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ABSTRACT

Static analyses aim to achieve soundness by covering all possible paths of execution.
They fail to do so because modern programs use increasingly more and more dynamic
features that are difficult to model statically. Whole-heap snapshots taken during program
execution may be leveraged in order to improve the coverage of an analysis. These snap-
shots capture significant aspects of dynamic behavior that can be extracted and then used
as extra inputs to the static analysis. This allows an analysis to explore dynamic behavior
that would otherwise be unreachable. In the context of this thesis we introduce a new
whole-heap snapshot capturing approach that aspires to reduce the overall overhead of
the process by taking advantage of features introduced in Java 11.

SUBJECT AREA: Static Program Analysis

KEYWORDS: Heap Profiling, Instrumentation



ΠΕΡΙΛΗΨΗ

Οι στατικές αναλύσεις προσπαθούν να πετύχουν ορθότητα καλύπτοντας όλα τα πιθανά
μονοπάτια εκτέλεσης. Όμως αποτυγχάνουν επειδή τα μοντέρνα προγράμματα χρησιμο-
ποιούν όλο και περισσότερο δυναμικά χαρακτηριστικά τα οποία είναι δύσκολο να μοντελο-
ποιηθούν στατικά. Στιγμιότυπα του σωρού που τραβιούνται κατά την διάρκεια εκτέλεσης
του προγράμματος μπορούν να χρησιμοποιηθούν για να αυξήσουν την κάλυψη της ανάλυ-
σης. Στα στιγμιότυπα αυτά εμφανίζεται σημαντικό μέρος της δυναμικής συμπεριφοράς
ενός προγράμματος από το οποίο μπορεί να εξαχθεί δυναμική πληροφορία και να χρησιμο-
ποιηθεί ως έξτρα είσοδος σε μια στατική ανάλυση. Αυτό δίνει την δυνατότητα σε μια
ανάλυση να εξερευνήσει δυναμική συμπεριφορά που σε διαφορετική περίπτωση θα ήταν
απρόσιτη. Η διπλωματική αυτή παρουσιάζει έναν νέο τρόπο για την λήψη στιγμιοτύπων
του σωρού ο οποίος φιλοδοξεί να μειώσει την συνολική επιβάρυνση της διαδικασίας χρησι-
μοποιώντας νέες λειτουργίες της Java 11.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Στατική Ανάλυση Προγραμμάτων

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Σκιαγράφηση Σωρού, Ενορχήστρωση
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Modern heap snapshots to the rescue of static analyses

1. INTRODUCTION

The goal of static analyses is to explore all possible executions in order to achieve sound-
ness. One of the biggest problems that they face is that they fail to capture common
dynamic behavior. A common solution to this problem is to enhance a static analysis with
dynamic information. Different tools use different methods of extracting and supplying this
dynamic information.

This works depends on and extends HeapDL [8]. HeapDL is a toolchain that takes and
enriches whole-heap snapshots during programs executions and then the snapshots are
used as extra inputs to the static analysis. This approach is shown to significantly increase
coverage of the analysis.

This thesis extends the HeapDL toolchain by altering the method in which the snapshot is
taken. The goal is to try and lower the overhead as well as extend the toolchain to support
Java 11+ applications.

1.1 Thesis Structure

The rest of this thesis is organized as follows: in chapter 2 we present some basic back-
ground information about static analysis and the need of dynamic context. In chapter 3
we introduce the HeapDL toolchain which is the foundation of this thesis. In chapter 4 we
describe the new approach to whole-heap snapshots. In chapter 5 we discuss the exper-
imental evaluation. In chapter 6 we mention some related work and finally we conclude in
chapter 7.

T. Livisianos 1
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2. BACKGROUND

2.1 Static Analysis

Static program analysis is the analysis of a computer program that is performed without
actually executing the program. The analysis is usually performed on top of some ver-
sion of the source code. Static program analysis is increasingly used in the verification
of properties of software and for locating potentially vulnerable code. This is especially
important in safety-critical computer systems like medical, nuclear and aviation software
where static analysis helps to constantly improve the quality of increasingly sophisticated
and complex software.

2.2 Points-To Analysis and Datalog

Pointer analysis or points-to analysis [17] is a static program analysis that determines in-
formation on the values of pointer variables or expressions. The information of a pointer’s
possible values, as well as its relationship to other pointers, can be used to statically model
the structure of a program’s heap. The heap is the primary structure where program data
are stored and as such the place where the most valuable information lies. This is why
pointer analysis is so useful and forms the substrate of most inter-procedural analyses.
In any interesting question we may want to ask and answer about a program, we cannot
escape the need for information about the values and the relationships among its pointers.

In program analysis a great source of complexity is the problem of mutual recursion. A
typical example of the mutual recursion issue is the computation of a call-graph which de-
pends on points-to information, which in turn, needs a call-graph to be computed. Such
recursive definitions are common in points-to analysis. Datalog is a declarative logic pro-
gramming language that is often used as a query language for deductive databases. Data-
log’s ability to effortlessly define recursive relations can be used solve the problem of mu-
tual recursion. This makes Datalog a great fit for the domain of program analysis and, as a
consequence, has been extensively used both for low-level [11,14] and for high-level [7,10]
analyses.

A simple pointer analysis can be expressed entirely in Datalog as a transitive closure
computation:

1 VarPointsTo(?heap, ?var) <- AssignHeapAllocation(?heap, ?var).
2 VarPointsTo(?heap, ?to) <- Assign(?to, ?from), VarPointsTo(?heap, ?from).

This simple Datalog program consists of two rules that and are used to generate facts
from a conjunction of already established facts. The computation in Datalog involves the
repeated application of logical inferences, which produce facts until a fixpoint is reached.
In the above example, the first rule is the base case of the computation and states that,
upon the assignment of an allocated heap object to a variable, this variable may point
to that heap object. The second recursive rule represents the logic that, a variable may
point to any heap object another variable points to, if the value of the second variable is
assigned to the first.

T. Livisianos 2
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2.3 The need of enhancing static analysis with dynamic context

Static analysis approaches try to explore all the possible execution paths and exam all
the possible values that a variable can take. They do this with the goal of being over-
approximate and cover all the possible program behavior. Yet, they typically suffer from
unsoundness [13], by failing to account for standard dynamic behavior that is found on
almost all the modern programs.

The sources of this unsoundness are features that are arguably difficult to capture stat-
ically. Such features are reflection, native code, dynamic loading, cross-language devel-
opment (e.g., Java-Javascript hybrid web applications, and languages that run on top of
the JVM and integrate with the Java libraries), as well as, the growing number of more-
and-more complex language features, such as Java’s invokedynamic instruction. Modern
Java development involves the use of complex and huge frameworks. These frameworks
depend on external configuration and resources (e.g., XML and JSON files) and inversion-
of-control patterns that affect immensely the behavior of the program, yet present static
analysis frameworks are not in a position to handle.

Since realistic programs are becoming more and more dynamic, an approach to handle
such dynamism is capturing and encoding dynamic behavior that is then used as an input
for a subsequent static analysis. This approach allows us to overcome the limitations of
a static analysis concerning the aforementioned features by capturing their results.

T. Livisianos 3
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3. OVERVIEW OF HEAPDL

The HeapDL toolchain consist of taking whole-heap snapshots during program execution.
By taking a whole-heap snapshot of a running program it becomes possible to capture
significant aspects of dynamic behavior, without concern about the causes of such beha-
vior. The snapshots can then be used to produce extra inputs for use by a typical static
analysis. This approach is shown to significantly improve coverage due to the power of
the information found in the heap.

3.1 Main Idea

Modern application development depends on advanced features such as dynamic loading,
native and heterogeneous code, bleeding-edge language features, and many more. It is
so difficult to catch and analyze these features statically that even state-of-the-art static
analysis frameworks (such as the Soot infrastructure [18] or the Doop pointer analysis
framework [6]) have very limited support for them. The goal of HeapDL is to capture the
effects of these features by taking a whole-heap snapshots of a running program and using
it to produce additional inputs for use by a static analysis. Bellow are listed examples of
these features from the Java ecosystem:

• It is quite impossible for modern Java programs not to use semantics that depend
on native code. A simple example is the atomic operations that are necessary for
high-performance shared-memory parallelism. In order to provide the appropriate
performance that is needed for these operations, atomic reads and writes (e.g., to
object fields and array entries) on the heap are implemented by using native code
as native Java methods. The advantages of having native operations are many and
that is why more and more such operations are added with every release of the JDK.
On a quick count, there are over 6,000 native methods in OpenJDK 8u60 (vs. under
200 instruction opcodes in the JVM instruction set). An analysis that does not model
these state-changing operations will surely miss significant state updates. Modeling
such operations is hard but it is as essential as it is to model plain heap load and
store instructions.

• The heavy usage of complex frameworks is nowadays inescapable. Almost all mod-
ern mobile and enterprise Java-based applications depend heavily on them. For
example, enterprise web-based applications (build on top of Spring and other such
frameworks) employ XML-based specification and configuration, with inversion-of-
control patterns that have an effect on the invocation of plain Java code. Android ap-
plications consist of a complex composition of UI elements, defined in XML, and Java
code. The XML specification is used to instantiate graphical components, which of
course are referenced from plain Java code via dynamic lookups. There are at-
tempts for static analyses to capture the behavior of such frameworks (e.g., the
FlowDroid [4] add-on to the Soot framework implements basic processing of An-
droid XML layout files.) but the support is limited and always incomplete due to the
ever-changing nature of modern frameworks.

• Even though the size of the JVM instruction set is quite limited (under 200 instruc-
tion opcodes) static analysis do not support the full extend of it. An example is
the bytecode opcode, invokedynamic [15], that was introduced in Java 7. It offers

T. Livisianos 4
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the programmer the ability to completely customize a program’s dynamic behavior.
invokedynamic is used to implement a growing number of dynamic features of Java
(e.g., lambdas, string concatenation, or generics specialization) and can also be
used to implement dynamic languages on the JVM. But, even after all these years,
the support for invokedynamic in static analysis framework is very limited.

In all of the above examples the static analysis fails to capture actual dynamic behavior.
This results to unsoundness that is quantified by reduced observed coverage of a pro-
gram’s behavior. The HeapDL approach tries to recoup by supplying a static analysis
with extracted dynamic information. By capturing the heap state and the dynamic call-
graph of the application, HeapDL can extract semantic effects of dynamic behavior that
is then used as a supplement to a standard static analysis. HeapDL takes advantage of
profiling capabilities of the target runtime, both Java-based platforms and Android, offer
multiple tools with profiling and heap dumping capabilities.

In the following examples we can consider how supplementing an analysis with dynamic
information (extracted from a heap snapshot) can reduce the effects of unsoundness.

• Example: external code effects. Let’s consider an Android application, with several
Java components that are linked together by an XML specification. It is very hard
to detect statically the instantiation and the manipulation of UI components as well
as their inter-linking, because they are implemented deep in the Android core. By
capture a whole-heap snapshot of the application it is possible for HeapDL to detect
the results of such behaviors. The instances of these UI components as well as their
relationships have to be stored somewhere on the heap, HeapDL can find them on
the snapshot and extract facts that then can be used by a static analysis. In this
way, from the start of the analysis we have an extra set of valid behaviors that the
analysis can use to significantly increase the code coverage.

• Example: better reflection analysis. State-of-the-art tools such as Tamiflex, handle
reflection by observing and recording the reflective actions of an application. Let’s
consider a large array of k ≈ 1000 class names that represent possible optional com-
ponents of an application. This array is initialized from an XML file, which means
that is not easy for a static analysis to know and use these values. A tool such as
Tamiflex is able to record all the reflective calls that happen on a specific execution
of a program. This means that if only 3 out of the k classes have reflective calls on
their methods then it will only record those. In contrast, HeapDL takes a heap snap-
shot, and in this heap snapshot we can find the array with the k classes. HeapDL
can analyze this array and by supplying these extracted facts to a static analysis
with minimal reflection logic we can effectively analyze all the possible calls to the
methods of all the classes in the array.

• Example: handling extra language features. The invokedynamic instruction, that
was introduced in Java 7, still lacks full support from static analysis. Heap snap-
shots can help because they capture the dynamic call graph (which translates to
the method called via invokedynamic) and the effect this call has on the heap. A
static analysis that is supplemented with the extracted HeapDL outputs can then ef-
fectively explore paths obtained from invokedynamic calls, which means that it can
achieve significantly higher coverage.

In heap snapshots lie the results of complex dynamic behavior. Heap snapshots can
effectively be used to help static analysis by providing information obtained by the captured

T. Livisianos 5
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dynamic behavior. It is then possible for static analysis to handle dynamic behavior that
would otherwise be unreachable.

3.2 Output Schema for integration with static analysis tools

HeapDL uses the program’s code and a heap dump from an execution to produce input
tables for a static analysis. This is done by mapping objects that are found in the heap, as
well as call-graph edges, to appropriate abstractions. The program code is used to build
these abstractions. The output of HeapDL is a collection of comma-separated files, the
CSV format is in the appropriate form and ready to be used by a static analysis.

Figure 1 shows the output schema that is created by HeapDL and targets a context-
insensitive static analysis. Each relation is extracted as a separate CSV file. With this
schema the goal is to connect the application’s state, that is found in the heap, with the
domain of a static analyzer. The relations ObjectFieldValue, StaticFieldValue, and
ArrayContentsValuemodel the values that can be found in the heap for an object’s fields,
a class static fields and the content of an array respectively. These relations essentially
contain points-to information that is accurately observed in the heap. The CallGraphEdge
relation represents the dynamic call-graph of an execution and it is obtained from the stack
traces that are collected due to the allocation tracking.

O is a set of object abstractions (e.g., allocation sites)
T is a set of class types
M is a set of methods
F is a set of fields
I is a set of instructions

ObjectFieldValue(obj: O, field: F, value: O)
StaticFieldValue(class: T, field: F, value: O)
ArrayContentsValue(obj: O, value: O)
CallGraphEdge(invocation: I, method: M)
Reachable(method: M)

Figure 1: Extracted HeapDL relations for context-insensitive analysis

These mappings make use of abstraction because a static analysis doesn’t care about
concrete objects. So the objects are mapped to abstract, the contents of an array are
merged to contain everything. The heap object abstraction, O, matches what whole-
program static analyses typically use, this is in most cases the allocation site of the objects:

1 ..
2 String[] a = new String[4]; // allocation site
3 Object o = new Object(); // allocation site
4 ..

When we are statically modeling constants such as strings and class objects we can uses
them directly for our abstraction and not their allocation site. For a class, we can use the
fully qualified class name and also the classloader in case of classes with the same name.
For string, we can use the content directly.

HeapDL does a best-effort match in order to find the right object abstraction from the heap
snapshots. It uses heuristics to try to find the most probable place where the allocation

T. Livisianos 6
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actually happens. The first step is to try to find the right frame from the stack trace. When
the most probable one is found, then HeapDL tries to match by type, line number and
other available information (debug information available in the bytecode). At times where
the line number is not available, HeapDL tries to match by method descriptor and type.
Due to native code or some cutting-edge language feature (e.g., lambda meta-factories
with transient classes) the actual code might not be statically available. In such cases
HeapDL generates a dummy abstract allocation site with the right type information so it
can be used by a static analysis.

A static analysis needs to only import the HeapDL relations and consider them as ground
facts. The facts are supplied in comma-separated value files which an analysis can easily
map to the structures that it uses internally. This is in par with the way other external tools
interact with analysis frameworks.

Even a small amount of extra information is often enough to make an analysis compute a
larger number of inferences. For example, a few hundred extra call-graph edges or points-
to values are enough to make an analysis explore behavior that was before unreachable.

3.3 Current heap dump technology

A heap snapshots is a complete representation of a program’s heap. It contains all the
relationships between objects and everything that is loaded or computed by the applica-
tion, including primitives, class objects and strings. This, even though it contains valuable
information, is not enough. The information becomes much richer when it is accompanied
by allocation tracking: every heap object keeps track of the specific instruction in which
it was allocated. Allocation tracking introduces a considerable overhead observed as a
run-time cost. But this enhanced heap information will help a static analysis to significantly
improve it’s coverage and counter the unsoundness of dynamic features.

Currently HeapDL accepts the standard HPROF heap dumps that with the help of the
HPROF Agent can contain allocation tracking.

3.3.1 HPROF Agent

The JVMTI stands for “Java Virtual Machine Tool Interface” and is a native programming
interface that provides a way to inspect the state and to control the execution of applica-
tions running in the JVM. It is used to build tools that depend on the JVM state such as
profilers, debuggers and monitoring tools.

The HPROF Agent was introduced in J2SE 5.0 and is a simple profiler. It is a dynamically-
linked native library that interacts with the JVMTI and writes out profiling information either
to a file or to a socket in ascii or binary format. It is capable of presenting CPU usage, heap
allocation statistics and monitor contention profiles. In addition it can also report complete
heap dumps and states of all the monitors and threads in the Java virtual machine.

The agent works by doing Byte Code Instrumentation (BCI) in all the necessary positions.
The instrumentation works by injecting calls to tracker functions (e.g., On entry to all meth-
ods, a invokestatic call to Tracker.CallSite(cnum,mnum);) and this obviously affects
heavily the performance of the execution due to all the extra work that is needed.

The agent was removed in Java 9 [12] and was replaced by better (but not as complete)
alternatives. The heap dumps functionality has been superseded by the same functionality
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in the JVM. Using the Diagnostic Command GC.heap_dump it is possible to ask the JVM to
dump the heap in the hprof file format. Currently it isn’t possible to enrich this heap dump
with allocation tracking, because the heap dump simply returns a heap snapshot at the
time of the request and it doesn’t observe the whole execution.

The goal of this thesis is to replace the missing heap dump with allocation tracking func-
tionality.

T. Livisianos 8



Modern heap snapshots to the rescue of static analyses

4. NEW HEAP DUMP APPROACH

In this section we are going to see the new tools that are used to support heap dump
with allocation tracking without the HPROF Agent. There are two separate agents that
when combined together result in a whole-heap snapshot with allocation tracking that can
be used by HeapDL. The first agent is responsible for dumping the heap of the running
program at program exit. The second agent is responsible for adding allocation tracking
by capturing the stack traces on object allocations.

4.1 Heap dump on program exit

In order to simulate the dump on exit functionality of HPROF Agent we need a simple
instrumentation agent. This agent injects code at the start of the exitmethod of the System
class. The System.exit is the last thing that runs when a program ends its execution and
by inserting our code in this method we can effectively dump the heap on program exit.

1 ...
2 int pid = ProcessHandleImpl.current().pid();
3 try {
4 Process p = Runtime.getRuntime().exec(
5 "jmap␣-dump:format=b,file=example.hprof␣" + pid);
6 p.waitFor();
7 } catch (Exception e) {
8 System.err.println(
9 "Could␣not␣execute␣jmap!␣Please␣make␣sure␣it's␣in␣your␣PATH.");

10 }
11 ...

Figure 2: Code that is injected at the start of System.exit method

The code of Figure 2 gets the pid of the currently running process and runs a jmap com-
mand for this pid (line 5). After the heap dump has completed the rest of the System.exit
code proceeds. The result of this agent is an example.hprof file with the contents of the
heap. This however is not enough because there is no allocation tracking since no stack
traces are available on the heap. The solution to this problem is to use another agent that
enriches the heap dump with the necessary allocation information.

4.2 Adding allocation tracking

JEP 331 [5] introduced a way to do low-overhead sampling of heap allocations via JVMTI.
It is an extension to the JVMTI that allows heap profiling through an event notification
system that provides the callback shown in Figure 3. Where:

• thread is the thread allocating the jobject,

• object is the reference to the sampled jobject,

• object_klass is the class for the jobject, and

• size is the size of the allocation.
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1 void JNICALL
2 SampledObjectAlloc(jvmtiEnv *jvmti_env ,
3 JNIEnv* jni_env,
4 jthread thread,
5 jobject object,
6 jclass object_klass ,
7 jlong size)

Figure 3: Allocation sample callback

JEP 331 also added a new JVMTImethod that allows us to configure the sampling_interval,
which is the average number of bytes between a sampling.

jvmtiError SetHeapSamplingInterval(jvmtiEnv* env, jint sampling_interval)

This interval allows us to control the overhead that is introduced but also it allows us, by
setting it to zero, to sample every allocation.

We use this JVMTI extension to create a native agent that dumps the stack traces of all
the allocations. This agent also controls the overhead of the full heap dump process by
allowing us to configure the sampling_interval. Figure 4 shows a code sample that prints
the stack traces. It uses other JVMTI methods (such as (*jvmti)->GetStackTrace) to get
all the needed information.

The NUMBER_OF_FRAMES variable can be used to control the depth of the stack traces simil-
arly to the HPROF Agent. The results of this agent is a separate csv file that contains the
stack traces for each sampled object.

JEP 331 also suggests as an alternative the use of the Java Flight Recorder (JFR) [9].
Even though the usage of JFR is pretty straightforward and requires no additional work it
has downsides. JFR takes stack traces only from allocations that cause the creation of a
new TLAB and when allocating directly into the old generation. TLAB stands for “Thread
Local Allocation Buffer” and is a region in which only a single thread can allocate objects.
It is also not possible to customize the sampling interval and it’s also not possible to tie a
stack trace to a specific object because it doesn’t track the object id/memory address.

4.3 Joining together with Epsilon GC

The trouble with the two-agent approach is that in a typical garbage collected java program
the objects might change their position in the heap and thus change their object id/memory
address. The second agent with the help of the JVMTI grabs the stack traces of every
allocation at the time of the allocation. The first agent grabs a heap dump on program exit
so it is quite possible that there won’t be a way to match each object with the stack trace
at the time of its allocation.

JEP 318 [16] introduces Epsilon a No-Op Garbage Collector. This garbage collector
handles only memory allocation but does not implement any memory reclamation mech-
anism. This simple fact means that when System.gc() is called nothing at all happens.
This is perfect for our case because by using the Epsilon GC we can guarantee that our
objects won’t move from their initial position and by using their object id/memory address
we can connect the objects from the heap dump to their stack traces that were collected
at the time of the object allocation.
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1 void JNICALL SampledObjectAlloc(jvmtiEnv *jvmti_env ,
2 JNIEnv* jni_env,
3 jthread thread,
4 jobject object,
5 jclass object_klass ,
6 jlong size) {
7 long obj_id = (long) (void*)((long*)object)[0];
8
9 jvmtiFrameInfo frames[NUMBER_OF_FRAMES];

10 jint frame_count;
11 jvmtiError err = (*jvmti)->GetStackTrace(jvmti,
12 thread, 0, NUMBER_OF_FRAMES , frames, &frame_count);
13
14 if (err == JVMTI_ERROR_NONE && frame_count >= 1) {
15 size_t i;
16 for (i = 0; i < frame_count; i++) {
17 jlocation bci = frames[i].location;
18 jmethodID methodid = frames[i].method;
19 char *name = NULL, *signature = NULL, *class_name = NULL;
20 jclass declaring_class;
21
22 int line_number = get_line_number(jvmti, methodid , bci);
23 (*jvmti)->GetMethodName(jvmti, methodid, &name, &signature , 0);
24 (*jvmti)->GetMethodDeclaringClass(jvmti, methodid, &declaring_class);
25 (*jvmti)->GetClassSignature(jvmti, declaring_class , &class_name , NULL);
26
27 printf("%lu\t%ld\t%s\t%s\t%d\t%s\n",
28 obj_id,i,name,signature ,line_number ,class_name);
29 }
30 }
31 }

Figure 4: Sample code that prints stack traces

The HeapDL toolchain has been extended to support these two new agents. Now that
the heap dump and the separate csv file with the stack traces share the same object
id/memory addresses it is quite trivial to join each object of the heap with its stack trace.
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5. EVALUATIONS

In this section we will evaluate the new approach in a number of ways. We will first com-
pare the overhead that different intervals introduce and also evaluate the difference in the
observed allocations. Next we will compare the outputs of HeapDL between the new ap-
proach and the old HPROF Agent. Finally we will evaluate the increased coverage of a
heap enhanced analysis. All the evaluations were done with the standard DaCapo 2009
Java benchmark suite.

5.1 Effects of sampling interval

In Table 1 we can see the slowdown of each benchmark under different sampling intervals.

Table 1: Slowdown for DaCapo benchmarks.

Benchmark HPROF Agent
New approach

Sampling interval
0b 1kb 512kb

avrora 4.08 8.53 1.34 0.95
batik 4.2 8.36 1.54 0.79
h2 52.69 75.48 3.83 1.12
jython 55.77 113.24 6.86 1.01
luindex 2.81 8.53 1.31 0.97
lusearch 15.62 39.98 4.9 1.29
pmd 33.69 39.46 3.63 1
sunflow 64.26 121.15 6.39 1.1
xalan 22.56 54.11 4.1 0.98

We can see that with a sampling interval of just 1024 bytes we have effectively beaten the
overhead of the HPROF Agent. In Table 2 we compare the number of objects that were
sampled for each benchmarks and sampling interval. Having smaller sampling interval
ends up catching more objects but it doesn’t necessarily add new information since mul-
tiple objects created at the same allocation site have exactly the same stack trace and as
such do not really differ for our own purposes.

Table 2: Sampled objects for DaCacapo benchmarks.

Benchmark Sampling interval
0b 1kb 512kb

avrora 1789381 58211 126
batik 1259150 68358 227
h2 61989062 2200388 4364
jython 39204565 1961783 3949
luindex 427274 21563 71
lusearch 11276998 922522 11195
pmd 9266079 436550 937
sunflow 49282877 2214122 4270
xalan 10559969 529990 1891
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5.2 HeapDL outputs

In Table 3 we compare the CallGraphEdge relation that is extracted by HeapDL for each
benchmark. This relation (among others) will be used as an input to a static analysis. In
the next section we will evaluate the effect this extra dynamic input has on the results of
the analysis.

Table 3: HeapDL CallGraphEdge output for DaCapo benchmarks

Benchmark HPROF Agent
New approach

Sampling interval
0b 1kb 512kb

avrora 4096 5870 2654 175
batik 12759 13444 6561 572
h2 4288 8424 4572 678
jython 10211 18511 9074 1402
luindex 3295 5613 2740 188
lusearch 2246 4886 2615 297
pmd 4246 8484 5277 915
sunflow 4141 8064 4059 282
xalan 3680 6799 3669 680

5.3 Effects on static analysis

In this section we compare the results of a static analysis with the HeapDL extra inputs.
This experiment uses as baseline not a plain static analysis but an analysis enhanced
with dynamic reflection information, produced by the state-of-the-art Tamiflex tool. This is
a key comparison for HeapDL. Our claim has been that heap snapshots are an excellent
way to compensate for the unsoundness of static analysis, in a more complete way than
merely recording specific program actions (such as reflection calls).

Table 4 shows the number of call-graph edges for the benchmarks. We compare the
baseline with the HPROF Agent and the new approach with three sampling intervals. We
used the ”default” input size of the DaCapo benchmarks for dynamic analysis. As can be
seen, the increase in call-graph edges is substantial.

The new approach, even with a mere sampling interval of 512kb –which has practically
zero overhead– is at times better than the HPROF Agent.
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Table 4: Call-graph size for DaCapo benchmarks

Benchmark Base HPROF
Agent

New approach
Sampling interval
0b 1kb 512kb

avrora 69127 71842
(+3.93%)

76606
(+10.82%)

73079
(+5.72%)

72127
(+4.34%)

batik 137925 146109
(+5.93%)

157250
(+14.01%)

149471
(+8.37%)

144695
(+4.91%)

h2 56511 123584
(+118.69%)

127650
(+125.89%)

125950
(+122.88%)

121714
(+115.38%)

jython 5304714 5360122
(+1.04%)

5361041
(+1.06%)

5360479
(+1.05%)

5328314
(+0.44%)

luindex 60691 63388
(+4.44%)

68854
(+13.45%)

64811
(+6.79%)

63718
(+4.99%)

lusearch 59682 62384
(+4.53%)

67356
(+12.86%)

63837
(+6.96%)

60784
(+1.85%)

pmd 69592 74883
(+7.6%)

80066
(+15.05%)

76563
(+10.02%)

73895
(+6.18%)

sunflow 86777 90001
(+3.72%)

98280
(+13.26%)

92200
(+6.25%)

90329
(+4.09%)

xalan 75783 76997
(+1.6%)

84197
(+11.1%)

79996
(+5.56%)

78106
(+3.07%)
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6. RELATED WORK

As related work we can consider all the profiling tools that allows us to monitor the heap,
these include the YourKit profiler [3], the Java Flight Recorder [1], and the Java VisualVM
profiler [2].

The goal of these profiling tools is to do general monitoring and to help locate and debug
possible performance issues and memory leaks of an application. All the tools provide a
way to take a heap snapshot (through jmap) but of course these snapshots do not come
with stack traces. All these tools have access to stack information either through instru-
mentation or a native way (in the case of JFR) but none of these tools can be made to
extract stack traces based on a configuration like the sampling interval. Lastly, even if
the extraction of a portion of stack traces is possible it isn’t possible to connect a specific
stack trace with a specific object.
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7. CONCLUSIONS

In this thesis we extended the HeapDL toolchain by adding a new way to take whole-heap
snapshots. This new way allows us, through the sampling interval, to control the overhead
the heap snapshot process adds to the running application. It also allows us to support
whole-heap snapshots with allocation tracking for Java 11+ applications.

We presented a description of the two agents that form the new approach and discussed
the usage of Epsilon GC that helps us ensure consistent object ids. Lastly, we evaluated
the new approach with the usage of the standard DaCapo 2009 Java benchmark suite.
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ABBREVIATIONS - ACRONYMS

JDK Java Development Kit

VM Virtual Machine

JVM Java Virtual Machine

J2SE Java 2 Platform Standard Edition

BCI Byte Code Instrumentation

GC Garbage Collection

JVMTI Java Virtual Machine Tool Interface

TLAB Thread Local Allocation Buffer
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