

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΙΑΤΡΙΚΗ ΣΧΟΛΗ

ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ

Πρώιμοι Δείκτες Υπερτασικής Νεφροσκλήρυνσης

ΜΠΑΡΚΑΣ ΓΕΩΡΓΙΟΣ ΒΙΟΛΟΓΟΣ MSc

AOHNA 2019

«Το έργο συγχρηματοδοτείται από την Ελλάδα και την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) μέσω του Επιχειρησιακού Προγράμματος «Ανάπτυξη Ανθρώπινου Δυναμικού, Εκπαίδευση και Διά Βίου Μάθηση», στο πλαίσιο της Πράξης «Ενίσχυση του ανθρώπινου ερευνητικού δυναμικού μέσω της υλοποίησης διδακτορικής έρευνας» (MIS-5000432), που υλοποιεί το Ίδρυμα Κρατικών Υποτροφιών (IKY)»

Επιχειρησιακό Πρόγραμμα Ανάπτυξη Ανθρώπινου Δυναμικού, Εκπαίδευση και Διά Βίου Μάθηση

Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης

Στον πατέρα μου,

Περιεχόμενα

ΟΡΚΟΣ ΤΟΥ ΙΠΠΟΚΡΑΤΗ	5
ΔΗΜΟΣΙΕΥΣΕΙΣ	7
ΥΠΟΤΡΟΦΙΕΣ - ΤΙΜΗΤΙΚΕΣ ΔΙΑΚΡΙΣΕΙΣ	8
ΣΥΝΕΔΡΙΑ	9
ΕΥΧΑΡΙΣΤΙΕΣ	
ПЕРІЛНѰН	
1.ΕΙΣΑΓΩΓΗ	15
1 1 Νεφροί: Δομή και Δειτουργία	15
1.1 ΤΑΦΤΟΙ. ΔΟΜΠ ΚΑΙ ΛΕΠΟΤΓΙΑ	15
1.1.2 Δειτορονία του νεφοώνα: Από τη σπειοαματική διήθηση στην παραγωνή ούρων	18
1.2 Χρονια Νεφρική Νόσος.	
1 3 УПЕРТАУН	26
1.3.1 Επιδημιολονικά δεδομένα	26
132 Υπέρταση και Νεφοράς	
133 Υπερτασική νεφορσκλήρυνση	27
1.4 Πειραματικά μοντελά υπερτάσμο	30
1 4 1 Υπερτασικό μοντέλο SHR (Spontaneously Hypertensive Rat)	31
1.5 Протеоміки	
1.6 CHLORIDE INTRACELLUI AR CHANNEL PROTEIN 4. CL JC4	36
1.7 SODIUM/GLUCOSE CO-TRANSPORTER 2. SGLT2	37
1.8 Σκοπος της λιατριβής	
2 ΥΛΙΚΑ ΚΑΙ ΜΕΘΟΛΟΙ	40
2.1 ΠΕΙΡΑΜΑΤΟΖΩΑ	
2.2 ΠΡΩΤΕΟΜΙΚΗ ΑΝΑΛΥΣΗ	
2.2.1 Εκχυλιση πρωτεινών	
2.2.2 Μετρηση της συγκεντρωσης πρωτεινικων εκχυλισματων	
2.2.3 Δισδιαστατη ηλεκτροφορηση 2DE	
2.2.4 Αναλυση εικονας δισδιαστατων πηκτωματων (Image Analysis)	
2.2.5 Φασματομετρία μάζας	
2.2.6 LC-MS/MS	
2.2./ Ποσοτικοποιηση και στατιστικη αναλυση των LC-MS/MS αποτελεσματων	
2.2.8 GeLC-MS/MS	
2.3 ANO2OAHOTYHQ2H KATA WESTERN (WESTERN BLOTTING)	
2.3.1 Ηλεκτροφορηση πρωτείνων σε πηκτωμα πολυακρυλαμιοιου (PAGE)	
$2.3.2 \text{ Avoso} \alpha \pi \sigma \tau \upsilon \pi \omega \sigma \eta (immunoblotting)$	
2.4 ΑΝΟΣΟΦΘΟΡΙΣΜΟΣ	
2.5 ΑΝΟΣΟΙΣΤΟΧΗΜΕΙΑ	
2.6 LASER CAPTURE MICRODISSECTION	
2.7 1 4	
2.7.2 Προσοιορισμος της συγκεντρωσης και της κασαροτητάς του ΚΙνΑ	
2.7.5 20νθεση ε D ΓΝΑ	
2.7.4 ΚΙ-ΨΙ ΕΚ. Ποσοτική αποσιοωτή αντισράση ποπομεράσης πραγματικού χρόνου	
3. ΑΠΟΤΕΛΕΣΜΑΤΑ	61
3.1 Μέση αρτηριακή πιέση των ζώων	61
3.2 Ιστοπαθολογικα ευρηματα	
3.3 Πρωτεομική αναλύση	
3.3.1 Αποτελέσματα 2DE MALDI-MS	
3.3.2 Αποτελέσματα LC-MS/MS ανάλυσης	
3.3.3 Αποτελέσματα Laser Capture Microdissection	
3.4 ΕΠΙΒΕΒΑΙΩΣΗ ΤΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΤΗΣ ΠΡΩΤΕΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ	78
3.4.1 Επιβεβαίωση των ευρημάτων της πρωτεομικής ανάλυσης για την πρωτεΐνη CLIC4	
3.4.2 Επιβεβαίωση των ευρημάτων της πρωτεομικής ανάλυσης για την πρωτεΐνη SGLT2	

4. ΣΥΖΗΤΗΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ	
4.1 Геліка	
4.2 ΣΥΖΗΤΗΣΗ ΤΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ 2DE MALDI-MS	
4.3 ΣΥΖΗΤΗΣΗ ΤΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ LC-MS/MS	91
$4.4~\Sigma$ yzhthyh twn ahoteaeymatwn Laser Capture Microdissection kai GeLC-MS/MS	
5. ΣΥΜΠΕΡΑΣΜΑΤΑ-ΜΕΛΛΟΝΤΙΚΕΣ ΚΑΤΕΥΘΥΝΣΕΙΣ	
6. ΒΙΒΛΙΟΓΡΑΦΙΑ	100
ПАРАРТНМА	110
Πίνακας Παραρτήματος 1	110
Πίνακας Παραρτήματος 2	123
Πίνακας Παραρτήματος 3	127
Πίνακας Παραρτήματος 4	137
Πίνακας Παραρτήματος 5	146
Πίνακας Παραρτήματος 6	155
Πίνακας Παραρτήματος 7	163
Πίνακας Παραρτήματος 8	172
Πίνακας Παραρτήματος 9	178
Πίνακας Παραρτήματος 10	
Πίνακας Παραρτήματος 11	194
Πίνακας Παραρτήματος 12	195

ΟΡΚΟΣ ΤΟΥ ΙΠΠΟΚΡΑΤΗ

"Επειδή η διάσημος των Ιατρών Σχολή, του Πρυτάνεως επινεύσαντος ες τους εαυτοίς διδάκτορας δοκιμάσαι με καταξίωσιν, αυτή τε και τη Πρυτανηίη δημοσία τηνδε δίδωμι πίστιν. Ηγήσθε με τους διδάζαντας με ταύτην την τέχνην, ίσα γενέτησιν εμοίσι, τη δε τέχνη μηδαμή επ' ευμαρίη χρήσεσθαι τη εμαυτού εν τω βίω, αλλ' εις δόξαν θεού και ανθρώπων σωτηρίην και της πίστεως αυτής τιμήν τε και όνησιν παν με ό,τι ιητρού έργον εστί, πιστώς και ακριβώς κατά δύναμιν και κρίσιν την εμήν επιτελέων, τοίσι δε νοσέουσιν, ήν τε πλούσιοι τυχώσιν όντες ην τε πένητες, ομοίη σπουδή την εκ τέχνης επαγινέων επικουρίην μηδέ, παραβόλως αποπειρώμενος την τεο ζόην αποκυβεύσειν μηδ΄ τητρεύσειν επί χρηματισμώ ή φάτιος ιμέρω. Ες οικίας δε οκόσας αν εσίω, εσελεήσεσθαι επ' ωφελείη καμνόντων εκτός εών πάσης αδικίης. Α δ' αν εν θεραπηίη ή ίδω ή ακούσω ή και άνευ θεραπηίης κατά βίον ανθρώπων, ά μη μήποτε εκλαλέεσθαι έζω, σιγήσεσθαι άρρητα ηγευμένος τα τοιαύτα, της δε τέχνης επιμελήσεσθαι κατά δύναμιν σπουδήν πλείστην ποιευμένος ακριβώσαι ταύτης τα θέσμια. Τοίσι δε ομοτέχνοισι φιλόφρονα και φιλάνθρωπον εμαυτόν αεί παρέζειν και σφέας αδελφοίσιν ίσον επικρινέοιν άρρεσι πάν σφι προθύμως συμβαλλόμενος εξ ότεο αν ωελίη γένοιτο τοίσι κάμνουσι. Ταύτην μοι την επαγγελίην επιτελέα ποιέοντι είη επαύρασθαι βίου και τέχνης και Θεόν κτήσασθαι αρηγόνα, παραβαίνοντι δε τανάντια τουτέων".

ΤΡΙΜΕΛΗΣ ΣΥΜΒΟΥΛΕΥΤΙΚΗ ΕΠΙΤΡΟΠΗ

- Δημήτριος Βλαχάκος (Επιβλέπων), Καθηγητής Παθολογίας-Νεφρολογίας, Ιατρική Σχολή ΕΚΠΑ, Υπεύθυνος Νεφρολογικής Μονάδας
 Β' Προπαιδευτική Παθολογική Κλινική Πανεπιστημίου Αθηνών, Πανεπιστημιακό Γ.
 Ν. Αττικόν
- 2. Αριστείδης Χαρώνης, Διευθυντής Ερευνών Κέντρο Κλινικής, Πειραματικής Χειρουργικής και Μεταφραστικής Έρευνας, Ιδρυμα Ιατροβιολογικών Ερευνών Ακαδημίας Αθηνών (IIBEAA)
- 3. Παναγιώτης Πολίτης, Αναπληρωτής Ερευνητής

Κέντρο Βασικής Έρευνας, Ιδρυμα Ιατροβιολογικών Ερευνών Ακαδημίας Αθηνών (IIBEAA)

ΕΠΤΑΜΕΛΗΣ ΕΞΕΤΑΣΤΙΚΗ ΕΠΙΤΡΟΠΗ

- Δημήτριος Βλαχάκος (Επιβλέπων), Καθηγητής Παθολογίας-Νεφρολογίας, ΕΚΠΑ
- 2. Δημήτριος Αλεξόπουλος, Καθηγητής Καρδιολογίας, ΕΚΠΑ
- Χαρίκλεια Γακιοπούλου, Αναπληρώτρια Καθηγήτρια Παθολ. Ανατομικής, ΕΚΠΑ
- 4. Αθανάσιος Ράπτης, Αναπληρωτής Καθηγητής Παθολογίας, ΕΚΠΑ
- 5. Αριστείδης Χαρώνης, Διαυθυντής Ερευνών, ΙΙΒΕΑΑ
- 6. Παναγιώτης Πολίτης, Αναπληρωτής Ερευνητής, ΙΙΒΕΑΑ
- 7. Γεώργιος Παναγιώτου, Διευθυντής Ερευνών, ΕΚΕΒΕ Φλέμινγκ

ΔΗΜΟΣΙΕΥΣΕΙΣ

- Georgios Barkas, Manousos Makridakis, Rafael Stroggylos, Jerome Zoidakis, Antonia Vlahou, Aristidis Charonis, Demetrios V. Vlahakos. *Comparative proteomic analysis in microdissected renal vessels from hypertensive SHR and WKY normotensive rats.* Journal of integrated OMICS doi: 10.5584/jiomics.v9i1.250.
- Hatziioanou D*, Barkas G*, Critselis E, Zoidakis J, Gakiopoulou H, Androutsou ME, Drossopoulou G, Charonis A, Vlahakos DV. *Chloride Intracellular Channel 4 Overexpression in the Proximal Tubules of Kidneys from the Spontaneously Hypertensive Rat*: Insight from Proteomic Analysis. Nephron. 2018;138(1):60-70. doi: 10.1159/000479169. Epub 2017 Nov 7. * first co-authors
- Margaritis LH, Manta AK, Kokkaliaris KD, Schiza D, Alimisis K, Barkas G, Georgiou E, Giannakopoulou O, Kollia I, Kontogianni G, Kourouzidou A, Myari A, Roumelioti F, Skouroliakou A, Sykioti V, Varda G, Xenos K, Ziomas K. 'Drosophila oogenesis as a bio-marker responding to EMF sources'. Electromagn Biol Med. 2014 Sep;33(3):165-89. doi: 10.3109/15368378.2013.800102. Epub 2013 Aug 5.
- Γ. Μπάρκας, Μ. Μακρυδάκης, Ι. Ζωιδάκης, Α. Βλάχου, Α. Χαρώνης, Δ. Βλαχάκος Σύγκριση της πρωτεομικής ανάλυσης των ενδονεφρικών αρτηριδίων υπερτασικών και νορμοτασικών ζώων', Αρτηριακή Υπέρταση, Τόμος 27 - Τεύχος 3: 187-188, 2018 (Βραβευμένη εργασία από την Ελληνική Εταιρεία Υπέρτασης)

ΥΠΟΤΡΟΦΙΕΣ

- Υποτροφία από το Επιχειρησιακό Πρόγραμμα «Ανάπτυξη Ανθρώπινου Δυναμικού, Εκπαίδευση και Δια Βίου Μάθηση 2014-2020» στο πλαίσιο της πράξης: «Υποστήριξη ερευνητών με έμφαση στους νέους ερευνητές - κύκλος Β'»
- Υποτροφία του Ιδρύματος Κρατικών Υποτροφιών (ΙΚΥ) με κωδικό ΟΠΣ 5000432
 για την εκπόνηση Διδακτορικής Διατριβής. <u>1^η θέση στον τομέα 'Επιστήμες</u> <u>Υγείας'</u> με συνολική βαθμολογία 93,58/100
- Υποτροφία του Ελληνικού Ιδρύματος Έρευνας και Καινοτομίας (ΕΛΙΔΕΚ 1^{ος} κύκλος) για την εκπόνηση Διδακτορικής Διατριβής. (Δεν αποδέχτηκα την υποτροφία λόγω της υποτροφίας του ΙΚΥ)

BPABEIA

- Έπαινο Προφορικής Ανακοίνωσης, 21° Πανελλήνιο Συνέδριο Νεφρολογίας, Δελφοί 29 Μαΐου - 1 Ιουνίου 2019
- Επαινο Αναρτημένης Ανακοίνωσης, 20° Πανελλήνιο Συνέδριο Νεφρολογίας, Αθήνα 3-6 Μαΐου 2018
- Βραβείο Καλύτερης Εργασίας, 18° Πανελλήνιο Συνέδριο Υπέρτασης, Αθήνα 29-31 Μαρτίου 2018
- *Alberto Ferrari Poster Prize*, 26th European Meeting on Hypertension and Cardiovascular Protection, ESH, Paris, June 10-13, 2016.
- Επαινο Αναρτημένης Ανακοίνωσης, 19° Πανελλήνιο Συνέδριο Νεφρολογίας, Καλαμάτα, 11-14 Μαΐου 2016

- Γ. Μπάρκας, Μ. Μακρυδάκης, Ι. Ζωιδάκης, Α. Βλάχου, Α. Χαρώνης, Δ. Βλαχάκος Πρώιμες αλλοιώσεις του νεφρικού παρεγχύματος στην υπέρταση', 21° Πανελλήνιο Συνέδριο Νεφρολογίας, Δελφοί 29 Μαΐου - 1 Ιουνίου 2019 (προφορική ανακοίνωση, έπαινο)
- G. Barkas, A. Hatziioannou, J. Zoidakis, M. Makridakis, A. Vlahou, A. Charonis, D.V.Vlahakos "Hypertensive Nephrosclerosis: In search of biomarkers for early damage", 31st European Renal Cell Study Group, March 2019, Korinthia, Greece
- Georgios Barkas, Manousos Makridakis, Jerome Zoidakis, Antonia Vlahou, Aristidis Charonis, Demetrios V. Vlahakos. 'Comparative proteomic analysis in microdissected renal vessels of hypertensive and normotensive rats.' 28th European Meeting on Hypertension, Barcelona 2018 (αναρτημένη ανακοίνωση)
- Γ. Μπάρκας, Μ. Μακρυδάκης, Ι. Ζωιδάκης, Α. Βλάχου, Α. Χαρώνης, Δ. Βλαχάκος. Πρωτεομική ανάλυση του αγγειακού διαμερίσματος του νεφρικού παρεγχύματος με την τεχνική LCM (Laser Capture Microdissection)' 20° Πανελλήνιο Συνέδριο Νεφρολογίας, Αθήνα, 03-06 Μαΐου 2018. (αναρτημένη ανακοίνωση, έπαινο)
- Γ. Μπάρκας, Μ. Μακρυδάκης, Ι. Ζωιδάκης, Α. Βλάχου, Α. Χαρώνης, Δ. Βλαχάκος. 'Σύγκριση Της Πρωτεομικής Ανάλυσης Των Ενδονεφρικών Αρτηριδίων Υπερτασικών Και Νορμοτασικών Ζώων' 18° Πανελλήνιο συνέδριο Υπέρτασης, Αθήνα 29-31 Μαρτίου 2018. (αναρτημένη ανακοίνωση, βραβείο καλύτερης εργασίας)
- A. Hatziioannou, G. Barkas, E. Critselis, J. Zoidakis, A. Vlachou, A. Charonis, D. Vlahakos 'Proteomic analysis of kidneys from spontaneously hypertensive and normal rats reveals clic-4, as a putative biomarker in hypertensive nephropathy'. 26th European Meeting on Hypertension and Cardiovascular Protection, ESH, Paris, June 10-13, 2016. (Alberto Ferrari Poster Prize)

- A. Hatziioannou, G. Barkas, E.Critselis, J. Zoidakis, A. Vlachou, A. Charonis, D.V. Vlahakos 'Proteomic analysis of kidneys from spontaneously hypertensive and normal rats reveals CLIC-4, as a putative biomarker in hypertensive nephropathy' 53th Congress ERA-EDTA Vienna, Austria 2016 (αναρτημένη ανακοίνωση)
- Α. Χατζηϊωάννου, Γ. Μπάρκας, Ε. Κριτσέλλη, Ι. Ζωϊδάκης, Α. Βλάχου, Α. Χαρώνης, Δ. Βλαχάκος 'Πρωτεομική ανάλυση νεφρικού ιστού αναδεικνύει πως τα κανάλια χλωρίου 4 (CLIC-4) στο εγγύς εσπειραμμένο σωληνάριο αποτελούν βιοδείκτη ανάπτυζης και υπερτασικής νεφροσκλήρυνσης σε SHR υπερτασικούς αρουραίους', 19° Πανελλήνιο συνέδριο Νεφρολογίας, Καλαμάτα 2016 (προφορική ανακοίνωση, βραβείο καλύτερης εργασίας)
- A. Charonis, G. Barkas, P. Sideras, A. Stavropoulos, P. Moulos, E. Arvaniti, P. Politis 'Combining system biology and animal model approaches for the study of renal fibrosis', European Renal Cell Study Group 28th Annual Meeting, France 2016 (προφορική ανακοίνωση)
- G. Barkas, A. Stavropoulos, A. Sountoulidis. P. Sideras, A. Charonis, 'Differential activation of TGF-β and BMP signaling pathways in renal fibrosis' 64° Πανελλήνιο Συνέδριο Ελληνικής Εταιρείας Βιοχημείας και Μοριακής Βιολογίας, (αναρτημένη ανακοίνωση)

ΕΥΧΑΡΙΣΤΙΕΣ

Θα ήθελα να εκφράσω τις θερμές μου ευχαριστίες σε όλα τα μέλη της τριμελούς επιτροπής. Ειδικότερα, θα ήθελα να ευχαριστήσω τον Δρ. Χαρώνη για την εμπιστοσύνη που μου έδειξε και με υποδέχτηκε στο εργαστήριό του το 2012, για την επιστημονική καθοδήγηση στην παθοφυσιολογία του νεφρού κατά την διάρκεια του μεταπτυχιακού και της διδακτορικής διατριβής, για την πολύτιμη βοήθειά του για πάσης φύσεως επιστημονικά θέματα και για την στήριξή του σε επιστημονικό αλλά και σε προσωπικό επίπεδο σε δύσκολες στιγμές. Επίσης, θα ήθελα να ευχαριστήσω θερμά τον Καθηγητή Παθολογίας-Νεφρολογίας του ΕΚΠΑ Δημήτριο Βλαγάκο για την πολύτιμη βοήθεια που παρείχε σε θέματα επιστημονικής και κλινικής φύσεως και ο οποίος ως επιβλέπων της διδακτορικής διατριβής συνέβαλε τα μέγιστα για την διεκπεραίωσή της και φρόντισε για την διάχυση των αποτελεσμάτων της έρευνάς μας σε επιστημονικά συνέδρια Υπέρτασης και Νεφρολογίας. Ακόμη, θα ήθελα να ευχαριστήσω τον Δρ. Πολίτη για την βοήθειά του καθ΄ όλη την διάρκεια παραμονής μου στο εργαστήριο ως μεταπτυχιακός φοιτητής αρχικά και ως υποψήφιος διδάκτωρ αργότερα και ο οποίος ήταν πάντα πρόθυμος να βοηθήσει σε κάθε είδους επιστημονικής φύσεως ζητήματα. Επιπλέον, θα ήθελα να ευχαριστήσω θερμά τη Δρ. Βλάχου η οποία ήταν μέλος της τριμελούς επιτροπής σχεδόν καθ' όλη την διάρκεια της διατριβής και λόγω γραφειοκρατίας δεν μπορούσε να είναι μέχρι τέλους. Η καθοδήγησή της σε πάσης φύσεως θέματα Πρωτεομικής ανάλυσης ήταν πολύ σημαντική.

Η διδακτορική μου διατριβή θα ήταν αδύνατο να ολοκληρωθεί χωρίς την βοήθεια δύο εξαίρετων συνεργατών, του Δρ. Ζωιδάκη και του Δρ. Μακρυδάκη, από το εργαστήριο της Πρωτεομικής στο IIBEAA. Τους ευχαριστώ θερμά και τους δύο. Ο Δρ. Ζωιδάκης ανέλαβε να με εκπαιδεύσει στον κόσμο της πρωτεομικής αλλά και γενικότερα στο πεδίο της έρευνας. Η καθοδήγησή του στη συγγραφή επιστημονικών δημοσιεύσεων και ερευνητικών προτάσεων ήταν πολύτιμη και η συνεχής εμψύχωσή του σε συνδυασμό με την θετική του ενέργεια λειτούργησαν καταλυτικά για την αντιμετώπιση κάθε ζητήματος. Ο Δρ. Μακρυδάκης ανέλαβε να με εκπαιδεύσει κυρίως στο τεχνικό κομμάτι της πρωτεομικής. Η εκτενής εμπειρία του σε κάθε είδους μεθοδολογίας πρωτεομικής ανάλυσης καθώς και η προθυμία του να με βοηθήσει στον σχεδιασμό και την υλοποίηση των ερευνητικών πρωτοκόλλων απλοποίησε κατά πολύ τα πράγματα για μένα στο κομμάτι της πρωτεομικής. Επιπλέον, θα ήθελα να ευχαριστήσω όλα τα μέλη (μεταπτυχιακούς και υποψήφιους διδάκτορες, πρώην και νυν) των εργαστηρίων του Δρ. Χαρώνη και του Δρ. Πολίτη για το εξαιρετικό κλίμα και τις ωραίες στιγμές που μοιραστήκαμε τα επτά χρόνια παραμονής μου αρχικά ως μεταπτυχιακός φοιτητής και αργότερα ως υποψήφιος διδάκτωρ. Ειδικότερα, θέλω να ευχαριστήσω τους: Άρτεμις Μιχαήλ, Δάφνη Αντωνίου, Δημήτρη Γκίκα, Νίκο Μαλισσόβα, Στέλιο Ραβανίδη, Μυρτώ Ρίζου, Τίνα Τσαμπούλα και Ελπινίκη Νίνου για την εξαιρετική συνεργασία σε επιστημονικό επίπεδο αλλά και για τις αξέχαστες στιγμές σε φιλικό επίπεδο. Επίσης, ευχαριστώ την τεχνικό του εργαστηρίου Βαλέρια Καλτεζιώτη για την βοήθειά της με όλα τα "safety" ζητήματα του εργαστηρίου αλλά και για την άψογη συνεργασία μας.

Ακόμη, θα ήθελα να ευχαριστήσω το Ίδρυμα Κρατικών Υποτροφιών για την χρηματοδότηση της διδακτορικής μου διατριβής.

Τέλος, θα ήθελα να ευχαριστήσω τα πιο σημαντικά πρόσωπα στη ζωή μου, την σύντροφό μου Αγγελική καθώς και την οικογένειά μου, για τη στήριξη και την αγάπη τους σε κάθε μου βήμα όλα αυτά τα χρόνια.

Γιώργος Μπάρκας, Βιολόγος MSc Αθήνα, 2019

ΠΕΡΙΛΗΨΗ

Η υπερτασική νεφροσκλήρυνση αποτελεί την δεύτερη αιτία, μετά τον διαβήτη, χρόνιας νεφρικής νόσου. Η πάθηση εξελίσσεται αθόρυβα σε ανεπάρκεια νεφρών και η διάγνωσή της είναι δύσκολη διότι δεν εμφανίζονται ειδικά συμπτώματα αλλά ούτε και μορφολογικές αλλοιώσεις στο νεφρικό παρέγχυμα στα αρχικά στάδια της ανάπτυξής της. Επιπλέον, δεν υπάρχουν αξιόπιστοι βιοδείκτες για την έγκαιρη εκτίμηση της νεφρικής βλάβης και οι ασθενείς εκδηλώνουν συμπτώματα όταν σχεδόν το 50% της λειτουργίας των νεφρών έχει χαθεί. Σκοπός της παρούσας διδακτορικής διατριβής είναι να βρεθούν πρώιμοι δείκτες που θα επιτρέπουν την έγκαιρη διάγνωση της υπερτασικής νεφροσκλήρυνσης και να αποσαφηνιστούν οι υποκείμενοι μηχανισμοί που οδηγούν στην εμφάνισή της και οι οποίοι σε μεγάλο βαθμό παραμένουν άγνωστοι.

Η καλύτερη προσέγγιση για την ανεύρεση τέτοιων πρωτεϊνών-δεικτών σε πολυπαραγοντικές παθολογικές καταστάσεις όπως η υπερτασική νεφροσκλήρυνση είναι η βιολογία συστημάτων και ειδικότερα η πρωτεομική ανάλυση. Καθώς η λήψη βιοψιών νεφρού είναι μια επίπονη εν πολλοίς μη ενδεικνυόμενη διαδικασία έχουν αναπτυχθεί διάφορα ζωικά μοντέλα μελέτης της υπέρτασης. Η μελέτη μας πραγματοποιήθηκε στο ευρέως διαδεδομένο υπερτασικό ζωικό μοντέλο Spontaneously Hypertensive Rat (SHR). Πραγματοποιήθηκαν τρεις διαφορετικές αλλά συμπληρωματικές πρωτεομικές προσεγγίσεις στο νεφρικό παρέγχυμα υπερτασικών SHR και νορμοτασικών WKY (Wistar Kyoto rats) ζώων ηλικίας 6, 13 και 20 εβδομάδων με στόχο την ανάλυση του πρωτεόματος του νεφρού σε βάθος. Από την ανάλυση των αποτελεσμάτων αναγνωρίστηκε πλήθος πρωτεϊνών με διαφορική έκφραση στα υπερτασικά ζώα και με πιθανό κρίσιμο ρόλο στην ανάπτυξη της υπέρτασης. Η βιοπληροφορική ανάλυση κατέδειξε σημαντικά μονοπάτια που απορρυθμίζονται λόγω της υπέρτασης και τα οποία σχετίζονται με το οξειδωτικό στρες, την δυσλειτουργία των μιτοχονδρίων και την απόπτωση.

Από τις διαφορικά εκφραζόμενες πρωτεΐνες δύο ήταν εκείνες που παρουσίασαν μεγάλο ενδιαφέρον, η CLIC4 και η SGLT2. Η έκφραση και των δύο αυτών πρωτεϊνών βρέθηκε σημαντικά αυξημένη στα υπερτασικά ζώα όλων των ηλικιών και επιλέχθηκαν ως πιθανοί πρώιμοι δείκτες υπερτασικής νεφροσκλήρυνσης που χρήζουν περαιτέρω μελέτης. Τα ευρήματα της πρωτεομικής επιβεβαιώθηκαν με βιοχημικές και μορφολογικές τεχνικές. Τα αποτελέσματα έδειξαν πως η αυξημένη έκφραση τόσο της CLIC4 όσο και της SGLT2 εντοπίζεται στα επιθηλιακά κύτταρα των εγγύς εσπειραμένων σωληναρίων και ειδικότερα στην ψηκτροειδή παρυφή τους αυξάνοντας την πιθανότητα ότι τα μόρια αυτά μπορεί σε

παθολογικές καταστάσεις να εκκρίνονται στα ούρα μέσω εξωσωμάτων. Το γεγονός αυτό σε συνδυασμό με την επιβεβαίωση στο μέλλον των ευρημάτων και σε υπερτασικούς ασθενείς είναι πολύ σημαντικό καθώς μπορεί να ανοίξει το δρόμο σε νέους τρόπους διάγνωσης της υπερτασικής νεφροσκλήρυνσης σε πολύ πρώιμα στάδια και μάλιστα με μη επεμβατικό τρόπο.

Συμπερασματικά, τα ευρήματά μας υποδεικνύουν ότι πρώιμες αλλαγές συμβαίνουν στο σωληναριακό διαμέρισμα του νεφρού, και ότι οι αλλαγές αυτές είναι ειδικά εντοπισμένες στα εγγύς εσπειραμένα σωληνάρια. Είναι γνωστό πως τα σωληνάρια διαδραματίζουν σημαντικό ρόλο στην ανθρώπινη νεφρική ανεπάρκεια και την οξεία νεφρική βλάβη ωστόσο, μέχρι τώρα δεν είχαν καταγραφεί τόσο πρώιμες μοριακές μεταβολές. Η μελέτη μας καταγραφεί για πρώτη φορά τέτοιες μεταβολές στα κύτταρα των εγγύς σωληναρίων στο μοντέλο SHR και μάλιστα πριν εκδηλωθούν οι τυπικές παθολογοανατομικές αλλαγές της υπερτασικής νεφροσκλήρυνσης.

1.ΕΙΣΑΓΩΓΗ

1.1 Νεφροί: Δομή και Λειτουργία

Οι νεφροί είναι δύο όργανα του ανθρώπινου σώματος που βρίσκονται εκατέρωθεν της οσφυϊκής μοίρας της σπονδυλικής στήλης κάτω από το διάφραγμα. Η βασική τους λειτουργία είναι να φιλτράρουν το αίμα και να το απαλλάσσουν από τις τοξίνες και τα μεταβολικά παραπροϊόντα που δεν χρειάζεται το σώμα, και να τα αποβάλλουν μέσω των ούρων. Επιπλέον, ρυθμίζουν το ισοζύγιο ύδατος και ανόργανων ιόντων ενώ εκκρίνουν και πολύ σημαντικές ορμόνες όπως η ερυθροποιητίνη, η ρενίνη και η 1,25-διϋδροξυβιταμίνη D₃.

1.1.1 Δομή Νεφρού

Σε κάθε νεφρό διακρίνονται δύο διακριτά στρώματα ιστού, ο φλοιός (cortex) εξωτερικά και ο μυελός (medulla) εσωτερικά. Ο μυελός αποτελείται από 8-12 πυραμιδοειδείς σχηματισμούς που ονομάζονται νεφρικές πυραμίδες (renal pyramids) και έχουν τη βάση τους στραμμένη προς το φλοιό και την κορυφή τους προς τη νεφρική κοιλία. Στην κορυφή κάθε πυραμίδας υπάρχει η θηλή (papilla). Οι κορυφές των νεφρικών πυραμίδων καταλήγουν στους νεφρικούς κάλυκες (calyx), όπου συλλέγονται τα ούρα. Οι κάλυκες εκβάλλουν στη νεφρική πύελο (renal pelvis) από όπου τα ούρα μεταφέρονται μέσω του ουρητήρα (ureter) στην ουροδόχο κύστη (Εικόνα 1).

Η νεφρική αρτηρία, που μπαίνει μέσα στο νεφρό από την πύλη, διακλαδίζεται σε μερικούς κλάδους που κατευθύνονται προς την περιφέρεια του οργάνου και δίνουν ευθείς κλάδους, τις μεσολόβιες αρτηρίες του νεφρού. Αυτές, περνώντας ανάμεσα από τους μίσχους των καλύκων, διακλαδίζονται σε μικρότερους κλάδους που έχουν σχήμα τόξου και γι' αυτό λέγονται τοξοειδείς αρτηρίες. Οι τοξοειδείς πηγαίνουν προς την περιφέρεια και δίνουν μικρούς κλάδους από τους οποίους προέρχονται λεπτότατα αρτηριακά στελέχη, τα προσαγωγά αρτηρίδια του νεφρικού σωματίου. Αυτά τροφοδοτούν το νεφρικό σωμάτιο με αρτηριακό αίμα που κυκλοφορεί μέσα σε ένα λεπτότατο τριχοειδικό δίκτυο με πολλές σπείρες που ονομάζεται αγγειώδες σπείραμα.

Επειδή το αίμα που φθάνει στο νεφρό από τη νεφρική αρτηρία αναγκάζεται να κυκλοφορήσει σε πολυδαίδαλα και πολύ λεπτά τριχοειδικά δίκτυα, η πίεσή του μέσα στα τριχοειδή αγγεία του σπειράματος αυξάνεται πολύ, σύμφωνα με τις αρχές της

υδροδυναμικής. Τούτο είναι απαραίτητο για τη λειτουργία του νεφρικού σωματίου και την παραγωγή των ούρων.

Εικόνα 1: Σχηματική απεικόνιση της δομής του νεφρού. (http://cnx.org/content/col11496/1.6)

Βασική δομική και λειτουργική μονάδα του νεφρού είναι ο νεφρώνας (nephron). Καθένας νεφρός υπολογίζεται πως περιέχει περίπου ένα εκατομμύριο νεφρώνες. Κάθε νεφρώνας αποτελείται από το νεφρικό σωμάτιο και από το ουροφόρο σωληνάριο. Το νεφρικό σωμάτιο αποτελεί διηθητικό 'οργανίδιο' και περιέχει ένα θύσανο αλληλοσυνδεμένων τριχοειδών βρόχων ο οποίος ονομάζεται νεφρικό σπείραμα. Το σπείραμα περιβάλλεται από την κάψα του Bowman που περικλείει τον χώρο του Bowman. Το σπείραμα μαζί με τον χώρο του Bowman συναποτελούν το νεφρικό σωμάτιο.

Το ουροφόρο σωληνάριο αποτελεί φυσική προέκταση του νεφρικού σωματίου και πιο συγκεκριμένα του έξω πετάλου της κάψας του Bowman (*Bowman's Capsule*), και είναι ένας στενός κύλινδρος φτιαγμένος από μία στιβάδα επιθηλιακών κυττάρων που στηρίζονται πάνω σε βασική μεμβράνη. Τα επιθηλιακά αυτά κύτταρα παρουσιάζουν διαφορές τόσο στη δομή όσο και στην λειτουργία ανάλογα με τη θέση τους πάνω στο νεφρικό σωληνάριο. Από λειτουργικής άποψης το νεφρικό σωληνάριο διακρίνεται σε τέσσερα τμήματα (Εικόνα 2). Το εγγύς εσπειραμένο σωληνάριο (*proximal tubule*) στο οποίο εισρέει το διήθημα από την κάψα του Bowman, την αγκύλη του Henle που είναι ένα σύστημα αντιρροής που αποτελείται από το κατιόν (*descending limb*) και το ανιόν σκέλος (ascending limb), το άπω εσπειραμένο σωληνάριο (*distal tubule*) και το αθροιστικό σωληνάριο (*collecting tubule*). Σε κάθε διακριτό τμήμα κατά μήκος του σωληναρίου ενός νεφρώνα επιτελούνται διαφορετικές λειτουργίες.

Εικόνα 2: Σχηματική απεικόνιση του νεφρώνα. Από το νεφρικό σωμάτιο (glomerulus) ζεκινάει το ουροφόρο σωληνάριο. Αυτό αποτελείται κατά σειρά από το εγγύς εσπειραμένο σωληνάριο (proximal convoluted tubule), την αγκύλη του Henle (loop of Henle), το άπω εσπειραμένο σωληνάριο (distal convoluted tubule) και το αθροιστικό σωληνάριο (collecting tubule). Τα νεφρικά σωμάτια μαζί με τα εγγύς και άπω σωληνάρια συγκεντρώνονται στην περιοχή του νεφρού που ονομάζεται φλοιός (cortex), ενώ η αγκύλη του Henle και τα αθροιστικά σωληνάρια βυθίζονται στο μυελό (medulla)

Στο νεφρικό σωμάτιο διακρίνονται τέσσερις βασικές κατηγορίες κυττάρων με διαφορετικό ρόλο η καθεμία: τα ενδοθηλιακά κύτταρα (endothelium), τα ποδοκύτταρα που είναι εξειδικευμένα επιθηλιακά κύτταρα, τα μεσαγγειακά κύτταρα και τα τοιχωματικά κύτταρα (parietal cells) (Εικόνα 3).

Εικόνα 3: Σχηματική απεικόνιση του νεφρικού σωματίου (http://physiologyplus.com/ filtration-membrane-of-the-kidney/)

1.1.2 Λειτουργία του νεφρώνα: Από τη σπειραματική διήθηση στην παραγωγή ούρων

Κάθε νεφρός έχει περίπου ένα εκατομμύριο νεφρώνες αλλά δεν λειτουργούν διαρκώς όλοι, παρά μόνο οι μισοί. Στη διάρκεια του 24ώρου μπαίνουν σε λειτουργία όλοι οι νεφρώνες εκ περιτροπής. Οι λειτουργίες που επιτελούνται στους νεφρώνες περιλαμβάνουν την σπειραματική διήθηση, την επεξεργασία του διηθήματος και την παραγωγή των ούρων.

Το νεφρικό σωμάτιο αποτελεί τη θέση όπου φιλτράρεται το αίμα. Κάθε σπείραμα τροφοδοτείται με αίμα από ένα προσαγωγό αρτηρίδιο. Καθώς το αίμα ρέει μέσα στο

σπείραμα ένα μέρος του πλάσματος (περίπου το 20%) διηθείται προς τον χώρο του Bowman, ενώ το υπόλοιπο εξέρχεται από το σπείραμα μέσω του απαγωγού αρτηριδίου. Η διαδικασία αυτή ονομάζεται σπειραματική διήθηση και το παραγώμενο υπερδιήθημα πρόουρο. Το υγρό αυτό δεν περιέχει κύτταρα και ενώσεις μεγάλου μοριακού βάρους, όπως οι πρωτεϊνες, περιέχει μικρού και μέσου μοριακού βάρους ουσίες συμπεριλαμβανομένων και των ουραιμικών τοξινών. Μέσω της σπειραματικής διήθησης ο οργανισμός απομακρύνει τοξικές ουσίες, δείκτης των οποίων είναι η ουρία και η κρεατινίνη, που βρίσκονται διαλυμένες στο πρόουρο, αλλά μαζί μ' αυτές χάνει και σημαντικό όγκο νερού (180 L ημερησίως) καθώς και διάφορα συστατικά που του είναι χρήσιμα (γλυκόζη, νάτριο, κάλιο, ασβέστιο κ.ά.). Τα συστατικά αυτά καθώς και το νερό σε ποσοστό 99% επιστρέφουν στην κυκλοφορία με τη διαδικασία της επαναρρόφησης η οποία γίνεται στα ουροφόρα σωληνάρια.

Όπως είδαμε, το νεφρικό σωμάτιο αποτελείται από το αγγειώδες σπείραμα και την κάψα του Bowman. Το αίμα φτάνει στο σπείραμα με υψηλή πίεση και εισέρχεται στην ουροφόρα κοιλότητα της κάψας του Bowman που έχει χαμηλότερη πίεση. Η διαφορά αυτή των πιέσεων στους δυο χώρους προκαλεί διήθηση του αίματος προς την πλευρά της χαμηλότερης πίεσης, δηλαδή την ουροφόρα κοιλότητα. Η υψηλή ωσμωτική πίεση οφείλεται στις ουσίες, που βρίσκονται διαλυμένες μέσα στο πρώτο διήθημα, στο πρόουρο. Το αίμα που εισέρχεται στο σπείραμα διαχωρίζεται από το χώρο του Bowman από ένα φραγμό διήθησης ο οποίος αποτελείται από τρεις στιβάδες: τη στιβάδα ενδοθηλιακών κυττάρων των τριχοειδών αγγείων του σπειράματος, τη στιβάδα επιθηλιακών κυττάρων της κάψας του Bowman (ποδοκύτταρα) και τη βασική μεμβράνη που βρίσκεται ανάμεσα στις δυο προαναφερθείσες στιβάδες (Εικόνα 4).

Εικόνα 4: Σχηματική απεικόνιση του φραγμού διήθησης στο σπείραμα. Τα ποδοκύτταρα (podocytes) με τις ποδοειδείς προεκβολές τους (primary & secondary processes) περιβάλλουν τα τριχοειδή αγγεία. Οι δευτερογενείς προεκβολές διαπλέκονται μεταξύ τους σχηματίζοντας το σχισμοειδές διάφραγμα (slit diaphragm) όπου φιλτράρεται το πλάσμα. Τα ποδοκύτταρα μαζί με το πορώδες ενδοθήλιο (fenestrated endothelium) και τη βασική μεμβράνη συνθέτουν τον διηθητικό φραγμό του σπειράματος.

Το νερό, τα ιόντα και μικρομοριακές ενώσεις διέρχονται ελεύθερα από τον φραγμό, ενώ η διήθηση μακρομορίων είναι εκλεκτική ανάλογα με το μέγεθος, το σχήμα και το φορτίο τους. Έτσι, τα ενδοθηλιακά κύτταρα των τριχοειδών του σπειράματος μαζί με το σχισμοειδές διάφραγμα (slit diaphragm) και την σπειραματική βασική μεμβράνη αποτελούν το σημείο όπου γίνεται η διήθηση του πλάσματος και αρχίζει ουσιαστικά ο σχηματισμός των ούρων. Το σχισμοειδές διάφραγμα είναι η βασική δομή που καθορίζει την εκλεκτικότητα του φραγμού ως προς το μέγεθος. Αποτελεί μία εξειδικευμένη μορφή διακυττάριας σύνδεσης και η δημιουργία της είναι αποτέλεσμα ειδικών μορφογενετικών σταδίων που παρατηρούνται στο σπειραματικό επιθήλιο. Κατά τα στάδια αυτά πραγματοποιείται αναδιοργάνωση του κυτταροσκελετού των ποδοκυττάρων και έκφραση ειδικών πρωτεϊνών που εντοπίζονται σε ειδικές κυτταρικές θέσεις. Κατά τη διάρκεια διέλευσης του σπειραματικού διηθήματος μέσα από τα σωληνάρια η σύνθεσή του μεταβάλλεται με μετακίνηση ουσιών από τα σωληνάρια προς τα περισωληναριακά τριχοειδή (σωληναριακή επαναρρόφηση) και αντίστροφα (σωληναριακή έκκριση). Καθημερινά παράγονται 180-200 λίτρα διηθήματος (πρόουρου) στα αγγειώδη σπειράματα. Από αυτά, το 99% επαναρροφάται και μόνο το 1% αποβάλλεται με τη μορφή ούρων. Το μεγαλύτερο μέρος του σπειραματικού διηθήματος επαναρροφάται στο εγγύς εσπειραμένο σωληνάριο ενώ η υπόλοιπη ποσότητα επαναρροφάται στα υπόλοιπα τμήματα του νεφρώνα (αγκύλη του Henle, άπω σωληνάριο και αθροιστικό σωληνάριο). Η επαναρρόφηση γίνεται είτε μέσω του μηχανισμού της ωσμωρύθμισης είτε με την ταυτόχρονη ενεργή μεταφορά ιόντων διαμέσου των μεμβρανών. Εκτός από νερό στο εγγύς σωληνάριο επαναρροφώνται ουσίες όπως η γλυκόζη και τα αμινοξέα καθώς και διάφορα ιόντα (Νατρίου, Χλωρίου, Μαγνησίου, Φωσφορικά, Διττανθρακικά).

Προκειμένου να παραχθεί η τελική μορφή των ούρων θα πρέπει το αρχικό διήθημα να συμπυκνωθεί. Η συμπύκνωση μπορεί να γίνει στην αγκύλη του Henle με μία διαδικασία που ονομάζεται πολλαπλασιασμός αντιρροής και στο αθροιστικό σωληνάριο με την επίδραση της αντιδιουρητικής ορμόνης (ADH). Η ADH ελέγχει την διαπερατότητα των αθροιστικών πόρων ανάλογα με την ανάγκη του οργανισμού να αποβάλλει νερό με τα ούρα ή όχι. Στην αγκύλη του Henle εκτός από την συμπύκνωση γίνεται και επαναρρόφηση νερού και ιόντων νατρίου και χλωρίου ενώ τέλος, το άπω εσπειραμένο σωληνάριο είναι υπεύθυνο για τον έλεγχο της οξεοβασικής ισορροπίας και έχει την ικανότητα να αντλεί ιόντα αντίθετα από την κλίση συγκέντρωσης. Η όλη διαδικασία της παραγωγής των ούρων είναι περίπλοκη και περιλαμβάνει πολλά σημεία ελέγχου που ρυθμίζουν κάθε φορά τη σύσταση των ούρων ανάλογα με τις ανάγκες του οργανισμού.

Το πρόουρο βρίσκεται στο σωληνάριο υπό υψηλή πίεση ενώ το αίμα στα τριχοειδικά δίκτυα του απαγωγού αρτηριδίου που περιβάλλουν το σωληνάριο υπό χαμηλή πίεση. Η διαφορά της πίεσης σπρώχνει το διάλυμα προς τα τριχοειδή των δικτύων. Όμως, το διάλυμα που περνά μέσα στα τριχοειδή δεν περιέχει την ουρία, η οποία αδυνατεί να περάσει την ειδική κατασκευή του τοιχώματος των τριχοειδών και του σωληναρίου. Έτσι, το τοίχωμα συγκρατεί την ουρία (διαλυμένη σε μια μικρή ποσότητα νερού) μέσα στον αυλό του ουροφόρου σωληναρίου, και επαναρροφά το μεγαλύτερο όγκο νερού από το πρόουρο μαζί με τα χρήσιμα συστατικά, αποδίδοντάς τα πάλι στην κυκλοφορία (μέσα στα τριχοειδή). Στη φάση αυτή γίνεται και μια ανταλλαγή ηλεκτρολυτικών ιόντων μεταξύ πρόουρου και αίματος και έτσι, ταυτόχρονα με την παραγωγή των ούρων και την αποβολή της ουρίας, διατηρείται η ισορροπία των ηλεκτρολυτών και του όγκου των υγρών του σώματος. Μετά την ολοκλήρωση της επαναρρόφησης τα ούρα περνούν στο τελικό σωληνάριο κι από εκεί στο αθροιστικό. Μικρές ποσότητες νερού επαναρροφώνται και σ' αυτά τα τμήματα του ουροφόρου σωληναρίου. Ό,τι απομένει περνά στη νεφρική θηλή και μετά στο νεφρικό κάλυκα ο οποίος είναι η αρχή της αποχετευτικής μοίρας του ουροποιητικού συστήματος.

Με τα ούρα ο οργανισμός απομακρύνει ουσίες που είναι άχρηστες ή βλαβερές για την λειτουργία του, όπως μεταβολικά κατάλοιπα φαρμάκων και τοξικών ουσιών. Κακή λειτουργία του ουροποιητικού συστήματος συνεπάγεται σοβαρές διαταραχές του οργανισμού από τη συσσώρευση πολλών άχρηστων ουσιών στο αίμα.

1.2 Χρόνια Νεφρική Νόσος

Χρόνια Νεφρική Νόσος (Chornic Kidney Disease, CKD) αποτελεί οποιαδήποτε κατάσταση κατά την οποία οι νεφροί αδυνατούν να εκτελέσουν φυσιολογικά τις βασικές τους λειτουργίες (καθαρισμός αίματος, απέκκριση τοξικών ουσιών και παραπροϊόντων μεταβολισμού, παραγωγή ορμονών, ρύθμιση pH αίματος) σε διάφορο βαθμό και για διάστημα μεγαλύτερο των τριών μηνών. Η Χρόνια Νεφρική Νόσος (XNN) συνοδεύεται από λειτουργικές διαταραχές, όπως η πρωτεϊνουρία (αποβολή πρωτεΐνης στα ούρα) και η αιματουρία (αποβολή αίματος), και δομικές διαταραχές με ή χωρίς μείωση του ρυθμού σπειραματικής διήθησης (Glomerular Filtration Rate, GFR). Ιστολογικά χαρακτηρίζεται από την παρουσία σπειραματικής σκλήρυνσης, ατροφίας των ουροφόρων σωληναρίων και την εμφάνιση ίνωσης.

Σύμφωνα με το σύστημα ταξινόμησης KDIGO CKD 2012, η λειτουργία των νεφρών προσδιορίζεται από τον ρυθμό της σπειραματικής διήθησης GFR και από τον λόγο αλβουμίνης/κρεατινίνης ACR (albumin-creatinine ratio) που προσδιορίζει τα επίπεδα της αλβουμινουρίας. Ο GFR αποτελεί μέχρι και σήμερα τον καλύτερο διαθέσιμο δείκτη παρακολούθησης της νεφρικής λειτουργίας και διάγνωσης της ΧΝΝ. Ορίζεται ως η συνολική ποσότητα πρόουρου που φιλτράρεται από όλους τους λειτουργικούς νεφρώνες ανά μονάδα χρόνου. Ο φυσιολογικός GFR στα νεαρά ενήλικα άτομα είναι περίπου 125 mL/min/1.73 m². Αν και ο ορισμός και η ταξινόμηση της XNN σε στάδια έχουν εξελιχθεί με την πάροδο του χρόνου, η τρέχουσα διεθνής ταξινόμηση ορίζει ως ΧΝΝ την μειωμένη λειτουργία νεφρών που εμφανίζεται με GFR < 60 mL/min/1.73 m² ή με δείκτες νεφρικής βλάβης ή και τα δύο, με διάρκεια τουλάχιστον 3 μηνών ανεξάρτητα από την υποκείμενη αιτία που προκαλεί την βλάβη στο νεφρό [1]. Έτσι, ανάλογα με τα επίπεδα της σπειραματικής διήθησης η XNN κατηγοριοποιείται σε πέντε στάδια με το τρίτο στάδιο G3 να υποδιαιρείται σε δύο επιμέρους στάδια G3a και G3b, όπως φαίνεται και στην Εικόνα 5. Επιπλέον, τα επίπεδα της αλβουμινουρίας ταξινομούνται σε τρία στάδια (A1, A2, A3) σύμφωνα με τον δείκτη ACR. Το τελευταίο στάδιο G5 το οποίο ορίζεται από GFR < 15 mL/min/1.73 m² αποτελεί την χρόνια νεφρική ανεπάρκεια τελικού σταδίου και οι ασθενείς σε αυτό το στάδιο θα χρειασθούν αργά ή γρήγορα υποστήριξη της νεφρικής τους λειτουργίας με εξωσωματική κάθαρση (αιμοκάθαρση ή περιτοναϊκή κάθαρση) ή μεταμόσχευση νεφρού [2-5].

📕 low risk if no other markers of kidney disease, no CKD) 📒 Moderately increased risk 📕 high risk 📕 very high risk

Εικόνα 5: Στάδια της XNN όπως προκύπτουν από την κατηγοριοποίηση με βάση τον ρυθμό της σπειραματικής διήθησης (eGFR) και τα επίπεδα της αλβουμινουρίας. Από βιβλιογραφική αναφορά [6]

Η συχνότητα της XNN στον γενικό πληθυσμό είναι πολύ δύσκολο να προσδιοριστεί καθώς τα αρχικά στάδια της νόσου είναι ασυμπτωματικά και ο GFR συχνά υπολογίζεται με διαφορετικές μεθοδολογίες. Ωστόσο, ο επιπολασμός της XNN κυμαίνεται περίπου στο 11-13% του πληθυσμού στις αναπτυγμένες χώρες. Επομένως, υπολογίζεται πως το 11-13% του πληθυσμού ανήκει σε κάποιο από τα στάδια της νεφρικής νόσου. Το κόστος θεραπείας των ασθενών με XNN είναι τεράστιο. Ενδεικτικά, μόνο στις Ηνωμένες Πολιτείες της Αμερικής δαπανώνται περισσότερα από 48 δισεκατομμύρια δολάρια το χρόνο για θεραπεία. Ακόμα πιο σοβαρό από το κόστος είναι το γεγονός ότι στις αναπτυσσόμενες χώρες η εξωγενής υποστήριξη της νεφρικής λειτουργίας όπως η αιμοκάθαρση δεν είναι ευρέως διαδεδομένη με αποτέλεσμα η εμφάνιση της νεφρικής νόσου τελικού σταδίου να ισοδυναμεί με τον θάνατο.

Οι αιτίες παγκοσμίως που προκαλούν XNN ποικίλλουν. Οι πιο κοινές πρωτοπαθείς νόσοι και το σχετικό ποσοστό τους που προκαλούν XNN και τελικά οδηγούν σε νεφρική ανεπάρκεια είναι οι ακόλουθες [7] :

-Σακχαρώδης διαβήτης τύπου ΙΙ (30%-50%)

-Αρτηριακή υπέρταση (27.2%)

-Πρωτογενείς σπειραματονεφρίτιδες (8.2%)

-Σακχαρώδης διαβήτης τύπου Ι (3.9%)

-Διάμεση σωληναριακή νεφρίτιδα (3.6%)

-Συγγενή νοσήματα (πολυκυστική νόσος νεφρών, σύνδρομο Alport) (3.1%)

-Δευτερογενής σπειραματονεφρίτιδα ή αγγειίτιδα (2.1%)

Όπως φαίνεται και παραπάνω, οι δύο κύριες αιτίες που προκαλούν την XNN είναι ο διαβήτης (τύπου Ι και ΙΙ) και η υπέρταση και ευθύνονται περίπου για το 2/3 των περιπτώσεων εμφάνισης XNN παγκοσμίως.

1.3 Υπέρταση

Η υπέρταση είναι μια χρόνια πάθηση κατά την οποία η πίεση στο αρτηριακό σκέλος της κυκλοφορίας είναι αυξημένη. Κατά την Ευρωπαϊκή Εταιρεία Υπέρτασης, το άτομο είναι υπερτασικό, εάν η αρτηριακή πίεση στο ιατρείο είναι > 140/90 mmHg.

Η υπέρταση κατηγοριοποιείται σε δύο τύπους ανάλογα με την αιτία που προκαλεί την εμφάνισή της. Στο 90-95% των περιπτώσεων δεν υπάρχει κάποιο προφανές υποκείμενο ιατρικό αίτιο που να δικαιολογεί την αύξηση της αρτηριακής πίεσης. Σε αυτές τις περιπτώσεις η κατάσταση ονομάζεται πρωτοπαθής ή ιδιοπαθής υπέρταση και είναι μια πολυπαραγοντική νόσος, που προκαλείται από την αλληλεπίδραση γενετικών και περιβαλλοντικών παραγόντων. Το υπόλοιπο 5-10% των περιπτώσεων υπέρτασης οφείλονται σε παθολογικές καταστάσεις, που επηρεάζουν τους νεφρούς (νεφρίτιδες, πολυκυστική νόσος νεφρών), τις αρτηρίες (νεφραγγειακή υπέρταση, στένωση ισθμού αορτής), την καρδιά και το ενδοκρινικό σύστημα (υπεραλδοστερονισμός φαιοχρωμοκύττωμα κλπ) και κατηγοριοποιούνται, ως δευτεροπαθής υπέρταση.

Είναι σημαντικό να τονιστεί πως ακόμα και η μέτρια αύξηση της αρτηριακής πίεσης στους ανθρώπους σχετίζεται με μειωμένο προσδόκιμο ζωής. Έτσι, η υπέρταση αποτελεί έναν σημαντικό παράγοντα κινδύνου για το έμφραγμα του μυοκαρδίου, την καρδιακή ανεπάρκεια, το εγκεφαλικό, τα ανευρύσματα αρτηριών και την εμφάνιση χρόνιας νεφρικής νόσου.

1.3.1 Επιδημιολογικά δεδομένα

Η υπέρταση αποτελεί ένα παγκόσμιο φαινόμενο και για το λόγο αυτό έχει χαρακτηριστεί, ως ο συχνότερος παράγοντας κινδύνου, που μπορεί να οδηγήσει σε θάνατο. Υπολογίζεται πως πλήττει περίπου 1 δισεκατομμύριο ανθρώπους δηλαδή περίπου το 26% του ενήλικου πληθυσμού παγκοσμίως. Η υπέρταση δεν εμφανίζεται μόνο στις αναπτυγμένες χώρες, αλλά και στις αναπτυσσόμενες. Επιπλέον, εμφανίζεται συχνότερα στους άντρες σε σύγκριση με τις γυναίκες. Σύμφωνα με τον Παγκόσμιο Οργανισμό Υγείας το 2012 ο επιπολασμός της νόσου εκτιμήθηκε 29,2% στους άντρες και 28,4% στις γυναίκες.

Θα πρέπει να σημειωθεί πως παρόλο που η υπέρταση έχει μεγάλο επιπολασμό κυρίως σε άτομα τις τρίτης ηλικίας, τις τελευταίες δεκαετίες παρατηρείται μια αύξηση των κρουσμάτων σε νεαρούς ενήλικες και εφήβους [8-10]. Αυτό οφείλεται στην αύξηση των

παραγόντων κινδύνου στους νέους, όπως η παχυσαρκία, η υπερβολική πρόσληψη νατρίου, η μειωμένη σωματική δραστηριότητα, ο σακχαρώδης διαβήτης και η νεφρική νόσος. Όμως, και ψυχοκοινωνικοί παράγοντες μπορεί να ευθύνονται για την αύξηση της συχνότητας εμφάνισης της υπέρτασης σε νεαρά άτομα. Μετά την παχυσαρκία, οι νεφροπάθειες αποτελούν την δεύτερη πιο συχνή (60-70%) αιτία της υπέρτασης στα παιδιά. Πάντως και στους εφήβους η συνηθέστερη μορφή υπέρτασης είναι η πρωτοπαθής ή ιδιοπαθής υπέρταση, σε ποσοστό 90–95% [11].

1.3.2. Υπέρταση και Νεφρός

Ο νεφρός αποτελεί ένα από τα όργανα στόχους της αρτηριακής υπέρτασης. Η υπέρταση αποτελεί τη δεύτερη σε συχνότητα αιτία, μετά το σακχαρώδη διαβήτη, που οδηγεί σε νεφρική ανεπάρκεια τελικού σταδίου. Παρά το γεγονός ότι τα τελευταία χρόνια έχει γίνει σημαντική πρόοδος στην κατανόηση της ανάπτυξης και της εξέλιξης της νεφρικής βλάβης λόγω της υψηλής αρτηριακής πίεσης, οι μηχανισμοί που οδηγούν σε αυτή παραμένουν αδιευκρίνιστοι.

Η υπέρταση προκαλεί ανεπανόρθωτες βλάβες στη δομή και την λειτουργία των νεφρών. Αντίστροφα, οι νεφρικές παθήσεις μπορεί να προκαλέσουν υπέρταση και μέσω αυτής επιδείνωση των νεφρικών βλαβών και περαιτέρω επιβάρυνση της νεφρικής λειτουργίας. Έτσι, δημιουργείται ένας φαύλος κύκλος όπου η υπέρταση είναι η αιτία και το αποτέλεσμα της νεφρικής δυσλειτουργίας.

Πολλοί παράγοντες συμμετέχουν σε αυτή τη διαδικασία. Η Αγγειοτενσίνη ΙΙ μέσω της ενδοθηλιακής δυσλειτουργίας και της υπερέκφρασης των επιφανειακών μορίων προσκόλλησης ICAM-1 και VCAM-1 συμβάλλει στην πρόκληση της νεφρικής βλάβης. Η έκφραση των μορίων προσκόλλησης διεγείρεται από την ενδοθηλίνη-1, το συμπαθητικό νευρικό σύστημα, την αλδοστερόνη, φλεγμονώδεις κυτταροκίνες και χυμοκίνες όπως και από διάφορους άλλους αυξητικούς παράγοντες, το οξειδωτικό στρες και παράγοντες με χημειοτακτική δράση όπως η οστεοποντίνη [12-14].

1.3.3 Υπερτασική νεφροσκλήρυνση

Ο όρος 'Υπερτασική Νεφροσκλήρυνση χρησιμοποιείται για να περιγράψει τις προκαλούμενες από την υπέρταση νεφρικές βλάβες και ορίζει την κατάσταση αυτή ως μια μη διαβητική νεφροπάθεια που συνοδεύεται από χρόνια υπέρταση με ή χωρίς λευκωματουρία. Για την πρόκληση νεφρικής βλάβης σημαντικός παράγοντας θεωρείται όχι μόνο η βαρύτητα της υπέρτασης αλλά και η διάρκειά της. Η διάρκεια της υπέρτασης συσχετίζεται τόσο με τις ενδοθηλιακές και τις σπειραματικές, όσο και τις σωληναριακές βλάβες. Η παρατεταμένη υψηλή αρτηριακή πίεση οδηγεί σε νεφρική βλάβη με παθολογοανατομικές αλλοιώσεις μη ειδικές. Η ιστολογική εικόνα χαρακτηρίζεται από αρτηριδιοσκλήρυνση, σπειραματοσκλήρυνση και ίνωση του διάμεσου ιστού χωρίς ανοσοεναποθέσεις. Η συνηθέστερη παθολογοανατομική βλάβη αφορά υαλίνωση των αρτηριδίων, εστιακή ή τμηματική πάχυνση των τοιχωμάτων, εναπόθεση θεμελίου ουσίας, ρίκνωση και τελικά ουλοποίηση του σπειράματος.

Η νεφρική βλάβη που συνδέεται με την αρτηριακή υπέρταση είναι δυνατό να εξελίσσεται προοδευτικά και να οδηγεί τελικά σε νεφρική ανεπάρκεια. Η σχέση της αρτηριακής υπέρτασης με τη νεφρική βλάβη έχει ήδη διαπιστωθεί από μεγάλες μελέτες αναφοράς. Η μελέτη Hypertension Detection and Follow up Program σε 10.940 ασθενείς με διάστημα παρακολούθησης 5 ετών, απέδειξε ότι η υπέρταση αποτελεί παράγοντα κινδύνου για επιδείνωση της νεφρικής λειτουργίας [15]. Επιπλέον, στην επιδημιολογική μελέτη, MRFIT (Multiple Risk Factor Intervention Trial) σε 332.544 άτομα, χωρίς πρωτοπαθή νεφρική νόσο, παρατηρήθηκε στενή σχέση μεταξύ συστολικής και διαστολικής αρτηριακής πίεσης και εξέλιξης σε τελικού σταδίου νεφροπάθεια, σε διάστημα παρακολούθησης 16 ετών. Η συγκεκριμένη μελέτη αποτέλεσε την κυριότερη κλινική μελέτη, που τεκμηρίωσε τη σχέση του ρυθμού έκπτωσης της νεφρικής λειτουργίας με την αρτηριακή υπέρταση [16,17].

Στην υπερτασική νεφροσκλήρυνση οι ειδικές νεφρικές βλάβες αφορούν τις μέσου και μικρού μεγέθους αρτηρίες, έως και τα τελικά αρτηρίδια των νεφρώνων. Αναπτύσσεται πάχυνση του έσω χιτώνα, μέσω πολλαπλασιασμού των ινομυοβλαστών και εναπόθεσης κολλαγόνου καθώς και διπλασιασμός του πάχους του έσω ελαστικού πετάλου. Επίσης, παρατηρείται πάχυνση του αρτηριακού τοιχώματος από ηωσινόφιλες εναποθέσεις και υαλίνη με τελικό αποτέλεσμα την αρτηριοσκλήρυνση. Ωστόσο, οι αλλοιώσεις που προκαλεί η υπέρταση στο νεφρό δεν περιορίζονται μόνο στα αγγεία αλλά εντοπίζονται και στο υπόλοιπο νεφρικό παρέγχυμα. Έτσι, χαρακτηριστικά ευρήματα σοβαρής αρτηριακής υπέρτασης αποτελούν η σπειραματοσκλήρυνση αλλά και η διάμεση ίνωση και σωληναριακή ατροφία η οποία χαρακτηρίζεται ως δευτεροπαθής.

Επιπλέον, η υπερτασική νεφροσκλήρυνση είναι βέβαιο πως δεν οφείλεται σε μία μοναδική αιτία αλλά αποτελεί πολυπαραγοντική πάθηση [18]. Όμως, οι μηχανισμοί που οδηγούν στη νεφροσκλήρυνση παραμένουν άγνωστοι. Καθώς η λήψη βιοψίας από

ασθενείς με νεφρική νόσο είναι επίπονη διαδικασία, έχουν αναπτυχθεί ζωικά μοντέλα τα οποία αναπτύσσουν βλάβες παρόμοιες με αυτές υπερτασικών ανθρώπων, και χρησιμοποιούνται ευρέως προκειμένου να μελετηθεί ο ρόλος της υπέρτασης στην XNN και να αποσαφηνιστούν οι παθογενετικοί μηχανισμοί της υπερτασικής νεφροσκλήρυνσης [19].

1.4 Πειραματικά μοντέλα υπέρτασης

Η χρήση ζωικών προτύπων στην έρευνα αποτελεί ένα σημαντικό εργαλείο για την κατανόηση της φυσιολογίας και της παθοφυσιολογίας του νεφρού. Η έρευνα σε ζωικά μοντέλα νεφρικών παθήσεων και χρόνιας νεφρικής νόσου έχει βοηθήσει στην κατανόηση θεμελιωδών εννοιών της βιολογίας των νεφρών καθώς και των επιπτώσεων των συστηματικών νοσημάτων στην νεφρική λειτουργία. Σε επίπεδο βασικής έρευνας, τα ζωικά μοντέλα χρησιμοποιούνται για τη διερεύνηση νέων μοριακών και κυτταρικών μηχανισμών ανάπτυξης ασθενειών αλλά και για την δοκιμή πιθανών νέων θεραπειών.

Η ανθρώπινη υπέρταση είναι μια πολύπλοκη πολυπαραγοντική νόσος που όπως αναφέρθηκε προηγουμένως επηρεάζεται από γενετικούς αλλά και περιβαλλοντικούς παράγοντες. Διάφορα πειραματικά μοντέλα υπέρτασης έχουν αναπτυχθεί με σκοπό τη μελέτη της ανθρώπινης υπέρτασης. Τα μοντέλα αυτά έχουν συμβάλλει στη διαλογή πιθανών αντι-υπερτασικών φαρμάκων και στην κατανόηση των μηχανισμών που ευθύνονται για την ανάπτυξη και την εξέλιξη της υπέρτασης. Δεδομένου ότι τα ζωϊκά μοντέλα υπέρτασης μιμούνται την ανθρώπινη υπέρταση, πολλά από αυτά έχουν αναπτυχθεί χρησιμοποιώντας τους αιτιολογικούς παράγοντες που προκαλούν την ανθρώπινη υπέρταση, όπως η υπερβολική λήψη αλατιού, η υπερδραστηριότητα του συστήματος ρενίνης-αγγειοτενσίνης-αλδοστερόνης (RAAS) και η γενετική προδιάθεση. [20].

Έτσι, έχουν αναπτυχθεί πολλά υπερτασικά μοντέλα τα οποία κατηγοριοποιούνται με βάση την αιτία που προκαλεί την υπέρταση. Τα ζωικά μοντέλα που χρησιμοποιούνται για τη μελέτη της δευτεροπαθούς υπέρτασης που προκαλείται από νεφρικές παθήσεις όπως η νεφρική αρτηριακή στένωση (RAS, renal arterial stenosis) είναι τα 2K-1C (2 kidneys-1 clip hypertension model), 1K-1C (1 kidney-1 clip hypertension model) και 2K-2C (2 kidney-2 clip hypertension model) [21,22]. Για τη μελέτη της πρωτοπαθούς υπέρτασης έχουν αναπτυχθεί ζωικά μοντέλα τα οποία βασίζονται στην χορήγηση φαρμακολογικών παραγόντων για την πρόκληση υπέρτασης όπως ο αναστολέας συνθετάσης του νιτρικού οξειδίου (NOS, nitric oxide synthase), το DOCA (deoxycorticosterone acetate) και οι ενεργοποιητές του συστήματος ρενίνης-αγγειοτενσίνης-αλδοστερόνης (RAAS). Επιπλέον, πολλά υπερτασικά μοντέλα περιλαμβάνουν μοριακά, διαγονιδιακά και συγγενικά στελέχη που σε συνδυασμό με τις τεχνικές αποσιώπησης γονιδίων (gene knockout techniques) έχουν χρησιμοποιηθεί για την αποσαφήνιση των μηχανισμών που ευθύνονται για την εμφάνιση της υπέρτασης. Παραδείγματα ζωικών μοντέλων υπέρτασης αποτελούν τα Fawn hooded hypertensive rats [23], τα Sprague-Dawley rats [24], τα Dahl salt-sensitive (DS) rats [25] και τα Spontaneously Hypertensive Rats [26].

Στην παρούσα διδακτορική διατριβή χρησιμοποιήθηκε το υπερτασικό μοντέλο Spontaneously Hypertensive Rat το οποίο αναλύεται στην επόμενη ενότητα.

1.4.1. Υπερτασικό μοντέλο SHR (Spontaneously Hypertensive Rat)

Το μοντέλο Spontaneously Hypertensive Rat (SHR) είναι ένα από τα πιο διαδεδομένα και καλά μελετημένα πειραματικά μοντέλα υπέρτασης με πάνω από 18.000 αναφορές στο PubMed [27,28]. Το μοντέλο αυτό είναι γενετικό και αναπτύχθηκε το 1963 από τους Okamoto και Aoki από την διασταύρωση Wistar Kyoto επίμυων και την επιλογή των ατόμων της θυγατρικής γενιάς που παρουσίαζαν την υψηλότερη αρτηριακή πίεση [26]. Το χρονοδιάγραμμα της ανάπτυξης υπέρτασης και των επιπτώσεών της στο μοντέλο SHR φαίνεται στην Εικόνα 6.

Τα αρσενικά SHR αποτελούν ένα καθιερωμένο μοντέλο μελέτης της ανθρώπινης υπέρτασης και χρησιμοποιούνται για την δοκιμή νέων αντι-υπερτασικών σκευασμάτων [29]. Ένα από τα βασικά πλεονεκτήματα του μοντέλου είναι ότι η υπέρταση εμφανίζεται σε νεαρή ηλικία και οι ιστολογικές βλάβες που προκαλεί είναι παρόμοιες με εκείνες σε ασθενείς με υπερτασική νεφροσκλήρυνση. Τις πρώτες 6-8 εβδομάδες της ζωής τους τα ζώα του μοντέλου SHR αναπτύσσουν μια κατάσταση προ-υπέρτασης και στις επόμενες 12-14 εβδομάδες σταδιακά εμφανίζουν υπέρταση, με τα αρσενικά SHR ζώα να είναι περισσότερο επιρρεπή από τα θηλυκά, όπως συμβαίνει και στον άνθρωπο. Επομένως, το μοντέλο SHR είναι το πλέον κατάλληλο για τη μελέτη ανεύρεσης πιθανών πρώιμων δεικτών υπερτασικής νεφροπάθειας. Όμως, τόσο στο πειραματικό μοντέλο όσο και στον άνθρωπο οι μηχανισμοί που ενεργοποιούνται και τα μακρομόρια που συμμετέχουν κατά την ανάπτυξη της υπερτασικής νεφροσκλήρυνσης είναι ιδιαίτερα πολύπλοκα και εν πολλοίς άγνωστα.

Το μοντέλο SHR έχει χρησιμοποιηθεί για τον προσδιορισμό των γονιδίων που είναι υπεύθυνα για την υπέρταση, για την μελέτη των επιπλοκών που εμφανίζονται στα όργανα στόχους από την υπέρταση καθώς και για την δοκιμή πιθανών θεραπευτικών φαρμακολογικών παραγόντων [20]. Πρόσφατες μελέτες στο μοντέλο υποστηρίζουν πως η βλάβη στα αγγεία ευθύνεται για την ατροφία που παρατηρείται στα νεφρικά σωληνάρια και για την σπειραματοσκλήρυνση. Επιπλέον, έχει δειχθεί πως η βλάβη στα αγγεία προϋπάρχει της βλάβης που εμφανίζεται στα σπειράματα [30]. Ωστόσο, ο μηχανισμός εξέλιξης της αγγειακής βλάβης σε σπειραματική και σωληναριακή βλάβη παραμένει αδιευκρίνιστος. Κατά συνέπεια, είναι σημαντικό να μελετηθούν με μεγαλύτερη λεπτομέρεια και με τη χρήση σύγχρονων μεθόδων ολιστικής προσέγγισης όπως είναι η πρωτεομική ανάλυση, τα πρώτα στάδια ανάπτυξης της υπερτασικής νεφροσκλήρυνσης στο μοντέλο SHR, προκειμένου να αποκαλυφθούν μακρομόρια με κρίσιμο ρόλο στη νεφρική βλάβη και να αποσαφηνιστούν οι υποκείμενοι μηχανισμοί. Τα ευρήματα αυτά μπορεί να αποτελέσουν τη βάση για την επέκταση της έρευνας και στην ανθρώπινη υπέρταση.

1.5 Πρωτεομική

Η καλύτερη προσέγγιση για την ανεύρεση πρωτεϊνών-δεικτών σε πολυπαραγοντικές παθολογικές καταστάσεις είναι η βιολογία συστημάτων και ειδικότερα η πρωτεομική ανάλυση (proteomics). Η πρωτεομική αποτελεί το ερευνητικό πεδίο το οποίο ασχολείται με την ανάλυση σε μεγάλη κλίμακα του πρωτεόματος, δηλαδή των πρωτεϊνών οι οποίες παράγονται από το γονιδίωμα ενός οργανισμού. Η πρωτεομική χρησιμοποιεί ένα συνδυασμό περίπλοκων και εξειδικευμένων τεχνικών και προσεγγίσεων, στις οποίες συμπεριλαμβάνονται η ηλεκτροφόρηση δύο διαστάσεων, η υγρή χρωματογραφία σε συνδυασμό με τη φασματομετρία μάζας καθώς και η βιοπληροφορική ανάλυση των δεδομένων. Με τα παραπάνω επιτυγχάνεται διαχωρισμός, ταυτοποίηση και ποσοτικοποίηση των πρωτεϊνών. Έτσι, μπορούν να ταυτοποιηθούν πρωτεΐνες που βρίσκονται σε υγρά του σώματος ή δείγματα ιστών, σε μεγάλη κλίμακα. Κάποιες από τις πρωτεΐνες που αναγνωρίζονται δύνανται να χρησιμοποιηθούν ως βιοδείκτες για την έγκαιρη πρόγνωση και διάγνωση των νεφρικών ή άλλων ασθενειών, καθώς και ως στόχοι θεραπευτικών προσεγγίσεων. Επομένως, η χρήση της πρωτεομικής και οι πληροφορίες που προέρχονται από αυτήν προσφέρουν τεράστιες δυνατότητες για την κατανόηση των ασθενειών και την ταυτοποίηση διαγνωστικών δεικτών και θεραπευτικών στόχων.

Οι πρωτεϊνικοί δείκτες, δηλαδή πρωτεΐνες οι οποίες αυξάνονται ή μειώνονται κατά την πορεία μιας ασθένειας και που ταυτοποιούνται με τις διαδικασίες της πρωτεομικής έχουν ένα ευρύτατο φάσμα εφαρμογών. Μπορούν να χρησιμοποιηθούν για σκοπούς κλινικής διάγνωσης ή πρόγνωσης. Αρχικά, μπορούν να δώσουν πληροφορίες για τους μοριακούς μηχανισμούς που έχουν ενεργοποιηθεί. Στη συνέχεια, οι δείκτες μπορεί επίσης να βοηθήσουν στο σχεδιασμό μίας βέλτιστης θεραπευτικής αγωγής για ομάδες ασθενών, καθώς επίσης και για την παρακολούθηση της αποτελεσματικότητας της θεραπευτικής τους αγωγής. Με τον τρόπο αυτό οι πρωτεϊνικοί δείκτες μπορεί να χρησιμοποιηθούν για να επιταχύνουν τις κλινικές δοκιμές και να τις κάνουν πιο αποτελεσματικές. Εάν περαιτέρω βιοχημική έρευνα αποκαλύψει την σχέση των πρωτεϊνικών δεικτών με την παθολογία της ασθένειας, οι πρωτεΐνες αυτές μπορεί να χρησιμεύσουν ως μοριακοί στόχοι για θεραπευτική παρέμβαση.

Η πρωτεομική ανάλυση έχει χρησιμοποιηθεί για την εύρεση βιοδεικτών τόσο για την χρόνια όσο και για την οξεία νεφρική νόσο και έχει εφαρμοστεί σε δείγματα ιστού, ούρων αλλά και εξωσώματα των ούρων [31]. Ειδικότερα, η πρωτεομική ανάλυση κυρίως δειγμάτων ούρων έχει αποκαλύψει την παρουσία σε αυτά γνωστών πρωτεϊνών που σχετίζονται με παθολογικές καταστάσεις στα νεφρά και προέρχονται από εκκρίσεις των νεφρικών επιθηλιακών κυττάρων [32]. Τέτοιες πρωτεΐνες περιλαμβάνουν τις aquaporin-2, polycystin-1, podocin, non-muscle myosin II, angiotensin-converting enzyme, Na+K+2Clcotransporter (NKCC2), thiazide-sensitive Na-Cl cotransporter (NCC) και άλλες. Επιπλέον, πρωτεομικές μέθοδοι έχουν εφαρμοστεί τόσο σε ανθρώπινα δείγματα όσο και σε ζωικά μοντέλα για τη μελέτη της διαφορικής έκφρασης πρωτεϊνών στη διαβητική νεφροπάθεια, την αλβουμινουρία, καθώς και άλλες παθήσεις του νεφρικού σπειράματος και των νεφρικών σωληναρίων, με σκοπό το διαγνωστικό διαχωρισμό του παθολογικού από το φυσιολογικό ιστό αλλά και τη βαθύτερη κατανόηση των μορίων και των μηχανισμών που εμπλέκονται στην παθογένεση των ασθενειών [33,34].

Στην παρούσα διατριβή η πρωτεομική ανάλυση εφαρμόστηκε στο υπερτασικό ζωικό μοντέλο SHR και σε αντίστοιχα νορμοτασικά ζώα με σκοπό την ταυτοποίηση πρωτεϊνών με κρίσιμο ρόλο στην ανάπτυξη της υπέρτασης στα ζώα αυτά. Συγκεκριμένα εφαρμόσαμε τρεις διαφορετικές προσεγγίσεις:

Η πρώτη προσέγγιση πρωτεομικής πραγματοποιήθηκε σε ολόκληρο το νεφρικό παρέγχυμα των υπερτασικών και νορμοτασικών ζώων εφαρμόζοντας την τεχνική της δισδιάστατης ηλεκτροφόρησης ακολουθούμενη από MALDI-MS. Ο αρχικός στόχος ήταν να ταυτοποιήσουμε πρωτεΐνες του νεφρού που η έκφρασή τους αλλάζει εξαιτίας της παρουσίας υψηλής αρτηριακής πίεσης στα ζώα αυτά. Στη συνέχεια πραγματοποιήθηκε βιοπληροφορική ανάλυση ώστε να εντοπιστούν εκείνα τα βιολογικά μονοπάτια που απορρυθμίζονται από την ανάπτυξη της υπέρτασης. Τα αποτελέσματα αυτά παρατίθενται στην Ενότητα 3.3.1.

Η δεύτερη προσέγγιση πρωτεομικής πραγματοποιήθηκε επίσης σε ολόκληρο το νεφρικό παρέγχυμα των υπερτασικών και νορμοτασικών ζώων εφαρμόζοντας την τεχνική LC-MS/MS. Ο σκοπός ήταν να επαναλάβουμε την πρωτεομική και την βιοπληροφορική ανάλυση στα ίδια ζώα εφαρμόζοντας την τεχνική LC-MS/MS η οποία έχει μεγάλη διακριτική ικανότητα και κατά συνέπεια είναι πολύ πιο ευαίσθητη από την δισδιάστατη ηλεκτροφόρηση. Τα αποτελέσματα αυτά παρατίθενται αναλυτικά στην Ενότητα 3.3.2.

Η τρίτη προσέγγιση πρωτεομικής πραγματοποιήθηκε αποκλειστικά στα νεφρικά αγγεία. Γνωρίζοντας πως μια από τις σημαντικότερες επιπτώσεις της υπέρτασης είναι η βλάβη που προκαλεί στα αγγεία, απομονώσαμε με εξαιρετική ακρίβεια αγγεία από το νεφρικό παρέγχυμα SHR και WKY ζώων ηλικίας 20 εβδομάδων με την χρήση της τεχνικής Laser Capture Microdissection και πραγματοποιήσαμε πρωτεομική ανάλυση αποκλειστικά στα απομονωμένα αγγεία με την τεχνική GeLC-MS/MS. Στην Εικόνα 7 παρατίθεται η γραφική απεικόνιση της μεθοδολογίας που ακολουθήθηκε στην πρωτεομική ανάλυση των νεφρικών αγγείων. Τα αποτελέσματα της πρωτεομικής παρατίθενται αναλυτικά στην Ενότητα 3.3.3.

Εικόνα 7: Γραφική απεικόνιση της μεθοδολογίας που εφαρμόστηκε για την ανάλυση του πρωτεόματος των νεφρικών αγγείων υπερτασικών και νορμοτασικών ζώων με τις τεχνικές Laser Capture microdissection και GeLC-MS/MS.

Οι μελέτες που πραγματοποιήσαμε στο μοντέλο SHR με την βοήθεια της πρωτεομικής είχαν ως αποτέλεσμα μεγάλο όγκο δεδομένων. Ταυτοποιήθηκε μεγάλος αριθμός πρωτεϊνών, ορισμένες από τις οποίες παρουσίαζαν διαφορική έκφραση στα υπερτασικά ζώα σε σύγκριση με τα νορμοτασικά. Από την ανάλυση των συνολικών πρωτεϊνών επιλέχθηκαν δύο, η CLIC4 (chloride intracellular protein 4) και η SGLT2 (sodium/glucose co-transporter 2), για περαιτέρω μελέτη και επιβεβαίωση των ευρημάτων της πρωτεομικής ανάλυσης. Ορισμένα στοιχεία για τις πρωτεΐνες αυτές αναφέρονται στις δύο επόμενες ενότητες.
1.6 Chloride Intracellular Channel protein 4, CLIC4

Τα κανάλια χλωρίου είναι μια ετερογενής ομάδα πρωτεϊνών που ρυθμίζουν θεμελιώδεις κυτταρικές διεργασίες όπως η σταθεροποίηση του δυναμικού της κυτταρικής μεμβράνης, η διεπιθηλιακή μεταφορά (transepithelial transport), η διατήρηση του ενδοκυτταρικού pH και η ρύθμιση του όγκου των κυττάρων. Η οικογένεια των CLICs πρωτεϊνών αποτελείται από 6 μέλη (CLIC1-6) και είναι σημαντικά συντηρημένη στα Σπονδυλωτά. Τα μόρια αυτά υπάρχουν σε δύο μορφές μέσα στο κύτταρο, τόσο σε διαλυτή μορφή όσο και σε μεμβρανική και για το λόγο αυτό διαφέρουν από τα συνηθισμένα μόρια που αποτελούν διαύλους ιόντων [35].

Η πρωτεΐνη CLIC4 (Chloride Intracellular Channel protein) αποτελεί ένα κανάλι χλωρίου και είναι μέλος της οικογένειας πρωτεϊνών p64. Η CLIC4 είναι γνωστό πως αλληλοεπιδρά με διάφορες κυτταροσκελετικές πρωτεΐνες (dynamin I, α-tubulin, β-actin, creatine kinase, δύο ισομορφές των 14-3-3 πρωτεΐνων) κοντά ή πάνω στην πλασματική μεμβράνη [36]. Στο νεφρό η πρωτεΐνη CLIC4 εκφράζεται κυρίως στα επιθηλιακά κύτταρα του εγγύς εσπειραμένου σωληναρίου όπου και διαδραματίζει σπουδαίο ρόλο στην μεταφορά ουσιών στα κύτταρα αυτά. Ειδικότερα, η CLIC4 ρυθμίζει την εξωκύτωση στην επιθηλιακών κορυφαία επιφάνεια των σωληναριακών κυττάρων μέσω της διαμεσολαβούμενης από ρετρομερή και ακτίνη ενδοκυτταρικής διακίνησης. Επιπλέον, η CLIC4 έχει σημαντικό ρόλο στον σχηματισμό του κεντρικού αυλού των σωληναρίων κατά την εμβρυϊκή ανάπτυξη [37].

1.7 Sodium/Glucose Co-transporter 2, SGLT2

Οι νεφροί απελευθερώνουν γλυκόζη στην κυκλοφορία με δύο διαδικασίες: μέσω της διάσπασης του γλυκογόνου σε ελεύθερη γλυκόζη (γλυκογονόλυση) και μέσω γλυκονεογένεσης όπου δημιουργούν ελεύθερη γλυκόζη από γαλακτικό, πυροσταφυλικό οξύ και αμινοξέα. Όμως, οι νεφροί έχουν την ικανότητα να φιλτράρουν και να απορροφούν γλυκόζη από το σπειραματικό διήθημα πίσω στην κυκλοφορία του αίματος. Περίπου 180 γραμμάρια γλυκόζης φιλτράρονται καθημερινά από τα σπειράματα, τα περισσότερα εκ των οποίων απορροφούνται από το εγγύς εσπειραμένο σωληνάριο, με την βοήθεια μορίων μεταφορέων SGLTs και παθητικούς μεταφορείς γλυκόζης GLUTs.

Το σημαντικότερο από αυτά τα μόρια είναι ο συμμεταφορέας γλυκόζης και ιόντων Na⁺ SGLT2 (Sodium glucose co-transporter 2). Ο συμμεταφορέας SGLT2 αποτελεί τον κύριο μεταφορέα, που ευθύνεται για την επαναρρόφηση της γλυκόζης από το σπειραματικό διήθημα στη συστηματική κυκλοφορία και εκφράζεται εκλεκτικά στους νεφρούς, χωρίς να ανιχνεύεται σε περισσότερους από 70 άλλους ιστούς συμπεριλαμβανομένων του ήπατος, των σκελετικών μυών, του λιπώδους ιστού, του μαστού, της ουροδόχου κύστης και του εγκεφάλου. Ο SGLT2 χαρακτηρίζεται ως πρωτεΐνη υψηλής χωρητικότητας και χαμηλής συνάφειας και ευθύνεται για την επαναρρόφηση περίπου 90-95% (160-180 g/d) της συνολικής γλυκόζης από το σπειραματικό διήθημα στο τμήμα S1 του εγγύς εσπειραμένου σωληναρίου. Το υπόλοιπο της γλυκόζης επαναρροφάται από τον συμμεταφορέα SGLT1 στο S3 τμήμα του εγγύς σωληναρίου.

Τα τελευταία χρόνια ο SGLT2 αποτελεί τον κυριότερο στόχο μιας νέας θεραπευτικής κατηγορίας φαρμάκων για το σακχαρώδη διαβήτη τύπου 2 που δρουν αναστέλλοντας την νεφρική επαναρρόφηση της γλυκόζης με μηχανισμό ανεξάρτητο από την ινσουλίνη [38]. Η δράση των φαρμάκων αυτών έγκειται στην αναστολή του SGLT2 ώστε να προάγουν την επαναρρόφηση της μεγαλύτερης ποσότητας διηθούμενης γλυκόζης από τα εγγύς νεφρικά σωληνάρια, με αποτέλεσμα να αυξάνεται η αποβολή γλυκόζης στα ούρα (γλυκοζουρία) και να μειώνεται η υπεργλυκαιμία ανεξάρτητα από την λειτουργία της ινσουλίνης. Με τον αποκλεισμό των συμμεταφορέων SGLT2, οι συμμεταφορείς SGLT1 που έχουν μικρότερη μεταφορική δυνατότητα αν και έχουν μεγαλύτερη συνάφεια με τη γλυκόζη από τους SGLT2 επωμίζονται το μεγαλύτερο φόρτο στην επαναρρόφηση της γλυκόζης ώστε να αποτρέπεται το ενδεχόμενο ανεπιθύμητης υπογλυκαιμίας.

Πρόσφατες μελέτες υποδεικνύουν τα μακροπρόθεσμα καρδιαγγειακά και νεφρικά οφέλη των αναστολέων του SGLT2 καθώς και ευνοϊκές επιδράσεις στην αρτηριακή πίεση,

τα επίπεδα ουρικού οξέος, την ενδονεφρική αιμοδυναμική και την αλβουμινουρία [39,40]. Επιπλέον, η αναστολή του SGLT2 έχει ως αποτέλεσμα την μείωση της πρωτεϊνουρίας και της φλεγμονής στο νεφρό [41,42]. Τα ευρήματα αυτά συνδέονται με σημαντική μείωση της συστολικής αρτηριακής πίεσης και συμβαίνουν παρά την διέγερση του ενδονεφρικού συστήματος ρενίνης-αγγειοτενσίνης [43].

1.8 Σκοπός της διατριβής

Παρόλο που η υπερτασική νεφροσκλήρυνση αποτελεί την δεύτερη αιτία τελικής νεφρικής νόσου, οι μηχανισμοί που οδηγούν στην εμφάνισή της παραμένουν άγνωστοι. Επιπλέον, δεν έχουν βρεθεί αξιόπιστοι πρώιμοι δείκτες για την έγκαιρη διάγνωση και την εκτίμηση της νεφρικής βλάβης που προκαλεί η υπέρταση. Επειδή οποιαδήποτε νεφρική βλάβη μπορεί να εξελιχθεί αθόρυβα σε ανεπάρκεια νεφρών, είναι μείζονος σημασίας να βρεθούν πρώιμοι δείκτες είτε στο αίμα είτε στα ούρα, που θα επιτρέπουν στους νεφρολόγους την έγκαιρη διάγνωση της νεφρικής νόσου και τον σχεδιασμό θεραπείας πριν εκδηλωθεί βλάβη στο νεφρικό παρέγχυμα. Στόχος της διατριβής είναι να συμβάλλει προς αυτή την κατεύθυνση.

Συγκεκριμένα, οι κύριοι στόχοι είναι οι εξής:

- η διεξοδική μελέτη του υπερτασικού μοντέλου SHR, σε τρία διαφορετικά στάδια ανάπτυξης (6, 13 και 20 εβδομάδων), χρησιμοποιώντας προηγμένες τεχνικές πρωτεομικής ανάλυσης, προκειμένου να ανιχνευθούν πρωτεΐνες-δείκτες στα αρχικά στάδια ανάπτυξης της υπερτασικής νεφροσκλήρυνσης.
- 2) η ταυτοποίηση των δεικτών και η επαλήθευση των αποτελεσμάτων της πρωτεομικής ανάλυσης, και ο εντοπισμός αλλαγών στο νεφρικό παρέγχυμα τόσο σε μοριακό όσο και σε βιοχημικό επίπεδο

Η σημασία της παρούσας μελέτης έγκειται στο εξής: η ανεύρεση συγκεκριμένων δεικτών μεταβολών σε νεφρικό παρέγχυμα σε πολύ αρχικά στάδια ανάπτυξης υπέρτασης, μπορεί να οδηγήσει στο εγγύς μέλλον σε ανάδειξη κάποιων από αυτούς σε δείκτες αρχόμενης νεφρικής βλάβης σε δείγματα ούρων. Ο στόχος αυτός είναι εξαιρετικής σημασίας, γιατί θα μπορεί εύκολα να γίνεται screening μεγάλου μέρους του πληθυσμού και να εντοπίζονται σε πολύ αρχικά στάδια άτομα με αρχόμενες ανατομικές βλάβες, πολύ πριν οδηγήσουν σε λειτουργική έκπτωση της νεφρικής λειτουργίας.

2. ΥΛΙΚΑ ΚΑΙ ΜΕΘΟΔΟΙ

2.1 Πειραματόζωα

Αρσενικοί επίμυες ηλικίας 4 και 11 εβδομάδων, υπερτασικοί (SHR) και νορμοτασικοί (WKY), παραγγέλθηκαν από το Charles River Laboratories στην Γερμανία. Τα ζώα φιλοξενήθηκαν στις εγκαταστάσεις πειραματόζωων του Εθνικού Κέντρου Έρευνας Φυσικών Επιστημών «Δημόκριτος». Όταν οι επίμυες έφτασαν στην ηλικία των 6, 13 και 20 εβδομάδων, 8 υπερτασικά και 8 νορμοτασικά ζώα από κάθε ηλικιακή ομάδα ζυγίστηκαν και τους μετρήθηκε η μέση αρτηριακή πίεση. Αρχικά, τα ζώα ακινητοποιήθηκαν και στη συνέχεια μετρήθηκε η πίεσή τους από την ουρά χρησιμοποιώντας την τεχνική Computerized rat tail-cuff technique (Kent Scientific, Co., Torrington, CT, USA). Μετά τη μέτρηση της πίεσης τα ζώα αναισθητοποιήθηκαν με αιθέρα και θυσιάστηκαν σε 4 κομμάτια. Το κάθε κομμάτι χρησιμοποιήθηκε για καθεμία από τις εξής αναλύσεις:

- απομόνωση πρωτεϊνών για πρωτεομική ανάλυση και Western blot,
- απομόνωση RNA για Real Time PCR,
- εγκλεισμό σε παραφίνη και λήψη τομών για ανοσοϊστοχημεία ή ανοσοφθορισμό,
- λήψη κρυοτομών για απομόνωση νεφρικών αρτηριδίων με Laser Capture Microdissection

Όλες οι διαδικασίες και οι χειρισμοί των ζώων έγιναν σύμφωνα με τα διεθνή πρότυπα ώστε τα ζώα να μην υποφέρουν καθ'όλη την διάρκεια των πειραμάτων.

2.2.1 Εκχύλιση πρωτεϊνών

Η εκχύλιση πρωτεϊνών από νεφρικό ιστό πραγματοποιήθηκε με σκοπό τη συλλογή δειγμάτων για πρωτεομική ανάλυση και για Western blotting. Κομμάτια νεφρικού ιστού (50 - 80mg) από SHR και WKY ζώα από όλες τις ηλικιακές ομάδες αποθηκευμένα στους -80 °C, μεταφέρθηκαν σε 2ml tubes όπου στο καθένα προστέθηκαν 200 μl FASP lysis buffer (0,1M Tris-HCl pH 7,6, 4% SDS, 0,1 DTE). Στη συνέχεια ομογενοποιήθηκαν με τη χρήση του Bullet blender Storm 24 για 5min στην ένδειξη maximum και για 3 min στην ένδειξη low. Ακολούθησε φυγοκέντρηση 13.000 rpm για 10 min σε θερμοκρασία δωματίου. Το υπερκείμενο που περιείχε το πρωτεϊνικό εκχύλισμα μεταφέρθηκε σε νέα tubes και φυλάχθηκε για τη μέτρηση της συγκέντρωσης των πρωτεϊνών με τη μέθοδο Bradford. Μετά τη μέτρηση σε κάθε δείγμα προστέθηκαν 7 μl inhibitors και φυλάχθηκαν στους -20 °C.

2.2.2 Μέτρηση της συγκέντρωσης πρωτεϊνικών εκχυλισμάτων

Η συγκέντρωση πρωτεΐνης προσδιορίστηκε με τη μέθοδο Bradford. Η μέθοδος αυτή βασίζεται στο γεγονός ότι η χρωστική Coomassie Brillant Blue G-250 απορροφά στα 595 nm όταν συνδέεται με πρωτεΐνες. Η μέθοδος απαιτεί την κατασκευή πρότυπης καμπύλης για τον προσδιορισμό της συγκέντρωσης αγνώστου δείγματος πρωτεϊνών. Για το σκοπό αυτό παρασκευάστηκε πρότυπο διάλυμα BSA σε dH2O συγκέντρωσης 1 μg/μl. Διαφορετικές ποσότητες του διαλύματος (0, 5, 10, 20, 25 μl) αραιώθηκαν με dH2O σε τελικό όγκο 100 μl, στη συνέχεια προστέθηκαν σε 2 ml 1x διαλύματος χρωστικής BIORAD protein assay και η απορρόφησή τους μετρήθηκε στα 595 nm. Με βάση τις μετρήσεις κατασκευάστηκε πρότυπη καμπύλη που αντιστοιχούσε τις διαφορετικές συγκεντρώσεις των διαλυμάτων BSA σε συγκεκριμένες τιμές απορρόφησης.

Τα δείγματα των πρωτεϊνών άγνωστης συγκέντρωσης αραιώθηκαν 20 φορές και 10 μl από κάθε αραιωμένο δείγμα προστέθηκε σε 1ml αντιδραστήριο Bradford. Η συγκέντρωση των δειγμάτων προσδιορίστηκε μετά από 5 min σε φωτόμετρο SmartSpec Plus (BioRad).

2.2.3 Δισδιάστατη ηλεκτροφόρηση 2DE

Η ηλεκτροφόρηση 2 διαστάσεων 2DE είναι μια κλασική τεχνική διαχωρισμού για ακέραιες πρωτεΐνες με υψηλή ανάλυση. Συνδυάζει την Ισοηλεκτρική Εστίαση (IEF, Isoelectric Focusing) και τον διαχωρισμό των πρωτεϊνών με SDS–PAGE και εφαρμόστηκε για πρώτη φορά το 1975. Κάθε πρωτεϊνη έχει ένα χαρακτηριστικό σημείο της κλίμακας του pH όπου δεν έχει καθαρό φορτίο. Το σημείο αυτό ονομάζεται ισοηλεκτρικό σημείο (isoelectric point) και η τιμή του εξαρτάται από την περιεκτικότητα της κάθε πρωτεϊνης σε αριθμό και είδος αμινοξέων. Στο ισοηλεκτρικό σημείο οι πρωτεΐνες δεν κινούνται ούτε προς την άνοδο ούτε προς την κάθοδο κατά την ηλεκτροφόρηση.

Η ισοηλεκτρική εστίαση είναι μια ηλεκτροφορητική μέθοδος διαχωρισμού που διαχωρίζει τα αμφοτερικά μόρια όπως πρωτεΐνες και πεπτίδια ανάλογα με τις τιμές pKa των περιοχών που δέχονται πρωτόνια μέσα σε ένα μόριο. Στα πεπτίδια και τις πρωτεΐνες, αυτές οι περιοχές βρίσκονται στις ελεύθερες αμίνες και στα καρβοξυλικά οξέα που βρίσκονται στα αμινοτελικά και καρβοξυτελικά άκρα καθώς και στις πλευρικές αλυσίδες της αργινίνης, λυσίνης, ιστιδίνης, ασπαρτικού οξέος και καταλοίπων γλουταμινικού οξέος. Το ισοηλεκτρικό σημείο (pI) είναι μια συγκεκριμένη φυσικοχημική παράμετρος ενός αμφοτερικού μορίου όπου ένα μόριο έχει «καθαρό» ουδέτερο φορτίο. Οι σύγχρονες τεχνικές ισοηλεκτρικής εστίασης για δισδιάστατη ηλεκτροφόρηση χρησιμοποιούν ένα λεπτό πήκτωμα πολυακρυλαμίδης το οποίο περιέχει αμφολύτες, δηλαδή Ακινητοποιημένες Διαβαθμίσεις pH (Immobilized pH Gradient, IPG). Τα πηκτώματα έχουν χαμηλή συγκέντρωση ακρυλαμίδης (4-5%) έτσι ώστε να μη περιορίζεται η ανάλυση των πρωτεϊνών υψηλού μοριακού βάρους. Μετά την εισαγωγή των πρωτεϊνών στο παραπάνω μέσο, εφαρμόζεται ηλεκτρικό πεδίο και οι πρωτεΐνες που τοποθετούνται στην χαμηλότερη (πιο όξινη) διαβάθμιση του pH σε σχέση με το pI τους θα φορτιστούν θετικά και θα μεταναστεύσουν προς την κάθοδο του ηλεκτρικού πεδίου. Αντίθετα οι πρωτεΐνες που τοποθετούνται στην υψηλότερη (πιο βασική) διαβάθμιση του pH σε σχέση με το pI τους θα φορτιστούν αρνητικά και θα μεταναστεύσουν προς την άνοδο του ηλεκτρικού πεδίου. Οι πρωτεΐνες θα σταματήσουν να κινούνται όταν φτάσουν στο ισοηλεκτρικό τους σημείο όπου το pH τους ισούται με το pI, εφόσον το pI είναι το pH στο οποίο η πρωτεΐνη έχει ουδέτερο φορτίο. Επομένως το ηλεκτρικό φορτίο δεν έχει επίδραση στο σημείο εκείνο όπου η διαβάθμιση pH ισούται με το pI.

Με την τεχνολογία των IPG, η διαβάθμιση pH σχηματίζεται από όξινες και αλκαλικές ομάδες που μεσολαβούν και πολυμερίζονται με το πλέγμα πολυακρυλαμίδης. Επιπλέον προστίθεται και γλυκερόλη για την σταθεροποίηση της διαβάθμισης του pH. Μετά τον σχηματισμό του πηκτώματος, καταλύτες πολυμερισμού και μόρια που δεν αντιδρούν απομακρύνονται από το πλέγμα με αποσταγμένο νερό, έτσι ώστε να παραχθεί η πολύ χαμηλή αγωγιμότητα που είναι απαραίτητη για την ισοηλεκτρική εστίαση. Επιπλέον ποσότητα αμφολυτών προστίθεται στο δείγμα και χρησιμοποιείται με σκοπό της βελτίωσης της αγωγιμότητας και της διαλυτότητας των πρωτεϊνών. Οı προπαρασκευασμένες ταινίες IPG είναι εμπορικά διαθέσιμες. Συγκεκριμένα υπάρχουν διαβαθμίσεις pH σε διάφορα εύρη (π.χ. pH 3–11), ενδιάμεσα εύρη (π.χ. pH 4–7, pH 7–11) και πιο περιορισμένα εύρη (π.χ. pH 4–5, pH 5.5–6.5).

Μετά την ολοκλήρωση του διαχωρισμού, η ταινία είτε εξισορροπείται ως προς τη σύσταση των διαλυμάτων της 2ης διάστασης (pH, ρυθμιστικό, SDS) είτε μπορεί να φυλαχθεί στους -20 °C. Η εξισορρόπηση γίνεται στα εξής 2 στάδια: 1) Πρώτα γίνεται η αναγωγή και 2) έπειτα ακολουθεί η αλκυλίωση των σουλφυδρυλομάδων των πρωτεϊνών. Η αλκυλίωση θεωρείται βασικό στάδιο της πρωτεομικής, καθώς χάρη σε αυτή αποφεύγεται ο σχηματισμός δισουλφιδικών δεσμών μεταξύ των αλυσίδων των αμινοξέων και διευκολύνεται η κατάτμηση των πρωτεϊνών που προηγείται της φασματομετρίας μάζας.

Η εκτέλεση της τεχνικής ξεκινά με την ενυδάτωση της ξηρής ταινίας, η οποία γίνεται επί δωδεκάωρο, και συνεχίζεται με την τοποθέτηση του δείγματος και την εκτέλεση του διαχωρισμού. Εναλλακτικά, το δείγμα μπορεί να εισαχθεί στην ταινία κατά την ενυδάτωσή της στη διάρκεια της νύχτας. Με τη μέθοδο αυτή γίνεται καλύτερη εισδοχή των πρωτεϊνών ιδίως αυτών μεγαλύτερου μεγέθους. Η διαδικασία της εστίασης γίνεται με την εφαρμογή ενός προγράμματος αυξομειούμενης τάσης που διαρκεί από 1 μέχρι 3 μέρες περίπου. Όταν η ένταση του ρεύματος καταστεί σχεδόν μηδενική, τότε κάθε κίνηση εντός του πηκτώματος έχει σταματήσει που σημαίνει ότι τα βιομόρια έχουν εστιάσει. Οι αναλύσεις ΙΕF μετρώνται σε βολτώρες (Vh) (μία ώρα εστίασης σε τάση 1000 V ισοδυναμεί με 1000 Vh). Η επί μακρόν εστίαση των πρωτεϊνών ονομάζεται υπερεστίαση και μπορεί να οδηγήσει σε οξείδωση διαφόρων πλευρικών ομάδων αμινοξέων αλλοιώνοντας το pI τους.

Η τεχνική διαχωρισμού των πρωτεϊνών με SDS-PAGE (Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis) αποτελεί το δεύτερο στάδιο της ηλεκτροφόρησης 2 διαστάσεων SDS–PAGE. Βασίζεται στην διαλυτοποίηση των πρωτεϊνών με το απορυπαντικό Δωδέκυλο Θειικό Νάτριο (SDS, Sodium Dodecyl Sulfate) και στον μετέπειτα διαχωρισμό τους προς την ίδια κατεύθυνση με βάση το μοριακό τους βάρος. Αποτελεί μια κατάλληλη επιλογή για την ανάλυση ακέραιων πρωτεϊνών από όταν

43

περιγράφθηκε για πρώτη φορά από τον Laemmli το 1970 [44]. Οι πρωτεΐνες αναλύονται σε πήκτωμα πολυακρυλαμιδίου που δημιουργείται από αλυσίδες πολυμερισμένου ακρυλαμιδίου συνδεδεμένες μεταξύ τους με τη βοήθεια του N,N'-methylene bisacrylamide. Το Υπερθειικό Αμμώνιο (APS, Ammonium Persulfate) παρέχει ελεύθερες ρίζες για τον πολυμερισμό των πηκτωμάτων μετά την προσθήκη του TEMED (Tetramethylethylenediamine). Έτσι δημιουργούνται πόροι διαφορετικών μεγεθών στο πήκτωμα οι οποίοι προσφέρουν και διαφορετικό διαχωρισμό των πρωτεϊνών, ανάλογα με την συγκέντρωση του πολυακρυλαμιδίου. Τα πρωτεϊνικά μόρια μικρότερου μεγέθους κινούνται πιο γρήγορα σε σχέση με τα μεγαλύτερα.

Ο διαχωρισμός των πρωτεϊνών βασίζεται στην εξής αρχή: Κατά την προσθήκη του SDS οι πρωτεΐνες σχηματίζουν ανιονικά μικκύλια όπου υπάρχει συνεχές ένα αρνητικό φορτίο ανά μονάδα μάζας. Τα πολυπεπτίδια ξεδιπλώνονται καθώς οι δευτεροταγείς και οι τεταρτοταγείς δομές διακόπτονται. Η πλήρης αποδιάταξη των πρωτεϊνών επιτυγχάνεται με την καταστροφή των δισουλφυδικών δεσμών ανάμεσα στις κυστεΐνες μέσω ενός αναγωγικού παράγοντα συνήθως μερκαπτοαιθανόλης, διθειοθρεϊτόλης ή διθειοερυθριτόλης. Κατά την ηλεκτροφόρηση, τα μικύλλια SDS-πρωτεϊνών μεταναστεύουν προς την άνοδο (+) καθώς οι ηλεκτροφορητικές τους ιδιότητες εξαρτώνται από το μοριακό τους βάρος αλλά μπορούν να επηρεαστούν και από την υδροφοβικότητα των πρωτεϊνών. Με τη βοήθεια πρωτεϊνών καθορισμένων μοριακών βαρών (ladder) οι οποίες μεταναστεύουν παράλληλα με τις πρωτεΐνες που αναλύονται, τα μοριακά βάρη των πολυπεπτιδίων μπορούν να καθοριστούν. Στην εικόνα 14 παρουσιάζονται τα βασικά στάδια της δισδιάστατης ηλεκτροφόρησης.

Ο συνδυασμός της ηλεκτροφόρησης 2 διαστάσεων με την φασματομετρία μάζας αποτελεί τον βασικό πυρήνα της μεθοδολογίας ανάλυσης πρωτεϊνών στην πρωτεομική. Η μεγάλη διαχωριστική ικανότητα των 2D-PAGE gels σε συνδυασμό με την φασματομετρία μάζας οδηγεί στην ταυτοποίηση πρωτεϊνικών συστατικών σε πολύπλοκα δείγματα.

2.2.4 Ανάλυση εικόνας δισδιάστατων πηκτωμάτων (Image Analysis)

Μετά τη χρώση με Coomassie Colloidal Blue τα πηκτώματα είχαν πλέον εμφανείς τις πρωτεϊνικές κηλίδες. Η ανάλυση των δισδιάστατων πηκτωμάτων σε υπολογιστή που διαθέτει κατάλληλο λογισμικό είναι απαραίτητη διαδικασία μετά τη δισδιάστατη ηλεκτροφόρηση. Η ανάλυση των ψηφιακών εικόνων επιτρέπει την ανίχνευση πρωτεϊνικών κηλίδων, την ποσοτικοποίησή τους, τη σύγκριση πηκτωμάτων και τη στατιστική επεξεργασία. Τα πηκτώματα, μετά τη σάρωση τοποθετήθηκαν σε ειδικές νάιλον σακούλες μαζί με μία μικρή ποσότητα απιοντισμένου νερού και αποθηκεύτηκαν στους 4°C.

Τα πηκτώματα σαρώθηκαν χρησιμοποιώντας το μηχάνημα GS-800 imaging densitometer (Bio Rad) και οι εικόνες αποθηκεύτηκαν σε ηλεκτρονικό υπολογιστή για περεταίρω επεξεργασία. Η ανάλυση των εικόνων με σκοπό την ανίχνευση πρωτεϊνικών κηλίδων, την ποσοτικοποίησή τους καθώς και τη σύγκριση πηκτωμάτων έγινε με το λογισμικό PD Quest 8 (Biorad). Το συγκεκριμένο λογισμικό επιτρέπει τον εντοπισμό των διαφορικά εκφραζόμενων κηλίδων [45]. Μόλις εντοπίστηκαν οι διαφορικά εκφραζόμενες πρωτεϊνικές κηλίδες ακολούθησε η εξαγωγή τους από το πήκτωμα και η αναγνώριση των πρωτεϊνών με φασματομετρία μάζας όπως αναφέρεται παρακάτω.

Η ποσοτικοποίηση των πρωτεϊνικών κηλίδων έγινε μέσω του ειδικού λογισμικού ανάλυσης εικόνας Biorad. Αφού επιλέχθηκε το αντικειμενικά καλύτερο πήκτωμα, το οποίο επεξεργάστηκε με έναν αλγόριθμο (Gaussian model) ακολούθησε η επιλογή των εξής παραμέτρων: 1) Απαλοιφή θορύβου (background noise subtraction), ψευδώς θετικών κηλίδων, οριζόντιων/κάθετων γραμμών (streaking), που μπορεί να προήλθαν από άλατα στο δείγμα. 2) Ευθυγράμμιση των πηκτωμάτων θέτοντας κηλίδες-ορόσημα σε κάθε πήκτωμα. 3) Οι κηλίδες ανιχνεύτηκαν, έγινε η αντιστοίχισή τους (matching) σε κάθε πήκτωμα και οι εικόνες των πηκτωμάτων κανονικοποιήθηκαν (normalization) με βάση τη συνολική πυκνότητα σε όλο το πήκτωμα (total density in gel). Αφού εκτελέστηκαν όλα τα παραπάνω στάδια, το λογισμικό παρείχε τον μέσο όρο της έντασης της εκάστοτε πρωτεϊνικής κηλίδας εκφρασμένο σε ppm.

2.2.5 Φασματομετρία μάζας

Οι πρωτεομικές μέθοδοι βασίζονται κυρίως στην μεθοδολογία της φασματομετρίας μάζας η οποία επιτρέπει την αναγνώριση των πρωτεϊνών. Η παραπάνω μεθοδολογία εφαρμόζεται σε πολλές περιπτώσεις όπως η δημιουργία του προφίλ των πρωτεϊνών, η ανίχνευση των αλληλεπιδράσεων μεταξύ των πρωτεϊνών και η ανίχνευση των μεταμεταφραστικών τροποποιήσεων. Ο φασματογράφος μάζας αποτελείται από μια πηγή ιοντισμού, τον αναλυτή μάζας ο οποίος μετράει την αναλογία μάζα προς φορτίο (m/z) των ιοντισμένων αναλυτών και έναν ανιχνευτή που καταγράφει τον αριθμό των ιόντων για κάθε τιμή m/z [46,47]. Τα διαχωριζόμενα ιόντα ανιχνευτής του φασματογράφου, συνήθως και η πηγή ιοντισμού βρίσκονται υπό συνθήκες υψηλού κενού για την αποφυγή της σύγκρουσης των αέριων ιόντων – αναλυτών με μόρια του αέρα [48].

2.2.6 LC-MS/MS

Τα LC-MS/MS πραγματοποιήθηκαν πειράματα στο σύστημα υγρής χρωματογραφίας Dionex Ultimate 3000 UHPLC το οποίο ήταν συζευγμένο με το υψηλής ανάλυσης σύστημα νανο-ηλεκτροψεκασμού σε συνδυασμό με παγίδα ιόντων (nano-ESI Orbitrap-Elite mass spectrometer, Thermo Scientific). Κάθε δείγμα ανασυστάθηκε σε 10 μL κινητής φάσης Α (0,1 0/0% Μυρμηκικό Οξύ) και 5 μL δείγματος εισήχθην στην χρωματογραφική προστήλη (Acclaim PepMap 100, 100 μ m × 2 cm C18, 5 μ m, 100 Å) μ ε ροή 5 μL/min. Ο διαχωρισμός των πεπτιδίων έγινε σε χρωματογραφική στήλη (Acclaim PepMap RSLC, 75 μ m × 50 cm, nanoViper, C18, 2 μ m, 100 Å) η οποία ήταν συνδεδεμένη με πηγή νανο-ηλεκτροψεκασμού μέσω υάλινης βελόνας επικαλυμμένης με μέταλλο (PicoTip). Τα πεπτίδια διαχωρίστηκαν με σταδιακή έκλουση. Η κινητή φάση (A) αποτελούταν από 0,1 % Μυρμηκικό Οξύ και η κινητή φάση (B) αποτελούταν από Ακετονιτρίλιο και 0,1% Μυρμηκικό Οξύ. Τα πεπτίδια εκλούστηκαν και διαχωρίστηκαν με διαβάθμιση συγκέντρωσης για 240 λεπτά από 2% (B) σε 33% (B). Ο ρυθμός ροής ήταν 300 nL/min και η θερμοκρασία της στήλης τέθηκε στους 35°C. Η μετάβαση των διαχωρισμένων πεπτιδίων στην αέρια φάση έγινε με ηλεκτροψεκασμό θετικών ιόντων υπό τάση 2,5 kV. Σε κάθε αναζήτηση φάσματος MS, τα 10 πιο άφθονα πολλαπλά φορτισμένα πρόδρομα ιόντα με αναλογίες m/z από 300 ως 2200 και όριο έντασης 500 μετρήσεις (counts) επελέχθησαν με μετασχηματισμό Φουριέ (FT) διακριτικότητας 60.000 και υπέστην θραυσματοποίηση HCD (Higher-Energy Collisional Dissociation). Τα φάσματα μάζας συλλέχθηκαν με διακριτικότητα FT 15.000. Η κανονικοποιημένη ενέργεια θραυματοποίησης ήταν 33 και τα επιλεγμένα πρόδρομα ιόντα αποκλείστηκαν για περαιτέρω απομόνωση και ενεργοποίηση για 45 δευτερόλεπτα με 5 ppm όριο σφάλματος μάζας.

Τα δεδομένα συλλέχθηκαν χρησιμοποιώντας το λογισμικό Xcalibur software (Thermo Electron Corp.) και η ανάλυση των πεπτιδίων πραγματοποιήθηκε χρησιμοποιώντας τον αλγόριθμο Sequest στο λογισμικό Proteome Discoverer 1.4 (Thermo) και την ανθρώπινη βάση δεδομένων της Uniprot. Η αναζήτηση πραγματοποιήθηκε χρησιμοποιώντας την καρβαμιδομεθυλίωση των κυστεϊνών ως στατική και την οξείδωση της μεθειονίνης ως δυναμική τροποποίηση. Τα όρια σφάλματος που

επιτράπηκαν ήταν 10 ppm για το πρόδρομο πεπτίδιο και 0,05 Da για τα παραγόμενα θραύσματα. Τα αποτελέσματα του Sequest εκτιμήθηκαν για τον αποκλεισμό των ψευδώς θετικών αναγνωρίσεων.

2.2.7 Ποσοτικοποίηση και στατιστική ανάλυση των LC-MS/MS αποτελεσμάτων

Η ποσοτικοποίηση πραγματοποιήθηκε στο επίπεδο των πεπτιδίων όπως έχει περιγραφεί προηγουμένως [49]. Συγκεκριμένα, εφόσον κάθε πεπτίδιο μπορεί να συσχετιστεί με 2 (ή περισσότερες) διαφορετικές αλληλουχίες, συλλέχθηκαν δεδομένα για τις κυριότερες πέντε κατηγοριοποιημένες αλληλουχίες. Οι παραπάνω αλληλουχίες εξισορροπήθηκαν έτσι ώστε η πιο πιθανή αλληλουχία ανά πεπτίδιο να ανατίθεται, βελτιώνοντας την συνοχή των δεδομένων. Χρησιμοποιήθηκε ένα λογισμικό που αναπτύχθηκε από συνεργάτες (όπως περιγράφεται παρακάτω), για την επίτευξη του παραπάνω στόχου. Η λίστα των πεπτιδίων εξήχθη από το Proteome Discoverer και υπέστη την περαιτέρω επεξεργασία: Σε κάθε φάσμα, η αντίστοιχη αλληλουχία καθορίστηκε βάση του σχετικού αριθμού αναγνωρίσεων της αλληλουχίας σε κάθε δείγμα. Η σχετική ποσοτική ανάλυση πραγματοποιήθηκε βασιζόμενη στις τιμές των πεπτιδίων. Οι αλληλουχίες που αποκτήθηκαν για όλα τα βιολογικά αντίγραφα ενοποιήθηκαν. Τα πεπτίδια αντιστοιχήθηκαν στις αντίστοιχες πρωτεΐνες. Τα πεπτίδια που αντιστοιχούσαν σε πολλαπλές πρωτεΐνες αντιστοιχήθηκαν στην πρωτεΐνη που ταυτοποιήθηκε με τον υψηλότερο βαθμό πεπτιδίων (σύμφωνα με τον κανόνα «Occam's Razor») [50]. Εξαιτίας μίας δυσλειτουργίας στο λογισμικό «Proteome Discoverer», σε ένα περιορισμένο αριθμό αναγνωρισμένων πεπτιδίων η τιμή της έντασής τους δεν ανακτήθηκε. Σε τέτοιες περιπτώσεις, οι απολεσθείσες τιμές αντικαταστάθηκαν από τον μέσο όρο σε κάθε ομάδα. Μόνο οι πρωτεΐνες που ήταν παρούσες στο 60% των δειγμάτων σε μία ομάδα (3 από τα 4 βιολογικά αντίγραφα) αναλύθηκαν περαιτέρω με ποσοτικοποίηση και στατιστική ανάλυση (Mann-Whitney). Ο παραπάνω τρόπος πολλές φορές συντελεί στην μη αναγνώριση πεπτιδίων στην μία κατηγορία (τα 3 από τα 4 βιολογικά αντίγραφα μπορεί να προέρχονται από την άλλη κατηγορία αποκλειστικά). Ως αποτέλεσμα δεν υπολογίζεται η τυπική απόκλιση (Standard Deviation, SD) στην ανάλυση LC-MS/MS. Οι πρωτεΐνικές αλλαγές με λόγο έκφρασης > 2 και < 0.5 καθώς και ταυτόχρονη στατιστική σημαντικότητα (p < 0.05) ήταν οι διαφορικά εκφραζόμενες και αυτές που συμπεριλήφθηκαν στην περαιτέρω ανάλυση.

Η τεχνική GELC-MS/MS χρησιμοποιείται ευρέως γιατί συνδυάζει 1) την απομόνωση των πρωτεϊνών από πήκτωμα (SDS-PAGE) και 2) την ανάλυση με LC-MS/MS η οποία είναι μια πάρα πολύ ευαίσθητη τεχνική όσον αφορά την αναγνώριση των πρωτεϊνών καθώς μπορούν να αναλυθούν ακόμη και λίγα μg (10-20) με μεγάλη ευαισθησία.

Τα δείγματα των πρωτεϊνών από νεφρικό ιστό διαλυτοποιήθηκαν σε ισοηλεκτρικό διάλυμα εστίασης (Isoelectric Focusing, IEF) [7M ουρία (Applichem), 2M θειουρία (Fluka), 4% CHAPS (Applichem), 1% DTE (Sigma), 2% IPG buffer (Bio-Rad Laboratories)]. Η συγκέντρωση της πρωτεΐνης καθορίστηκε με τη μέθοδο Bradford (Biorad). Αναστολείς πρωτεασών (Roche) προστέθηκαν σε τελική συγκέντρωση 3,6%. Έξι μg δείγματος φορτώθηκαν σε πήκτωμα ακρυλαμίδης SDS-PAGE (5% πήκτωμα επιστοίβαξης, 12% πήκτωμα διαχωρισμού). Η ηλεκτροφόρηση σταμάτησε όταν τα δείγματα μπήκαν στο πήκτωμα διαγωρισμού, έτσι ώστε το πρωτεϊνικό περιεγόμενο να συγκεντρωθεί σε μία ζώνη για κάθε δείγμα. Κάθε πήκτωμα μονιμοποιήθηκε με 30% μεθανόλη, 10% οξικό οξύ για 30 λεπτά. Τα πηκτώματα πλύθηκαν 3 φορές για 10 λεπτά με νερό και η χρώση πραγματοποιήθηκε με Coomassie κατά τη διάρκεια της νύχτας. Τα πηκτώματα πλύθηκαν με νερό 3 φορές για 10 λεπτά και κάθε πρωτεϊνική ζώνη κόπηκε σε μικρά κομμάτια (1-2mm). Τα κομμάτια πηκτώματος απογρωματίστηκαν με 40% ακετονιτρίλιο, 50mM NH4HCO3 (όξινο ανθρακικό αμμώνιο) μέχρι να γίνουν τελείως διαφανή. Η αναγωγή πραγματοποιήθηκε με 10mM διθειοερυθριτόλη (DTE) σε 100mM ΝΗ4ΗCO3 για 20 λεπτά, σε θερμοκρασία δωματίου. Η αλκυλίωση πραγματοποιήθηκε με 10mg/mL ιωδοακεταμίδιο σε 100mM NH4HCO3 για 20 λεπτά, στο σκοτάδι σε θερμοκρασία δωματίου. Έπειτα, ένα ξέπλυμα πραγματοποιήθηκε με 100mM NH₄HCO₃ για 20 λεπτά σε θερμοκρασία δωματίου, ακολουθούμενο από ένα ξέπλυμα με διάλυμα αποχρωματισμού για 20 λεπτά σε θερμοκρασία δωματίου. Τέλος, τα δείγματα πλύθηκαν άλλη μια φορά με νερό για 20 λεπτά σε θερμοκρασία δωματίου. Μετά, τα κομμάτια πηκτώματος αποξηράνθηκαν με φυγοκέντρηση υπό κενό (SpeedVac). Κάθε δείγμα θρυψινοποιήθηκε προσθέτοντας 600ng θρυψίνης (αρχικό διάλυμα θρυψίνης: 10ng/μL σε 10mM NH₄HCO₃, pH 8.5, Roche). Τα πεπτίδια απομονώθηκαν με την εξής διαδικασία: Πρώτον, τα πεπτίδια επωάστηκαν με 50mM NH₄HCO₃ για 15 λεπτά σε θερμοκρασία δωματίου και το υπερκείμενο φυλάχθηκε σε καθαρό σωληνάριο. Έπειτα τα πεπτίδια επωάστηκαν με 10% Μυρμηκικό Οξύ, Ακετονιτρίλιο (1:1) για 15 λεπτά σε θερμοκρασία δωματίου. Το υπερκείμενο αναμείχθηκε με το προηγούμενο. Η επώαση με 10% Μυρμηκικό Οξύ, Ακετονιτρίλιο (1:1) επαναλήφθηκε για 15 λεπτά σε θερμοκρασία δωματίου. Το υπερκείμενο αναμείχθηκε με το προηγούμενο. Τα πεπτίδια που εκχυλίστηκαν με τον παραπάνω τρόπο (600 μL) καθαρίστηκαν με φίλτρα PVDF (Merck Millipore) και έπειτα αποξηράνθηκαν υπό κενό με SpeedVac. Τα αποξηραμένα πεπτίδια διαλυτοποιήθηκαν σε 10 μl κινητής φάσης A (0,1% Μυρμηκικό Οξύ). Ακολούθησε ανάλυση LC-MS/MS.

2.3 Ανοσοαποτύπωση κατά Western (Western blotting)

Το όνομα western blot δόθηκε στην τεχνική από τον Burnette (εναλλακτικά, ανοσοαποτύπωση) και πρόκειται για μια αναλυτική τεχνική που χρησιμοποιείται για να ανιχνεύσει συγκεκριμένες πρωτεΐνες σε ένα δεδομένο δείγμα ομογενοποιημένου ιστού ή κυττάρων. Χρησιμοποιεί την ηλεκτροφόρηση πηκτωμάτων για να διαχωρίσει τις αποδιαταγμένες ή μη-αποδιαταγμένες πρωτεΐνες με βάση το μέγεθος του πολυπεπτιδίου (αποδιατακτικές συνθήκες) ή από την τρισδιάστατη δομή της πρωτεΐνης (μηαποδιατακτικές συνθήκες). Οι πρωτεΐνες μεταφέρονται έπειτα σε μια μεμβράνη (χαρακτηριστικά νιτροκυτταρίνης ή PVDF), όπου σημαίνονται (ανιχνεύονται) χρησιμοποιώντας αντισώματα συγκεκριμένα για την πρωτεΐνη στόχου (Burnette 1981).

Η διαδικασία Western blot περιλαμβάνει τα εξής βήματα:

- Προετοιμασία δειγμάτων
- Ηλεκτροφόρηση πρωτεϊνών σε πήκτωμα πολυακρυλαμιδίου (PAGE)
- Μεταφορά πρωτεϊνών σε μεμβράνη νιτροκυτταρίνης
- Κορεσμός ελεύθερων ενεργών θέσεων
- Επώαση με αντισώματα
- Ανίχνευση με χημειοφωταύγεια

2.3.1 Ηλεκτροφόρηση πρωτεϊνών σε πήκτωμα πολυακρυλαμιδίου (PAGE)

Η μέθοδος της ηλεκτροφόρησης σε πήκτωμα πολυακριλαμιδίου είναι από τις πλέον συνήθεις τεχνικές διαχωρισμού και προσδιορισμού των φαινομενικών μοριακών βαρών των πρωτεϊνών. Τα πηκτώματα πολυακρυλαμιδίου αποτελούνται από αλυσίδες πολυμερισμένου ακρυλαμιδίου, που διασυνδέονται μεταξύ τους με τη βοήθεια του N,N'methylene bisacrylamide. Ο πολυμερισμός γίνεται με την παρουσία υπερθειικού αμμωνίου (ammonium persulfate, APS), το οποίο παρέχει ελεύθερες ρίζες και επιταχύνεται με την προσθήκη N,N,N',N'-tetramethylethylenediamine (TEMED) που καταλύει το σχηματισμό τους. Η διαδικασία αυτή έχει ως αποτέλεσμα τη δημιουργία πόρων στο πήκτωμα. Το μέγεθος των πόρων, καθώς και το αποτελεσματικό εύρος διαχωρισμού του πηκτώματος εξαρτώνται από τη συγκέντρωση του πολυακρυλαμιδίου. Η ηλεκτροφόρηση γίνεται κάτω από συνθήκες που εξασφαλίζουν την αποδιάταξη των πρωτεϊνών στις πολυπεπτιδικές υπομονάδες. Για το σκοπό αυτό, χρησιμοποιείται το δωδέκυλο θειικό νάτριο (sodium dodecyl sulphate, SDS), ένα ισχυρό ανιονικό απορρυπαντικό, μαζί με θέρμανση και συνήθως παρουσία κάποιου αναγωγικού παράγοντα. Το SDS προσδένεται στα αποδιαταγμένα πολυπεπτίδια, σε αναλογία μάζας 1.4:1, και τους προσδίδει αρνητικό φορτίο. Επειδή το ποσοστό του SDS, το οποίο προσδένεται, είναι ανάλογο του M.B. του πολυπεπτιδίου και ανεξάρτητο της αλληλουχίας του, τα σύμπλοκα SDS-πολυπεπτίδια μετακινούνται στο πήκτωμα, υπό την επίδραση ηλεκτρικού πεδίου, σύμφωνα με το μέγεθός τους. Η παρουσία αναγωγικού παράγοντα, συνήθως μερκαπταιθανόλης ή διθειοθρεϊτόλης, βοηθάει στην αποδιάταξη μιας πρωτεΐνης καταστρέφοντας τους δισουλφιδικούς δεσμούς.

Τα δείγματα τοποθετούνται σε ένα πήκτωμα μεγάλων πόρων, το πήκτωμα επιστοίβαξης (stacking gel), το οποίο πολυμερίζεται πάνω σε πήκτωμα μικρότερων πόρων, το πήκτωμα διαχωρισμού (resolving/separating gel). Έτσι μπορούν να χρησιμοποιηθούν σχετικά μεγάλοι όγκοι πρωτεϊνικών δειγμάτων στο πήκτωμα, διατηρώντας πολύ καλή ανάλυση των συστατικών τους. Αυτό συμβαίνει, γιατί οι πρωτεϊνες επιστοιβάζονται κατά τη διάρκεια της μετακίνησης τους, υπό την επίδραση ηλεκτρικού φορτίου, μέσα από το πήκτωμα επιστοίβαξης, σχηματίζοντας μια μικρή ζώνη πριν την είσοδο τους στο πήκτωμα διαχωρισμού.

Ακολουθήθηκε το πρωτόκολλο των Sambrook et al 1989, το οποίο βασίζεται στο ασυνεχές σύστημα, παρουσία SDS (Laemmli 1970). Παρασκευάστηκε το πήκτωμα διαχωρισμού, περιεκτικότητας σε πολυακρυλαμίδιο 10%, ή 12%, ή 15% (ανάλογα με το μοριακό βάρος της πρωτεΐνης που ανιχνεύουμε) και αφέθηκε να πολυμεριστεί στη συσκευή ηλεκτροφόρησης. Στη συνέχεια, παρασκευάστηκε το πήκτωμα επιστοίβαξης, περιεκτικότητας σε πολυακρυλαμίδιο 5% και αφέθηκε να πολυμεριστεί πάνω από το πήκτωμα διαχωρισμού. Παράλληλα προετοιμάστηκαν τα πρωτεϊνικά δείγματα. Χρησιμοποιήθηκαν δείγματα τα οποία περιέχουν την ίδια ποσότητα ολικής πρωτεΐνης και προστέθηκε σε αυτά αναγωγικό διάλυμα διαλυτοποίησης σε τελική συγκέντρωση 1x. Τα δείγματα στη συνέχεια θερμάνθηκαν, για 10 λεπτά στους 100οC, και τοποθετήθηκαν στα φρεάτια του πηκτώματος με τη βοήθεια πιπέτας. Επίσης, τοποθετήθηκαν και δείγματα με πρωτεϊνικούς δείκτες γνωστών μοριακών βαρών. Τα δείγματα ηλεκτροφορήθηκαν για ~1.5 ώρες, υπό σταθερή τάση 150 Volts, σε ρυθμιστικό διάλυμα ηλεκτροφόρησης. Μετά το τέλος της ηλεκτροφόρησης, απομακρύνθηκε το πήκτωμα επιστοίβαξης και το πήκτωμα διαχωρισμού χρησιμοποιήθηκε για τη μεταφορά των πρωτεϊνών σε μεμβράνη νιτροκυτταρίνης.

2.3.2 Ανοσοαποτύπωση (immunoblotting)

Η ανοσοαποτύπωση βασίζεται στη μεταφορά των πρωτεϊνών από το πήκτωμα του πολυακρυλαμιδίου σε στερεά υποστρώματα, όπως η μεμβράνη νιτροκυτταρίνης, υπό την επίδραση ηλεκτρικού πεδίου. Το διάλυμα μεταφοράς περιέχει μεθανόλη, η οποία αυξάνει την ικανότητα δέσμευσης της μεμβράνης και ελαχιστοποιεί το φούσκωμα του πηκτώματος κατά τη μεταφορά. Το pH του ρυθμιστικού διαλύματος μεταφοράς είναι αλκαλικό (~8.3), ώστε οι πρωτεΐνες να παραμένουν αρνητικά φορτισμένες. Μετά τη μεταφορά, γίνεται χρώση της μεμβράνης με κατάλληλη χρωστική, η οποία δεν θα επηρεάσει την ανίχνευση που θα ακολουθήσει (π.χ. Ponceau S), για να διαπιστωθεί η μεταφορά των πρωτεϊνικών δειγμάτων. Μεγάλη σημασία έχει η μείωση του θορύβου που οφείλεται στη μη ειδική πρόσδεση των αντισωμάτων. Αυτό αποφεύγεται με τον κορεσμό των ελευθέρων ενεργών θέσεων, πάνω στη μεμβράνη, με τη χρήση διαφόρων παραγόντων κορεσμού (π.χ. άπαχο ξηρό γάλα). Οι πρωτεΐνες ανιγνεύονται έμμεσα, με τη χρήση ειδικού μη σημασμένου πρωτεύοντος αντισώματος, το οποίο αλληλεπιδρά ειδικά με αντιγονικούς επιτόπους στην υπό εξέταση αποδιαταγμένη πρωτεΐνη και στη συνέχεια με προσθήκη δευτερεύοντος αντισώματος το οποίο είναι συζευγμένο με κάποιο ιχνηθέτη, συνήθως ένζυμο. Ένας από τους ιχνηθέτες που χρησιμοποιούνται είναι η υπεροξειδάση του ραπανιού (horse radish peroxidase, HRP). Η HRP οξειδώνεται παρουσία H_2O_2 , αντιδρά με τη λουμινόλη (luminol) (προκαλώντας την οξείδωση της) και προκαλεί εκπομπή φωτός, η διάρκεια της οποίας ενισχύεται με την παρουσία κάποιου ενισχυτή, αυξάνοντας με αυτό τον τρόπο την ευαισθησία του συστήματος. Η εκπομπή γίνεται σε μέγιστο μήκος κύματος περίπου 425-428 nm και αποτυπώνεται σε φιλμ αυτοραδιογραφίας.

Η μεταφορά των πρωτεϊνών στη μεμβράνη απαιτεί τη χρήση ειδικής κασέτας (Invitrogen), στο εσωτερικό της οποίας και από τον αρνητικό προς το θετικό πόλο τοποθετούνταν 4 σφουγγάρια διαστάσεων 9x7 cm, ένα διηθητικό χαρτί Whatman ίδιων διαστάσεων, το gel πολυακρυλαμιδίου, η μεμβράνη νιτροκυτταρίνης, ένα δεύτερο διηθητικό χαρτί και ακόμα 4 σφουγγάρια. Η μεταφορά έλαβε χώρα σε 1x κατάλληλο ρυθμιστικό διάλυμα (transfer buffer) συμπληρωμένο με 10% μεθανόλη, σε σταθερές συνθήκες 160mA/25Volts και θερμοκρασίας δωματίου για 1 ώρα. Στη συνέχεια, η μεμβράνη νιτροκυτταρίνης μεταφέρθηκε σε διάλυμα χρώσης Ponceau-S, που βάφει μη ειδικά όλες τις πρωτεΐνες, προκειμένου να επιβεβαιωθεί η επιτυχής μεταφορά όλων των πρωτεϊνικών ζωνών στη μεμβράνη. Ακολούθησε αποχρωματισμός της μεμβράνης με dH₂O.

Για τη διεξαγωγή του δεύτερου σταδίου της μεθόδου, την ανοσοενζυμική ανίχνευση των πρωτεϊνών, απαιτείται η επώαση της μεμβράνης με δύο αντισώματα: το πρωτογενές αντίσωμα (primary antibody) που είναι ειδικό για την πρωτεΐνη που θέλουμε να ανιχνεύσουμε, και το δευτερογενές αντίσωμα (secondary antibody) που αναγνωρίζει ειδικά το πρώτο. Με σκοπό την παρεμπόδιση της μη ειδικής πρόσδεσης των αντισωμάτων, η μεμβράνη επωάστηκε αρχικά με διάλυμα blocking (5% dry milk 0.1% Tween 20 σε 1x TBS) για 1 ώρα υπό συνεχή ανάδευση σε θερμοκρασία δωματίου. Ακολούθησε επώαση με το πρωτογενές αντίσωμα στην κατάλληλη αραίωση σε διάλυμα 1% blocking. Η επώαση έλαβε χώρα στους 4oC overnight. Την επόμενη ημέρα η νιτροκυτταρίνη ξεπλύθηκε από την περίσσεια του μη προσδεμένου αντισώματος με διάλυμα washing (0.1% Tween20 σε 1x TBS). Πραγματοποιήθηκαν 3 ξεπλύματα 10 λεπτών έκαστο, υπό συνεχή ανάδευση σε θερμοκρασία δωματίου. Στη συνέχεια, η μεμβράνη επωάστηκε με το δευτερογενές αντίσωμα αραιωμένο σε διάλυμα blocking, για 1,5 ώρα υπό συνεχή ανάδευση σε θερμοκρασία δωματίου. Το δευτερογενές αντίσωμα, εκτός της ειδικότητας που έχει για το πρωτογενές, φέρει ομοιοπολικά συνδεδεμένο το ένζυμο της υπεροξειδάσης. Μετά την πραγματοποίηση 3 νέων ξεπλυμάτων για την απομάκρυνση της περίσσειας και του δευτερογενούς αντισώματος, έγινε η ανίχνευση της πρόσδεσης των αντισωμάτων με τη μέθοδο του ECL (Enhanced Chemiluminescence).

Κατά τη μέθοδο ECL, η λουμινόλη οξειδώνεται παρουσία υπεροξειδίου του υδρογόνου (H₂O₂) από το ένζυμο της υπεροξειδάσης εκπέμποντας φως. Το φως αυτό μπορεί να ανιχνευθεί σε φιλμ αυτοραδιογραφίας. Για την εφαρμογή της μεθόδου χρησιμοποιήθηκε το ECL kit της Perkin Elmer. Τα αντιδραστήρια Oxidizing Reagent και Enhanced Luminol Reagent του κιτ αναμίχθηαν σε ίση ποσότητα και ακολούθησε επώαση της μεμβράνης με το μείγμα αυτό για 1 λεπτό σε θερμοκρασία δωματίου. Στη συνέχεια, η μεμβράνη τοποθετήθηκε σε ειδική κασέτα και εκτίθεντο σε φιλμ για το απαιτούμενο χρονικό διάστημα ανάλογα με την ένταση του σήματος (από λίγα δευτερόλεπτα έως λίγα λεπτά). Η εμφάνιση των φιλμ πραγματοποιήθηκε με τη χρήση ειδικού μηχανήματος που μεσολαβούσε την εμβάπτισή τους σε διαλύματα ανάπτυξης (Developer) και μονιμοποίησης (Fixer). Τέλος, τα φιλμ μετά από σκανάρισμά τους αναλύθηκαν με τη χρήση του λογισμικού Quantity One για την ποσοτικοποίηση της πυκνότητας των πρωτεϊνικών ζωνών. Τα δεδομένα από τις προς μελέτη πρωτεΐνες κανονικοποιήθηκαν με βάση τις τιμές πυκνότητας για την συνολική ποσότητα πρωτεΐνης σε κάθε δείγμα.

Οι μεμβράνες μπορούν να χρησιμοποιηθούν ξανά και να επωαστούν με διαφορετικό πρωτεύον αντίσωμα, αφού γίνει κατάλληλη επεξεργασία για να

53

απομακρυνθούν τα αντισώματα που χρησιμοποιήθηκαν. Αυτό είναι ιδιαίτερα χρήσιμο για να συγκρίνουμε στα ίδια δείγματα, στις ίδιες πειραματικές συνθήκες και στο ίδιο πείραμα έκφραση διαφορετικών πρωτεϊνών χρησιμοποιώντας διαφορετικά πρωτεύοντα αντισώματα. Ακολουθήθηκε το πρωτόκολλο της ECL Western blotting detection reagents (Amersham). Οι μεμβράνες πλύθηκαν με διάλυμα εκπλύσεων 2 φορές για 10 λεπτά και στη συνέχεια επωάστηκαν με διάλυμα που περιείχε 100 mM β-μερκαπτοαιθανόλη, 2% w/v SDS, 62.5 mM Tris-HCl, pH 6.7, για 30 λεπτά στους 50 °C. Έγιναν νέες εκπλύσεις και στη συνέχεια οι μεμβράνες χρησιμοποιήθηκαν ξανά ξεκινώντας από το στάδιο του κορεσμού των μη ειδικών θέσεων, όπως περιγράφηκε παραπάνω.

2.4 Ανοσοφθορισμός

Η τεχνική του ανοσοφθορισμού εφαρμόστηκε σε τομές νεφρικού ιστού με σκοπό τη μορφολογική μελέτη ή/και την ποσοτικοποίηση της έκφρασης διάφορων πρωτεϊνών. Η τεχνική βασίζεται στην επώαση του δείγματος με δύο αντισώματα: το πρωτογενές αντίσωμα (primary antibody) που είναι ειδικό για την πρωτεϊνη που θέλουμε να μελετήσουμε, και το δευτερογενές αντίσωμα (secondary antibody) που αναγνωρίζει ειδικά το πρώτο και φέρει ομοιοπολικά συνδεδεμένη μια φθορίζουσα χρωστική.

Για τη διπλή χρώση τομών νεφρικού ιστού, τομές παραφίνης πάχους 5μm ενυδατώθηκαν με σταδιακή επώαση σε διαλύματα ξυλόλης εις διπλούν, 100% αιθανόλης, 95% αιθανόλης, 70% αιθανόλης και PBS. Στη συνέχεια, οι τομές επωάστηκαν σε διάλυμα 10mM Sodium Citrate pH 6.0 στους 80 °C για 30 λεπτά, με σκοπό την αποκάλυψη κρυμμένων αντιγόνων (antigen retrieval). Ακολουθούσε blocking σε διάλυμα 5% NDS (normal donkey serum) σε PBS για 1 ώρα σε θερμοκρασία δωματίου και κατόπιν επώαση για 24 ώρες στους 4 °C. Η ανίχνευση των πρωτογενών αντισωμάτων έγινε με επώαση με ειδικά δευτερογενή φθορίζοντα αντισώματα για 1 ώρα σε θερμοκρασία δωματίου. Ακολούθησε χρώση των πυρήνων με τη χρωστική DAPI και μονιμοποίηση με Mowiol 4-88 Reagent και με τοποθέτηση καλυπτρίδας. Τέλος, εικόνες διπλού ανοσοφθορισμού ελήφθησαν στη συνέχεια σε συνεστιακό μικροσκόπιο φθορισμού (confocal).

2.5 Ανοσοϊστοχημεία

Η ανοσοϊστοχημεία αναφέρεται στη διαδικασία εντοπισμού πρωτεϊνών σε κύτταρα από μια τομή ιστών εκμεταλλεύοντας την ιδιότητα των αντισωμάτων να δένονται ειδικά με αντιγόνα σε βιολογικούς ιστούς. Η αλληλεπίδραση αντίγονου-αντισώματος γίνεται ορατή με διάφορους τρόπους και ένας από τους πιο ευρέως διαδεδομένους είναι η χρήση της υπεροξειδάσης συζευγμένη με ένα αντίσωμα καταλύοντας μια χρωμογόνα αντίδραση.

Για τις ανοσοϊστοχημικές χρώσεις χρησιμοποιήθηκαν FFPE τομές νεφρικού ιστού από αρουραίο (μοντέλο SHR και αντίστοιγα control ζώα WKY) πάχους 5μm. Αργικά οι τομές αποπαραφινώθηκαν και ενυδατώθηκαν με εμβάπτιση σε διαλύματα: ξυλόλης για 15 λεπτά (2x), 100% αιθανόλης για 5 λεπτά (2x), 95% αιθανόλης για 5 λεπτά, 70% αιθανόλης για 5 λεπτά, απεσταγμένο νερό για 3 λεπτά, PBS για 3 λεπτά. Ακολούθησε απενεργοποίηση της ενδογενούς υπεροξειδάσης με επώαση των τομών σε διάλυμα H2O2 3% σε μεθανόλη για 30 λεπτά, σε θερμοκρασία δωματίου, στο σκοτάδι. Στη συνέχεια οι τομές ξεπλύθηκαν σε PBS (2x 15 λεπτά) και επωάστηκαν σε διάλυμα κιτρικού οξέος 0,01M για 30 λεπτά στους 80 °C. Οι τομές αφέθηκαν να κρυώσουν και αφού επανήλθαν σε θερμοκρασία δωματίου ακολούθησαν ξεπλύματα με PBS (2x10 λεπτά). Ο κορεσμός των ελευθέρων ενεργών θέσεων προκειμένου να εμποδιστούν οι μη ειδικές συνδέσεις καθώς και η διευκόλυνση εισόδου των αντισωμάτων έγινε με επώαση των τομών σε 5% NDS σε 1x PBS για 60 λεπτά σε θερμοκρασία δωματίου. Στη συνέχεια έγινε επώαση με τα πρώτα αντισώματα διαλυμένα σε 1 % NDS σε 1x PBS ή με IgG ίδιας συγκέντρωσης και προέλευσης με το εκάστοτε αντίσωμα, για 60 λεπτά σε θερμοκρασία δωματίου. Ακολούθησαν ξεπλύματα με PBS (4x5 λεπτά) και επώαση με τα δεύτερα αντισώματα διαλυμένα σε 1% NDS σε 1x PBS για 60 λεπτά σε θερμοκρασία δωματίου. Έπειτα από ένα ξέπλυμα με PBS ακολούθησε η αντίδραση ειδικής χρώσης με τη χρωμοφόρο ένωση 3', 3' diaminobenzidine (DAB, Vector Laboratories, SK- 4100) σύμφωνα με το πρωτόκολλο του κατασκευαστή. Ακολούθησε χρώση των τομών με αιματοξυλίνη για 30 δευτερόλεπτα και αφυδάτωση με εμβάπτιση σε διαλύματα: 70% αιθανόλης για 5 λεπτά, 90% αιθανόλης για 5 λεπτά, 100% αιθανόλης για 5 λεπτά (2x), ξυλόλης για 10 λεπτά. Οι ιστοί μονιμοποιήθηκαν με κάλυψη με καλυπτρίδα με την ειδική μονιμοποιητική κόλλα DPX.

2.6 Laser Capture Microdissection

Η απομόνωση των νεφρικών αγγείων πραγματοποιήθηκε με την τεχνική Laser Capture Microdissection. Η τεχνική πραγματοποιήθηκε με το σύστημα PALM Microbeam Laser System (Carl Zeiss Microscopy Gmbh, Germany). Το σύστημα είναι εξοπλισμένο με λέιζερ UV-A, μικροσκόπιο και ηλεκτρονικό υπολογιστή. Χρησιμοποιήθηκαν κρυοτομές νεφρού από τα υπερτασικά SHR και νορμοτασικά WKY ζώα (N=4 για κάθε ομάδα) 20 εβδομάδων. Οι τομές πάχους 14 μm βρίσκονταν σε ειδικές αντικειμενοφόρους πλάκες επικαλυμμένες με μια βιοχημικώς αδρανή μεμβράνη (PALM Membrane slides NF 1.0 PEN). Οι τομές χρωματίστηκαν ελαφρά με αιματοξυλίνη Gill προκειμένου να διακρίνονται οι επιμέρους δομές του νεφρού. Τα νεφρικά αγγεία και ένας μικρός αριθμός σπειραμάτων που εμφάνιζαν προσαγωγό και απαγωγό αρτηρίδιο απομονώθηκαν με την χρήση του laser. Η διαδικασία περιελάμβανε την παρατήρηση της χρωματισμένης τομής στο μικροσκόπιο του συστήματος PALM και με την χρήση του υπολογιστή γινόταν η επιλογή της περιοχής προς απομόνωση. Στη συνέχεια το UV-A λέιζερ έκοβε την μαρκαρισμένη περιοχή. Τα απομονωμένα κομμάτια από τις νεφρικές τομές συλλέγονταν σε ειδικά eppendorfs και φυλάγονταν στους -80 °C για την περαιτέρω ανάλυση. Η συνολική περιοχή του νεφρικού παρεγχύματος που αντιστοιχούσε σε αγγεία και που απομονώθηκε από κάθε ζώο ήταν περίπου $10,000,000 - 14,000,000 \ \mu m^2$, όπως μετρήθηκε από το PALM Microbeam Laser σύστημα. Από τα απομονωμένα τμήματα πραγματοποιήθηκε εκχύλιση πρωτεϊνών, μετρήθηκε η συγκέντρωσή τους και στη συνέχεια τα δείγματα προετοιμάστηκαν για την τεχνική GeLC-MS.

2.7 Τεχνικές ανάλυσης RNA

2.7.1 Απομόνωση RNA

Η απομόνωση του ολικού RNA έγινε από τμήματα νεφρού (40-50 mg) που είγαν φυλαχθεί στους -80 ° C με χρήση του αντιδραστηρίου TRI Reagent (Invitrogen). Όλη η πειραματική διαδικασία πραγαματοποιήθηκε σε απαγωγό υπό άσηπτες συνθήκες. Ο ιστός ομογενοποιήθηκε και η λύση των κυττάρων έγινε σε 1ml Trizol μέσα σε γυάλινο σωλήνα με τη βοήθεια κατάλληλου εμβόλου (Wheaton dounce homogenizer). Μετά τη λύση τα δείγματα συλλέχθηκαν σε 1,5 ml eppendorfs και προστέθηκαν σε αυτά 100 μl BCP (1bromo-3-chloropropan). Ακολούθησε έντονη ανάδευση για 15 δευτερόλεπτα και επώαση σε θερμοκρασία δωματίου για 10 λεπτά. Τα δείγματα στη συνέχεια φυγοκεντρήθηκαν στις 12.000 rpm για 15 λεπτά στους 4 ° C με σκοπό τον διαχωρισμό της υδατικής και της οργανικής φάσης. Το υπερκείμενο που περιείχε το RNA μεταφέρθηκε σε νέα eppendorfs όπου προστέθηκαν 500 μl ισοπροπανόλη με καλή ανάμιξη. Ακολούθησε νέα φυγοκέντρηση στις 12.000 rpm για 10 λεπτά στους 4 ° C με σκοπό την κατακρήμνιση του RNA. Μετά τη φυγοκέντρηση απομακρύνθηκε το υπερκείμενο και το ίζημα του RNA ξεπλύθηκε με 70% αιθανόλη και φυγοκεντρήθηκε εκ νέου στις 7500 rpm για 10 λεπτά στους 4 °C. Τέλος, το ίζημα που περιείχε το RNA αφέθηκε να στεγνώσει στον αέρα για λίγα λεπτά και επαναδιαλύθηκε σε 40 μl νερό ελεύθερο ριβονουκλεασών (RNases).

2.7.2 Προσδιορισμός της συγκέντρωσης και της καθαρότητας του RNA

Ο προσδιορισμός της συγκέντρωσης και της καθαρότητας του RNA έγινε με φωτομέτρηση των δειγμάτων σε φωτόμετρο ThermoSpectronic (Biomate). Τα δείγματα αρχικά αραιώθηκαν και στη συνέχεια μετρήθηκε η οπτική απορρόφηση σε μήκη κύματος 260 nm και 280 nm. Η οπτική απορρόφηση στα 260 nm μας επιτρέπει τον προσδιορισμό της συγκέντρωσης του RNA στο δείγμα. Οπτική απορρόφηση (OD) ίση με 1 αντιστοιχεί σε συγκέντρωση 40 μg μονόκλωνου RNA/ml αραιωμένου διαλύματος. Ο λόγος μεταξύ των απορροφήσεων στα 260 nm και στα 280 nm (OD260/OD280) δείχνει την καθαρότητα του RNA και θα πρέπει να είναι μεγαλύτερος από 2.0. Μικρότερες τιμές του λόγου των απορροφήσεων δείχνουν την παρουσία πρωτεϊνών στο διάλυμα του RNA. Η συγκέντρωση των δειγμάτων προσδιορίστηκε από τον τύπο: [RNA μg/μl]=OD260 x 40 x αραίωση δείγματος.

Επειδή είναι πιθανόν κατά την απομόνωση του RNA να απομονωθεί και γενετικό υλικό DNA, προκειμένου να αποικοδομηθούν τα υπολείμματα DNA έγινε κατεργασία των

απομονωμένων δειγμάτων RNA με το ένζυμο DNase (Promega). Σε κάθε αντίδραση προστέθηκαν 5μg RNA, 3 μl 10x διάλυμα αντίδρασης, 3 μl DNaseI και dH₂O μέχρι τελικό όγκο 30 μl. Τα δείγματα επωάστηκαν στους 37 °C για 1 ώρα και στη συνέχεια σε καθένα από αυτά προστέθηκε 1 μl DNase Stop Solution για τον τερματισμό της αντίδρασης και έγινε επώαση στους 65 °C για 15 λεπτά για την απενεργοποίηση του ενζύμου. Ακολούθησε νέα φωτομέτρηση των δειγμάτων.

2.7.3 Σύνθεση cDNA

Η σύνθεση του cDNA έγινε με την αντίδραση της αντίστροφης μεταγραφής με τη χρήση του ενζύμου MMLV (Promega). Η αντίδραση πραγματοποιήθηκε σε eppendorfs των 200μl όπου για κάθε δείγμα προστέθηκαν 1 μg RNA, 1 μl μίγματος τυχαίων εκκινητών (random primers) 0,5 μg/μl και dH₂O μέχρι τελικό όγκο 13 μl. Τα δείγματα επωάστηκαν για 5 λεπτά στου 70 °C και για 5 λεπτά στους 4 °C. Στη συνέχεια προστέθηκαν 4 μl 5x διαλύματος αντίδρασης, 2 μl dNTPs 10mM και 1 μl ενζύμου. Ακολούθησε επώαση στους 37 °C για 1 ώρα για τη σύνθεση του cDNA και στους 70 °C για 15 λεπτά για την απενεργοποίηση του ενζύμου. Όλες οι αντιδράσεις σύνθεσης cDNA πραγματοποιήθηκαν στον θερμικό κυκλοποιητή MJ Research PTC-200 (Marshall Scientific).

2.7.4 RT-qPCR: Ποσοτική αλυσιδωτή αντίδραση πολυμεράσης πραγματικού χρόνου

Στη μοριακή βιολογία, η ποσοτική αλυσιδωτή αντίδραση πολυμεράσης πραγματικού χρόνου (RT-qPCR), είναι μία τεχνική όπου βασίζεται στην αλυσιδωτή αντίδραση πολυμεράσης (PCR) και χρησιμοποιείται για να πολλαπλασιάζει και να ποσοτικοποιεί το επιθυμητό μόριο DNA. Το πλεονέκτημα της μεθόδου αυτής είναι ότι το πολλαπλασιασμένο DNA ποσοτικοποιείται καθώς συγκεντρώνεται στην αντίδραση σε πραγματικό χρόνο μετά από κάθε κύκλο πολλαπλασιασμού. Οι δύο πιο συνηθισμένες μέθοδοι για την ποσοτικοποίηση είναι: α) SYBR Green I: Ο φθορισμός επιτυγχάνεται καθώς οι φθορίζουσες χρωστικές προσδένονται στα δίκλωνα μόρια DNA. Στο τέλος της φάσης επιμήκυνσης το ποσό του DNA μετράται από το σήμα που δίνει το SYBR Green I β) Hybridization Probes: Ειδικά σημασμένα ολιγονουκλεοτίδια DNA τα οποία φθορίζουν όταν υβριδοποιηθούν με συμπληρωματικά μόρια DNA. Η αλυσιδωτή αντίδραση πολυμεράσης πραγματικού χρόνου συνδυάζεται με την αντίστροφη μεταγραφή για την ποσοτικοποίηση του mRNA σε κύτταρα και ιστούς. Η αντίδραση της ποσοτικής αλυσιδωτής αντίδρασης πολυμεράσης πραγματικού χρόνου (Real-time Quantitative Polymerase Chain Reaction, RT-qPCR) πραγματοποιήθηκε υπό άσηπτες συνθήκες σε θάλαμο κάθετης νηματικής ροής αέρα. Οι αντιδράσεις έγιναν σε πιάτα 96 θέσεων (96 well plate)

Οι αντιδράσεις πραγματοποιήθηκαν στο Lightcycler 96 (Roche) συμφωνα με το παρακάτω πρόγραμμα: επώαση στους 95 °C για 10 λεπτά και επώαση για 45 κύκλους στους 95 °C για 10 δευτερόλεπτα, 60 °C για 15 δευτερόλεπτα και 72 °C για 15 δευτερόλεπτα. Ακολούθησε ανάλυση καμπυλών τήξης (melting curve analysis), με μετρήσεις κάθε 1 °C από τους 65 °C έως τους 96 °C προκειμένου να επιβεβαιωθεί η παρουσία ενός μόνο προϊόντος στην αντίδραση. Για την ποσοτική ανάλυση των αποτελεσμάτων η έκφραση των υπό μελέτη γονιδίων κανονικοποιήθηκε με βάση το γονίδιο GAPDH χρησιμοποιώντας τη μέθοδο ΔΔCT.

Εκκινητές που χρησιμοποιήθηκαν για το γονίδιο του συμμεταφορέα SGLT2: F1:ATCTGACCGCCGGAGTGATT R1:CCGGAGAACATATCCACCGAGAT F2: GGAAGGCTCTGAACTTGGGG R2: AGACCACAAGCCAACACCAA

3. ΑΠΟΤΕΛΕΣΜΑΤΑ

3.1 Μέση αρτηριακή πίεση των ζώων

Η μέτρηση της μέσης αρτηριακής πίεσης των πειραματόζωων πριν την θυσία τους ήταν απαραίτητη προϋπόθεση για την μετέπειτα μελέτη (Εικόνα 8α). Τα αποτελέσματα από τις μετρήσεις επιβεβαιώνουν την ανάπτυξη υπέρτασης από την ηλικιακή ομάδα των 6 εβδομάδων (Εικόνα 8β). Τα SHR ζώα 6 εβδομάδων είχαν σημαντικά αυξημένη μέση αρτηριακή πίεση σε σχέση με τα αντίστοιχα WKY ζώα (Mann-Whitney U test, p<0.05). Στις ηλικίες των 13 και 20 εβδομάδων τα SHR ζώα είχαν σταθερά μέση αρτηριακή πίεση 160-170 mmHg ενώ τα αντίστοιχα WKY ζώα παρέμειναν νορμοτασικά με μέση αρτηριακή πίεση κάτω από 120 mmHg και στις τρεις ηλικιακές ομάδες.

Εικόνα 8: α) Μέτρηση της μέσης αρτηριακής πίεσης. Τα ζώα αρχικά ακινητοποιήθηκαν και στη συνέχεια ακολούθησε η μέτρηση της πίεσης από την ουρά τους χρησιμοποιώντας την τεχνική Computerized rat tail-cuff (Kent Scientific, Co., Torrington, CT, USA). **β**) Μέση αρτηριακή πίεση των υπερτασικών SHR (μαύρο) και νορμοτασικών WKY (γκρι) ζώων. Και στις τρεις ηλικιακές ομάδες τα SHR ζώα εμφανίζουν σημαντικά αυξημένη μέση αρτηριακή πίεση (Mean blood pressure) σε σχέση με τα WKY ζώα. (n=8 για κάθε ηλικιακή ομάδα, Mann-Whitney U test, * p<0.05)

3.2 Ιστοπαθολογικά ευρήματα

Μετά τη μέτρηση της πίεσης των ζώων και την θυσία τους οι νεφροί απομονώθηκαν και ακολούθησε μελέτη τους για την παρατήρηση ιστοπαθολογικών ευρημάτων του νεφρικού παρεγχύματος λόγω της υπέρτασης. Για το σκοπό αυτό νεφρικές τομές υπερτασικών και νορμοτασικών ζώων απ' όλες τις ηλικιακές ομάδες αξιολογήθηκαν για χαρακτηριστικές ιστοπαθολογικές αλλοιώσεις χρησιμοποιώντας κατάλληλα πρωτόκολλα χρώσης (Hematoxylin and Eosin, Periodic acid-Schiff and Masson's trichrome staining). Οι αξιολογήσεις επικεντρώθηκαν στο μέγεθος των σπειραμάτων, την εστιακή σπειραματοσκλήρυνση, τη μεσαγγειακή κυτταρικότητα, την σωληναριακή ατροφία, την διόγκωση των σωληναριακών επιθηλιακών κυττάρων, την διάμεση ίνωση, την διάμεση φλεγμονή, την υαλίνωση και την πάχυνση του αρτηριακού έσω χιτώνα.

Όλες αυτές οι παράμετροι βρέθηκαν σχεδόν αμετάβλητες τόσο στα υπερτασικά όσο και στα νορμοτασικά ζώα και των τριών ηλικιακών ομάδων, εκτός από μια ελαφρά αύξηση της μεσαγγειακής κυτταρικότητας, την παρουσία ενδιάμεσης φλεγμονής και μια ελαφρά πάχυνση του αρτηριακού έσω χιτώνα στα υπερτασικά ζώα όλων των ηλικιών. Το γεγονός αυτό δεν προκαλεί έκπληξη, δεδομένου ότι η μελέτη μας διεξήχθη σε πρώιμο στάδιο ανάπτυξης της υπέρτασης στο μοντέλο SHR και τα ιστοπαθολογικά ευρήματα είναι σύμφωνα με προηγούμενα δημοσιευμένα δεδομένα για αυτό το ζωικό μοντέλο. Τυπικά, η σωληναριακή ατροφία και η διάμεση ίνωση είναι μια αργή εξέλιξη της νεφρικής βλάβης και στο μοντέλο SHR εμφανίζεται στην ηλικία μεταξύ 30 και 60 εβδομάδων, πολύ αργότερα δηλαδή από την ηλικία των ζώων που χρησιμοποιήθηκαν στην παρούσα διατριβή [28].

Επομένως, το συγκεκριμένο πειραματικό μοντέλο υπέρτασης και οι ηλικιακές ομάδες των 6, 13 και 20 εβδομάδων που επιλέχθηκαν κρίθηκαν κατάλληλα για την εύρεση πιθανόν πρώιμων βιοδεικτών υπερτασικής νεφροσκλήρυνσης διότι στα ζώα αυτών των ηλικιών ναι μεν έχει εγκαθιδρυθεί η υπέρταση όμως, δεν έχουν εμφανιστεί οι τυπικές βλάβες που προκαλούνται από αυτή στην δομή και την λειτουργία του νεφρού.

3.3 Πρωτεομική ανάλυση

Όπως αναφέρθηκε στο Κεφάλαιο της Εισαγωγής η πρωτεομική ανάλυση ως μέθοδος ολιστικής προσέγγισης είναι πολύ χρήσιμη για την εύρεση μορίων με πιθανό κρίσιμο ρόλο κατά την παθογένεση της υπέρτασης. Για τον λόγο αυτό εφαρμόσαμε τρεις διαφορετικές προσεγγίσεις πρωτεομικής ανάλυσης στο μοντέλο SHR και στην αντίστοιχη ομάδα ελέγχου WKY σε τρεις διαφορετικές ηλικιακές ομάδες (6, 13 και 20 εβδομάδων). Ο στόχος ήταν να βρεθούν μόρια με κρίσιμο ρόλο στην ανάπτυξη υπέρτασης και που πιθανόν να αποτελέσουν στο μέλλον πρώιμους δείκτες υπερτασικής νεφροσκλήρυνσης.

Τα αποτελέσματα από όλες τις πρωτεομικές αναλύσεις που εφαρμόσαμε στο πειραματικό μοντέλο SHR και την ομάδα ελέγχου WKY παρουσιάζονται αναλυτικά στις επόμενες ενότητες.

3.3.1 Αποτελέσματα 2DE MALDI-MS

Από την δισδιάστατη ηλεκτροφόρηση 2DE των πρωτεϊνικών δειγμάτων από τα WKY και SHR ζώα σε τρία διαφορετικά στάδια ανάπτυξης (6, 13 και 20 εβδομάδων) προέκυψαν οι χαρακτηριστικοί πρωτεομικοί χάρτες (Εικόνα 9). Αντιπροσωπευτικές εικόνες από κάθε ηλικιακή ομάδα SHR ζώων επιλέχθηκαν και συγκρίθηκαν με τα αντίστοιχα των WKY. Αναλύθηκαν 4 πηκτώματα ανά κατηγορία και ανά ηλικία που αντιστοιχούσαν σε διαφορετικά ζώα-βιολογικά αντίγραφα. Η ανάλυση και η σύγκριση των εικόνων αυτών κατέδειξε σημαντικές διαφορές στο πρωτεομικό προφίλ των υπερτασικών ζώων σε σύγκριση με τα νορμοτασικά και στις τρεις ηλικίες που μελετήθηκαν. Από την σύγκριση ανιχνεύθηκαν εκείνες οι πρωτεϊνικές κηλίδες που παρουσίαζαν σημαντικές διαφορές στην ένταση κατά την σύγκριση των υπερτασικών και νορμοτασικών ζώων. Ακολούθησε η ταυτοποίηση των πρωτεϊνών που αντιστοιχούσαν σε κάθε κηλίδα στα πηκτώματα και προσδιορίστηκαν εκείνες οι πρωτεϊνες που είχαν διαφορική έκφραση στα υπερτασικά ζώα.

3.3.1.1 Διαφορικά εκφραζόμενες πρωτεΐνες που προέκυψαν από την 2DE και MALDI-MS ανάλυση

Στην ηλικία των 6 εβδομάδων κατά την οποία στο μοντέλο SHR η υπέρταση έχει αρχίσει να αναπτύσσεται, εντοπίστηκαν 84 διαφορικά εκφραζόμενες κηλίδες από τις οποίες οι 61 παρουσίαζαν αύξηση και οι 23 μείωση στα υπερτασικά ζώα SHR. Στην ηλικία των 13 εβδομάδων κατά την οποία έχει εγκαθιδρυθεί η υπέρταση στο μοντέλο SHR, εντοπίστηκαν 131 κηλίδες με διαφορική έκφραση από τις οποίες 127 παρουσίαζαν αύξηση στα υπερτασικά και μόνο 4 παρουσίαζαν μείωση. Τέλος, στα ζώα 20 εβδομάδων εντοπίστηκαν 159 διαφορικά εκφραζόμενες κηλίδες από τις οποίες 32 παρουσίαζαν αύξηση και 127 παρουσίαζαν μείωση με την υπέρταση.

Εικόνα 9: Αντιπροσωπευτικές εικόνες 2D από τους πρωτεομικούς χάρτες των υπερτασικών SHR και νορμοτασικών WKY ζώων ηλικίας 6, 13 και 20 εβδομάδων που απεικονίζουν τις πρωτεϊνικές κηλίδες.

Οι πρωτεΐνες που αντιστοιχούσαν στις κηλίδες αυτές ταυτοποιήθηκαν με MALDI-MS. Συνολικά, 288 κηλίδες έδωσαν αξιόπιστα αποτελέσματα ταυτοποίησης πρωτεϊνών (Πίνακας Παραρτήματος 1). Σε πολλές από τις πρωτεομικές κηλίδες ταυτοποιήθηκε η ίδια πρωτεΐνη γεγονός που υποδηλώνει πιθανές μετα-μεταφραστικές τροποποιήσεις. Δεδομένου ότι τα εργαλεία βιοπληροφορικής ανάλυσης δεν έχουν την δυνατότητα να αναγνωρίσουν και ξεχωρίσουν τις τροποποιημένες πρωτεΐνες χρησιμοποιήθηκε η συνολική διαφορική έκφραση ανά πρωτεΐνη για την επακόλουθη βιοπληροφορική ανάλυση των αποτελεσμάτων της δισδιάστατης ηλεκτροφόρησης. Τα αποτελέσματα των συνολικών διαφορικά εκφραζόμενων πρωτεϊνών που ταυτοποιήθηκαν στα υπερτασικά ζώα σε σύγκριση με τα νορμοτασικά μετά την ενοποίησή τους για τις κηλίδες που ταυτοποιήθηκαν ως η ίδια πρωτεΐνη παρουσιάζονται στον Πίνακα 1 και στην Εικόνα 10.

Ηλικία	Αυξημένη έκφραση	Μειωμένη έκφραση	Σύνολο
6 εβδομάδες	48	13	61
13 εβδομάδες	116	0	116
20 εβδομάδες	29	119	148

Πίνακας 1: Ο συνολικός αριθμός των πρωτεϊνών που βρέθηκαν στο νεφρικό παρέγχυμα των SHR ζώων ανά ηλικία και που εμφανίζουν αυζημένη ή μειωμένη έκφραση στα υπερτασικά ζώα σε σύγκριση με το νορμοτασικά, όπως προέκυψε από την ανάλυση των αποτελεσμάτων της πρωτεομικής με τη μέθοδο 2DE MALDI-MS.

Εικόνα 10: Διαγράμματα Venn που απεικονίζουν τις κοινές διαφορικά εκφραζόμενες πρωτεΐνες που βρέθηκαν στις τρεις ηλικιακές ομάδες ζώων SHR μετά την πρωτεομική ανάλυση με τη μέθοδο 2DE MALDI-MS. α) Οι κοινές πρωτεΐνες με αυζημένη έκφραση στα υπερτασικά ζώα ανά ηλικιακή ομάδα. β) Οι κοινές πρωτεΐνες με μειωμένη έκφραση στα υπερτασικά ζώα ανά ηλικιακή ομάδα.

Μετά την ταυτοποίηση των διαφορικά εκφραζόμενων πρωτεϊνών ακολούθησε η βιοπληροφορική ανάλυση ώστε να βρεθούν τα βιολογικά μονοπάτια που εμπλέκονται οι πρωτεΐνες αυτές και τα οποία απορρυθμίζονται στα υπερτασικά ζώα.

3.3.1.2 Βιοπληροφορική ανάλυση αποτελεσμάτων δισδιάστατης ηλεκτροφόρησης

Η βιοπληροφορική ανάλυση των αποτελεσμάτων της δισδιάστατης ηλεκτροφόρησης και του MALDI-MS πραγματοποιήθηκε με τα εργαλεία IPA (Ingenuity Pathway Analysis) και Cytoscape ClueGO [51,52].

Με την ανάλυση IPA εντοπίστηκαν σημαντικές βιολογικές διεργασίες οι οποίες σχετίζονται με τις διαφορικά εκφραζόμενες πρωτεΐνες και για τις τρεις διαφορετικές ηλικίες που μελετήθηκαν: 6 εβδομάδες (Πίνακας Παραρτήματος 2), 13 εβδομάδες (Πίνακας Παραρτήματος 4).

Τα σημαντικότερα ευρήματα από τη σύγκριση των ζώων 6 εβδομάδων ήταν τα μονοπάτια:

- NRF2-mediated Oxidative Stress Response
- Mitochondrial dysfunction
- Oxidative phosphorylation
- Glutathione transferase activity

Στις 13 εβδομάδες οι βιολογικές διεργασίες που βρέθηκαν να επηρεάζονται είναι:

- Apoptosis
- Detoxification of Reactive Oxygen Species
- Glutathione transferase activity
- Remodelling of Epithelial Adherens Junctions
- Gap Junction Signalling
- 14-3-3-Mediated Signalling
- Agrin interactions at Neuromuscular Junction
- Noraderenaline and Adrenaline Degradation.

Στην ηλικία των 20 εβδομάδων οι σημαντικότερες βιολογικές διεργασίες που βρέθηκαν να επηρεάζονται είναι:

- Fatty Acid a-oxidation
- Detoxification of reactive Oxygen Species
- Junction related processes

- Dopamine degradation
- Mitochondrial Dysfunction

Τα αποτελέσματα αυτά δείχνουν πως υπάρχει ένα μοτίβο εξέλιξης από το οξειδωτικό στρες και την μιτοχονδριακή δυσλειτουργία στην εμφάνιση απόπτωσης και σημαντικών μεταβολών στις διακυτταρικές διασυνδέσεις που εμφανίζονται κυρίως στα ζώα 13 και 20 εβδομάδων.

Επιπλέον, η ανάλυση που πραγματοποιήθηκε με το Cytoscape ClueGo αποκάλυψε πως οι διαφορικά εκφραζόμενες πρωτεΐνες στα ζώα 6 εβδομάδων εμπλέκονται σε βιολογικά μονοπάτια που σχετίζονται με το οξειδωτικό στρες όπως:

- Glutathione oxidoreductase activity
- Regulation of superoxide metabolic process
- L-ascorbic acid biosynthesis
- Branched-amino acid catabolism
- Glucose metabolism
- TCA cycle

Στις 13 εβδομάδες βρέθηκαν τα ακόλουθα μονοπάτια:

- Glutathione transferase activity
- Cellular respiration
- TCA cycle
- Amino acid synthesis and interconversion

Στις 20 εβδομάδες βρέθηκαν τα ακόλουθα μονοπάτια:

- Reactive oxygen species metabolic process
- Fatty acid degradation
- TCA cycle
- Metabolism of amino acids

Τα μονοπάτια που σχετίζονται περισσότερο με την φυσιολογία των νεφρών καθώς και οι πρωτεΐνες που βρέθηκαν να εμπλέκονται σε αυτά παρουσιάζονται στον Πίνακα 2.

Biological Process	p-value	Differentially expressed proteins
Glutathione metabolism	4.7 x 10 ⁻⁶ (6w), 1.2 x 10 ⁻³ (13w)	Gclm, Gsta1, Gsta3, Gstm3, Gsto1, Idh1, Idh2
Glutathione transferase activity	1.6 x 10 ⁻⁴ (6w), 2.1 x 10 ⁻⁴ (13w)	Gsta1, Gsta3, Gstm3, Gsto1, Clic1, Clic4
Glutathione binding	4.9 x 10 ⁻⁴ (6w)	Gsta1, Gsta3, Gstm3
Apoptosis	7.3 x 10 ⁻³ (13w)	Casp3, Lmna, Sptan1, Vim, Ywhae
Detoxification of reactive oxygen species	1.7 x 10 ⁻³ (13w), 3.4 x 10 ⁻⁴ (20w)	Cat, P4hb, Prdx3, Sod2, Prdx2, Prdx6, Sod1
Mitochondrial protein complex	8.4 x 10 ⁻³ (13w)	Atp5h, Bckdha, Cox5a, Ndufa10, Sdha, Sdhb, Uqcrc1
Mitochondrial respiratory chain	3 x 10 ⁻³ (13w)	Cox5a, Ndufa10, Sdha, Sdhb, Uqcrc1
Mitochondrial matrix	8.4 x 10 ⁻¹⁶ (20w)	Acaa2, Acadl, Acadm, Acadvl, Acat1, Agxt2, Aldh1a1, Aldh2, Aldh4a1, Dlat, Dld, Glud1, Hadh, Hadhb, Hspa9, Hspd1, Ivd, Ndufa10, Pc, Suclg2, Tufm, Vdac1
Mitochondrial fatty acid beta- oxidation of saturated fatty acids	2.8 x 10 ⁻⁶ (20w)	Acadl, Acadm, Acadvl, Hadh, Hadhb
Mitochondrial fatty acid beta- oxidation	1.8 x 10 ⁻⁵ (20w)	Acadl, Acadm, Acadvl, Hadh, Hadhb
Mitochondrial nucleoid	1.8 x 10 ⁻³ (20w)	Acadvl, Hadhb, Hspa9, Tufm, Vdac1
Mitochondrial intermembrane space	1.1 x 10 ⁻² (20w)	Aifm1, Cat, Sod1, Suox, Timm9

Πίνακας 2: Οι βιολογικές διεργασίες που βρέθηκαν να απορρυθμίζονται στα υπερτασικά ζώα και οι διαφορικά εκφραζόμενες πρωτεΐνες που συμμετέχουν σε αυτά.

3.3.2 Αποτελέσματα LC-MS/MS ανάλυσης

Μετά την πρώτη ανάλυση με 2DE-MALDI-MS, επαναλάβαμε την πρωτεωμική ανάλυση στα ίδια ζώα εφαρμόζοντας την τεχνική LC-MS/MS που διακρίνεται από υψηλότερη ευαισθησία σε σχέση με την 2DE-MALDI-MS και επομένως επιτρέπει την αναγνώριση ακόμη περισσότερων πρωτεϊνών. Η σύγκριση των επιπέδων έκφρασης των πρωτεϊνών του νεφρικού παρεγχύματος πραγματοποιήθηκε χρησιμοποιώντας 4 βιολογικά δείγματα υπερτασικών SHR και 4 νορμοτασικών WKY ανά ηλικιακή ομάδα (6, 13 και 20 εβδομάδες). Αναγνωρίστηκαν συνολικά 1393 πρωτεΐνες στην ηλικία των 6 εβδομάδων, 1383 πρωτεΐνες στην ηλικία των 13 εβδομάδων και 1395 πρωτεΐνες στην ηλικία των 20 εβδομάδων. Επόμενο βήμα ήταν να αναγνωριστούν πόσες από τις πρωτεΐνες αυτές παρουσίαζαν διαφορική έκφραση στα υπερτασικά.

3.3.2.1 Διαφορικά εκφραζόμενες πρωτεΐνες που προέκυψαν από την LC-MS/MS ανάλυση

Ως διαφορικά εκφραζόμενες πρωτεΐνες θεωρήθηκαν εκείνες που πληρούσαν τα δύο ακόλουθα κριτήρια: i) ήταν στατιστικά σημαντικά με p-value ≤ 0.05 (Mann-Whitney), και ii) ο λόγος έκφρασης ήταν μεγαλύτερος από 2 (για τις πρωτεΐνες που η έκφρασή τους αυξανόταν στα υπερτασικά ζώα) ή μικρότερος από 0.5 (για τις πρωτεΐνες που η έκφρασή τους ήταν μικρότερη στα υπερτασικά σε σύγκριση με τα νορμοτασικά ζώα). Αναγνωρίστηκαν πάνω από 300 πρωτεΐνες με διαφορική έκφραση σε κάθε ηλικιακή ομάδα υπερτασικών ζώων που μελετήθηκε. Ο συνολικός αριθμός των διαφορικά εκφραζόμενων πρωτεϊνών που αναγνωρίστηκαν ανά ομάδα παρουσιάζονται στον Πίνακα 3 και τα συνολικά αποτελέσματα στους Πίνακες Παραρτήματος 5-10. Η γραφική απεικόνιση του συνόλου των πρωτεϊνών που αναγνωρίστηκαν κατά την πρωτεομική ανάλυση παρουσιάζεται στις ακόλουθες εικόνες.

Ηλικία	Αυξημένη έκφραση	Μειωμένη έκφραση	Σύνολο
6 εβδομάδες	198	165	363
13 εβδομάδες	192	126	318
20 εβδομάδες	206	119	325

Πίνακας 3: Το σύνολο των διαφορικά εκφραζόμενων πρωτεϊνών στο νεφρικό παρέγχυμα των SHR ζώων ανά ηλικία όπως προέκυψε από την ανάλυση των αποτελεσμάτων της πρωτεομικής με τη μέθοδο LC-MS/MS.

Εικόνα 11: Γραφική απεικόνιση του συνολικού αριθμού των πρωτεϊνών και των διαφορικά εκφραζόμενων πρωτεϊνών που αναγνωρίστηκαν στα ζώα 6 εβδομάδων (a), 13 εβδομάδων (b) και 20 εβδομάδων (c) κατά την πρωτεομική ανάλυση με βάση το log₂ του λόγου έκφρασης και το -log₁₀ του p-value. Με πράσινο χρώμα διακρίνονται οι στατιστικά σημαντικές πρωτεΐνες με αυζημένη έκφραση στα υπερτασικά ζώα SHR και με κόκκινο χρώμα οι στατιστικά σημαντικές πρωτεΐνες με μειωμένη έκφραση.

Από το σύνολο των διαφορικά εκφραζόμενων πρωτεϊνών που παρουσιάζονται στον Πίνακα 3, 42 παρουσιάζουν είτε αποκλειστικά αυξημένη έκφραση είτε αποκλειστικά μειωμένη έκφραση και στις τρεις ηλικιακές ομάδες. Ειδικότερα, 37 πρωτεΐνες έχουν αυξημένη έκφραση και στις τρείς ομάδες υπερτασικών ζώων (Εικόνα 12α, Πίνακας 4)) ενώ 5 πρωτεΐνες έχουν μειωμένη έκφραση (Εικόνα 12β, Πίνακας 5). Στην Εικόνα 12 παρουσιάζονται τα διαγράμματα Venn με το σύνολο των διαφορικά εκφραζόμενων
πρωτεϊνών που ήταν κοινές στις διαφορετικές συγκρίσεις μεταξύ των ομάδων ζώων διαφορετικής ηλικίας.

Εικόνα 12: Διαγράμματα Venn που απεικονίζουν τις κοινές διαφορικά εκφραζόμενες πρωτεΐνες που βρέθηκαν στις τρεις ηλικιακές ομάδες ζώων SHR μετά την πρωτεομική ανάλυση με LC-MS/MS. **a**) Οι κοινές πρωτεΐνες με αυξημένη έκφραση στα υπερτασικά ζώα ανά ηλικιακή ομάδα. Στην ανάλυση περιλαμβάνονται μόνο οι πρωτεΐνες με λόγο έκφρασης > 2 και $p \le 0.05$. **β**) Οι κοινές πρωτεΐνες με μειωμένη έκφραση στα υπερτασικά ζώα ανά ηλικιακή ομάδα .Στην ανάλυση περιλαμβάνονται μόνο οι πρωτεΐνες με λόγο έκφρασης <0.5 και $p \le 0.05$.

		6 weeks		13 weeks		20 weeks	
Accession	Protein	p-value	ratio	p-value	ratio	p-value	ratio
Q6SKG1	Acyl-coenzyme A synthetase ACSM3, mitochondrial	0,025	43,33	0,013	23,55	0,047	28,47
Q9QYL8	Acyl-protein thioesterase 2	0,025	2,52	0,025	2,33	0,025	7,15
P29410	Adenylate kinase 2, mitochondrial	0,013	2,03	0,013	2,02	0,013	2,52
P23928	Alpha-crystallin B chain	0,013	2,87	0,013	3,44	0,013	2,79
Q7TP52	Carboxymethylenebu tenolidase homolog	0,013	2,09	0,013	5,36	0,013	5,87
P47875	Cysteine and glycine-rich protein 1	0,025	4,35	0,013	2,68	0,025	2,06
Q7TQ16	Cytochrome b-c1	0,025	6,66	0,025	15,69	0,050	160,60

	complex subunit 8						
Q2TL32	E3 ubiquitin-protein ligase UBR4	0,025	4,38	0,013	2,36	0,013	5,28
O55159	Epithelial cell adhesion molecule	0,013	3,51	0,013	3,14	0,013	4,89
Q9WUH4	Four and a half LIM domains protein 1	0,013	2,19	0,013	3,50	0,013	3,10
Q62839	Golgin subfamily A member 2	0,013	3,05	0,025	4,52	0,025	3,21
Q7TSE9	HCLS1-associated protein X-1	0,050	8,89	0,025	2,32	0,013	2,10
Q4QQW3	Hydroxyacid- oxoacid transhydrogenas, mitochondrial	0,013	6,32	0,025	9,26	0,013	4,28
P22791	Hydroxymethylgluta ryl-CoA synthase, mitochondrial	0,047	3,82	0,025	2,53	0,013	2,10
P41498	Low molecular weight phosphotyrosine protein phosphatase	0,013	5,70	0,013	25,39	0,013	2,31
P97700	Mitochondrial 2- oxoglutarate/malate carrier protein	0,013	2,39	0,013	3,30	0,013	2,59
Q9WV97	Mitochondrial import inner membrane translocase subunit Tim9	0,025	2,93	0,013	2,34	0,013	2,67
P10111	Peptidyl-prolyl cis- trans isomerase A	0,013	2,85	0,013	3,84	0,013	3,64
Q9Z0V5	Peroxiredoxin-4	0,047	2,54	0,050	28,23	0,050	7,81
Q9WVK3	Peroxisomal trans-2- enoyl-CoA reductase	0,013	2,76	0,013	4,10	0,013	2,99
P63004	Platelet-activating factor acetylhydrolase IB subunit alpha	0,013	2,35	0,013	4,61	0,013	2,26
A1A5S1	Pre-mRNA- processing factor 6	0,013	3,96	0,013	5,56	0,013	2,12
P18421	Proteasome subunit beta type-1	0,013	2,35	0,013	2,61	0,025	2,89
P20650	Protein phosphatase 1A	0,013	2,20	0,025	3,01	0,025	7,52
Q5XFW8	Protein SEC13 homolog	0,025	2,30	0,025	3,23	0,050	6,60
B0BNC9	Quinone oxidoreductase-like protein 2	0,013	3,57	0,013	4,00	0,013	2,67
Q66H68	RNA-binding protein 47	0,050	5,97	0,050	5,83	0,025	2,23
P22509	rRNA 2'-O- methyltransferase fibrillarin	0,047	2,71	0,013	3,49	0,050	10,99

P02770	Serum albumin	0,013	2,78	0,013	2,98	0,013	2,76
P53792	Sodium/glucose cotransporter 2	0,050	11,82	0,013	2,92	0,013	9,63
O70594	Solute carrier family 22 member 5	0,013	3,96	0,013	5,16	0,013	3,74
O54861	Sortilin	0,013	2,95	0,025	7,71	0,025	2,01
Q07116	Sulfite oxidase, mitochondrial	0,013	2,29	0,013	4,82	0,013	4,54
P07632	Superoxide dismutase	0,013	6,49	0,013	4,82	0,013	2,72
P24329	Thiosulfate sulfurtransferase	0,013	2,27	0,013	3,95	0,013	2,07
P04692	Tropomyosin alpha-1 chain	0,025	7,71	0,025	9,64	0,047	8,61
Q63610	Tropomyosin alpha-3 chain	0,013	2,53	0,013	2,60	0,013	3,56

Πίνακας 4: Οι πρωτεΐνες από την ανάλυση με LC-MS/MS που παρουσιάζουν αυζημένη έκφραση στα υπερτασικά ζώα SHR και είναι κοινές και στις τρεις ηλικίες που μελετήθηκαν.

		6 weeks		13 weeks		20 weeks	
Accession	Protein	p-value	ratio	p-value	ratio	p-value	ratio
O35795	Ectonucleoside triphosphate diphosphohydrolase 2	0,025	0,48	0,050	0,30	0,025	0,34
P04905	Glutathione S- transferase Mu 1	0,013	0,12	0,013	0,16	0,013	0,33
Q01984	Histamine N- methyltransferase	0,013	0,40	0,013	0,43	0,013	0,39
Q5BKD0	Inactive 2'-5'- oligoadenylate synthase 1B	0,025	0,21	0,050	0,13	0,050	0,19
Q562C6	Leucine zipper transcription factor- like protein 1	0,025	0,34	0,025	0,13	0,025	0,49

Πίνακας 5: Οι πρωτεΐνες από την ανάλυση με LC-MS/MS που παρουσιάζουν μειωμένη έκφραση στα υπερτασικά ζώα SHR και είναι κοινές και στις τρεις ηλικίες που μελετήθηκαν.

3.3.2.2 Βιοπληροφορική ανάλυση των αποτελεσμάτων από το LC-MS/MS

Η βιοπληροφορική ανάλυση των αποτελεσμάτων από το LC-MS/MS πραγματοποιήθηκε με το εργαλείο Cytoscape ClueGO [51,52]. Η ανάλυση των διαφορικά εκφραζόμενων πρωτεϊνών αποκάλυψε μονοπάτια που σχετίζονται με το οξειδωτικό στρες (detoxification of reactive oxygen species), την απόπτωση (activation of BH3-only proteins, activation of BAD and translocation to mitochondria, activation of BIM and translocation to mitochondria) και τον μεταβολισμό (the citric acid (TCA) cycle and respiratory electron transport, pyruvate metabolism and TCA cycle, metabolism of amino acids and derivatives).

3.3.3 Αποτελέσματα Laser Capture Microdissection

Η σύγκριση των επιπέδων έκφρασης των πρωτεϊνών που εκφράζονται αποκλειστικά στα νεφρικά αγγεία πραγματοποιήθηκε χρησιμοποιώντας 4 βιολογικά δείγματα υπερτασικών SHR και 4 βιολογικά δείγματα νορμοτασικών WKY 20 εβδομάδων. Από την πρωτεομική ανάλυση με τη μέθοδο GeLC-MS/MS στα νεφρικά αγγεία αναγνωρίστηκαν συνολικά 688 πρωτεΐνες από τις οποίες 71 βρέθηκαν αποκλειστικά στα νορμοτασικά WKY, 67 βρέθηκαν αποκλειστικά στα υπερτασικά SHR ενώ 550 ήταν κοινές και στις δύο ομάδες. Από τις 550 κοινές πρωτεΐνες που αναγνωρίστηκαν, 58 πρωτεΐνες είχαν διαφορική έκφραση στα SHR. Συγκεκριμένα, 15 πρωτεΐνες είχαν αυξημένη έκφραση (Πίνακας Παραρτήματος 11) και 43 είχαν μειωμένη έκφραση (Πίνακας Παραρτήματος 12) στα νεφρικά αγγεία των SHR σε σύγκριση με τα νορμοτασικά WKY. Γραφική απεικόνιση των αποτελεσμάτων της πρωτεομικής παρατίθεται στην Εικόνα 13.

Εικόνα 13:a) Γραφική απεικόνιση του συνολικού αριθμού των πρωτεϊνών των νεφρικών αγγείων που αναγνωρίστηκαν κατά την πρωτεομική ανάλυση με βάση το log₂ του λόγου έκφρασης και το -log₁₀ του p-value. **b**) Απεικόνιση με τη μορφή heat map των 58 διαφορικά εκφραζόμενων πρωτεϊνών σε κάθε δείγμα που αναλύθηκε.

Όπως αναφέρθηκε, η πρωτεομική ανάλυση με την τεχνική GeLC-MS/MS οδήγησε στην αναγνώριση πολλών πρωτεϊνών. Από την βιοπληροφορική ανάλυση καθώς και από τη μελέτη της σχετικής βιβλιογραφίας για τις πρωτεΐνες αυτές προέκυψε πως πολλές από τις πρωτεΐνες που βρέθηκαν διαφορικά εκφραζόμενες στα νεφρικά αγγεία των υπερτασικών ζώων σχετίζονται με την ρύθμιση του αγγειακού τόνου και της αρτηριακής πίεσης. Ορισμένες από αυτές τις πρωτεΐνες καθώς και στοιχεία για καθεμία από αυτές παρουσιάζονται στον Πίνακα 6.

Γονίδιο	Πρωτεΐνη	p-value	Λόγος έκφρασης (SHR/WKY)	Λειτουργία	Αναφορά
Qdpr	Dihydropteridine	0.03	3.05	BH4	[53,54]
	reductase			regeneration	
Ddah1	N(G), N(G)-	0.05	1.77	ADMA	[55]
	dimethylarginine			hydrolase	
	dimethylamino-				
	hydrolase 1				
Cfl1	Cofilin-1	0.03	1.6	Cytoskeletal remodeling	[56]

Xpnpep	Xaa-Pro	0.05	0.64	Bradykinin	[57,58]
1	aminopeptidase 1			degradation	
Pah	Phenylalanine-4-	0.04	0.62	Tyrosine	[59]
	hydroxylase			generation	
Enpep	Glutamyl	0.05	0.53	Metabolism of	[60]
	aminopeptidase/Ami nopeptidase A			AngII	
Anpep	Aminopeptidase N	0.03	0.37	Metabolism of AngIII	[61]
Calb1	Calbindin	0.05	0.46	Calcium- binding protein	[62]
Calb2	Calretinin	0.05	0.55	Calcium- binding protein	[63]
Phb	Prohibitin	0.03	0.24	ROS formation	[64,65]
Phb2	Prohibitin-2	0.03	0.43	Mitochondrial function	[66]

Πίνακας 6: Ορισμένες από τις διαφορικά εκφραζόμενες πρωτεΐνες που αναγνωρίστηκαν στα υπερτασικά ζώα και σχετίζονται με την ρύθμιση του αγγειακού τόνου και της αρτηριακή πίεσης.

3.4 Επιβεβαίωση των αποτελεσμάτων της πρωτεομικής ανάλυσης

Η πρωτεομική ανάλυση που εφαρμόσαμε στο υπερτασικό μοντέλο SHR και τα αντίστοιχα νορμοτασικά ζώα WKY τόσο με τη μέθοδο 2DE-MALDI-MS όσο και με τη μέθοδο LC-MS/MS οδήγησε στην αναγνώριση μεγάλου αριθμού πρωτεϊνών με διαφορική έκφραση στα υπερτασικά ζώα. Επειδή ο αριθμός των πρωτεϊνών αυτών ήταν μεγάλος και ήταν αδύνατον να μελετήσουμε την καθεμία ξεχωριστά επικεντρωθήκαμε σε εκείνες μόνο τις διαφορικά εκφραζόμενες πρωτεΐνες που ήταν κοινές στα ζώα όλων των ηλικιών. Από τις κοινές πρωτεΐνες, επιλέξαμε δύο, τις CLIC4 και SGLT2, για την περαιτέρω μελέτη και την επιβεβαίωση των αποτελεσμάτων της πρωτεομικής. Η επιλογή τους δεν ήταν τυχαία αλλά με βάση την λειτουργία τους και βιβλιογραφικά δεδομένα που θα αναλυθούν παρακάτω. Τα ευρήματα για τις δύο αυτές πρωτεΐνες παρουσιάζονται στις επόμενες ενότητες.

3.4.1 Επιβεβαίωση των ευρημάτων της πρωτεομικής ανάλυσης για την πρωτεΐνη CLIC4

Από την λεπτομερή ανάλυση των αποτελεσμάτων της πρωτεομικής ανάλυσης με 2DE-MALDI-MS επιλέχθηκε η πρωτεΐνη CLIC4 για περαιτέρω μελέτη. Η επιλογή έγινε με βάση τις εξής παρατηρήσεις: 1) η CLIC4, όπως προέκυψε από την πρωτεομική ανάλυση, βρέθηκε να είναι σημαντικά αυξημένη στα υπερτασικά ζώα όλων των ηλικιών (6, 13 και 20 εβδομάδων) (Εικόνα 14) 2) η CLIC4, όπως προέκυψε από την βιοπληροφορική ανάλυση των αποτελεσμάτων της πρωτεομικής, συμμετέχει στο μονοπάτι ενεργότητας της τρανσφεράσης της γλουταθειόνης (transferase glutathione activity pathway) το οποίο απορρυθμίζεται στα υπερτασικά ζώα όπως φαίνεται στον Πίνακα 2 και 3) η βιολογική λειτουργία της πρωτεΐνης CLIC4 ως κανάλι μεταφοράς ιόντων χλωρίου παρουσιάζει μεγάλο ενδιαφέρον και μπορεί να εμπλέκεται στην ανάπτυξη της υπέρτασης.

Στην πρωτεομική ανάλυση με 2DE MALDI-MS η CLIC4 βρέθηκε σημαντικά αυξημένη στα υπερτασικά ζώα 6, 13 και 20 εβδομάδων με λόγω έκφρασης 1.5, 9.74 και 2.77 αντίστοιχα (Εικόνα 14). Τα αποτελέσματα αυτά ήταν στατιστικά σημαντικά με pvalue < 0.05.

Εικόνα 14: Αποτελέσματα της πρωτεομικής ανάλυσης με 2DE MALDI-MS για την πρωτεΐνη CLIC4. Με κόκκινα βέλη υποδεικνύεται η κηλίδα που αντιστοιχεί στην CLIC4 σε κάθε πήκτωμα. Η έκφραση της CLIC4 αυζάνεται σημαντικά στα υπερτασικά ζώα 6, 13 και 20 εβδομάδων με λόγω έκφρασης 1.5, 9.74 και 2.77 αντίστοιχα (p-value < 0.05).

Αρχικά, για την επιβεβαίωση των αποτελεσμάτων της πρωτεομικής για την πρωτεΐνη CLIC4 εφαρμόστηκε η ανοσοαποτύπωση κατά Western. Αναλύθηκαν τα ίδια πρωτεϊνικά δείγματα που χρησιμοποιήθηκαν και για την 2DE-MALDI-MS ανάλυση. Τα αποτελέσματα της Western blot συνοψίζονται στην Εικόνα 15. Τα ευρήματα αυτά υποστηρίζουν τα αντίστοιχα ευρήματα της πρωτεομικής ανάλυσης για την πρωτεΐνη CLIC4 και επιβεβαιώνουν την υπερέκφρασή της στα υπερτασικά ζώα όλων των ηλικιών.

Εικόνα 15: Επιβεβαίωση των αποτελεσμάτων της πρωτεομικής ανάλυσης για την πρωτεΐνη CLIC4 με ανοσοαποτύπωση κατά Western. a) Αντιπροσωπευτικές εικόνες 3 βιολογικών αντιγράφων παρουσιάζονται για κάθε ομάδα ζώων. Η ζώνη της πρωτεΐνης CLIC4 ήταν η μόνη παρατηρούμενη ζώνη στην αναμενόμενη κινητικότητα των 29kDa. b) Ποσοτικοποίηση των αποτελεσμάτων της ανοσοαποτύπωσης κατά Western όπου επιβεβαιώνεται η υπερέκφραση της πρωτεΐνης CLIC4 στα υπερτασικά ζώα και στις τρείς ηλικίες.

Δεδομένου ότι η ανοσοαποτύπωση κατά Western επιβεβαίωσε τα αποτελέσματα της πρωτεομικής για την πρωτεΐνη CLIC4 το επόμενο βήμα στη μελέτη μας ήταν να εντοπίσουμε σε ποια επακριβώς κύτταρα του νεφρικού παρεγχύματος εκφράζεται η Για συγκεκριμένη πρωτεΐνη. το σκοπό αυτό πραγματοποιήθηκαν μελέτες ανοσοϊστοχημείας και ανοσοφθορισμού σε νεφρικές τομές FFPE (formalin-fixed paraffinembedded) με τη χρήση ειδικού αντισώματος για την CLIC4. Στις Εικόνες 16 και 17 παρουσιάζονται τα αποτελέσματα της ανοσοϊστοχημείας και του ανοσοφθορισμού όπου φαίνεται η διαφορά στην έκφραση της CLIC4 στο νεφρικό παρέγχυμα των υπερτασικών ζώων.

Εικόνα 16: a) Αντιπροσωπευτικές εικόνες ανοσοϊστοχημείας για την πρωτεΐνη CLIC4 από υπερτασικά και νορμοτασικά ζώα 6, 13 και 20 εβδομάδων. Διακρίνεται ξεκάθαρα η αυζημένη έκφραση της CLIC4 στο νεφρικό παρέγχυμα των υπερτασικών ζώων όλων των ηλικιών. b) Μεγέθυνση του νεφρικού παρεγχύματος υπερτασικού ζώου 13 εβδομάδων. Η αυζημένη έκφραση της CLIC4 εντοπίζεται μόνο στα εγγύς εσπειραμένα σωληνάρια. Συγκεκριμένα, είναι αυζημένη τόσο στο κυτταρόπλασμα όσο και στην ψυκτροειδή παρυφή των επιθηλιακών σωληναριακών κυττάρων. Στα σπειράματα και στα υπόλοιπα τμήματα του νεφρώνα όπως τα άπω εσπειραμένα σωληνάρια, η αγκύλη του Henle και τα αθροιστικά σωληνάρια δεν φαίνεται να εντοπίζεται η CLIC4.

Εικόνα 17: a) Αντιπροσωπευτικές εικόνες ανοσοφθορισμού για την πρωτεΐνη CLIC4 στα υπερτασικά SHR και νορμοτασικά WKY ζώα 6, 13 και 20 εβδομάδων. b) Μεγέθυνση του νεφρικού παρεγχύματος υπερτασικού ζώου 13 εβδομάδων όπου φαίνεται η κατανομή του σήματος φθορισμού. Η CLIC4 εκφράζεται στο κυτταρόπλασμα των επιθηλιακών κυττάρων των εγγύς εσπειραμένων σωληναρίων και παρουσιάζει αυζημένη κατανομή προς τον αυλό των εγγύς σωληναρίων, δηλαδή στην ψυκτροειδή παρυφή των κυττάρων τους.

Τα αποτελέσματα αυτά παρέχουν περαιτέρω υποστήριξη στα ευρήματα της πρωτεομικής ανάλυσης και της Western blot για την CLIC4 πρωτεΐνη, ότι δηλαδή υπερεκφράζεται σε όλα τα υπερτασικά ζώα. Επιπλέον, δείχνουν ότι η υπερέκφραση της CLIC4 εντοπίζεται αποκλειστικά στα επιθηλιακά κύτταρα των εγγύς εσπειραμένων σωληναρίων. Ειδικότερα, η CLIC4 εντοπίζεται στο κυτταρόπλασμα των σωληναριακών κυττάρων ενώ είναι σημαντικό να τονιστεί πως υπάρχει αυξημένη κατανομή του σήματος στην ψυκτροειδή παρυφή (brush border) των κυττάρων αυτών. Τέλος, πρέπει να αναφερθεί ότι η CLIC4 δεν εντοπίστηκε να εκφράζετε στα σπειράματα και στα άλλα τμήματα των σωληναρίων του νεφρικού παρεγχύματος (Εικόνες 16β, 17β).

3.4.2 Επιβεβαίωση των ευρημάτων της πρωτεομικής ανάλυσης για την πρωτεΐνη SGLT2

Η πρωτεομική ανάλυση του νεφρικού παρεγχύματος με τη μέθοδο LC-MS/MS οδήγησε στην αναγνώριση περισσότερων από 300 διαφορικά εκφραζόμενων πρωτεϊνών στα SHR ζώα σε κάθε ηλικιακή ομάδα που μελετήσαμε. Από αυτές, η πρωτεΐνη SGLT2 βρέθηκε να έχει αυξημένη έκφραση στα υπερτασικά ζώα όλων των ηλικιών που μελετήθηκαν. Η πρωτεΐνη αυτή αποτελεί συμμεταφορέα γλυκόζης και ιόντων Na⁺. Όπως αναφέρθηκε στην Ενότητα 1.7 η SGLT2 παίζει σπουδαίο ρόλο στην λειτουργία του νεφρού και αποτελεί έναν από τους βασικούς στόχους των νέων αντιδιαβητικών φαρμάκων. Το γεγονός αυτό καθώς και τα ευρήματά μας από την πρωτεομική ανάλυση που δείχνουν ξεκάθαρη αύξηση του συμμεταφορέα στα υπερτασικά ζώα πολύ νωρίς στην ανάπτυξη σε συνδυασμό με την απουσία βιβλιογραφίας που να συνδέει άμεσα την SGLT2 με την υπερτασική νεφροσκλήρυνση μας οδήγησαν στο να την επιλέξουμε για περαιτέρω μελέτη και επιβεβαίωση των ευρημάτων της πρωτεομικής με ανεξάρτητες μεθόδους.

Αρχικά, πραγματοποιήθηκαν μελέτες ανοσοϊστοχημείας και ανοσοφθορισμού σε FFPE νεφρικές τομές με ειδικό για την πρωτεΐνη SGLT2 αντίσωμα. Οι μελέτες αυτές πραγματοποιήθηκαν σε νεφρικό ιστό από τα ίδια ζώα που χρησιμοποιήθηκαν για την πρωτεομική ανάλυση με LC-MS/MS. Τα αποτελέσματα έδειξαν πως ο συμμεταφορέας SGLT2 εντοπίζεται αποκλειστικά στην ψυκτροειδή παρυφή των επιθηλιακών κυττάρων των εγγύς εσπειραμένων σωληναρίων όπως αναμενόταν με βάση την βιβλιογραφία. Επιπλέον, εικόνες ανοσοφθορισμού από τυχαία πεδία του νεφρικού παρεγχύματος χρησιμοποιήθηκαν για την ποσοτικοποίηση του σήματος φθορισμού με την χρήση του προγράμματος Image J (Εικόνα 19c). Τα αποτελέσματα είναι σε πλήρη συμφωνία με την πρωτεομική ανάλυση και έδειξαν πως υπάρχει αύξηση της έκφρασής της στα υπερτασικά ζώα από την ηλικία των 6 εβδομάδων, δηλαδή πολύ νωρίς στην ανάπτυξη υπέρτασης στο μοντέλο SHR. Τα ευρήματα αυτά παρουσιάζονται στις Εικόνες 18, 19.

Εικόνα 18: a) Αντιπροσωπευτικές εικόνες ανοσοϊστοχημείας για την πρωτεΐνη SGLT2 στα υπερτασικά SHR και νορμοτασικά WKY ζώα 6, 13 και 20 εβδομάδων. b) Μεγέθυνση του νεφρικού παρεγχύματος υπερτασικού ζώου 20 εβδομάδων όπου φαίνεται η κατανομή του σήματος. Η αυζημένη έκφρασης της SGLT2 εντοπίζεται αποκλειστικά στην ψυκτροειδή παρυφή των επιθηλιακών κυττάρων των εγγύς εσπειραμένων σωληναρίων (μπλε βέλη).

Εικόνα 19: a) Αντιπροσωπευτικές εικόνες ανοσοφθορισμού για την πρωτεΐνη SGLT2 στα υπερτασικά SHR και νορμοτασικά WKY ζώα 6, 13 και 20 εβδομάδων. b) Μεγέθυνση του νεφρικού παρεγχύματος υπερτασικού ζώου 13 εβδομάδων όπου φαίνεται η κατανομή του σήματος φθορισμού. Η SGLT2 εκφράζεται αποκλειστικά στην ψυκτροειδή παρυφή των επιθηλιακών κυττάρων των εγγύς εσπειραμένων σωληναρίων. c) Ποσοτικοποίηση της έντασης και της κατανομής του σήματος φθορισμού για την πρωτεΐνη SGLT2 στο νεφρικό παρέγχυμα (* p-value < 0.05).

Επόμενο βήμα στη μελέτη μας ήταν να ελέγξουμε την έκφραση του γονιδίου για την πρωτεΐνη SGLT2. Ο σκοπός ήταν να διευκρινίσουμε εάν οι παρατηρούμενες αλλαγές στην έκφραση της SGLT2 στα υπερτασικά ζώα οφείλονται στην αυξημένη έκφραση του γονιδίου ή σε αλλαγές που συμβαίνουν μετα-μεταφραστικά. Για το λόγο αυτό πραγματοποιήσαμε RT-qPCR σε δείγματα RNA από τα ίδια ζώα που πραγματοποιήθηκε πρωτεομική ανάλυση και μετρήθηκε σε πραγματικό χρόνο η έκφραση του γονιδίου της SGLT2 με την βοήθεια ειδικών εκκινητών. Τα αποτελέσματα έδειξαν πως υπάρχει σημαντική αύξηση στην έκφραση του εν λόγου γονιδίου κυρίως στα υπερτασικά ζώα 13 εβδομάδων σε σύγκριση με τα αντίστοιχα νορμοτασικά ζώα ίδιας ηλικίας. (Εικόνα 20)

Εικόνα 20: Αποτελέσματα της RT-qPCR ανάλυσης για το γονίδιο της SGLT2. Υπάρχει σημαντική αύζηση στην έκφραση του γονιδίου στα υπερτασικά ζώα 13 εβδομάδων.

4. ΣΥΖΗΤΗΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ

4.1 Γενικά

Η υπερτασική νεφροσκλήρυνση αποτελεί την δεύτερη αιτία, μετά τον διαβήτη, χρόνιας νεφρικής νόσου. Η πάθηση εξελίσσεται αθόρυβα σε ανεπάρκεια νεφρών και η διάγνωσή της είναι δύσκολη διότι δεν εμφανίζονται ειδικά συμπτώματα. Οι ασθενείς εκδηλώνουν συμπτώματα όταν σχεδόν το 50% της λειτουργίας των νεφρών έχει χαθεί. Μέχρι στιγμής δεν υπάρχουν αξιόπιστοι βιοδείκτες για την έγκαιρη εκτίμηση της νεφρικής βλάβης. Επιπλέον, οι μηχανισμοί που ενοχοποιούνται για την ανάπτυξη και την πρόοδο της νεφρικής βλάβης, λόγω της υπέρτασης, παραμένουν αδιευκρίνιστοι.

Το αντικείμενο της παρούσας διατριβής αφορούσε τη μελέτη των επιπτώσεων της υπέρτασης στο συνολικό πρωτέομα του νεφρού και την εύρεση πιθανών πρώιμων βιοδεικτών υπερτασικής νεφροσκλήρυνσης σε ένα ευρέως γνωστό υπερτασικό μοντέλο, το Spontaneously Hypertensive Rat (SHR). Καθώς η λήψη βιοψιών από υπερτασικούς ασθενείς είναι μια επίπονη και εν πολλοίς μη ενδεικνυόμενη διαδικασία το μοντέλο SHR αποτελεί την καλύτερη εναλλακτική λύση για τέτοιου είδους μελέτες. Απώτερος στόχος της μελέτης μας ήταν η αναγνώριση πιθανών βιοδεικτών, που θα μπορούσαν εύκολα να ανιχνευθούν σε βιολογικά υγρά υπερτασικών ασθενών όπως τα ούρα και τελικά να δημιουργηθούν πρακτικά και διαγνωστικά τεστ για την έγκαιρη και μη επεμβατική εκτίμηση της νεφρικής βλάβης.

Η καλύτερη προσέγγιση για την ανεύρεση τέτοιων μορίων-δεικτών σε πολυπαραγοντικές παθολογικές καταστάσεις, όπως η υπερτασική νεφροσκλήρυνση, είναι η βιολογία συστημάτων και ειδικότερα η πρωτεομική ανάλυση. Οι μέθοδοι πρωτεομικής που εφαρμόσαμε μας επέτρεψαν τη μελέτη του συνολικού πρωτεόματος των νεφρικών κυττάρων και τον εντοπισμό μεμονωμένων πρωτεϊνών που η έκφραση τους αλλάζει λόγω της υπέρτασης. Μεθοδολογικά, οι αναλύσεις μας ξεκίνησαν από δείγματα νεφρικού παρεγχύματος που περιέχουν πολλούς κυτταρικούς τύπους και μετά την ανάδειξη διαφορικά εκφραζόμενων πρωτεϊνών, σε όσες επιλέξαμε, αναζητήσαμε την μεταβολή της έκφρασής τους τόσο σε συγκεκριμένο κυτταρικό τύπο όσο και σε υποκυτταρικό διαμέρισμα, με τη βοήθεια μορφολογικών τεχνικών. Ορισμένες από τις πρωτεΐνες αυτές έχουν πιθανό κρίσιμο ρόλο στην ανάπτυξη και την εξέλιξη της πάθησης. Ο πρώτος στόχος ήταν να αναγνωρισθούν οι πρωτεΐνες του νεφρού που εμφανίζουν διαφορική έκφραση στα υπερτασικά ζώα SHR σε σύγκριση με τα νορμοτασικά WKY. Για την υλοποίηση του συγκεκριμένου στόχου εφαρμόσαμε 2 διαφορετικές προσεγγίσεις πρωτεομικής ανάλυσης: Μια πρώτη προσέγγιση με 2DE MALDI-MS σε υπερτασικά και νορμοτασικά ζώα και
μια πιο ενδελεχή πρωτεομική ανάλυση με LC-MS/MS μεγαλύτερης ευαισθησίας στα
ίδια ζώα. Ακολούθησε βιοπληροφορική ανάλυση των αποτελεσμάτων και για τις δύο
μεθοδολογίες και επιβεβαίωση των αποτελεσμάτων για κάποιες από τις πρωτεΐνες με
ανεξάρτητες μεθόδους.

Όσον αφορά τη σύγκριση των δύο προσεγγίσεων πρωτεομικής ανάλυσης που εφαρμόσαμε, η 2η προσέγγιση (LC-MS/MS) είναι υψηλότερης ευαισθησίας καθώς αναγνωρίζονται περισσότερες πρωτεΐνες στα ίδια δείγματα σε σύγκριση με την 1^η. Ωστόσο, η 1η μέθοδος (2DE-MALDI-MS) αν και αναγνωρίζει λιγότερες πρωτεΐνες, επιτρέπει την αναγνώριση πρωτεϊνών οι οποίες δεν αναγνωρίζονται στην ανάλυση LC-MS/MS. Η μέθοδος 2DE-MALDI-MS επιτρέπει την ανάλυση διαφορετικών ισομορφών της ίδιας πρωτεΐνης, μετα-μεταφραστικών τροποποιήσεων καθώς και πιθανών σημείων πρωτεόλυσης της πρωτεΐνης, ανάλογα με τη θέση των κηλίδων ως προς την κατεύθυνση του pI. Οι παραπάνω περιπτώσεις δεν είναι δυνατό να ανιχνευθούν με τη μέθοδο LC-MS/MS [67]. Επομένως, η κάθε μέθοδος έχει διαφορετικά πλεονεκτήματα και μειονεκτήματα και οι δύο προσεγγίσεις πρωτεομικής που εφαρμόσαμε είναι συμπληρωματικές μεταξύ τους.

Επιπλέον, μια τρίτη προσέγγιση πρωτεομικής ανάλυσης πραγματοποιήθηκε σε νεφρικά αγγεία υπερτασικών και νορμοτασικών ζώων. Γνωρίζοντας πως μια από τις σημαντικότερες επιπτώσεις της υπέρτασης είναι η βλάβη που προκαλεί στα αγγεία πραγματοποιήσαμε πρωτεομική ανάλυση με την τεχνική GeLC-MS/MS αποκλειστικά σε αγγεία που απομονώθηκαν με Laser Capture Microdissection.

Οι τρεις πειραματικές προσεγγίσεις που χρησιμοποιήσαμε, επέτρεψαν την αναγνώριση πλήθους πρωτεϊνών, τόσο στο νεφρικό παρέγχυμα συνολικά όσο και στα νεφρικά αγγεία ειδικά, που παρουσιάζουν διαφορική έκφραση στα υπερτασικά ζώα σε σύγκριση με τα νορμοτασικά. Ορισμένες από τις πρωτεΐνες αυτές θα μπορούσαν να χρησιμοποιηθούν ως πιθανοί βιοδείκτες ή δυνητικά ακόμα και ως φαρμακευτικοί στόχοι. Επιπλέον, τα ευρήματά μας από την πρωτεομική ανάλυση μπορεί να αποτελέσουν τη βάση για περαιτέρω μελέτες.

4.2 Συζήτηση των αποτελεσμάτων 2DE MALDI-MS

Για την καλύτερη κατανόηση της υπερτασικής νεφροπάθειας σε μοριακό επίπεδο πραγματοποιήσαμε πρωτεομική ανάλυση του νεφρικού ιστού υπερτασικών SHR και νορμοτασικών WKY ζώων σε πολύ αρχικά στάδια ανάπτυξης με την τεχνική 2DE-MALDI MS. Ανιχνεύθηκε μεγάλος αριθμός πρωτεϊνών με διαφορική έκφραση καθώς και οι βιολογικές διεργασίες με τις οποίες σχετίζονται. Στη συνέχεια εστιάσαμε σε μια από αυτές τις πρωτεΐνες, την CLIC4, και αποδείξαμε ότι τα δεδομένα της πρωτεομικής για την συγκεκριμένη πρωτεΐνη επιβεβαιώνονται τόσο με βιοχημική ανάλυση όσο και με μορφολογικές μελέτες ανοσοϊστοχημείας και ανοσοφθορισμού.

Τα ευρήματά μας ότι η έκφραση της CLIC4 αυξάνεται στα εγγύς εσπειραμένα σωληνάρια υπερτασικών ζώων από την ηλικία των 6 εβδομάδων παρέχουν ισχυρές ενδείξεις ότι εμφανίζονται πρώιμες μοριακές αλλαγές στο συγκεκριμένο διαμέρισμα του νεφρικού παρεγχύματος. Αν και η οργανική βλάβη στο μοντέλο SHR ξεκινάει από την ηλικία των 20 εβδομάδων όπως αποδεικνύεται από την ανάπτυξη υπερτροφίας της αριστερής κοιλίας, αορτικής δυσκαμψίας και πρωτεϊνουρίας, έως τώρα δεν ήταν γνωστό ότι συμβαίνουν μορφολογικές αλλαγές σε υπερτασικά ζώα ηλικίας μικρότερης των 30 εβδομάδων [28]. Στην ηλικία αυτή οι μορφολογικές αλλαγές εμφανίζονται με τη μορφή ατροφίας των σωληναρίων και την ενδιάμεση ίνωση. Επομένως, τα ευρήματά μας είναι σημαντικά για την κατανόηση της πηγής των παθοφυσιολογικών αλλαγών που συμβαίνουν στο νεφρό από την υπέρταση και είναι σε πλήρη συμφωνία με τα μέχρι τώρα δεδομένα που υποδεικνύουν τη σημασία των σωληναρίων στη νεφρική ανεπάρκεια, την υπέρταση και την οξεία νεφρική βλάβη [68,69].

Σε προηγούμενη μελέτη έχει δειχθεί πως τα εγγύς εσπειραμένα σωληνάρια βασίζονται στον αερόβιο μεταβολισμό με τα μιτοχόνδρια των κυττάρων να βρίσκονται σε παρατεταμένη κατάσταση οξείδωσης [70]. Έτσι, έχει αποδειχθεί ότι τα σωληνάρια αυτά είναι ιδιαίτερα ευάλωτα στη μιτοχονδριακή δυσλειτουργία. Από την βιοπληροφορική ανάλυση των αποτελεσμάτων μας προέκυψε πως πράγματι υπάρχει σαφής συσχέτιση του οξειδωτικού στρες, της μιτοχονδριακής δυσλειτουργίας και της παθοφυσιολογίας της υπέρτασης. Τα ευρήματα αυτά υποστηρίζονται και από προηγούμενες μελέτες στο μοντέλο SHR που δείχνουν την παρουσία και την σημασία του οξειδωτικού στρες στη ρύθμιση της αρτηριακής πίεσης [71-75]. Επιπλέον, η ανάλυσή μας έδειξε πως η πρωτεΐνη CLIC4 είναι πιθανό να εμπλέκεται στα μονοπάτια που σχετίζονται με το οξειδωτικό στρες (Πίνακας 2).

Στο νεφρό η CLIC4 εκφράζεται στα επιθηλιακά κύτταρα των εγγύς σωληναρίων όπου διαδραματίζει σημαντικό ρόλο στην μεταφορά ουσιών, την δημιουργία του microvillus και την βιογένεση των λυσοσωμάτων. Η απουσία της σε CLIC4-null ποντίκια σχετίζεται με μειωμένη ανάπτυξη των σωληναρίων στα έμβρυα και με μη φυσιολογική διαστολή των εγγύς εσπειραμένων σωληναρίων στους ενήλικους ποντικούς ενώ έχει και σημαντικό ρόλο στην αγγειογένεση [37,76]. Τα εγγύς σωληνάρια ευθύνονται για την επαναρρόφηση των 2/3 του διηθημένου νερού των ιόντων νατρίου και χλωρίου. Σε αυτό το τμήμα του νεφρώνα η επαναρρόφηση του νατρίου ρυθμίζεται αυστηρά ανάλογα με τον ρυθμό της σπειραματικής διήθησης και εξαρτάται από την λειτουργία των διαμεμβρανικών πρωτεϊνών όπως η αντλία Na⁺/H⁺ στην κορυφαία μεμβράνη. Έτσι, η υπερέκφραση της CLIC4 στα υπερτασικά ζώα στην κορυφαία μεμβράνη/ψηκτροειδή παρυφή των επιθηλιακών κυττάρων στα εγγύς σωληνάρια θα μπορούσε να οδηγήσει σε επιδείνωση της επαναρρόφησης των ιόντων χλωρίου, μειωμένη χορήγησή του στην πυκνή κηλίδα (macula densa) στα άπω σωληνάρια, μειωμένη σωληναριο-σπειραματική ανάδραση (tubuloglomerular feedback) και τελικά αυξημένη απελευθέρωση ρενίνης. Με βάση τα παραπάνω, τα ιόντα χλωρίου μαζί με τα ιόντα νατρίου είναι πιθανό να έχουν κρίσιμο ρόλο στη διαμεσολάβηση μηνυμάτων από τα σωληνάρια στην πυκνή κηλίδα επηρεάζοντας την σωληναριο-σπειραματική ανάδραση η οποία είναι γνωστό πως παίζει σημαντικό ρόλο στην παθοφυσιολογία του νεφρού [77,78]. Συνεπώς, είναι σημαντικό να μελετηθεί περαιτέρω ο ρόλος της CLIC4 στα κύτταρα των εγγύς σωληναρίων και να διερευνηθεί εις βάθος η παρατηρούμενη αύξηση στην έκφρασή της στα κύτταρα αυτά λόγω της υπέρτασης.

4.3 Συζήτηση των αποτελεσμάτων LC-MS/MS

Από τη μελέτη του νεφρικού παρεγχύματος υπερτασικών και νορμοτασικών ζώων με την τεχνική LC-MS/MS ανιχνεύθηκαν ποικίλοι πιθανοί στόχοι. Η ανάλυση των αποτελεσμάτων μας έδωσε ένα μεγάλο αριθμό διαφορικά εκφραζόμενων πρωτεϊνών οι οποίες μπορεί να αποτελέσουν πιθανούς βιοδείκτες για την έγκαιρη ανίχνευση της νεφρικής βλάβης λόγω της υπέρτασης. Μια από αυτές τις πρωτεΐνες, ο συμμεταφορέας γλυκόζης και ιόντων νατρίου SGLT2, επιλέχθηκε για περαιτέρω μελέτη με βάση τα στατιστικά κριτήρια, αλλά και την λειτουργία του στο νεφρό.

Στο μοντέλο SHR η σωληναριακή ατροφία καθίσταται σημαντική μεταξύ 30^{ης} και 60^{ης} εβδομάδας, ενώ η νεφρική βλάβη είναι μορφολογικά εμφανής σε ζώα ηλικίας άνω των 30 εβδομάδων [28]. Στη μελέτη μας εντοπίσαμε μοριακές αλλαγές που συμβαίνουν στα σωληνάρια των υπερτασικών ζώων από την ηλικία των 6 εβδομάδων. Δηλαδή οι μοριακές αλλαγές συμβαίνουν στα σωληνάρια πολύ πριν εκδηλωθούν μορφολογικές αλλοιώσεις στο νεφρικό παρέγχυμα. Τα ευρήματά μας ότι η έκφραση της πρωτεΐνης SGLT2 αυξάνεται στα επιθηλιακά κύτταρα των εγγύς σωληναρίων πολύ νωρίς στην ανάπτυξη υποστηρίζονται και από τις παρατηρούμενες μοριακές αλλαγές στο ίδιο διαμέρισμα του νεφρικού παρεγχύματος υπερτασικών ζώων ίδιας ηλικίας κατά την πρώτη πρωτεομική ανάλυση που πραγματοποιήσαμε με 2 DE MALDI-MS. Τα ευρήματα αυτά υποδεικνύουν ότι πρώιμες αλλαγές συμβαίνουν στο σωληναριακό διαμέρισμα του νεφρού και ότι οι αλλαγές αυτές είναι πιθανό να εμπλέκονται στην ανάπτυξη της νεφρικής βλάβης λόγω της υπέρτασης. Προηγούμενες μελέτες έχουν δείξει την σημασία των σωληναρίων στην ανθρώπινη νεφρική ανεπάρκεια και την οξεία νεφρική βλάβη [68]. Ωστόσο, μέχρι τώρα δεν έχουν καταγραφεί πρώιμες μοριακές μεταβολές στα κύτταρα των εγγύς εσπειραμένων σωληναρίων και μάλιστα πριν την εγκαθίδρυση οποιασδήποτε νεφρικής βλάβης.

Η πιθανή συμμετοχή του SGLT2 στην παθοφυσιολογία της υπερτασικής νεφροσκλήρυνσης, αλλά και το ενδεχόμενο να αποτελέσει στο μέλλον έναν πρώιμο βιοδείκτη της νεφρικής βλάβης υποστηρίζεται από τη θέση και την λειτουργία του στο νεφρικό παρέγχυμα. Ο SGLT2 είναι ο κύριος συμμεταφορέας της επαναπορρόφησης της γλυκόζης στο νεφρό και εντοπίζεται αποκλειστικά στην κορυφαία επιφάνεια των επιθηλιακών κυττάρων των εγγύς σωληναρίων που είναι γνωστή ως ψηκτροειδής παρυφή [79]. Ο εντοπισμός και η υπερέκφραση του SGLT2 στην ψηκτροειδή παρυφή αυξάνει την πιθανότητα ότι το μόριο αυτό μπορεί σε παθολογικές καταστάσεις να εκκρίνεται στα ούρα μέσω εξωσωμάτων [80]. Η ανίχνευση του SGLT2 στα δείγματα ούρων υπερτασικών ασθενών θα έχει μεγάλη σημασία για τον σχεδιασμό μη επεμβατικών προσεγγίσεων με σκοπό την διάγνωση και την θεραπεία της υπερτασικής νεφροσκλήρυνσης.

Τα τελευταία χρόνια έχει αναπτυχθεί μια νέα κατηγορία φαρμάκων (Empagliflozin, Canagliflozin, Dapagliflozin, Ertugliflozin) για τη μείωση των επιπέδων της γλυκόζης στο αίμα διαβητικών ασθενών. Τα φάρμακα αυτά δρουν αναστέλλοντας τη νεφρική επαναρρόφηση της γλυκόζης με μηχανισμό ανεξάρτητο από την ινσουλίνη [38]. Ειδικότερα, ο μηχανισμός δράσης τους περιλαμβάνει την αναστολή της λειτουργίας του συμμεταφορέα SGLT2 με αποτέλεσμα να αυξάνεται η αποβολή γλυκόζης στα ούρα (γλυκοζουρία) και να μειώνεται η υπεργλυκαιμία στους διαβητικούς ασθενείς ανεξάρτητα από την λειτουργία της ινσουλίνης. Πρόσφατες μελέτες υποδεικνύουν τα μακροπρόθεσμα καρδιαγγειακά και νεφρικά οφέλη των αναστολέων του SGLT2 καθώς και ευνοϊκές επιδράσεις στην αρτηριακή πίεση, τα επίπεδα ουρικού οξέος, την ενδονεφρική αιμοδυναμική και την αλβουμινουρία [39,40]. Επιπλέον, έχει δειχθεί πως η αναστολή του SGLT2 έχει ως αποτέλεσμα την μείωση της πρωτεϊνουρίας και της φλεγμονής στο νεφρό [41,42]. Τα ευρήματα αυτά συνδέονται με σημαντική μείωση της συστολικής αρτηριακής πίεσης και συμβαίνουν παρά την διέγερση του ενδονεφρικού συστήματος ρενίνηςαγγειοτενσίνης [43].

Επομένως, όπως υποδεικνύεται και από την σχετική βιβλιογραφία η αναστολή της δράσης του SGLT2 έχει σημαντικά οφέλη στην μείωση της αρτηριακής πίεσης. Το γεγονός αυτό υποστηρίζει την υπόθεση ότι ο SGLT2 είναι πιθανό να εμπλέκεται στην ανάπτυξη της υπερτασικής νεφροσκλήρυνσης στο νεφρό και να αποτελέσει στο μέλλον έναν αξιόπιστο δείκτη για την έγκαιρη εκτίμηση της νεφρικής βλάβης και έναν πιθανό στόχο για τη μείωση όχι μόνο της γλυκόζης στο αίμα διαβητικών αλλά και της αρτηριακής πίεσης υπερτασικών ασθενών.

4.4 Συζήτηση των αποτελεσμάτων Laser Capture Microdissection και GeLC-MS/MS

Η πρωτεομική ανάλυση αποκλειστικά στα νεφρικά αγγεία υπερτασικών και νορμοτασικών ζώων αποσκοπούσε στον εντοπισμό πρόωρων αλλαγών στο συγκεκριμένο διαμέρισμα του νεφρικού παρεγχύματος λόγω της υπέρτασης. Το πρωτόκολλο που εφαρμόσαμε περιλάμβανε δύο πολύ εξειδικευμένες τεχνικές: i) την τεχνική LCM (Laser Capture Microdissection) για την απομόνωση των αγγείων με εξαιρετική ακρίβεια και ii) την πρωτεομική τεχνική υψηλής ευαισθησίας GeLC-MS/MS για τη μελέτη του συνολικού πρωτεόματος των νεφρικών αγγείων σε δείγματα με ελάχιστη ποσότητα πρωτεΐνης.

Η χρήση της τεχνικής LCM σε μελέτες που αφορούν το νεφρό παρέχει ένα σημαντικό πλεονέκτημα. Μας δίνει την δυνατότητα να διαχωρίσουμε διαφορετικά διαμερίσματα και υπο-διαμερίσματα του νεφρικού παρεγχύματος χωρίς καμία πρόσμιξη. Οι μέθοδοι που χρησιμοποιούνται μέχρι τώρα για το σκοπό αυτό (π.χ. χρήση διαφορετικών τύπων κόσκινων για τον διαχωρισμό των σπειραμάτων από τα σωληνάρια) έχουν το μειονέκτημα ότι δεν μπορούν να διαχωρίσουν τους διαφορετικούς τύπους σωληναρίων μεταξύ τους (π.χ εγγύς και άπω σωληνάρια). Επιπλέον, αυτές οι μεθοδολογίες είναι δαπανηρές. Τα δείγματα που απομονώνονται με την τεχνική LCM μπορούν να χρησιμοποιηθούν είτε για πρωτεομική ανάλυση είτε για την σε βάθος ανάλυση του μεταγραφώματος των διαφορετικών τύπων κυττάρων που απαρτίζουν το νεφρό. Συνεπώς, η χρήση τέτοιων δειγμάτων σε μελλοντικές μελέτες θα οδηγήσει σε μια πιο εις βάθος κατανόηση της παθοφυσιολογίας του νεφρού.

Στη μελέτη μας ο μεγάλος αριθμός των αναγνωρισμένων πρωτεϊνών επιβεβαιώνει ότι ο συνδυασμός των δύο μεθόδων ήταν εξαιρετικά αποτελεσματικός και ικανός για την αναγνώριση πρωτεϊνών με διαφορική έκφραση στα αγγεία που πιθανόν να εμπλέκονται στην παθογένεια της υπέρτασης. Επιπλέον, η σύγκριση των δεδομένων που προέκυψαν από την ανάλυσή μας με την διαθέσιμη βάση δεδομένων Rat IMCD proteome database έδειξε πώς 517 πρωτεΐνες από τις συνολικά 688 που αναγνωρίστηκαν στα νεφρικά αγγεία ήταν κοινές με την παραπάνω βάση δεδομένων. Με άλλα λόγια υπάρχει σχεδόν 75% αλληλοεπικάλυψη των αποτελεσματικότητα της μεθοδολογίας που εφαρμόσαμε.

Είναι ευρέως γνωστό πως η υπέρταση προκαλεί βλάβες στα τοιχώματα των αγγείων. Στα υπερτασικά άτομα η ενδοθηλιακή λειτουργία εμφανίζεται εξασθενημένη στα διάφορα αγγειακά διαμερίσματα συμπεριλαμβανομένων των νεφρικών αρτηριών και των διακλαδώσεών τους. Οι μεταβολές στο αγγειακό τοίχωμα μπορεί να εμπλέκονται στην παθογένεση της υπέρτασης σε πρώιμο στάδιο, ενώ παράλληλα μπορεί να θεωρηθούν ως συνέπεια της υπέρτασης σε ένα μεταγενέστερο στάδιο [28]. Το αν η ενδοθηλιακή δυσλειτουργία αποτελεί αιτία ή συνέπεια της υπέρτασης έχει αποτελέσει αντικείμενο πολλών μελετών [81]. Οι μηχανισμοί που οδηγούν σε ενδοθηλιακή δυσλειτουργία μπορεί να σχετίζονται με μείωση των παραγόντων EDRFs (endothelium-derived relaxing factors) ή/και με την αύξηση των παραγόντων EDCFs (endothelium-derived constricting factors).

Στο μοντέλο SHR, μεταβολές στην αγγειακή δομή και σε λειτουργίες που σχετίζονται με την υπέρταση δεν εμφανίζονται σε νεαρά ζώα, αλλά παρατηρούνται σε ενήλικα ζώα ηλικίας άνω των 25 εβδομάδων [82]. Η μελέτη μας, εστιάζοντας σε ένα πρώιμο χρονικό διάστημα, παρέχει βάσιμα στοιχεία ότι στο μοντέλο SHR συμβαίνουν πρώιμες μοριακές μεταβολές στα νεφρικά αγγεία από την ηλικία των 20 εβδομάδων. Από την ανάλυσή μας προέκυψαν 58 πρωτεΐνες διαφορικά εκφραζόμενες στα υπερτασικά SHR ζώα, οι οποίες σχετίζονται άμεσα ή έμμεσα με την αγγειακή δυσλειτουργία.

Πολλές από τις διαφορικά εκφραζόμενες πρωτεΐνες που προσδιορίστηκαν σχετίζονται με τη ρύθμιση του αγγειακού τόνου. Έτσι, αναγνωρίστηκαν πρωτεΐνες που εμπλέκονται στην λειτουργία του ΝΟ (νιτρικό οξείδιο) ως αγγειοδιασταλτικού παράγοντα και οι οποίες επηρεάζουν την ενδοθηλιακή συνθετάση του νιτρικού οξειδίου eNOS. Οι πρωτεΐνες αυτές περιλαμβάνουν τις Xaa-Pro aminopeptidase 1 (XPP1), N(G) N(G)dimethylarginine dimethylaminohydrolase 1 (DDAH1), Dehydropteridine reductase (DHPR). Επιπλέον, αναγνωρίστηκαν και πρωτεΐνες με διαφορική έκφραση που επηρεάζουν την αγγειοσυστολή και την ρύθμιση της αρτηριακής πίεσης από το σύστημα ρενίνης-αγγειοτενσίνης [83]. Οι πρωτεΐνες αυτές περιλαμβάνουν τις Glutamyl aminopeptidase/Aminopeptidase A (AMPE) και Aminopeptidase N (AMPN). Όλες αυτές οι πρωτεΐνες είναι πιθανό να εμπλέκονται στην παθογένεση της υπερτασικής νεφροπάθειας.

Ο μεταβολισμός της αγγειοτενσίνης είναι κρίσιμος για τη ρύθμιση της αρτηριακής πίεσης, καθώς εκτός από την αγγειοτενσίνη ΙΙ (Ang II), τα πεπτιδικά θραύσματα που προέρχονται από αυτήν (Ang III και Ang IV) έχουν επίσης ποικίλους και σημαντικούς ρόλους. Το θραύσμα Ang III έχει δειχθεί πως είναι ένα δραστικό πεπτίδιο. Στο ενδονεφρικό σύστημα ρενίνης-αγγειοτενσίνης το Ang III αυξάνει τα επίπεδα του αγγειοτενσινογόνου καθώς και επάγει την έκφραση των γονιδίων των TGF-β, fibronectin και monocyte chemoattractant protein-1. Επίσης, έχει αναφερθεί πως ο σχηματισμός του Ang III παίζει ρόλο στην μεσολαβούμενη από τον υποδοχέα AT2 νατριούρηση που παρατηρείται σε αρουραίους, μηχανισμός που είναι υπεύθυνος για τη μείωση της αρτηριακής πίεσης. Επιπλέον, ο ενδοθηλιακός μεταβολισμός της Ang II στο πεπτίδιο Ang ΙΙΙ ενισχύει την διαστολή των αρτηριών της φλοιώδους μοίρας των επινεφριδίων [84]. Στην ανάλυσή μας στα νεφρικά αγγεία των υπερτασικών ζώων οι AMPE και AMPN που είναι υπεύθυνες για τον σχηματισμό των Ang III και Ang IV αντίστοιχα, βρέθηκαν μειωμένες (Εικόνα 21). Αυτό έχει ως αποτέλεσμα η Ang II να μην διασπάται σε Ang III και Ang IV [60,61], γεγονός που είναι πιθανό να ενισχύει την αγγειοσυσταλτική της δράση, ενώ παράλληλα μειώνεται η επαγώμενη από το Ang III απέκκριση νατρίου [85]. Οι αλλαγές αυτές είναι πιθανό να επάγουν την υπέρταση και είναι σε πλήρη συμφωνία με την αυξημένη αρτηριακή πίεση (160-170 mmHg) που μετρήθηκε στα υπερτασικά ζώα που χρησιμοποιήθηκαν στη μελέτη.

Εικόνα 21: Πιθανός μηχανισμός ενεργοποίησης της παρατεταμένης αγγειοσυσταλτικής δράσης της αγγειοτενσίνης ΙΙ (Ang II). Η μειωμένη έκφραση των αμινοπεπτιδασών AMPE και AMPN στα υπερτασικά ζώα οδηγούν σε μειωμένη αποδόμηση της Ang II και Ang III αντίστοιχα ενισχύοντας την δράση της Ang II στα αγγεία.

Παρ 'όλα αυτά, παρά την καθιερωμένη υψηλή αρτηριακή πίεση στα ζώα όπου έγινε η μελέτη, η ανάλυσή μας αποκάλυψε και διαφορικά εκφραζόμενες πρωτεΐνες που μπορεί να έχουν προστατευτικό ρόλο κατά την ανάπτυξη υπέρτασης. Με άλλα λόγια, είναι πολύ πιθανό να ενεργοποιούνται αμυντικοί μηχανισμοί στα νεφρικά αγγεία των SHR ζώων σε πρώιμη φάση ανάπτυξης της υπέρτασης, για να εξισορροπήσουν ενδεχομένως την αγγειοσυστολική δράση της Ang II και άλλων παραγόντων με παρόμοια δράση. Σε προηγούμενες μελέτες έχει δειχθεί ο ρόλος του ΝΟ στην υπέρταση και την νεφρική βλάβη στο μοντέλο SHR και έχουν βρεθεί αυξημένα επίπεδα της iNOS μόνο στα υπερτασικά ζώα και όχι στα νορμοτασικά WKY [86,87]. Στη μελέτη μας αναγνωρίστηκαν μόρια τα οποία μπορούν να επηρεάσουν την σύνθεση παραγόντων χαλάρωσης που προέρχονται από το ενδοθήλιο (EDRFs) αυξάνοντας τα επίπεδα του ΝΟ με αποτέλεσμα την διαστολή των αγγείων. Συγκεκριμένα, η XPP1 η οποία διασπά την βραδυκινίνη βρέθηκε μειωμένη στα υπερτασικά ζώα οδηγώντας έτσι σε μειωμένη αποδόμηση της βραδικυνίνης. Η βραδυκινίνη διεγείρει τα ενδοθηλιακά κύτταρα να παράγουν και να απελευθερώνουν EDRFs που προκαλούν διαστολή των αιμοφόρων αγγείων. Συνεπώς, η μειωμένη αποδόμηση της βραδυκινίνης πιθανότατα οδηγεί στην συνεχόμενη διέγερση των ενδοθηλιακών κυττάρων και στην απελευθέρωση EDRFs από αυτά με τελικό αποτέλεσμα τη διαστολή των αγγείων και τη μείωση της αρτηριακής πίεσης [57,58].

Άλλα μόρια που αναγνωρίστηκαν και παρουσιάζουν πιθανό προστατευτικό ρόλο είναι τα DDAH1 και DHPR. Το DDAH 1 είναι ένα ένζυμο που μεταβολίζει τη μεθυλαργινίνη και μειώνει τα επίπεδα της ασύμμετρης διμεθυλαργινίνης (ADMA). Η ADMA είναι μια ενδογενής ένωση που προέρχεται από την πρωτεόλυση πρωτεϊνών που περιέχουν μεθυλιωμένα υπολείμματα αργινίνης και αναστέλλει την καταλυτική δράση της συνθετάσης του νιτρικού οξειδίου (NOS). Επιπλέον, έχει δειχθεί πως η ADMA συσσωρεύεται στο πλάσμα ασθενών με CKD [88] ενώ η μειωμένη σύνθεση της ADMA στα νεφρικά σωληνάρια προστατεύει από την προοδευτική μείωση της λειτουργίας των νεφρών [89]. Το DHPR είναι ένα ένζυμο που καταλύει την αναγέννηση της τετραϋδροβιοπτερίνης (BH4). Το BH4 λειτουργεί ως συμπαράγοντας πολλών ενζύμων συμπεριλαμβανομένου και της συνθετάσης του NO (NOS) το οποίο έχει αντιφλεγμονώδη δράση [90]. Το DHPR μετατρέπει το BH2 σε BH4 το οποίο είναι απαραίτητο για παραγωγή NO από την NOS. Εάν το BH4 είναι ανεπαρκές στα κύτταρα, η NOS παράγει υπεροξείδιο [91,92]. Επομένως, η αυξημένη έκφραση του DHPR στο μοντέλο SHR πιθανότατα ευνοεί την αναγέννηση του BH4 επιτρέποντας την ενζυματική σύνθεση του ΝΟ. Γραφική απεικόνιση όλων αυτών των μορίων και του πιθανού μηχανισμού που οδηγεί σε διαστολή των αγγείων μέσω της παραγωγής NO και EDRFs παρουσιάζεται στην Εικόνα 22.

Εικόνα 22: Υποθετικός μηχανισμός που οδηγεί στην διαστολή των αγγείων στο μοντέλο SHR μέσω της παραγωγής NO και EDRFs. ADMA: asymmetric dimethylarginine, BH2: dihydrobiopterin, BH4: tetrahydrobiopterin, DDAH1: dimethylarginine dimethylaminohydrolase 1, DHPR: dehydropteridine reductase, EDRFs: endotheliumderived relaxing factors, eNOS: endothelial nitric oxide synthase, NO: nitric oxide, XPP1: Xaa-Pro aminopeptidase 1.

5. ΣΥΜΠΕΡΑΣΜΑΤΑ-ΜΕΛΛΟΝΤΙΚΕΣ ΚΑΤΕΥΘΥΝΣΕΙΣ

Η σχέση που συνδέει την έκταση της νεφρικής βλάβης ανεξαρτήτως αιτίας, με την έκπτωση της λειτουργικότητας του νεφρού δεν είναι απολύτως γραμμική. Ο νεφρός έχει την ικανότητα να συνεχίζει να λειτουργεί φυσιολογικά μέχρι ένα σημείο όσο η βλάβη σε αυτόν μπορεί να επεκτείνεται. Αυτό έχει ως συνέπεια τα συμπτώματα να εμφανίζονται όταν η βλάβη είναι αρκετά εκτεταμένη και πιθανότατα μη αναστρέψιμη. Το ίδιο συμβαίνει όταν αιτία της νεφρικής βλάβης αποτελεί η υπέρταση. Το γεγονός αυτό κάνει επιτακτική την ανάγκη να βρεθούν μόρια δείκτες που θα υποδηλώνουν την απαρχή της βλάβης που προκαλεί η υπέρταση στο νεφρικό παρέγχυμα με σκοπό την έγκαιρη διάγνωση της υπερτασικής νεφροσκλήρυνσης. Η παρούσα μελέτη συνέβαλε προς αυτήν την κατεύθυνση.

Τα ευρήματά μας στο σύνολο δύναται να αποτελέσουν πηγή πληροφοριών για περαιτέρω προσεγγίσεις και αναλύσεις στο νεφρό με τη βοήθεια της βιολογίας των συστημάτων. Δεδομένου ότι οι μηχανισμοί που οδηγούν σε υπερτασική νεφροσκλήρυνση δεν έχουν διευκρινιστεί λεπτομερώς, η μελέτη μας παρέχει εκτεταμένα δεδομένα πρωτεομικής σε πολύ πρώιμο στάδιο της πάθησης τα οποία μπορούν να θεωρηθούν ως σημείο εκκίνησης για μελλοντικές μελέτες σχετικά με την επίδραση της υπέρτασης στο νεφρικό παρέγχυμα και για την καλύτερη κατανόηση της παθοφυσιολογίας της.

Η εφαρμογή των τριών προσεγγίσεων πρωτεομικής ανάλυσης (2DE-MALDI-MS, LC-MS/MS και GeLC-MS/MS) επέτρεψε την διερεύνηση εις βάθος του νεφρικού πρωτεόματος συνολικά αλλά και του πρωτεόματος των αγγείων ειδικά, στο υπερτασικό μοντέλο SHR. Αναγνωρίστηκε πλήθος πρωτεϊνών με διαφορική έκφραση. Δύο πρωτεΐνες με σημαντικό βιολογικό ρόλο, η CLIC4 και η SGLT2 επιβεβαιώθηκαν και με ανεξάρτητες μεθόδους όπως η ανοσοαποτύπωση κατά Western, η RT-qPCR, η ανοσοϊστοχημεία και ο ανοσοφθορισμός, και προτείνονται ως πιθανοί βιοδείκτες υπερτασικής νεφροσκλήρυνσης στο μοντέλο SHR.

Τα ευρήματά μας υποδεικνύουν ότι σημαντικές αλλαγές συμβαίνουν στο νεφρικό παρέγχυμα από τα πρώτα στάδια ανάπτυξης της υπέρτασης στο πειραματικό μοντέλο SHR. Ειδικότερα, οι αλλαγές αυτές εντοπίζονται στο σωληναριακό διαμέρισμα του νεφρικού παρεγχύματος των υπερτασικών επίμυων, γεγονός που υποδεικνύει ότι οι αλλαγές αυτές είναι πολύ ειδικά εντοπισμένες. Σύμφωνα με τη μέχρι τώρα βιβλιογραφία η βλάβη που προκαλείται από την παρατεταμένη υπέρταση εμφανίζεται πρώτα στα αγγεία και προϋπάρχει της βλάβης που εμφανίζεται στα σπειράματα [30]. Οι μηχανισμοί εξέλιξης της αγγειακής βλάβης σε σπειραματική και σωληναριακή βλάβη παραμένουν αδιευκρίνιστοι. Επιπλέον, αν και δεν έχουν ταυτοποιηθεί αξιόπιστοι πρώιμοι δείκτες για την έγκαιρη διάγνωση και την εκτίμηση της νεφρικής βλάβης που προκαλεί η υπέρταση, τα μέχρι τώρα ευρήματά μας στο υπερτασικό μοντέλο SHR αποτελούν τις πρώτες βάσιμες ενδείξεις ότι οι πρωτεΐνες αυτές μπορεί να εξελιχθούν σε πιθανούς μελλοντικούς δείκτες. Στη μελέτη μας, η υπερέκφραση τόσο της πρωτεΐνης CLIC4 όσο και της πρωτεΐνης SGLT2 εντοπίζεται αποκλειστικά στα εγγύς εσπειραμένα σωληνάρια, μια περιοχή του νεφρικού παρεγχύματος που δεν έχει συνδεθεί έως τώρα με τις άμεσες βλάβες της υπέρτασης στο νεφρό. Τα ευρήματά μας είναι πολύ σημαντικά καθώς υποδεικνύουν αλλαγές στην έκφραση πρωτεϊνών στο νεφρό πολύ νωρίς στην ανάπτυξη υπερτασικής νεφροσκλήρυνσης, πριν εγκαθιδρυθεί η υπέρταση. Επομένως, οι πρωτεΐνες CLIC4 και SGLT2 πιθανότατα έχουν κρίσιμο ρόλο στην παθοφυσιολογία και την ανάπτυξη υπέρτασης στο μοντέλο SHR.

Μελλοντικά, η ανίχνευσή τους σε κατάλληλο βιολογικό υλικό από υπερτασικούς ασθενείς (π.χ ούρα) αλλά και από φυσιολογικά άτομα είναι απαραίτητη, για την επιβεβαίωση των ευρημάτων από το πειραματικό μοντέλο και στην ανθρώπινη υπέρταση.

6. ΒΙΒΛΙΟΓΡΑΦΙΑ

- Inker, L.A.; Astor, B.C.; Fox, C.H.; Isakova, T.; Lash, J.P.; Peralta, C.A.; Kurella Tamura, M.; Feldman, H.I. KDOQI US commentary on the 2012 KDIGO clinical practice guideline for the evaluation and management of CKD. *American journal of kidney diseases : the official journal of the National Kidney Foundation* 2014, 63, 713-735, doi:10.1053/j.ajkd.2014.01.416.
- Levey, A.S.; Becker, C.; Inker, L.A. Glomerular filtration rate and albuminuria for detection and staging of acute and chronic kidney disease in adults: a systematic review. *Jama* 2015, *313*, 837-846, doi:10.1001/jama.2015.0602.
- 3. Cirillo, M. Evaluation of glomerular filtration rate and of albuminuria/proteinuria. *Journal of nephrology* **2010**, *23*, 125-132.
- 4. Vaidya, S.R.; Aeddula, N.R. Chronic Renal Failure. In *StatPearls*, Treasure Island (FL), 2019.
- Tedla, F.M.; Brar, A.; Browne, R.; Brown, C. Hypertension in chronic kidney disease: navigating the evidence. *International journal of hypertension* 2011, 2011, 132405, doi:10.4061/2011/132405.
- Andrassy, K.M. Comments on 'KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease'. *Kidney international* 2013, 84, 622-623, doi:10.1038/ki.2013.243.
- Webster, A.C.; Nagler, E.V.; Morton, R.L.; Masson, P. Chronic Kidney Disease. Lancet 2017, 389, 1238-1252, doi:10.1016/S0140-6736(16)32064-5.
- Roger, V.L.; Go, A.S.; Lloyd-Jones, D.M.; Benjamin, E.J.; Berry, J.D.; Borden, W.B.; Bravata, D.M.; Dai, S.; Ford, E.S.; Fox, C.S., et al. Heart disease and stroke statistics--2012 update: a report from the American Heart Association. *Circulation* 2012, 125, e2-e220, doi:10.1161/CIR.0b013e31823ac046.
- Go, A.S.; Mozaffarian, D.; Roger, V.L.; Benjamin, E.J.; Berry, J.D.; Borden, W.B.; Bravata, D.M.; Dai, S.; Ford, E.S.; Fox, C.S., et al. Heart disease and stroke statistics--2013 update: a report from the American Heart Association. *Circulation* 2013, 127, e6-e245, doi:10.1161/CIR.0b013e31828124ad.
- Go, A.S.; Mozaffarian, D.; Roger, V.L.; Benjamin, E.J.; Berry, J.D.; Blaha, M.J.; Dai, S.; Ford, E.S.; Fox, C.S.; Franco, S., et al. Heart disease and stroke statistics--2014 update: a report from the American Heart Association. *Circulation* 2014, *129*, e28-e292, doi:10.1161/01.cir.0000441139.02102.80.

- 11. De Venecia, T.; Lu, M.; Figueredo, V.M. Hypertension in young adults. *Postgraduate medicine* **2016**, *128*, 201-207, doi:10.1080/00325481.2016.1147927.
- Yu, X.Q.; Wu, L.L.; Huang, X.R.; Yang, N.; Gilbert, R.E.; Cooper, M.E.; Johnson, R.J.; Lai, K.N.; Lan, H.Y. Osteopontin expression in progressive renal injury in remnant kidney: role of angiotensin II. *Kidney international* 2000, *58*, 1469-1480, doi:10.1046/j.1523-1755.2000.00309.x.
- 13. Lloyd, C.; Gutierrez-Ramos, J.C. The role of chemokines in tissue inflammation and autoimmunity in renal diseases. *Current opinion in nephrology and hypertension* **1998**, *7*, 281-287.
- Chen, X.L.; Tummala, P.E.; Olbrych, M.T.; Alexander, R.W.; Medford, R.M. Angiotensin II induces monocyte chemoattractant protein-1 gene expression in rat vascular smooth muscle cells. *Circulation research* 1998, *83*, 952-959.
- 15. Shulman, N.B.; Ford, C.E.; Hall, W.D.; Blaufox, M.D.; Simon, D.; Langford, H.G.; Schneider, K.A. Prognostic value of serum creatinine and effect of treatment of hypertension on renal function. Results from the hypertension detection and followup program. The Hypertension Detection and Follow-up Program Cooperative Group. *Hypertension* 1989, *13*, 180-93.
- Klag, M.J.; Whelton, P.K.; Randall, B.L.; Neaton, J.D.; Brancati, F.L.; Ford, C.E.; Shulman, N.B.; Stamler, J. Blood pressure and end-stage renal disease in men. *The New England journal of medicine* **1996**, *334*, 13-18, doi:10.1056/NEJM199601043340103.
- Tozawa, M.; Iseki, K.; Iseki, C.; Kinjo, K.; Ikemiya, Y.; Takishita, S. Blood pressure predicts risk of developing end-stage renal disease in men and women. *Hypertension* 2003, 41, 1341-1345, doi:10.1161/01.HYP.0000069699.92349.8C.
- 18. Hill, G.S. Hypertensive nephrosclerosis. *Current opinion in nephrology and hypertension* **2008**, *17*, 266-270, doi:10.1097/MNH.0b013e3282f88a1f.
- Doggrell, S.A.; Brown, L. Rat models of hypertension, cardiac hypertrophy and failure. *Cardiovascular research* 1998, *39*, 89-105, doi:10.1016/s0008-6363(98)00076-5.
- 20. Lin, H.Y.; Lee, Y.T.; Chan, Y.W.; Tse, G. Animal models for the study of primary and secondary hypertension in humans. *Biomedical reports* **2016**, *5*, 653-659, doi:10.3892/br.2016.784.
- 21. Wiesel, P.; Mazzolai, L.; Nussberger, J.; Pedrazzini, T. Two-kidney, one clip and one-kidney, one clip hypertension in mice. *Hypertension* **1997**, *29*, 1025-1030.

- 22. Zeng, J.; Zhang, Y.; Mo, J.; Su, Z.; Huang, R. Two-kidney, two clip renovascular hypertensive rats can be used as stroke-prone rats. *Stroke* **1998**, *29*, 1708-1713; discussion 1713-1704.
- Kuijpers, M.H.; Gruys, E. Spontaneous hypertension and hypertensive renal disease in the fawn-hooded rat. *British journal of experimental pathology* **1984**, *65*, 181-190.
- 24. Dobrian, A.D.; Davies, M.J.; Prewitt, R.L.; Lauterio, T.J. Development of hypertension in a rat model of diet-induced obesity. *Hypertension* **2000**, *35*, 1009-1015.
- 25. Rapp, J.P.; Dene, H. Development and characteristics of inbred strains of Dahl saltsensitive and salt-resistant rats. *Hypertension* **1985**, *7*, 340-349.
- Okamoto, K.; Aoki, K. Development of a strain of spontaneously hypertensive rats. Japanese circulation journal 1963, 27, 282-293.
- Yagil, Y.; Yagil, C. Genomic research in rat models of kidney disease. *Methods in molecular biology* 2010, 597, 427-444, doi:10.1007/978-1-60327-389-3_29.
- Hultstrom, M. Development of structural kidney damage in spontaneously hypertensive rats. *Journal of hypertension* 2012, 30, 1087-1091, doi:10.1097/HJH.0b013e328352b89a.
- Lee, K.M.; Kang, H.A.; Ko, C.B.; Oh, E.H.; Park, M.; Lee, H.Y.; Choi, H.R.; Yun, C.H.; Jung, W.W.; Oh, J.W., et al. Differential gene expression profiles in spontaneously hypertensive rats induced by administration of enalapril and nifedipine. *International journal of molecular medicine* 2013, *31*, 179-187, doi:10.3892/ijmm.2012.1183.
- Ochodnicky, P.; Henning, R.H.; Buikema, H.J.; de Zeeuw, D.; Provoost, A.P.; van Dokkum, R.P. Renal vascular dysfunction precedes the development of renal damage in the hypertensive Fawn-Hooded rat. *American journal of physiology*. *Renal physiology* 2010, 298, F625-633, doi:10.1152/ajprenal.00289.2009.
- 31. He, J.C.; Chuang, P.Y.; Ma'ayan, A.; Iyengar, R. Systems biology of kidney diseases. *Kidney international* **2012**, *81*, 22-39, doi:10.1038/ki.2011.314.
- Hoorn, E.J.; Pisitkun, T.; Zietse, R.; Gross, P.; Frokiaer, J.; Wang, N.S.; Gonzales, P.A.; Star, R.A.; Knepper, M.A. Prospects for urinary proteomics: exosomes as a source of urinary biomarkers. *Nephrology* 2005, *10*, 283-290, doi:10.1111/j.1440-1797.2005.00387.x.

- Thippakorn, C.; Schaduangrat, N.; Nantasenamat, C. Proteomic and bioinformatic discovery of biomarkers for diabetic nephropathy. *EXCLI journal* 2018, *17*, 312-330, doi:10.17179/excli2018-1150.
- Klein, J.; Kavvadas, P.; Prakoura, N.; Karagianni, F.; Schanstra, J.P.; Bascands, J.L.; Charonis, A. Renal fibrosis: insight from proteomics in animal models and human disease. *Proteomics* 2011, *11*, 805-815, doi:10.1002/pmic.201000380.
- 35. Littler, D.R.; Harrop, S.J.; Goodchild, S.C.; Phang, J.M.; Mynott, A.V.; Jiang, L.; Valenzuela, S.M.; Mazzanti, M.; Brown, L.J.; Breit, S.N., et al. The enigma of the CLIC proteins: Ion channels, redox proteins, enzymes, scaffolding proteins? *FEBS letters* 2010, 584, 2093-2101, doi:10.1016/j.febslet.2010.01.027.
- Suginta, W.; Karoulias, N.; Aitken, A.; Ashley, R.H. Chloride intracellular channel protein CLIC4 (p64H1) binds directly to brain dynamin I in a complex containing actin, tubulin and 14-3-3 isoforms. *The Biochemical journal* 2001, *359*, 55-64, doi:10.1042/0264-6021:3590055.
- 37. Chou, S.Y.; Hsu, K.S.; Otsu, W.; Hsu, Y.C.; Luo, Y.C.; Yeh, C.; Shehab, S.S.; Chen, J.; Shieh, V.; He, G.A., et al. CLIC4 regulates apical exocytosis and renal tube luminogenesis through retromer- and actin-mediated endocytic trafficking. *Nature communications* 2016, 7, 10412, doi:10.1038/ncomms10412.
- Chao, E.C.; Henry, R.R. SGLT2 inhibition--a novel strategy for diabetes treatment. *Nature reviews. Drug discovery* 2010, *9*, 551-559, doi:10.1038/nrd3180.
- Neal, B.; Perkovic, V.; Mahaffey, K.W.; de Zeeuw, D.; Fulcher, G.; Erondu, N.; Shaw, W.; Law, G.; Desai, M.; Matthews, D.R., et al. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. *The New England journal of medicine* 2017, 377, 644-657, doi:10.1056/NEJMoa1611925.
- Mahaffey, K.W.; Neal, B.; Perkovic, V.; de Zeeuw, D.; Fulcher, G.; Erondu, N.; Shaw, W.; Fabbrini, E.; Sun, T.; Li, Q., et al. Canagliflozin for Primary and Secondary Prevention of Cardiovascular Events: Results From the CANVAS Program (Canagliflozin Cardiovascular Assessment Study). *Circulation* 2018, *137*, 323-334, doi:10.1161/CIRCULATIONAHA.117.032038.
- 41. Terami, N.; Ogawa, D.; Tachibana, H.; Hatanaka, T.; Wada, J.; Nakatsuka, A.; Eguchi, J.; Horiguchi, C.S.; Nishii, N.; Yamada, H., et al. Long-term treatment with the sodium glucose cotransporter 2 inhibitor, dapagliflozin, ameliorates glucose homeostasis and diabetic nephropathy in db/db mice. *PloS one* **2014**, *9*, e100777, doi:10.1371/journal.pone.0100777.

- 42. Vallon, V.; Gerasimova, M.; Rose, M.A.; Masuda, T.; Satriano, J.; Mayoux, E.; Koepsell, H.; Thomson, S.C.; Rieg, T. SGLT2 inhibitor empagliflozin reduces renal growth and albuminuria in proportion to hyperglycemia and prevents glomerular hyperfiltration in diabetic Akita mice. *American journal of physiology. Renal physiology* **2014**, *306*, F194-204, doi:10.1152/ajprenal.00520.2013.
- Wang, X.X.; Levi, J.; Luo, Y.; Myakala, K.; Herman-Edelstein, M.; Qiu, L.; Wang, D.; Peng, Y.; Grenz, A.; Lucia, S., et al. SGLT2 Protein Expression Is Increased in Human Diabetic Nephropathy: SGLT2 PROTEIN INHIBITION DECREASES RENAL LIPID ACCUMULATION, INFLAMMATION, AND THE DEVELOPMENT OF NEPHROPATHY IN DIABETIC MICE. *The Journal of biological chemistry* 2017, 292, 5335-5348, doi:10.1074/jbc.M117.779520.
- 44. Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. *Nature* **1970**, *227*, 680-685.
- 45. Makridakis, M.; Roubelakis, M.G.; Bitsika, V.; Dimuccio, V.; Samiotaki, M.; Kossida, S.; Panayotou, G.; Coleman, J.; Candiano, G.; Anagnou, N.P., et al. Analysis of secreted proteins for the study of bladder cancer cell aggressiveness. *Journal of proteome research* 2010, *9*, 3243-3259, doi:10.1021/pr100189d.
- Pusch, W.; Flocco, M.T.; Leung, S.M.; Thiele, H.; Kostrzewa, M. Mass spectrometry-based clinical proteomics. *Pharmacogenomics* 2003, *4*, 463-476, doi:10.1517/phgs.4.4.463.22753.
- 47. Aebersold, R.; Mann, M. Mass spectrometry-based proteomics. *Nature* 2003, 422, 198-207, doi:10.1038/nature01511.
- 48. Domon, B.; Aebersold, R. Mass spectrometry and protein analysis. *Science* **2006**, *312*, 212-217, doi:10.1126/science.1124619.
- Filip, S.; Vougas, K.; Zoidakis, J.; Latosinska, A.; Mullen, W.; Spasovski, G.; Mischak, H.; Vlahou, A.; Jankowski, J. Comparison of Depletion Strategies for the Enrichment of Low-Abundance Proteins in Urine. *PloS one* 2015, *10*, e0133773, doi:10.1371/journal.pone.0133773.
- 50. Serang, O.; Noble, W. A review of statistical methods for protein identification using tandem mass spectrometry. *Statistics and its interface* **2012**, *5*, 3-20.
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. *Genome research* 2003, *13*, 2498-2504, doi:10.1101/gr.1239303.

- 52. Bindea, G.; Mlecnik, B.; Hackl, H.; Charoentong, P.; Tosolini, M.; Kirilovsky, A.; Fridman, W.H.; Pages, F.; Trajanoski, Z.; Galon, J. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. *Bioinformatics* 2009, 25, 1091-1093, doi:10.1093/bioinformatics/btp101.
- 53. Ponzone, A.; Spada, M.; Ferraris, S.; Dianzani, I.; de Sanctis, L. Dihydropteridine reductase deficiency in man: from biology to treatment. *Medicinal research reviews* **2004**, *24*, 127-150, doi:10.1002/med.10055.
- Lee, C.K.; Han, J.S.; Won, K.J.; Jung, S.H.; Park, H.J.; Lee, H.M.; Kim, J.; Park, Y.S.; Kim, H.J.; Park, P.J., et al. Diminished expression of dihydropteridine reductase is a potent biomarker for hypertensive vessels. *Proteomics* 2009, *9*, 4851-4858, doi:10.1002/pmic.200800973.
- Tojo, A.; Welch, W.J.; Bremer, V.; Kimoto, M.; Kimura, K.; Omata, M.; Ogawa, T.; Vallance, P.; Wilcox, C.S. Colocalization of demethylating enzymes and NOS and functional effects of methylarginines in rat kidney. *Kidney international* 1997, 52, 1593-1601.
- 56. Wang, Q.Z.; Gao, H.Q.; Liang, Y.; Zhang, J.; Wang, J.; Qiu, J. Cofilin1 is involved in hypertension-induced renal damage via the regulation of NF-kappaB in renal tubular epithelial cells. *Journal of translational medicine* **2015**, *13*, 323, doi:10.1186/s12967-015-0685-8.
- Dendorfer, A.; Wolfrum, S.; Wagemann, M.; Qadri, F.; Dominiak, P. Pathways of bradykinin degradation in blood and plasma of normotensive and hypertensive rats. *American journal of physiology. Heart and circulatory physiology* 2001, 280, H2182-2188, doi:10.1152/ajpheart.2001.280.5.H2182.
- Ersahin, C.; Simmons, W.H. Inhibition of both aminopeptidase P and angiotensinconverting enzyme prevents bradykinin degradation in the rat coronary circulation. *Journal of cardiovascular pharmacology* 1997, *30*, 96-101.
- 59. Flydal, M.I.; Martinez, A. Phenylalanine hydroxylase: function, structure, and regulation. *IUBMB life* **2013**, *65*, 341-349, doi:10.1002/iub.1150.
- Reaux, A.; Iturrioz, X.; Vazeux, G.; Fournie-Zaluski, M.C.; David, C.; Roques, B.P.; Corvol, P.; Llorens-Cortes, C. Aminopeptidase A, which generates one of the main effector peptides of the brain renin-angiotensin system, angiotensin III, has a key role in central control of arterial blood pressure. *Biochemical Society transactions* 2000, 28, 435-440.

- Danziger, R.S. Aminopeptidase N in arterial hypertension. *Heart failure reviews* 2008, 13, 293-298, doi:10.1007/s10741-007-9061-y.
- 62. Lee, C.T.; Ng, H.Y.; Lee, Y.T.; Lai, L.W.; Lien, Y.H. The role of calbindin-D28k on renal calcium and magnesium handling during treatment with loop and thiazide diuretics. *American journal of physiology. Renal physiology* **2016**, *310*, F230-236, doi:10.1152/ajprenal.00057.2015.
- 63. Chang, I.Y.; Yoon, S.P. The changes of calretinin immunoreactivity in paraquatinduced nephrotoxic rats. *Acta histochemica* **2012**, *114*, 836-841, doi:10.1016/j.acthis.2012.02.005.
- Zheng, H.; Lu, G.M. Reduction of prohibitin expression contributes to left ventricular hypertrophy via enhancement of mitochondrial reactive oxygen species formation in spontaneous hypertensive rats. *Free radical research* 2015, 49, 164-174, doi:10.3109/10715762.2014.991724.
- 65. Zhou, T.B.; Qin, Y.H.; Lei, F.Y.; Huang, W.F.; Drummen, G.P. Prohibitin attenuates oxidative stress and extracellular matrix accumulation in renal interstitial fibrosis disease. *PloS one* **2013**, *8*, e77187, doi:10.1371/journal.pone.0077187.
- 66. Ising, C.; Bharill, P.; Brinkkoetter, S.; Brahler, S.; Schroeter, C.; Koehler, S.; Hagmann, H.; Merkwirth, C.; Hohne, M.; Muller, R.U., et al. Prohibitin-2 Depletion Unravels Extra-Mitochondrial Functions at the Kidney Filtration Barrier. *The American journal of pathology* 2016, *186*, 1128-1139, doi:10.1016/j.ajpath.2015.12.018.
- 67. Westermeier, R. 2D gel-based Proteomics: there's life in the old dog yet. Archives of physiology and biochemistry 2016, 122, 236-237, doi:10.1080/13813455.2016.1179766.
- 68. Nangaku, M. Mechanisms of tubulointerstitial injury in the kidney: final common pathways to end-stage renal failure. *Internal medicine* **2004**, *43*, 9-17, doi:10.2169/internalmedicine.43.9.
- McDonough, A.A.; Nguyen, M.T. Maintaining Balance Under Pressure: Integrated Regulation of Renal Transporters During Hypertension. *Hypertension* 2015, 66, 450-455, doi:10.1161/HYPERTENSIONAHA.115.04593.
- Venkatachalam, M.A.; Griffin, K.A.; Lan, R.; Geng, H.; Saikumar, P.; Bidani, A.K. Acute kidney injury: a springboard for progression in chronic kidney disease. *American journal of physiology. Renal physiology* 2010, 298, F1078-1094, doi:10.1152/ajprenal.00017.2010.

- 71. Lee, H.; Abe, Y.; Lee, I.; Shrivastav, S.; Crusan, A.P.; Huttemann, M.; Hopfer, U.; Felder, R.A.; Asico, L.D.; Armando, I., et al. Increased mitochondrial activity in renal proximal tubule cells from young spontaneously hypertensive rats. *Kidney international* 2014, 85, 561-569, doi:10.1038/ki.2013.397.
- 72. Chan, S.H.; Tai, M.H.; Li, C.Y.; Chan, J.Y. Reduction in molecular synthesis or enzyme activity of superoxide dismutases and catalase contributes to oxidative stress and neurogenic hypertension in spontaneously hypertensive rats. *Free radical biology & medicine* 2006, 40, 2028-2039, doi:10.1016/j.freeradbiomed.2006.01.032.
- 73. Shokoji, T.; Nishiyama, A.; Fujisawa, Y.; Hitomi, H.; Kiyomoto, H.; Takahashi, N.; Kimura, S.; Kohno, M.; Abe, Y. Renal sympathetic nerve responses to tempol in spontaneously hypertensive rats. *Hypertension* 2003, *41*, 266-273.
- Schnackenberg, C.G.; Wilcox, C.S. Two-week administration of tempol attenuates both hypertension and renal excretion of 8-Iso prostaglandin f2alpha. *Hypertension* 1999, *33*, 424-428.
- 75. Nabha, L.; Garbern, J.C.; Buller, C.L.; Charpie, J.R. Vascular oxidative stress precedes high blood pressure in spontaneously hypertensive rats. *Clinical and experimental hypertension* **2005**, *27*, 71-82.
- 76. Ulmasov, B.; Bruno, J.; Gordon, N.; Hartnett, M.E.; Edwards, J.C. Chloride intracellular channel protein-4 functions in angiogenesis by supporting acidification of vacuoles along the intracellular tubulogenic pathway. *The American journal of pathology* 2009, *174*, 1084-1096, doi:10.2353/ajpath.2009.080625.
- 77. Wang, H.; D'Ambrosio, M.A.; Garvin, J.L.; Ren, Y.; Carretero, O.A. Connecting tubule glomerular feedback in hypertension. *Hypertension* 2013, 62, 738-745, doi:10.1161/HYPERTENSIONAHA.113.01846.
- Ren, Y.; Garvin, J.L.; Liu, R.; Carretero, O.A. Cross-talk between arterioles and tubules in the kidney. *Pediatric nephrology* 2009, 24, 31-35, doi:10.1007/s00467-008-0852-8.
- 79. Vallon, V.; Platt, K.A.; Cunard, R.; Schroth, J.; Whaley, J.; Thomson, S.C.; Koepsell, H.; Rieg, T. SGLT2 mediates glucose reabsorption in the early proximal tubule. *Journal of the American Society of Nephrology : JASN* 2011, 22, 104-112, doi:10.1681/ASN.2010030246.
- 80. Krause, M.; Samoylenko, A.; Vainio, S.J. Exosomes as renal inductive signals in health and disease, and their application as diagnostic markers and therapeutic
agents. *Frontiers in cell and developmental biology* **2015**, *3*, 65, doi:10.3389/fcell.2015.00065.

- Bernatova, I. Endothelial dysfunction in experimental models of arterial hypertension: cause or consequence? *BioMed research international* 2014, 2014, 598271, doi:10.1155/2014/598271.
- Bernatova, I.; Conde, M.V.; Kopincova, J.; Gonzalez, M.C.; Puzserova, A.; Arribas, S.M. Endothelial dysfunction in spontaneously hypertensive rats: focus on methodological aspects. *Journal of hypertension. Supplement : official journal of the International Society of Hypertension* 2009, 27, S27-31, doi:10.1097/01.hjh.0000358834.18311.fc.
- 83. Ferrao, F.M.; Lara, L.S.; Lowe, J. Renin-angiotensin system in the kidney: What is new? *World journal of nephrology* **2014**, *3*, 64-76, doi:10.5527/wjn.v3.i3.64.
- Kopf, P.G.; Campbell, W.B. Endothelial metabolism of angiotensin II to angiotensin III, not angiotensin (1-7), augments the vasorelaxation response in adrenal cortical arteries. *Endocrinology* 2013, 154, 4768-4776, doi:10.1210/en.2013-1160.
- Padia, S.H.; Kemp, B.A.; Howell, N.L.; Fournie-Zaluski, M.C.; Roques, B.P.; Carey, R.M. Conversion of renal angiotensin II to angiotensin III is critical for AT2 receptor-mediated natriuresis in rats. *Hypertension* 2008, *51*, 460-465, doi:10.1161/HYPERTENSIONAHA.107.103242.
- 86. Chou, T.C.; Yen, M.H.; Li, C.Y.; Ding, Y.A. Alterations of nitric oxide synthase expression with aging and hypertension in rats. *Hypertension* **1998**, *31*, 643-648.
- 87. Huang, C.F.; Hsu, C.N.; Chien, S.J.; Lin, Y.J.; Huang, L.T.; Tain, Y.L. Aminoguanidine attenuates hypertension, whereas 7-nitroindazole exacerbates kidney damage in spontaneously hypertensive rats: the role of nitric oxide. *European journal of pharmacology* 2013, 699, 233-240, doi:10.1016/j.ejphar.2012.11.034.
- 88. Mihout, F.; Shweke, N.; Bige, N.; Jouanneau, C.; Dussaule, J.C.; Ronco, P.; Chatziantoniou, C.; Boffa, J.J. Asymmetric dimethylarginine (ADMA) induces chronic kidney disease through a mechanism involving collagen and TGF-beta1 synthesis. *The Journal of pathology* **2011**, *223*, 37-45, doi:10.1002/path.2769.
- Tomlinson, J.A.; Caplin, B.; Boruc, O.; Bruce-Cobbold, C.; Cutillas, P.; Dormann,
 D.; Faull, P.; Grossman, R.C.; Khadayate, S.; Mas, V.R., et al. Reduced Renal
 Methylarginine Metabolism Protects against Progressive Kidney Damage. *Journal*

of the American Society of Nephrology : JASN **2015**, *26*, 3045-3059, doi:10.1681/ASN.2014030280.

- 90. Rivera, J.C.; Noueihed, B.; Madaan, A.; Lahaie, I.; Pan, J.; Belik, J.; Chemtob, S. Tetrahydrobiopterin (BH4) deficiency is associated with augmented inflammation and microvascular degeneration in the retina. *Journal of neuroinflammation* 2017, *14*, 181, doi:10.1186/s12974-017-0955-x.
- 91. Grobe, A.C.; Wells, S.M.; Benavidez, E.; Oishi, P.; Azakie, A.; Fineman, J.R.; Black, S.M. Increased oxidative stress in lambs with increased pulmonary blood flow and pulmonary hypertension: role of NADPH oxidase and endothelial NO synthase. *American journal of physiology. Lung cellular and molecular physiology* 2006, 290, L1069-1077, doi:10.1152/ajplung.00408.2005.
- 92. Kim, H.L.; Park, Y.S. Maintenance of cellular tetrahydrobiopterin homeostasis. *BMB reports* **2010**, *43*, 584-592, doi:10.5483/BMBRep.2010.43.9.584.

ПАРАРТНМА

Πίνακας Παραρτήματος 1: Οι πρωτεΐνες που αναγνωρίστηκαν με το MASCOT Server v2.0 από τις πρωτεϊνικές κηλίδες κατά την ανάλυση του νεφρικού παρεγχύματος των SHR και WKY ζώων με 2DE-MALDI TOF-MS καθώς και ο λόγος έκφρασης για κάθεμία από αυτές στις τρεις ηλικιακές ομάδες που μελετήθηκαν.

Spot ID	AccessionMod	Gene	MascotScore	MS	Protein	pI-	Fold change between SHR/WKY animals		
				Coverage	MW	Value			
							at 6w	at 13w	at 20w
2	SUMO3_RAT	Sumo3	40	41	12562	5,5	0,8868126	2,10122164	0,694390716
3	GRP78_MOUSE	Hspa5	294	57	72492	4,9	0,697356239	1,285136286	0,182084177
3	GRP78_RAT	Hspa5	287	56	72473	4,9	0,697356239	1,285136286	0,182084177
4	SPA3L_RAT	Serpina31	109	43	46419	5,4	1,808340728	1,111111111	0,199537348
5	CALR_RAT	Calr	225	50	48137	4,2	2,298738739	2,192090395	0,511052379
6	PDIA1_RAT	P4hb	182	50	57315	4,7	1,498452181	2,810124453	0,24098583
9	PYC_RAT	Pc	79	15	130436	6,4	0,906414301	2,811355311	0,558103179
10	HSP7C_RAT	Hspa8	237	58	71055	5,2	1,301320528	1,823550725	0,286868558
11	VATA_MOUSE	Atp6v1a	346	59	68625	5,3	1,637674419	4,016006098	0,260861917
12	GRP75_RAT	Hspa9	220	55	74097	5,9	0,735944944	2,30942133	0,137745764
13	HEMO_RAT	Hpx	121	31	52060	8,6	1,052210027	1,349901897	0,204643963
14	ALBU_RAT	Alb	524	63	70682	6,1	1,052467657	2,158724058	0,384608221
15	ALBU_RAT	Alb	458	66	70682	6,1	0,530963495	2,665756966	0,142407359
16	ALBU_RAT	Alb	251	61	70682	6,1	1,10599518	1,922702884	0,151472379
17	ALBU_RAT	Alb	281	53	70682	6,1	0,59000999	0,73788082	0,150478108
18	ODP2_RAT	Dlat	44	17	67637	9,5	1,464180123	2,175200803	0,30496885
19	ALBU_RAT-FRAG	Alb	167	38	70682	6,1	3,22889115	2,458284371	0,340709519

20	ALBU_RAT	Alb	74	23	70682	6,1	2,131424854	2,810958904	0,663605052
21	TCPA_RAT	Tcp1	50	17	60835	5,8	2,183321352	5,32688172	0,539382773
22	PDIA3_RAT	Pdia3	143	39	57044	5,8	0,57353138	1,8465765	0,323835125
23	SUOX_RAT	Suox	169	41	61167	6,4	1,91641791	3,154191617	0,414290397
23	SUMO3_RAT	Sumo3	42	33	12562	5,5	1,91641791	3,154191617	0,414290397
24	PDIA3_RAT	Pdia3	132	39	57044	5,8	0,708971038	1,025300443	0,248756219
24	ALBU_RAT-FRAG	Alb	66	19	70682	6,1	0,708971038	1,025300443	0,248756219
25	CH60_RAT	Hspd1	254	54	61088	5,8	0,790605118	2,003693931	0,411613308
27	TCPE_RAT	Cct5	98	35	59955	5,4	0,539509912	1,01073779	0,592083333
28	ALBU_RAT	Alb	280	64	70682	6,1	2,318921362	2,732650739	0,239046829
29	QCR1_RAT	Uqcrc1	118	37	53500	5,5	1,314577449	2,58160505	0,474934037
29	SUMO3_RAT	Sumo3	42	34	12562	5,5	1,314577449	2,58160505	0,474934037
31	QCR1_RAT	Uqcrc1	65	23	53500	5,5	0,530371714	1,689556509	0,200628366
32	GUAD_RAT	Gda	49	27	51554	5,5	1,709861451	2,974529347	0,446595778
33	PEPD_RAT	Pepd	114	37	55684	5,6	3,334801762	2,408235294	0,332301342
34	VATB2_RAT	Atp6v1b2	122	38	56857	5,5	0,863952679	2,191666667	0,28484737
35	NHRF1_RAT	Slc9a3r1	110	42	39149	5,6	1,09868691	1,157407407	0,292698766
36	VTDB_RAT	Gc	106	36	55106	5,6	1,198979592	1,795698925	0,379466038
37	SUMO3_RAT	Sumo3	52	40	12562	5,5	1,493285228	6,793779581	0,532746823
38	ODO2_MESAU	DLST	97	86	16111	4,6	2,057138232	4,74444444	0,321830664
38	ODO2_RAT	Dlst	57	32	49236	9,7	2,057138232	4,74444444	0,321830664
39	CBPQ_RAT	Cpq	124	41	52066	6	1,292114983	4,156920799	0,268002028
40	ODO2_MESAU	DLST	58	55	16111	4,6	0,862784028	2,60277981	0,303987241
41	ENOA_RAT	Eno1	259	79	47440	6,2	0,344077217	1,967656232	0,17837623
42	ALBU_RAT-FRAG	Alb	73	26	70682	6,1	1,941797346	0,698534543	0,219412167
43	ALBU_RAT	Alb	167	44	70682	6,1	2,145163921	1,772843525	0,717607973
43	SUMO3_RAT	Sumo3	41	42	12562	5,5	2,145163921	1,772843525	0,717607973
44	EFTU_RAT	Tufm	128	45	49890	7,9	0,532119124	0,91617357	0,493726132

45	AL7A1_RAT	Aldh7a1	101	35	59225	9	0,845453524	1,621034078	0,462878541
46	GATM_RAT	Gatm	158	47	48724	7,8	0,962271305	1,356661906	0,429842375
47	GATM_RAT	Gatm	115	33	48724	7,8	1,066564847	0,713019768	0,22265625
48	ACADL_RAT	Acadl	93	35	48242	8,7	2,078583287	1,406616306	0,290986515
49	GMDS_CRIGR	GMDS	51	28	42289	7	1,206028834	1,596841616	0,601200218
50	GLNA_RAT	Glul	123	44	42982	6,7	2,641386954	2,984103179	0,360658445
51	SRC_RAT	Src	40	18	60448	7,7	1,315618221	6,663421419	1,192944785
52	ODPA_RAT	Pdha1	101	40	43883	9,4	1,722745434	1,148012791	0,519930374
53	MMSA_RAT	Aldh6a1	107	45	58227	9,3	0,54785239	0,846975477	0,262333511
54	MMSA_RAT	Aldh6a1	81	29	58227	9,3	0,992068168	0,928740015	0,412729234
55	MMSA_RAT	Aldh6a1	192	42	58227	9,3	1,033622651	0,827463536	0,316731882
56	AL1A1_RAT	Aldh1a1	123	47	54994	8,9	0,808039615	1,055555556	0,213450937
57	ATPA_RAT	Atp5a1	154	47	59831	9,7	0,974319663	1,973758201	0,278630743
58	AGT2_RAT	Agxt2	93	28	57905	9,3	0,579050329	1,28359317	0,452883762
59	SCOT1_MOUSE	Oxct1	58	23	56352	9,5	1,637955513	0,538333886	0,523632197
60	FUMH_RAT	Fh	77	38	54714	9,7	0,830341113	1,417582418	0,488918609
61	FUMH_RAT	Fh	69	29	54714	9,7	2,705969706	4,002828854	0,434021427
62	AADAT_RAT	Aadat	94	35	48096	9	5,683147262	3,867494824	0,298765793
63	IDHP_RAT	Idh2	125	45	51391	9,6	1,801568989	3,361639824	0,422604423
64	IDHP_RAT	Idh2	131	44	51391	9,6	1,388286334	4,939522998	0,467473445
65	THIL_RAT	Acat1	154	59	45009	9,6	0,904345108	1,752475248	0,455957504
66	ALDOA_RAT	Aldoa	135	53	39783	9,2	3,206916594	1,724708171	0,477859956
67	ALDOB_RAT	Aldob	133	35	40049	9,5	1,665044073	4,167078596	0,373311142
68	THIM_RAT	Acaa2	103	55	42244	9,1	0,817612717	0,714994128	0,464954624
69	PGK1_RAT	Pgk1	124	46	44909	9	1,969553523	3,880448319	0,642206305
70	THIM_RAT	Acaa2	63	33	42244	9,1	0,691779452	1,162839688	0,415172414
71	ACADM_RAT	Acadm	117	39	46925	9,3	1,482758621	1,739757208	0,466852906
71	SUMO3_RAT	Sumo3	42	39	12562	5,5	1,482758621	1,739757208	0,466852906

72	PGK1_RAT	Pgk1	88	47	44909	9	1,126177024	0,932870944	0,39392422
73	ASSY_RAT	Ass1	170	42	46752	8,5	1,136978107	0,774644735	0,301481286
74	ACON_RAT	Aco2	268	54	86121	8,7	0,62321269	1,691747573	0,362890896
75	ACON_RAT	Aco2	134	35	86121	8,7	0,651062648	1,366826156	0,456114332
75	SUMO3_RAT	Sumo3	38	44	12562	5,5	0,651062648	1,366826156	0,456114332
76	ACON_RAT	Aco2	189	45	86121	8,7	0,447374788	1,064569536	0,334480216
77	TRFE_RAT	Tf	113	30	78512	7,8	3,18369453	1,173733804	0,342360085
78	TRFE_RAT	Tf	207	35	78512	7,8	1,515953307	2,103030303	0,316536551
79	TRFE_RAT	Tf	90	30	78512	7,8	0,536451749	2,153344209	0,263965268
80	TRFE_RAT	Tf	298	48	78512	7,8	0,383458647	1,832	0,373543124
81	ACSM2_RAT	Acsm2	52	19	64617	9,3	0,644621514	1,205551388	0,618364419
82	AIFM1_RAT	Aifm1	129	42	66966	9,7	0,522617479	0,981182796	0,20299208
83	ACSM2_RAT	Acsm2	79	34	64617	9,3	0,624326405	2,148981779	0,407323175
84	TKT_RAT	Tkt	149	34	68342	7,9	0,765321836	0,78887689	0,397644614
85	TKT_RAT	Tkt	59	25	68342	7,9	0,385591767	1,52816153	0,607071713
86	CATA_RAT	Cat	173	49	60062	7,3	1,684100081	0,731820287	0,267467517
87	CATA_RAT	Cat	251	56	60062	7,3	1,485079468	0,626901521	0,411591997
87	AL4A1_RAT	Aldh4a1	131	45	62286	7,8	1,485079468	0,626901521	0,411591997
87	GCC2_RAT	Gcc2	43	15	195875	4,91	1,485079468	0,626901521	0,411591997
88	CATA_RAT	Cat	205	54	60062	7,3	1,194905213	2,237812128	0,427930814
89	DHE3_RAT	Glud1	87	34	61719	8,8	1,207539522	0,582483503	9,35E-02
90	DHE3_RAT	Glud1	92	38	61719	8,8	0,736629667	0,789318755	0,404828748
91	MMSA_RAT	Aldh6a1	91	28	58227	9,3	0,369452663	1,134728033	0,617291602
93	AK1A1_RAT	Akr1a1	76	36	36711	7	0,729306348	2,01939488	0,496736965
94	HAOX2_RAT	Hao2	74	39	39633	8,8	1,165352557	4,384341637	0,438597831
95	DHSO_RAT	Sord	60	37	38780	7,9	0,63387603	2,403067746	0,201506591
96	DHSO_RAT	Sord	77	37	38780	7,9	0,656392388	1,133732535	0,438525256
97	G3P_RAT	Gapdh	104	58	36090	9	2,974899207	1,880947232	0,413625742

98	MDHM_RAT	Mdh2	102	50	36117	9,8	1,218936382	3,249329759	0,871264658
99	MDHM_RAT	Mdh2	143	68	36117	9,8	0,879582858	2,327543424	1,05629804
100	LDHA_RAT	Ldha	80	36	36712	9,3	1,04671089	1,593922652	0,832574189
101	VDAC1_RAT	Vdac1	147	63	30851	9,2	0,587484378	1,155865922	0,631013917
103	VDAC1_RAT	Vdac1	127	73	30851	9,2	0,676594846	1,143891403	0,335918396
104	MDHM_RAT	Mdh2	85	46	36117	9,8	0,844759394	2,522044479	1,212676794
105	ALDOB_RAT	Aldob	79	38	40049	9,5	2,672067039	6,50631136	1,674301242
106	CH60_MESAU- FRAG	HSPD1	71	45	29133	4,6	1,996657382	3,491285403	6,244288225
106	CH60_RAT-FRAG	Hspd1	53	26	61088	5,8	1,996657382	3,491285403	6,244288225
107	SDHB_RAT	Sdhb	46	34	32607	-1,3	3,734768481	8,412017167	1,225591716
108	SDHB_RAT	Sdhb	78	40	32607	-1,3	1,682734161	6,526959248	1,35637286
109	GSTA3_RAT	Gsta3	155	80	25360	9,3	2,332420404	4,956615691	1,716932357
110	GSTA1_RAT	Gsta1	69	34	25705	9,5	17,0115942	6,784687136	1,226332478
111	GSTA1_RAT	Gsta1	56	43	25705	9,5	11,65538462	32,89944134	1,810015898
112	ECHB_RAT	Hadhb	44	19	51667	10,1	2,86640557	0,917758573	2,555468135
113	HCD2_RAT	Hsd17b10	70	41	27343	9,7	3,054178916	3,351279788	1,285811578
114	MDHC_RAT	Mdh1	48	36	36631	6,2	4,318235064	4,008730159	1,649705176
115	PRDX1_RAT	Prdx1	207	74	22323	9,2	1,876394052	1,173239194	0,588360288
115	SUMO3_RAT	Sumo3	46	44	12562	5,5	1,876394052	1,173239194	0,588360288
116	SODM_RAT	Sod2	58	37	24887	9,6	0,940005797	2,247666336	0,598431835
117	GFAP_RAT	Gfap	45	23	49984	5,2	2,063380282	5,141975309	0,951531601
119	GSTP1_RAT	Gstp1	71	64	23652	7,7	0,852083333	1,689521846	0,540321908
120	GSTM2_RAT	Gstm2	176	87	25857	7,7	0,895859085	1,16819788	0,716709922
121	ES1_RAT		76	57	28497	10	1,569444444	2,685279188	0,967365967
122	KAD4_RAT	Ak4	95	51	25301	8,9	2,141367005	1,01699612	0,915968707
123	HSP7C_RAT- FRAG	Hspa8	108	34	71055	5,2	0,976193772	1,628388669	2,805579036

125	CAH2_RAT	Ca2	105	71	29267	7,1	62,32544379	1,125239711	0,826867657
126	CAH2_RAT	Ca2	71	49	29267	7,1	8,586206897	0,680272895	0,291635747
127	HCDH_RAT	Hadh	86	43	34540	9,5	1,056501021	0,785130401	0,991007194
128	AK1A1_RAT	Akr1a1	166	57	36711	7	1,438226632	1,35348226	1,390731486
130	AK1A1_RAT	Akr1a1	186	63	36711	7	0,914856215	0,854291006	1,188289449
131	G3P_RAT	Gapdh	89	53	36090	9	1,240237827	0,886962891	0,465746315
133	G3P_RAT	Gapdh	119	51	36090	9	1,730250929	2,389064318	0,44448112
134	HAOX2_RAT	Hao2	185	73	39633	8,8	3,591714665	1,034140969	0,337026218
135	QOR_RAT	Cryz	101	37	35295	9,3	2,848484848	3,276595745	2,019088017
136	AK1A1_RAT-	Akr1a1	75	36	36711	7	2,328315412	1,894317049	2,307116105
	FRAG			<u> </u>	10001	0.4	0.074057054	5 455220005	1.04500050
137	PPIA_RAT	Ppia	87	64	18091	9,4	2,074357054	5,455238095	1,04509958
138	CRYAB_RAT	Cryab	113	68	20076	6,9	0,711583482	2,346526656	1,351209421
140	MMSA_MOUSE	Aldh6a1	59	18	58335	9,2	1,869581258	1,466751108	1,45972073
141	ATPA_RAT	Atp5a1	62	23	59831	9,7	0,493452555	0,839962477	0,812747512
142	ALDOB_MOUSE-	Aldob	66	35	39938	9,4	2,017826087	1,729680029	4,393782383
	FRAG								
143	ATPA_RAT	Atp5a1	101	35	59831	9,7	1,049665585	1,58847051	1,170530327
144	GSTA4_RAT	Gsta4	79	41	25550	7,6	0,823343674	1,638228636	0,934109508
145	KAD4_RAT	Ak4	62	51	25301	8,9	0,692970334	0,623406425	0,673305039
146	TPIS_RAT	Tpi1	135	75	27345	7,7	0,755095757	3,16214442	1,183866754
147	PPM1B_RAT	Ppm1b	21	21	43489	4,7	0,82584493	1,783746826	2,693301049
148	DCXR_RAT	Dcxr	71	42	25931	7,8	0,811029033	2,473161931	0,95112782
149	NIT2_RAT	Nit2	103	47	31024	7,7	2,263985206	1,098735701	0,447956823
150	FAHD2_RAT	Fahd2	67	39	34958	9,6	0,771780822	2,540246555	0,981834905
151	G3P_RAT-LowerPI	Gapdh	52	27	36090	9	0,86475554	1,197044335	2,054914445
153	ESTD_RAT	Esd	52	36	31971	6,5	0,961613788	3,357142857	1,032161556
154	3HIDH_MESAU	HIBADH	63	49	13825	4,8	0,444219067	0,937883959	0,625290023

154	IDHC_RAT-FRAG	Idh1	57	22	47047	6,6	0,444219067	0,937883959	0,625290023
154	3HIDH_RAT	Hibadh	44	19	35679	9,55	0,444219067	0,937883959	0,625290023
156	ALDR_RAT	Akr1b1	146	49	36230	6,3	1,227321566	2,351351351	0,342853294
156	PPID_RAT	Ppid	44	22	41139	6,88	1,227321566	2,351351351	0,342853294
158	MYO16_MOUSE	Myo16	49	9	213815	6,5	0,739808153	2,723076923	0,710200191
159	Z354C_RAT	Znf354c	41	18	65919	9,6	0,876732859	1,94254835	0,950741525
159	ENPL_RAT	Hsp90b1	40	16	92998	4,6	0,876732859	1,94254835	0,950741525
160	PPIA_RAT	Ppia	68	60	18091	9,4	5,855598456	9,213379469	1,192561781
162	HSP7C_RAT-	Hspa8	95	28	71055	5,2	3,653411039	0,911648177	2,090774908
	FRAG								
164	ACTB_RAT	Actb	95	35	42052	5,2	0,451862891	1,663118527	3,504946237
165	BRSK1_RAT	Brsk1	41	13	85700	10	0,231421558	3,467445743	1,078726227
166	F16P1_RAT	Fbp1	138	58	40040	5,4	0,796814841	1,41917692	0,727166276
167	ACTG_RAT	Actg1	211	74	42108	5,2	1,076507827	1,32108529	0,451672561
168	ATPB_RAT	Atp5b	126	45	56318	5,1	0,726399008	1,101152369	0,742364719
169	ACTG_RAT	Actg1	164	74	42108	5,2	0,98492339	20,82302511	1,651350776
172	ATPB_RAT	Atp5b	73	32	56318	5,1	0,446264074	1,953164557	1,457142857
173	MTG8_MOUSE	Runx1t1	42	21	64982	7,4	0,772068766	1,669829222	1,825938567
174	RGN_RAT	Rgn	138	70	33939	5,1	3,587807097	7,127031019	1,204869857
175	ODPB_RAT	Pdhb	86	29	39299	6,2	0,58098357	1,304260852	0,540469424
177	TBB4B_MESAU	TUBB4B	148	76	32181	6,3	0,725927848	2,478699552	11,80994152
177	TBB4B_RAT	Tubb4b	117	48	50225	4,6	0,725927848	2,478699552	11,80994152
178	TBA1C_RAT	Tuba1c	71	29	50590	4,83	1,556507298	5,441033612	2,043172769
179	ENOA_RAT	Eno1	114	44	47440	6,2	0,56647357	3,190970835	1,750650195
181	F16P1_RAT	Fbp1	205	64	40040	5,4	1,51946678	2,850316919	0,551933453
182	ALBU_RAT-FRAG	Alb	52	16	70682	6,1	1,07521797	1,022732147	0,324485059
183	ALBU_RAT-FRAG	Alb	43	22	70682	6,1	1,1865732	0,59552115	0,299643017
184	SUCB2_MOUSE	Suclg2	143	41	47096	6,7	0,984295478	0,911818739	0,330270962

185	ALBU_RAT-FRAG	Alb	127	38	70682	6,1	2,556569343	1,16721044	0,364182091
186	PPIA_RAT	Ppia	59	49	18091	9,4	4	3,656963021	1,158856469
188	NDKB_RAT	Nme2	94	78	17386	7,8	0,814515304	1,214114696	1,021984631
190	CALB1_RAT	Calb1	108	55	30203	4,6	0,53769629	1,40752397	0,569507541
192	TPM4_RAT	Tpm4	127	59	28549	4,5	1,398973755	2,293315143	0,258612463
195	PRDX2_RAT	Prdx2	74	39	21941	5,2	1,510467522	0,925504332	0,415961453
196	PRDX2_RAT	Prdx2	61	43	21941	5,2	0,856040609	4,227191413	0,706743516
197	PEBP1_RAT	Pebp1	106	75	20902	5,4	21,78198198	1,457406403	0,652622061
197	SUMO3_RAT	Sumo3	40	43	12562	5,5	21,78198198	1,457406403	0,652622061
198	PEBP1_RAT	Pebp1	118	79	20902	5,4	12,21611722	0,582556987	0,485566813
199	ALBU_RAT	Alb	93	17	70682	6,1	6,041224971	3,850115296	0,55001598
200	ALBU_RAT	Alb	89	20	70682	6,1	1,111452708	3,819788584	1,058592435
200	SUMO3_RAT	Sumo3	44	44	12562	5,5	1,111452708	3,819788584	1,058592435
201	ATPB_RAT	Atp5b	68	30	56318	5,1	0,503290786	1,010896309	1,048924076
201	SUMO3_RAT	Sumo3	60	52	12562	5,5	0,503290786	1,010896309	1,048924076
202	ATPB_MOUSE	Atp5b	68	28	56265	5,1	0,470123583	2,164766839	1,208711434
202	ATPB_RAT	Atp5b	58	25	56318	5,06	0,470123583	2,164766839	1,208711434
206	NDUS3_MOUSE	Ndufs3	116	37	30302	6,8	0,773638344	0,449092742	0,408960915
206	NDUS3_MESAU	NDUFS3	95	78	11214	5,57	0,773638344	0,449092742	0,408960915
207	IAH1_RAT	Iah1	187	71	28386	5,6	0,815678753	1,218717414	0,629183136
208	PHB_RAT	Phb	64	37	29859	5,5	0,577687146	0,602073467	1,864830054
209	CLIC4_MOUSE	Clic4	55	35	28939	5,32	1,504760226	9,740279938	2,770220187
209	CLIC4_RAT	Clic4	43		28843	5,88	1,504760226	9,740279938	2,770220187
210	ACTB_CRIGR-	ACTB	85	33	42053	5,1	0,377755511	3,689495366	9,869978858
	FRAG				10100		0.000055511	2 600 40 50 66	0.00070050
210	ACTG_RAT-FRAG	Actgl	82	27	42108	5,2	0,377755511	3,689495366	9,869978858
211	F16P1_RAT	Fbpl	95	38	40040	5,4	0,563297872	1,251724138	5,138709677
212	GSH0_MOUSE	Gclm	52	32	30858	5,2	0,376846171	1,82622739	0,556177678

213	3HAO_RAT	Haao	221	79	32846	5,5	0,615261473	2,304347826	0,663043478
214	ACY3_RAT	Acy3	55	35	35796	5,3	1,757834758	13,03787879	2,899006623
215	3HAO_RAT	Haao	54	28	32846	5,5	0,404501821	1,118362832	0,629012597
216	ACY3_RAT- HighestPI	Acy3	86	50	35796	5,3	0,203651116	2,329831933	0,418794014
216	SUMO3_RAT	Sumo3	43	43	12562	5,5	0,203651116	2,329831933	0,418794014
217	ANXA4_RAT	Anxa4	72	37	36168	5,2	1,230083234	1,368075117	2,642133693
219	ACY3_RAT	Acy3	53	33	35796	5,3	3,215116279	1,939058172	6,079069767
220	CLIC1_RAT	Clic1	58	42	27306	4,9	1,081683168	4,960912052	0,848995984
221	CALM_RAT	Calm1	77	57	16827	3,9	0,814303739	2,036081646	1,057543558
223	MYL6_MOUSE	Myl6	51	39	17090	4,4	0,710353386	1,859547471	0,586046154
225	CYB5_MOUSE	Cyb5a	38	41	15232	4,8	0,765603924	6,946490219	3,343407631
227	ODO2_MESAU	DLST	82	62	16111	4,6	1,014836184	1,8647343	1,5
227	ODO2_RAT	Dlst	47	20	49236	9,67	1,014836184	1,8647343	1,5
229	ABHEB_RAT	Abhd14b	40	27	22718	5,6	2,218694885	3,103626943	20,1796875
230	ABHEB_RAT	Abhd14b	55	38	22718	5,6	0,715533981	3,372093023	9,267605634
232	UBN1_MOUSE- FRAG	Ubn1	41	11	122888	9,9	1,480214949	1,402649538	47,84337349
234	COX5A_RAT	Cox5a	58	53	16347	6,1	2,091070974	2,707914175	0,807362535
235	COX5A_RAT	Cox5a	58	48	16347	6,1	8,063777596	1,601296758	1,398599869
236	PARK7_RAT	Park7	87	59	20190	6,4	0,858894482	1,460798718	0,93700469
238	PRDX3_RAT	Prdx3	41	44	28563	8	1,855796912	2,585336538	1,94980695
239	SUMO3_RAT	Sumo3	50	43	12562	5,5	1,220369759	2,605798576	1,967332123
240	AK1A1_CRIGR	AKR1A1	53	29	25605	5,8	0,647407304	1,445230237	1,410671463
241	AK1A1_RAT	Akr1a1	120	44	36711	7	1,888255151	2,701404056	0,765658174
242	PBLD_RAT	Pbld	57	33	31952	5,9	1,335978836	6,448095594	12,32798165
242	SUMO3_RAT	Sumo3	41	43	12562	5,5	1,335978836	6,448095594	12,32798165
243	VTDB_RAT	Gc	41	20	55106	5,6	1,553092784	1,583452211	1,223788546

245	MDHC_RAT	Mdh1	79	42	36631	6,2	1,165848982	0,994150961	0,601151553
245	SUMO3_RAT	Sumo3	40	44	12562	5,5	1,165848982	0,994150961	0,601151553
246	CRYL1_RAT	Cryl1	73	31	35717	5,9	1,160546282	3,074702886	0,343839542
247	CK054_RAT	CK054	133	43	35427	6,2	2,666487069	1,081616261	1,274694654
248	K1C10_RAT	Krt10	84	30	56699	5	1,889583333	4,2618683	0,20964247
249	ALDR_RAT	Akr1b1	95	32	36230	6,3	0,91687253	3,732924021	0,440231362
250	GALM_RAT	Galm	62	36	38097	6,2	1,959884351	3,912870159	0,718634198
251	MYO16_MOUSE	Myo16	48	8	213815	6,5	0,637356187	1,784913793	1,154145078
251	PYRD2_RAT	Pyroxd2	45	19	63410	9,3	0,637356187	1,784913793	1,154145078
252	ACY1A_RAT	Acy1a	120	52	46060	6	2,474436742	8,373271889	1,92238806
255	MUP_RAT	MUP	73	60	21009	5,8	4,577114428	0,895188285	1,558740602
256	MUP_RAT	MUP	80	53	21009	5,8	0,216104204	0,830966227	0,325143379
257	MUP_RAT	MUP	80	64	21009	5,8	1,628712871	0,939186384	0,7609692
258	FABPH_RAT	Fabp3	122	82	14766	5,9	0,417558887	2,052700491	1,64732747
259	ACY1A_RAT	Acy1a	200	76	46060	6	0,356328919	2,381825591	0,483165296
260	ACY1A_RAT	Acy1a	172	58	46060	6	2,015806602	4,28340081	1,503972758
261	ACY1A_RAT	Acy1a	161	61	46060	6	2,183087217	3,198515045	0,392432432
262	OAT_RAT	Oat	145	52	48701	6,6	1,555477156	6,300673149	0,309673416
263	ENOA_RAT	Eno1	79	50	47440	6,2	0,996780129	3,491157247	0,499044392
264	ENOA_RAT	Eno1	115	61	47440	6,2	0,260829634	2,42413442	0,373722628
265	ENOA_RAT	Eno1	165	74	47440	6,2	0,324624245	0,800678541	0,223621363
266	CH60_MESAU	HSPD1	105	77	29133	4,6	2,297297297	4,74497992	1,007867972
266	CH60_RAT	Hspd1	70	39	61088	5,8	2,297297297	4,74497992	1,007867972
267	ACY1A_RAT	Acy1a	139	48	46060	6	0,64516129	2,125860374	0,493407593
268	ENOA_MESAU	ENO1	62	51	24107	5,2	1,087656223	2,454210769	0,35750332
268	ENOA_RAT	Eno1	59	27	47440	6,2	1,087656223	2,454210769	0,35750332
269	SUCB1_MESAU	SUCLA2	53	36	24405	5	1,039420485	2,927353127	0,421889444
270	ALDH2_MESAU	ALDH2	82	30	54813	5,8	1,170191339	5,210338681	1,253706755

270	ALDH2_RAT	Aldh2	80	29	56966	6,8	1,170191339	5,210338681	1,253706755
271	ACY2_RAT	Aspa	80	43	35747	5,9	0,74015395	2,188479544	0,56460965
272	NDUAA_RAT- FRAG	Ndufa10	56	35	40753	8,5	0,822081368	1,460948905	0,433235867
273	LDHB_RAT	Ldhb	184	57	36874	5,6	1,11915493	1,130961169	0,258973454
274	DDAH1_RAT	Ddah1	150	55	31805	5,7	1,974429682	1,032649254	0,274006418
275	PGK1_RAT	Pgk1	61	35	44909	9	1,015568615	1,178475336	0,3226082
275	SUMO3_RAT	Sumo3	44	43	12562	5,5	1,015568615	1,178475336	0,3226082
276	ENOA_RAT	Eno1	65	29	47440	6,2	0,915498652	3,014686248	1,690349947
277	NDUAA_RAT	Ndufa10	75	37	40753	8,5	1,378966455	10,23228346	2,587982833
278	ALBU_RAT	Alb	68	24	70682	6,1	1,219953596	1,429016189	0,984034833
279	ENOA_RAT	Eno1	90	34	47440	6,2	0,64057508	1,359304572	0,65412844
280	ALBU_RAT-FRAG	Alb	53	21	70682	6,1	1,40806293	2,134532991	0,458969466
282	CIP2A_MOUSE	Kiaa1524	47	15	103176	5,9	0,833641832	1,476857491	0,862673187
283	NIT1_RAT	Nit1	63	48	32697	5,9	0,76318927	2,254009698	0,945467176
283	SUMO3_RAT	Sumo3	52	50	12562	5,5	0,76318927	2,254009698	0,945467176
285	PHB_MESAU	PHB	76	77	10037	4,4	0,714245732	1,635092467	2,659459459
285	GAMT_RAT	Gamt	62	45	26675	5,7	0,714245732	1,635092467	2,659459459
285	PHB_RAT	Phb	57	31	29859	5,5	0,714245732	1,635092467	2,659459459
287	PRDX6_RAT	Prdx6	61	46	24860	5,6	2,22E-02	0,162243151	1,34E-02
288	PRDX6_RAT	Prdx6	178	74	24860	5,6	0,75542848	0,877481679	0,442774454
289	ATP5H_RAT	Atp5h	102	73	18809	6,2	4,527920693	2,126916803	0,701846804
289	SUMO3_RAT	Sumo3	45	44	12562	5,5	4,527920693	2,126916803	0,701846804
290	F221A_MOUSE	Fam221a	43	31	34123	9,2	1,550945865	1,043201398	3,887022901
291	ATPA_RAT-FRAG	Atp5a1	47	22	59831	9,7	0,591479139	1,80019685	3,550340651
295	TPIS_RAT-FRAG	Tpi1	74	55	27345	7,7	8,816849817	1,035280509	2,234666667
296	PGLT1_RAT	Poglut1	56	26	46993	9,7	0,884365734	0,583106267	1,548012663
297	PARK7_RAT	Park7	42	42	20190	6,4	1,416414141	0,426028921	0,774476376

298	KCY_RAT	Cmpk1	48	40	22383	5,5	0,361448803	1,196382429	0,630578512
300	SODC_RAT	Sod1	48	38	16073	5,9	15,30511247	0,909252945	0,566786504
301	ALBU_RAT-FRAG	Alb	62	17	70682	6,1	3,865895954	1,403951701	6,362204724
303	SODC_RAT	Sod1	81	47	16073	5,9	14,52205882	2,177976953	0,153322658
304	MUP_RAT	MUP	95	64	21009	5,8	1,033103448	0,10809628	0,265899824
306	TTHY_RAT	Ttr	97	60	15824	5,7	2,42012498	1,392640108	0,466469256
308	HBB_SPEBE	HBB_	48	61	15872	9,2	0,674526401	0,929274843	3,189925681
309	HAOX2_RAT- FRAG	Hao2	60	30	39633	8,8	1,367482574	2,329991646	19,92899408
311	PGAM1_RAT	Pgam1	101	57	28928	6,8	1,007142378	1,469287469	0,773895541
312	TPIS_RAT	Tpi1	151	82	27345	7,7	1,9493274	1,227917981	0,427964301
313	ETFA_MOUSE	Etfa	74	41	35330	9,5	1,063189381	1,183089638	0,662133142
314	ALDOB_MOUSE	Aldob	114	38	39938	9,4	1,534196608	1,826268465	0,561281088
315	TPIS_RAT	Tpi1	91	69	27345	7,7	1,441899146	1,986308149	0,554950826
317	FAHD1_RAT	Fahd1	84	50	24750	8,8	1,293824228	1,725223475	0,935464415
318	HSP7C_RAT	Hspa8	105	30	71055	5,2	1,224103867	3,214154749	0,767065603
320	ALBU_RAT	Alb	160	40	70682	6,1	1,83881488	1,522285966	0,564621857
321	PDIA3_RAT	Pdia3	254	54	57044	5,8	1,619080407	3,67816092	0,654243484
323	ATPB_RAT	Atp5b	151	48	56318	5,1	0,736226611	4,417115903	0,356333319
323	SUMO3_RAT	Sumo3	51	51	12562	5,5	0,736226611	4,417115903	0,356333319
326	CRYL1_RAT	Cryl1	84	38	35717	5,9	0,952998244	3,135935866	0,582151866
326	SUMO3_RAT	Sumo3	43	44	12562	5,5	0,952998244	3,135935866	0,582151866
335	TTHY_RAT	Ttr	76	59	15824	5,7	1,501434034	1,648082163	0,648728109
336	AGT2_RAT	Agxt2	140	36	57905	9,3	0,969065343	1,467269824	0,424743189
337	HAOX2_RAT	Hao2	146	61	39633	8,8	1,031902303	1,099399693	0,418345324
339	ALDH2_RAT	Aldh2	131	47	56966	6,8	1,463233533	2,353818828	0,469723882
341	ENPL_RAT	Hsp90b1	62	17	92998	4,6	1,485386953	1,782745923	0,559564604
342	NHRF3_RAT	Pdzk1	75	33	57164	5,15	1,225048924	1,409322651	0,392700172

343	PYC_RAT	Pc	130	28	130436	6,4	1,05752809	1,263279446	0,497135843
344	HSP7C_RAT	Hspa8	183	58	71055	5,2	1,108575155	1,954848261	0,343601896
344	SUMO3_RAT	Sumo3	50	44	12562	5,5	1,108575155	1,954848261	0,343601896
346	ENOA_MESAU	ENO1	46	38	24107	5,2	0,686199167	0,996835443	0,498094028
347	IVD_RAT	Ivd	87	37	46862	9	2,787733971	2,84762533	0,393529803
348	ARK72_RAT	Akr7a2	89	42	41105	9,2	1,45073517	2,564378645	0,703331659
350	G3P_RAT	Gapdh	60	35	36090	9	2,443844728	0,766696533	0,376974775
351	DCXR_RAT	Dcxr	69	42	25931	7,8	10,07936508	7,024390244	4,30449827
352	GPDA_RAT	Gpd1	87	40	38112	6,2	1,454927088	2,288178914	0,556537925
352	SUMO3_RAT	Sumo3	44	50	12562	5,5	1,454927088	2,288178914	0,556537925
353	CK054_RAT	CK054	60	30	35427	6,2	0,902525372	1,978484779	0,948583703
354	CATA_RAT	Cat	152	51	60062	7,3	3,326111424	1,737901665	0,507297971
355	TPM3_RAT	Tpm3	165	55	29217	4,6	1,144128868	0,607534333	6,85E-02
358	SUMO3_RAT	Sumo3	55	43	12562	5,5	0,331939937	2,766950722	0,805768249

Πίνακας Παραρτήματος 2: Τα σηματοδοτικά μονοπάτια που εμπλέκονται οι διαφορικά εκφραζόμενες πρωτεΐνες στα SHR 6 εβδομάδων όπως προέκυψαν από το Ingenuity Pathways Analysis

Ingenuity Canonical Pathways	-log(p- value)	Ratio	Molecules
Glycolysis I	6,28E00	1,6E-01	ENO3,ALDOC,GAPDH,ALDOA
Gluconeogenesis I	6,28E00	1,6E-01	ENO3,ALDOC,GAPDH,ALDOA
Glutathione-mediated Detoxification	5,95E00	1,33E-01	Gsta1,GSTA3,GSTO1,Gstm3
LPS/IL-1 Mediated Inhibition of RXR	5,78E00	3,2E-02	Gsta1,GSTA3,IL18,GSTO1,FABP
Function			3,Gstm3,ALDH4A1
NRF2-mediated Oxidative Stress	5,11E00	3,33E-02	Gsta1,GSTA3,GSTO1,SOD1,Gstm
Response			3,GCLM
Valine Degradation I	4,86E00	1,67E-01	BCKDHA,HIBADH,HADHB
Tryptophan Degradation III (Eukaryotic)	4,72E00	1,5E-01	HSD17B10,HAAO,HADHB
Aryl Hydrocarbon Receptor Signaling	4,47E00	3,57E-02	Gsta1,GSTA3,GSTO1,Gstm3,ALD H4A1
Fatty Acid β-oxidation I	4,17E00	1E-01	HSD17B10,IVD,HADHB
Mitochondrial Dysfunction	4,06E00	2,92E-02	SDHB,HSD17B10,COX5A,SDHA, ATP5H
Oxidative Phosphorylation	3,71E00	3,67E-02	SDHB,COX5A,SDHA,ATP5H
Sucrose Degradation V (Mammalian)	3,61E00	2,22E-01	ALDOC,ALDOA
Glutaryl-CoA Degradation	3,43E00	1,82E-01	HSD17B10,HADHB
Isoleucine Degradation I	3,22E00	1,43E-01	HSD17B10,HADHB
Xenobiotic Metabolism Signaling	3,14E00	1,85E-02	Gsta1,GSTA3,GSTO1,Gstm3,ALD H4A1
TCA Cycle II (Eukaryotic)	2,78E00	8,7E-02	SDHB,SDHA
Amyotrophic Lateral Sclerosis Signaling	2,66E00	3,06E-02	GLUL,SOD1,NEFL
Glutamine Biosynthesis I	2,58E00	1E00	GLUL
Ethanol Degradation II	2,47E00	6,06E-02	HSD17B10,ALDH4A1
Noradrenaline and Adrenaline Degradation	2,42E00	5,71E-02	HSD17B10,ALDH4A1
Proline Degradation	2,28E00	5E-01	ALDH4A1
4-hydroxyproline Degradation I	2,28E00	5E-01	ALDH4A1
NADH Repair	2,1E00	3,33E-01	GAPDH
Glutathione Biosynthesis	2,1E00	3,33E-01	GCLM
Ascorbate Recycling (Cytosolic)	2,1E00	3,33E-01	GSTO1
Arsenate Detoxification I	1,98E00	2,5E-01	GSTO1
(Glutaredoxin)			
Branched-chain α-keto acid	1,98E00	2,5E-01	BCKDHA
Dehydrogenase Complex			
Arginine Degradation I (Arginase	1,98E00	2,5E-01	ALDH4A1
Pathway)			
Serotonin Degradation	1,96E00	3,33E-02	HSD17B10,ALDH4A1
Superoxide Radicals Degradation	1,8E00	1,6/E-01	SODI
Glucose and Glucose-1-phosphate Degradation	1,68E00	1,25E-01	KGN
Tryptophan Degradation to 2-amino-3-	1 68E00	1 25E-01	НААО
carboxymuconate Semialdehyde	1,00100	1,2012 01	
Leucine Degradation I	1,63E00	1,11E-01	IVD

Ketolysis	1,63E00	1,11E-01	HADHB
Ketogenesis	1,58E00	1E-01	HADHB
Ubiquinol-10 Biosynthesis (Eukaryotic)	1,47E00	7,69E-02	BCKDHA
Mevalonate Pathway I	1,47E00	7,69E-02	HADHB
Histamine Degradation	1,47E00	7,69E-02	ALDH4A1
Vitamin-C Transport	1,44E00	7,14E-02	GSTO1
NAD biosynthesis II (from tryptophan)	1,41E00	6,67E-02	НААО
γ-glutamyl Cycle	1,41E00	6,67E-02	GCLM
Fatty Acid α-oxidation	1,38E00	6,25E-02	ALDH4A1
Oxidative Ethanol Degradation III	1,38E00	6,25E-02	ALDH4A1
Putrescine Degradation III	1,36E00	5,88E-02	ALDH4A1
Superpathway of	1,36E00	5,88E-02	HADHB
Geranylgeranyldiphosphate			
Biosynthesis I (via Mevalonate)			
Tryptophan Degradation X	1,33E00	5,56E-02	ALDH4A1
(Mammalian, via Tryptamine)			
Ethanol Degradation IV	1,33E00	5,56E-02	ALDH4A1
Granzyme A Signaling	1,29E00	5E-02	HIST1H1C
Endoplasmic Reticulum Stress	1,27E00	4,76E-02	CALR
Pathway			
Maturity Onset Diabetes of Young	1,25E00	4,55E-02	GAPDH
(MODY) Signaling	1.05500	4.555.00	
Pyrimidine Deoxyribonucleotides De	1,25E00	4,55E-02	СМРКІ
Novo Biosynthesis I	1.01E00	4 17E 02	
Dopamine Degradation	1,21E00	4,1/E-02	ALDH4A1
Lipid Anugen Presentation by CD1	1,16E00	3,83E-02	CALK CMDV1
Pyrimidine Kibonucleoudes	1,10E00	3,7E-02	CMPKI
Supernethway of Cholesterol	1 15E00	3 57E-02	HADHB
Biosynthesis	1,15200	5,57L-02	IIADIID
Pyrimidine Ribonucleotides De Novo	1 13E00	3 45E-02	CMPK1
Biosynthesis	1,10200	0,102.02	
RhoGDI Signaling	1,12E00	1,16E-02	MYLPF,GDI2
Estrogen Biosynthesis	1,03E00	2,7E-02	HSD17B10
Antigen Presentation Pathway	1,03E00	2,7E-02	CALR
Role of	9,5E-01	2,22E-02	IL18
Hypercytokinemia/hyperchemokinemi			
a in the Pathogenesis of Influenza			
Graft-versus-Host Disease Signaling	9,24E-01	2,08E-02	IL18
Huntington's Disease Signaling	9,1E-01	8,7E-03	SDHB,SDHA
Signaling by Rho Family GTPases	8,97E-01	8,55E-03	MYLPF,GFAP
Phospholipase C Signaling	8,82E-01	8,37E-03	PEBP1,MYLPF
Unfolded protein response	8,76E-01	1,85E-02	CALR
Role of Cytokines in Mediating	8,61E-01	1,79E-02	IL18
Communication between Immune Cells	0.545.04	1.855.00	
Glutamate Receptor Signaling	8,54E-01	1,75E-02	GLUL
Estrogen-Dependent Breast Cancer	8,2E-01	1,61E-02	HSD17B10
Signaling	7 020 01	1 475 00	Π 10
IL-10 Signaling	7,85E-01	1,4/E-02	IL18 IL19
Toll like Deserter Struct	7,00E-01	1,41E-02	<u>IL1δ</u> <u>U 10</u>
TDEM1 Signaling	7.45E.01	1,33E-02	IL10 II 10
	7,45E-01	1,33E-02	IL10 DSMC5
VDK/KAK ACTIVATION	7,29E-01	1,28E-02	r SIVIC J

Altered T Cell and B Cell Signaling in	6,82E-01	1,14E-02	IL18
Rneumatold Arthritis	6 705 01	1 105 00	H 10
Crosstalk between Dendritic Cells and Natural Killer Cells	6,78E-01	1,12E-02	IL18
PAK Signaling	6 78E-01	1 12E-02	MYLPF
Anontosis Signaling	6 78E-01	1,12E-02	I MNA
Regulation of Actin-based Motility by	6.69E-01	1,12E 02	MVI PF
Rho	0,072-01	1,112-02	
Communication between Innate and	6,69E-01	1,1E-02	IL18
Adaptive Immune Cells			
Death Receptor Signaling	6,65E-01	1,09E-02	LMNA
PPAR Signaling	6,57E-01	1,06E-02	IL18
Salvage Pathways of Pyrimidine	6,53E-01	1,05E-02	CMPK1
Ribonucleotides			
Antioxidant Action of Vitamin C	6,45E-01	1,03E-02	GSTO1
Cholecystokinin/Gastrin-mediated	6,3E-01	9,9E-03	IL18
Signaling			
Androgen Signaling	5,94E-01	9,01E-03	CALR
IL-6 Signaling	5,78E-01	8,62E-03	IL18
14-3-3-mediated Signaling	5,74E-01	8,55E-03	GFAP
Ga12/13 Signaling	5,74E-01	8,55E-03	MYLPF
p38 MAPK Signaling	5,74E-01	8,55E-03	IL18
Protein Kinase A Signaling	5.67E-01	5.18E-03	HIST1H1C.MYLPF
HMGB1 Signaling	5.65E-01	8.33E-03	П.18
LXR/RXR Activation	5 62E-01	8 26E-03	IL 18
RhoA Signaling	5 59E-01	8 2E-03	MYLPF
Atherosclerosis Signaling	5 56E-01	8 13E-03	П.18
FXR/RXR Activation	5 44E-01	7 87E-03	II.18
Role of Pattern Recognition Recentors	5 44E-01	7,87E-03	Ш10
in Recognition of Bacteria and Viruses	0,112 01	,,072 00	
Cellular Effects of Sildenafil (Viagra)	5.38E-01	7.75E-03	MYLPF
IL-12 Signaling and Production in	5.22E-01	7.41E-03	IL 18
Macrophages	- ,	-,	
CXCR4 Signaling	4,79E-01	6,58E-03	MYLPF
Hepatic Cholestasis	4,57E-01	6,17E-03	IL18
Cdc42 Signaling	4,46E-01	5,99E-03	MYLPF
Acute Phase Response Signaling	4,42E-01	5,92E-03	IL18
NF-KB Signaling	4,34E-01	5,78E-03	IL18
RAR Activation	4,28E-01	5,68E-03	PSMC5
Granulocyte Adhesion and Diapedesis	4,26E-01	5,65E-03	IL18
Sertoli Cell-Sertoli Cell Junction	4,24E-01	5,62E-03	SPTB
Signaling			
Calcium Signaling	4,24E-01	5,62E-03	CALR
PPARα/RXRα Activation	4,22E-01	5,59E-03	ACADL
Dendritic Cell Maturation	4,22E-01	5,59E-03	IL18
IL-8 Signaling	4,15E-01	5,46E-03	CSTB
Agranulocyte Adhesion and Diapedesis	4,04E-01	5,29E-03	IL18
Thrombin Signaling	4,01E-01	5,24E-03	MYLPF
Actin Cytoskeleton Signaling	3,59E-01	4,61E-03	MYLPF
Role of Osteoblasts, Osteoclasts and	3,56E-01	4,57E-03	IL18
Chondrocytes in Rheumatoid Arthritis			
Systemic Lupus Erythematosus	3,54E-01	4,55E-03	IL18
Signaling			

Cardiac Hypertrophy Signaling	3,5E-01	4,48E-03	MYLPF
Protein Ubiquitination Pathway	3,08E-01	3,92E-03	PSMC5
Role of Macrophages, Fibroblasts and	2,62E-01	3,36E-03	IL18
Endothelial Cells in Rheumatoid			
Arthritis			

Πίνακας Παραρτήματος 3: Τα σηματοδοτικά μονοπάτια που εμπλέκονται οι διαφορικά εκφραζόμενες πρωτεΐνες στα SHR 13 εβδομάδων όπως προέκυψαν από το Ingenuity Pathways Analysis

Ingenuity Canonical Pathways	-log(p- value)	Ratio	Molecules
Remodeling of Epithelial Adherens Junctions	1,31E01	1,62E-01	TUBB2A,SRC,ACTG1,TUBB3,T UBB,ACTC1,TUBB2B,ACTA2,A CTA1,TUBA1C,TUBB4B
Sertoli Cell-Sertoli Cell Junction Signaling	1,21E01	7,87E-02	SRC,TUBB3,TUBB,ACTC1,ACT A2,TUBA1C,TUBB4B,RAB8B,T UBB2A,ACTG1,TUBB2B,ACTA1 ,SPTB,SPTAN1
Epithelial Adherens Junction Signaling	1,06E01	8,22E-02	TUBB2A,MYH7,SRC,ACTG1,TU BB3,TUBB,ACTC1,TUBB2B,AC TA2,ACTA1,TUBA1C,TUBB4B
TCA Cycle II (Eukaryotic)	1,06E01	3,04E-01	SDHB,FH,SDHA,DLST,MDH2,S UCLA2,MDH1
14-3-3-mediated Signaling	1,04E01	9,4E-02	TUBB2A,VIM,SRC,TUBB3,TUB B,TUBB2B,PDIA3,TUBA1C,YW HAE,TUBB4B,GFAP
Gap Junction Signaling	1,03E01	7,74E-02	TUBB2A,SRC,ACTG1,TUBB3,T UBB,ACTC1,TUBB2B,PDIA3,AC TA2,ACTA1,TUBA1C,TUBB4B
Germ Cell-Sertoli Cell Junction Signaling	1,02E01	7,5E-02	TUBB2A,SRC,ACTG1,TUBB3,T UBB,ACTC1,TUBB2B,ACTA2,A CTA1,TUBA1C,TUBB4B,RAB8B
Mitochondrial Dysfunction	8,64E00	6,43E-02	NDUFA10,SDHB,SOD2,UQCRC1 ,HSD17B10,CYB5A,COX5A,SDH A,CASP3,ATP5H,PRDX3
NRF2-mediated Oxidative Stress Response	7,29E00	5,56E-02	AKR7A2,SOD2,Gsta1,GSTA3,GS TO1,ACTG1,ACTC1,EPHX1,ACT A2,ACTA1
Sucrose Degradation V (Mammalian)	7E00	4,44E-01	ALDOB,KHK,Tpi1 (includes others),GALM
Death Receptor Signaling	6,17E00	7,61E-02	ACTG1,ACTC1,CASP3,ACTA2,A CTA1,LMNA,SPTAN1
Oxidative Phosphorylation	5,67E00	6,42E-02	NDUFA10,SDHB,UQCRC1,CYB5
Cellular Effects of Sildenafil (Viagra)			A,COX5A,SDHA,ATP5H
Gluconeogenesis I	5,18E00	5,43E-02	A,COXSA,SDHA,ATPSH Calm1 (includes others),MYH7,ACTG1,ACTC1,PD IA3,ACTA2,ACTA1
VEGF Signaling	5,18E00 5,02E00	5,43E-02 1,6E-01	A,COXSA,SDHA,ATPSH Calm1 (includes others),MYH7,ACTG1,ACTC1,PD IA3,ACTA2,ACTA1 ALDOB,MDH2,ENO1,MDH1
	5,18E00 5,02E00 4,99E00	5,43E-02 1,6E-01 6,59E-02	A,COXSA,SDHA,ATPSH Calm1 (includes others),MYH7,ACTG1,ACTC1,PD IA3,ACTA2,ACTA1 ALDOB,MDH2,ENO1,MDH1 SRC,ACTG1,ACTC1,ACTA2,AC TA1,YWHAE
Ethanol Degradation II	5,18E00 5,02E00 4,99E00 4,53E00	5,43E-02 1,6E-01 6,59E-02 1,21E-01	A,COXSA,SDHA,ATPSH Calm1 (includes others),MYH7,ACTG1,ACTC1,PD IA3,ACTA2,ACTA1 ALDOB,MDH2,ENO1,MDH1 SRC,ACTG1,ACTC1,ACTA2,AC TA1,YWHAE ALDH9A1,HSD17B10,ALDH7A1, ALDH2
Ethanol Degradation II Agrin Interactions at Neuromuscular Junction	5,18E00 5,02E00 4,99E00 4,53E00 4,44E00	5,43E-02 1,6E-01 6,59E-02 1,21E-01 7,25E-02	A,COXSA,SDHA,ATPSH Calm1 (includes others),MYH7,ACTG1,ACTC1,PD IA3,ACTA2,ACTA1 ALDOB,MDH2,ENO1,MDH1 SRC,ACTG1,ACTC1,ACTA2,AC TA1,YWHAE ALDH9A1,HSD17B10,ALDH7A1, ALDH2 SRC,ACTG1,ACTC1,ACTA2,AC TA1
Ethanol Degradation II Agrin Interactions at Neuromuscular Junction Noradrenaline and Adrenaline Degradation	5,18E00 5,02E00 4,99E00 4,53E00 4,44E00 4,42E00	5,43E-02 1,6E-01 6,59E-02 1,21E-01 7,25E-02 1,14E-01	A,COXSA,SDHA,ATPSH Calm1 (includes others),MYH7,ACTG1,ACTC1,PD IA3,ACTA2,ACTA1 ALDOB,MDH2,ENO1,MDH1 SRC,ACTG1,ACTC1,ACTA2,AC TA1,YWHAE ALDH9A1,HSD17B10,ALDH7A1, ALDH2 SRC,ACTG1,ACTC1,ACTA2,AC TA1 ALDH9A1,HSD17B10,ALDH7A1, ALDH2
Ethanol Degradation II Agrin Interactions at Neuromuscular Junction Noradrenaline and Adrenaline Degradation Histamine Degradation	5,18E00 5,02E00 4,99E00 4,53E00 4,44E00 4,42E00 4,37E00	5,43E-02 1,6E-01 6,59E-02 1,21E-01 7,25E-02 1,14E-01 2,31E-01	A,COXSA,SDHA,ATPSH Calm1 (includes others),MYH7,ACTG1,ACTC1,PD IA3,ACTA2,ACTA1 ALDOB,MDH2,ENO1,MDH1 SRC,ACTG1,ACTC1,ACTA2,AC TA1,YWHAE ALDH9A1,HSD17B10,ALDH7A1, ALDH2 SRC,ACTG1,ACTC1,ACTA2,AC TA1 ALDH9A1,HSD17B10,ALDH7A1, ALDH2 ALDH9A1,ALDH7A1,ALDH2

Signaling			TA1
ILK Signaling	4,16E00	3,76E-02	VIM,MYH7,ACTG1,ACTC1,CAS P3,ACTA2,ACTA1
Mechanisms of Viral Exit from Host Cells	4,15E00	9,76E-02	ACTG1,ACTC1,ACTA2,ACTA1
Fatty Acid α-oxidation	4,08E00	1,88E-01	ALDH9A1,ALDH7A1,ALDH2
Oxidative Ethanol Degradation III	4,08E00	1,88E-01	ALDH9A1,ALDH7A1,ALDH2
Breast Cancer Regulation by Stathmin1	4,08E00	3,66E-02	TUBB2A,Calm1 (includes others),TUBB3,TUBB,TUBB2B,T UBA1C,TUBB4B
D-glucuronate Degradation I	4,06E00	6,67E-01	DCXR,CRYL1
Putrescine Degradation III	4E00	1,76E-01	ALDH9A1,ALDH7A1,ALDH2
FAK Signaling	3,95E00	5,75E-02	SRC,ACTG1,ACTC1,ACTA2,AC TA1
MSP-RON Signaling Pathway	3,95E00	8,7E-02	ACTG1,ACTC1,ACTA2,ACTA1
Aryl Hydrocarbon Receptor Signaling	3,94E00	4,29E-02	Gsta1,GSTA3,GSTO1,ALDH9A1, SRC,ALDH7A1
Tryptophan Degradation X (Mammalian, via Tryptamine)	3,92E00	1,67E-01	ALDH9A1,ALDH7A1,ALDH2
Ethanol Degradation IV	3,92E00	1,67E-01	ALDH9A1,ALDH7A1,ALDH2
Virus Entry via Endocytic Pathways	3,91E00	5,62E-02	SRC,ACTG1,ACTC1,ACTA2,AC TA1
Crosstalk between Dendritic Cells and Natural Killer Cells	3,91E00	5,62E-02	IL18,ACTG1,ACTC1,ACTA2,AC TA1
Fcγ Receptor-mediated Phagocytosis in Macrophages and Monocytes	3,82E00	5,38E-02	SRC,ACTG1,ACTC1,ACTA2,AC TA1
LPS/IL-1 Mediated Inhibition of RXR Function	3,71E00	3,2E-02	Gsta1,GSTA3,IL18,GSTO1,ALDH 9A1,FABP3,ALDH7A1
Paxillin Signaling	3,63E00	4,9E-02	SRC,ACTG1,ACTC1,ACTA2,AC TA1
Dopamine Degradation	3,54E00	1,25E-01	ALDH9A1,ALDH7A1,ALDH2
Tight Junction Signaling	3,52E00	3,59E-02	MYH7,ACTG1,ACTC1,ACTA2,A CTA1,SPTAN1
Serotonin Degradation	3,5E00	6,67E-02	ALDH9A1,HSD17B10,ALDH7A1, ALDH2
Glycolysis I	3,49E00	1,2E-01	ALDOB,Tpi1 (includes others),ENO1
RhoGDI Signaling	3,44E00	3,47E-02	SRC,ACTG1,ACTC1,GDI2,ACTA 2,ACTA1
Calcium Signaling	3,37E00	3,37E-02	CALR,Calm1 (includes others),MYH7,ACTC1,ACTA2,AC TA1
Glutathione-mediated Detoxification	3,25E00	1E-01	Gsta1,GSTA3,GSTO1
Agranulocyte Adhesion and Diapedesis	3,24E00	3,17E-02	IL18,MYH7,ACTG1,ACTC1,ACT A2,ACTA1
Aspartate Degradation II	3,22E00	2,86E-01	MDH2,MDH1
Glutaryl-CoA Degradation	2,81E00	1,82E-01	HSD17B10,ACAT1
Tec Kinase Signaling	2,77E00	3,16E-02	SRC,ACTG1,ACTC1,ACTA2,AC TA1
Signaling by Rho Family GTPases	2,76E00	2,56E-02	VIM,ACTG1,ACTC1,ACTA2,AC TA1,GFAP

Axonal Guidance Signaling	2,6E00	1,85E-02	TUBB2A,TUBB3,TUBB,SHANK2
			,TUBB2B,PDIA3,TUBA1C,TUBB
			4B
Isoleucine Degradation I	2,59E00	1,43E-01	HSD17B10,ACAT1
Methylglyoxal Degradation III	2,53E00	1,33E-01	AKR7A2,AKR1B1
Clathrin-mediated Endocytosis	2,47E00	2,7E-02	SRC,ACTG1,ACTC1,ACTA2,AC
Signaling			TA1
Xenobiotic Metabolism	2,44E00	2,21E-02	Gsta1,GSTA3,GSTO1,ALDH9A1,
Signaling			ALDH7A1,ESD
RhoA Signaling	2,36E00	3,28E-02	ACTG1,ACTC1,ACTA2,ACTA1
Leukocyte Extravasation	2,35E00	2,53E-02	SRC,ACTG1,ACTC1,ACTA2,AC
Signaling			TA1
Integrin Signaling	2,31E00	2,48E-02	SRC,ACTG1,ACTC1,ACTA2,AC
Twystenhon Degradation III	2 2000	1 01	
(Fukarvotic)	2,20EUU	112-01	IISDI/DIU,ACATI
(Eukaryouc) Clutamina Biosynthesis I	2 27E00	1600	GLUI
Sulfite Oxidation IV	2,27E00	1E00	SUOX
Endoplasmic Daticulum Strass	2,27E00	9.52E.02	CALP CASP3
Pathway	2,24L00	9,52E-02	CALK,CASI 5
Actin Cytoskeleton Signaling	2 18F00	2 3E-02	MYH7 ACTG1 ACTC1 ACTA2 A
Recht Cytoskeleton Sighunig	2,10200	2,51 02	CTA1
Lipid Antigen Presentation by	2.06E00	7.69E-02	CALR.PDIA3
CD1	_,	.,	
Choline Degradation I	1,97E00	5E-01	ALDH7A1
Formaldehyde Oxidation II	1,97E00	5E-01	ESD
(Glutathione-dependent)			
Fatty Acid β-oxidation I	1,94E00	6,67E-02	HSD17B10,IVD
Apoptosis Signaling	1,9E00	3,37E-02	CASP3,LMNA,SPTAN1
Regulation of Actin-based	1,87E00	3,3E-02	ACTC1,ACTA2,ACTA1
Motility by Rho			
L-carnitine Biosynthesis	1,79E00	3,33E-01	ALDH9A1
Thyronamine and	1,79E00	3,33E-01	DIO1
Iodothyronamine Metabolism			
Ascorbate Recycling (Cytosolic)	1,79E00	3,33E-01	GSTO1
Glycerol-3-phosphate Shuttle	1,79E00	3,33E-01	GPD1
Thyroid Hormone Metabolism	1,79E00	3,33E-01	DIO1
I (via Deiodination)	1		
Antigen Presentation Pathway	1,77E00	5,41E-02	CALR,PDIA3
Arsenate Detoxification I (Clutaredoxin)	1,67E00	2,5E-01	GSTOI
2.ketoglutarate Dehvdrogenese	1 67F00	2 5F-01	DLST
Complex	1,07200	2,512-01	
Branched-chain α-keto acid	1,67E00	2,5E-01	BCKDHA
Dehydrogenase Complex	,		
Phenylethylamine Degradation	1,67E00	2,5E-01	ALDH2
Ι			
Arginine Degradation I	1,67E00	2,5E-01	OAT
(Arginase Pathway)			
Role of Tissue Factor in Cancer	1,66E00	2,73E-02	SRC,CASP3,P4HB
Androgen Signaling	1,65E00	2,7E-02	CALR,Calm1 (includes
			others),SRC
Lysine Degradation II	1,57E00	2E-01	ALDH7A1
Lysine Degradation V	1,57E00	2E-01	ALDH7A1

Galactose Degradation I (Leloir	1,57E00	2E-01	GALM
Pathway)			
p70S6K Signaling	1,57E00	2,52E-02	SRC,PDIA3,YWHAE
Arginine Biosynthesis IV	1,49E00	1,67E-01	OAT
Proline Biosynthesis II (from	1,49E00	1,67E-01	OAT
Arginine)			
Arginine Degradation VI	1,49E00	1,67E-01	OAT
(Arginase 2 Pathway)			
Glycerol Degradation I	1,49E00	1,67E-01	GPD1
Superoxide Radicals	1,49E00	1,67E-01	SOD2
Degradation			
Unfolded protein response	1,46E00	3,7E-02	CALR,P4HB
Acetyl-CoA Biosynthesis I	1,43E00	1,43E-01	DLAT
(Pyruvate Dehydrogenase			
Complex)			
Nur77 Signaling in T	1,42E00	3,51E-02	Calm1 (includes others),CASP3
Lymphocytes			
Glutamate Receptor Signaling	1,42E00	3,51E-02	Calm1 (includes others),GLUL
Myc Mediated Apoptosis	1,4E00	3,45E-02	CASP3,YWHAE
Signaling			
Glucose and Glucose-1-	1,37E00	1,25E-01	RGN
phosphate Degradation			
Citrulline Biosynthesis	1,37E00	1,25E-01	OAT
Estrogen-Dependent Breast	1,35E00	3,23E-02	HSD17B10,SRC
Cancer Signaling			
ERK5 Signaling	1,34E00	3,17E-02	SRC,YWHAE
Leucine Degradation I	1,32E00	1,11E-01	IVD
Ketolysis	1,32E00	1,11E-01	ACAT1
Aldosterone Signaling in	1,3E00	1,97E-02	CRYAB,HSPD1,PDIA3
Epithelial Cells			
Ketogenesis	1,28E00	1E-01	ACAT1
Melatonin Signaling	1,26E00	2,86E-02	Calm1 (includes others),PDIA3
Chemokine Signaling	1,25E00	2,82E-02	Calm1 (includes others),SRC
Protein Kinase A Signaling	1,23E00	1,3E-02	HIST1H1C,Calm1 (includes
			others),PDIA3,YWHAE,DUSP22
Endothelin-1 Signaling	1,18E00	1,75E-02	SRC,CASP3,PDIA3
Ubiquinol-10 Biosynthesis	1,17E00	7,69E-02	BCKDHA
(Eukaryotic)			
Oleate Biosynthesis II	1,17E00	7,69E-02	CYB5A
(Animals)	1 17000	7 (0) 00	4 (1 4 1 1 1
Mevalonate Pathway I	1,17E00	7,69E-02	ACATI
Guanosine Nucleotides	1,1/E00	7,69E-02	GDA
Degradation III	1.12000	7.14E.02	O A T
Superpainway of Citrumne Matabaliam	1,13E00	7,14E-02	UAI
Metabolishi Phonyloloning Degradation IV	1 12E00	7 14E 02	
(Mommalian via Sida Chain)	1,13E00	7,14E-02	ALDH2
(Manimalian, Via Side Chann) Vitemin C Trongport	1 13E00	7 14E 02	CSTO1
Polo of NEAT in Condiso	1 13E00	1.68E.02	Calm1 (includes
Hypertrophy	1,15E00	1,000-02	others) SRC PDIA3
TR/RXR Activation	1 11500	2 35E_02	DIO1 FNO1
Telomere Evtension by	1 11E00	6 67E_02	HNRNPA2B1
Telomerase	1,11200	0,071-02	
nNOS Signaling in Skeletal	1 11F00	6 67E-02	Calm1 (includes others)
m 100 orginaling in Okcietai	1,11200	3,071 02	

Muscle Cells			
Role of Macrophages,	1,1E00	1,34E-02	IL18,Calm1 (includes
Fibroblasts and Endothelial			others),SRC,PDIA3
Cells in Rheumatoid Arthritis			
RANK Signaling in Osteoclasts	1,08E00	2,27E-02	Calm1 (includes others),SRC
UVA-Induced MAPK Signaling	1,08E00	2,27E-02	CASP3,PDIA3
Granzyme B Signaling	1,08E00	6,25E-02	CASP3
Parkinson's Signaling	1,08E00	6,25E-02	CASP3
v-linolenate Biosynthesis II	1.05E00	5.88E-02	CYB5A
(Animals)	-,	-,	
Superpathway of	1.05E00	5.88E-02	ACAT1
Geranylgeranyldiphosphate	-,	-,	
Biosynthesis I (via Mevalonate)			
Valine Degradation I	1.03E00	5.56E-02	BCKDHA
Antioxidant Action of Vitamin	1.01E00	2.06E-02	GSTO1 PDIA3
C	1,01200	2,002 02	
Amvotrophic Lateral Sclerosis	1E00	2,04E-02	GLUL,CASP3
Signaling	- *	,	,
Neuropathic Pain Signaling In	9,89E-	2E-02	SRC.PDIA3
Dorsal Horn Neurons	01		-, -
Cardiomyocyte Differentiation	9.87E-	5E-02	MYH7
via BMP Receptors	01		
Granzyme A Signaling	9.87E-	5E-02	HIST1H1C
······································	01		
Purine Nucleotides Degradation	9.87E-	5E-02	GDA
II (Aerobic)	01		
Cholecystokinin/Gastrin-	9.82E-	1.98E-02	IL18.SRC
mediated Signaling	01	,	,
Maturity Onset Diabetes of	9,48E-	4,55E-02	ALDOB
Young (MODY) Signaling	01		
Role of Osteoblasts, Osteoclasts	9,34E-	1,37E-02	IL18,Calm1 (includes others),SRC
and Chondrocytes in	01		
Rheumatoid Arthritis			
Sphingosine-1-phosphate	9,27E-	1,83E-02	CASP3,PDIA3
Signaling	01		
Type I Diabetes Mellitus	9,21E-	1,82E-02	HSPD1,CASP3
Signaling	01		
Tumoricidal Function of	9,12E-	4,17E-02	CASP3
Hepatic Natural Killer Cells	01		
Huntington's Disease Signaling	8,88E-	1,3E-02	SDHB,SDHA,CASP3
	01		
Synaptic Long Term	8,65E-	1,68E-02	Calm1 (includes others),PDIA3
Potentiation	01		
Sperm Motility	8,59E-	1,67E-02	Calm1 (includes others),PDIA3
	01		
Superpathway of Cholesterol	8,5E-01	3,57E-02	ACAT1
Biosynthesis	0.4.5-		
PI3K Signaling in B	8,15E-	1,56E-02	Calm1 (includes others),PDIA3
Lymphocytes	01	0.007	
Thyroid Hormone Metabolism	8,09E-	3,23E-02	DIO1
II (via Conjugation and/or	01		
Degradation)		0.40E 00	G + 6750
Cytotoxic T Lymphocyte-	7,96E-	3,12E-02	CASP3
mediated Apoptosis of Target	01		

Cells			
Superpathway of Methionine	7,96E-	3,12E-02	SUOX
Degradation Detine al Discourte a sin		2.02E.02	EGD
Ketinol Biosynthesis	7,84E- 01	3,03E-02	ESD
TWEAK Signaling	7,72E- 01	2,94E-02	CASP3
Inhibition of Angiogenesis by TSP1	7,72E- 01	2,94E-02	CASP3
eNOS Signaling	7,49E- 01	1,42E-02	Calm1 (includes others),CASP3
Estrogen Biosynthesis	7,39E- 01	2,7E-02	HSD17B10
Glioblastoma Multiforme Signaling	7,26E- 01	1,37E-02	SRC,PDIA3
Gaq Signaling	7,22E- 01	1,36E-02	Calm1 (includes others),RGS16
Docosahexaenoic Acid (DHA) Signaling	7,18E- 01	2,56E-02	CASP3
Role of PKR in Interferon Induction and Antiviral Response	7,08E- 01	2,5E-02	CASP3
Neuroprotective Role of THOP1 in Alzheimer's Disease	7,08E- 01	2,5E-02	YWHAE
UVC-Induced MAPK Signaling	6,89E- 01	2,38E-02	SRC
iNOS Signaling	6,72E- 01	2,27E-02	Calm1 (includes others)
Role of Hypercytokinemia/hyperchemo kinemia in the Pathogenesis of Influenza	6,63E- 01	2,22E-02	IL18
Dopamine-DARPP32 Feedback in cAMP Signaling	6,63E- 01	1,24E-02	Calm1 (includes others),PDIA3
nNOS Signaling in Neurons	6,46E- 01	2,13E-02	Calm1 (includes others)
Graft-versus-Host Disease Signaling	6,38E- 01	2,08E-02	IL18
Acute Phase Response Signaling	6,32E- 01	1,18E-02	SOD2,IL18
TNFR1 Signaling	6,3E-01	2,04E-02	CASP3
Cell Cycle: G2/M DNA Damage	6,3E-01	2,04E-02	YWHAE
CREB Signaling in Neurons	6,24E- 01	1,17E-02	Calm1 (includes others),PDIA3
CD27 Signaling in Lymphocytes	6,08E- 01	1,92E-02	CASP3
PPARα/RXRα Activation	5,96E- 01	1,12E-02	GPD1,PDIA3
Dendritic Cell Maturation	5,96E- 01	1,12E-02	IL18,PDIA3
Lymphotoxin β Receptor Signaling	5,94E- 01	1,85E-02	CASP3
IL-8 Signaling	5,83E- 01	1,09E-02	SRC,CSTB

Communication between
Communication between
Immune Cells
Wnt/Ca+ pathway 5.8E-01 1.79E-02 PDIA3
EGF Signaling 5 8E-01 1 79E-02 SRC
Phospholingses $5.74E_{-}$ 1.75E_02 PDIA3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Degulation of Callular 5.74E 1.75E 02 SDC
Machanics by Calmain Protaces 01
Thrombin Signaling 5.57E 1.05E.02 SDC DDIA2
$\begin{array}{ccc} 1 \text{ In onion Signaling} & 5.57\text{E} & 1.05\text{E} & 02 & 5\text{KC}, \text{r DIAS} \\ 01 & & & \\ \end{array}$
Induction of A nontosis by UIV1 5 55E 1 67E 02 CASD3
1100000000000000000000000000000000000
$\frac{1}{1}$
Hepatic Fibrosis / Hepatic 5,58E- 1,02E-02 MYH/,ACTA2
Stenate Cell Activation 01
Antiproliferative Role of 5,37E- 1,59E-02 SRC
Somatostatin Receptor 2 01
Calcium-induced T 5,31E- 1,56E-02 Calm1 (includes others)
Lymphocyte Apoptosis 01
Retinoic acid Mediated 5,31E- 1,56E-02 CASP3
Apoptosis Signaling 01
Hypoxia Signaling in the 5,25E- 1,54E-02 P4HB
Cardiovascular System 01
Erythropoietin Signaling 5,15E- 1,49E-02 SRC
01
GABA Receptor Signaling 5,15E- 1,49E-02 ALDH9A1
01
IL-10 Signaling 5,09E- 1,47E-02 IL18
01
Role of MAPK Signaling in the 5,09E- 1,47E-02 CASP3
Pathogenesis of Influenza 01
Macropinocytosis Signaling 5,09E- 1,47E-02 SRC
01
CCR5 Signaling in5,04E-1,45E-02Calm1 (includes others)
Macrophages 01
T Helper Cell Differentiation 4,94E- 1,41E-02 IL18
01
Renal Cell Carcinoma 4,94E- 1,41E-02 FH
Signaling 01
PEDF Signaling 4,94E-1,41E-02SOD2
01
GPCR-Mediated Integration of 4,94E- 1,41E-02 PDIA3
Enteroendocrine Signaling 01
Exemplified by an L Cell
STAT3 Pathway 4,84E- 1,37E-02 SRC
01
Leptin Signaling in Obesity4,79E-1,35E-02PDIA3
01
Toll-like Receptor Signaling4,79E-1,35E-02IL18
01
cAMP-mediated signaling 4,77E- 9,13E-03 Calm1 (includes others),SRC
01
TREM1 Signaling 4,74E- 1,33E-02 IL18

Systemic Lupus Erythematosus	4,74E-	9,09E-03	IL18,HNRNPA2B1
Signaling	01		
Cardiac Hypertrophy Signaling	4,67E-	8,97E-03	Calm1 (includes others),PDIA3
	01		
PDGF Signaling	4,65E-	1,3E-02	SRC
	01	1.055.00	
Reelin Signaling in Neurons	4,56E-	1,27E-02	SRC
Description of H. 2 Francisco	01 456E	1.275.02	Column (in alundary others)
Regulation of IL-2 Expression	4,56E-	1,27E-02	Calm1 (includes others)
In Activated and Anergic 1	01		
Colorostal Cancor Motostasis	135E	8 47E 03	SPC CASP3
Signaling	4,55E- 01	8,47E-05	SKC,CASI 5
Melanocyte Development and	4 35F-	1 19F-02	SRC
Pigmentation Signaling	01	1,172 02	SILC
GPCR-Mediated Nutrient	4.35E-	1.19E-02	PDIA3
Sensing in Enteroendocrine	01	1,1202	
Cells			
Phospholipase C Signaling	4,29E-	8,37E-03	Calm1 (includes others),SRC
	01	,	
HIPPO signaling	4,27E-	1,16E-02	YWHAE
	01		
α-Adrenergic Signaling	4,23E-	1,15E-02	Calm1 (includes others)
	01		
Neuregulin Signaling	4,19E-	1,14E-02	SRC
	01		
G Beta Gamma Signaling	4,19E-	1,14E-02	SRC
	01		
Altered T Cell and B Cell	4,19E-	1,14E-02	IL18
Signaling in Rheumatoid	01		
Arthritis DAV. S. I.	4.165	1 105 00	
PAK Signaling	4,15E-	1,12E-02	CASP3
Communication between Innete	01 4 09E	1 1E 02	Ш 10
and Adaptive Immune Cells	4,08L- 01	1,112-02	IL18
Factors Promoting	4 04F-	1.09F-02	MYH7
Cardiogenesis in Vertebrates	4,04L 01	1,002 02	141 1 11 /
PPAR Signaling	3.97E-	1.06E-02	IL18
	01	_,	
Protein Ubiguitination Pathway	3,94E-	7,84E-03	CRYAB,HSPD1
1 5	01	,	
Glioma Signaling	3,93E-	1,05E-02	Calm1 (includes others)
	01		
G-Protein Coupled Receptor	3,92E-	7,81E-03	SRC,RGS16
Signaling	01		
IGF-1 Signaling	3,86E-	1,03E-02	YWHAE
	01		
T Cell Receptor Signaling	3,86E-	1,03E-02	Calm1 (includes others)
	01	4.045.05	
Nitric Oxide Signaling in the	3,8E-01	1,01E-02	Calm1 (includes others)
Cardiovascular System	2.525	0.000	
IMLP Signaling in Neutrophils	3,52E-	9,26E-03	Calm1 (includes others)
	01	0.000 00	
ICUS-ICUSL Signaling in T	3,52E-	9,26E-03	Caim1 (includes others)
neiper Cells	01		

Gas Signaling	3,49E-	9,17E-03	SRC
Corticotropin Releasing	3.43E-	9.01E-03	Calm1 (includes others)
Hormone Signaling	01	,,01L 05	Cullin (menudes oulers)
IL-6 Signaling	3,29E-	8,62E-03	IL18
	01		
CCR3 Signaling in Eosinophils	3,26E-	8,55E-03	Calm1 (includes others)
	01		
Ga12/13 Signaling	3,26E-	8,55E-03	SRC
		0.555.02	H 10
p38 MAPK Signaling	3,26E-	8,55E-03	IL18
CD28 Signaling in T Halpon	01 3.24E	8 17E 03	Calm1 (includes others)
CD20 Signamig in T Heiper	3,24E- 01	8,47E-03	Callin (includes others)
PTEN Signaling	3 24E-	8 47E-03	CASP3
	01	0,172 00	
P2Y Purigenic Receptor	3,21E-	8,4E-03	PDIA3
Signaling Pathway	01		
HMGB1 Signaling	3,18E-	8,33E-03	IL18
	01		
Gai Signaling	3,18E-	8,33E-03	SRC
	01	0.045 00	W 10
LXR/RXR Activation	3,16E-	8,26E-03	IL18
A thorosolorosis Signaling	3.11F	8 13E 03	II 18
Atheroscierosis Signamig	01	8,151-05	1118
PI3K/AKT Signaling	3.11E-	8.13E-03	YWHAE
	01	-,	
FXR/RXR Activation	3,01E-	7,87E-03	IL18
	01		
Role of Pattern Recognition	3,01E-	7,87E-03	IL18
Receptors in Recognition of	01		
Bacteria and Viruses	2.01E	7.075.02	SDC
Estrogen Receptor Signaling	3,01E- 01	7,87E-05	SKC
GNRH Signaling	2 96F-	7 75E-03	SRC
Of the Signaling	01	1,152 05	Sile
Ovarian Cancer Signaling	2,92E-	7,63E-03	SRC
	01	-	
AMPK Signaling	2,85E-	7,46E-03	SRC
	01		
IL-12 Signaling and Production	2,83E-	7,41E-03	IL18
in Macrophages	$\frac{01}{2.7 \pm 01}$	7.005.02	
Synaptic Long Term	2,7E-01	7,09E-05	PDIA3
CXCR4 Signaling	249F-	6 58E-03	SRC
CANT Dignaning	01	0,501-05	Site
Hepatic Cholestasis	2.31E-	6.17E-03	IL18
• • • • • • •	01	,	
Molecular Mechanisms of	2,28E-	5,48E-03	SRC,CASP3
Cancer	01		
Cdc42 Signaling	2,23E-	5,99E-03	SRC
	01		
Wnt/β-catenin Signaling	2,2E-01	5,92E-03	SRC

Role of NFAT in Regulation of	2,17E-	5,85E-03	Calm1 (includes others)
the Immune Response	01		
NF-KB Signaling	2,14E-	5,78E-03	IL18
	01		
Ephrin Receptor Signaling	2,12E-	5,75E-03	SRC
	01		
RAR Activation	2,09E-	5,68E-03	SRC
	01		
B Cell Receptor Signaling	2,09E-	5,68E-03	Calm1 (includes others)
	01		
Granulocyte Adhesion and	2,08E-	5,65E-03	IL18
Diapedesis	01		

Πίνακας Παραρτήματος 4: Τα σηματοδοτικά μονοπάτια που εμπλέκονται οι διαφορικά εκφραζόμενες πρωτεΐνες στα SHR 20 εβδομάδων όπως προέκυψαν από το Ingenuity Pathways Analysis

Ingenuity Canonical	-log(p-	Ratio	Molecules
Pathways	value)	0.005.01	
Ethanol Degradation IV	8,92E00	3,33E-01	Aldh1a7,ALDH9A1,ALDH1A1,CAT,ALD H2,ALDH4A1
TCA Cycle II (Eukarvotic)	8,2E00	2,61E-01	DLD,FH,SDHA,DLST,ACO2,SUCLA2
Glycolysis I	7,96E00	2,4E-01	ENO3,PGK1,ALDOC,GAPDH,ALDOA,E NO1
Gluconeogenesis I	7,96E00	2,4E-01	ENO3,PGK1,ALDOC,GAPDH,ALDOA,E NO1
Histamine Degradation	7,87E00	3,85E-01	Aldh1a7,ALDH9A1,ALDH1A1,ALDH2,A LDH4A1
Remodeling of Epithelial Adherens Junctions	7,85E00	1,18E-01	TUBB2A,SRC,TUBB3,TUBB,TUBB2B,T UBA1C,TUBB4B,ACTG2
Epithelial Adherens Junction Signaling	7,39E00	6,85E-02	TUBB2A,EGF,MYH7,SRC,TUBB3,TUBB ,TUBB2B,TUBA1C,TUBB4B,ACTG2
Fatty Acid α-oxidation	7,35E00	3,12E-01	Aldh1a7,ALDH9A1,ALDH1A1,ALDH2,A LDH4A1
Oxidative Ethanol Degradation III	7,35E00	3,12E-01	Aldh1a7,ALDH9A1,ALDH1A1,ALDH2,A LDH4A1
Putrescine Degradation III	7,2E00	2,94E-01	Aldh1a7,ALDH9A1,ALDH1A1,ALDH2,A LDH4A1
14-3-3-mediated Signaling	7,13E00	7,69E-02	TUBB2A,VIM,SRC,TUBB3,TUBB,TUBB 2B,TUBA1C,YWHAE,TUBB4B
Tryptophan Degradation X (Mammalian, via Tryptamine)	7,06E00	2,78E-01	Aldh1a7,ALDH9A1,ALDH1A1,ALDH2,A LDH4A1
Sucrose Degradation V (Mammalian)	6,67E00	4,44E-01	DAK,KHK,ALDOC,ALDOA
Dopamine Degradation	6,38E00	2,08E-01	Aldh1a7,ALDH9A1,ALDH1A1,ALDH2,A LDH4A1
Gap Junction Signaling	6,09E00	5,81E-02	TUBB2A,EGF,SRC,TUBB3,TUBB,TUBB 2B,TUBA1C,TUBB4B,ACTG2
Fatty Acid β-oxidation I	5,87E00	1,67E-01	ACAA2,HADH,IVD,HADHB,ACADM
Ethanol Degradation II	5,65E00	1,52E-01	Aldh1a7,ALDH9A1,ALDH1A1,ALDH2,A LDH4A1
Noradrenaline and	5,52E00	1,43E-01	Aldh1a7,ALDH9A1,ALDH1A1,ALDH2,A
Adrenaline Degradation			LDH4A1
Germ Cell-Sertoli Cell	4,99E00	5E-02	TUBB2A,SRC,TUBB3,TUBB,TUBB2B,T
Junction Signaling			UBA1C,TUBB4B,ACTG2
Mitochondrial	4,78E00	4,68E-02	UQCRC1,VDAC1,CYB5A,CAT,SDHA,A
Dysfunction			CO2,AIFM1,NDUFS3
Sertoli Cell-Sertoli Cell	4,65E00	4,49E-02	TUBB2A,SRC,TUBB3,TUBB,TUBB2B,T
Junction Signaling			UBA1C,TUBB4B,ACTG2
Aryl Hydrocarbon	4,43E00	5E-02	GSTO1,ALDH9A1,SRC,ALDH1A1,Gstm3
Receptor Signaling			,ALDH6A1,ALDH4A1
Glycine Degradation	4,37E00	1E00	GAMT,GATM

(Creatine Biosynthesis)			
Glutaryl-CoA	4,37E00	2,73E-01	ACAT1,HADH,HADHB
Degradation			
Serotonin Degradation	4,35E00	8,33E-02	Aldh1a7,ALDH9A1,ALDH1A1,ALDH2,A LDH4A1
Isoleucine Degradation I	4,03E00	2,14E-01	DLD,ACAT1,HADHB
LPS/IL-1 Mediated Inhibition of RXR Function	4,02E00	3,65E-02	IL18,GSTO1,ALDH9A1,ALDH1A1,Gstm 3,CAT,ALDH6A1,ALDH4A1
Valine Degradation I	3.69E00	1.67E-01	DLD.ALDH6A1.HADHB
2-ketoglutarate	3.6E00	5E-01	DLD.DLST
Dehydrogenase Complex	-,		,
Tryptophan	3,55E00	1,5E-01	ACAT1,HADH,HADHB
Degradation III			
(Eukaryotic)			
Lysine Degradation II	3,38E00	4E-01	AASS,AADAT
Arginine Biosynthesis IV	3,21E00	3,33E-01	GLUD1,ASS1
Superoxide Radicals	3,21E00	3,33E-01	SOD1,CAT
Degradation	2.06500	2 0 (E 01	
Acetyl-CoA Biogramthogia I (Dramanata	3,06E00	2,86E-01	DLA1,DLD
Biosynthesis I (Pyruvate			
Compley)			
NRE2-modiated	2 93E00	3 33E-02	GSTO1 SOD1 Getm3 CAT FPHX1 ACTG
Ovidative Stress	2,751.00	5,55L-02	2
Response			2
LXR/RXR Activation	2.93E00	4.13E-02	IL18.TF.HADH.HPX.ALB
Caveolar-mediated	2.9E00	5.56E-02	EGF.SRC.ACTG2.ALB
Endocytosis Signaling	_,/ _ 0 0	-,	,,,,
Leucine Degradation I	2,83E00	2,22E-01	IVD,ACADM
Ketolysis	2,83E00	2,22E-01	ACAT1,HADHB
Breast Cancer	2,8E00	3,14E-02	TUBB2A,TUBB3,TUBB,TUBB2B,TUBA
Regulation by	,		1C,TUBB4B
Stathmin1			
Ketogenesis	2,74E00	2E-01	ACAT1,HADHB
Xenobiotic Metabolism	2,69E00	2,58E-02	GSTO1,ALDH9A1,ALDH1A1,Gstm3,CA
Signaling			T,ALDH6A1,ALDH4A1
Oleate Biosynthesis II	2,5E00	1,54E-01	CYB5A,ALDH6A1
(Animals)			
Mevalonate Pathway I	2,5E00	1,54E-01	ACAT1,HADHB
Amyotrophic Lateral	2,41E00	4,08E-02	GLUL,SOD1,CAT,NEFL
Scierosis Signaling	0.00000	5.5 CE 02	
Unfolded protein	2,28E00	5,56E-02	Н5РА9,Н5РА5,Р4НВ
Supernethwey of	2 27E00	1 18E 01	
Super pathway of Coronylgoronyldinhosn	2,27100	1,16E-01	ACATI,IIADIID
hate Riosynthesis I (via			
Mevalonate)			
Mevalonate) Oxidative	2.25E00	3.67E-02	UOCRC1.CYB5A.SDHA.NDUFS3
Mevalonate) Oxidative Phosphorylation	2,25E00	3,67E-02	UQCRC1,CYB5A,SDHA,NDUFS3

I			
Sorbitol Degradation I	2,19E00	1E00	SORD
Sulfite Oxidation IV	2,19E00	1E00	SUOX
Clathrin-mediated	2,13E00	2,7E-02	EGF,SRC,TF,ACTG2,ALB
Endocytosis Signaling			
Axonal Guidance	2,12E00	1,85E-02	TUBB2A,EGF,TUBB3,TUBB,SHANK2,T
Signaling			UBB2B,TUBA1C,TUBB4B
ERK5 Signaling	2,09E00	4,76E-02	EGF,SRC,YWHAE
Maturity Onset	2,05E00	9,09E-02	GAPDH,PDX1
Diabetes of Young			
(MODY) Signaling			
FXR/RXR Activation	2,02E00	3,15E-02	IL18,TF,HPX,ALB
β-alanine Degradation I	1,89E00	5E-01	ALDH6A1
Glycine Biosynthesis III	1,89E00	5E-01	AGXT2
Proline Degradation	1,89E00	5E-01	ALDH4A1
4-hydroxyproline	1,89E00	5E-01	ALDH4A1
Degradation I			
Glutamate Biosynthesis	1,89E00	5E-01	GLUD1
II			
Glutamate Degradation	1,89E00	5E-01	GLUD1
X			
Superpathway of	1,85E00	7,14E-02	ACAT1,HADHB
Cholesterol Biosynthesis			
Glutathione-mediated	1,79E00	6,67E-02	GSTO1,Gstm3
Detoxification			
Superpathway of	1,73E00	6,25E-02	DLD,SUOX
Methionine			
Degradation	1 51500	0.455.00	
FAK Signaling	1,/IE00	3,45E-02	EGF,SRC,ACTG2
L-carnitine Biosynthesis	1,/IE00	3,33E-01	ALDH9AI
NADH Repair	1,71E00	3,33E-01	GAPDH
Ascorbate Recycling	1,/1E00	3,33E-01	GSTOI
(Cytosolic)	1 71 00	2 22E 01	
4-aminobutyrate	1,/1E00	3,33E-01	SUCLG2
VECE Signaling	1 6600	2 2E 02	SPC VWILLE ACTC2
	1,00E00	3,3E-02	SKC, I WHAE, ACTO2
Acute Phase Kesponse	1,01E00	2,37E-02	IL18,1F,HPA,ALB
Arganata Datavification	1 50500	2 5E 01	GSTO1
I (Clutarodovin)	1,371:00	2,512-01	05101
Creatine-nhocnhote	1 59500	2 5E-01	CKMT1A/CKMT1B
Riosynthesis	1,37200	2,515-01	
Branched-chain a-keto	1.59E00	2.5E-01	DLD
acid Dehydrogenase	1,000	2,02 01	
Complex			
Phenylethylamine	1.59E00	2.5E-01	ALDH2
Degradation I	-,-,-	_,	
Arginine Degradation I	1,59E00	2,5E-01	ALDH4A1
(Arginase Pathway)		,	
Mechanisms of Viral	1,53E00	4,88E-02	LMNB2,ACTG2
Exit from Host Cells			
Lysine Degradation V	1,49E00	2E-01	AADAT
2-oxobutanoate	1,49E00	2E-01	DLD
Degradation I			

Citrulline-Nitric Oxide	1,49E00	2E-01	ASS1
Cycle	,		
Glutamate Degradation	1 49E00	2E-01	SUCLG2
III (via 4.	1,19200	21 01	500102
aminohutvrate)			
Dymysta Formantation	1 41 E00	1 67E 01	
r yruvate Fermentation	1,41E00	1,07E-01	LDHD
	1 41000	1 (7E 01	4001
Urea Cycle	1,41E00	1,0/E-01	ASSI
Pentose Phosphate	1,41E00	1,6/E-01	TKT
Pathway (Non-oxidative			
Branch)			
Glycine Cleavage	1,41E00	1,67E-01	DLD
Complex			
Atherosclerosis	1,33E00	2,44E-02	PRDX6,IL18,ALB
Signaling			
EGF Signaling	1,29E00	3,57E-02	EGF,SRC
Regulation of Cellular	1,27E00	3,51E-02	EGF,SRC
Mechanics by Calpain			
Protease			
Estrogen-Dependent	1,21E00	3,23E-02	SRC,HSD17B1
Breast Cancer Signaling	,	,	
Huntington's Disease	1.19E00	1.74E-02	EGF.HSPA9.HSPA5.SDHA
Signaling	1,17200	1,7 12 02	
Pentose Phosphate	1 16F00	9 09F-02	ТКТ
Pathway	1,10200),0)L 02	
Macroninocytosis	1 14F00	2 94F-02	FGF SRC
Signaling	1,14200	2,741 02	
A grin Interactions of	1 13E00	2 OF 02	SPC ACTC2
Agrin Interactions at	1,15200	2,912-02	SKC,ACTO2
Tunction			
Cuencine Nucleatides	1.00000	7.60E.02	CDA
Guanosine Nucleotides	1,09E00	7,09E-02	GDA
	1.07500	7.14E.02	4001
Superpathway of	1,06E00	/,14E-02	A551
Citrulline Metabolism	1.07500	7.145.00	
Phenylalanine	1,06E00	/,14E-02	ALDH2
Degradation IV			
(Mammalian, via Side			
Chain)	1.0 (100)	5 1 4 E 0 0	
Vitamin-C Transport	1,06E00	7,14E-02	GSTOI
Methylglyoxal	1,03E00	6,67E-02	AKR1B1
Degradation III			
Granzyme B Signaling	1E00	6,25E-02	LMNB2
γ-linolenate	9,78E-	5,88E-02	CYB5A
Biosynthesis II	01		
(Animals)			
Calcium Signaling	9,56E-	1,69E-02	Tpm4,MYH7,Tpm3
0 0	01		
Glutathione Redox	9,54E-	5,56E-02	PRDX6
Reactions I	01		
Neuregulin Signaling	9,49E-	2,27E-02	EGF,SRC
	01	,	,
Virus Entry via	9.41E-	2.25E-02	SRC.ACTG2
Endocytic Pathways	01	_, 02	
Crosstalk hetween	941F-	2.25E-02	IL 18 ACTG2
Dendritic Cells and),∓1L- 01	2,231-02	1210,110102
Denui nue Cens allu	01		

Natural Killer Cells			
Apoptosis Signaling	9,41E-	2,25E-02	AIFM1,LMNA
Death Pagantar	017E	2 17E 02	I MNA ACTC2
Signaling	01	2,171-02	LIVIIVA,ACTO2
II K Signaling	9 14F-	1.61E-02	VIM MYH7 ACTG2
in the second	01	1,012.02	v 111,111 111, 1101 02
Cardiomyocyte	9,11E-	5E-02	MYH7
Differentiation via BMP	01		
Receptors			
Granzyme A Signaling	9,11E-	5E-02	HIST1H1C
	01		
Purine Nucleotides	9,11E-	5E-02	GDA
Degradation II	01		
(Aerobic)			
Fcy Receptor-mediated	9,09E-	2,15E-02	SRC,ACTG2
Phagocytosis in	01		
Macrophages and			
Monocytes	9.00E	1.505.02	
Agranulocyte Adnesion	8,99E-	1,59E-02	IL18,MYH/,ACIG2
Endonlogmia Daticulum	01 8.01E	4760.02	
Stross Dathway	8,91E- 01	4,70E-02	HSPAJ
Antiovident Action of	8 8F-01	2.06E-02	PRDX6 GSTO1
Vitamin C	0,01-01	2,001-02	1 MDA0,05101
Cholecystokinin/Gastrin	8 51E-	1 98E-02	II 18 SRC
-mediated Signaling	0,512	1,901 02	illio, sice
Paxillin Signaling	8.45E-	1.96E-02	SRC.ACTG2
	01	-,,	
Tumoricidal Function	8,38E-	4,17E-02	AIFM1
of Hepatic Natural	01		
Killer Cells			
Triacylglycerol	8,38E-	4,17E-02	PRDX6
Degradation	01		
Role of Tissue Factor in	7,93E-	1,82E-02	SRC,P4HB
Cancer	01	1.005.00	
Actin Cytoskeleton	7,73E-	1,38E-02	EGF,MYH7,ACTG2
Signaling	01 7.4E-01	1 (9E 02	SDC VWILLE
p7086K Signaling	7,4E-01	1,68E-02	
Retinoate Biosynthesis I	7,12E- 01	3,03E-02	ALDHIAI
Signaling by Pho	7.07E	1 28E 02	VIM DES ACTC2
Family GTPases	7,07E- 01	1,201-02	VIWI,DES,ACTO2
Cellular Effects of	6.87E-	1 55E-02	MYH7 ACTG2
Sildenafil (Viagra)	01	1,001 02	1111,210102
GNRH Signaling	6.87E-	1.55E-02	EGF.SRC
	01	y	- ,
Ovarian Cancer	6,77E-	1,53E-02	EGF,SRC
Signaling	01		
Estrogen Biosynthesis	6,67E-	2,7E-02	HSD17B1
	01		
AMPK Signaling	6,62E-	1,49E-02	SRC,PPM1B
	01		
IL-12 Signaling and	6,58E-	1,48E-02	IL18,ALB
Production in	01		

Macrophages			
tRNA Charging	6,47E- 01	2,56E-02	RARS
Neuroprotective Role of THOP1 in Alzheimer's	6,38E- 01	2,5E-02	YWHAE
Disease	C 2E 01	1 42E 02	
eNOS Signaling	0,3E-01	1,42E-02	RSPA9,RSPA5
Signaling	6,19E- 01	2,38E-02	SKC
Glioblastoma	6,08E-	1,37E-02	EGF,SRC
Multiforme Signaling	01		W 40
Role of	5,93E-	2,22E-02	IL18
Hypercytokinemia/hype	01		
Pathogonogia of			
Influenza			
Role of Oct4 in	5,85E-	2,17E-02	PHB
Mammalian Embryonic Stem Cell Pluripotency	01		
MSP-RON Signaling	5,85E-	2,17E-02	ACTG2
Pathway	01		
Aldosterone Signaling	5,84E-	1,32E-02	HSPA9,HSPA5
in Epithelial Cells	01		
Graft-versus-Host	5,69E-	2,08E-02	IL18
Disease Signaling	01		
Cell Cycle: G2/M DNA	5,61E-	2,04E-02	YWHAE
Damage Checkpoint Regulation	01		
Tec Kinase Signaling	5,6E-01	1,27E-02	SRC,ACTG2
Tec Kinase Signaling Heparan Sulfate	5,6E-01 5,54E-	1,27E-02 2E-02	SRC,ACTG2 PRDX6
Tec Kinase Signaling Heparan Sulfate Biosynthesis (Late	5,6E-01 5,54E- 01	1,27E-02 2E-02	SRC,ACTG2 PRDX6
Tec Kinase Signaling Heparan Sulfate Biosynthesis (Late Stages)	5,6E-01 5,54E- 01	1,27E-02 2E-02	SRC,ACTG2 PRDX6
Tec Kinase Signaling Heparan Sulfate Biosynthesis (Late Stages) Tight Junction	5,6E-01 5,54E- 01 5,27E-	1,27E-02 2E-02 1,2E-02	SRC,ACTG2 PRDX6 MYH7,ACTG2
Tec Kinase Signaling Heparan Sulfate Biosynthesis (Late Stages) Tight Junction Signaling	5,6E-01 5,54E- 01 5,27E- 01	1,27E-02 2E-02 1,2E-02	SRC,ACTG2 PRDX6 MYH7,ACTG2
Tec Kinase Signaling Heparan Sulfate Biosynthesis (Late Stages) Tight Junction Signaling Endothelin-1 Signaling	5,6E-01 5,54E- 01 5,27E- 01 5,13E- 01	1,27E-02 2E-02 1,2E-02 1,17E-02	SRC,ACTG2 PRDX6 MYH7,ACTG2 PRDX6,SRC
Tec Kinase Signaling Heparan Sulfate Biosynthesis (Late Stages) Tight Junction Signaling Endothelin-1 Signaling Role of Cytokines in	5,6E-01 5,54E- 01 5,27E- 01 5,13E- 01 5,13E-	1,27E-02 2E-02 1,2E-02 1,17E-02 1,79E-02	SRC,ACTG2 PRDX6 MYH7,ACTG2 PRDX6,SRC IL18
Tec Kinase Signaling Heparan Sulfate Biosynthesis (Late Stages) Tight Junction Signaling Endothelin-1 Signaling Role of Cytokines in Mediating	5,6E-01 5,54E- 01 5,27E- 01 5,13E- 01 5,13E- 01	1,27E-02 2E-02 1,2E-02 1,17E-02 1,79E-02	SRC,ACTG2 PRDX6 MYH7,ACTG2 PRDX6,SRC IL18
Tec Kinase Signaling Heparan Sulfate Biosynthesis (Late Stages) Tight Junction Signaling Endothelin-1 Signaling Role of Cytokines in Mediating Communication	5,6E-01 5,54E- 01 5,27E- 01 5,13E- 01 5,13E- 01	1,27E-02 2E-02 1,2E-02 1,17E-02 1,79E-02	SRC,ACTG2 PRDX6 MYH7,ACTG2 PRDX6,SRC IL18
Tec Kinase Signaling Heparan Sulfate Biosynthesis (Late Stages) Tight Junction Signaling Endothelin-1 Signaling Role of Cytokines in Mediating Communication between Immune Cells	5,6E-01 5,54E- 01 5,27E- 01 5,13E- 01 5,13E- 01	1,27E-02 2E-02 1,2E-02 1,17E-02 1,79E-02	SRC,ACTG2 PRDX6 MYH7,ACTG2 PRDX6,SRC IL18
Tec Kinase Signaling Heparan Sulfate Biosynthesis (Late Stages) Tight Junction Signaling Endothelin-1 Signaling Role of Cytokines in Mediating Communication between Immune Cells RhoGDI Signaling	5,6E-01 5,54E- 01 5,27E- 01 5,13E- 01 5,13E- 01 5,07E- 01	1,27E-02 2E-02 1,2E-02 1,17E-02 1,79E-02 1,16E-02	SRC,ACTG2 PRDX6 MYH7,ACTG2 PRDX6,SRC IL18 SRC,ACTG2
Tec Kinase Signaling Heparan Sulfate Biosynthesis (Late Stages) Tight Junction Signaling Endothelin-1 Signaling Role of Cytokines in Mediating Communication between Immune Cells RhoGDI Signaling	5,6E-01 5,54E- 01 5,27E- 01 5,13E- 01 5,13E- 01 5,07E- 01 5,07E-	1,27E-02 2E-02 1,2E-02 1,17E-02 1,79E-02 1,16E-02 1,16E-02	SRC,ACTG2 PRDX6 MYH7,ACTG2 PRDX6,SRC IL18 SRC,ACTG2 EGF,IL18
Tec Kinase Signaling Heparan Sulfate Biosynthesis (Late Stages) Tight Junction Signaling Endothelin-1 Signaling Role of Cytokines in Mediating Communication between Immune Cells RhoGDI Signaling NF-кB Signaling	5,6E-01 5,54E- 01 5,27E- 01 5,13E- 01 5,13E- 01 5,07E- 01 5,07E- 01	1,27E-02 2E-02 1,2E-02 1,17E-02 1,79E-02 1,16E-02 1,16E-02	SRC,ACTG2 PRDX6 MYH7,ACTG2 PRDX6,SRC IL18 SRC,ACTG2 EGF,IL18
Tec Kinase SignalingHeparan SulfateBiosynthesis (LateStages)Tight JunctionSignalingEndothelin-1 SignalingRole of Cytokines inMediatingCommunicationbetween Immune CellsRhoGDI SignalingNF-κB SignalingHeparan Sulfate	5,6E-01 5,54E- 01 5,27E- 01 5,13E- 01 5,13E- 01 5,07E- 01 5,07E- 01 5,06E-	1,27E-02 2E-02 1,2E-02 1,17E-02 1,79E-02 1,16E-02 1,16E-02 1,75E-02	SRC,ACTG2 PRDX6 MYH7,ACTG2 PRDX6,SRC IL18 SRC,ACTG2 EGF,IL18 PRDX6
Tec Kinase SignalingTec Kinase SignalingHeparan SulfateBiosynthesis (LateStages)Tight JunctionSignalingEndothelin-1 SignalingRole of Cytokines inMediatingCommunicationbetween Immune CellsRhoGDI SignalingNF-κB SignalingHeparan SulfateBiosynthesis	5,6E-01 5,54E- 01 5,27E- 01 5,13E- 01 5,07E- 01 5,07E- 01 5,06E- 01	1,27E-02 2E-02 1,2E-02 1,17E-02 1,79E-02 1,16E-02 1,16E-02 1,75E-02	SRC,ACTG2 PRDX6 MYH7,ACTG2 PRDX6,SRC IL18 SRC,ACTG2 EGF,IL18 PRDX6
Tec Kinase SignalingTec Kinase SignalingHeparan SulfateBiosynthesis (LateStages)Tight JunctionSignalingEndothelin-1 SignalingRole of Cytokines inMediatingCommunicationbetween Immune CellsRhoGDI SignalingNF-κB SignalingHeparan SulfateBiosynthesisPhospholipases	5,6E-01 5,54E- 01 5,27E- 01 5,13E- 01 5,07E- 01 5,07E- 01 5,06E- 01 5,06E- 01	1,27E-02 2E-02 1,2E-02 1,17E-02 1,79E-02 1,16E-02 1,75E-02 1,75E-02	SRC,ACTG2 PRDX6 MYH7,ACTG2 PRDX6,SRC IL18 SRC,ACTG2 EGF,IL18 PRDX6 PRDX6
Tec Kinase SignalingHeparan SulfateBiosynthesis (LateStages)Tight JunctionSignalingEndothelin-1 SignalingRole of Cytokines inMediatingCommunicationbetween Immune CellsRhoGDI SignalingNF-κB SignalingHeparan SulfateBiosynthesisPhospholipasesGlutamate Receptor	5,6E-01 5,54E- 01 5,27E- 01 5,13E- 01 5,13E- 01 5,07E- 01 5,07E- 01 5,06E- 01 5,06E- 01 5,06E- 01	1,27E-02 2E-02 1,2E-02 1,17E-02 1,79E-02 1,16E-02 1,16E-02 1,75E-02 1,75E-02 1,75E-02	SRC,ACTG2 PRDX6 MYH7,ACTG2 PRDX6,SRC IL18 SRC,ACTG2 EGF,IL18 PRDX6 PRDX6 GLUL
Tec Kinase SignalingTec Kinase SignalingHeparan SulfateBiosynthesis (LateStages)Tight JunctionSignalingEndothelin-1 SignalingRole of Cytokines inMediatingCommunicationbetween Immune CellsRhoGDI SignalingNF-κB SignalingHeparan SulfateBiosynthesisPhospholipasesGlutamate ReceptorSignaling	5,6E-01 5,54E- 01 5,27E- 01 5,13E- 01 5,13E- 01 5,07E- 01 5,07E- 01 5,06E- 01 5,06E- 01 5,06E- 01	1,27E-02 2E-02 1,2E-02 1,17E-02 1,79E-02 1,16E-02 1,75E-02 1,75E-02 1,75E-02	SRC,ACTG2 PRDX6 MYH7,ACTG2 PRDX6,SRC IL18 SRC,ACTG2 EGF,IL18 PRDX6 PRDX6 GLUL
Tec Kinase SignalingTec Kinase SignalingHeparan SulfateBiosynthesis (LateStages)Tight JunctionSignalingEndothelin-1 SignalingRole of Cytokines inMediatingCommunicationbetween Immune CellsRhoGDI SignalingNF-κB SignalingHeparan SulfateBiosynthesisPhospholipasesGlutamate ReceptorSignalingEphrin Receptor	5,6E-01 5,54E- 01 5,27E- 01 5,13E- 01 5,13E- 01 5,07E- 01 5,07E- 01 5,06E- 01 5,06E- 01 5,06E- 01 5,03E-	1,27E-02 2E-02 1,2E-02 1,17E-02 1,79E-02 1,16E-02 1,75E-02 1,75E-02 1,75E-02 1,75E-02	SRC,ACTG2 PRDX6 MYH7,ACTG2 PRDX6,SRC IL18 SRC,ACTG2 EGF,IL18 PRDX6 PRDX6 GLUL EGF,SRC
Tec Kinase SignalingTec Kinase SignalingHeparan SulfateBiosynthesis (LateStages)Tight JunctionSignalingEndothelin-1 SignalingRole of Cytokines inMediatingCommunicationbetween Immune CellsRhoGDI SignalingNF-κB SignalingHeparan SulfateBiosynthesisPhospholipasesGlutamate ReceptorSignalingEphrin ReceptorSignaling	5,6E-01 5,54E- 01 5,27E- 01 5,13E- 01 5,13E- 01 5,07E- 01 5,07E- 01 5,06E- 01 5,06E- 01 5,06E- 01 5,03E- 01	1,27E-02 2E-02 1,2E-02 1,17E-02 1,79E-02 1,76E-02 1,75E-02 1,75E-02 1,75E-02 1,75E-02	SRC,ACTG2 PRDX6 MYH7,ACTG2 PRDX6,SRC IL18 SRC,ACTG2 EGF,IL18 PRDX6 PRDX6 GLUL EGF,SRC
Tec Kinase SignalingTec Kinase SignalingHeparan SulfateBiosynthesis (LateStages)Tight JunctionSignalingEndothelin-1 SignalingRole of Cytokines inMediatingCommunicationbetween Immune CellsRhoGDI SignalingNF-κB SignalingHeparan SulfateBiosynthesisPhospholipasesGlutamate ReceptorSignalingEphrin ReceptorSignalingMyc Mediated	5,6E-01 5,54E- 01 5,27E- 01 5,13E- 01 5,13E- 01 5,07E- 01 5,07E- 01 5,06E- 01 5,06E- 01 5,06E- 01 5,06E- 01 5,06E- 01 5,03E- 01 5,03E- 01	1,27E-02 2E-02 1,2E-02 1,17E-02 1,79E-02 1,79E-02 1,16E-02 1,75E-02 1,75E-02 1,75E-02 1,75E-02 1,75E-02 1,75E-02	SRC,ACTG2 PRDX6 MYH7,ACTG2 PRDX6,SRC IL18 SRC,ACTG2 EGF,IL18 PRDX6 PRDX6 GLUL EGF,SRC YWHAE
Tec Kinase SignalingTec Kinase SignalingHeparan SulfateBiosynthesis (LateStages)Tight JunctionSignalingEndothelin-1 SignalingRole of Cytokines inMediatingCommunicationbetween Immune CellsRhoGDI SignalingNF-κB SignalingHeparan SulfateBiosynthesisPhospholipasesGlutamate ReceptorSignalingEphrin ReceptorSignalingMyc MediatedApoptosis Signaling	5,6E-01 5,54E- 01 5,27E- 01 5,13E- 01 5,13E- 01 5,07E- 01 5,07E- 01 5,06E- 01 5,06E- 01 5,06E- 01 5,06E- 01 5,03E- 01 5,03E- 01	1,27E-02 2E-02 1,2E-02 1,17E-02 1,79E-02 1,79E-02 1,16E-02 1,75E-02 1,75E-02 1,75E-02 1,75E-02 1,75E-02 1,75E-02	SRC,ACTG2 PRDX6 MYH7,ACTG2 PRDX6,SRC IL18 SRC,ACTG2 EGF,IL18 PRDX6 PRDX6 GLUL EGF,SRC YWHAE

	01		
Production of Nitric	4,84E-	1,11E-02	CAT,ALB
Oxide and Reactive	01		
Oxygen Species in			
Macrophages			
IL-8 Signaling	4,74E-	1,09E-02	EGF,SRC
	01		
Antiproliferative Role	4,71E-	1,59E-02	SRC
of Somatostatin	01		
Receptor 2	4.515	1.505.00	
Elcosanoid Signaling	4,/IE-	1,59E-02	PRDX6
Non Small Call Lung	<u>01</u> 4 CE 01	1.54E.02	ECE
Non-Sman Cen Lung	4,0E-01	1,34E-02	EUF
Hypovia Signaling in	4 6E 01	1 54E 02	РЛНВ
the Cardiovascular	4,012-01	1,54L-02	14110
System			
Thrombin Signaling	4.51E-	1.05E-02	EGF.SRC
	01	-, 02	
PXR/RXR Activation	4,49E-	1,49E-02	ALDH1A1
	01	, -	
Erythropoietin	4,49E-	1,49E-02	SRC
Signaling	01		
GABA Receptor	4,49E-	1,49E-02	ALDH9A1
Signaling	01		
IL-10 Signaling	4,44E-	1,47E-02	IL18
	01		
Role of MAPK	4,44E-	1,47E-02	PRDX6
Signaling in the	01		
Pathogenesis of			
Hanatia Fibrasia /	1 31E	1.02E.02	ЕСЕ МУН7
Hepatic Fibrosis / Hepatic Stellate Cell	4,34Ľ- 01	1,021-02	
Activation	01		
Leukocyte	4.31E-	1.01E-02	SRC.ACTG2
Extravasation Signaling	01	1,012 02	2110,110102
T Helper Cell	4,29E-	1,41E-02	IL18
Differentiation	01		
Renal Cell Carcinoma	4,29E-	1,41E-02	FH
Signaling	01		
Chemokine Signaling	4,29E-	1,41E-02	SRC
	01		
Integrin Signaling	4,2E-01	9,9E-03	SRC,ACTG2
STAT3 Pathway	4,2E-01	1,37E-02	SRC
Toll-like Receptor	4,15E-	1,35E-02	IL18
Signaling	01	1 225 02	И 10
TREMI Signaling	4,11E-	1,33E-02	IL18
11FD 2 C' '		1 200 00	ECE
пЕК-2 Signaling in Broost Concor	4,00E- 01	1,32E-02	EUF
PDCF Signaling	/ 02F	1 3E.02	SPC
i DOI, Dignannig	+,02Ľ- 01	1,515-02	JIC
Reelin Signaling in	3.94F-	1.27E-02	SRC
Neurons	01	-,-,-02	
Role of Osteoblasts,	3,78E-	9,13E-03	IL18,SRC
,			
Osteoclasts and	01		
--------------------------------	--------------	----------	-----------------------
Chondrocytes in			
Rheumatoid Arthritis			
Melanocyte	3,73E-	1,19E-02	SRC
Development and	01		
Pigmentation Signaling			
TR/RXR Activation	3,69E-	1,18E-02	ENO1
	01		
ErbB Signaling	3,66E-	1,16E-02	EGF
0 0	01		
HIPPO signaling	3,66E-	1,16E-02	YWHAE
	01		
Bladder Cancer	3,62E-	1,15E-02	EGF
Signaling	01		
G Beta Gamma	3,58E-	1,14E-02	SRC
Signaling	01	-	
Altered T Cell and B	3,58E-	1,14E-02	IL18
Cell Signaling in	01		
Rheumatoid Arthritis			
RANK Signaling in	3,58E-	1,14E-02	SRC
Osteoclasts	01		
Regulation of Actin-	3,47E-	1,1E-02	ACTG2
based Motility by Rho	01		
Communication	3,47E-	1,1E-02	IL18
between Innate and	01		
Adaptive Immune Cells			
Factors Promoting	3,44E-	1,09E-02	MYH7
Cardiogenesis in	01		
Vertebrates			
Colorectal Cancer	3,4E-01	8,47E-03	EGF,SRC
Metastasis Signaling			
PPAR Signaling	3,37E-	1,06E-02	IL18
	01		
Protein Kinase A	3,35E-	7,77E-03	HIST1H1C,YWHAE,DUSP22
Signaling	01		
Glioma Signaling	3,34E-	1,05E-02	EGF
	01	1.005.00	
IGF-1 Signaling	3,27E-	1,03E-02	YWHAE
	01	1.015.02	DOD
Telomerase Signaling	3,21E-	1,01E-02	EGF
N (1: D:	2.105	15.02	SDC .
Neuropathic Pain	3,18E-	1E-02	SRC
Signaling in Dorsal	01		
Horn Neurons	2.10E	0.9E.02	
HIF Ia Signaling	3,12E-	9,8E-03	LDHB
D	01 2.04E	7.94E.02	
Protein Ubiquitination	3,04E- 01	/,04E-U3	πογαγαστασ
1 duiway Donomootio	2E 01	0.42E.02	ECE
1 ancreatic A donocorcinomo	3E-01	7,43E-U3	LOI
Auchocarcinoilla			
Chrocorticoid	2 03E	7 66E 02	ΗΣΡΔΟ ΗΣΡΔ5
Bacantar Signaling	2,73E- 01	7,000-03	1151 A7,1151 AJ
Cas Signaling	2 97E	0 17E 03	SPC
Gus Bignanng	01	J,17L-0J	

Androgen Signaling	2,86E- 01	9,01E-03	SRC
IL-6 Signaling	2,73E- 01	8,62E-03	IL18
Type II Diabetes Mellitus Signaling	2,71E- 01	8,55E-03	PDX1
Ga12/13 Signaling	2,71E- 01	8,55E-03	SRC
p38 MAPK Signaling	2,71E- 01	8,55E-03	IL18
HMGB1 Signaling	2,64E- 01	8,33E-03	IL18
Gai Signaling	2,64E- 01	8,33E-03	SRC
Sperm Motility	2,64E- 01	8,33E-03	PRDX6
RhoA Signaling	2,59E- 01	8,2E-03	ACTG2
PI3K/AKT Signaling	2,57E- 01	8,13E-03	YWHAE
Role of Pattern Recognition Receptors in Recognition of Bacteria and Viruses	2,48E- 01	7,87E-03	IL18
Estrogen Receptor Signaling	2,48E- 01	7,87E-03	SRC
Role of Macrophages, Fibroblasts and Endothelial Cells in	2,36E- 01	6,71E-03	IL18,SRC
Synaptic Long Term Depression	2,19E- 01	7,09E-03	PRDX6
CXCR4 Signaling	2E-01	6,58E-03	SRC

Πίνακας Παραρτήματος 5: Διαφορικά εκφραζόμενες πρωτεΐνες που παρουσιάζουν αυξημένη έκφραση στα SHR ζώα 6 εβδομάδων όπως προέκυψε από την ανάλυση του νεφρικού παρεγχύματος με LC-MS/MS. Το στατιστικό τεστ Mann-Whitney χρησιμοποιήθηκε. Όλες οι τιμές είναι στατιστικά σημαντικές με p<0.05

Κωδικός	Πρωτεΐνη	Λόγος Έκφρασης (SHR/WKY)
Q510J9	Putative L-aspartate dehydrogenase OS=Rattus norvegicus GN=Aspdh PE=2 SV=1 - [ASPD_RAT]	52,9227889
P10818	Cytochrome c oxidase subunit 6A1, mitochondrial OS=Rattus norvegicus GN=Cox6a1 PE=1 SV=2 - [CX6A1_RAT]	50,7008286
Q6SKG1	Acyl-coenzyme A synthetase ACSM3, mitochondrial OS=Rattus norvegicus GN=Acsm3 PE=2 SV=1 - [ACSM3_RAT]	43,3333918
O89047	Potassium voltage-gated channel subfamily H member 3 OS=Rattus norvegicus GN=Kcnh3 PE=2 SV=1 - [KCNH3_RAT]	13,8072281
P63159	High mobility group protein B1 OS=Rattus norvegicus GN=Hmgb1 PE=1 SV=2 - [HMGB1_RAT]	13,3848062
P53792	Sodium/glucose cotransporter 2 OS=Rattus norvegicus GN=Slc5a2 PE=2 SV=1 - [SC5A2_RAT]	11,8232974
P23680	Serum amyloid P-component OS=Rattus norvegicus GN=Apcs PE=2 SV=2 - [SAMP_RAT]	11,7498551
P50170	Retinol dehydrogenase 2 OS=Rattus norvegicus GN=Rdh2 PE=1 SV=1 - [RDH2_RAT]	11,66509
Q9QYF3	Unconventional myosin-Va OS=Rattus norvegicus GN=Myo5a PE=1 SV=1 - [MYO5A_RAT]	11,6092451
Q9QZ86	Nucleolar protein 58 OS=Rattus norvegicus GN=Nop58 PE=1 SV=1 - [NOP58_RAT]	10,6061608
Q6AXT8	Splicing factor 3A subunit 2 OS=Rattus norvegicus GN=Sf3a2 PE=2 SV=1 - [SF3A2_RAT]	10,107545
O88506	STE20/SPS1-related proline-alanine-rich protein kinase OS=Rattus norvegicus GN=Stk39 PE=2 SV=2 - [STK39_RAT]	9,54337674
Q7TSE9	HCLS1-associated protein X-1 OS=Rattus norvegicus GN=Hax1 PE=1 SV=1 - [HAX1_RAT]	8,89308091
Q5XIK7	Katanin p60 ATPase-containing subunit A-like 1 OS=Rattus norvegicus GN=Katnal1 PE=2 SV=1 - [KATL1_RAT]	7,96681417
P04692	Tropomyosin alpha-1 chain OS=Rattus norvegicus GN=Tpm1 PE=1 SV=3 - [TPM1_RAT]	7,71040912
Q62868	Rho-associated protein kinase 2 OS=Rattus norvegicus GN=Rock2 PE=1 SV=2 - [ROCK2_RAT]	7,03050109
Q5RJQ7	Succinate dehydrogenase assembly factor 2, mitochondrial OS=Rattus norvegicus GN=Sdhaf2 PE=2 SV=1 - [SDHF2_RAT]	6,75928938

Q7TQ16	Cytochrome b-c1 complex subunit 8 OS=Rattus norvegicus GN=Uqcrq PE=3 SV=1 - [QCR8_RAT]	6,66033166
P07632	Superoxide dismutase [Cu-Zn] OS=Rattus norvegicus GN=Sod1 PE=1 SV=2 - [SODC_RAT]	6,49331383
P29066	Beta-arrestin-1 OS=Rattus norvegicus GN=Arrb1 PE=1 SV=1 - [ARRB1_RAT]	6,46959282
P04550	Parathymosin OS=Rattus norvegicus GN=Ptms PE=1 SV=2 - [PTMS_RAT]	6,3978663
P18422	Proteasome subunit alpha type-3 OS=Rattus norvegicus GN=Psma3 PE=1 SV=3 - [PSA3_RAT]	6,34087871
Q4QQW 3	Hydroxyacid-oxoacid transhydrogenase, mitochondrial OS=Rattus norvegicus GN=Adhfe1 PE=1 SV=1 - [HOT_RAT]	6,31719201
Q8VID1	Dehydrogenase/reductase SDR family member 4 OS=Rattus norvegicus GN=Dhrs4 PE=2 SV=2 - [DHRS4_RAT]	6,22925581
Q5M821	Protein phosphatase 1H OS=Rattus norvegicus GN=Ppm1h PE=2 SV=2 - [PPM1H_RAT]	5,99255283
Q66H68	RNA-binding protein 47 OS=Rattus norvegicus GN=Rbm47 PE=2 SV=1 - [RBM47_RAT]	5,97448876
P97615	Thioredoxin, mitochondrial OS=Rattus norvegicus GN=Txn2 PE=2 SV=1 - [THIOM_RAT]	5,94609354
P84245	Histone H3.3 OS=Rattus norvegicus GN=H3f3b PE=1 SV=2 - [H33_RAT]	5,77192511
P41498	Low molecular weight phosphotyrosine protein phosphatase OS=Rattus norvegicus GN=Acp1 PE=1 SV=3 - [PPAC_RAT]	5,69527746
Q62975	Protein Z-dependent protease inhibitor OS=Rattus norvegicus GN=Serpina10 PE=2 SV=2 - [ZPI_RAT]	5,6401854
Q6AXQ0	SUMO-activating enzyme subunit 1 OS=Rattus norvegicus GN=Sae1 PE=2 SV=1 - [SAE1_RAT]	5,57308513
P12001		
1 12001	60S ribosomal protein L18 OS=Rattus norvegicus GN=Rpl18 PE=2 SV=2 - [RL18_RAT]	5,41985282
Q6AXY0	60S ribosomal protein L18 OS=Rattus norvegicus GN=Rpl18 PE=2 SV=2 - [RL18_RAT]Glutathione S-transferase A6 OS=Rattus norvegicus GN=Gsta6 PE=1 SV=1 - [GSTA6_RAT]	5,41985282 5,19591939
Q6AXY0 Q71LX6	60S ribosomal protein L18 OS=Rattus norvegicus GN=Rpl18 PE=2 SV=2 - [RL18_RAT]Glutathione S-transferase A6 OS=Rattus norvegicus GN=Gsta6 PE=1 SV=1 - [GSTA6_RAT]Xin actin-binding repeat-containing protein 2 OS=Rattus norvegicus GN=Xirp2 PE=1 SV=1 - [XIRP2_RAT]	5,41985282 5,19591939 5,11213143
Q6AXY0 Q71LX6 P54001	60S ribosomal protein L18 OS=Rattus norvegicus GN=Rpl18 PE=2 SV=2 - [RL18_RAT]Glutathione S-transferase A6 OS=Rattus norvegicus GN=Gsta6 PE=1 SV=1 - [GSTA6_RAT]Xin actin-binding repeat-containing protein 2 OS=Rattus norvegicus GN=Xirp2 PE=1 SV=1 - [XIRP2_RAT]Prolyl 4-hydroxylase subunit alpha-1 OS=Rattus norvegicus GN=P4ha1 PE=2 SV=2 - [P4HA1_RAT]	5,419852825,195919395,112131434,7767659
Q6AXY0 Q71LX6 P54001 Q3KR59	60S ribosomal protein L18 OS=Rattus norvegicus GN=Rpl18 PE=2 SV=2 - [RL18_RAT]Glutathione S-transferase A6 OS=Rattus norvegicus GN=Gsta6 PE=1 SV=1 - [GSTA6_RAT]Xin actin-binding repeat-containing protein 2 OS=Rattus norvegicus GN=Xirp2 PE=1 SV=1 - [XIRP2_RAT]Prolyl 4-hydroxylase subunit alpha-1 OS=Rattus norvegicus GN=P4ha1 PE=2 SV=2 - [P4HA1_RAT]Ubiquitin carboxyl-terminal hydrolase 10 OS=Rattus norvegicus GN=Usp10 PE=2 SV=1 - [UBP10_RAT]	5,41985282 5,19591939 5,11213143 4,7767659 4,69837901
Q6AXY0 Q71LX6 P54001 Q3KR59 P05765	60S ribosomal protein L18 OS=Rattus norvegicus GN=Rpl18 PE=2 SV=2 - [RL18_RAT]Glutathione S-transferase A6 OS=Rattus norvegicus GN=Gsta6 PE=1 SV=1 - [GSTA6_RAT]Xin actin-binding repeat-containing protein 2 OS=Rattus norvegicus GN=Xirp2 PE=1 SV=1 - [XIRP2_RAT]Prolyl 4-hydroxylase subunit alpha-1 OS=Rattus norvegicus GN=P4ha1 PE=2 SV=2 - [P4HA1_RAT]Ubiquitin carboxyl-terminal hydrolase 10 OS=Rattus norvegicus GN=Usp10 PE=2 SV=1 - [UBP10_RAT]40S ribosomal protein S21 OS=Rattus norvegicus GN=Rps21 PE=1 SV=1 - [RS21_RAT]	5,419852825,195919395,112131434,77676594,698379014,58353022
Q6AXY0 Q71LX6 P54001 Q3KR59 P05765 Q5XI31	60S ribosomal protein L18 OS=Rattus norvegicus GN=Rpl18 PE=2 SV=2 - [RL18_RAT]Glutathione S-transferase A6 OS=Rattus norvegicus GN=Gsta6 PE=1 SV=1 - [GSTA6_RAT]Xin actin-binding repeat-containing protein 2 OS=Rattus norvegicus GN=Xirp2 PE=1 SV=1 - [XIRP2_RAT]Prolyl 4-hydroxylase subunit alpha-1 OS=Rattus norvegicus GN=P4ha1 PE=2 SV=2 - [P4HA1_RAT]Ubiquitin carboxyl-terminal hydrolase 10 OS=Rattus norvegicus GN=Usp10 PE=2 SV=1 - [UBP10_RAT]40S ribosomal protein S21 OS=Rattus norvegicus GN=Rps21 PE=1 SV=1 - [RS21_RAT]GPI transamidase component PIG-S OS=Rattus norvegicus GN=Pigs PE=2 SV=3 - [PIGS_RAT]	5,41985282 5,19591939 5,11213143 4,7767659 4,69837901 4,58353022 4,54977903
Q6AXY0 Q71LX6 P54001 Q3KR59 P05765 Q5XI31 Q5XI22	60S ribosomal protein L18 OS=Rattus norvegicus GN=Rpl18 PE=2 SV=2 - [RL18_RAT]Glutathione S-transferase A6 OS=Rattus norvegicus GN=Gsta6 PE=1 SV=1 - [GSTA6_RAT]Xin actin-binding repeat-containing protein 2 OS=Rattus norvegicus GN=Xirp2 PE=1 SV=1 - [XIRP2_RAT]Prolyl 4-hydroxylase subunit alpha-1 OS=Rattus norvegicus GN=P4ha1 PE=2 SV=2 - [P4HA1_RAT]Ubiquitin carboxyl-terminal hydrolase 10 OS=Rattus norvegicus GN=Usp10 PE=2 SV=1 - [UBP10_RAT]40S ribosomal protein S21 OS=Rattus norvegicus GN=Rps21 PE=1 SV=1 - [RS21_RAT]GPI transamidase component PIG-S OS=Rattus norvegicus GN=Pigs PE=2 SV=3 - [PIGS_RAT]Acetyl-CoA acetyltransferase, cytosolic OS=Rattus norvegicus GN=Acat2 PE=1 SV=1 - [THIC_RAT]	5,41985282 5,19591939 5,11213143 4,7767659 4,69837901 4,58353022 4,54977903 4,48766051
Q6AXY0 Q71LX6 P54001 Q3KR59 P05765 Q5XI31 Q5XI22 Q2TL32	60S ribosomal protein L18 OS=Rattus norvegicus GN=Rpl18 PE=2 SV=2 - [RL18_RAT]Glutathione S-transferase A6 OS=Rattus norvegicus GN=Gsta6 PE=1 SV=1 - [GSTA6_RAT]Xin actin-binding repeat-containing protein 2 OS=Rattus norvegicus GN=Xirp2 PE=1 SV=1 - [XIRP2_RAT]Prolyl 4-hydroxylase subunit alpha-1 OS=Rattus norvegicus GN=P4ha1 PE=2 SV=2 - [P4HA1_RAT]Ubiquitin carboxyl-terminal hydrolase 10 OS=Rattus norvegicus GN=Usp10 PE=2 SV=1 - [UBP10_RAT]40S ribosomal protein S21 OS=Rattus norvegicus GN=Rps21 PE=1 SV=1 - [RS21_RAT]GPI transamidase component PIG-S OS=Rattus norvegicus GN=Pigs PE=2 SV=3 - [PIGS_RAT]Acetyl-CoA acetyltransferase, cytosolic OS=Rattus norvegicus GN=Lbr4 PE=1 SV=1 - [THIC_RAT]E3 ubiquitin-protein ligase UBR4 OS=Rattus norvegicus GN=Ubr4 PE=1 SV=2 - [UBR4_RAT]	5,41985282 5,19591939 5,11213143 4,7767659 4,69837901 4,58353022 4,54977903 4,48766051 4,37575821

P47875	Cysteine and glycine-rich protein 1 OS=Rattus norvegicus GN=Csrp1 PE=2 SV=2 - [CSRP1_RAT]	4,34618877
Q5U2X7	Mitochondrial import inner membrane translocase subunit Tim21 OS=Rattus norvegicus GN=Timm21 PE=2 SV=1 - [TIM21_RAT]	4,27116314
Q9ES54	Nuclear protein localization protein 4 homolog OS=Rattus norvegicus GN=Nploc4 PE=1 SV=3 - [NPL4_RAT]	4,19308008
D4AD37	Inositol monophosphatase 3 OS=Rattus norvegicus GN=Impad1 PE=3 SV=1 - [IMPA3_RAT]	4,18700382
P08460	Nidogen-1 (Fragment) OS=Rattus norvegicus GN=Nid1 PE=1 SV=2 - [NID1_RAT]	4,17886178
P02401	60S acidic ribosomal protein P2 OS=Rattus norvegicus GN=Rplp2 PE=1 SV=2 - [RLA2_RAT]	4,1015938
P04644	40S ribosomal protein S17 OS=Rattus norvegicus GN=Rps17 PE=1 SV=3 - [RS17_RAT]	4,00576281
Q5FVI3	Leucine-rich repeat-containing protein 57 OS=Rattus norvegicus GN=Lrrc57 PE=2 SV=1 - [LRC57_RAT]	4,00493595
O70594	Solute carrier family 22 member 5 OS=Rattus norvegicus GN=Slc22a5 PE=1 SV=1 - [S22A5_RAT]	3,96175127
A1A5S1	Pre-mRNA-processing factor 6 OS=Rattus norvegicus GN=Prpf6 PE=2 SV=1 - [PRP6_RAT]	3,96112792
Q63945	Protein SET OS=Rattus norvegicus GN=Set PE=2 SV=2 - [SET_RAT]	3,95570061
P05369	Farnesyl pyrophosphate synthase OS=Rattus norvegicus GN=Fdps PE=2 SV=2 - [FPPS_RAT]	3,95517811
P22791	Hydroxymethylglutaryl-CoA synthase, mitochondrial OS=Rattus norvegicus GN=Hmgcs2 PE=2 SV=1 - [HMCS2_RAT]	3,81768344
Q71UE8	NEDD8 OS=Rattus norvegicus GN=Nedd8 PE=1 SV=1 - [NEDD8_RAT]	3,7895764
P48284	Carbonic anhydrase 4 OS=Rattus norvegicus GN=Ca4 PE=1 SV=1 - [CAH4_RAT]	3,7454602
Q04462	ValinetRNA ligase OS=Rattus norvegicus GN=Vars PE=2 SV=2 - [SYVC_RAT]	3,70631137
Q9Z311	Trans-2-enoyl-CoA reductase, mitochondrial OS=Rattus norvegicus GN=Mecr PE=1 SV=1 - [MECR_RAT]	3,65840901
P47245	Nardilysin OS=Rattus norvegicus GN=Nrd1 PE=2 SV=1 - [NRDC_RAT]	3,64900722
P86182	Coiled-coil domain-containing protein 22 OS=Rattus norvegicus GN=Ccdc22 PE=1 SV=2 - [CCD22_RAT]	3,63050623
Q6PCT3	Tumor protein D54 OS=Rattus norvegicus GN=Tpd52l2 PE=2 SV=1 - [TPD54_RAT]	3,58886956
P24464	Cytochrome P450 4A12 OS=Rattus norvegicus GN=Cyp4a12 PE=2 SV=2 - [CP4AC_RAT]	3,58069251
P29117	Peptidyl-prolyl cis-trans isomerase F, mitochondrial OS=Rattus norvegicus GN=Ppif PE=1 SV=2 - [PPIF_RAT]	3,57896225
BOBNC9	Quinone oxidoreductase-like protein 2 OS=Rattus norvegicus PE=2 SV=1 - [QORL2_RAT]	3,56795194
P47198	60S ribosomal protein L22 OS=Rattus norvegicus GN=Rpl22 PE=2 SV=2 - [RL22_RAT]	3,56316696

P10633	Cytochrome P450 2D1 OS=Rattus norvegicus GN=Cyp2d1 PE=2 SV=1 - [CP2D1_RAT]	3,53993655
055159	Epithelial cell adhesion molecule OS=Rattus norvegicus GN=Epcam PE=1 SV=1 - [EPCAM_RAT]	3,51037158
Q6AY63	ADP-sugar pyrophosphatase OS=Rattus norvegicus GN=Nudt5 PE=2 SV=1 - [NUDT5_RAT]	3,5067413
Q6PCU8	NADH dehydrogenase [ubiquinone] flavoprotein 3, mitochondrial OS=Rattus norvegicus GN=Ndufv3 PE=3 SV=1 - [NDUV3_RAT]	3,48533307
Q812D3	Peptidyl-prolyl cis-trans isomerase-like 3 OS=Rattus norvegicus GN=Ppil3 PE=2 SV=1 - [PPIL3_RAT]	3,47141624
Q63009	Protein arginine N-methyltransferase 1 OS=Rattus norvegicus GN=Prmt1 PE=1 SV=1 - [ANM1_RAT]	3,42271414
F1MA98	Nucleoprotein TPR OS=Rattus norvegicus GN=Tpr PE=1 SV=1 - [TPR_RAT]	3,35156901
P61354	60S ribosomal protein L27 OS=Rattus norvegicus GN=Rpl27 PE=2 SV=2 - [RL27_RAT]	3,32509151
Q925S8	ATP-dependent zinc metalloprotease YME1L1 OS=Rattus norvegicus GN=Yme111 PE=2 SV=1 - [YMEL1_RAT]	3,31447539
Q5PQM2	Kinesin light chain 4 OS=Rattus norvegicus GN=Klc4 PE=2 SV=1 - [KLC4_RAT]	3,28406838
Q499U2	Engulfment and cell motility protein 3 OS=Rattus norvegicus GN=Elmo3 PE=2 SV=1 - [ELMO3_RAT]	3,24776846
Q99NA5	Isocitrate dehydrogenase [NAD] subunit alpha, mitochondrial OS=Rattus norvegicus GN=Idh3a PE=1 SV=1 - [IDH3A_RAT]	3,13704781
P47967	Galectin-5 OS=Rattus norvegicus GN=Lgals5 PE=1 SV=2 - [LEG5_RAT]	3,10446563
Q6AXM 8	Serum paraoxonase/arylesterase 2 OS=Rattus norvegicus GN=Pon2 PE=2 SV=1 - [PON2_RAT]	3,08524771
BOLT89	Serine/threonine-protein kinase 24 OS=Rattus norvegicus GN=Stk24 PE=2 SV=1 - [STK24_RAT]	3,07716378
Q7TT49	Serine/threonine-protein kinase MRCK beta OS=Rattus norvegicus GN=Cdc42bpb PE=1 SV=1 - [MRCKB_RAT]	3,05036743
Q62839	Golgin subfamily A member 2 OS=Rattus norvegicus GN=Golga2 PE=1 SV=3 - [GOGA2_RAT]	3,04990178
Q7TNK6	tRNA (guanine(10)-N2)-methyltransferase homolog OS=Rattus norvegicus GN=Trmt11 PE=2 SV=1 - [TRM11_RAT]	3,00103407
O54861	Sortilin OS=Rattus norvegicus GN=Sort1 PE=1 SV=3 - [SORT_RAT]	2,94934344
Q9WV97	Mitochondrial import inner membrane translocase subunit Tim9 OS=Rattus norvegicus GN=Timm9 PE=1 SV=3 - [TIM9_RAT]	2,92906639
Q5I0E9	Multidrug and toxin extrusion protein 1 OS=Rattus norvegicus GN=Slc47a1 PE=1 SV=1 - [S47A1_RAT]	2,92448597
P54319	Phospholipase A-2-activating protein OS=Rattus norvegicus GN=Plaa PE=2 SV=3 - [PLAP_RAT]	2,92395734

P35738	2-oxoisovalerate dehydrogenase subunit beta, mitochondrial OS=Rattus norvegicus GN=Bckdhb PE=1 SV=3 - [ODBB_RAT]	2,87661923
P23928	Alpha-crystallin B chain OS=Rattus norvegicus GN=Cryab PE=1 SV=1 - [CRYAB_RAT]	2,86557234
P10111	Peptidyl-prolyl cis-trans isomerase A OS=Rattus norvegicus GN=Ppia PE=1 SV=2 - [PPIA_RAT]	2,84622403
Q6P791	Ragulator complex protein LAMTOR1 OS=Rattus norvegicus GN=Lamtor1 PE=1 SV=1 - [LTOR1_RAT]	2,84209484
P63326	40S ribosomal protein S10 OS=Rattus norvegicus GN=Rps10 PE=2 SV=1 - [RS10_RAT]	2,83492625
P00173	Cytochrome b5 OS=Rattus norvegicus GN=Cyb5a PE=1 SV=2 - [CYB5_RAT]	2,83207064
P01048	T-kininogen 1 OS=Rattus norvegicus GN=Map1 PE=1 SV=2 - [KNT1_RAT]	2,81081876
P53565	Homeobox protein cut-like 1 OS=Rattus norvegicus GN=Cux1 PE=1 SV=2 - [CUX1_RAT]	2,79486481
P02770	Serum albumin OS=Rattus norvegicus GN=Alb PE=1 SV=2 - [ALBU_RAT]	2,77661179
Q91ZW1	Transcription factor A, mitochondrial OS=Rattus norvegicus GN=Tfam PE=2 SV=1 - [TFAM_RAT]	2,77103533
Q62780	Probable ATP-dependent RNA helicase DDX46 OS=Rattus norvegicus GN=Ddx46 PE=1 SV=1 - [DDX46_RAT]	2,76640328
Q9WVK 3	Peroxisomal trans-2-enoyl-CoA reductase OS=Rattus norvegicus GN=Pecr PE=2 SV=1 - [PECR_RAT]	2,76244139
P00564	Creatine kinase M-type OS=Rattus norvegicus GN=Ckm PE=1 SV=2 - [KCRM_RAT]	2,7259865
P22509	rRNA 2'-O-methyltransferase fibrillarin OS=Rattus norvegicus GN=Fbl PE=1 SV=2 - [FBRL_RAT]	2,71332218
Q10758	Keratin, type II cytoskeletal 8 OS=Rattus norvegicus GN=Krt8 PE=1 SV=3 - [K2C8_RAT]	2,71250731
Q66HC5	Nuclear pore complex protein Nup93 OS=Rattus norvegicus GN=Nup93 PE=1 SV=1 - [NUP93_RAT]	2,70436474
P53042	Serine/threonine-protein phosphatase 5 OS=Rattus norvegicus GN=Ppp5c PE=1 SV=1 - [PPP5_RAT]	2,65334904
O08701	Arginase-2, mitochondrial OS=Rattus norvegicus GN=Arg2 PE=2 SV=1 - [ARGI2_RAT]	2,6363206
B5DFC8	Eukaryotic translation initiation factor 3 subunit C OS=Rattus norvegicus GN=Eif3c PE=2 SV=1 - [EIF3C_RAT]	2,63115168
Q6PEC0	Bis(5'-nucleosyl)-tetraphosphatase [asymmetrical] OS=Rattus norvegicus GN=Nudt2 PE=2 SV=3 - [AP4A_RAT]	2,62933402
P13086	Succinyl-CoA ligase [ADP/GDP-forming] subunit alpha, mitochondrial OS=Rattus norvegicus GN=Suclg1 PE=2 SV=2 - [SUCA_RAT]	2,62504297
Q62645	Glutamate receptor ionotropic, NMDA 2D OS=Rattus norvegicus GN=Grin2d PE=1 SV=2 - [NMDE4_RAT]	2,59863903
Q5U2U0	ATP-dependent Clp protease ATP-binding subunit clpX-like, mitochondrial OS=Rattus norvegicus GN=Clpx	2,577169

	PE=2 SV=1 - [CLPX_RAT]	
P10687	1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta-1 OS=Rattus norvegicus GN=Plcb1 PE=1 SV=1 - [PLCB1_RAT]	2,57059922
P55016	Solute carrier family 12 member 1 OS=Rattus norvegicus GN=Slc12a1 PE=1 SV=1 - [S12A1_RAT]	2,56657768
Q5BJS0	Putative ATP-dependent RNA helicase DHX30 OS=Rattus norvegicus GN=Dhx30 PE=1 SV=1 - [DHX30_RAT]	2,55947332
P07379	Phosphoenolpyruvate carboxykinase, cytosolic [GTP] OS=Rattus norvegicus GN=Pck1 PE=1 SV=1 - [PCKGC_RAT]	2,54046265
Q9Z0V5	Peroxiredoxin-4 OS=Rattus norvegicus GN=Prdx4 PE=2 SV=1 - [PRDX4_RAT]	2,54020393
P97690	Structural maintenance of chromosomes protein 3 OS=Rattus norvegicus GN=Smc3 PE=1 SV=1 - [SMC3_RAT]	2,53874321
Q63610	Tropomyosin alpha-3 chain OS=Rattus norvegicus GN=Tpm3 PE=1 SV=2 - [TPM3_RAT]	2,53456007
P35427	60S ribosomal protein L13a OS=Rattus norvegicus GN=Rpl13a PE=1 SV=2 - [RL13A_RAT]	2,52397165
P62919	60S ribosomal protein L8 OS=Rattus norvegicus GN=Rpl8 PE=2 SV=2 - [RL8_RAT]	2,52290502
Q9QYL8	Acyl-protein thioesterase 2 OS=Rattus norvegicus GN=Lypla2 PE=1 SV=1 - [LYPA2_RAT]	2,52103779
Q5BK17	Iodotyrosine dehalogenase 1 OS=Rattus norvegicus GN=Iyd PE=2 SV=1 - [IYD1_RAT]	2,51924279
Q9Z1M9	Structural maintenance of chromosomes protein 1A OS=Rattus norvegicus GN=Smc1a PE=1 SV=1 - [SMC1A_RAT]	2,51066003
Q920F5	Malonyl-CoA decarboxylase, mitochondrial OS=Rattus norvegicus GN=Mlycd PE=1 SV=1 - [DCMC_RAT]	2,49812354
P04916	Retinol-binding protein 4 OS=Rattus norvegicus GN=Rbp4 PE=1 SV=1 - [RET4_RAT]	2,48349706
Q68A21	Transcriptional activator protein Pur-beta OS=Rattus norvegicus GN=Purb PE=1 SV=3 - [PURB_RAT]	2,47879027
Q6AYH6	ER membrane protein complex subunit 10 OS=Rattus norvegicus GN=Emc10 PE=1 SV=1 - [EMC10_RAT]	2,45103376
P97834	COP9 signalosome complex subunit 1 OS=Rattus norvegicus GN=Gps1 PE=1 SV=1 - [CSN1_RAT]	2,44829902
Q4QQW 4	Histone deacetylase 1 OS=Rattus norvegicus GN=Hdac1 PE=1 SV=1 - [HDAC1_RAT]	2,43982226
Q62835	Rab GTPase-binding effector protein 2 OS=Rattus norvegicus GN=Rabep2 PE=2 SV=1 - [RABE2_RAT]	2,42528551
Q5U4E6	Golgin subfamily A member 4 OS=Rattus norvegicus GN=Golga4 PE=1 SV=2 - [GOGA4_RAT]	2,41282726
P62997	Transformer-2 protein homolog beta OS=Rattus norvegicus GN=Tra2b PE=1 SV=1 - [TRA2B_RAT]	2,40857048
Q62696	Disks large homolog 1 OS=Rattus norvegicus GN=Dlg1 PE=1 SV=1 - [DLG1_RAT]	2,40088529

P08649	Complement C4 OS=Rattus norvegicus GN=C4 PE=1 SV=3 - [CO4_RAT]	2,39886357
P97700	Mitochondrial 2-oxoglutarate/malate carrier protein OS=Rattus norvegicus GN=Slc25a11 PE=2 SV=3 - [M2OM_RAT]	2,39434062
Q91ZN1	Coronin-1A OS=Rattus norvegicus GN=Coro1a PE=1 SV=3 - [COR1A_RAT]	2,39248552
Q91XU8	Phosphatidate cytidylyltransferase 2 OS=Rattus norvegicus GN=Cds2 PE=2 SV=1 - [CDS2_RAT]	2,37294147
Q5XI81	Fragile X mental retardation syndrome-related protein 1 OS=Rattus norvegicus GN=Fxr1 PE=2 SV=1 - [FXR1_RAT]	2,37234638
P30839	Fatty aldehyde dehydrogenase OS=Rattus norvegicus GN=Aldh3a2 PE=1 SV=1 - [AL3A2_RAT]	2,35513932
P18421	Proteasome subunit beta type-1 OS=Rattus norvegicus GN=Psmb1 PE=1 SV=3 - [PSB1_RAT]	2,34614071
P63004	Platelet-activating factor acetylhydrolase IB subunit alpha OS=Rattus norvegicus GN=Pafah1b1 PE=1 SV=2 - [LIS1_RAT]	2,34572116
Q5XFW8	Protein SEC13 homolog OS=Rattus norvegicus GN=Sec13 PE=1 SV=1 - [SEC13_RAT]	2,29861096
Q07116	Sulfite oxidase, mitochondrial OS=Rattus norvegicus GN=Suox PE=1 SV=2 - [SUOX_RAT]	2,28871232
P18292	Prothrombin OS=Rattus norvegicus GN=F2 PE=1 SV=1 - [THRB_RAT]	2,28714601
Q9WU49	Calcium-regulated heat stable protein 1 OS=Rattus norvegicus GN=Carhsp1 PE=1 SV=1 - [CHSP1_RAT]	2,2850649
Q5U3Z3	Isochorismatase domain-containing protein 2, mitochondrial OS=Rattus norvegicus GN=Isoc2 PE=2 SV=1 - [ISOC2_RAT]	2,27342944
B0BNM1	NAD(P)H-hydrate epimerase OS=Rattus norvegicus GN=Apoa1bp PE=2 SV=1 - [NNRE_RAT]	2,26781153
P70615	Lamin-B1 OS=Rattus norvegicus GN=Lmnb1 PE=1 SV=3 - [LMNB1_RAT]	2,26712329
P24329	Thiosulfate sulfurtransferase OS=Rattus norvegicus GN=Tst PE=1 SV=3 - [THTR_RAT]	2,26711438
P07335	Creatine kinase B-type OS=Rattus norvegicus GN=Ckb PE=1 SV=2 - [KCRB_RAT]	2,26369441
F1LM93	Tyrosine-protein kinase Yes OS=Rattus norvegicus GN=Yes1 PE=1 SV=1 - [YES_RAT]	2,2629085
Q5FVQ8	NLR family member X1 OS=Rattus norvegicus GN=Nlrx1 PE=2 SV=1 - [NLRX1_RAT]	2,25930901
Q6AXS3	Protein DEK OS=Rattus norvegicus GN=Dek PE=2 SV=1 - [DEK_RAT]	2,24629552
P10824	Guanine nucleotide-binding protein G(i) subunit alpha-1 OS=Rattus norvegicus GN=Gnai1 PE=1 SV=3 - [GNAI1_RAT]	2,24371374
Q5I0H9	Protein disulfide-isomerase A5 OS=Rattus norvegicus GN=Pdia5 PE=2 SV=1 - [PDIA5_RAT]	2,238614
Q3B7U9	Peptidyl-prolyl cis-trans isomerase FKBP8 OS=Rattus norvegicus GN=Fkbp8 PE=2 SV=1 - [FKBP8_RAT]	2,23672115

Q05096	Unconventional myosin-Ib OS=Rattus norvegicus GN=Myo1b PE=1 SV=1 - [MYO1B_RAT]	2,232888
B2GV06	Succinyl-CoA:3-ketoacid coenzyme A transferase 1, mitochondrial OS=Rattus norvegicus GN=Oxct1 PE=1 SV=1 - [SCOT1_RAT]	2,23287092
P47853	Biglycan OS=Rattus norvegicus GN=Bgn PE=2 SV=1 - [PGS1_RAT]	2,22998984
P15791	Calcium/calmodulin-dependent protein kinase type II subunit delta OS=Rattus norvegicus GN=Camk2d PE=1 SV=1 - [KCC2D_RAT]	2,2251225
Q9JJ31	Cullin-5 OS=Rattus norvegicus GN=Cul5 PE=1 SV=3 - [CUL5_RAT]	2,20928036
P20650	Protein phosphatase 1A OS=Rattus norvegicus GN=Ppm1a PE=1 SV=1 - [PPM1A_RAT]	2,20414936
P13676	Acylamino-acid-releasing enzyme OS=Rattus norvegicus GN=Apeh PE=1 SV=1 - [ACPH_RAT]	2,20401562
Q923K9	APOBEC1 complementation factor OS=Rattus norvegicus GN=A1cf PE=1 SV=1 - [A1CF_RAT]	2,20190612
P63029	Translationally-controlled tumor protein OS=Rattus norvegicus GN=Tpt1 PE=1 SV=1 - [TCTP_RAT]	2,20056091
Q9WUH 4	Four and a half LIM domains protein 1 OS=Rattus norvegicus GN=Fhl1 PE=2 SV=1 - [FHL1_RAT]	2,19457447
Q99PF5	Far upstream element-binding protein 2 OS=Rattus norvegicus GN=Khsrp PE=1 SV=1 - [FUBP2_RAT]	2,19002404
Q75WE7	von Willebrand factor A domain-containing protein 5A OS=Rattus norvegicus GN=Vwa5a PE=2 SV=1 - [VWA5A_RAT]	2,18142243
P80386	5'-AMP-activated protein kinase subunit beta-1 OS=Rattus norvegicus GN=Prkab1 PE=1 SV=4 - [AAKB1_RAT]	2,17431252
Q641X8	Eukaryotic translation initiation factor 3 subunit E OS=Rattus norvegicus GN=Eif3e PE=2 SV=1 - [EIF3E_RAT]	2,17401795
Q6UPR8	Endoplasmic reticulum metallopeptidase 1 OS=Rattus norvegicus GN=Ermp1 PE=1 SV=1 - [ERMP1_RAT]	2,15971653
Q3KRE0	ATPase family AAA domain-containing protein 3 OS=Rattus norvegicus GN=Atad3 PE=1 SV=1 - [ATAD3_RAT]	2,1521664
Q5XI32	F-actin-capping protein subunit beta OS=Rattus norvegicus GN=Capzb PE=1 SV=1 - [CAPZB_RAT]	2,143134
O35550	Rab GTPase-binding effector protein 1 OS=Rattus norvegicus GN=Rabep1 PE=1 SV=1 - [RABE1_RAT]	2,13804662
Q5RJR2	Twinfilin-1 OS=Rattus norvegicus GN=Twf1 PE=2 SV=1 - [TWF1_RAT]	2,12602686
B5DFN2	Adenosylhomocysteinase 2 OS=Rattus norvegicus GN=Ahcyl1 PE=1 SV=2 - [SAHH2_RAT]	2,12507594
Q5FWY5	AH receptor-interacting protein OS=Rattus norvegicus GN=Aip PE=1 SV=1 - [AIP_RAT]	2,12315389
Q6AY09	Heterogeneous nuclear ribonucleoprotein H2 OS=Rattus norvegicus GN=Hnrnph2 PE=1 SV=1 - [HNRH2_RAT]	2,10736381

B0BNA7	Eukaryotic translation initiation factor 3 subunit I OS=Rattus norvegicus GN=Eif3i PE=2 SV=1 - [EIF3I_RAT]	2,10404062
O88202	60 kDa lysophospholipase OS=Rattus norvegicus GN=Aspg PE=1 SV=1 - [LPP60_RAT]	2,10169304
Q7TP52	Carboxymethylenebutenolidase homolog OS=Rattus norvegicus GN=Cmbl PE=2 SV=1 - [CMBL_RAT]	2,09287202
Q6TUG0	DnaJ homolog subfamily B member 11 OS=Rattus norvegicus GN=Dnajb11 PE=2 SV=1 - [DJB11_RAT]	2,09187526
P83006	Platelet-activating factor acetylhydrolase 2, cytoplasmic OS=Rattus norvegicus GN=Pafah2 PE=1 SV=2 - [PAFA2_RAT]	2,08977965
P20817	Cytochrome P450 4A14 OS=Rattus norvegicus GN=Cyp4a14 PE=1 SV=2 - [CP4AE_RAT]	2,08922524
P21708	Mitogen-activated protein kinase 3 OS=Rattus norvegicus GN=Mapk3 PE=1 SV=5 - [MK03_RAT]	2,07805343
Q63692	Hsp90 co-chaperone Cdc37 OS=Rattus norvegicus GN=Cdc37 PE=1 SV=2 - [CDC37_RAT]	2,07384006
P41542	General vesicular transport factor p115 OS=Rattus norvegicus GN=Uso1 PE=1 SV=1 - [USO1_RAT]	2,06991179
P62775	Myotrophin OS=Rattus norvegicus GN=Mtpn PE=1 SV=2 - [MTPN_RAT]	2,06980658
P27791	cAMP-dependent protein kinase catalytic subunit alpha OS=Rattus norvegicus GN=Prkaca PE=1 SV=2 - [KAPCA_RAT]	2,06573995
P11030	Acyl-CoA-binding protein OS=Rattus norvegicus GN=Dbi PE=1 SV=3 - [ACBP_RAT]	2,06503512
P17764	Acetyl-CoA acetyltransferase, mitochondrial OS=Rattus norvegicus GN=Acat1 PE=1 SV=1 - [THIL_RAT]	2,06412693
Q68FY0	Cytochrome b-c1 complex subunit 1, mitochondrial OS=Rattus norvegicus GN=Uqcrc1 PE=1 SV=1 - [QCR1_RAT]	2,06229569
A2VD12	Pre-B-cell leukemia transcription factor-interacting protein 1 OS=Rattus norvegicus GN=Pbxip1 PE=2 SV=1 - [PBIP1_RAT]	2,06221535
Q6IRE4	Tumor susceptibility gene 101 protein OS=Rattus norvegicus GN=Tsg101 PE=1 SV=1 - [TS101_RAT]	2,0569269
P29410	Adenylate kinase 2, mitochondrial OS=Rattus norvegicus GN=Ak2 PE=2 SV=2 - [KAD2_RAT]	2,03325964
P97697	Inositol monophosphatase 1 OS=Rattus norvegicus GN=Impa1 PE=1 SV=2 - [IMPA1_RAT]	2,02508761
B5DFN3	Ubiquinol-cytochrome-c reductase complex assembly factor 2 OS=Rattus norvegicus GN=Uqcc2 PE=2 SV=1 - [UQCC2_RAT]	2,00859692
Q6AYG5	Ethylmalonyl-CoA decarboxylase OS=Rattus norvegicus GN=Echdc1 PE=1 SV=1 - [ECHD1_RAT]	2,00768806
Q641Y8	ATP-dependent RNA helicase DDX1 OS=Rattus norvegicus GN=Ddx1 PE=2 SV=1 - [DDX1_RAT]	2,00538338

Πίνακας Παραρτήματος 6: Διαφορικά εκφραζόμενες πρωτεΐνες που παρουσιάζουν μειωμένη έκφραση στα SHR ζώα 6 εβδομάδων όπως προέκυψε από την ανάλυση του νεφρικού παρεγχύματος με LC-MS/MS. Το στατιστικό τεστ Mann-Whitney χρησιμοποιήθηκε. Όλες οι τιμές είναι στατιστικά σημαντικές με p<0.05

Κωδικός	Πρωτεΐνη	Λόγος Έκφρασης (SHR/WKY)
070511	Ankyrin-3 OS=Rattus norvegicus GN=Ank3 PE=1 SV=3 - [ANK3_RAT]	0,49918288
P62902	60S ribosomal protein L31 OS=Rattus norvegicus GN=Rpl31 PE=2 SV=1 - [RL31_RAT]	0,49771928
Q8CG45	Aflatoxin B1 aldehyde reductase member 2 OS=Rattus norvegicus GN=Akr7a2 PE=1 SV=2 - [ARK72_RAT]	0,49637662
Q9WU82	Catenin beta-1 OS=Rattus norvegicus GN=Ctnnb1 PE=1 SV=1 - [CTNB1_RAT]	0,4920788
P97829	Leukocyte surface antigen CD47 OS=Rattus norvegicus GN=Cd47 PE=1 SV=1 - [CD47_RAT]	0,4881796
Q8R5M5	2-amino-3-carboxymuconate-6-semialdehyde decarboxylase OS=Rattus norvegicus GN=Acmsd PE=1 SV=1 - [ACMSD_RAT]	0,48786584
Q66HR2	Microtubule-associated protein RP/EB family member 1 OS=Rattus norvegicus GN=Mapre1 PE=1 SV=3 - [MARE1_RAT]	0,48778068
P07871	3-ketoacyl-CoA thiolase B, peroxisomal OS=Rattus norvegicus GN=Acaa1b PE=1 SV=2 - [THIKB_RAT]	0,48649507
P04904	Glutathione S-transferase alpha-3 OS=Rattus norvegicus GN=Gsta3 PE=1 SV=3 - [GSTA3_RAT]	0,48223102
O35795	Ectonucleoside triphosphate diphosphohydrolase 2 OS=Rattus norvegicus GN=Entpd2 PE=1 SV=1 - [ENTP2_RAT]	0,48108663
Q52KK3	Solute carrier family 25 member 51 OS=Rattus norvegicus GN=Slc25a51 PE=2 SV=1 - [S2551_RAT]	0,48053084
Q6XQN1	Nicotinate phosphoribosyltransferase OS=Rattus norvegicus GN=Naprt PE=2 SV=1 - [PNCB_RAT]	0,47660097
P62332	ADP-ribosylation factor 6 OS=Rattus norvegicus GN=Arf6 PE=1 SV=2 - [ARF6_RAT]	0,47192339
P63324	40S ribosomal protein S12 OS=Rattus norvegicus GN=Rps12 PE=1 SV=2 - [RS12_RAT]	0,46909816
P85970	Actin-related protein 2/3 complex subunit 2 OS=Rattus norvegicus GN=Arpc2 PE=1 SV=1 - [ARPC2_RAT]	0,46837114
Q6AXR4	Beta-hexosaminidase subunit beta OS=Rattus norvegicus GN=Hexb PE=2 SV=1 - [HEXB_RAT]	0,4667994
Q9WVK 7	Hydroxyacyl-coenzyme A dehydrogenase, mitochondrial OS=Rattus norvegicus GN=Hadh PE=2 SV=1 - [HCDH_RAT]	0,46595889
035763	Moesin OS=Rattus norvegicus GN=Msn PE=1 SV=3 - [MOES_RAT]	0,46537366

Q6AY30	Saccharopine dehydrogenase-like oxidoreductase OS=Rattus norvegicus GN=Sccpdh PE=2 SV=1 - [SCPDL_RAT]	0,46370816
Q924C3	Ectonucleotide pyrophosphatase/phosphodiesterase family member 1 OS=Rattus norvegicus GN=Enpp1 PE=1 SV=2 - [ENPP1_RAT]	0,4624253
P11517	Hemoglobin subunit beta-2 OS=Rattus norvegicus PE=1 SV=2 - [HBB2_RAT]	0,46221032
O88761	26S proteasome non-ATPase regulatory subunit 1 OS=Rattus norvegicus GN=Psmd1 PE=2 SV=1 - [PSMD1_RAT]	0,46116934
P55260	Annexin A4 OS=Rattus norvegicus GN=Anxa4 PE=1 SV=3 - [ANXA4_RAT]	0,4607634
P62804	Histone H4 OS=Rattus norvegicus GN=Hist1h4b PE=1 SV=2 - [H4_RAT]	0,45910159
Q5HZY2	GTP-binding protein SAR1b OS=Rattus norvegicus GN=Sar1b PE=2 SV=1 - [SAR1B_RAT]	0,45814898
Q80ZG1	Synembryn-A OS=Rattus norvegicus GN=Ric8a PE=1 SV=2 - [RIC8A_RAT]	0,45794516
Q9JHW0	Proteasome subunit beta type-7 OS=Rattus norvegicus GN=Psmb7 PE=1 SV=1 - [PSB7_RAT]	0,45549581
Q63108	Carboxylesterase 1E OS=Rattus norvegicus GN=Ces1e PE=2 SV=1 - [EST1E_RAT]	0,45523359
P36876	Serine/threonine-protein phosphatase 2A 55 kDa regulatory subunit B alpha isoform OS=Rattus norvegicus GN=Ppp2r2a PE=2 SV=1 - [2ABA_RAT]	0,45322043
Q64536	[Pyruvate dehydrogenase (acetyl-transferring)] kinase isozyme 2, mitochondrial OS=Rattus norvegicus GN=Pdk2 PE=1 SV=1 - [PDK2_RAT]	0,45273788
D2XV59	GTP-binding protein 1 OS=Rattus norvegicus GN=Gtpbp1 PE=1 SV=1 - [GTPB1_RAT]	0,45239051
P38918	Aflatoxin B1 aldehyde reductase member 3 OS=Rattus norvegicus GN=Akr7a3 PE=1 SV=2 - [ARK73_RAT]	0,45174722
P82471	Guanine nucleotide-binding protein G(q) subunit alpha OS=Rattus norvegicus GN=Gnaq PE=2 SV=2 - [GNAQ_RAT]	0,45025383
Q5XIG6	N-acetylgalactosamine kinase OS=Rattus norvegicus GN=Galk2 PE=2 SV=1 - [GALK2_RAT]	0,44978275
Q62753	Syntaxin-binding protein 2 OS=Rattus norvegicus GN=Stxbp2 PE=2 SV=1 - [STXB2_RAT]	0,44920137
Q6PDU7	ATP synthase subunit g, mitochondrial OS=Rattus norvegicus GN=Atp5l PE=1 SV=2 - [ATP5L_RAT]	0,44890553
P48508	Glutamatecysteine ligase regulatory subunit OS=Rattus norvegicus GN=Gclm PE=1 SV=1 - [GSH0_RAT]	0,44655791
D3ZKU7	Biogenesis of lysosome-related organelles complex 1 subunit 1 OS=Rattus norvegicus GN=Bloc1s1 PE=3 SV=1 - [BL1S1_RAT]	0,44313086
Q9JHL4	Drebrin-like protein OS=Rattus norvegicus GN=Dbnl PE=1 SV=1 - [DBNL_RAT]	0,44298323
P16391	RT1 class I histocompatibility antigen, AA alpha chain OS=Rattus norvegicus PE=1 SV=2 - [HA12_RAT]	0,43590505
Q6AYB4	Heat shock 70 kDa protein 14 OS=Rattus norvegicus GN=Hspa14 PE=2 SV=1 - [HSP7E_RAT]	0,43498452

F1LYQ8	FERM, RhoGEF and pleckstrin domain-containing protein 1 OS=Rattus norvegicus GN=Farp1 PE=1 SV=2 -	0,43297859
P61983	14-3-3 protein gamma OS=Rattus norvegicus GN=Ywhag PE=1 SV=2 - [1433G_RAT]	0,42931123
Q66HG3	Beta-Ala-His dipeptidase OS=Rattus norvegicus GN=Cndp1 PE=1 SV=1 - [CNDP1_RAT]	0,42610484
P40615	H/ACA ribonucleoprotein complex subunit 4 OS=Rattus norvegicus GN=Dkc1 PE=1 SV=4 - [DKC1_RAT]	0,42594288
P61206	ADP-ribosylation factor 3 OS=Rattus norvegicus GN=Arf3 PE=2 SV=2 - [ARF3_RAT]	0,42526389
Q9Z2M4	Peroxisomal 2,4-dienoyl-CoA reductase OS=Rattus norvegicus GN=Decr2 PE=2 SV=1 - [DECR2_RAT]	0,42309352
055012	Phosphatidylinositol-binding clathrin assembly protein OS=Rattus norvegicus GN=Picalm PE=1 SV=1 - [PICAL_RAT]	0,42275373
P61751	ADP-ribosylation factor 4 OS=Rattus norvegicus GN=Arf4 PE=2 SV=2 - [ARF4_RAT]	0,422429
Q4G064	2-methoxy-6-polyprenyl-1,4-benzoquinol methylase, mitochondrial OS=Rattus norvegicus GN=Coq5 PE=2 SV=1 - [COQ5_RAT]	0,42088789
P40112	Proteasome subunit beta type-3 OS=Rattus norvegicus GN=Psmb3 PE=1 SV=1 - [PSB3_RAT]	0,42027484
P68101	Eukaryotic translation initiation factor 2 subunit 1 OS=Rattus norvegicus GN=Eif2s1 PE=1 SV=2 - [IF2A_RAT]	0,41955891
035821	Myb-binding protein 1A OS=Rattus norvegicus GN=Mybbp1a PE=2 SV=2 - [MBB1A_RAT]	0,41932235
Q5U1Y1	Ras-related protein Rab-34 OS=Rattus norvegicus GN=Rab34 PE=2 SV=1 - [RAB34_RAT]	0,41308702
P0CC09	Histone H2A type 2-A OS=Rattus norvegicus GN=Hist2h2aa3 PE=1 SV=1 - [H2A2A_RAT]	0,40745792
Q9Z0V6	Thioredoxin-dependent peroxide reductase, mitochondrial OS=Rattus norvegicus GN=Prdx3 PE=1 SV=2 - [PRDX3_RAT]	0,40728563
Q5EB62	Solute carrier family 25 member 46 OS=Rattus norvegicus GN=Slc25a46 PE=2 SV=2 - [S2546_RAT]	0,40712195
O88797	Disabled homolog 2 OS=Rattus norvegicus GN=Dab2 PE=1 SV=1 - [DAB2_RAT]	0,40427488
Q08877	Dynamin-3 OS=Rattus norvegicus GN=Dnm3 PE=1 SV=2 - [DYN3_RAT]	0,40408445
P05708	Hexokinase-1 OS=Rattus norvegicus GN=Hk1 PE=1 SV=4 - [HXK1_RAT]	0,40330448
Q01984	Histamine N-methyltransferase OS=Rattus norvegicus GN=Hnmt PE=1 SV=3 - [HNMT_RAT]	0,40057212
P18886	Carnitine O-palmitoyltransferase 2, mitochondrial OS=Rattus norvegicus GN=Cpt2 PE=1 SV=1 - [CPT2_RAT]	0,40021615
P46720	Solute carrier organic anion transporter family member 1A1 OS=Rattus norvegicus GN=Slco1a1 PE=1 SV=1 - [SO1A1_RAT]	0,39356684
Q8VHF5	Citrate synthase, mitochondrial OS=Rattus norvegicus GN=Cs PE=1 SV=1 - [CISY_RAT]	0,39015676

Q6MG60	N(G),N(G)-dimethylarginine dimethylaminohydrolase 2 OS=Rattus norvegicus GN=Ddah2 PE=1 SV=1 - [DDAH2_RAT]	0,38729256
Q9EQT5	Tubulointerstitial nephritis antigen-like OS=Rattus norvegicus GN=Tinagl1 PE=2 SV=1 - [TINAL_RAT]	0,38005248
P10868	Guanidinoacetate N-methyltransferase OS=Rattus norvegicus GN=Gamt PE=1 SV=2 - [GAMT_RAT]	0,37719826
Q9Z1X1	Extended synaptotagmin-1 OS=Rattus norvegicus GN=Esyt1 PE=2 SV=1 - [ESYT1_RAT]	0,37688615
P19356	Porphobilinogen deaminase OS=Rattus norvegicus GN=Hmbs PE=1 SV=2 - [HEM3_RAT]	0,37274643
Q64550	UDP-glucuronosyltransferase 1-1 OS=Rattus norvegicus GN=Ugt1a1 PE=1 SV=1 - [UD11_RAT]	0,37164536
O35078	D-amino-acid oxidase OS=Rattus norvegicus GN=Dao PE=2 SV=1 - [OXDA_RAT]	0,36656624
Q6P7Q4	Lactoylglutathione lyase OS=Rattus norvegicus GN=Glo1 PE=1 SV=3 - [LGUL_RAT]	0,36256142
Q2V057	Probable proline dehydrogenase 2 OS=Rattus norvegicus GN=Prodh2 PE=2 SV=1 - [PROD2_RAT]	0,35593144
P23562	Band 3 anion transport protein OS=Rattus norvegicus GN=Slc4a1 PE=2 SV=3 - [B3AT_RAT]	0,35517126
P37199	Nuclear pore complex protein Nup155 OS=Rattus norvegicus GN=Nup155 PE=1 SV=1 - [NU155_RAT]	0,3548696
Q66HG6	Carbonic anhydrase 5B, mitochondrial OS=Rattus norvegicus GN=Ca5b PE=2 SV=1 - [CAH5B_RAT]	0,34936889
Q8VHE9	All-trans-retinol 13,14-reductase OS=Rattus norvegicus GN=Retsat PE=2 SV=1 - [RETST_RAT]	0,34909739
P55314	Complement component C8 beta chain OS=Rattus norvegicus GN=C8b PE=2 SV=2 - [CO8B_RAT]	0,34694896
Q9WTW 7	Solute carrier family 23 member 1 OS=Rattus norvegicus GN=Slc23a1 PE=2 SV=1 - [S23A1_RAT]	0,34452764
P62076	Mitochondrial import inner membrane translocase subunit Tim13 OS=Rattus norvegicus GN=Timm13 PE=3 SV=1 - [TIM13_RAT]	0,34217179
Q641X3	Beta-hexosaminidase subunit alpha OS=Rattus norvegicus GN=Hexa PE=2 SV=1 - [HEXA_RAT]	0,34052715
Q925Q9	SH3 domain-containing kinase-binding protein 1 OS=Rattus norvegicus GN=Sh3kbp1 PE=1 SV=2 - [SH3K1_RAT]	0,33869446
Q562C6	Leucine zipper transcription factor-like protein 1 OS=Rattus norvegicus GN=Lztfl1 PE=2 SV=1 - [LZTL1_RAT]	0,33733601
Q66H59	N-acetylneuraminate lyase OS=Rattus norvegicus GN=Npl PE=2 SV=1 - [NPL_RAT]	0,33139228
P05964	Protein S100-A6 OS=Rattus norvegicus GN=S100a6 PE=1 SV=3 - [S10A6_RAT]	0,3281246
Q62871	Cytoplasmic dynein 1 intermediate chain 2 OS=Rattus norvegicus GN=Dync1i2 PE=1 SV=1 - [DC1I2_RAT]	0,32186626
Q6P4Z9	COP9 signalosome complex subunit 8 OS=Rattus norvegicus GN=Cops8 PE=2 SV=1 - [CSN8_RAT]	0,31940095
Q9ERR2	COMM domain-containing protein 5 OS=Rattus norvegicus GN=Commd5 PE=2 SV=1 - [COMD5_RAT]	0,31695721

P02696	Retinol-binding protein 1 OS=Rattus norvegicus GN=Rbp1 PE=1 SV=2 - [RET1_RAT]	0,31675542
Q63531	Ribosomal protein S6 kinase alpha-1 OS=Rattus norvegicus GN=Rps6ka1 PE=1 SV=1 - [KS6A1_RAT]	0,3143336
Q5PQT3	Glycine N-acyltransferase OS=Rattus norvegicus GN=Glyat PE=2 SV=1 - [GLYAT_RAT]	0,31065245
D4ABY2	Coatomer subunit gamma-2 OS=Rattus norvegicus GN=Copg2 PE=3 SV=2 - [COPG2_RAT]	0,30824277
P85845	Fascin OS=Rattus norvegicus GN=Fscn1 PE=1 SV=2 - [FSCN1_RAT]	0,30719873
Q4FZV0	Beta-mannosidase OS=Rattus norvegicus GN=Manba PE=2 SV=1 - [MANBA_RAT]	0,29921005
Q8CHM 7	2-hydroxyacyl-CoA lyase 1 OS=Rattus norvegicus GN=Hacl1 PE=1 SV=1 - [HACL1_RAT]	0,2962861
Q4KLL0	Transcription elongation factor A protein 1 OS=Rattus norvegicus GN=Tcea1 PE=2 SV=1 - [TCEA1_RAT]	0,29546117
P00502	Glutathione S-transferase alpha-1 OS=Rattus norvegicus GN=Gsta1 PE=1 SV=3 - [GSTA1_RAT]	0,29507273
P16036	Phosphate carrier protein, mitochondrial OS=Rattus norvegicus GN=Slc25a3 PE=1 SV=1 - [MPCP_RAT]	0,29365085
P62828	GTP-binding nuclear protein Ran OS=Rattus norvegicus GN=Ran PE=1 SV=3 - [RAN_RAT]	0,27566023
P11915	Non-specific lipid-transfer protein OS=Rattus norvegicus GN=Scp2 PE=1 SV=3 - [NLTP_RAT]	0,27435895
Q64640	Adenosine kinase OS=Rattus norvegicus GN=Adk PE=1 SV=3 - [ADK_RAT]	0,27165123
P84083	ADP-ribosylation factor 5 OS=Rattus norvegicus GN=Arf5 PE=1 SV=2 - [ARF5_RAT]	0,27043495
P06757	Alcohol dehydrogenase 1 OS=Rattus norvegicus GN=Adh1 PE=1 SV=3 - [ADH1_RAT]	0,27001046
Q6P7B0	TryptophantRNA ligase, cytoplasmic OS=Rattus norvegicus GN=Wars PE=1 SV=2 - [SYWC_RAT]	0,26898066
Q68FW9	COP9 signalosome complex subunit 3 OS=Rattus norvegicus GN=Cops3 PE=2 SV=1 - [CSN3_RAT]	0,26833854
P29314	40S ribosomal protein S9 OS=Rattus norvegicus GN=Rps9 PE=1 SV=4 - [RS9_RAT]	0,26740891
Q6P0K8	Junction plakoglobin OS=Rattus norvegicus GN=Jup PE=1 SV=1 - [PLAK_RAT]	0,2638914
Q9ERZ8	Transient receptor potential cation channel subfamily V member 4 OS=Rattus norvegicus GN=Trpv4 PE=1 SV=1 - [TRPV4_RAT]	0,263091
Q9QYU2	Elongation factor Ts, mitochondrial OS=Rattus norvegicus GN=Tsfm PE=2 SV=1 - [EFTS_RAT]	0,2621508
G3V9R8	Heterogeneous nuclear ribonucleoprotein C OS=Rattus norvegicus GN=Hnrnpc PE=1 SV=2 - [HNRPC_RAT]	0,25859346
P80385	5'-AMP-activated protein kinase subunit gamma-1 OS=Rattus norvegicus GN=Prkag1 PE=1 SV=3 - [AAKG1_RAT]	0,25748717
Q9JHB5	Translin-associated protein X OS=Rattus norvegicus GN=Tsnax PE=1 SV=1 - [TSNAX_RAT]	0,25502924

P62749	Hippocalcin-like protein 1 OS=Rattus norvegicus GN=Hpcal1 PE=1 SV=2 - [HPCL1_RAT]	0,24914782
P62271	40S ribosomal protein S18 OS=Rattus norvegicus GN=Rps18 PE=1 SV=3 - [RS18_RAT]	0,24633851
O88994	Mitochondrial amidoxime reducing component 2 OS=Rattus norvegicus GN=Marc2 PE=2 SV=1 - [MARC2_RAT]	0,24520604
P17136	Small nuclear ribonucleoprotein-associated protein B (Fragment) OS=Rattus norvegicus GN=Snrpb PE=2 SV=1 - [RSMB_RAT]	0,24239055
Q9ERE4	Golgi phosphoprotein 3 OS=Rattus norvegicus GN=Golph3 PE=1 SV=1 - [GOLP3_RAT]	0,23373606
B0BN18	Prefoldin subunit 2 OS=Rattus norvegicus GN=Pfdn2 PE=2 SV=1 - [PFD2_RAT]	0,22917402
P20673	Argininosuccinate lyase OS=Rattus norvegicus GN=Asl PE=2 SV=1 - [ARLY_RAT]	0,22706342
Q5RKI7	Solute carrier family 7 member 13 OS=Rattus norvegicus GN=Slc7a13 PE=2 SV=1 - [S7A13_RAT]	0,22691187
P23764	Glutathione peroxidase 3 OS=Rattus norvegicus GN=Gpx3 PE=2 SV=2 - [GPX3_RAT]	0,21629492
Q921A4	Cytoglobin OS=Rattus norvegicus GN=Cygb PE=1 SV=1 - [CYGB_RAT]	0,21347697
Q62639	GTP-binding protein Rheb OS=Rattus norvegicus GN=Rheb PE=1 SV=1 - [RHEB_RAT]	0,2128887
Q5BKD0	Inactive 2'-5'-oligoadenylate synthase 1B OS=Rattus norvegicus GN=Oas1b PE=2 SV=1 - [OAS1B_RAT]	0,21248744
Q6P7P5	Basic leucine zipper and W2 domain-containing protein 1 OS=Rattus norvegicus GN=Bzw1 PE=2 SV=1 - [BZW1_RAT]	0,21017104
P36511	UDP-glucuronosyltransferase 2B15 OS=Rattus norvegicus GN=Ugt2b15 PE=1 SV=1 - [UDB15_RAT]	0,21006571
P13264	Glutaminase kidney isoform, mitochondrial OS=Rattus norvegicus GN=Gls PE=1 SV=2 - [GLSK_RAT]	0,2047297
P61805	Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit DAD1 OS=Rattus norvegicus GN=Dad1 PE=3 SV=3 - [DAD1_RAT]	0,20286165
P12007	Isovaleryl-CoA dehydrogenase, mitochondrial OS=Rattus norvegicus GN=Ivd PE=1 SV=2 - [IVD_RAT]	0,20219232
Q9EQ76	Dimethylaniline monooxygenase [N-oxide-forming] 3 OS=Rattus norvegicus GN=Fmo3 PE=1 SV=1 - [FMO3_RAT]	0,19322461
P11662	NADH-ubiquinone oxidoreductase chain 2 OS=Rattus norvegicus GN=Mtnd2 PE=3 SV=3 - [NU2M_RAT]	0,18946756
Q80X08	WASH complex subunit FAM21 OS=Rattus norvegicus GN=Fam21 PE=2 SV=1 - [FAM21_RAT]	0,18307562
Q63507	60S ribosomal protein L14 OS=Rattus norvegicus GN=Rpl14 PE=1 SV=3 - [RL14_RAT]	0,17969784
P27139	Carbonic anhydrase 2 OS=Rattus norvegicus GN=Ca2 PE=1 SV=2 - [CAH2_RAT]	0,17878784
P27952	40S ribosomal protein S2 OS=Rattus norvegicus GN=Rps2 PE=1 SV=1 - [RS2_RAT]	0,17756523
Q8K4B7	Dimethylaniline monooxygenase [N-oxide-forming] 4 OS=Rattus norvegicus GN=Fmo4 PE=2 SV=3 -	0,16854608

	[FMO4_RAT]	
P31211	Corticosteroid-binding globulin OS=Rattus norvegicus GN=Serpina6 PE=1 SV=2 - [CBG_RAT]	0,16525029
P19511	ATP synthase F(0) complex subunit B1, mitochondrial OS=Rattus norvegicus GN=Atp5f1 PE=1 SV=1 - [AT5F1_RAT]	0,16013504
Q5XID1	Anamorsin OS=Rattus norvegicus GN=Ciapin1 PE=2 SV=1 - [CPIN1_RAT]	0,15957519
P63174	60S ribosomal protein L38 OS=Rattus norvegicus GN=Rpl38 PE=1 SV=2 - [RL38_RAT]	0,15853746
P62278	40S ribosomal protein S13 OS=Rattus norvegicus GN=Rps13 PE=1 SV=2 - [RS13_RAT]	0,1522787
Q6MGB 5	Estradiol 17-beta-dehydrogenase 8 OS=Rattus norvegicus GN=Hsd17b8 PE=3 SV=1 - [DHB8_RAT]	0,15049084
Q9EPB1	Dipeptidyl peptidase 2 OS=Rattus norvegicus GN=Dpp7 PE=1 SV=1 - [DPP2_RAT]	0,1354537
Q63433	Serine/threonine-protein kinase N1 OS=Rattus norvegicus GN=Pkn1 PE=1 SV=2 - [PKN1_RAT]	0,13446763
Q64537	Calpain small subunit 1 OS=Rattus norvegicus GN=Capns1 PE=1 SV=3 - [CPNS1_RAT]	0,13254994
Q9WVA 1	Mitochondrial import inner membrane translocase subunit Tim8 A OS=Rattus norvegicus GN=Timm8a PE=1 SV=1 - [TIM8A_RAT]	0,12701185
P38718	Mitochondrial pyruvate carrier 2 OS=Rattus norvegicus GN=Mpc2 PE=2 SV=1 - [MPC2_RAT]	0,12651586
P43278	Histone H1.0 OS=Rattus norvegicus GN=H1f0 PE=2 SV=2 - [H10_RAT]	0,1260626
D4A3K5	Histone H1.1 OS=Rattus norvegicus GN=Hist1h1a PE=3 SV=1 - [H11_RAT]	0,12534804
P04905	Glutathione S-transferase Mu 1 OS=Rattus norvegicus GN=Gstm1 PE=1 SV=2 - [GSTM1_RAT]	0,12485158
P50878	60S ribosomal protein L4 OS=Rattus norvegicus GN=Rpl4 PE=1 SV=3 - [RL4_RAT]	0,11916857
D3ZAF6	ATP synthase subunit f, mitochondrial OS=Rattus norvegicus GN=Atp5j2 PE=1 SV=1 - [ATPK_RAT]	0,10727117
035353	Guanine nucleotide-binding protein subunit beta-4 OS=Rattus norvegicus GN=Gnb4 PE=2 SV=4 - [GBB4_RAT]	0,10662189
P03889	NADH-ubiquinone oxidoreductase chain 1 OS=Rattus norvegicus GN=Mtnd1 PE=1 SV=3 - [NU1M_RAT]	0,09632898
P02761	Major urinary protein OS=Rattus norvegicus PE=1 SV=1 - [MUP_RAT]	0,09426143
D3ZN43	NADH dehydrogenase (ubiquinone) complex I, assembly factor 6 OS=Rattus norvegicus GN=Ndufaf6 PE=3 SV=1 - [NDUF6_RAT]	0,0916909
Q9EQV6	Tripeptidyl-peptidase 1 OS=Rattus norvegicus GN=Tpp1 PE=1 SV=1 - [TPP1_RAT]	0,08747747
Q9Z142	Transmembrane protein 33 OS=Rattus norvegicus GN=Tmem33 PE=2 SV=1 - [TMM33_RAT]	0,07270973
Q6JE36	Protein NDRG1 OS=Rattus norvegicus GN=Ndrg1 PE=1 SV=1 - [NDRG1_RAT]	0,06869022

P62425	60S ribosomal protein L7a OS=Rattus norvegicus GN=Rpl7a PE=1 SV=2 - [RL7A_RAT]	0,05621827
Q6PEC4	S-phase kinase-associated protein 1 OS=Rattus norvegicus GN=Skp1 PE=2 SV=3 - [SKP1_RAT]	0,05579102
P16232	Corticosteroid 11-beta-dehydrogenase isozyme 1 OS=Rattus norvegicus GN=Hsd11b1 PE=1 SV=2 - [DHI1_RAT]	0,05543251
Q5U2Z7	Rho GTPase-activating protein 24 OS=Rattus norvegicus GN=Arhgap24 PE=2 SV=2 - [RHG24_RAT]	0,05224348
Q923J6	Dynein heavy chain 12, axonemal OS=Rattus norvegicus GN=Dnah12 PE=2 SV=2 - [DYH12_RAT]	0,04457197
Q505J9	ATPase family AAA domain-containing protein 1 OS=Rattus norvegicus GN=Atad1 PE=1 SV=1 - [ATAD1_RAT]	0,01941326

Πίνακας Παραρτήματος 7: Διαφορικά εκφραζόμενες πρωτεΐνες που παρουσιάζουν αυξημένη έκφραση στα SHR ζώα 13 εβδομάδων όπως προέκυψε από την ανάλυση του νεφρικού παρεγχύματος με LC-MS/MS. Το στατιστικό τεστ Mann-Whitney χρησιμοποιήθηκε. Όλες οι τιμές είναι στατιστικά σημαντικές με p<0.05

Κωδικός	Πρωτεΐνη	Λόγος Έκφρασης (SHR/WKY)
Q5XI72	Eukaryotic translation initiation factor 4H OS=Rattus norvegicus GN=Eif4h PE=1 SV=1 - [IF4H_RAT]	217,63
Q6PEC1	Tubulin-specific chaperone A OS=Rattus norvegicus GN=Tbca PE=1 SV=1 - [TBCA_RAT]	139,58
P61354	60S ribosomal protein L27 OS=Rattus norvegicus GN=Rpl27 PE=2 SV=2 - [RL27_RAT]	32,36
Q9Z0V5	Peroxiredoxin-4 OS=Rattus norvegicus GN=Prdx4 PE=2 SV=1 - [PRDX4_RAT]	28,23
P41498	Low molecular weight phosphotyrosine protein phosphatase OS=Rattus norvegicus GN=Acp1 PE=1 SV=3 - [PPAC_RAT]	25,39
Q6SKG1	Acyl-coenzyme A synthetase ACSM3, mitochondrial OS=Rattus norvegicus GN=Acsm3 PE=2 SV=1 - [ACSM3_RAT]	23,55
Q68FT5	S-methylmethioninehomocysteine S-methyltransferase BHMT2 OS=Rattus norvegicus GN=Bhmt2 PE=2 SV=1 - [BHMT2_RAT]	17,43
Q7TQ16	Cytochrome b-c1 complex subunit 8 OS=Rattus norvegicus GN=Uqcrq PE=3 SV=1 - [QCR8_RAT]	15,69
Q4G064	2-methoxy-6-polyprenyl-1,4-benzoquinol methylase, mitochondrial OS=Rattus norvegicus GN=Coq5 PE=2 SV=1 - [COQ5_RAT]	10,73
P11232	Thioredoxin OS=Rattus norvegicus GN=Txn PE=1 SV=2 - [THIO_RAT]	10,29
P08289	Alkaline phosphatase, tissue-nonspecific isozyme OS=Rattus norvegicus GN=Alpl PE=1 SV=2 - [PPBT_RAT]	9,95
P04692	Tropomyosin alpha-1 chain OS=Rattus norvegicus GN=Tpm1 PE=1 SV=3 - [TPM1_RAT]	9,64
P97546	Neuroplastin OS=Rattus norvegicus GN=Nptn PE=1 SV=2 - [NPTN_RAT]	9,45
Q4QQW 3	Hydroxyacid-oxoacid transhydrogenase, mitochondrial OS=Rattus norvegicus GN=Adhfe1 PE=1 SV=1 - [HOT_RAT]	9,26
Q5U2X7	Mitochondrial import inner membrane translocase subunit Tim21 OS=Rattus norvegicus GN=Timm21 PE=2 SV=1 - [TIM21_RAT]	8,48
B0BNF1	Septin-8 OS=Rattus norvegicus GN=Sept8 PE=1 SV=1 - [SEPT8_RAT]	7,88
O54861	Sortilin OS=Rattus norvegicus GN=Sort1 PE=1 SV=3 - [SORT_RAT]	7,71

Q6AYF4	Integrin beta-6 OS=Rattus norvegicus GN=Itgb6 PE=2 SV=1 - [ITB6_RAT]	7,31
Q8VI04	Isoaspartyl peptidase/L-asparaginase OS=Rattus norvegicus GN=Asrgl1 PE=1 SV=1 - [ASGL1_RAT]	6,57
Q6AYT9	Acyl-coenzyme A synthetase ACSM5, mitochondrial OS=Rattus norvegicus GN=Acsm5 PE=2 SV=1 - [ACSM5_RAT]	6,45
Q9EPJ3	28S ribosomal protein S26, mitochondrial OS=Rattus norvegicus GN=Mrps26 PE=1 SV=1 - [RT26_RAT]	6,40
D3ZTX0	Transmembrane emp24 domain-containing protein 7 OS=Rattus norvegicus GN=Tmed7 PE=1 SV=1 - [TMED7_RAT]	6,35
P21533	60S ribosomal protein L6 OS=Rattus norvegicus GN=Rpl6 PE=1 SV=5 - [RL6_RAT]	6,09
P62997	Transformer-2 protein homolog beta OS=Rattus norvegicus GN=Tra2b PE=1 SV=1 - [TRA2B_RAT]	5,94
Q66H68	RNA-binding protein 47 OS=Rattus norvegicus GN=Rbm47 PE=2 SV=1 - [RBM47_RAT]	5,83
D3ZJP6	Unconventional myosin-X OS=Rattus norvegicus GN=Myo10 PE=1 SV=1 - [MYO10_RAT]	5,79
Q62975	Protein Z-dependent protease inhibitor OS=Rattus norvegicus GN=Serpina10 PE=2 SV=2 - [ZPI_RAT]	5,61
P07895	Superoxide dismutase [Mn], mitochondrial OS=Rattus norvegicus GN=Sod2 PE=1 SV=2 - [SODM_RAT]	5,58
A1A5S1	Pre-mRNA-processing factor 6 OS=Rattus norvegicus GN=Prpf6 PE=2 SV=1 - [PRP6_RAT]	5,56
Q7TP52	Carboxymethylenebutenolidase homolog OS=Rattus norvegicus GN=Cmbl PE=2 SV=1 - [CMBL_RAT]	5,36
Q6AYT3	tRNA-splicing ligase RtcB homolog OS=Rattus norvegicus GN=Rtcb PE=2 SV=1 - [RTCB_RAT]	5,34
Q91ZQ0	Vacuole membrane protein 1 OS=Rattus norvegicus GN=Vmp1 PE=1 SV=1 - [VMP1_RAT]	5,26
Q63228	Glia maturation factor beta OS=Rattus norvegicus GN=Gmfb PE=1 SV=2 - [GMFB_RAT]	5,18
O70594	Solute carrier family 22 member 5 OS=Rattus norvegicus GN=Slc22a5 PE=1 SV=1 - [S22A5_RAT]	5,16
Q9JHY2	Sideroflexin-3 OS=Rattus norvegicus GN=Sfxn3 PE=2 SV=1 - [SFXN3_RAT]	5,08
P05765	40S ribosomal protein S21 OS=Rattus norvegicus GN=Rps21 PE=1 SV=1 - [RS21_RAT]	5,02
Q62696	Disks large homolog 1 OS=Rattus norvegicus GN=Dlg1 PE=1 SV=1 - [DLG1_RAT]	4,85
P07632	Superoxide dismutase [Cu-Zn] OS=Rattus norvegicus GN=Sod1 PE=1 SV=2 - [SODC_RAT]	4,82
Q07116	Sulfite oxidase, mitochondrial OS=Rattus norvegicus GN=Suox PE=1 SV=2 - [SUOX_RAT]	4,82
Q7TT47	Paraplegin OS=Rattus norvegicus GN=Spg7 PE=2 SV=1 - [SPG7_RAT]	4,78
Q5XJW2	Growth arrest and DNA damage-inducible proteins-interacting protein 1 OS=Rattus norvegicus GN=Gadd45gip1 PE=2 SV=2 - [G45IP_RAT]	4,73

P53042	Serine/threonine-protein phosphatase 5 OS=Rattus norvegicus GN=Ppp5c PE=1 SV=1 - [PPP5_RAT]	4,70
P10686	1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma-1 OS=Rattus norvegicus GN=Plcg1 PE=1 SV=1 - [PLCG1_RAT]	4,69
P63004	Platelet-activating factor acetylhydrolase IB subunit alpha OS=Rattus norvegicus GN=Pafah1b1 PE=1 SV=2 - [LIS1_RAT]	4,61
Q62839	Golgin subfamily A member 2 OS=Rattus norvegicus GN=Golga2 PE=1 SV=3 - [GOGA2_RAT]	4,52
P40615	H/ACA ribonucleoprotein complex subunit 4 OS=Rattus norvegicus GN=Dkc1 PE=1 SV=4 - [DKC1_RAT]	4,52
P50170	Retinol dehydrogenase 2 OS=Rattus norvegicus GN=Rdh2 PE=1 SV=1 - [RDH2_RAT]	4,48
P47198	60S ribosomal protein L22 OS=Rattus norvegicus GN=Rp122 PE=2 SV=2 - [RL22_RAT]	4,41
P13086	Succinyl-CoA ligase [ADP/GDP-forming] subunit alpha, mitochondrial OS=Rattus norvegicus GN=Suclg1 PE=2 SV=2 - [SUCA_RAT]	4,40
Q66H39	ATP-binding cassette sub-family F member 3 OS=Rattus norvegicus GN=Abcf3 PE=2 SV=1 - [ABCF3_RAT]	4,37
Q704E8	ATP-binding cassette sub-family B member 7, mitochondrial OS=Rattus norvegicus GN=Abcb7 PE=1 SV=1 - [ABCB7_RAT]	4,35
Q5U1Y4	1,5-anhydro-D-fructose reductase OS=Rattus norvegicus GN=Akr1e2 PE=2 SV=1 - [AKCL2_RAT]	4,32
P18420	Proteasome subunit alpha type-1 OS=Rattus norvegicus GN=Psma1 PE=1 SV=2 - [PSA1_RAT]	4,18
Q9WVK 3	Peroxisomal trans-2-enoyl-CoA reductase OS=Rattus norvegicus GN=Pecr PE=2 SV=1 - [PECR_RAT]	4,10
Q6AYN4	Phytanoyl-CoA hydroxylase-interacting protein-like OS=Rattus norvegicus GN=Phyhipl PE=2 SV=2 - [PHIPL_RAT]	4,08
D4A631	Brefeldin A-inhibited guanine nucleotide-exchange protein 1 OS=Rattus norvegicus GN=Arfgef1 PE=1 SV=1 - [BIG1_RAT]	4,07
B0BNC9	Quinone oxidoreductase-like protein 2 OS=Rattus norvegicus PE=2 SV=1 - [QORL2_RAT]	4,00
P24329	Thiosulfate sulfurtransferase OS=Rattus norvegicus GN=Tst PE=1 SV=3 - [THTR_RAT]	3,95
P04550	Parathymosin OS=Rattus norvegicus GN=Ptms PE=1 SV=2 - [PTMS_RAT]	3,94
Q499U2	Engulfment and cell motility protein 3 OS=Rattus norvegicus GN=Elmo3 PE=2 SV=1 - [ELMO3_RAT]	3,85
P10111	Peptidyl-prolyl cis-trans isomerase A OS=Rattus norvegicus GN=Ppia PE=1 SV=2 - [PPIA_RAT]	3,84
Q6MGD 0	Protein CutA OS=Rattus norvegicus GN=Cuta PE=1 SV=2 - [CUTA_RAT]	3,64
Q66HR2	Microtubule-associated protein RP/EB family member 1 OS=Rattus norvegicus GN=Mapre1 PE=1 SV=3 -	3,58

	[MARE1_RAT]	
Q3ZAV8	Enhancer of mRNA-decapping protein 4 OS=Rattus norvegicus GN=Edc4 PE=2 SV=1 - [EDC4_RAT]	3,55
Q91ZW6	Trimethyllysine dioxygenase, mitochondrial OS=Rattus norvegicus GN=Tmlhe PE=1 SV=2 - [TMLH_RAT]	3,54
Q5XI29	Cleavage and polyadenylation specificity factor subunit 7 OS=Rattus norvegicus GN=Cpsf7 PE=2 SV=1 - [CPSF7_RAT]	3,51
Q9Z2S9	Flotillin-2 OS=Rattus norvegicus GN=Flot2 PE=1 SV=1 - [FLOT2_RAT]	3,50
Q9WUH 4	Four and a half LIM domains protein 1 OS=Rattus norvegicus GN=Fh11 PE=2 SV=1 - [FHL1_RAT]	3,50
P22509	rRNA 2'-O-methyltransferase fibrillarin OS=Rattus norvegicus GN=Fbl PE=1 SV=2 - [FBRL_RAT]	3,49
P12369	cAMP-dependent protein kinase type II-beta regulatory subunit OS=Rattus norvegicus GN=Prkar2b PE=1 SV=3 - [KAP3_RAT]	3,47
P18614	Integrin alpha-1 OS=Rattus norvegicus GN=Itga1 PE=1 SV=1 - [ITA1_RAT]	3,46
Q5BJP9	Phytanoyl-CoA dioxygenase domain-containing protein 1 OS=Rattus norvegicus GN=Phyhd1 PE=2 SV=1 - [PHYD1_RAT]	3,45
P23928	Alpha-crystallin B chain OS=Rattus norvegicus GN=Cryab PE=1 SV=1 - [CRYAB_RAT]	3,44
Q63707	Dihydroorotate dehydrogenase (quinone), mitochondrial OS=Rattus norvegicus GN=Dhodh PE=1 SV=1 - [PYRD_RAT]	3,40
P12001	60S ribosomal protein L18 OS=Rattus norvegicus GN=Rpl18 PE=2 SV=2 - [RL18_RAT]	3,38
Q62645	Glutamate receptor ionotropic, NMDA 2D OS=Rattus norvegicus GN=Grin2d PE=1 SV=2 - [NMDE4_RAT]	3,37
P10888	Cytochrome c oxidase subunit 4 isoform 1, mitochondrial OS=Rattus norvegicus GN=Cox4i1 PE=1 SV=1 - [COX41_RAT]	3,36
Q5XIK7	Katanin p60 ATPase-containing subunit A-like 1 OS=Rattus norvegicus GN=Katnal1 PE=2 SV=1 - [KATL1_RAT]	3,36
P53565	Homeobox protein cut-like 1 OS=Rattus norvegicus GN=Cux1 PE=1 SV=2 - [CUX1_RAT]	3,33
P50297	Arylamine N-acetyltransferase 1 OS=Rattus norvegicus GN=Nat1 PE=2 SV=1 - [ARY1_RAT]	3,30
P97700	Mitochondrial 2-oxoglutarate/malate carrier protein OS=Rattus norvegicus GN=Slc25a11 PE=2 SV=3 - [M2OM_RAT]	3,30
Q76IC5	Pyroglutamyl-peptidase 1 OS=Rattus norvegicus GN=Pgpep1 PE=1 SV=1 - [PGPI_RAT]	3,25
Q5XFW 8	Protein SEC13 homolog OS=Rattus norvegicus GN=Sec13 PE=1 SV=1 - [SEC13_RAT]	3,23
P11167	Solute carrier family 2, facilitated glucose transporter member 1 OS=Rattus norvegicus GN=Slc2a1 PE=1 SV=1 -	3,23

	[GTR1_RAT]	
Q5PPN5	Tubulin polymerization-promoting protein family member 3 OS=Rattus norvegicus GN=Tppp3 PE=2 SV=1 - [TPPP3_RAT]	3,22
Q920L2	Succinate dehydrogenase [ubiquinone] flavoprotein subunit, mitochondrial OS=Rattus norvegicus GN=Sdha PE=1 SV=1 - [SDHA_RAT]	3,17
055159	Epithelial cell adhesion molecule OS=Rattus norvegicus GN=Epcam PE=1 SV=1 - [EPCAM_RAT]	3,14
P07379	Phosphoenolpyruvate carboxykinase, cytosolic [GTP] OS=Rattus norvegicus GN=Pck1 PE=1 SV=1 - [PCKGC_RAT]	3,09
O89047	Potassium voltage-gated channel subfamily H member 3 OS=Rattus norvegicus GN=Kcnh3 PE=2 SV=1 - [KCNH3_RAT]	3,06
Q9JIY6	Probable N-acetyltransferase CML6 OS=Rattus norvegicus GN=Cml6 PE=2 SV=1 - [CMLO6_RAT]	3,05
P28075	Proteasome subunit beta type-5 OS=Rattus norvegicus GN=Psmb5 PE=1 SV=3 - [PSB5_RAT]	3,03
P20650	Protein phosphatase 1A OS=Rattus norvegicus GN=Ppm1a PE=1 SV=1 - [PPM1A_RAT]	3,01
P55159	Serum paraoxonase/arylesterase 1 OS=Rattus norvegicus GN=Pon1 PE=1 SV=3 - [PON1_RAT]	3,01
P09006	Serine protease inhibitor A3N OS=Rattus norvegicus GN=Serpina3n PE=1 SV=3 - [SPA3N_RAT]	3,00
P19643	Amine oxidase [flavin-containing] B OS=Rattus norvegicus GN=Maob PE=1 SV=3 - [AOFB_RAT]	2,99
P02770	Serum albumin OS=Rattus norvegicus GN=Alb PE=1 SV=2 - [ALBU_RAT]	2,98
Q62871	Cytoplasmic dynein 1 intermediate chain 2 OS=Rattus norvegicus GN=Dync1i2 PE=1 SV=1 - [DC1I2_RAT]	2,95
P53792	Sodium/glucose cotransporter 2 OS=Rattus norvegicus GN=Slc5a2 PE=2 SV=1 - [SC5A2_RAT]	2,92
Q9WTT 6	Guanine deaminase OS=Rattus norvegicus GN=Gda PE=1 SV=1 - [GUAD_RAT]	2,91
P63326	40S ribosomal protein S10 OS=Rattus norvegicus GN=Rps10 PE=2 SV=1 - [RS10_RAT]	2,88
P01041	Cystatin-B OS=Rattus norvegicus GN=Cstb PE=1 SV=1 - [CYTB_RAT]	2,85
P12336	Solute carrier family 2, facilitated glucose transporter member 2 OS=Rattus norvegicus GN=Slc2a2 PE=2 SV=1 - [GTR2_RAT]	2,84
P52847	Sulfotransferase family cytosolic 1B member 1 OS=Rattus norvegicus GN=Sult1b1 PE=1 SV=2 - [ST1B1_RAT]	2,82
B2GUZ5	F-actin-capping protein subunit alpha-1 OS=Rattus norvegicus GN=Capza1 PE=1 SV=1 - [CAZA1_RAT]	2,76
Q05982	Nucleoside diphosphate kinase A OS=Rattus norvegicus GN=Nme1 PE=1 SV=1 - [NDKA_RAT]	2,75
A2VCW	Alpha-aminoadipic semialdehyde synthase, mitochondrial OS=Rattus norvegicus GN=Aass PE=2 SV=1 -	2,75

9	[AASS_RAT]	
Q66HG5	Transmembrane 9 superfamily member 2 OS=Rattus norvegicus GN=Tm9sf2 PE=2 SV=1 - [TM9S2_RAT]	2,75
P14659	Heat shock-related 70 kDa protein 2 OS=Rattus norvegicus GN=Hspa2 PE=1 SV=2 - [HSP72_RAT]	2,70
Q562C9	1,2-dihydroxy-3-keto-5-methylthiopentene dioxygenase OS=Rattus norvegicus GN=Adi1 PE=2 SV=1 - [MTND_RAT]	2,69
P47875	Cysteine and glycine-rich protein 1 OS=Rattus norvegicus GN=Csrp1 PE=2 SV=2 - [CSRP1_RAT]	2,68
P13255	Glycine N-methyltransferase OS=Rattus norvegicus GN=Gnmt PE=1 SV=2 - [GNMT_RAT]	2,67
Q68FS4	Cytosol aminopeptidase OS=Rattus norvegicus GN=Lap3 PE=1 SV=1 - [AMPL_RAT]	2,66
Q6AYU3	DnaJ homolog subfamily B member 6 OS=Rattus norvegicus GN=Dnajb6 PE=1 SV=1 - [DNJB6_RAT]	2,66
P27139	Carbonic anhydrase 2 OS=Rattus norvegicus GN=Ca2 PE=1 SV=2 - [CAH2_RAT]	2,66
Q63945	Protein SET OS=Rattus norvegicus GN=Set PE=2 SV=2 - [SET_RAT]	2,62
Q66HF8	Aldehyde dehydrogenase X, mitochondrial OS=Rattus norvegicus GN=Aldh1b1 PE=1 SV=1 - [AL1B1_RAT]	2,62
B3GNI6	Septin-11 OS=Rattus norvegicus GN=Sept11 PE=1 SV=1 - [SEP11_RAT]	2,61
P18421	Proteasome subunit beta type-1 OS=Rattus norvegicus GN=Psmb1 PE=1 SV=3 - [PSB1_RAT]	2,61
Q63610	Tropomyosin alpha-3 chain OS=Rattus norvegicus GN=Tpm3 PE=1 SV=2 - [TPM3_RAT]	2,60
P50137	Transketolase OS=Rattus norvegicus GN=Tkt PE=1 SV=1 - [TKT_RAT]	2,57
P10633	Cytochrome P450 2D1 OS=Rattus norvegicus GN=Cyp2d1 PE=2 SV=1 - [CP2D1_RAT]	2,56
B5DFN2	Adenosylhomocysteinase 2 OS=Rattus norvegicus GN=Ahcyl1 PE=1 SV=2 - [SAHH2_RAT]	2,55
P22791	Hydroxymethylglutaryl-CoA synthase, mitochondrial OS=Rattus norvegicus GN=Hmgcs2 PE=2 SV=1 - [HMCS2_RAT]	2,53
P00697	Lysozyme C-1 OS=Rattus norvegicus GN=Lyz1 PE=1 SV=2 - [LYSC1_RAT]	2,53
Q5XHZ0	Heat shock protein 75 kDa, mitochondrial OS=Rattus norvegicus GN=Trap1 PE=1 SV=1 - [TRAP1_RAT]	2,53
P20059	Hemopexin OS=Rattus norvegicus GN=Hpx PE=1 SV=3 - [HEMO_RAT]	2,53
O88506	STE20/SPS1-related proline-alanine-rich protein kinase OS=Rattus norvegicus GN=Stk39 PE=2 SV=2 - [STK39_RAT]	2,51
P24473	Glutathione S-transferase kappa 1 OS=Rattus norvegicus GN=Gstk1 PE=1 SV=3 - [GSTK1_RAT]	2,49
Q7TQ94	Nitrilase homolog 1 OS=Rattus norvegicus GN=Nit1 PE=2 SV=1 - [NIT1_RAT]	2,48

P08010	Glutathione S-transferase Mu 2 OS=Rattus norvegicus GN=Gstm2 PE=1 SV=2 - [GSTM2_RAT]	2,46
Q9JHU5	Arfaptin-1 OS=Rattus norvegicus GN=Arfip1 PE=2 SV=1 - [ARFP1_RAT]	2,44
P42123	L-lactate dehydrogenase B chain OS=Rattus norvegicus GN=Ldhb PE=1 SV=2 - [LDHB_RAT]	2,44
Q5RJP0	Aldose reductase-related protein 1 OS=Rattus norvegicus GN=Akr1b7 PE=1 SV=1 - [ALD1_RAT]	2,43
Q9JMJ4	Pre-mRNA-processing factor 19 OS=Rattus norvegicus GN=Prpf19 PE=1 SV=2 - [PRP19_RAT]	2,43
P62898	Cytochrome c, somatic OS=Rattus norvegicus GN=Cycs PE=1 SV=2 - [CYC_RAT]	2,40
Q62739	Rab-3A-interacting protein OS=Rattus norvegicus GN=Rab3ip PE=1 SV=1 - [RAB3I_RAT]	2,40
Q6AYB4	Heat shock 70 kDa protein 14 OS=Rattus norvegicus GN=Hspa14 PE=2 SV=1 - [HSP7E_RAT]	2,39
Q64542	Plasma membrane calcium-transporting ATPase 4 OS=Rattus norvegicus GN=Atp2b4 PE=2 SV=1 - [AT2B4_RAT]	2,39
Q6AXY0	Glutathione S-transferase A6 OS=Rattus norvegicus GN=Gsta6 PE=1 SV=1 - [GSTA6_RAT]	2,38
Q0D2L3	Agmatinase, mitochondrial OS=Rattus norvegicus GN=Agmat PE=2 SV=1 - [SPEB_RAT]	2,38
F1LP90	Misshapen-like kinase 1 OS=Rattus norvegicus GN=Mink1 PE=1 SV=2 - [MINK1_RAT]	2,37
Q2TL32	E3 ubiquitin-protein ligase UBR4 OS=Rattus norvegicus GN=Ubr4 PE=1 SV=2 - [UBR4_RAT]	2,36
Q704S8	Carnitine O-acetyltransferase OS=Rattus norvegicus GN=Crat PE=1 SV=1 - [CACP_RAT]	2,35
P54319	Phospholipase A-2-activating protein OS=Rattus norvegicus GN=Plaa PE=2 SV=3 - [PLAP_RAT]	2,35
Q9WV97	Mitochondrial import inner membrane translocase subunit Tim9 OS=Rattus norvegicus GN=Timm9 PE=1 SV=3 - [TIM9_RAT]	2,34
Q9QYL8	Acyl-protein thioesterase 2 OS=Rattus norvegicus GN=Lypla2 PE=1 SV=1 - [LYPA2_RAT]	2,33
Q8VID1	Dehydrogenase/reductase SDR family member 4 OS=Rattus norvegicus GN=Dhrs4 PE=2 SV=2 - [DHRS4_RAT]	2,33
P10687	1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta-1 OS=Rattus norvegicus GN=Plcb1 PE=1 SV=1 - [PLCB1_RAT]	2,33
Q7TSE9	HCLS1-associated protein X-1 OS=Rattus norvegicus GN=Hax1 PE=1 SV=1 - [HAX1_RAT]	2,32
P50554	4-aminobutyrate aminotransferase, mitochondrial OS=Rattus norvegicus GN=Abat PE=1 SV=3 - [GABT_RAT]	2,30
P17220	Proteasome subunit alpha type-2 OS=Rattus norvegicus GN=Psma2 PE=1 SV=3 - [PSA2_RAT]	2,30
P86252	Transcriptional activator protein Pur-alpha (Fragments) OS=Rattus norvegicus GN=Pura PE=1 SV=1 - [PURA_RAT]	2,29
Q5BK32	FAS-associated factor 2 OS=Rattus norvegicus GN=Faf2 PE=2 SV=1 - [FAF2_RAT]	2,29

Q63413	Spliceosome RNA helicase Ddx39b OS=Rattus norvegicus GN=Ddx39b PE=2 SV=3 - [DX39B_RAT]	2,29
Q9R0J8	Legumain OS=Rattus norvegicus GN=Lgmn PE=1 SV=1 - [LGMN_RAT]	2,28
P32198	Carnitine O-palmitoyltransferase 1, liver isoform OS=Rattus norvegicus GN=Cpt1a PE=1 SV=2 - [CPT1A_RAT]	2,28
P30835	ATP-dependent 6-phosphofructokinase, liver type OS=Rattus norvegicus GN=Pfkl PE=2 SV=3 - [PFKAL_RAT]	2,28
P13635	Ceruloplasmin OS=Rattus norvegicus GN=Cp PE=1 SV=3 - [CERU_RAT]	2,27
P37397	Calponin-3 OS=Rattus norvegicus GN=Cnn3 PE=1 SV=1 - [CNN3_RAT]	2,27
Q9ESW0	DNA damage-binding protein 1 OS=Rattus norvegicus GN=Ddb1 PE=2 SV=1 - [DDB1_RAT]	2,26
Q66H59	N-acetylneuraminate lyase OS=Rattus norvegicus GN=Npl PE=2 SV=1 - [NPL_RAT]	2,24
P17764	Acetyl-CoA acetyltransferase, mitochondrial OS=Rattus norvegicus GN=Acat1 PE=1 SV=1 - [THIL_RAT]	2,21
P35427	60S ribosomal protein L13a OS=Rattus norvegicus GN=Rpl13a PE=1 SV=2 - [RL13A_RAT]	2,21
Q9R0W2	Solute carrier family 22 member 2 OS=Rattus norvegicus GN=Slc22a2 PE=1 SV=1 - [S22A2_RAT]	2,19
Q642A7	Protein FAM151A OS=Rattus norvegicus GN=Fam151a PE=2 SV=1 - [F151A_RAT]	2,19
P19112	Fructose-1,6-bisphosphatase 1 OS=Rattus norvegicus GN=Fbp1 PE=1 SV=2 - [F16P1_RAT]	2,17
P02680	Fibrinogen gamma chain OS=Rattus norvegicus GN=Fgg PE=1 SV=3 - [FIBG_RAT]	2,15
Q63433	Serine/threonine-protein kinase N1 OS=Rattus norvegicus GN=Pkn1 PE=1 SV=2 - [PKN1_RAT]	2,15
Q5FVQ4	Malectin OS=Rattus norvegicus GN=Mlec PE=2 SV=1 - [MLEC_RAT]	2,14
P61107	Ras-related protein Rab-14 OS=Rattus norvegicus GN=Rab14 PE=1 SV=3 - [RAB14_RAT]	2,14
Q9JIX3	Bis(5'-adenosyl)-triphosphatase OS=Rattus norvegicus GN=Fhit PE=1 SV=1 - [FHIT_RAT]	2,14
Q8CGS5	Zinc phosphodiesterase ELAC protein 2 OS=Rattus norvegicus GN=Elac2 PE=2 SV=1 - [RNZ2_RAT]	2,14
P42676	Neurolysin, mitochondrial OS=Rattus norvegicus GN=Nln PE=1 SV=1 - [NEUL_RAT]	2,13
P14882	Propionyl-CoA carboxylase alpha chain, mitochondrial OS=Rattus norvegicus GN=Pcca PE=1 SV=3 - [PCCA_RAT]	2,11
P84245	Histone H3.3 OS=Rattus norvegicus GN=H3f3b PE=1 SV=2 - [H33_RAT]	2,11
Q9QXU2	Surfeit locus protein 1 OS=Rattus norvegicus GN=Surf1 PE=2 SV=1 - [SURF1_RAT]	2,11
P18422	Proteasome subunit alpha type-3 OS=Rattus norvegicus GN=Psma3 PE=1 SV=3 - [PSA3_RAT]	2,11
P42930	Heat shock protein beta-1 OS=Rattus norvegicus GN=Hspb1 PE=1 SV=1 - [HSPB1_RAT]	2,09
P18292	Prothrombin OS=Rattus norvegicus GN=F2 PE=1 SV=1 - [THRB_RAT]	2,08

P49242	40S ribosomal protein S3a OS=Rattus norvegicus GN=Rps3a PE=1 SV=2 - [RS3A_RAT]	2,07
Q8R478	WW domain-binding protein 2 OS=Rattus norvegicus GN=Wbp2 PE=1 SV=1 - [WBP2_RAT]	2,07
Q9Z339	Glutathione S-transferase omega-1 OS=Rattus norvegicus GN=Gsto1 PE=1 SV=2 - [GSTO1_RAT]	2,06
Q71UE8	NEDD8 OS=Rattus norvegicus GN=Nedd8 PE=1 SV=1 - [NEDD8_RAT]	2,05
O70196	Prolyl endopeptidase OS=Rattus norvegicus GN=Prep PE=1 SV=1 - [PPCE_RAT]	2,03
Q7TP98	Interleukin enhancer-binding factor 2 OS=Rattus norvegicus GN=IIf2 PE=2 SV=1 - [ILF2_RAT]	2,03
Q4V8H8	EH domain-containing protein 2 OS=Rattus norvegicus GN=Ehd2 PE=1 SV=1 - [EHD2_RAT]	2,03
Q5XI73	Rho GDP-dissociation inhibitor 1 OS=Rattus norvegicus GN=Arhgdia PE=1 SV=1 - [GDIR1_RAT]	2,02
P14740	Dipeptidyl peptidase 4 OS=Rattus norvegicus GN=Dpp4 PE=1 SV=2 - [DPP4_RAT]	2,02
P29410	Adenylate kinase 2, mitochondrial OS=Rattus norvegicus GN=Ak2 PE=2 SV=2 - [KAD2_RAT]	2,02
P21531	60S ribosomal protein L3 OS=Rattus norvegicus GN=Rpl3 PE=1 SV=3 - [RL3_RAT]	2,02
P15651	Short-chain specific acyl-CoA dehydrogenase, mitochondrial OS=Rattus norvegicus GN=Acads PE=1 SV=2 -	2,01
	[ACADS_RAT]	
P00762	Anionic trypsin-1 OS=Rattus norvegicus GN=Prss1 PE=1 SV=1 - [TRY1_RAT]	2,00

Πίνακας Παραρτήματος 8: Διαφορικά εκφραζόμενες πρωτεΐνες που παρουσιάζουν μειωμένη έκφραση στα SHR ζώα 13 εβδομάδων όπως προέκυψε από την ανάλυση του νεφρικού παρεγχύματος με LC-MS/MS. Το στατιστικό τεστ Mann-Whitney χρησιμοποιήθηκε. Όλες οι τιμές είναι στατιστικά σημαντικές με p<0.05

Κωδικός	Πρωτεΐνη	Λόγος Έκφρασης (SHR/WKY)
P09456	cAMP-dependent protein kinase type I-alpha regulatory subunit OS=Rattus norvegicus GN=Prkar1a PE=1 SV=2 - [KAP0_RAT]	0,50
P62755	40S ribosomal protein S6 OS=Rattus norvegicus GN=Rps6 PE=1 SV=1 - [RS6_RAT]	0,50
P20759	Ig gamma-1 chain C region OS=Rattus norvegicus PE=1 SV=1 - [IGHG1_RAT]	0,49
P16391	RT1 class I histocompatibility antigen, AA alpha chain OS=Rattus norvegicus PE=1 SV=2 - [HA12_RAT]	0,49
Q99376	Transferrin receptor protein 1 (Fragment) OS=Rattus norvegicus GN=Tfrc PE=2 SV=1 - [TFR1_RAT]	0,49
Q9Z0V6	Thioredoxin-dependent peroxide reductase, mitochondrial OS=Rattus norvegicus GN=Prdx3 PE=1 SV=2 - [PRDX3_RAT]	0,49
P61805	Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit DAD1 OS=Rattus norvegicus GN=Dad1 PE=3 SV=3 - [DAD1_RAT]	0,49
P51583	Multifunctional protein ADE2 OS=Rattus norvegicus GN=Paics PE=2 SV=3 - [PUR6_RAT]	0,49
Q6XQN1	Nicotinate phosphoribosyltransferase OS=Rattus norvegicus GN=Naprt PE=2 SV=1 - [PNCB_RAT]	0,49
G3V9R8	Heterogeneous nuclear ribonucleoprotein C OS=Rattus norvegicus GN=Hnrnpc PE=1 SV=2 - [HNRPC_RAT]	0,49
035413	Sorbin and SH3 domain-containing protein 2 OS=Rattus norvegicus GN=Sorbs2 PE=1 SV=2 - [SRBS2_RAT]	0,48
Q78P75	Dynein light chain 2, cytoplasmic OS=Rattus norvegicus GN=Dynll2 PE=1 SV=1 - [DYL2_RAT]	0,48
P04639	Apolipoprotein A-I OS=Rattus norvegicus GN=Apoa1 PE=1 SV=2 - [APOA1_RAT]	0,48
P27952	40S ribosomal protein S2 OS=Rattus norvegicus GN=Rps2 PE=1 SV=1 - [RS2_RAT]	0,48
Q510L3	TyrosinetRNA ligase, mitochondrial OS=Rattus norvegicus GN=Yars2 PE=2 SV=1 - [SYYM_RAT]	0,48
P84817	Mitochondrial fission 1 protein OS=Rattus norvegicus GN=Fis1 PE=1 SV=1 - [FIS1_RAT]	0,48
Q63481	Ras-related protein Rab-7L1 OS=Rattus norvegicus GN=Rab29 PE=1 SV=1 - [RAB7L_RAT]	0,48
Q5U2R7	LDLR chaperone MESD OS=Rattus norvegicus GN=Mesdc2 PE=2 SV=1 - [MESD_RAT]	0,47
Q7M0E3	Destrin OS=Rattus norvegicus GN=Dstn PE=1 SV=3 - [DEST_RAT]	0,47

Q9JHL4	Drebrin-like protein OS=Rattus norvegicus GN=Dbnl PE=1 SV=1 - [DBNL_RAT]	0,47
P21571	ATP synthase-coupling factor 6, mitochondrial OS=Rattus norvegicus GN=Atp5j PE=1 SV=1 - [ATP5J_RAT]	0,47
D4AAT7	ATP-dependent (S)-NAD(P)H-hydrate dehydratase OS=Rattus norvegicus GN=Carkd PE=3 SV=1 - [NNRD_RAT]	0,47
Q9WUC 4	Copper transport protein ATOX1 OS=Rattus norvegicus GN=Atox1 PE=1 SV=1 - [ATOX1_RAT]	0,47
P05708	Hexokinase-1 OS=Rattus norvegicus GN=Hk1 PE=1 SV=4 - [HXK1_RAT]	0,46
P20069	Mitochondrial-processing peptidase subunit alpha OS=Rattus norvegicus GN=Pmpca PE=1 SV=1 - [MPPA_RAT]	0,46
Q6MGB 5	Estradiol 17-beta-dehydrogenase 8 OS=Rattus norvegicus GN=Hsd17b8 PE=3 SV=1 - [DHB8_RAT]	0,46
P52296	Importin subunit beta-1 OS=Rattus norvegicus GN=Kpnb1 PE=1 SV=1 - [IMB1_RAT]	0,46
Q920A6	Retinoid-inducible serine carboxypeptidase OS=Rattus norvegicus GN=Scpep1 PE=2 SV=1 - [RISC_RAT]	0,46
Q9ERE6	Myosin phosphatase Rho-interacting protein OS=Rattus norvegicus GN=Mprip PE=2 SV=1 - [MPRIP_RAT]	0,46
P63095	Guanine nucleotide-binding protein G(s) subunit alpha isoforms short OS=Rattus norvegicus GN=Gnas PE=1 SV=1 - [GNAS2_RAT]	0,46
Q9WVB 1	Ras-related protein Rab-6A OS=Rattus norvegicus GN=Rab6a PE=2 SV=2 - [RAB6A_RAT]	0,46
Q5XIP9	Transmembrane protein 43 OS=Rattus norvegicus GN=Tmem43 PE=2 SV=1 - [TMM43_RAT]	0,45
Q01177	Plasminogen OS=Rattus norvegicus GN=Plg PE=2 SV=2 - [PLMN_RAT]	0,45
B0BN18	Prefoldin subunit 2 OS=Rattus norvegicus GN=Pfdn2 PE=2 SV=1 - [PFD2_RAT]	0,45
Q9EQX9	Ubiquitin-conjugating enzyme E2 N OS=Rattus norvegicus GN=Ube2n PE=1 SV=1 - [UBE2N_RAT]	0,45
Q641X3	Beta-hexosaminidase subunit alpha OS=Rattus norvegicus GN=Hexa PE=2 SV=1 - [HEXA_RAT]	0,44
P51907	Excitatory amino acid transporter 3 OS=Rattus norvegicus GN=Slc1a1 PE=1 SV=1 - [EAA3_RAT]	0,44
P0C0A2	Vacuolar protein-sorting-associated protein 36 OS=Rattus norvegicus GN=Vps36 PE=1 SV=1 - [VPS36_RAT]	0,44
O35956	Solute carrier family 22 member 6 OS=Rattus norvegicus GN=Slc22a6 PE=1 SV=1 - [S22A6_RAT]	0,44
Q6JE36	Protein NDRG1 OS=Rattus norvegicus GN=Ndrg1 PE=1 SV=1 - [NDRG1_RAT]	0,44
Q6P6R2	Dihydrolipoyl dehydrogenase, mitochondrial OS=Rattus norvegicus GN=Dld PE=1 SV=1 - [DLDH_RAT]	0,44
Q9WVA 1	Mitochondrial import inner membrane translocase subunit Tim8 A OS=Rattus norvegicus GN=Timm8a PE=1 SV=1 - [TIM8A_RAT]	0,43

Q91XU1	Protein quaking OS=Rattus norvegicus GN=Qki PE=1 SV=2 - [QKI_RAT]	0,43
Q4KM74	Vesicle-trafficking protein SEC22b OS=Rattus norvegicus GN=Sec22b PE=1 SV=3 - [SC22B_RAT]	0,43
Q01984	Histamine N-methyltransferase OS=Rattus norvegicus GN=Hnmt PE=1 SV=3 - [HNMT_RAT]	0,43
P28494	Alpha-mannosidase 2 OS=Rattus norvegicus GN=Man2a1 PE=1 SV=2 - [MA2A1_RAT]	0,43
P08460	Nidogen-1 (Fragment) OS=Rattus norvegicus GN=Nid1 PE=1 SV=2 - [NID1_RAT]	0,42
Q923V4	F-box only protein 6 OS=Rattus norvegicus GN=Fbxo6 PE=2 SV=1 - [FBX6_RAT]	0,42
P50430	Arylsulfatase B OS=Rattus norvegicus GN=Arsb PE=2 SV=2 - [ARSB_RAT]	0,42
Q5EBA1	ATP-dependent RNA helicase SUPV3L1, mitochondrial OS=Rattus norvegicus GN=Supv3l1 PE=2 SV=1 - [SUV3_RAT]	0,42
P12346	Serotransferrin OS=Rattus norvegicus GN=Tf PE=1 SV=3 - [TRFE_RAT]	0,42
B2RYM 5	Lys-63-specific deubiquitinase BRCC36 OS=Rattus norvegicus GN=Brcc3 PE=2 SV=1 - [BRCC3_RAT]	0,41
P04638	Apolipoprotein A-II OS=Rattus norvegicus GN=Apoa2 PE=2 SV=1 - [APOA2_RAT]	0,41
Q8K4M9	Oxysterol-binding protein-related protein 1 OS=Rattus norvegicus GN=Osbpl1a PE=1 SV=1 - [OSBL1_RAT]	0,41
Q64605	Receptor-type tyrosine-protein phosphatase S OS=Rattus norvegicus GN=Ptprs PE=1 SV=2 - [PTPRS_RAT]	0,41
O88867	Kynurenine 3-monooxygenase OS=Rattus norvegicus GN=Kmo PE=1 SV=1 - [KMO_RAT]	0,41
Q4G061	Eukaryotic translation initiation factor 3 subunit B OS=Rattus norvegicus GN=Eif3b PE=1 SV=1 - [EIF3B_RAT]	0,40
Q496Z0	Elongator complex protein 2 OS=Rattus norvegicus GN=Elp2 PE=2 SV=1 - [ELP2_RAT]	0,40
Q99N27	Sorting nexin-1 OS=Rattus norvegicus GN=Snx1 PE=1 SV=1 - [SNX1_RAT]	0,40
P10959	Carboxylesterase 1C OS=Rattus norvegicus GN=Ces1c PE=1 SV=3 - [EST1C_RAT]	0,40
Q4KLL0	Transcription elongation factor A protein 1 OS=Rattus norvegicus GN=Tcea1 PE=2 SV=1 - [TCEA1_RAT]	0,40
Q99N37	Rho GTPase-activating protein 17 OS=Rattus norvegicus GN=Arhgap17 PE=1 SV=1 - [RHG17_RAT]	0,40
Q5M819	Phosphoserine phosphatase OS=Rattus norvegicus GN=Psph PE=2 SV=1 - [SERB_RAT]	0,40
D3ZHA0	Filamin-C OS=Rattus norvegicus GN=Flnc PE=1 SV=1 - [FLNC_RAT]	0,40
A2VD12	Pre-B-cell leukemia transcription factor-interacting protein 1 OS=Rattus norvegicus GN=Pbxip1 PE=2 SV=1 - [PBIP1_RAT]	0,40
P26819	Beta-adrenergic receptor kinase 2 OS=Rattus norvegicus GN=Adrbk2 PE=2 SV=1 - [ARBK2_RAT]	0,40

Q5FVI6	V-type proton ATPase subunit C 1 OS=Rattus norvegicus GN=Atp6v1c1 PE=2 SV=1 - [VATC1_RAT]	0,39
P02651	Apolipoprotein A-IV OS=Rattus norvegicus GN=Apoa4 PE=2 SV=2 - [APOA4_RAT]	0,39
P43244	Matrin-3 OS=Rattus norvegicus GN=Matr3 PE=1 SV=2 - [MATR3_RAT]	0,39
Q63798	Proteasome activator complex subunit 2 OS=Rattus norvegicus GN=Psme2 PE=2 SV=3 - [PSME2_RAT]	0,39
Q9EPB1	Dipeptidyl peptidase 2 OS=Rattus norvegicus GN=Dpp7 PE=1 SV=1 - [DPP2_RAT]	0,39
P51796	H(+)/Cl(-) exchange transporter 5 OS=Rattus norvegicus GN=Clcn5 PE=2 SV=1 - [CLCN5_RAT]	0,38
P62250	40S ribosomal protein S16 OS=Rattus norvegicus GN=Rps16 PE=1 SV=2 - [RS16_RAT]	0,38
Q3B8Q0	Microtubule-associated protein RP/EB family member 2 OS=Rattus norvegicus GN=Mapre2 PE=2 SV=1 - [MARE2_RAT]	0,38
Q5QJC9	BAG family molecular chaperone regulator 5 OS=Rattus norvegicus GN=Bag5 PE=1 SV=1 - [BAG5_RAT]	0,38
P51886	Lumican OS=Rattus norvegicus GN=Lum PE=2 SV=1 - [LUM_RAT]	0,38
P62902	60S ribosomal protein L31 OS=Rattus norvegicus GN=Rpl31 PE=2 SV=1 - [RL31_RAT]	0,37
B5DFN3	Ubiquinol-cytochrome-c reductase complex assembly factor 2 OS=Rattus norvegicus GN=Uqcc2 PE=2 SV=1 - [UQCC2_RAT]	0,37
D3ZCL3	U1 small nuclear ribonucleoprotein C OS=Rattus norvegicus GN=Snrpc PE=3 SV=1 - [RU1C_RAT]	0,36
P02761	Major urinary protein OS=Rattus norvegicus PE=1 SV=1 - [MUP_RAT]	0,36
P13264	Glutaminase kidney isoform, mitochondrial OS=Rattus norvegicus GN=Gls PE=1 SV=2 - [GLSK_RAT]	0,35
Q9WTW 7	Solute carrier family 23 member 1 OS=Rattus norvegicus GN=Slc23a1 PE=2 SV=1 - [S23A1_RAT]	0,35
P29314	40S ribosomal protein S9 OS=Rattus norvegicus GN=Rps9 PE=1 SV=4 - [RS9_RAT]	0,35
P48284	Carbonic anhydrase 4 OS=Rattus norvegicus GN=Ca4 PE=1 SV=1 - [CAH4_RAT]	0,35
O55166	Vacuolar protein sorting-associated protein 52 homolog OS=Rattus norvegicus GN=Vps52 PE=2 SV=2 - [VPS52_RAT]	0,34
Q63663	Interferon-induced guanylate-binding protein 2 OS=Rattus norvegicus GN=Gbp2 PE=1 SV=2 - [GBP2_RAT]	0,34
Q5BJX1	39S ribosomal protein L41, mitochondrial OS=Rattus norvegicus GN=Mrpl41 PE=1 SV=1 - [RM41_RAT]	0,34
F1M7Y5	Protein kinase C iota type OS=Rattus norvegicus GN=Prkci PE=1 SV=1 - [KPCI_RAT]	0,34
P17046	Lysosome-associated membrane glycoprotein 2 OS=Rattus norvegicus GN=Lamp2 PE=1 SV=2 - [LAMP2_RAT]	0,33
Q68FT1	Ubiquinone biosynthesis protein COQ9, mitochondrial OS=Rattus norvegicus GN=Coq9 PE=2 SV=2 -	0,33

	[COQ9_RAT]	
P05943	Protein S100-A10 OS=Rattus norvegicus GN=S100a10 PE=1 SV=2 - [S10AA_RAT]	0,33
P41499	Tyrosine-protein phosphatase non-receptor type 11 OS=Rattus norvegicus GN=Ptpn11 PE=1 SV=4 - [PTN11_RAT]	0,33
Q4KLF8	Actin-related protein 2/3 complex subunit 5 OS=Rattus norvegicus GN=Arpc5 PE=1 SV=3 - [ARPC5_RAT]	0,33
P23711	Heme oxygenase 2 OS=Rattus norvegicus GN=Hmox2 PE=1 SV=1 - [HMOX2_RAT]	0,31
P55009	Allograft inflammatory factor 1 OS=Rattus norvegicus GN=Aif1 PE=2 SV=1 - [AIF1_RAT]	0,31
Q6AXX6	Redox-regulatory protein FAM213A OS=Rattus norvegicus GN=Fam213a PE=1 SV=1 - [F213A_RAT]	0,31
Q7M0E7	39S ribosomal protein L14, mitochondrial OS=Rattus norvegicus GN=Mrpl14 PE=1 SV=2 - [RM14_RAT]	0,31
F1M3L7	Epidermal growth factor receptor kinase substrate 8 OS=Rattus norvegicus GN=Eps8 PE=1 SV=2 - [EPS8_RAT]	0,31
Q6P7P5	Basic leucine zipper and W2 domain-containing protein 1 OS=Rattus norvegicus GN=Bzw1 PE=2 SV=1 - [BZW1_RAT]	0,31
035795	Ectonucleoside triphosphate diphosphohydrolase 2 OS=Rattus norvegicus GN=Entpd2 PE=1 SV=1 - [ENTP2_RAT]	0,30
Q68FX9	NAD-dependent protein deacylase sirtuin-5, mitochondrial OS=Rattus norvegicus GN=Sirt5 PE=2 SV=1 - [SIR5_RAT]	0,29
Q8VHE9	All-trans-retinol 13,14-reductase OS=Rattus norvegicus GN=Retsat PE=2 SV=1 - [RETST_RAT]	0,28
P62425	60S ribosomal protein L7a OS=Rattus norvegicus GN=Rpl7a PE=1 SV=2 - [RL7A_RAT]	0,27
Q9NQR8	NADH dehydrogenase [ubiquinone] 1 alpha subcomplex assembly factor 4 OS=Rattus norvegicus GN=Ndufaf4 PE=1 SV=1 - [NDUF4_RAT]	0,27
P17164	Tissue alpha-L-fucosidase OS=Rattus norvegicus GN=Fuca1 PE=1 SV=1 - [FUCO_RAT]	0,27
P70645	Bleomycin hydrolase OS=Rattus norvegicus GN=Blmh PE=1 SV=1 - [BLMH_RAT]	0,26
P39032	60S ribosomal protein L36 OS=Rattus norvegicus GN=Rpl36 PE=1 SV=2 - [RL36_RAT]	0,25
Q4FZY0	EF-hand domain-containing protein D2 OS=Rattus norvegicus GN=Efhd2 PE=1 SV=1 - [EFHD2_RAT]	0,23
Q64604	Receptor-type tyrosine-protein phosphatase F OS=Rattus norvegicus GN=Ptprf PE=2 SV=1 - [PTPRF_RAT]	0,23
Q9EQV6	Tripeptidyl-peptidase 1 OS=Rattus norvegicus GN=Tpp1 PE=1 SV=1 - [TPP1_RAT]	0,23
P50878	60S ribosomal protein L4 OS=Rattus norvegicus GN=Rpl4 PE=1 SV=3 - [RL4_RAT]	0,23
P43278	Histone H1.0 OS=Rattus norvegicus GN=H1f0 PE=2 SV=2 - [H10_RAT]	0,22
Q6AYR6	Haloacid dehalogenase-like hydrolase domain-containing protein 2 OS=Rattus norvegicus GN=Hdhd2 PE=2 SV=1 - [HDHD2_RAT]	0,21

P42346	Serine/threonine-protein kinase mTOR OS=Rattus norvegicus GN=Mtor PE=1 SV=1 - [MTOR_RAT]	0,21
O35889	Afadin OS=Rattus norvegicus GN=Mllt4 PE=1 SV=1 - [AFAD_RAT]	0,21
Q9Z1X1	Extended synaptotagmin-1 OS=Rattus norvegicus GN=Esyt1 PE=2 SV=1 - [ESYT1_RAT]	0,21
Q6P7R8	Very-long-chain 3-oxoacyl-CoA reductase OS=Rattus norvegicus GN=Hsd17b12 PE=2 SV=1 - [DHB12_RAT]	0,21
Q9EST6	Acidic leucine-rich nuclear phosphoprotein 32 family member B OS=Rattus norvegicus GN=Anp32b PE=2 SV=1 - [AN32B_RAT]	0,19
Q6PEC0	Bis(5'-nucleosyl)-tetraphosphatase [asymmetrical] OS=Rattus norvegicus GN=Nudt2 PE=2 SV=3 - [AP4A_RAT]	0,19
P04905	Glutathione S-transferase Mu 1 OS=Rattus norvegicus GN=Gstm1 PE=1 SV=2 - [GSTM1_RAT]	0,16
Q3B7D1	Ubiquitin-conjugating enzyme E2 Z OS=Rattus norvegicus GN=Ube2z PE=2 SV=2 - [UBE2Z_RAT]	0,16
P17136	Small nuclear ribonucleoprotein-associated protein B (Fragment) OS=Rattus norvegicus GN=Snrpb PE=2 SV=1 - [RSMB_RAT]	0,14
Q562C6	Leucine zipper transcription factor-like protein 1 OS=Rattus norvegicus GN=Lztfl1 PE=2 SV=1 - [LZTL1_RAT]	0,13
Q5BKD0	Inactive 2'-5'-oligoadenylate synthase 1B OS=Rattus norvegicus GN=Oas1b PE=2 SV=1 - [OAS1B_RAT]	0,13
Q9JIL3	Interleukin enhancer-binding factor 3 OS=Rattus norvegicus GN=IIf3 PE=1 SV=2 - [ILF3_RAT]	0,08
Q9Z1N4	3'(2'),5'-bisphosphate nucleotidase 1 OS=Rattus norvegicus GN=Bpnt1 PE=1 SV=1 - [BPNT1_RAT]	0,03

Πίνακας Παραρτήματος 9: Διαφορικά εκφραζόμενες πρωτεΐνες που παρουσιάζουν αυξημένη έκφραση στα SHR ζώα 20 εβδομάδων όπως προέκυψε από την ανάλυση του νεφρικού παρεγχύματος με LC-MS/MS. Το στατιστικό τεστ Mann-Whitney χρησιμοποιήθηκε. Όλες οι τιμές είναι στατιστικά σημαντικές με p<0.05

Κωδικός	Πρωτεΐνη	Λόγος Έκφρασης (SHR/WKY)
Q7TQ16	Cytochrome b-c1 complex subunit 8 OS=Rattus norvegicus GN=Uqcrq PE=3 SV=1 - [QCR8_RAT]	160,60
Q6SKG1	Acyl-coenzyme A synthetase ACSM3, mitochondrial OS=Rattus norvegicus GN=Acsm3 PE=2 SV=1 - [ACSM3_RAT]	28,47
Q6PEC1	Tubulin-specific chaperone A OS=Rattus norvegicus GN=Tbca PE=1 SV=1 - [TBCA_RAT]	21,71
P20761	Ig gamma-2B chain C region OS=Rattus norvegicus GN=Igh-1a PE=1 SV=1 - [IGG2B_RAT]	17,82
P28075	Proteasome subunit beta type-5 OS=Rattus norvegicus GN=Psmb5 PE=1 SV=3 - [PSB5_RAT]	15,58
Q5XI72	Eukaryotic translation initiation factor 4H OS=Rattus norvegicus GN=Eif4h PE=1 SV=1 - [IF4H_RAT]	13,72
Q5U2P1	Metal transporter CNNM2 OS=Rattus norvegicus GN=Cnnm2 PE=2 SV=1 - [CNNM2_RAT]	12,91
Q00566	Methyl-CpG-binding protein 2 OS=Rattus norvegicus GN=Mecp2 PE=1 SV=1 - [MECP2_RAT]	11,06
P22509	rRNA 2'-O-methyltransferase fibrillarin OS=Rattus norvegicus GN=Fbl PE=1 SV=2 - [FBRL_RAT]	10,99
P53792	Sodium/glucose cotransporter 2 OS=Rattus norvegicus GN=Slc5a2 PE=2 SV=1 - [SC5A2_RAT]	9,63
P42346	Serine/threonine-protein kinase mTOR OS=Rattus norvegicus GN=Mtor PE=1 SV=1 - [MTOR_RAT]	8,79
P04692	Tropomyosin alpha-1 chain OS=Rattus norvegicus GN=Tpm1 PE=1 SV=3 - [TPM1_RAT]	8,61
Q62902	Protein ERGIC-53 OS=Rattus norvegicus GN=Lman1 PE=1 SV=1 - [LMAN1_RAT]	8,35
Q00972	[3-methyl-2-oxobutanoate dehydrogenase [lipoamide]] kinase, mitochondrial OS=Rattus norvegicus GN=Bckdk PE=1 SV=2 - [BCKD_RAT]	8,19
Q9Z0V5	Peroxiredoxin-4 OS=Rattus norvegicus GN=Prdx4 PE=2 SV=1 - [PRDX4_RAT]	7,81
P20650	Protein phosphatase 1A OS=Rattus norvegicus GN=Ppm1a PE=1 SV=1 - [PPM1A_RAT]	7,52
Q9WU49	Calcium-regulated heat stable protein 1 OS=Rattus norvegicus GN=Carhsp1 PE=1 SV=1 - [CHSP1_RAT]	7,15
Q9QYL8	Acyl-protein thioesterase 2 OS=Rattus norvegicus GN=Lypla2 PE=1 SV=1 - [LYPA2_RAT]	7,15
Q4V8K5	BRO1 domain-containing protein BROX OS=Rattus norvegicus GN=Brox PE=2 SV=1 - [BROX_RAT]	6,96

Q5XFW8	Protein SEC13 homolog OS=Rattus norvegicus GN=Sec13 PE=1 SV=1 - [SEC13_RAT]	6,60
D4A929	WD repeat-containing protein 81 OS=Rattus norvegicus GN=Wdr81 PE=3 SV=1 - [WDR81_RAT]	6,43
Q62687	Sodium-dependent neutral amino acid transporter B(0)AT3 OS=Rattus norvegicus GN=Slc6a18 PE=2 SV=1 - [S6A18_RAT]	6,26
Q9EQT5	Tubulointerstitial nephritis antigen-like OS=Rattus norvegicus GN=Tinagl1 PE=2 SV=1 - [TINAL_RAT]	6,23
Q510E9	Multidrug and toxin extrusion protein 1 OS=Rattus norvegicus GN=Slc47a1 PE=1 SV=1 - [S47A1_RAT]	6,22
Q7TP52	Carboxymethylenebutenolidase homolog OS=Rattus norvegicus GN=Cmbl PE=2 SV=1 - [CMBL_RAT]	5,87
P70618	Mitogen-activated protein kinase 14 OS=Rattus norvegicus GN=Mapk14 PE=2 SV=3 - [MK14_RAT]	5,57
Q05982	Nucleoside diphosphate kinase A OS=Rattus norvegicus GN=Nme1 PE=1 SV=1 - [NDKA_RAT]	5,52
P30835	ATP-dependent 6-phosphofructokinase, liver type OS=Rattus norvegicus GN=Pfkl PE=2 SV=3 - [PFKAL_RAT]	5,42
Q02589	[Protein ADP-ribosylarginine] hydrolase OS=Rattus norvegicus GN=Adprh PE=1 SV=2 - [ADPRH_RAT]	5,33
Q2TL32	E3 ubiquitin-protein ligase UBR4 OS=Rattus norvegicus GN=Ubr4 PE=1 SV=2 - [UBR4_RAT]	5,28
F1LM93	Tyrosine-protein kinase Yes OS=Rattus norvegicus GN=Yes1 PE=1 SV=1 - [YES_RAT]	5,26
P62749	Hippocalcin-like protein 1 OS=Rattus norvegicus GN=Hpcal1 PE=1 SV=2 - [HPCL1_RAT]	5,26
Q5XJW2	Growth arrest and DNA damage-inducible proteins-interacting protein 1 OS=Rattus norvegicus GN=Gadd45gip1 PE=2 SV=2 - [G45IP_RAT]	5,25
O88202	60 kDa lysophospholipase OS=Rattus norvegicus GN=Aspg PE=1 SV=1 - [LPP60_RAT]	4,95
Q91Y78	Ubiquitin carboxyl-terminal hydrolase isozyme L3 OS=Rattus norvegicus GN=Uchl3 PE=1 SV=1 - [UCHL3_RAT]	4,89
055159	Epithelial cell adhesion molecule OS=Rattus norvegicus GN=Epcam PE=1 SV=1 - [EPCAM_RAT]	4,89
P13255	Glycine N-methyltransferase OS=Rattus norvegicus GN=Gnmt PE=1 SV=2 - [GNMT_RAT]	4,79
Q62952	Dihydropyrimidinase-related protein 3 OS=Rattus norvegicus GN=Dpysl3 PE=1 SV=2 - [DPYL3_RAT]	4,66
Q07116	Sulfite oxidase, mitochondrial OS=Rattus norvegicus GN=Suox PE=1 SV=2 - [SUOX_RAT]	4,54
Q66HL2	Src substrate cortactin OS=Rattus norvegicus GN=Cttn PE=1 SV=1 - [SRC8_RAT]	4,40
Q3B7U9	Peptidyl-prolyl cis-trans isomerase FKBP8 OS=Rattus norvegicus GN=Fkbp8 PE=2 SV=1 - [FKBP8_RAT]	4,37
Q66H59	N-acetylneuraminate lyase OS=Rattus norvegicus GN=Npl PE=2 SV=1 - [NPL_RAT]	4,33
Q64633	UDP-glucuronosyltransferase 1-7 OS=Rattus norvegicus GN=Ugt1a7c PE=2 SV=1 - [UD17_RAT]	4,33
--------	--	------
Q8VI04	Isoaspartyl peptidase/L-asparaginase OS=Rattus norvegicus GN=Asrgl1 PE=1 SV=1 - [ASGL1_RAT]	4,32
Q4QQW3	Hydroxyacid-oxoacid transhydrogenase, mitochondrial OS=Rattus norvegicus GN=Adhfe1 PE=1 SV=1 - [HOT_RAT]	4,28
Q91ZW6	Trimethyllysine dioxygenase, mitochondrial OS=Rattus norvegicus GN=Tmlhe PE=1 SV=2 - [TMLH_RAT]	4,28
P80386	5'-AMP-activated protein kinase subunit beta-1 OS=Rattus norvegicus GN=Prkab1 PE=1 SV=4 - [AAKB1_RAT]	4,25
Q6AYB4	Heat shock 70 kDa protein 14 OS=Rattus norvegicus GN=Hspa14 PE=2 SV=1 - [HSP7E_RAT]	4,22
Q6MG60	N(G),N(G)-dimethylarginine dimethylaminohydrolase 2 OS=Rattus norvegicus GN=Ddah2 PE=1 SV=1 - [DDAH2_RAT]	4,13
P08424	Renin OS=Rattus norvegicus GN=Ren1 PE=2 SV=2 - [RENI_RAT]	4,09
P42676	Neurolysin, mitochondrial OS=Rattus norvegicus GN=Nln PE=1 SV=1 - [NEUL_RAT]	4,07
Q66HG5	Transmembrane 9 superfamily member 2 OS=Rattus norvegicus GN=Tm9sf2 PE=2 SV=1 - [TM9S2_RAT]	4,01
P63031	Mitochondrial pyruvate carrier 1 OS=Rattus norvegicus GN=Mpc1 PE=3 SV=1 - [MPC1_RAT]	3,98
Q04679	Sodium/potassium-transporting ATPase subunit gamma OS=Rattus norvegicus GN=Fxyd2 PE=2 SV=2 - [ATNG_RAT]	3,98
P18420	Proteasome subunit alpha type-1 OS=Rattus norvegicus GN=Psma1 PE=1 SV=2 - [PSA1_RAT]	3,94
Q05962	ADP/ATP translocase 1 OS=Rattus norvegicus GN=Slc25a4 PE=1 SV=3 - [ADT1_RAT]	3,91
P07895	Superoxide dismutase [Mn], mitochondrial OS=Rattus norvegicus GN=Sod2 PE=1 SV=2 - [SODM_RAT]	3,88
Q6AYF4	Integrin beta-6 OS=Rattus norvegicus GN=Itgb6 PE=2 SV=1 - [ITB6_RAT]	3,82
F1LYQ8	FERM, RhoGEF and pleckstrin domain-containing protein 1 OS=Rattus norvegicus GN=Farp1 PE=1 SV=2 - [FARP1_RAT]	3,75
Q32PX2	Aminoacyl tRNA synthase complex-interacting multifunctional protein 2 OS=Rattus norvegicus GN=Aimp2 PE=2 SV=1 - [AIMP2_RAT]	3,75
O70594	Solute carrier family 22 member 5 OS=Rattus norvegicus GN=Slc22a5 PE=1 SV=1 - [S22A5_RAT]	3,74
P08289	Alkaline phosphatase, tissue-nonspecific isozyme OS=Rattus norvegicus GN=Alpl PE=1 SV=2 - [PPBT_RAT]	3,74
P21588	5'-nucleotidase OS=Rattus norvegicus GN=Nt5e PE=1 SV=1 - [5NTD_RAT]	3,73

P21533	60S ribosomal protein L6 OS=Rattus norvegicus GN=Rpl6 PE=1 SV=5 - [RL6_RAT]	3,72
Q9WV25	Poly(U)-binding-splicing factor PUF60 OS=Rattus norvegicus GN=Puf60 PE=2 SV=2 - [PUF60_RAT]	3,66
P10111	Peptidyl-prolyl cis-trans isomerase A OS=Rattus norvegicus GN=Ppia PE=1 SV=2 - [PPIA_RAT]	3,64
Q920L2	Succinate dehydrogenase [ubiquinone] flavoprotein subunit, mitochondrial OS=Rattus norvegicus GN=Sdha PE=1 SV=1 - [SDHA_RAT]	3,63
Q91ZQ0	Vacuole membrane protein 1 OS=Rattus norvegicus GN=Vmp1 PE=1 SV=1 - [VMP1_RAT]	3,60
Q63610	Tropomyosin alpha-3 chain OS=Rattus norvegicus GN=Tpm3 PE=1 SV=2 - [TPM3_RAT]	3,56
Q05096	Unconventional myosin-Ib OS=Rattus norvegicus GN=Myo1b PE=1 SV=1 - [MYO1B_RAT]	3,49
B0BNF1	Septin-8 OS=Rattus norvegicus GN=Sept8 PE=1 SV=1 - [SEPT8_RAT]	3,44
Q9WVJ4	Synaptojanin-2-binding protein OS=Rattus norvegicus GN=Synj2bp PE=1 SV=2 - [SYJ2B_RAT]	3,42
P42930	Heat shock protein beta-1 OS=Rattus norvegicus GN=Hspb1 PE=1 SV=1 - [HSPB1_RAT]	3,41
P14942	Glutathione S-transferase alpha-4 OS=Rattus norvegicus GN=Gsta4 PE=1 SV=2 - [GSTA4_RAT]	3,38
P55161	Nck-associated protein 1 OS=Rattus norvegicus GN=Nckap1 PE=2 SV=1 - [NCKP1_RAT]	3,38
P86410	Ral GTPase-activating protein subunit beta OS=Rattus norvegicus GN=Ralgapb PE=1 SV=1 - [RLGPB_RAT]	3,32
Q921A4	Cytoglobin OS=Rattus norvegicus GN=Cygb PE=1 SV=1 - [CYGB_RAT]	3,30
Q6P9U8	Eukaryotic translation initiation factor 3 subunit H OS=Rattus norvegicus GN=Eif3h PE=2 SV=1 - [EIF3H_RAT]	3,30
A1L108	Actin-related protein 2/3 complex subunit 5-like protein OS=Rattus norvegicus GN=Arpc5l PE=1 SV=2 - [ARP5L_RAT]	3,26
Q6P686	Osteoclast-stimulating factor 1 OS=Rattus norvegicus GN=Ostf1 PE=2 SV=1 - [OSTF1_RAT]	3,23
P00762	Anionic trypsin-1 OS=Rattus norvegicus GN=Prss1 PE=1 SV=1 - [TRY1_RAT]	3,22
P06349	Histone H1t OS=Rattus norvegicus GN=Hist1h1t PE=1 SV=2 - [H1T_RAT]	3,21
Q62839	Golgin subfamily A member 2 OS=Rattus norvegicus GN=Golga2 PE=1 SV=3 - [GOGA2_RAT]	3,21
P62898	Cytochrome c, somatic OS=Rattus norvegicus GN=Cycs PE=1 SV=2 - [CYC_RAT]	3,18
Q63356	Unconventional myosin-Ie OS=Rattus norvegicus GN=Myo1e PE=1 SV=1 - [MYO1E_RAT]	3,11
Q9WUH4	Four and a half LIM domains protein 1 OS=Rattus norvegicus GN=Fhl1 PE=2 SV=1 - [FHL1_RAT]	3,10
P62944	AP-2 complex subunit beta OS=Rattus norvegicus GN=Ap2b1 PE=1 SV=1 - [AP2B1_RAT]	3,10

Q704E8	ATP-binding cassette sub-family B member 7, mitochondrial OS=Rattus norvegicus GN=Abcb7 PE=1 SV=1 - [ABCB7 RAT]	3,07
P13832	Myosin regulatory light chain RLC-A OS=Rattus norvegicus GN=Rlc-a PE=2 SV=2 - [MRLCA_RAT]	3,04
P00502	Glutathione S-transferase alpha-1 OS=Rattus norvegicus GN=Gsta1 PE=1 SV=3 - [GSTA1_RAT]	3,03
Q9R0W2	Solute carrier family 22 member 2 OS=Rattus norvegicus GN=Slc22a2 PE=1 SV=1 - [S22A2_RAT]	3,03
P20817	Cytochrome P450 4A14 OS=Rattus norvegicus GN=Cyp4a14 PE=1 SV=2 - [CP4AE_RAT]	3,01
P81795	Eukaryotic translation initiation factor 2 subunit 3 OS=Rattus norvegicus GN=Eif2s3 PE=1 SV=2 - [IF2G_RAT]	3,00
Q9WVK3	Peroxisomal trans-2-enoyl-CoA reductase OS=Rattus norvegicus GN=Pecr PE=2 SV=1 - [PECR_RAT]	2,99
O08651	D-3-phosphoglycerate dehydrogenase OS=Rattus norvegicus GN=Phgdh PE=1 SV=3 - [SERA_RAT]	2,99
Q642A7	Protein FAM151A OS=Rattus norvegicus GN=Fam151a PE=2 SV=1 - [F151A_RAT]	2,99
P50137	Transketolase OS=Rattus norvegicus GN=Tkt PE=1 SV=1 - [TKT_RAT]	2,91
P10868	Guanidinoacetate N-methyltransferase OS=Rattus norvegicus GN=Gamt PE=1 SV=2 - [GAMT_RAT]	2,90
035413	Sorbin and SH3 domain-containing protein 2 OS=Rattus norvegicus GN=Sorbs2 PE=1 SV=2 - [SRBS2_RAT]	2,90
P18421	Proteasome subunit beta type-1 OS=Rattus norvegicus GN=Psmb1 PE=1 SV=3 - [PSB1_RAT]	2,89
P09495	Tropomyosin alpha-4 chain OS=Rattus norvegicus GN=Tpm4 PE=1 SV=3 - [TPM4_RAT]	2,88
Q9R141	Solute carrier family 22 member 4 OS=Rattus norvegicus GN=Slc22a4 PE=1 SV=1 - [S22A4_RAT]	2,88
Q9Z339	Glutathione S-transferase omega-1 OS=Rattus norvegicus GN=Gsto1 PE=1 SV=2 - [GSTO1_RAT]	2,87
Q6Q7Y5	Guanine nucleotide-binding protein subunit alpha-13 OS=Rattus norvegicus GN=Gna13 PE=1 SV=1 - [GNA13_RAT]	2,87
O35832	Cyclin-dependent kinase 18 OS=Rattus norvegicus GN=Cdk18 PE=1 SV=1 - [CKD18_RAT]	2,86
Q9WVA1	Mitochondrial import inner membrane translocase subunit Tim8 A OS=Rattus norvegicus GN=Timm8a PE=1 SV=1 - [TIM8A_RAT]	2,85
P17988	Sulfotransferase 1A1 OS=Rattus norvegicus GN=Sult1a1 PE=1 SV=1 - [ST1A1_RAT]	2,84
P48284	Carbonic anhydrase 4 OS=Rattus norvegicus GN=Ca4 PE=1 SV=1 - [CAH4_RAT]	2,80
Q5XIC2	Evolutionarily conserved signaling intermediate in Toll pathway, mitochondrial OS=Rattus norvegicus GN=Ecsit PE=1 SV=1 - [ECSIT_RAT]	2,79
P23928	Alpha-crystallin B chain OS=Rattus norvegicus GN=Cryab PE=1 SV=1 - [CRYAB_RAT]	2,79

Q62871	Cytoplasmic dynein 1 intermediate chain 2 OS=Rattus norvegicus GN=Dync1i2 PE=1 SV=1 - [DC1I2_RAT]	2,78
P02770	Serum albumin OS=Rattus norvegicus GN=Alb PE=1 SV=2 - [ALBU_RAT]	2,76
B2GUZ5	F-actin-capping protein subunit alpha-1 OS=Rattus norvegicus GN=Capza1 PE=1 SV=1 - [CAZA1_RAT]	2,75
P07632	Superoxide dismutase [Cu-Zn] OS=Rattus norvegicus GN=Sod1 PE=1 SV=2 - [SODC_RAT]	2,72
Q63009	Protein arginine N-methyltransferase 1 OS=Rattus norvegicus GN=Prmt1 PE=1 SV=1 - [ANM1_RAT]	2,70
P86252	Transcriptional activator protein Pur-alpha (Fragments) OS=Rattus norvegicus GN=Pura PE=1 SV=1 - [PURA_RAT]	2,68
B0BNC9	Quinone oxidoreductase-like protein 2 OS=Rattus norvegicus PE=2 SV=1 - [QORL2_RAT]	2,67
Q99PW3	Sialidase-1 OS=Rattus norvegicus GN=Neu1 PE=1 SV=1 - [NEUR1_RAT]	2,67
Q9WV97	Mitochondrial import inner membrane translocase subunit Tim9 OS=Rattus norvegicus GN=Timm9 PE=1 SV=3 - [TIM9_RAT]	2,67
P50554	4-aminobutyrate aminotransferase, mitochondrial OS=Rattus norvegicus GN=Abat PE=1 SV=3 - [GABT_RAT]	2,65
Q5BK32	FAS-associated factor 2 OS=Rattus norvegicus GN=Faf2 PE=2 SV=1 - [FAF2_RAT]	2,64
Q68FS4	Cytosol aminopeptidase OS=Rattus norvegicus GN=Lap3 PE=1 SV=1 - [AMPL_RAT]	2,64
Q6AXQ0	SUMO-activating enzyme subunit 1 OS=Rattus norvegicus GN=Sae1 PE=2 SV=1 - [SAE1_RAT]	2,62
Q8VHF5	Citrate synthase, mitochondrial OS=Rattus norvegicus GN=Cs PE=1 SV=1 - [CISY_RAT]	2,61
Q6AXR4	Beta-hexosaminidase subunit beta OS=Rattus norvegicus GN=Hexb PE=2 SV=1 - [HEXB_RAT]	2,60
P14740	Dipeptidyl peptidase 4 OS=Rattus norvegicus GN=Dpp4 PE=1 SV=2 - [DPP4_RAT]	2,60
P97700	Mitochondrial 2-oxoglutarate/malate carrier protein OS=Rattus norvegicus GN=Slc25a11 PE=2 SV=3 - [M2OM_RAT]	2,59
Q8R478	WW domain-binding protein 2 OS=Rattus norvegicus GN=Wbp2 PE=1 SV=1 - [WBP2_RAT]	2,57
Q5BK62	Protein Mpv17 OS=Rattus norvegicus GN=Mpv17 PE=2 SV=1 - [MPV17_RAT]	2,57
B0K020	CDGSH iron-sulfur domain-containing protein 1 OS=Rattus norvegicus GN=Cisd1 PE=3 SV=1 - [CISD1_RAT]	2,56
P56522	NADPH:adrenodoxin oxidoreductase, mitochondrial OS=Rattus norvegicus GN=Fdxr PE=1 SV=1 - [ADRO_RAT]	2,56
Q7TQ94	Nitrilase homolog 1 OS=Rattus norvegicus GN=Nit1 PE=2 SV=1 - [NIT1_RAT]	2,56

Q6PEC4	S-phase kinase-associated protein 1 OS=Rattus norvegicus GN=Skp1 PE=2 SV=3 - [SKP1_RAT]	2,54
P04276	Vitamin D-binding protein OS=Rattus norvegicus GN=Gc PE=1 SV=3 - [VTDB_RAT]	2,53
P29410	Adenylate kinase 2, mitochondrial OS=Rattus norvegicus GN=Ak2 PE=2 SV=2 - [KAD2_RAT]	2,52
Q6MGD0	Protein CutA OS=Rattus norvegicus GN=Cuta PE=1 SV=2 - [CUTA_RAT]	2,50
Q76IC5	Pyroglutamyl-peptidase 1 OS=Rattus norvegicus GN=Pgpep1 PE=1 SV=1 - [PGPI_RAT]	2,47
P10824	Guanine nucleotide-binding protein G(i) subunit alpha-1 OS=Rattus norvegicus GN=Gnai1 PE=1 SV=3 - [GNAI1_RAT]	2,46
Q641Z8	Peflin OS=Rattus norvegicus GN=Pef1 PE=2 SV=1 - [PEF1_RAT]	2,46
P32551	Cytochrome b-c1 complex subunit 2, mitochondrial OS=Rattus norvegicus GN=Uqcrc2 PE=1 SV=2 - [QCR2_RAT]	2,45
Q510J9	Putative L-aspartate dehydrogenase OS=Rattus norvegicus GN=Aspdh PE=2 SV=1 - [ASPD_RAT]	2,44
Q7TS56	Carbonyl reductase family member 4 OS=Rattus norvegicus GN=Cbr4 PE=2 SV=1 - [CBR4_RAT]	2,43
A2VCW9	Alpha-aminoadipic semialdehyde synthase, mitochondrial OS=Rattus norvegicus GN=Aass PE=2 SV=1 - [AASS_RAT]	2,43
Q8CG45	Aflatoxin B1 aldehyde reductase member 2 OS=Rattus norvegicus GN=Akr7a2 PE=1 SV=2 - [ARK72_RAT]	2,43
Q793F9	Vacuolar protein sorting-associated protein 4A OS=Rattus norvegicus GN=Vps4a PE=2 SV=1 - [VPS4A_RAT]	2,43
O54921	Exocyst complex component 2 OS=Rattus norvegicus GN=Exoc2 PE=1 SV=1 - [EXOC2_RAT]	2,42
P57093	Phytanoyl-CoA dioxygenase, peroxisomal OS=Rattus norvegicus GN=Phyh PE=1 SV=2 - [PAHX_RAT]	2,42
Q9Z2Q1	Protein transport protein Sec31A OS=Rattus norvegicus GN=Sec31a PE=1 SV=2 - [SC31A_RAT]	2,40
Q5FVM4	Non-POU domain-containing octamer-binding protein OS=Rattus norvegicus GN=Nono PE=1 SV=3 - [NONO_RAT]	2,39
Q9EQV6	Tripeptidyl-peptidase 1 OS=Rattus norvegicus GN=Tpp1 PE=1 SV=1 - [TPP1_RAT]	2,38
P28073	Proteasome subunit beta type-6 OS=Rattus norvegicus GN=Psmb6 PE=1 SV=3 - [PSB6_RAT]	2,38
Q9R1T1	Barrier-to-autointegration factor OS=Rattus norvegicus GN=Banf1 PE=1 SV=1 - [BAF_RAT]	2,36
Q6AYI5	Leucine-rich repeat protein SHOC-2 OS=Rattus norvegicus GN=Shoc2 PE=2 SV=1 - [SHOC2_RAT]	2,34
Q9EQV9	Carboxypeptidase B2 OS=Rattus norvegicus GN=Cpb2 PE=2 SV=1 - [CBPB2_RAT]	2,33
Q63716	Peroxiredoxin-1 OS=Rattus norvegicus GN=Prdx1 PE=1 SV=1 - [PRDX1_RAT]	2,32

Q3B8Q2	Eukaryotic initiation factor 4A-III OS=Rattus norvegicus GN=Eif4a3 PE=1 SV=1 - [IF4A3_RAT]	2,31
P41498	Low molecular weight phosphotyrosine protein phosphatase OS=Rattus norvegicus GN=Acp1 PE=1 SV=3 - [PPAC_RAT]	2,31
Q9QYU4	Ketimine reductase mu-crystallin OS=Rattus norvegicus GN=Crym PE=1 SV=1 - [CRYM_RAT]	2,31
D3ZW55	Inosine triphosphate pyrophosphatase OS=Rattus norvegicus GN=Itpa PE=3 SV=1 - [ITPA_RAT]	2,28
Q9Z1E1	Flotillin-1 OS=Rattus norvegicus GN=Flot1 PE=2 SV=2 - [FLOT1_RAT]	2,28
P62832	60S ribosomal protein L23 OS=Rattus norvegicus GN=Rpl23 PE=2 SV=1 - [RL23_RAT]	2,26
P63004	Platelet-activating factor acetylhydrolase IB subunit alpha OS=Rattus norvegicus GN=Pafah1b1 PE=1 SV=2 - [LIS1_RAT]	2,26
Q505J9	ATPase family AAA domain-containing protein 1 OS=Rattus norvegicus GN=Atad1 PE=1 SV=1 - [ATAD1_RAT]	2,26
P85971	6-phosphogluconolactonase OS=Rattus norvegicus GN=Pgls PE=1 SV=1 - [6PGL_RAT]	2,25
Q7TP98	Interleukin enhancer-binding factor 2 OS=Rattus norvegicus GN=Ilf2 PE=2 SV=1 - [ILF2_RAT]	2,24
Q6AXN3	Transmembrane emp24 domain-containing protein 5 OS=Rattus norvegicus GN=Tmed5 PE=2 SV=1 - [TMED5_RAT]	2,24
P61459	Pterin-4-alpha-carbinolamine dehydratase OS=Rattus norvegicus GN=Pcbd1 PE=1 SV=2 - [PHS_RAT]	2,24
Q66H68	RNA-binding protein 47 OS=Rattus norvegicus GN=Rbm47 PE=2 SV=1 - [RBM47_RAT]	2,23
Q6P799	SerinetRNA ligase, cytoplasmic OS=Rattus norvegicus GN=Sars PE=1 SV=3 - [SYSC_RAT]	2,22
O88761	26S proteasome non-ATPase regulatory subunit 1 OS=Rattus norvegicus GN=Psmd1 PE=2 SV=1 - [PSMD1_RAT]	2,21
P04041	Glutathione peroxidase 1 OS=Rattus norvegicus GN=Gpx1 PE=1 SV=4 - [GPX1_RAT]	2,20
Q4FZV0	Beta-mannosidase OS=Rattus norvegicus GN=Manba PE=2 SV=1 - [MANBA_RAT]	2,20
P21531	60S ribosomal protein L3 OS=Rattus norvegicus GN=Rpl3 PE=1 SV=3 - [RL3_RAT]	2,20
P04904	Glutathione S-transferase alpha-3 OS=Rattus norvegicus GN=Gsta3 PE=1 SV=3 - [GSTA3_RAT]	2,18
P17074	40S ribosomal protein S19 OS=Rattus norvegicus GN=Rps19 PE=2 SV=3 - [RS19_RAT]	2,17
O88797	Disabled homolog 2 OS=Rattus norvegicus GN=Dab2 PE=1 SV=1 - [DAB2_RAT]	2,16
O35264	Platelet-activating factor acetylhydrolase IB subunit beta OS=Rattus norvegicus GN=Pafah1b2 PE=1 SV=1 - [PA1B2_RAT]	2,14
Q568Z6	IST1 homolog OS=Rattus norvegicus GN=Ist1 PE=2 SV=1 - [IST1_RAT]	2,14

Q5XHZ0	Heat shock protein 75 kDa, mitochondrial OS=Rattus norvegicus GN=Trap1 PE=1 SV=1 - [TRAP1_RAT]	2,13
P00787	Cathepsin B OS=Rattus norvegicus GN=Ctsb PE=1 SV=2 - [CATB_RAT]	2,13
Q0D2L3	Agmatinase, mitochondrial OS=Rattus norvegicus GN=Agmat PE=2 SV=1 - [SPEB_RAT]	2,13
Q9QYU2	Elongation factor Ts, mitochondrial OS=Rattus norvegicus GN=Tsfm PE=2 SV=1 - [EFTS_RAT]	2,12
Q63468	Phosphoribosyl pyrophosphate synthase-associated protein 1 OS=Rattus norvegicus GN=Prpsap1 PE=1 SV=1 - [KPRA_RAT]	2,12
A1A5S1	Pre-mRNA-processing factor 6 OS=Rattus norvegicus GN=Prpf6 PE=2 SV=1 - [PRP6_RAT]	2,12
Q5QJC9	BAG family molecular chaperone regulator 5 OS=Rattus norvegicus GN=Bag5 PE=1 SV=1 - [BAG5_RAT]	2,11
P22791	Hydroxymethylglutaryl-CoA synthase, mitochondrial OS=Rattus norvegicus GN=Hmgcs2 PE=2 SV=1 - [HMCS2_RAT]	2,10
P70502	Solute carrier organic anion transporter family member 1A3 OS=Rattus norvegicus GN=Slco1a3 PE=2 SV=2 - [SO1A3_RAT]	2,10
P19643	Amine oxidase [flavin-containing] B OS=Rattus norvegicus GN=Maob PE=1 SV=3 - [AOFB_RAT]	2,10
Q7TSE9	HCLS1-associated protein X-1 OS=Rattus norvegicus GN=Hax1 PE=1 SV=1 - [HAX1_RAT]	2,10
Q6AYE2	Endophilin-B1 OS=Rattus norvegicus GN=Sh3glb1 PE=2 SV=1 - [SHLB1_RAT]	2,09
Q5FVQ8	NLR family member X1 OS=Rattus norvegicus GN=Nlrx1 PE=2 SV=1 - [NLRX1_RAT]	2,08
Q9JI92	Syntenin-1 OS=Rattus norvegicus GN=Sdcbp PE=1 SV=1 - [SDCB1_RAT]	2,08
Q6U6G5	Zinc finger CCCH domain-containing protein 15 OS=Rattus norvegicus GN=Zc3h15 PE=2 SV=1 - [ZC3HF_RAT]	2,08
P24329	Thiosulfate sulfurtransferase OS=Rattus norvegicus GN=Tst PE=1 SV=3 - [THTR_RAT]	2,07
P47875	Cysteine and glycine-rich protein 1 OS=Rattus norvegicus GN=Csrp1 PE=2 SV=2 - [CSRP1_RAT]	2,06
Q63617	Hypoxia up-regulated protein 1 OS=Rattus norvegicus GN=Hyou1 PE=1 SV=1 - [HYOU1_RAT]	2,05
Q9EQP5	Prolargin OS=Rattus norvegicus GN=Prelp PE=2 SV=1 - [PRELP_RAT]	2,05
Q9QY17	Protein kinase C and casein kinase substrate in neurons 2 protein OS=Rattus norvegicus GN=Pacsin2 PE=1 SV=2 - [PACN2_RAT]	2,04
P34067	Proteasome subunit beta type-4 OS=Rattus norvegicus GN=Psmb4 PE=1 SV=2 - [PSB4_RAT]	2,04
Q9ERZ8	Transient receptor potential cation channel subfamily V member 4 OS=Rattus norvegicus GN=Trpv4 PE=1 SV=1 - [TRPV4_RAT]	2,03

P18484	AP-2 complex subunit alpha-2 OS=Rattus norvegicus GN=Ap2a2 PE=1 SV=3 - [AP2A2_RAT]	2,03
P80385	5'-AMP-activated protein kinase subunit gamma-1 OS=Rattus norvegicus GN=Prkag1 PE=1 SV=3 - [AAKG1_RAT]	2,02
O54861	Sortilin OS=Rattus norvegicus GN=Sort1 PE=1 SV=3 - [SORT_RAT]	2,01
Q9JHB5	Translin-associated protein X OS=Rattus norvegicus GN=Tsnax PE=1 SV=1 - [TSNAX_RAT]	2,01
P23711	Heme oxygenase 2 OS=Rattus norvegicus GN=Hmox2 PE=1 SV=1 - [HMOX2_RAT]	2,01
P01946	Hemoglobin subunit alpha-1/2 OS=Rattus norvegicus GN=Hba1 PE=1 SV=3 - [HBA_RAT]	2,00

Πίνακας Παραρτήματος 10: Διαφορικά εκφραζόμενες πρωτεΐνες που παρουσιάζουν μειωμένη έκφραση στα SHR ζώα 20 εβδομάδων όπως προέκυψε από την ανάλυση του νεφρικού παρεγχύματος με LC-MS/MS. Το στατιστικό τεστ Mann-Whitney χρησιμοποιήθηκε. Όλες οι τιμές είναι στατιστικά σημαντικές με p<0.05

Κωδικός	Πρωτεΐνη	Λόγος Έκφρασης (SHR/WKY)
P62755	40S ribosomal protein S6 OS=Rattus norvegicus GN=Rps6 PE=1 SV=1 - [RS6_RAT]	0,50
Q6IRI9	Dimethylaniline monooxygenase [N-oxide-forming] 2 OS=Rattus norvegicus GN=Fmo2 PE=2 SV=3 - [FMO2_RAT]	0,50
P12928	Pyruvate kinase PKLR OS=Rattus norvegicus GN=Pklr PE=2 SV=2 - [KPYR_RAT]	0,50
Q9QWN8	Spectrin beta chain, non-erythrocytic 2 OS=Rattus norvegicus GN=Sptbn2 PE=1 SV=2 - [SPTN2_RAT]	0,50
Q4FZY0	EF-hand domain-containing protein D2 OS=Rattus norvegicus GN=Efhd2 PE=1 SV=1 - [EFHD2_RAT]	0,50
Q5RKI8	ATP-binding cassette sub-family B member 8, mitochondrial OS=Rattus norvegicus GN=Abcb8 PE=2 SV=1 - [ABCB8_RAT]	0,49
Q9ERR2	COMM domain-containing protein 5 OS=Rattus norvegicus GN=Commd5 PE=2 SV=1 - [COMD5_RAT]	0,49
P70615	Lamin-B1 OS=Rattus norvegicus GN=Lmnb1 PE=1 SV=3 - [LMNB1_RAT]	0,49
Q562C6	Leucine zipper transcription factor-like protein 1 OS=Rattus norvegicus GN=Lztfl1 PE=2 SV=1 - [LZTL1_RAT]	0,49
Q66HG6	Carbonic anhydrase 5B, mitochondrial OS=Rattus norvegicus GN=Ca5b PE=2 SV=1 - [CAH5B_RAT]	0,49
Q5FVJ0	Protein RUFY3 OS=Rattus norvegicus GN=Rufy3 PE=1 SV=1 - [RUFY3_RAT]	0,49
B2GUV7	Eukaryotic translation initiation factor 5B OS=Rattus norvegicus GN=Eif5b PE=1 SV=1 - [IF2P_RAT]	0,49
P70580	Membrane-associated progesterone receptor component 1 OS=Rattus norvegicus GN=Pgrmc1 PE=1 SV=3 - [PGRC1_RAT]	0,48
Q99N37	Rho GTPase-activating protein 17 OS=Rattus norvegicus GN=Arhgap17 PE=1 SV=1 - [RHG17_RAT]	0,48
Q04462	ValinetRNA ligase OS=Rattus norvegicus GN=Vars PE=2 SV=2 - [SYVC_RAT]	0,48
P52296	Importin subunit beta-1 OS=Rattus norvegicus GN=Kpnb1 PE=1 SV=1 - [IMB1_RAT]	0,48
P43427	Solute carrier family 2, facilitated glucose transporter member 5 OS=Rattus norvegicus GN=Slc2a5 PE=2 SV=1 - [GTR5_RAT]	0,48

P07323	Gamma-enolase OS=Rattus norvegicus GN=Eno2 PE=1 SV=2 - [ENOG_RAT]	0,48
Q63083	Nucleobindin-1 OS=Rattus norvegicus GN=Nucb1 PE=1 SV=1 - [NUCB1_RAT]	0,48
Q9R0T4	Cadherin-1 OS=Rattus norvegicus GN=Cdh1 PE=1 SV=1 - [CADH1_RAT]	0,47
P08683	Cytochrome P450 2C11 OS=Rattus norvegicus GN=Cyp2c11 PE=1 SV=1 - [CP2CB_RAT]	0,47
B4F766	Dymeclin OS=Rattus norvegicus GN=Dym PE=2 SV=1 - [DYM_RAT]	0,47
Q5XIB4	Ufm1-specific protease 2 OS=Rattus norvegicus GN=Ufsp2 PE=2 SV=1 - [UFSP2_RAT]	0,47
035567	Bifunctional purine biosynthesis protein PURH OS=Rattus norvegicus GN=Atic PE=1 SV=2 - [PUR9_RAT]	0,47
P30713	Glutathione S-transferase theta-2 OS=Rattus norvegicus GN=Gstt2 PE=1 SV=3 - [GSTT2_RAT]	0,47
Q03626	Murinoglobulin-1 OS=Rattus norvegicus GN=Mug1 PE=2 SV=1 - [MUG1_RAT]	0,46
P81799	N-acetyl-D-glucosamine kinase OS=Rattus norvegicus GN=Nagk PE=1 SV=4 - [NAGK_RAT]	0,46
P25286	V-type proton ATPase 116 kDa subunit a isoform 1 OS=Rattus norvegicus GN=Atp6v0a1 PE=2 SV=1 - [VPP1_RAT]	0,46
P14046	Alpha-1-inhibitor 3 OS=Rattus norvegicus GN=A1i3 PE=1 SV=1 - [A1I3_RAT]	0,46
P62716	Serine/threonine-protein phosphatase 2A catalytic subunit beta isoform OS=Rattus norvegicus GN=Ppp2cb PE=2 SV=1 - [PP2AB_RAT]	0,46
O35956	Solute carrier family 22 member 6 OS=Rattus norvegicus GN=Slc22a6 PE=1 SV=1 - [S22A6_RAT]	0,46
Q9Z1Y3	Cadherin-2 OS=Rattus norvegicus GN=Cdh2 PE=1 SV=1 - [CADH2_RAT]	0,46
Q5FVF9	Biotinidase OS=Rattus norvegicus GN=Btd PE=2 SV=1 - [BTD_RAT]	0,44
P09456	cAMP-dependent protein kinase type I-alpha regulatory subunit OS=Rattus norvegicus GN=Prkar1a PE=1 SV=2 - [KAP0_RAT]	0,44
P04916	Retinol-binding protein 4 OS=Rattus norvegicus GN=Rbp4 PE=1 SV=1 - [RET4_RAT]	0,44
Q5M9G9	Protein TBRG4 OS=Rattus norvegicus GN=Tbrg4 PE=2 SV=1 - [TBRG4_RAT]	0,44
P51583	Multifunctional protein ADE2 OS=Rattus norvegicus GN=Paics PE=2 SV=3 - [PUR6_RAT]	0,44
P69060	N-acylneuraminate cytidylyltransferase OS=Rattus norvegicus GN=Cmas PE=2 SV=1 - [NEUA_RAT]	0,43
Q6PCU8	NADH dehydrogenase [ubiquinone] flavoprotein 3, mitochondrial OS=Rattus norvegicus GN=Ndufv3 PE=3 SV=1 - [NDUV3_RAT]	0,43
Q8CHN6	Sphingosine-1-phosphate lyase 1 OS=Rattus norvegicus GN=Sgpl1 PE=2 SV=1 - [SGPL1_RAT]	0,43

Q9ES40	PRA1 family protein 3 OS=Rattus norvegicus GN=Arl6ip5 PE=1 SV=1 - [PRAF3_RAT]	0,42
Q64537	Calpain small subunit 1 OS=Rattus norvegicus GN=Capns1 PE=1 SV=3 - [CPNS1_RAT]	0,42
Q07205	Eukaryotic translation initiation factor 5 OS=Rattus norvegicus GN=Eif5 PE=1 SV=1 - [IF5_RAT]	0,42
P49793	Nuclear pore complex protein Nup98-Nup96 OS=Rattus norvegicus GN=Nup98 PE=1 SV=2 - [NUP98_RAT]	0,42
P53042	Serine/threonine-protein phosphatase 5 OS=Rattus norvegicus GN=Ppp5c PE=1 SV=1 - [PPP5_RAT]	0,42
Q498R7	UPF0587 protein C1orf123 homolog OS=Rattus norvegicus PE=2 SV=1 - [CA123_RAT]	0,42
Q8R431	Monoglyceride lipase OS=Rattus norvegicus GN=Mgll PE=1 SV=1 - [MGLL_RAT]	0,42
P62775	Myotrophin OS=Rattus norvegicus GN=Mtpn PE=1 SV=2 - [MTPN_RAT]	0,41
Q9QYF3	Unconventional myosin-Va OS=Rattus norvegicus GN=Myo5a PE=1 SV=1 - [MYO5A_RAT]	0,41
P21571	ATP synthase-coupling factor 6, mitochondrial OS=Rattus norvegicus GN=Atp5j PE=1 SV=1 - [ATP5J_RAT]	0,41
P84100	60S ribosomal protein L19 OS=Rattus norvegicus GN=Rpl19 PE=1 SV=1 - [RL19_RAT]	0,41
P54319	Phospholipase A-2-activating protein OS=Rattus norvegicus GN=Plaa PE=2 SV=3 - [PLAP_RAT]	0,41
Q6UPR8	Endoplasmic reticulum metallopeptidase 1 OS=Rattus norvegicus GN=Ermp1 PE=1 SV=1 - [ERMP1_RAT]	0,41
P62250	40S ribosomal protein S16 OS=Rattus norvegicus GN=Rps16 PE=1 SV=2 - [RS16_RAT]	0,41
Q561R9	Beta-lactamase-like protein 2 OS=Rattus norvegicus GN=Lactb2 PE=2 SV=1 - [LACB2_RAT]	0,41
Q6P7S1	Acid ceramidase OS=Rattus norvegicus GN=Asah1 PE=2 SV=1 - [ASAH1_RAT]	0,40
Q63424	Solute carrier family 15 member 2 OS=Rattus norvegicus GN=Slc15a2 PE=2 SV=1 - [S15A2_RAT]	0,40
P62271	40S ribosomal protein S18 OS=Rattus norvegicus GN=Rps18 PE=1 SV=3 - [RS18_RAT]	0,40
Q62785	28 kDa heat- and acid-stable phosphoprotein OS=Rattus norvegicus GN=Pdap1 PE=1 SV=1 - [HAP28_RAT]	0,40
F1LRS8	CD2-associated protein OS=Rattus norvegicus GN=Cd2ap PE=1 SV=2 - [CD2AP_RAT]	0,40
Q923V4	F-box only protein 6 OS=Rattus norvegicus GN=Fbxo6 PE=2 SV=1 - [FBX6_RAT]	0,40
Q6AXX6	Redox-regulatory protein FAM213A OS=Rattus norvegicus GN=Fam213a PE=1 SV=1 - [F213A_RAT]	0,40
Q5RK27	Solute carrier family 12 member 7 OS=Rattus norvegicus GN=Slc12a7 PE=2 SV=2 - [S12A7_RAT]	0,39
Q01984	Histamine N-methyltransferase OS=Rattus norvegicus GN=Hnmt PE=1 SV=3 - [HNMT_RAT]	0,39

Q4G061	Eukaryotic translation initiation factor 3 subunit B OS=Rattus norvegicus GN=Eif3b PE=1 SV=1 - [EIF3B_RAT]	0,39
Q6AY63	ADP-sugar pyrophosphatase OS=Rattus norvegicus GN=Nudt5 PE=2 SV=1 - [NUDT5_RAT]	0,39
P05943	Protein S100-A10 OS=Rattus norvegicus GN=S100a10 PE=1 SV=2 - [S10AA_RAT]	0,38
Q99M63	WD40 repeat-containing protein SMU1 OS=Rattus norvegicus GN=Smu1 PE=2 SV=1 - [SMU1_RAT]	0,38
P50430	Arylsulfatase B OS=Rattus norvegicus GN=Arsb PE=2 SV=2 - [ARSB_RAT]	0,38
Q4KM74	Vesicle-trafficking protein SEC22b OS=Rattus norvegicus GN=Sec22b PE=1 SV=3 - [SC22B_RAT]	0,38
Q8VID1	Dehydrogenase/reductase SDR family member 4 OS=Rattus norvegicus GN=Dhrs4 PE=2 SV=2 - [DHRS4_RAT]	0,37
P20759	Ig gamma-1 chain C region OS=Rattus norvegicus PE=1 SV=1 - [IGHG1_RAT]	0,37
P21263	Nestin OS=Rattus norvegicus GN=Nes PE=1 SV=2 - [NEST_RAT]	0,37
Q7TNY6	Golgi resident protein GCP60 OS=Rattus norvegicus GN=Acbd3 PE=2 SV=3 - [GCP60_RAT]	0,36
Q99PF5	Far upstream element-binding protein 2 OS=Rattus norvegicus GN=Khsrp PE=1 SV=1 - [FUBP2_RAT]	0,36
Q9QXU2	Surfeit locus protein 1 OS=Rattus norvegicus GN=Surf1 PE=2 SV=1 - [SURF1_RAT]	0,36
Q5PPN7	Coiled-coil domain-containing protein 51 OS=Rattus norvegicus GN=Ccdc51 PE=2 SV=2 - [CCD51_RAT]	0,35
P20767	Ig lambda-2 chain C region OS=Rattus norvegicus PE=4 SV=1 - [LAC2_RAT]	0,35
O35795	Ectonucleoside triphosphate diphosphohydrolase 2 OS=Rattus norvegicus GN=Entpd2 PE=1 SV=1 - [ENTP2_RAT]	0,34
Q08850	Syntaxin-4 OS=Rattus norvegicus GN=Stx4 PE=1 SV=1 - [STX4_RAT]	0,33
Q6DGG1	Alpha/beta hydrolase domain-containing protein 14B OS=Rattus norvegicus GN=Abhd14b PE=2 SV=1 - [ABHEB_RAT]	0,33
P04905	Glutathione S-transferase Mu 1 OS=Rattus norvegicus GN=Gstm1 PE=1 SV=2 - [GSTM1_RAT]	0,33
Q9QXT3	N-acetyltransferase 8 OS=Rattus norvegicus GN=Nat8 PE=1 SV=1 - [NAT8_RAT]	0,33
Q91XU8	Phosphatidate cytidylyltransferase 2 OS=Rattus norvegicus GN=Cds2 PE=2 SV=1 - [CDS2_RAT]	0,32
P86172	NmrA-like family domain-containing protein 1 (Fragments) OS=Rattus norvegicus GN=Nmral1 PE=1 SV=1 - [NMRL1_RAT]	0,31
Q925S8	ATP-dependent zinc metalloprotease YME1L1 OS=Rattus norvegicus GN=Yme111 PE=2 SV=1 - [YMEL1_RAT]	0,31

P04638	Apolipoprotein A-II OS=Rattus norvegicus GN=Apoa2 PE=2 SV=1 - [APOA2_RAT]	0,31
Q5XIE0	Acidic leucine-rich nuclear phosphoprotein 32 family member E OS=Rattus norvegicus GN=Anp32e PE=2 SV=1 - [AN32E_RAT]	0,31
P05539	Collagen alpha-1(II) chain OS=Rattus norvegicus GN=Col2a1 PE=1 SV=2 - [CO2A1_RAT]	0,30
Q9Z1M9	Structural maintenance of chromosomes protein 1A OS=Rattus norvegicus GN=Smc1a PE=1 SV=1 - [SMC1A_RAT]	0,30
D4AAT7	ATP-dependent (S)-NAD(P)H-hydrate dehydratase OS=Rattus norvegicus GN=Carkd PE=3 SV=1 - [NNRD_RAT]	0,30
Q78P75	Dynein light chain 2, cytoplasmic OS=Rattus norvegicus GN=Dynll2 PE=1 SV=1 - [DYL2_RAT]	0,29
P28494	Alpha-mannosidase 2 OS=Rattus norvegicus GN=Man2a1 PE=1 SV=2 - [MA2A1_RAT]	0,29
P97834	COP9 signalosome complex subunit 1 OS=Rattus norvegicus GN=Gps1 PE=1 SV=1 - [CSN1_RAT]	0,29
P02767	Transthyretin OS=Rattus norvegicus GN=Ttr PE=1 SV=1 - [TTHY_RAT]	0,28
Q924K2	FAS-associated factor 1 OS=Rattus norvegicus GN=Faf1 PE=2 SV=1 - [FAF1_RAT]	0,28
P97878	Exocyst complex component 5 OS=Rattus norvegicus GN=Exoc5 PE=1 SV=1 - [EXOC5_RAT]	0,28
P62890	60S ribosomal protein L30 OS=Rattus norvegicus GN=Rpl30 PE=3 SV=2 - [RL30_RAT]	0,27
Q32PZ3	Protein unc-45 homolog A OS=Rattus norvegicus GN=Unc45a PE=2 SV=1 - [UN45A_RAT]	0,27
F1MA98	Nucleoprotein TPR OS=Rattus norvegicus GN=Tpr PE=1 SV=1 - [TPR_RAT]	0,26
Q6P7R8	Very-long-chain 3-oxoacyl-CoA reductase OS=Rattus norvegicus GN=Hsd17b12 PE=2 SV=1 - [DHB12_RAT]	0,24
P81718	Tyrosine-protein phosphatase non-receptor type 6 OS=Rattus norvegicus GN=Ptpn6 PE=1 SV=1 - [PTN6_RAT]	0,24
Q3KR59	Ubiquitin carboxyl-terminal hydrolase 10 OS=Rattus norvegicus GN=Usp10 PE=2 SV=1 - [UBP10_RAT]	0,24
Q99376	Transferrin receptor protein 1 (Fragment) OS=Rattus norvegicus GN=Tfrc PE=2 SV=1 - [TFR1_RAT]	0,23
D3ZHV2	Microtubule-actin cross-linking factor 1 OS=Rattus norvegicus GN=Macf1 PE=1 SV=1 - [MACF1_RAT]	0,22
Q6AXS3	Protein DEK OS=Rattus norvegicus GN=Dek PE=2 SV=1 - [DEK_RAT]	0,22
P07154	Cathepsin L1 OS=Rattus norvegicus GN=Ctsl PE=1 SV=2 - [CATL1_RAT]	0,22
Q5XI79	NADH dehydrogenase [ubiquinone] complex I, assembly factor 7 OS=Rattus norvegicus GN=Ndufaf7 PE=2 SV=1 - [NDUF7_RAT]	0,21

Q5HZA9	Transmembrane protein 126A OS=Rattus norvegicus GN=Tmem126a PE=2 SV=1 - [T126A_RAT] 0,21		
P34901	Syndecan-4 OS=Rattus norvegicus GN=Sdc4 PE=1 SV=1 - [SDC4_RAT]		
Q5BKD0	Inactive 2'-5'-oligoadenylate synthase 1B OS=Rattus norvegicus GN=Oas1b PE=2 SV=1 - [OAS1B_RAT]	0,19	
P17046	Lysosome-associated membrane glycoprotein 2 OS=Rattus norvegicus GN=Lamp2 PE=1 SV=2 - [LAMP2_RAT]	0,19	
P10686	1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma-1 OS=Rattus norvegicus GN=Plcg1 PE=1 SV=1 - [PLCG1_RAT]	0,16	
O35179	Endophilin-A1 OS=Rattus norvegicus GN=Sh3gl2 PE=1 SV=2 - [SH3G2_RAT]	0,12	
P16303	Carboxylesterase 1D OS=Rattus norvegicus GN=Ces1d PE=1 SV=2 - [CES1D_RAT]	0,12	
B5DFN3	Ubiquinol-cytochrome-c reductase complex assembly factor 2 OS=Rattus norvegicus GN=Uqcc2 PE=2 SV=1 - [UQCC2_RAT]	0,11	
Q62991	Sec1 family domain-containing protein 1 OS=Rattus norvegicus GN=Scfd1 PE=1 SV=1 - [SCFD1_RAT]	0,08	
P85845	Fascin OS=Rattus norvegicus GN=Fscn1 PE=1 SV=2 - [FSCN1_RAT]	0,07	
P31646	Sodium- and chloride-dependent GABA transporter 2 OS=Rattus norvegicus GN=Slc6a13 PE=1 SV=1 - [S6A13_RAT]	0,002	

Πίνακας Παραρτήματος 11: Διαφορικά εκφραζόμενες πρωτεΐνες που παρουσιάζουν αυξημένη έκφραση στα SHR ζώα όπως προέκυψε από την ανάλυση του πρωτεόματος των νεφρικών αγγείων με LC-MS/MS. Το στατιστικό τεστ Mann-Whitney χρησιμοποιήθηκε. Όλες οι τιμές είναι στατιστικά σημαντικές με p<0.05

Γονίδιο	Κωδικός	Πρωτεΐνη	Λόγος Έκφρασης (SHR/WKY)
Cfl1	P45592	Cofilin-1 OS=Rattus norvegicus GN=Cfl1 PE=1 SV=3 - [COF1_RAT]	1,61
Lpp	Q5XI07	Lipoma-preferred partner homolog OS=Rattus norvegicus GN=Lpp PE=2 SV=1 - [LPP_RAT]	1,61
Mvp	Q62667	Major vault protein OS=Rattus norvegicus GN=Mvp PE=1 SV=4 - [MVP_RAT]	1,61
Myl6	Q64119	Myosin light polypeptide 6 OS=Rattus norvegicus GN=Myl6 PE=1 SV=3 - [MYL6_RAT]	1,62
Myl3	P16409	Myosin light chain 3 OS=Rattus norvegicus GN=Myl3 PE=2 SV=2 - [MYL3_RAT]	1,64
Alb	P02770	Serum albumin OS=Rattus norvegicus GN=Alb PE=1 SV=2 - [ALBU_RAT]	1,73
Ddah1	O08557	N(G),N(G)-dimethylarginine dimethylaminohydrolase 1 OS=Rattus norvegicus GN=Ddah1 PE=1 SV=3 - [DDAH1_RAT]	1,77
Sorbs2	O35413	Sorbin and SH3 domain-containing protein 2 OS=Rattus norvegicus GN=Sorbs2 PE=1 SV=2 - [SRBS2_RAT]	1,81
Agmat	Q0D2L3	Agmatinase, mitochondrial OS=Rattus norvegicus GN=Agmat PE=2 SV=1 - [SPEB_RAT]	1,86
Csrp1	P47875	Cysteine and glycine-rich protein 1 OS=Rattus norvegicus GN=Csrp1 PE=2 SV=2 - [CSRP1_RAT]	2,11
Ak2	P29410	Adenylate kinase 2, mitochondrial OS=Rattus norvegicus GN=Ak2 PE=2 SV=2 - [KAD2_RAT]	2,27
Нрх	P20059	Hemopexin OS=Rattus norvegicus GN=Hpx PE=1 SV=3 - [HEMO_RAT]	2,70
Qdpr	P11348	Dihydropteridine reductase OS=Rattus norvegicus GN=Qdpr PE=1 SV=1 - [DHPR_RAT]	3,05
Pecr	Q9WVK3	Peroxisomal trans-2-enoyl-CoA reductase OS=Rattus norvegicus GN=Pecr PE=2 SV=1 - [PECR_RAT]	3,62
Ca1	B0BNN3	Carbonic anhydrase 1 OS=Rattus norvegicus GN=Ca1 PE=1 SV=1 - [CAH1_RAT]	7,26

Πίνακας Παραρτήματος 12: Διαφορικά εκφραζόμενες πρωτεΐνες που παρουσιάζουν meivm;enh έκφραση στα SHR ζώα όπως προέκυψε από την ανάλυση του πρωτεόματος των νεφρικών αγγείων με LC-MS/MS. Το στατιστικό τεστ Mann-Whitney χρησιμοποιήθηκε. Όλες οι τιμές είναι στατιστικά σημαντικές με p<0.05

Γονίδιο	Κωδικός	Πρωτεΐνη	Λόγος Έκφρασης (SHR/WKY)
Atp1a1	P06685	Sodium/potassium-transporting ATPase subunit alpha-1 OS=Rattus norvegicus GN=Atp1a1 PE=1 SV=1 - [AT1A1_RAT]	0,10
Phb	P67779	Prohibitin OS=Rattus norvegicus GN=Phb PE=1 SV=1 - [PHB_RAT]	0,25
Atp1b1	P07340	Sodium/potassium-transporting ATPase subunit beta-1 OS=Rattus norvegicus GN=Atp1b1 PE=1 SV=1 - [AT1B1_RAT]	0,27
Atp5f1	P19511	ATP synthase F(0) complex subunit B1, mitochondrial OS=Rattus norvegicus GN=Atp5f1 PE=1 SV=1 - [AT5F1_RAT]	0,29
Atp5o	Q06647	ATP synthase subunit O, mitochondrial OS=Rattus norvegicus GN=Atp5o PE=1 SV=1 - [ATPO_RAT]	0,36
Atp5c1	P35435	ATP synthase subunit gamma, mitochondrial OS=Rattus norvegicus GN=Atp5c1 PE=1 SV=2 - [ATPG_RAT]	0,36
Atp5h	P31399	ATP synthase subunit d, mitochondrial OS=Rattus norvegicus GN=Atp5h PE=1 SV=3 - [ATP5H_RAT]	0,36
Anpep	P15684	Aminopeptidase N OS=Rattus norvegicus GN=Anpep PE=1 SV=2 - [AMPN_RAT]	0,37
Slc25a4	Q05962	ADP/ATP translocase 1 OS=Rattus norvegicus GN=Slc25a4 PE=1 SV=3 - [ADT1_RAT]	0,39
Ndufa11	Q80W89	NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 11 OS=Rattus norvegicus GN=Ndufa11 PE=2 SV=1 - [NDUAB_RAT]	0,40
Slc25a5	Q09073	ADP/ATP translocase 2 OS=Rattus norvegicus GN=Slc25a5 PE=1 SV=3 - [ADT2_RAT]	0,41
Apmap	Q7TP48	Adipocyte plasma membrane-associated protein OS=Rattus norvegicus GN=Apmap PE=2 SV=2 - [APMAP_RAT]	0,42
Atp5a1	P15999	ATP synthase subunit alpha, mitochondrial OS=Rattus norvegicus GN=Atp5a1 PE=1 SV=2 - [ATPA_RAT]	0,42
Phb2	Q5XIH7	Prohibitin-2 OS=Rattus norvegicus GN=Phb2 PE=1 SV=1 - [PHB2_RAT]	0,43
Serpina3 k	P05545	Serine protease inhibitor A3K OS=Rattus norvegicus GN=Serpina3k PE=1 SV=3 - [SPA3K_RAT]	0,43
Cltc	P11442	Clathrin heavy chain 1 OS=Rattus norvegicus GN=Cltc PE=1 SV=3 - [CLH1_RAT]	0,44

Calb1	P07171	Calbindin OS=Rattus norvegicus GN=Calb1 PE=1 SV=2 - [CALB1_RAT]	0,46
Tmem27	Q9ESG3	Collectrin OS=Rattus norvegicus GN=Tmem27 PE=1 SV=2 - [TMM27_RAT]	0,46
Hist1h2b a	Q00729	Histone H2B type 1-A OS=Rattus norvegicus GN=Hist1h2ba PE=1 SV=2 - [H2B1A_RAT]	0,49
Vdac1	Q9Z2L0	Voltage-dependent anion-selective channel protein 1 OS=Rattus norvegicus GN=Vdac1 PE=1 SV=4 - [VDAC1_RAT]	0,49
Pyroxd2	Q68FT3	Pyridine nucleotide-disulfide oxidoreductase domain-containing protein 2 OS=Rattus norvegicus GN=Pyroxd2 PE=2 SV=1 - [PYRD2_RAT]	0,51
Atp5b	P10719	ATP synthase subunit beta, mitochondrial OS=Rattus norvegicus GN=Atp5b PE=1 SV=2 - [ATPB_RAT]	0,51
Uba1	Q5U300	Ubiquitin-like modifier-activating enzyme 1 OS=Rattus norvegicus GN=Uba1 PE=1 SV=1 - [UBA1_RAT]	0,52
Pdha1	P26284	Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial OS=Rattus norvegicus GN=Pdha1 PE=1 SV=2 - [ODPA_RAT]	0,52
Hnrnpk	P61980	Heterogeneous nuclear ribonucleoprotein K OS=Rattus norvegicus GN=Hnrnpk PE=1 SV=1 - [HNRPK_RAT]	0,53
Ndufs1	Q66HF1	NADH-ubiquinone oxidoreductase 75 kDa subunit, mitochondrial OS=Rattus norvegicus GN=Ndufs1 PE=1 SV=1 - [NDUS1_RAT]	0,53
Enpep	P50123	Glutamyl aminopeptidase OS=Rattus norvegicus GN=Enpep PE=1 SV=2 - [AMPE_RAT]	0,53
Ubb	P0CG51	Polyubiquitin-B OS=Rattus norvegicus GN=Ubb PE=1 SV=1 - [UBB_RAT]	0,54
Ubc	P62982	Ubiquitin-40S ribosomal protein S27a OS=Rattus norvegicus GN=Rps27a PE=1 SV=2 - [RS27A_RAT]	0,54
Rps27a	P62986	Ubiquitin-60S ribosomal protein L40 OS=Rattus norvegicus GN=Uba52 PE=1 SV=2 - [RL40_RAT]	0,54
Uba52	Q63429	Polyubiquitin-C OS=Rattus norvegicus GN=Ubc PE=1 SV=1 - [UBC_RAT]	0,54
	Q00715	Histone H2B type 1 OS=Rattus norvegicus PE=1 SV=2 - [H2B1_RAT]	0,55
Calb2	P47728	Calretinin OS=Rattus norvegicus GN=Calb2 PE=1 SV=1 - [CALB2_RAT]	0,55
Rpl31	P62902	60S ribosomal protein L31 OS=Rattus norvegicus GN=Rpl31 PE=2 SV=1 - [RL31_RAT]	0,56
Ivd	P12007	Isovaleryl-CoA dehydrogenase, mitochondrial OS=Rattus norvegicus GN=Ivd PE=1 SV=2 - [IVD_RAT]	0,56
Rpl30	P62890	60S ribosomal protein L30 OS=Rattus norvegicus GN=Rpl30 PE=3 SV=2 - [RL30_RAT]	0,57
Hsd17b4	P97852	Peroxisomal multifunctional enzyme type 2 OS=Rattus norvegicus GN=Hsd17b4 PE=1 SV=3 -	0,59

		[DHB4_RAT]	
Tmed10	Q63584	Transmembrane emp24 domain-containing protein 10 OS=Rattus norvegicus GN=Tmed10 PE=1 SV=2 - [TMEDA_RAT]	0,60
Rab11b	O35509	Ras-related protein Rab-11B OS=Rattus norvegicus GN=Rab11b PE=1 SV=4 - [RB11B_RAT]	0,61
Pah	P04176	Phenylalanine-4-hydroxylase OS=Rattus norvegicus GN=Pah PE=1 SV=3 - [PH4H_RAT]	0,62
Sptan1	P16086	Spectrin alpha chain, non-erythrocytic 1 OS=Rattus norvegicus GN=Sptan1 PE=1 SV=2 - [SPTN1_RAT]	0,64
Xpnpep1	O54975	Xaa-Pro aminopeptidase 1 OS=Rattus norvegicus GN=Xpnpep1 PE=1 SV=1 - [XPP1_RAT]	0,65
Hnrnpd	Q9JJ54	Heterogeneous nuclear ribonucleoprotein D0 OS=Rattus norvegicus GN=Hnrnpd PE=1 SV=1 - [HNRPD_RAT]	0,66