik’s download server by providing OSM data in the RDF data model. This
platform will convert daily all the PBF datasets provided by Geofabrik into RDF triples by
executing TripleGeo_Forwarder. Then the data will be available for download on a website.
However, the transformation of such a big volume of data is a time-consuming process
and therefore will require a machine with sufficient resources in order to be capable of
completing the process in a reasonable period of time. Regarding to the Spark
implementation of TripleGeo, It will be very interested to evaluate it in a cluster and to
study its results. Spark is developed to work on a cluster, so it will expose the application
to more hardware resources which Spark will utilize in order to improve its performance.
This will allow Spark to split the input dataset into more partitions which will be executed
concurrently in different machines. Therefore, it is expected that it will lead to a significant
reduction of the execution time. Moreover, except for ESRI shapefiles, GeoJSON and
CSV, TripleGeo supports the conversion of more geospatial data sources like JSON, XML,
PBF and RDBM systems. So this implementation can be extended in order to support the
parallelization of those data sources.

G.Mandilaras 45

Spatial and Temporal information in the Semantic Web

ABBREVIATIONS - ACRONYMS

W3C World Wide Web Consortium

RDF Resource Description Framework

SPARQL SPARQL Protocol and RDF Query Language

URI Uniform Resource Identifier

RDBMS Relational Database Management System

LOD Linked Open Data

ETL Extract, transform, load

OSM OpenStreetMap

KB Knowledge Base

GIS Geographic Information System

POI Point Of Interest

RDD Resilient Distributed Dataset

SRDD Spatial Resilient Distributed Dataset

WKT Well Known Text

G.Mandilaras 46

Spatial and Temporal information in the Semantic Web

REFERENCES

[1] T. Berners-Lee, J. Hendler, and O. Lassila, ‘The Semantic Web’, Sci. Am., vol. 284, no. 5, pp. 34–43,
2001.

[2] ‘World Wide Web Consortium’, in SpringerReference.
[3] S. Powers, Practical RDF: Solving Problems with the Resource Description Framework. ‘O’Reilly Media,

Inc.’, 2003.
[4] J. M. Hancock, ‘SPARQL (SPARQL Protocol and RDF Query Language)’, in Dictionary of Bioinformatics

and Computational Biology, 2004.
[5] A. Jentzsch, ‘Linked Open Data Cloud’, in X.media.press, 2014, pp. 209–219.
[6] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives, ‘DBpedia: A Nucleus for a Web of

Open Data’, in Lecture Notes in Computer Science, 2007, pp. 722–735.
[7] F. Erxleben, M. Günther, M. Krötzsch, J. Mendez, and D. Vrandečić, ‘Introducing Wikidata to the Linked

Data Web’, in Lecture Notes in Computer Science, 2014, pp. 50–65.
[8] F. M. Suchanek, G. Kasneci, and G. Weikum, ‘YAGO: A Large Ontology from Wikipedia and WordNet’,

Journal of Web Semantics, vol. 6, no. 3, pp. 203–217, 2008.
[9] J. Hoffart, F. M. Suchanek, K. Berberich, E. Lewis-Kelham, G. de Melo, and G. Weikum, ‘YAGO2’, in

Proceedings of the 20th international conference companion on World wide web - WWW ’11, 2011.
[10] D. Ahlers, ‘Assessment of the accuracy of GeoNames gazetteer data’, in Proceedings of the 7th

Workshop on Geographic Information Retrieval - GIR ’13, 2013.
[11] T. Rebele, F. Suchanek, J. Hoffart, J. Biega, E. Kuzey, and G. Weikum, ‘YAGO: A Multilingual Knowledge

Base from Wikipedia, Wordnet, and Geonames’, in Lecture Notes in Computer Science, 2016, pp. 177–
185.

[12] M. Koubarakis, N. Karalis, ‘Extending the YAGO Knowledge Graph with Geospatial Knowledge’.
[13] C. Wootton, ‘ISO 8601 Date Format Output’, in Developing Quality Metadata, 2007, pp. 419–420.
[14] S. Auer, J. Lehmann, and S. Hellmann, ‘LinkedGeoData: Adding a Spatial Dimension to the Web of

Data’, in Lecture Notes in Computer Science, 2009, pp. 731–746.
[15] D. Punjani et al., ‘Template-Based Question Answering over Linked Geospatial Data’, in Proceedings of

the 12th Workshop on Geographic Information Retrieval - GIR’18, 2018.
[16] A. Both, D. Diefenbach, K. Singh, S. Shekarpour, D. Cherix, and C. Lange, ‘Qanary – A Methodology for

Vocabulary-Driven Open Question Answering Systems’, in Lecture Notes in Computer Science, 2016,
pp. 625–641.

[17] M. Koubarakis and K. Kyzirakos, ‘Modeling and Querying Metadata in the Semantic Sensor Web: The
Model stRDF and the Query Language stSPARQL’, in Lecture Notes in Computer Science, 2010, pp.
425–439.

[18] K. Kyzirakos et al., ‘GeoTriples: Transforming Geospatial Data into RDF Graphs Using R2RML and RML
Mappings’, SSRN Electronic Journal, 2018.

[19] K. Patroumpas, M. Alexakis, G. Giannopoulos, S. Athanasiou, ‘TripleGeo: an ETL Tool for Transforming
Geospatial Data into RDF Triples’.

[20] ‘GeoSPARQL Query Tool - A Geospatial Semantic Web Visual Query Tool’, in Proceedings of the 10th
International Conference on Web Information Systems and Technologies, 2014.

[21] E. Lee and U. Syed, Apache Hadoop: Invent the Future. Consultantsnetwork, 2015.
[22] M. Koubarakis, K. Bereta, C. Nikolaou, and G. Stamoulis, ‘Linked Geospatial Data’, in Encyclopedia of

Big Data Technologies, 2018, pp. 1–8.
[23] H. Luu, ‘Introduction to Apache Spark’, in Beginning Apache Spark 2, 2018, pp. 1–13.
[24] Y. Samadi, M. Zbakh, and C. Tadonki, ‘Performance comparison between Hadoop and Spark

frameworks using HiBench benchmarks’, Concurr. Comput., vol. 30, no. 12, p. e4367, 2017.
[25] J. Yu, J. Wu, and M. Sarwat, ‘GeoSpark’, in Proceedings of the 23rd SIGSPATIAL International

Conference on Advances in Geographic Information Systems - GIS ’15, 2015.
[26] ‘Java Topology Suite (JTS)’, in SpringerReference .

G.Mandilaras 47

http://paperpile.com/b/fdwpEJ/WKoG
http://paperpile.com/b/fdwpEJ/3X64
http://paperpile.com/b/fdwpEJ/iKlY
http://paperpile.com/b/fdwpEJ/iKlY
http://paperpile.com/b/fdwpEJ/sDkw
http://paperpile.com/b/fdwpEJ/d0b1
http://paperpile.com/b/fdwpEJ/gnWO
http://paperpile.com/b/fdwpEJ/gnWO
http://paperpile.com/b/fdwpEJ/RYyw
http://paperpile.com/b/fdwpEJ/g838
http://paperpile.com/b/fdwpEJ/g838
http://paperpile.com/b/fdwpEJ/zW7u
http://paperpile.com/b/fdwpEJ/zW7u
http://paperpile.com/b/fdwpEJ/9cII
http://paperpile.com/b/fdwpEJ/ZPOK
http://paperpile.com/b/fdwpEJ/EEyv
http://paperpile.com/b/fdwpEJ/EEyv
http://paperpile.com/b/fdwpEJ/EEyv
http://paperpile.com/b/fdwpEJ/ggZT
http://paperpile.com/b/fdwpEJ/x9ob
http://paperpile.com/b/fdwpEJ/nT8g
http://paperpile.com/b/fdwpEJ/2Ptx
http://paperpile.com/b/fdwpEJ/2Ptx
http://paperpile.com/b/fdwpEJ/e2jj
http://paperpile.com/b/fdwpEJ/CRSu
http://paperpile.com/b/fdwpEJ/yrZ1
http://paperpile.com/b/fdwpEJ/iKDZ
http://paperpile.com/b/fdwpEJ/TIBI
http://paperpile.com/b/fdwpEJ/D0xq
http://paperpile.com/b/fdwpEJ/D0xq
http://paperpile.com/b/fdwpEJ/MtSb
http://paperpile.com/b/fdwpEJ/tYI4
http://paperpile.com/b/fdwpEJ/WKoG
http://paperpile.com/b/fdwpEJ/3X64
http://paperpile.com/b/fdwpEJ/3X64
http://paperpile.com/b/fdwpEJ/iKlY
http://paperpile.com/b/fdwpEJ/iKlY
http://paperpile.com/b/fdwpEJ/sDkw
http://paperpile.com/b/fdwpEJ/sDkw
http://paperpile.com/b/fdwpEJ/sDkw
http://paperpile.com/b/fdwpEJ/d0b1
http://paperpile.com/b/fdwpEJ/d0b1
http://paperpile.com/b/fdwpEJ/gnWO
http://paperpile.com/b/fdwpEJ/gnWO
http://paperpile.com/b/fdwpEJ/RYyw
http://paperpile.com/b/fdwpEJ/RYyw
http://paperpile.com/b/fdwpEJ/g838
http://paperpile.com/b/fdwpEJ/g838
http://paperpile.com/b/fdwpEJ/ZTkP
http://paperpile.com/b/fdwpEJ/ZTkP
http://paperpile.com/b/fdwpEJ/ZTkP
http://paperpile.com/b/fdwpEJ/zW7u
http://paperpile.com/b/fdwpEJ/zW7u
http://paperpile.com/b/fdwpEJ/zW7u
http://paperpile.com/b/fdwpEJ/zW7u
http://paperpile.com/b/fdwpEJ/9cII
http://paperpile.com/b/fdwpEJ/9cII
http://paperpile.com/b/fdwpEJ/9cII
http://paperpile.com/b/fdwpEJ/9cII
http://paperpile.com/b/fdwpEJ/ZPOK
http://paperpile.com/b/fdwpEJ/ZPOK
http://paperpile.com/b/fdwpEJ/ZPOK
http://paperpile.com/b/fdwpEJ/ZPOK
http://paperpile.com/b/fdwpEJ/EEyv
http://paperpile.com/b/fdwpEJ/EEyv
http://paperpile.com/b/fdwpEJ/EEyv
http://paperpile.com/b/fdwpEJ/ggZT
http://paperpile.com/b/fdwpEJ/ggZT
http://paperpile.com/b/fdwpEJ/ggZT
http://paperpile.com/b/fdwpEJ/x9ob
http://paperpile.com/b/fdwpEJ/x9ob
http://paperpile.com/b/fdwpEJ/ixg1
http://paperpile.com/b/fdwpEJ/ixg1
http://paperpile.com/b/fdwpEJ/ixg1
http://paperpile.com/b/fdwpEJ/ixg1
http://paperpile.com/b/fdwpEJ/nT8g
http://paperpile.com/b/fdwpEJ/nT8g
http://paperpile.com/b/fdwpEJ/nT8g
http://paperpile.com/b/fdwpEJ/nT8g
http://paperpile.com/b/fdwpEJ/2Ptx
http://paperpile.com/b/fdwpEJ/2Ptx
http://paperpile.com/b/fdwpEJ/e2jj
http://paperpile.com/b/fdwpEJ/e2jj
http://paperpile.com/b/fdwpEJ/e2jj
http://paperpile.com/b/fdwpEJ/CRSu
http://paperpile.com/b/fdwpEJ/CRSu
http://paperpile.com/b/fdwpEJ/CRSu
http://paperpile.com/b/fdwpEJ/yrZ1
http://paperpile.com/b/fdwpEJ/yrZ1
http://paperpile.com/b/fdwpEJ/yrZ1
http://paperpile.com/b/fdwpEJ/iKDZ
http://paperpile.com/b/fdwpEJ/iKDZ
http://paperpile.com/b/fdwpEJ/iKDZ
http://paperpile.com/b/fdwpEJ/TIBI
http://paperpile.com/b/fdwpEJ/TIBI
http://paperpile.com/b/fdwpEJ/D0xq
http://paperpile.com/b/fdwpEJ/D0xq
http://paperpile.com/b/fdwpEJ/MtSb
http://paperpile.com/b/fdwpEJ/MtSb
http://paperpile.com/b/fdwpEJ/MtSb
http://paperpile.com/b/fdwpEJ/tYI4
http://paperpile.com/b/fdwpEJ/tYI4
http://paperpile.com/b/fdwpEJ/WKoG
http://paperpile.com/b/fdwpEJ/WKoG

