
NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE

DEPARTMENT OF INFORMATICS & TELECOMMUNICATIONS

GRADUATE PROGRAM

INFORMATION AND DATA MANAGEMENT

POSTGRADUATE THESIS

Temporal Abstraction for Hierarchical Reinforcement
Learning in Air Traffic Management

Alevizos A. Bastas

Supervisors: Panagiotis Stamatopoulos, Assistant Professor, NKUA

George Vouros, Professor, UPRC

ATHENS

FEBRUARY 2019

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ

ΔΙΑΧΕΙΡΙΣΗ ΠΛΗΡΟΦΟΡΙΑΣ ΚΑΙ ΔΕΔΟΜΕΝΩΝ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Χρονική Αφαίρεση για Ιεραρχική Ενισχυτική Μάθηση στη
Διαχείριση Εναέριας Κυκλοφορίας

Αλεβίζος Α. Μπάστας

Επιβλέποντες: Παναγιώτης Σταματόπουλος, Επίκουρος Καθηγητής, ΕΚΠΑ

Γεώργιος Βούρος, Καθηγητής, ΠΑΠΕΙ

AΘΗΝΑ

Φεβρουάριος 2019

POSTGRADUATE THESIS

Temporal Abstraction for Hierarchical Reinforcement Learning in Air Traffic Management

Alevizos A. Bastas

A.M: M1601

Supervisors: Panagiotis Stamatopoulos, Assistant Professor, NKUA

George Vouros, Professor, UPRC

February 2019

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Χρονική Αφαίρεση για Ιεραρχική Ενισχυτική Μάθηση στη Διαχείριση Εναέριας

Κυκλοφορίας

Αλεβίζος Α. Μπάστας

A.M: M1601

Επιβλέποντες: Παναγιώτης Σταματόπουλος, Επίκουρος Καθηγητής, ΕΚΠΑ

Γεώργιος Βούρος, Καθηγητής, ΠΑΠΕΙ

Φεβρουάριος 2019

ABSTRACT

In this thesis, we report on the efficiency and effectiveness of hierarchical multiagent re-

inforcement learning methods (H-MARL), where the decisions are formed at various ab-

straction levels, for the computation of joint policies to resolve congestion problems in the

Air Traffic Management (ATM) domain extending the work presented in [1]. Specifically, we

aim to resolve cases where demand of airspace use exceeds capacity (demand-capacity

problems), via imposing ground delays to flights at the pre-tactical stage of operations.

Agents, representing flights, have limited information about others’ payoffs and prefer-

ences, and need to coordinate among themselves to achieve their tasks while adhering

to operational constraints. Specifically, we formalize the problem as a hierarchical mul-

tiagent Markov Decision Process (MA-MDP) and we present hierarchical multiagent re-

inforcement learning methods that allow agents to form own policies in coordination with

others. We explore the effectiveness of alternative hierarchical multiagent reinforcement

learning methods and alternative schemes of transferring experience between levels, to-

wards reducing delays and number of delayed flights. Extensive experimental study on a

real-world case, shows the potential of the proposed approaches in increasing the com-

putational efficiency and the quality of solutions in resolving the demand-capacity balance

problems also in comparison to other state of the art flat models and methods [1].

SUBJECT AREA: Artificial Intelligence, Machine Learning, Reinforcement Learning

KEYWORDS: Air Traffic Management, Demand Capacity Balance, Collaborative Mul-

tiagent Reinforcement Learning, Q-Learning, Hierarchical Reinforcement

Learning, State Abstraction, Action Abstraction

ΠΕΡΙΛΗΨΗ

Στην παρούσα διπλωματική εργασία, παρουσιάζουμε την αποδοτικότητα και αποτελεσμα-

τικότητα ιεραρχικώνπολυπρακτορικών μεθόδων ενισχυτικής μάθησης, όπου οι αποφάσεις

διαμορφώνονται σε διάφορα επίπεδα αφαίρεσης, για τη σύνθεση κοινών πολιτικών με

σκοπό την επίλυση προβλημάτων συμφόρησης στη διαχείριση εναέριας κυκλοφορίας,

επεκτείνοντας τη δουλειά που παρουσιάζεται στο [1]. Συγκεκριμένα, στοχεύουμε στην

επίλυση περιπτώσεων όπου η ζήτηση για χρήση του εναέριου χώρου υπερβαίνει

την προσφορά (Demand - Capacity problems), μέσω της επιβολής καθυστερήσεων

στις πτήσεις πριν το τακτικό επίπεδο των διαδικασιών. Οι πράκτορες, οι οποίοι

αντιπροσωπεύουν πτήσεις, έχουν περιορισμένη πληροφόρηση σχετικά με τις αμοιβές

και τις προτιμήσεις των υπόλοιπων πρακτόρων και χρειάζεται να συντονιστούν μεταξύ

τους για να επιτύχουν τα καθήκοντά τους ενώ τηρούν λειτουργικούς περιορισμούς.

Συγκεκριμένα μοντελοποιούμε το πρόβλημα σαν μια ιεραρχική πολυπρακτορική

Μαρκοβιανή Διαδικασία Αποφάσεων και παρουσιάζουμε ιεραρχικές πολυπρακτορικές

μεθόδους ενισχυτικής μάθησης που επιτρέπουν στους πράκτορες να διομορφώνουν

τις δικές τους πολιτικές σε συντονισμό με τους υπόλοιπους. Εξερευνούμε την

αποτελεσματικότητα εναλλακτικών ιεραρχικών μεθόδων ενισχυτικής μάθησης και

εναλλακτικών σχημάτων μεταφοράς της εμπειρίας μεταξύ επιπέδων με σκοπό τη

μείωση των καθυστερήσεων και του αριθμού των πτήσεων στις οποίες έχει επιβληθεί

καθυστέρηση. Εκτενής πειραματική μελέτη σε μία πραγματική περίπτωση, δείχνει

τη δυνατότητα των προτεινόμενων προσεγγίσεων να βελτιώσουν την υπολογιστική

αποτελεσματικότητα και την ποιότητα των λύσεων για την επίλυση προβλημάτων

εξισορρόπησης ζήτησης-προσφοράς (Demand - Capacity problems) σε σύγκριση και με

άλλα state of the art μοντέλα και μεθόδους [1].

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Τεχνητή Νοημοσύνη, Μηχανική Μάθηση, Ενισχυτική Μάθηση

ΛΕΞΕΙΣΚΛΕΙΔΙΑ:Διαχείριση Εναέριας Κυκλοφορίας, Ισορροπία Ζήτησης Χωρητικότητας,

Συνεργατική Πολυπρακτορική ΕνισχυτικήΜάθηση, ΜάθησηQ, Ιεραρχι-

κή Ενισχυτική Μάθηση, Αφαίρεση Καταστάσεων, Αφαίρεση Ενεργειών

ACKNOWLEDGEMENTS

I would like to acknowledge the supervisor Assistant Professor Panagiotis Stamatopoulos

of the Department of Informatics and Telecommunications at National and Kapodistrian

University of Athens. His undergraduate and graduate courses were a great influence

to me. I would also like to acknowledge Professor George Vouros of the Department of

Digital Systems at University of Piraeus for his invaluable guidance and contribution. I am

also thankful to the Phd student Theocharis Kravaris for his assistant and cooperation.

Finally, I would like to acknowledge the DART Project1, that supported this thesis.

1DART has received funding from the SESAR Joint Undertaking under grant agreement No 699299

under European Unions Horizon 2020 research and innovation programme. DART project’s website:

http://www.dart-research.eu

CONTENTS

1 INTRODUCTION 10

2 PROBLEM SPECIFICATION 13

2.1 Data Sources . 17

3 RELATED WORK 19

4 HIERARCHICAL MULTIAGENT REINFORCEMENT LEARNING 21

4.1 The Hierarchical MDP Framework . 21

5 REWARD FUNCTION 23

6 INDEPENDENT Q-LEARNERS AND INDEPENDENT HIERARCHICAL Q-

LEARNERS 25

6.1 Independent Q-Learners . 25

6.2 Independent Hierarchical Q-Learners . 25

6.2.1 Descending Timesteps (DT) . 28

6.2.2 Unitary Timestep, Limit State Space (UTLSS) 30

6.2.3 Unitary Timestep, Concurrently Update Levels, Limit State Space (UTCULSS) . . . 31

6.2.4 Unitary Timestep, Limit State Space, No Experience Transfer (UTLSSNET) 33

7 RESULTS ON SCENARIOS AND COMPARISON BETWEEN VERSIONS AND

WITH OTHER METHODS 35

7.1 Evaluation Criteria . 35

7.2 Methods’ configuration . 36

7.2.1 Descending Timesteps (DT) . 36

7.2.2 Other Methods . 36

7.3 Efficiency of the methods . 37

7.4 Effectiveness of the methods to resolve imbalances 40

8 CONCLUSIONS AND FURTHER WORK 44

LIST OF ABBREVIATIONS 45

LIST OF FIGURES

Figure 2.1: Configurations of sectors in the Spanish airspace. Colours are for dis-

tinguishing between sectors. Illustrations have been created using the

V-Analytics platform [2]. 14

Figure 6.1: Construction of the abstract space: Delay is partitioning into a number

of K equidistant intervals and delays between consecutive time points t
and t+ asL are mapped to the same state in the abstract space. 26

Figure 6.2: Example of the Descending Timesteps. Case (a) shows the transitions

of the local state of an agent regarding the action at time t for an abstract

level L with tsL = 10, whereas case (b) shows the ”transferring of the Q
values of an abstract level L with asL = 10 to the next abstract level L+1
with asL+1 = 5 . 29

Figure 6.3: Result of 10 independent experiments. The learning curve of the de-

scending time step method , given two levels and limitation of the state

space, showing how agents manage to learn joint policies towards re-

solving DCB problems, while reducing the average delays for all flights.

The x axis corresponds to the episodes, while the y axis to the average

delay per flight case (a) or the hotspots case (b). 29

Figure 6.4: Example of the Unitary Timestep, Limit State Space (UTLSS). Case (a)

shows the transitions of the local state of an agent regarding the action

at time t and the corresponding updated Q value for an abstract level L

with asL = 10, whereas case (b) shows the ”transferring of the Q values

of an abstract level L with asL = 10 to the next abstract level L+1 with

asL+1 = 5 . 31

Figure 6.5: Example of the Unitary Timestep, Concurrently Update Levels, Limit

State Space (UTCULSS). Case (a) shows the transitions of the local

state of an agent regarding the action at time t and the corresponding

updated Q value for an abstract level L with asL = 10, whereas case (b)
shows the state aggregation of two abstract levels L with asL = 10 and
asL+1 = 5 . 32

Figure 6.6: Example of the Unitary Timestep, Limit State Space, No Experience

Transfer (UTLSSNET). Case (a) shows the transitions of the local state

of an agent regarding the action at time t and the corresponding updated

Q value for an abstract level L with asL = 10, whereas case (b) shows

the state aggregation of two abstract levels L with asL = 10 and asL+1 = 5 33

Figure 7.1: Result of 10 independent experiments. The learning curves given two

levels and 10k episodes at each level, showing how agents manage to

learn joint policies to resolve DCB problems, while reducing the average

delays for all flights. The x axis corresponds to the episodes, while the y

axis to the average delay per flight case (a) or the hotspots case (b). . . 37

Figure 7.2: Result of 10 independent experiments. The learning curves given three

levels and 10k episodes at each level, showing how agents manage to

learn joint policies to resolve DCB problems, while reducing the average

delays for all flights. The x axis corresponds to the episodes, while the y

axis to the average delay per flight case (a) or the hotspots case (b). . . 38

Figure 7.3: Result of 10 independent experiments. The learning curves given three

levels, 5000 episodes at level 1 and 1500 episodes at levels 2 and 3

for methods that limit the state space. Showing how agents manage to

learn joint policies to resolve DCB problems, while reducing the average

delays for all flights. The x axis corresponds to the episodes, while the y

axis to the average delay per flight case (a) or the hotspots case (b). . . 39

Figure 7.4: Result of 10 independent experiments. The learning curves given three

levels, 3000 episodes at level 1 and 1500 episodes at levels 2 and 3

for methods that limit the state space. Showing how agents manage to

learn joint policies to resolve DCB problems, while reducing the average

delays for all flights. The x axis corresponds to the episodes, while the y

axis to the average delay per flight case (a) or the hotspots case (b). . . 39

Figure 7.5: The distribution of delays to flights for 2 (case (a)) and 3 (case (b))

levels and 10000 episodes at each level. The x axis shows the delay

imposed while the y axis corresponds to the number of flights. 43

Figure 7.6: The distribution of delays to flights for methods that utilize unitary

timestep and limitation of the state space explored, with 3 levels and 2

levels (case (b)). The first level in case (a) comprises of 5000 episodes,

whereas in case (b) it comprises of 3000 episodes, while the second and

third levels of 1500 episodes. The x axis shows the delay imposed while

the y axis corresponds to the number of flights. 43

LIST OF TABLES

Table 7.1: Configuration table for DT method with 2 levels 36

Table 7.2: Configuration table for DT method with 3 levels 36

Table 7.3: Configuration table for methods using unitary timestep (tsL = 1) at all
levels for the 2 levels case . 37

Table 7.4: Configuration table for methods using unitary timestep (tsL = 1) at all
levels for the 3 levels case . 37

Table 7.5: Average over 10 independent experiments, hierarchical methods consist

of 2 levels and each level comprises of 10000 episodes. Average Delay

per Flight, Number of Regulated Flights Total Delay and Number of Re-

sulting Hotspots as reported by each method and also in comparison to

the non hierarchical Independent Learners method presented in [1]. . . . 40

Table 7.6: Average over 10 independent experiments, hierarchical methods consist

of 3 levels and each level comprises of 10000 episodes. Average Delay

per Flight, Number of Regulated Flights Total Delay and Number of Re-

sulting Hotspots as reported by each method and also in comparison to

the non hierarchical Independent Learners method presented in [1]. . . . 40

Table 7.7: Average over 10 independent experiments for the methods that use uni-

tary timestep also in comparison to the non hierarchical Independent

Learners method presented in [1]. Hierarchical methods consist of 3 lev-

els and utilize 8000 episodes in total. The first level comprises of 5000

episodes while the second and third levels of 1500 episodes. Showing

the Average Delay per Flight, Number of Regulated Flights Total Delay

and Number of Resulting Hotspots as reported by each method. 41

Table 7.8: Average over 10 independent experiments for the methods that use uni-

tary timestep also in comparison to the non hierarchical Independent

Learners method presented in [1]. Hierarchical methods consist of 3 lev-

els and utilize 6000 episodes in total. The first level comprises of 3000

episodes while the second and third levels of 1500 episodes. Showing

the Average Delay per Flight, Number of Regulated Flights, Total Delay

and Number of Resulting Hotspots as reported by each method. 42

Temporal Abstraction for Hierarchical Reinforcement Learning in Air Traffic Management

1. INTRODUCTION

Complex problems with large state spaces and hierarchical structure are common in the

fields of AI and Reinforcement Learning. An effective way to combat the combinatorial ex-

plosion that arises with such problems has been proven to be state and action abstraction

(or aggregation). Such techniques treat groups of states as a unit or complex actions as

primitive ones and thus effectively reduce the search space. By doing so we can speed

up planning and while producing qualitative solutions in limited time.

Specifically, for problems with complex hierarchical structure, hierarchical reinforcement

learning methods have been proposed that exploit temporal abstractions by invoking the

execution of temporally extended subtasks. In many cases these subtasks follow a policy

which is different from the one that the main task follows. Additionally, such methods may

exploit state abstraction in order to ignore information that is irrelevant to the currently op-

erating subtask, while preserving all the important aspects, necessary to still being able

to solve the problem.

On the other hand, congestion problems, modelling situations where resources of a lim-

ited capacity have to be shared by multiple agents simultaneously, are ever present in the

modern world. Most notably, congestion problems appear regularly in various traffic do-

mains. It is of no surprise that they have drawn much attention in the AI and autonomous

agents research for at least two decades now [3] and have been the focus of game theo-

retic models for much longer [4].

In the air-traffic management (ATM) domain, in which this thesis focuses, congestion prob-

lems are complex problems that arise naturally whenever demand of airspace use ex-

ceeds capacity, resulting to hotspots or to Demand - Capacity Balance (DCB) problem(s).

Against this background, this thesis formalises the DCB problem as a hierarchical multi-

agent Markov Decision Process (MA-MDP) at various abstraction levels, where agents,

representing flights, aim to coordinate their joint actions with respect to own preferences

and operational constraints on the use of airspace. We consider planning air traffic man-

agement operations at the pre-tactical phase: Given air sectors’ limited capacity, one of

the major issues is to minimise ground delay costs, while ensuring efficient utilisation of

airspace. As part of the formulation, we use the reward function devised in [1] that consid-

ers agents’ contribution to hotspots, ground delays, and implied cost when agents deviate

from their schedule.

The multiagent problem specification and the proposed multiagent reinforcement learning

(H-MARL) methods allow to impose ground delays to individual flights, always consider-

ing the joint effects of imposed delays to the evolution of airspace demand. While agents

represent flights, their environment comprises the airspace and other flights aggregated

into “traffic”. This is in contrast to regulating in a first-come-first-regulated basis - as it is

the case today in ATM.

A. Bastas 10

Temporal Abstraction for Hierarchical Reinforcement Learning in Air Traffic Management

Specifically, the current ATM system worldwide is based on a time-based operations

paradigm. As the system deals with an increasingly large number of flights, aiming to mak-

ing efficient use of resources, this paradigm implies some limitations to the ATM system,

often leading to DCB issues. These limitations are resolved via airspace management

or flow management solutions, including regulations imposed to airspace compartments

(sectors), which are transferred to flights crossing these compartments in a first-come-

first-regulated basis, generating delays (and costs) for the entire system. These demand-

capacity imbalances are difficult to be predicted in “pre-tactical” phase of operations (i.e.

from several days to few hours before operations), as the existing ATM information is not

accurate enough during this phase: Providing methods for assessment of delays at the

pre-tactical phase, and contributing to decision-making processes towards the minimiza-

tion of delays is crucial for operational and economic reasons.

Indeed, considering operational constraints for the joint performance of the trajectories,

the proposed hierarchical multiagent methods support each individual agent to reconcile

conflicting options (e.g. resolving hotspots without any delay) jointly with others and to

jointly decide about individual policies on delays, while possessing no information about

the preferences and payoffs of others.

Our goal is to resolve DCB problems, while reducing the average ground delay per flight

w.r.t. the number of flights, compared to state of the art approaches where no hierarchical

structures are being used. In doing so, we aim to distribute ground delays among flights

without penalizing a small number of them and utilize efficiently the airspace so as to have

an even distribution of demand to sectors in different periods.

Therefore, we consider only ground delays and subsequently we succinctly call these “de-

lays”. The proposed H-MARL methods are evaluated in real-world DCB problem cases,

each one comprising flight plans for a specific day above Spain. The data sources used

to produce those cases include real-world operational data regarding flight plans per day

of operation, data regarding sector configurations at any given time, and reference values

for the cost of strategic delay to European airlines, currently used by SESAR 2020 Indus-

trial Research [5].

An initial observation from the application of the H-MARLmethods is that they, quite effec-

tively, manage to provide solutions to DCB problems, imposing delays that result to zero

hotspots. By utilizing a variety of different metrics (such as the number of flights with de-

lay, average delay per flight, and delay distributions) we provide evidence on the potential

of the proposed methods to produce qualitative solutions: Indeed, results are quite signif-

icant since, the average delay per flight (i.e. the ratio of summing all delays to the total

number of flights) is reduced considerably compared to the solutions provided by state of

the art approaches where no hierarchical structures are being used, while a small percent-

age of flights have delay more than half an hour, and only a small percentage of flights get

delay.

We envisage the work laid out in [1] and in this thesis to be seen as a first step towards

devising multiagent methods for deciding on delay policies for correlated aircraft trajecto-

ries at the pre-tactical phase, answering the call of ATM domain for a transition to a Tra-

jectory Based Operations (TBO) paradigm (SESAR in Europe1 and Next Gen in the US2).

1https://ec.europa.eu/transport/modes/air/sesar_en
2https://www.faa.gov/nextgen/

A. Bastas 11

Temporal Abstraction for Hierarchical Reinforcement Learning in Air Traffic Management

The contributions made in this work are as follows:

• The Demand-Capacity Balance problem is formulated as a hierarchical multiagent

Markov Decision Process (MA-MDP) at multiple levels of abstraction, resulting to

hierarchical models.

• A generic hierarchical multiagent reinforcement learning (H-MARL) method is de-

vised, able to operate at multiple levels of abstraction: This is instantiated to alter-

native H-MARL methods exploiting different levels of abstraction of the action-state

space regarding the DCB problem.

• Hierarchical multiagent reinforcement learning methods are evaluated in relation to

other state of the art flat models and methods [1]. Because the hierarchical multia-

gent reinforcement learning methods operate on abstract levels, increased compu-

tational efficiency and production of more qualitative solutions in limited time w.r.t.

the average delay and the number of delayed flights is expected, compared to the

flat methods.

• All methods are evaluated in a real-world case comprising large number of flights in

busy days above Spain.

The structure of this thesis is as follows: Section 2 provides a specification for the DCB

problem and introduces terminology from the ATM domain. Section 3 presents related

work, regarding state aggregation and hierarchical reinforcement learning. Section 4

presents a generic hierarchical framework for multiagent reinforcement learning at dif-

ferent levels of state-action space abstractions. Section 5 specifies the reward function

used. Section 6 presents Independent Q-Learners, Independent Hierarchical Q-Learners

and the proposed methods instantiating the generic hierarchical framework. Section 7

presents evaluation cases and results. Finally, section 8 concludes the thesis outlining

future research directions.

A. Bastas 12

Temporal Abstraction for Hierarchical Reinforcement Learning in Air Traffic Management

2. PROBLEM SPECIFICATION

As already pointed out in the introductory part of this thesis, the current Air Traffic Man-

agement (ATM) system leads to demand-capacity imbalances.

With the aim of overcoming ATM system drawbacks, different initiatives, notably SESAR

in Europe and Next Gen in the US have promoted the transformation of the current ATM

paradigm towards a new, trajectory-based operations (TBO) one: In the future ATM sys-

tem, the trajectory becomes the cornerstone upon which all the ATM capabilities will rely

on. The trajectory life cycle describes the different stages from the trajectory planning,

negotiation and agreement, to the trajectory execution, amendment and modification.

This life cycle requires collaborative planning processes, before operations: The envi-

sioned advanced decision support tools will exploit trajectory information to provide opti-

mised services to allATM stakeholders. The proposed transformation requires high-fidelity

aircraft trajectory prediction capabilities and/or adequate and sufficient information regard-

ing operations at the pre-tactical stage, supporting the trajectory life cycle at all stages

efficiently.

In addition to these capabilities, considering flight trajectories in isolation from the over-

all ATM system may lead to inefficiencies to trajectory planning (due for instance to con-

flict resolution) and huge inaccuracies to assessing trajectory execution. Accounting for

network effects and their implications on the joint execution of individual flights requires

considering interactions among trajectories, in conjunction to considering operational con-

ditions that influence any flight. Being able to devise methods that capture aspects of

that complexity and take the relevant information into account, would greatly improve our

planning and decision-making abilities. Towards this goal, our specific aim is to assess

ground delays to be imposed to trajectories towards resolving DCB problems, i.e. cases

where imbalances regarding the demand of airspace use and the provided airspace ca-

pacity do occur.

More specifically, the DCB problem (or DCB process) considers two important types of

objects in the ATM system: aircraft trajectories and airspace sectors.

Sectors are air volumes segregating the airspace, each defined as a group of airblocks.

Airblocks are specified by a geometry (the perimeter of their projection on earth) and their

lowest and highest altitudes. Airspace sectorization may be done in different ways, de-

pending on sectors’ configuration, determining the active (open) sectors. Only one sector

configuration can be active at a time. Airspace sectorization changes frequently during

the day, given different operational conditions and needs. This happens transparently for

flights.

The capacity of sectors is of utmost importance: this quantity determines the maximum

number of flights flying within a sector during any time period of specific duration (typically,

A. Bastas 13

Temporal Abstraction for Hierarchical Reinforcement Learning in Air Traffic Management

Figure 2.1: Configurations of sectors in the Spanish airspace. Colours are for distinguishing

between sectors. Illustrations have been created using the V-Analytics platform [2].

in 60’ periods).

The demand for each sector is the quantity that specifies the number of flights that co-

occur during a time period within a sector. The duration of any such period is equal to

the duration of the period used for defining capacity. Demand must not exceed sector ca-

pacity for any time period. There are different types of measures to monitor the demand

evolution, with the most common ones being the Hourly Entry Count and the Occupancy

Count. In this work we consider Hourly Entry Count, as this is the one used by the Net-

work Manager (NM) at the pre-tactical stage.

The Hourly Entry Count (HEC) for a given sector is defined as the number of flights en-

tering the sector during a time period, referred to as an Entry Counting Period (or simply,

counting period). HEC is defined to give a “picture” of the entry traffic, taken at every time

“step” value along a period of fixed duration: The step value defines the time difference

between two consecutive counting periods. For example, for a 20 minutes step value

and a 60 minutes duration value, entry counts correspond to pictures taken every 20 min-

utes, over a total duration of 60 minutes. Aircraft trajectories are series of spatio-temporal

points of the generic form (longi, lati, alti, ti), denoting the longitude, latitude and altitude,
respectively, of the aircraft at a specific time point ti . Casting them into a DCB resolution

setting, trajectories may be seen as time series of events specifying the entry and exit lo-

cations (coordinates + flight levels) and the entry and exit times for the sectors crossed,

or the time that the flight will fly over specific sectors. Thus, given that each trajectory is a

sequence of timed positions in airspace, this sequence can be exploited to compute the

series of sectors that each flight crosses, together with the entry and exit time for each of

these sectors. For the first (last) sector of the flight, where the departure (resp. arrival)

airport resides, the entry (resp. exit) time is the departure (resp. arrival) time. For flights

that cross the airspace but do not depart and/or arrive in any of the sectors of the airspace

of interest, we only consider the entry and exit time for sectors within that airspace.

Therefore, we consider a finite set of discrete air sectors R = {R1, R2, ...} segregating the
airspace.

As already pointed out, sectors are related to a set of operational constraints associated to

A. Bastas 14

Temporal Abstraction for Hierarchical Reinforcement Learning in Air Traffic Management

their capacity, whose violation results to demand-capacity imbalances (congestion prob-

lems): These are cases where DR,p > CR , where p is a counting period of pre-defined

duration d, DR,p is the demand for sector R during counting period p, and CR is the capac-

ity of the sector for any period of duration d equal to the counting period duration. These

cases are capacity violation or demand-capacity imbalance cases, resulting to congestion

events, or capacity excess events, mentioned as hotspots.

Thus, a trajectory T in T is a time series of elements of the form:

T = {(R1, entry1, exit1)....(Rm, entrym, exitm)}, where Rl , l = 1, ...,m is a sector in the

airspace. This information per trajectory suffices to measure the demand for each of the

sectors R∈R in the airspace, in any counting period p.

Specifically, the demand in sector R in period p is DR,p = |TR,p|, i.e. the number of trajec-
tories in TR,p , where TR,p = {T ∈ T|T = (..., (R, entryt, exitt), ...), and the temporal interval
[entryt, exitt] overlaps with period p}.
In case of hotspots, trajectories requiring the use of the sector R at the same period p, i.e.

trajectories in TR,p , are defined to be interacting trajectories for p and R.

The overall objective of the DCB process at any phase of operations (Strategic, Planning

and Tactical Phase) is to optimise traffic flows according to air traffic control capacity while

enabling airlines to operate safe and efficient flights. Planning operations start as early

as possible - sometimes more than one year in advance. Given that the objective is to

protect air traffic control service of overload [6], stakeholders involved in the process al-

ways looking for optimum traffic flow through a correct use of the capacity, guaranteed:

safety, better use of capacity, equity/fairness among flights and airlines, information shar-

ing among stakeholders and fluency.

In this work we consider the demand-capacity process during the pre-tactical phase, as-

suming a trajectory-based operations environment with appropriate processes in place,

enabling an enhanced accuracy of pre-tactical flight information, which is crucial to de-

tect imbalances and impose regulations1 . Pre-tactical flow management is applied at

least six days prior to the day of operations and consists of planning and coordination

activities.

In this operational context we consider an agent Ai to be the aircraft performing a spe-

cific flight trajectory (simply, trajectory), in a specific date and time. Thus, we consider that

agents and trajectories coincide, and we may interchangeably speak of agents Ai , tra-

jectories Ti, flights, or agents Ai executing trajectories Ti . Agents, as it will be specified,

have own interests and preferences, although they are assumed collaborative, and take

autonomous decisions on resolving hotspots: It must be noted that agents do not have

communication and monitoring restrictions, given that hotspots are resolved at the pre-

tactical phase, rather than during operation.

To resolve hotspots, agents have several degrees of freedom: They may either change

their trajectory, cross sectors other than the congested ones, or change the schedule of

crossing sectors in terms of changing the entry and exit time for each of the crossed sec-

tors. In this thesis we consider only changing the schedule of crossing sectors by impos-

1Today, accuracy of information is limited, and the predictability of the complex ATM system is low: This

explains also why many demand-capacity imbalances today are left to be solved at the operational (tactical)

phase.

A. Bastas 15

Temporal Abstraction for Hierarchical Reinforcement Learning in Air Traffic Management

ing ground delays: i.e., shifting the whole trajectory by a specific amount of time.

Now, the problem is about agents to execute their trajectories jointly, in an efficient and

safe way, w.r.t. resources operational constraints.

Specifically, in the DCB problem the goal is to

• Resolve all demand-capacity imbalances, providing a solution with zero hotspots, in

conjunction to

• minimizing the average delay per flight (ratio of total delay to the number of flights);

so as to

• distribute delays among flights without penalising a small number of them

To resolve a hotspot occurring in period p and sector R, a subset of interacting trajectories

in TR,p must be delayed. It must be noted that agents have conflicting preferences towards

resolving hotspots, since they prefer to impose the smallest delay possible (preferably

none) to their own trajectory, or they may have different requirements on the maximum

delay to be imposed to their flights (reducing costs), while also they do need to jointly ex-

ecute their planned trajectories safely and efficiently.

Clearly, imposing delays to trajectories may propagate hotspots to a subsequent time pe-

riod for the same and/or other sectors crossed. Also, the sets of interacting trajectories in

different periods and sectors may change. This can be done in many different ways when

imposing delays to flights, resulting to a dynamic setting for any of the agents, where the

sets of interacting trajectories do change according to agents’ decisions.

Agents executing interacting trajectories and contributing to hotspots are considered to

be “peers” given that they may decide jointly on their delays: The decision of one of them

directly affects the others. This implies that agents form “neighbourhoods” of peers. Such

neighbourhoods provide a way to take advantage of the spatial and temporal sparsity of

the problem: For instance, a flight crossing the northwest part of Spain in the morning, will

never interact in any direct manner with a flight crossing the southeast part of the Iberian

Peninsula at any time, or with an evening flight that crosses the northwest part of Spain.

However, as mentioned above, these neighbourhoods have to be dynamically updated

when delays are imposed to flights, given that trajectories that did not interact prior to any

delay may result to be interacting when delays are imposed, and vice-versa.

The society of agents (A, E) is modelled as a coordination graph [7] [8] with one vertex

per agent Ai in A and any edge (Ai, Aj) in E connecting agents with interacting trajecto-

ries in T. The set of interacting agents, and thus edges, are dynamically updated when

new interacting pairs of trajectories appear. N(Ai) denotes the neighbourhood of agent

Ai, i.e. the set of agents interacting with agent Ai in any period p and sector R, including

also itself. These are the peers of Ai
1.

The options available in the inventory of any agent Ai for contributing to the resolution of

hotspots may differ between agents: These, for agent Ai are in Di = 0, 1, 2, ...,MaxDelayi.

1It must be pointed out that neighbourhoods have a temporal dimension, since they dynamically change

as agents get delays: We ignore this important detail for simplifying the presentation, but this dynamic

adjustment is something that it is considered by all proposed H-MARL methods.

A. Bastas 16

Temporal Abstraction for Hierarchical Reinforcement Learning in Air Traffic Management

We consider that these may be ordered by the preference of agent Ai to any such option,

according to the function γ(i) : Di → R. We do not assume that agents in A− {Ai} have
any information about γ(i). This represents the situation where airlines set own options

and preferences for delays even in different individual own flights, depending on oper-

ational circumstances, goals and constraints. We expect that the order of preferences

should be decreasing from 0 toMaxDelayi, although, with a different pace/degree for dif-
ferent agents.

Problem statement: Considering any two peers Ai and Aj in the society (A, E), with Aj

in N(Ai) − Ai, these agents must select among the sets of available options Di and Dj

respectively, so as to increase their expected payoff w.r.t. their preferences on options γ(i)
and γ(j) to resolve the DCB problem: Asolution consists of assignment of delays to flights,
such that all imbalances are resolved, resulting to zero hotspots, minimizing flights’ delays.

This problem specification emphasises on the following problem aspects:

• Agents (i.e. individual flights) need to coordinate their strategies (i.e. chosen options

to delays) to execute their trajectories jointly with others, considering traffic, w.r.t.

their preferences and operational constraints;

• Agents (i.e. individual flights) need to jointly explore and discover how different com-

binations of delays affect the joint performance of their trajectories, given that the

way different trajectories do interact is not known beforehand (agents do not know

in advance the interacting trajectories that emerge due to own decisions and deci-

sions of others, and of course they do not know whether these interactions result to

new hotspots);

• Agents’ preferences on the options available may vary depending on the trajectory

performed, and are kept private;

• There are multiple and interdependent hotspots that occur in the total period H and

agents have to resolve them jointly;

• The setting is highly dynamic given that hotspots change while agents choose their

delay strategies, in ways that are unpredictable for agents.

It must be pointed out that this thesis does not consider agents’ preferences on delays,

although their incorporation in the proposed methods is straightforward, as also shown

in [1].

2.1. Data Sources

This subsection presents the data sources used for the experimental evaluation of the

algorithms. I would like to acknowledge the DART project for providing the data sources

and also the Phd student Theocharis Kravaris for processing these data sources and pro-

ducing scenario files [9] covering the flight plans per day of the following format:

• First line: Comma delimited values of the following quantities in the presented order

number of sectors, number of flights,size of period, period step, global maximum

delay, number of periods, alpha parameter (regarding the reward function), gamma

parameter (regarding the reward function)

• Second line: Comma delimited capacities of sectors

A. Bastas 17

Temporal Abstraction for Hierarchical Reinforcement Learning in Air Traffic Management

• The rest of the file contains for each flight the flight id and for each possible delay

the flight plan, consisting of the time of the take off, the sectors crossed during the

flight and the duration the aircraft needs to cross each sector. The last three values

of each line consist of the model of the aircraft, a boolean value indicating if the flight

is commercial and the local maximum delay of the flight. Therefore the format of the

predescribed lines is the following:

flight id
, d0, take off0
, sector0 sector1 … sectorn0

, duration0 duration1 … durationn1

, d1, take off1
, sector0 sector1 … sectorn
, duration0 duration1 … durationn

,…
, dm, take offm
, sector0 sector1 … sectorn
, duration0 duration1 … durationnm

,model, commercial, local maximum delay.

Where ni denotes the number of sectors of the corresponding flightplan and m de-

notes the number of flight plans for the corresponding flight and for each possible

delay.

A. Bastas 18

Temporal Abstraction for Hierarchical Reinforcement Learning in Air Traffic Management

3. RELATED WORK

In order to increase the effectiveness of reinforcement learning methods in complex prob-

lems, abstraction operators are often applied in states, actions or in both. Through ab-

straction, a deeper exploration of state / action space could be achieved, as well as a

qualitative improvement of the decision process with much better generalization capabili-

ties.

State abstraction (or state aggregation) has been extensively studied in the fields of artifi-

cial intelligence and operations research. The idea behind state abstraction is that, instead

of working at the ground (original) state space, the decisionmaker usually finds solutions in

the abstract state space much faster by treating groups of states as a unit, ignoring irrel-

evant state information. This manages to reduce the complexity of a problem by filtering

out properties or by aggregating features, while preserving all the important aspects, nec-

essary to still being able to solve the problem. There are two forms of abstraction within

the reinforcement learning framework:

a) State abstraction, which groups together states with similar environmental config-

urations and associated behavior [2] [10]: These approaches may assume human

supervision (e.g. [11], [12]), or they may support discovering appropriate state ab-

stractions automatically (e.g. as in [13] [14] [15]).

b) Temporal abstraction approaches [16] [17] which mainly add to the ground (origi-

nal) action space abstraction layers of temporally extended actions: Representing

actions flexibly at multiple levels of temporal abstraction has the potential to speed

planning and optimization effort. A significant work in temporal abstraction can be

found in [16], where the options framework was proposed, involving abstractions

over the space of actions. At each step, the agent chooses either a one-step action

or a “multi-step” action policy (option). Each option defines a policy over actions and

can be terminated according to a stochastic function. This defines a hierarchical

structure of high-level policies that invoke options solving sub-tasks. The MAXQ

framework [18], decomposes the value function of an MDP into combinations of

value functions of smaller constituent MDPs, while the approach proposed in [19]

combines hierarchies with short-term memory to handle partial observations. Au-

tomatically discovering subtasks and hierarchies, as for example in [14], [20], adds

further challenges and possibilities. Also, other methods have been proposed to

learn options in real-time by using various reward functions [20], or by composing

existing options [21]. Value functions have also been generalized to consider goals

along with states [22]. Another approach towards temporal abstraction can be found

in [17] that involves simultaneously learning options and a control policy to compose

options in a deep reinforcement learning setting. This approach does not use sep-

arate Q-functions for each option, but instead treats options as part of the input. A

recent hierarchical neural network framework has been proposed in [23] that sup-

ports temporally extended action sequences with different levels of abstraction.

A. Bastas 19

Temporal Abstraction for Hierarchical Reinforcement Learning in Air Traffic Management

Although our methods are hierarchical imposing a temporal abstraction, they differ from

approaches like the MAXQ and options frameworks which exploit a hierarchy of tempo-

rally extended subtasks. We rather aggregate states’ and actions’ temporal dimension in

a direct way, e.g. by treating temporal instants as an aggregated temporal “point”. With

the term “hierarchical” we refer to the hierarchy of such temporal abstractions that our

methods impose to both states and actions.

Specifically, while we apply state aggregation at the temporal dimension of states, one of

the proposed methods (described at subsection 6.2.1) also uses abstraction at the tempo-

ral dimension of actions. Thus our work is closer to the first of the aforementioned classes

of state abstraction methods that group together states with similar environmental config-

urations and associated behavior. Also, our methods do not discover state abstractions

automatically, but these, together with the hierarchical structure imposed, are specified by

humans.

A. Bastas 20

Temporal Abstraction for Hierarchical Reinforcement Learning in Air Traffic Management

4. HIERARCHICAL MULTIAGENT REINFORCEMENT LEARNING

In this section we propose a hierarchical reinforcement learning framework for learning

at different state-action space abstractions: the abstract levels abstract the action-state

space in its temporal dimension, and the “ground” level comprises the original state/action

space. As said in the previous section, although the abstraction used is in the temporal

dimension of actions and states, the approach is quite different from a temporal abstrac-

tion approach where temporally extended actions are incorporated at abstraction levels.

Next we formulate the generic hierarchical MDP framework with multiple levels of ab-

straction: The agent should learn a policy at both abstract and ground levels, leveraging

knowledge acquired at the abstract levels to improve performance while moving towards

the ground (original) level of abstraction. The proposed framework is described below in

detail, after formulating the hierarchical MDP.

4.1. The Hierarchical MDP Framework

According to the problem specification, and using the model of collaborative multiagent

MDP framework [24], we formulate the problem as a Hierarchical MDP comprising the fol-

lowing constituents:

• The society of agents (A, E), as specified above.

• A set of abstraction levels {1,…h}.

• The time step at level L, denoted tsL, where L is in {1,…h} : tL =
tL0 , t

L
1 , t

L
2 , t

L
3 , ..., t

L
max(L), where tLmax(L)−tL0 = H and tLi+1−tLi = tsL, i = 0,…max(L)−1.

Notice that the number of time instants per level depends on the time granularity for

that level, given that H is constant at all levels. The size of the timestep determines

the amount of time instances that pass until an action completes. Thus the agents

make decisions every tsL time points. When we present the local strategy per agent

Ai, we additionally define action abstraction per level L based on the timestep tsL.

• The abstraction step at level L, denoted asL, where L is in {1, ...h}, defines the

amount of time instants that correspond to the same abstract state. We utilize the

abstraction step at level L to impose aggregation on states. We will explore meth-

ods that use unitary timestep (i.e tsL = 1) and thus do not impose action abstraction
but they exploit state aggregation by using an abstraction step greater than 1. We

consider that it holds that asL ≥ tsL so that all states observed by the agent ,corre-
sponding to actions taken every tsL time points, that belong in the same asL interval
are aggregated together.

A. Bastas 21

Temporal Abstraction for Hierarchical Reinforcement Learning in Air Traffic Management

• A local state per agent Ai at time t and level of abstraction L, comprising state vari-

ables that correspond to (a) the delay imposed to the trajectory Ti executed by Ai,

ranging to the sets of options assumed by Ai, i.e. in D
L
i = 0,…MaxDelayi, and (b)

the number of hotspots in which Ai is involved in (for any of the sectors). Such a

local state is denoted by sL,ti . It must be noticed that the set of options for any agent

depends on the time step considered at each level. This prunes the states the agent

will explore at the abstract level L, as states with delay that is not a multiple of the

timestep are unreachable. Additionally, we aggregate original (ground) states with

delays between i ∗ asL and (i+ 1) ∗ asL, i ∈ N , to the same abstract state.

The joint state s
L,t
Ag

of a set of agents Ag at time t at abstraction level L is the tuple of

the state variables for all agents in Ag. A global (joint) state s
L,t at time t at level L is

the tuple of all agents’ local states.

The set of all joint states with respect to abstraction level L for any subset Ag of A is

denoted State
L
Ag
, and the set of joint society states with respect to abstraction level

L is denoted by State
L
.

• The local strategy for agent Ai at time t, and at level L in {1,…h} - denoted by strL,ti

– results from the sequence of actions decided by Ai up to that specific time instant.

This is translated to the total delay the agent imposes at its trajectory. Such an ac-

tion, in case the agent at a time point t is still on ground, may be either to add further

delay to its total delay until the next time instant t + tsL , or not. Therefore, while

agents take a binary decision, the amount of delay to be added at each time point

depends on the abstraction considered: This is equal to tsL, where L is the level of
abstraction considered, imposing an abstraction on actions. When the agent has

taken off, then its strategy is considered fixed and it follows the intended/predicted

trajectory. The location (i.e. sector) of that agent at any time point can be calculated

by consulting its original trajectory, given that no rerouting has been applied.

The joint strategy of a subset of agents Ag of A executing their trajectories (for in-

stance of N(Ai)) at time t at abstraction level L, is a tuple of local strategies, denoted
by str

L,t
Ag

(e.g. str
L,t
N(Ai)

). The joint strategy for all agents A at any time instant t at ab-

straction level L is denoted strL,t.

The set of all joint strategies for any subset Ag of A at abstraction level L is denoted

Strategy
L
Ag
, and the set of joint society strategies is denoted by Strategy

L
.

• The state transition function Tr at abstraction level L, denoted TrL, gives the tran-
sition to the joint state sL,t+1 based on the joint strategy strL,t taken at abstraction

level L, in joint state sL,t.

Formally TrL : StateL × Strategy
L → State

L
.

Given that no agent can predict how the joint state can be affected in the next time

step, for agent Ai this transition function is actually

TrL : StateL{Ai}×Strategy
L
Ai

× State
L
Ai

→ [0, 1],

denoting the transition probability p(sL,t+1
i |sL,ti ,strL,ti).

• The local reward of an agent Ai, denoted Rwdi, is the reward that the agent gets by
executing its own strategy in a specific joint state and hierarchy level L, i.e. with any

agent executing a trajectory in Traffic(Ai), according to the sectors’ capacities, and
the joint strategy of agents in N(Ai) at level L. Although the agent’s strategy depends
on the level L of abstraction, the reward function is level independent.

• A (local) policy of an agent Ai at level L is a function πL
i : StateLAi

→ Strategy
L
Ai
that

returns local strategies for any given local state, for agent Ai to execute its trajectory.

A. Bastas 22

Temporal Abstraction for Hierarchical Reinforcement Learning in Air Traffic Management

5. REWARD FUNCTION

For the DCB problem we have formulated the individual delay reward Rwdi : For an agent
Ai in A this reward depends on the participation (contribution) of that agent in hotspots

occurring while executing its trajectory according to its strategy strti in state sti, i.e. ac-

cording to its decided delay at any level of abstraction. Specifically, as already specified,

the reward function applies to any level and it is level-agnostic. Thus, we do not refer to

states/strategies’ levels here.

Formally:

Rwdi(s
t
i, str

t
i) = C(sti, str

t
i)− λ ∗DC(strti)

where,

• C(sti, str
t
i) is a function that depends on the participation of Ai in hotspots while ex-

ecuting its trajectory according to the strategy strti, and

• DC(strti) is a function of agent’s delay cost.

The (user-defined) parameter λ is used for balancing between the cost of participating

in hotspots and the cost of the ground delay imposed towards achieving the goal: Zero

hotspots and the minimum possible delay.

In the DCB problem, both functions C(sti, str
t
i) and DC(strti) represent delay costs at the

strategic phase of operations. We have chosen C(sti, str
t
i) to depend on the total duration

of the period in which agents fly over congested sectors. This is multiplied by 81 which is

the average strategic delay cost per minute (in Euros) in Europe when 92% of the flights

do not have delays [5]. If there is not any congestion, then this is a large positive constant

that represents the reward agents get by not participating in any hotspot. Overall, the ac-

tual form of C(sti, str
t
i) is as follows:

C(sti, str
t
i) =

{
−TDC ∗ 81 if TDC > 0
PositiveReward if TDC = 0

where, TDC is the total duration in congestions (i.e. hotspots in our problem case) for

agent Ai. The first case holds when there are hotspots in which agents participate (thus,

the total duration in hotspots, TDC, is above 0), while the second case holds when agents

do not participate in hotspots. The DC(strti) component of the reward function corre-

sponds to the strategic delay cost when flights delay at gate. In our implementation, this

depends solely on the minutes of delay and the aircraft type, as specified in [5]. As such,

the actual form of this function is as follows:

DC(strti) = StrategicDelayCost(strti , AircraftType(Ai))

A. Bastas 23

Temporal Abstraction for Hierarchical Reinforcement Learning in Air Traffic Management

where strti is the delay imposed to the agent Ai and StrategicDelayCost is a function that
returns the strategic delay cost given the aircraft type of agent Ai and its delay. Notice

however that in the general case the function DC(strti) could be taking into account addi-
tional airline-specific strategic policies and considerations regarding flight delays.

A. Bastas 24

Temporal Abstraction for Hierarchical Reinforcement Learning in Air Traffic Management

6. INDEPENDENT Q-LEARNERS AND INDEPENDENT

HIERARCHICAL Q-LEARNERS

6.1. Independent Q-Learners

In the Independent Reinforcement Learners (IRL) framework, each agent learns its own

policy independently from the others and treats other agents as part of the environment.

The independent Q-learning variant proposed in [7] decomposes the global Q-function

into a linear combination of local agent-dependent Q-functions.

Q(s,str) =
∑N

i Qi(si, stri)

Although the original proposal considers a “flat” method, i.e. at a single level of abstrac-

tion – the ground one, considering the Hierachical MDP framework, each local value, QL
i

w.r.t. abstraction level L, for agent Ai is calculated according to the local state, s
L
i , and the

local strategy, strLi , at abstraction level L. Whenever an agent is in a state s, it abstracts

this state to the corresponding abstract state sL and updates the Q-value of this abstract

state based on the temporal-difference error. More specifically, the local value QL
i , w.r.t.

abstraction level L, is updated according to the temporal-difference error, as follows:

QL
i (s

L, strL) = QL
i (s

L, strL) + α[Rwdi(s, str
L) + δ ∗maxstrQi(s

′L, strL)−Qi(s
L, strL)].

It must be noted that even though we update Q-values corresponding to abstract states

sL, we compute the reward based on the ground state s L.

Also it must be pointed out that instead of the global reward Rwd(s,str) used in [7], we

use the reward Rwdi received by the agent Ai , taking into account only the local state and

local strategy of that agent. Thus, this method is in contrast to the approach of Coordinated

Reinforcement Learning model proposed in [7], since that model needs agents to know the

maximizing joint action in the next state, the associated maximal expected future return,

and needs to estimate the Q-value in the global state.

6.2. Independent Hierarchical Q-Learners

We explore a Hierarchical Independent Learners approach in order to increase the com-

putational efficiency and produce more qualitative solutions in terms of reducing delays

and number of delayed flights. We create multiple abstractions of the state space, de-

noted by State
L
at level L, and simulate a number of episodes at any abstract level.

The Q values learned by the agent at any abstract level are used to increase the compu-

tational efficiency (in terms of the number of episodes agents run until convergence) and

efficacy (in terms of quality of solutions to the DCB problem) of learning at the next level,

A. Bastas 25

Temporal Abstraction for Hierarchical Reinforcement Learning in Air Traffic Management

until reaching the ground level.

In the following paragraphs we present in more detail the generic hierarchical RL frame-

work at multiple abstraction levels. The presentation focuses only on delays of states

which is the only state variable that is the subject of abstraction.

The proposed generic hierarchical RL method comprises the following phases:

1. Consider the ground (original) state space, State. Considering the state space

State, the local state per agent Ai at time t includes (a) the delay imposed to the

trajectory Ti executed by Ai, and (b) the number of hotspots in which Ai is involved

in (for any of the sectors) having the corresponding delay being imposed to it. At this

“ground” level the distance between consecutive time points is one time instant (i.e.

one minute).

2. Map State to multiple abstract spaces State
L
, where |State

L
| « |State|.This

includes the abstraction of the ground (original) state space. Various alternative

schemes can be applied for creating the mapping of states in State to states in

State
L
. The simplest approach is to divide time into a number of K equidistant inter-

vals at level L, where K = MaxDelay/asL and asL is the abstraction step at level L.
Thus, as shown in Fig. 6.1 , the same state in the abstract space State

L
abstracts

all states with delays between consecutive time points t and t+ asL. It must be no-
ticed that in this step all abstract spaces State

L
are formed for every L in {1,…h},

based on the mapping of states in State to states in State
L
.

Figure 6.1: Construction of the abstract space: Delay is partitioning into a number of K equidistant

intervals and delays between consecutive time points t and t+ asL are mapped to the same state in

the abstract space.

3. Solve MDP in State
L
space. At any level of abstraction, according to the hierarchi-

cal MDP formulated above, the agent can either add to its total delay a number of

time instants equal to tsL, or not. When the decision is at the original state level, it

may add one time instant. If the decision is at an abstract level the agent may add to

its delay a number of time instants up to the next time point t+ tsL, until the MaxDe-
lay is reached.

4. Map solution from abstract space State
L
to the next abstract State

L+1
space.

After learning an abstract policy to solve the DCB problem at level L1, the goal is

to further refine it to a policy applied to the next abstract state space State
L+1

. To

do that, we have to first map states between abstraction levels. We consider any

of the following alternative cases for mapping states between abstraction levels and

1 It must be noticed that it is not necessary this estimation to provide a solution to the DCB problem, i.e.

impose delays that when applied result to zero hotspots.

A. Bastas 26

Temporal Abstraction for Hierarchical Reinforcement Learning in Air Traffic Management

estimating the Q-values at the abstract state-action space of level L+1 in terms of

the values learned at the previous abstract level L:

a) let us consider the abstract states sLi , s
L+1
i , the set of states of the (original)

ground space State that sLi abstracts, denoted by Si,L and the set of states

of the original ground space State that sL+1
i abstracts, denoted by Si,L+1. We

map sL+1
i to the abstract state sLi that maximizes |Si,L+1 ∩ Si,L|. Any state sL+1

i

in the set of states State
L+1

that have been mapped to the same abstract state

sLi in State
L
have the same Q* values per agent and strategy, equal to the Q*

value computed for the state sLi , w.r.t the agent strategy.

More formally:

Qi(s
L+1
i , strL+1

i) = Q∗
i (s

L
i , str

L
i)

for any states sL+1
i ∈ State

L+1, sLi ∈ State
L
, such that sL+1

i → sLi and

strL+1
i = strLi , where the arrows specify mappings between states at the two

different levels of abstraction.

It should be also noticed that each pair of corresponding (mapped) abstract sL+1
i

and sLi states, in conjunction to corresponding delays (i.e. strategies), should

have the same number of hotspots.

b) The Q values for any state sL+1
i in the set of states State

L+1
are updated con-

currently to any state corresponding (mapped) sLi inState
L
at every L in {1, ...h}.

More formally whenever an agent observes a state si, it abstracts this state

to the corresponding abstract state sLi and updates the Q-value of this abstract
state based on the temporal-difference error. More specifically the local value

QL
i of the current level L is updated, as follows:

QL
i (s

L, strL) = QL
i (s

L, strL) + α[Rwdi(s, str
L) + δ ∗ maxstrQ

L
i (s

′L, strL) −
QL

i (s
L, strL)]

This method also updates concurrently the local values Q
Lj

i of the succeeding

levels Lj for Lj > L that correspond to state si w.r.t. the strategy of level L ac-
cording to the temporal-difference error, as follows:

Q
Lj

i (sLj , strL) = Q
Lj

i (sLj , strL) + α[Rwdi(s, str
L) + δ ∗ maxstrQ

Lj

i (s′Lj , str′Lj −
Q

Lj

i (sLj , strL)]

c) The Q values for any state sL+1
i in the set of states State

L+1
are updated in-

dependently to any state corresponding (mapped) sLi in State
L
at every L in

{1, ...h}. Thus all Q values of level L+1 are initialized to 0.

More formally:

QL+1
i (sL+1

i , strL+1
i) = 0 and updated as specified in the flat model.

for any state sL+1
i ∈ State

L+1
and strategy strL+1

i .

A. Bastas 27

Temporal Abstraction for Hierarchical Reinforcement Learning in Air Traffic Management

5. Solve MDP in the next State
L+1

space. Given the Q-values at the abstract state-

action space of level L+1, a refinement phase in the abstract space State
L+1

follows,

towards computing a refined policy per agent, i.e. a policy with delays at the abstract

state-action space of level L+1.

We repeat phases 3 and 4 for L=L+1 until we reach the ground level and solve the MDP

in the ground space State.

Given this generic Independent Hierarchical Q-Learners framework in the following para-

graphs we present eachmethod inmore detail, based on the formalization provided above.

6.2.1. Descending Timesteps (DT)

The method presented in this subsection realizes all of the predefined phases. At sub-

sequent abstract spaces StateL and StateL+1, we use time steps and abstraction steps

greater than 1 time point and for any two abstract levels L1 and L2, with L1 < L2, it holds

that tsL1 > tsL2 and also asL1 > asL2. Additionally, for any abstract level L, it holds that

tsL = asL. By using timesteps greater than one time point this method imposes abstrac-
tion on actions. The abstraction step being also non-unitary abstracts states of the ground

(original) space State to abstract states at any StateL.

Akey difference that distinguishes this method from other methods is that the set of options

assumed by agent Ai at level L, D
L
i = {0,…MaxDelayi}, depends only at timestep tsL,

whereas other methods limit the set of options further, based on the solution provided

at level L-1. Next, we present the hierarchical RL phases in more detail based on the

aforementioned analysis.

1. Consider the original state space, State.

2. Map State to multiple abstract spaces State
L
, where |State

L
| « |State|. In our

approach each state si in Statewith delay between time points t and t+asL abstracts
to the same abstract state sLi .

3. Solve MDP in State
L
space.

4. Map Q values from abstract space State
L
to the next abstract State

L+1
space.

The presented method uses option (a) of generic framework phase 4 to initialize Q-

values in the state space State
L+1

.

5. Solve MDP in the next State
L+1

space.

Let us consider an example of 3 levels where ts1 = as1 = 10,ts2 = as2 = 5,ts3 = as3 = 1.
As seen in figure 6.2a at level L=1, at time t = 0 the agent is in state [0,h1]. The agent

chooses action 1 and after the corresponding transition it observes state [10,h2], after tsL
time points, at time t = 10. At this timestep the agent chooses action 0 resulting to state
[10,h3], after tsL time points, at time t = 20. This process continues until the end of the

episode. The Q values from level 1 are mapped to corresponding states at level 2. As

depicted in 6.2b the Q values of the first ten minute interval are mapped to the Q values of

the first and second five minute intervals of level 2 w.r.t. the corresponding hotspots and

action. This process is repeated until we solve the problem at level 3.

According to experimental results, also shown in the evaluation section, this method can-

not achieve significant improvement regarding the computational efficiency compared to

A. Bastas 28

Temporal Abstraction for Hierarchical Reinforcement Learning in Air Traffic Management

(a) Example of local state transitions of the Descending

Timesteps (DT) method at abstract level L, where tsL = 10

(b) Example of ”transferring” the Q values of an abstract

level L with asL = 10 to the next abstract level L+1 with

asL+1 = 5

Figure 6.2: Example of the Descending Timesteps. Case (a) shows the transitions of the local state

of an agent regarding the action at time t for an abstract level L with tsL = 10, whereas case (b)
shows the ”transferring of the Q values of an abstract level L with asL = 10 to the next abstract

level L+1 with asL+1 = 5

the flat method, nor it can improve significantly the quality of the produced solutions com-

pared to the case where no hierarchical structures are being used [1].

In doing so we need to exploit the solution that level L produces in order to limit the state

space explored and exploited at level L+1. This will allow more thorough exploration at

the part of the state space that includes states of interest (i.e. states towards solving the

problem) regarding level L. Hence, we expect level L+1 to provide better estimation of Q

values in less time and thus converge faster.

Specifically, after solving the MDP at the abstract space StateL, an estimation of the delay
delayi decided by each agent Ai, is available. We exploit this estimation to limit the agents

options DL+1
i . For the Descending Timesteps (DT) method we restrict the agent’s options

in the corresponding interval (k ∗ asL, (k + 1) ∗ asL], k ∈ N , that delayi belongs.

(a) Average Delay (b) Hotspots

Figure 6.3: Result of 10 independent experiments. The learning curve of the descending time step

method , given two levels and limitation of the state space, showing how agents manage to learn

joint policies towards resolving DCB problems, while reducing the average delays for all flights.

The x axis corresponds to the episodes, while the y axis to the average delay per flight case (a) or

the hotspots case (b).

As Fig. 6.3 depicts, although the descending time step method manages to decrease the

A. Bastas 29

Temporal Abstraction for Hierarchical Reinforcement Learning in Air Traffic Management

average delay, this method does not result in 0 hotspots when the state space is limited

at the second level. This is because, as mentioned previously, states with delay that is

not a multiple of the timestep, being unreachable, have not been explored. This pruning

of the state space could make states with 0 hotspots unreachable and thus the solution

provided by the abstract level(s) could be in a completely different part of the state space

in relation to solutions resulting to 0 hotspots.

In the next subsections we study methods that use unitary timesteps at all levels, so

that all states are indeed reachable and can be explored. We also exploit non unitary

abstraction steps to treat states that correspond to the same abstract state as equiva-

lent. Additionally, these methods effectively limit the state space based on the estimation

of the delay provided at the previous level. We exploit this estimation to further limit the

agent’s options DL+1
i : The set of options assumed by Ai in the next State

L+1
space is in

DL+1
i = {max{0, delayi − dL+1}, ..., delayi}, where dL+1 is the amount of time instants we

subtract from the delay estimation delayi to the state space State
L+1

, allowing the agent

to search and refine the solution prescribed at the abstract level L in a wider set of options

than those defined by the delayi.

We also explore alternative schemes for “transferring” Q values between levels. More

specifically, the method presented at subsection 6.2.2 maps solution from abstract space

State
L
to the next abstract State

L+1
space by inheriting the Q-values of level L to level

L+1 as previously according to option (a) of the generic framework phase 4. The method

presented at subsection 6.2.3 when operating at level L updates concurrently the Q-values

of all levels L+k, up to h, according to option (b) of the generic framework step 5. Finally,

the method presented at subsection 6.2.4 does not transfer values between levels, not it

allows updating Q values based on estimations at other levels: It follows option (c) and

allows levels to operate independently.

6.2.2. Unitary Timestep, Limit State Space (UTLSS)

The following method uses timesteps of size 1 at all levels, and descending abstraction

step as the level of abstraction increases. More formally for any two abstraction levels L1

and L2, where L1 < L2, it holds that tsL1 = tsL2 = 1 and asL1 > asL2. Additionally, we limit

the state space at any abstraction level, based on the delay estimation provided by the

previous abstraction level. As a result the set of options assumed by agent Ai at level L,

denoted by DLi
is a subset of {0,…MaxDelayi} and differs at each level. Phases 1-5 are

described below.

1. Consider the ground (original) state space, State.

2. Map State to an abstract space State
L
, where |State

L
| « |State|. This method

abstracts each state si in State with delay between consecutive time points t and
t+ asL to the same abstract state sLi .

3. Solve MDP in State
L
space. Solve MDP in State

L
space using unitary timestep.

4. Map solution from abstract space State
L
to the next abstract State

L+1
space.

The presented method uses option (b) of generic framework phase 4 to initialize Q-

values in the state space State
L+1

.

A. Bastas 30

Temporal Abstraction for Hierarchical Reinforcement Learning in Air Traffic Management

5. Solve MDP in the next State
L+1

space. Solve MDP in the next State
L+1

space

using a smaller abstraction step. This method also exploits the estimation provided

by the abstract State
L
space and effectively limits the state space to be explored in

State
L+1

. After solving the MDP at the abstract space State
L
, an estimation of the

delay delayi decided by the agent, is available. We exploit this estimation to limit

the agent’s options DL+1
i considered at the next level of abstraction: The set of

options assumed by Ai in the next State
L+1

space is in DL+1
i = {max{0, delayi −

dL+1}, ..., delayi}, where dL+1 is the amount of time instants we subtract from the

delay estimation delayi to provide more option for the agent to consider while solving
the problem in state space State

L+1
.

(a) Example of local state transitions and the corresponding

updated Q value of the Unitary Timestep, Limit State Space

(UTLSS) method at abstract level L, where asL = 10

(b) Example of ”transferring” the Q values of an abstract

level L with asL = 10 to the next abstract level L+1 with

asL+1 = 5

Figure 6.4: Example of the Unitary Timestep, Limit State Space (UTLSS). Case (a) shows the

transitions of the local state of an agent regarding the action at time t and the corresponding

updated Q value for an abstract level L with asL = 10, whereas case (b) shows the ”transferring of

the Q values of an abstract level L with asL = 10 to the next abstract level L+1 with asL+1 = 5

Again let us consider an example of 3 levels, where as1 = 10,as2 = 5,as3 = 1 and tsL = 1
at all levels L. As seen in figure 6.4a, let us suppose that at level L=1, at time t = 5 the
agent is in state [3,h1]. The agent chooses action 1 and after the corresponding transition

it observes state [4,h2], after tsL time points, at time t = 6. At this timestep the agent

chooses again action 1 resulting to state [5,h3], after tsL time points, at time t = 7. If

h1 = h2 = h, these two updates will both update the Q value of Q1([1, h], 1), because
as seen in 6.4b both states correspond to the first ten minute interval. For all states that

belong in the same interval regarding asL, we update the same Q values, always w.r.t. the

hotspots and action. This process continues until the end of the episode. When level 1

finishes, we map the Q values from level 1 to level 2. As depicted in 6.2b the Q values of

the first ten minute interval are mapped to the Q values of the first and second five minute

intervals of level 2 w.r.t. the corresponding hotspots and action. This process is repeated

until we solve the problem at level 3.

6.2.3. Unitary Timestep, Concurrently Update Levels, Limit State Space (UTCULSS)

The timestep of this method is unitary at all levels, while the abstraction step descends

while the level of abstraction increases. Also, the state space explored at any level is

A. Bastas 31

Temporal Abstraction for Hierarchical Reinforcement Learning in Air Traffic Management

restricted to a set of options based on the delay estimation provided by the previous level.

The key difference here is that following option (b) in phase 5, when solving the MDP at

space State
L
we concurrently update the Q-values of all levels L+k, up to h. The phases

are as follows:

1. Consider the original state space, State.

2. Map State to an abstract space State
L
, where |State

L
| « |State|. This method

abstracts each state si in State with delay between consecutive time points t and
t+ asL to the same abstract state sLi .

3. Solve MDP in State
L
space. Solve MDP in State

L
space using unitary timestep.

4. Map solution from abstract space State
L
to the next abstract State

L+1
space.

The presented method uses option (b) of generic framework phase 4 to initialize Q-

values in the state space State
L+1

.

5. Solve MDP in the next State
L+1

space. Solve MDP in the next State
L+1

space

using a smaller abstraction step. As described in subsection 6.2.2 we exploit the

delay estimation decided at the abstract State
L
space and effectively limit the state

space State
L+1

: After solving the MDP at the abstract space State
L
, an estimation

of the delay delayi decided by the agent, is available. We exploit this estimation to

limit the agent’s options DL+1
i considered at the next level of abstraction: The set

of options assumed by Ai in the next State
L+1

space is in DL+1
i = {max{0, delayi −

dL+1}, ..., delayi}, where dL+1 is the amount of time instants we subtract from the

delay estimation delayi to provide more option for the agent to consider while solving
the problem in state space State

L+1
.

(a) Example of local state transitions and the corresponding

updated Q values of the Unitary Timestep, Concurrently

Update Levels, Limit State Space (UTCULSS) method at

abstract level L, where asL = 10
(b) Example of state aggregation of two abstract levels L

with asL = 10 and asL+1 = 5

Figure 6.5: Example of the Unitary Timestep, Concurrently Update Levels, Limit State Space

(UTCULSS). Case (a) shows the transitions of the local state of an agent regarding the action at

time t and the corresponding updated Q value for an abstract level L with asL = 10, whereas case
(b) shows the state aggregation of two abstract levels L with asL = 10 and asL+1 = 5

Again let us consider an example of 3 levels, where as1 = 10,as2 = 5,as3 = 1 and tsL = 1
at all levels L. As seen in figure 6.5a, let us suppose that at level L=1, at time t = 10 the
agent is in state [7,h]. The agent chooses action 1 and after the corresponding transition

it observes state [8,h’], after tsL time points, at time t = 11. This transition results to up-
dating Q1([1, h], 1) as 7 is in the first ten minute interval, Q2([2, h], 1) as 7 is in the second

A. Bastas 32

Temporal Abstraction for Hierarchical Reinforcement Learning in Air Traffic Management

five minute interval and also Q3([7, h], 1).

6.2.4. Unitary Timestep, Limit State Space, No Experience Transfer (UTLSSNET)

This method uses a unitary timestep, descending abstraction steps as the abstraction level

increases, and limits the state space to be explored at any level based on the solution

decided at the previous level of abstraction. Additionally, we do not map the solution

from abstract space State
L
to the next State

L+1
space nor we update concurrently the Q-

values of levels as described in subsection 6.2.3. Following option (c) of phase 5 different

abstraction levels operate independently. Phases of the generic method are as follows:

(a) Example of local state transitions and the corresponding

updated Q values of the Unitary Timestep, Limit State Space,

No Experience Transfer (UTLSSNET) method at abstract

level L, where asL = 10
(b) Example of state aggregation of two abstract levels L

with asL = 10 and asL+1 = 5.

Figure 6.6: Example of the Unitary Timestep, Limit State Space, No Experience Transfer

(UTLSSNET). Case (a) shows the transitions of the local state of an agent regarding the action at

time t and the corresponding updated Q value for an abstract level L with asL = 10, whereas case
(b) shows the state aggregation of two abstract levels L with asL = 10 and asL+1 = 5

1. Consider the ground (original) state space, State.

2. Map State to an abstract space State
L
, where |State

L
| « |State|. his method

abstracts each state si in State with delay between consecutive time points t and
t+ asL to the same abstract state sLi .

3. Solve MDP in State
L
space. Solve MDP in State

L
space using unitary timestep.

4. Map solution from abstract space State
L
to the next abstract State

L+1
space.

The presented method uses option (c) of generic framework phase 4 to initialize Q-

values in the state space State
L+1

.

5. SolveMDP in the next State
L+1

space.SolveMDP in the next State
L+1

space using

a smaller abstraction step. As described in subsection 6.2.2 we exploit the delay

estimation decided at the abstract State
L
space and effectively limit the state space

State
L+1

: After solving the MDP at the abstract space State
L
, an estimation of the

delay delayi decided by the agent, is available. We exploit this estimation to limit

the agent’s options DL+1
i considered at the next level of abstraction: The set of

options assumed by Ai in the next State
L+1

space is in DL+1
i = {max{0, delayi −

dL+1}, ..., delayi}, where dL+1 is the amount of time instants we subtract from the

A. Bastas 33

Temporal Abstraction for Hierarchical Reinforcement Learning in Air Traffic Management

delay estimation delayi to provide more option for the agent to consider while solving
the problem in state space State

L+1
.

Again let us consider an example of 3 levels, where as1 = 10,as2 = 5,as3 = 1 and tsL = 1
at all levels L. As seen in figure 6.6a, let us suppose that at level L=1, at time t = 10 the
agent is in state [7,h]. The agent chooses action 1 and after the corresponding transition

it observes state [8,h’], after tsL time points, at time t = 11. This transition results to up-
dating only Q1([1, h], 1) as 7 is in the first ten minute interval. Also we do not map the Q
values of level 1 to level 2, but we instead initialize the Q table to 0.

A. Bastas 34

Temporal Abstraction for Hierarchical Reinforcement Learning in Air Traffic Management

7. RESULTS ON SCENARIOS AND COMPARISON BETWEEN

VERSIONS AND WITH OTHER METHODS

To evaluate the proposed methods we have constructed evaluation cases, each corre-

sponding to a specific day of 2016 above Spain. In this thesis we present evaluation

results for the July 2 case, which seems to be one of the hardest among the available

cases [1].

At first we compare our methods for 2 and 3 levels and for 10000 episodes at each level

and observe their efficiency and effectiveness. We then continue to reducing the episodes

of the most promising methods and for 3 levels to assess them in more demanding cases.

Finally having the methods managed provide qualitative solutions using 8000 episodes

in total, we further reduce the episodes to assess them in even more strenuous condi-

tions. We explore cases where the first level does not achieve convergence nor results

to 0 hotspots given the limited number of available episodes. Even in this case 2 of the

methods manage to produce qualitative solutions regarding our metrics that result to 0

hotspots in 6000 episodes in total.

In subsections 7.3, 7.4 we present evaluation results for 2 and 3 levels and for 10000

episodes at each level following an ε-greedy exploration-exploitation strategy starting from

ε =0.9, which every 80 rounds is diminished by 0.01. At episode 7200 the probability

becomes 0.001 and is henceforth considered zero. Then, pure exploitation phase begins

until the end of the episodes.

In subsection 7.3,7.4 we also present evaluation results for 3 levels for the most promising

of our methods for the 5000 episodes at the first (abstract) level and 1500 episodes at

the second (abstract) and third (original) levels. We also follow an ε-greedy exploration-

exploitation strategy starting from ε =0.9 at every level, which is diminished by the value

of 0.01 every 33 rounds at the first (abstract) level and every 13 rounds at the second

(abstract) and third (original) levels. At the first (abstract) level the probability becomes

0.001 at episode 2970 and is henceforth considered zero. At the second (abstract) and

third (original) levels the probability becomes 0.001 at episode 1170 and is henceforth

considered zero. Then, pure exploitation phase begins until the end of the episodes for

the operating level.

7.1. Evaluation Criteria

To report on the efficiency of the methods and their effectiveness w.r.t. the quality of

solutions achieved, we provide per case the following information:

• Number of flights with delay: Also mentioned as “regulated flights”.

• Average delay per flight: We report on the average delay per flight (i.e. the ratio

of total delay to the number of flights), while ignoring delays less than 4 minutes.

A. Bastas 35

Temporal Abstraction for Hierarchical Reinforcement Learning in Air Traffic Management

• Learning Curves: These curves show per methods’ application episode the aver-

age delay per flight in the evaluation case, as agents learn their policies. As algo-

rithms converge to solutions, the number of hotspots should be reduced and even-

tually reach to zero, signifying the computation of a solution, while the average delay

should be reduced. Therefore, the speed of reaching that point (zero hotspots) and

the round at which methods stabilize agents’ joint policy (remaining to zero hotspots

and to a specific value for flights’ average delay - without oscillating between non-

solutions and/or solutions, and/or different average delay values) signify the compu-

tational efficiency of the method to reach solutions. It must be noted that, in case a

method cannot reach a solution for a specific case, it may converge to a joint policy

that do not resolve all hotspots.

• Distribution of delays to flights: To show how delays are distributed to flights, we

provide histograms showing the number of flights with (a) 5-9 minutes of delay, (b)

10-29 minutes of delay, (c) 30-59 minutes of delay, etc. Of course, if it happens that

MaxDelay is less than 60 min, 30 min etc., the histogram does not provide data for

the corresponding slots of delays.

Results reported are averages of results computed by 10 independent experiments per

method.

7.2. Methods’ configuration

7.2.1. Descending Timesteps (DT)

Table 7.1: Configuration table for DT method with 2 levels

level asL tsL
1 10 10

2 5 1

Table 7.1 depicts the asL and tsL values per level for the Descending Timesteps (DT)

method and for the 2 levels case.

Table 7.2: Configuration table for DT method with 3 levels

level asL tsL
1 10 10

2 5 5

3 5 1

Table 7.2 depicts the asL and tsL values per level for the Descending Timesteps (DT)

method and for the 3 levels case.

7.2.2.Other Methods

Table 7.3 depicts the asL, tsL and dL values per level for the Unitary Timestep, Limit

State Space (UTLSS), Unitary Timestep, Concurrently Update Levels, Limit State Space

A. Bastas 36

Temporal Abstraction for Hierarchical Reinforcement Learning in Air Traffic Management

Table 7.3: Configuration table for methods using unitary timestep (tsL = 1) at all levels for the 2
levels case

level asL tsL dL

1 10 1 -

2 1 1 10

(UTCULSS), Unitary Timestep, Limit State Space, No Transfer Experience (UTLSSNET)

methods and for the 2 levels case.

Table 7.4: Configuration table for methods using unitary timestep (tsL = 1) at all levels for the 3
levels case

level asL tsL dL

1 10 1 -

2 5 1 10

3 1 1 5

Table 7.4 depicts the asL, tsL and dL values per level for the Unitary Timestep, Limit

State Space (UTLSS), Unitary Timestep, Concurrently Update Levels, Limit State Space

(UTCULSS), Unitary Timestep, Limit State Space, No Transfer Experience (UTLSSNET)

methods and for the 3 levels case.

7.3. Efficiency of the methods

(a) Average Delay (b) Hotspots

Figure 7.1: Result of 10 independent experiments. The learning curves given two levels and 10k

episodes at each level, showing how agents manage to learn joint policies to resolve DCB

problems, while reducing the average delays for all flights. The x axis corresponds to the

episodes, while the y axis to the average delay per flight case (a) or the hotspots case (b).

Learning curves presented in Fig. 7.1 depict how given two levels and 10000 episodes at

each level, agents manage to learn joint policies to resolve DCB problems, while reducing

the average delays for all flights.

Learning curves presented in Fig. 7.1a and 7.2a depict how, given two and three levels

correspondingly and 10000 episodes at each level, agents manage to learn to reduce the

A. Bastas 37

Temporal Abstraction for Hierarchical Reinforcement Learning in Air Traffic Management

average delay per flight: The methods converge effectively, but there is significant differ-

ence regarding the computational efficiency between methods that limit the state space

explored and methods that do not.

More specifically, given two levels, methods that limit the state space explored converge

effectively quite early, around episode 13000, compared to the Descending Timesteps

(DT) method that converges around episode 18800, as Fig. 7.1a shows.

(a) Average Delay (b) Hotspots

Figure 7.2: Result of 10 independent experiments. The learning curves given three levels and 10k

episodes at each level, showing how agents manage to learn joint policies to resolve DCB

problems, while reducing the average delays for all flights. The x axis corresponds to the

episodes, while the y axis to the average delay per flight case (a) or the hotspots case (b).

Learning curves presented in Fig. 7.2 depict how given three levels and 10000 episodes

at each level, agents manage to learn joint policies to resolve DCB problems, while reduc-

ing the average delays for all flights.

As depicted in Fig. 7.2a, given three levels, methods that limit the state space explored

converge effectively quite early, around episode 13000 at the second level and also around

episode 22500 at the third level, compared to the Descending Timesteps (DT) method that

converges around episode 28000.

As results show in Fig. 7.1b and Fig. 7.2b methods that use unitary time step and also limit

the state space almost eliminate hotspots before episode 10000, where as the Descend-

ing Timesteps (DT) method results to 0 hotspots approximately at the last 2500 episodes.

As a conclusion, methods that exploit state space limitation achieve faster convergence

compared to the Descending Timesteps (DT) method. Next, we reduce the number of

episodes for these methods in order to further assess their efficiency.

Learning curves presented in Fig. 7.3 depict how given three levels with 5000 episodes

at level 1 and 1500 episodes at levels 2 and 3, methods that limit the state space manage

to resolve DCB problems, while reducing the average delays for all flights.

As depicted in Fig. 7.3a, methods that exploit state space limitation converge effectively

quite early, before episode 5000 at the first level, around episode 6000 at the third level

and before episode 8000 at the third level.

As depicted in Fig. 7.3b methods result to 0 hotspots even when reducing the number of

episodes to 5000 at the first level and 1500 at the second and third levels. Next we re-

A. Bastas 38

Temporal Abstraction for Hierarchical Reinforcement Learning in Air Traffic Management

(a) Average Delay (b) Hotspots

Figure 7.3: Result of 10 independent experiments. The learning curves given three levels, 5000

episodes at level 1 and 1500 episodes at levels 2 and 3 for methods that limit the state space.

Showing how agents manage to learn joint policies to resolve DCB problems, while reducing the

average delays for all flights. The x axis corresponds to the episodes, while the y axis to the

average delay per flight case (a) or the hotspots case (b).

duce further the number of episodes at the first level at 3000 episodes.

(a) Average Delay (b) Hotspots

Figure 7.4: Result of 10 independent experiments. The learning curves given three levels, 3000

episodes at level 1 and 1500 episodes at levels 2 and 3 for methods that limit the state space.

Showing how agents manage to learn joint policies to resolve DCB problems, while reducing the

average delays for all flights. The x axis corresponds to the episodes, while the y axis to the

average delay per flight case (a) or the hotspots case (b).

Learning curves presented in Fig. 7.4 depict how given three levels with 3000 episodes

at level 1 and 1500 episodes at levels 2 and 3, methods that limit the state space manage

to resolve DCB problems, while reducing the average delays for all flights.

Results in Fig. 7.4a show that even though the first level is not able to converge, levels 2

and 3 achieve convergence.

As shown in Fig.7.4b 3000 episodes are not enough for methods to compute solutions

towards zero hotspots at the first level. Even under these circumstances the Unitary

Timestep,Concurrently Update Levels, Limit State Space (UTCULSS) method and the

Unitary Timestep, Limit State Space, No Experience Transfer (UTLSSNET) method man-

age to find a solution that results to 0 hotspots really early at the second level. Unfortu-

nately, this is not the case for the Unitary Timestep, Limit State Space (UTLSS) method

that results to 0.2 hotspots on average over 10 experiments.

A. Bastas 39

Temporal Abstraction for Hierarchical Reinforcement Learning in Air Traffic Management

7.4. Effectiveness of the methods to resolve imbalances

Delving into the quality of results, in the following paragraphs we present the average

delay, number of regulated flights, total delay and number of resulting hotspots reported

by each method and also in comparison with the non hierarchical Independent Learners

method presented in [1].

Table 7.5: Average over 10 independent experiments, hierarchical methods consist of 2 levels and

each level comprises of 10000 episodes. Average Delay per Flight, Number of Regulated Flights

Total Delay and Number of Resulting Hotspots as reported by each method and also in comparison

to the non hierarchical Independent Learners method presented in [1].

Method Average

Delay per

Flight

Number of

Regulated

Flghts

Total

Delay

Number of

Resulting

Hotspots

Non Hierarchical 1.866 461.6 10396.5 0

DT 1.789 474.5 9976.2 0

UTLSS 1.513 348.4 8440.4 0

UTCULSS 1.474 340.8 8213.7 0

UTLSSNET 1.376 329.3 7669.6 0

Table 7.5 shows the Average Delay per Flight, Number of Regulated Flights Total Delay

and Number of Resulting Hotspots as reported by each method and also in comparison

to the non hierarchical Independent Learners method presented in [1]. Hierarchical meth-

ods consist of 2 levels and each level comprises of 10000 episodes.

As reported in Table 7.5 all methods result to zero hotspots and hierarchical methods pro-

duce more qualitative solutions when utilizing 2 levels in terms of average delay per flight,

number of regulated flights and total delay. Also all methods that use unitary timestep and

limit the state space explored, significantly outperform the Descending Timesteps (DT)

method. The Unitary Timestep, Limit State Space, No Experience Transfer (UTLSSNET)

method seems to be the most dominant, achieving the best results regarding all metrics.

Table 7.6: Average over 10 independent experiments, hierarchical methods consist of 3 levels and

each level comprises of 10000 episodes. Average Delay per Flight, Number of Regulated Flights

Total Delay and Number of Resulting Hotspots as reported by each method and also in comparison

to the non hierarchical Independent Learners method presented in [1].

Method Average

Delay per

Flight

Number of

Regulated

Flghts

Total

Delay

Number of

Resulting

Hotspots

Non Hierarchical 1.866 461.6 10396.5 0

DT 1.841 496.4 10261.7 0

UTLSS 1.416 333.3 7892.8 0

UTCULSS 1.416 334.5 7886.0 0

UTLSSNET 1.251 288.1 6968.5 0

Table 7.6 shows the Average Delay per Flight, Number of Regulated Flights Total Delay

and Number of Resulting Hotspots as reported by each method and also in comparison

to the non hierarchical Independent Learners method presented in [1]. Hierarchical meth-

A. Bastas 40

Temporal Abstraction for Hierarchical Reinforcement Learning in Air Traffic Management

ods consist of 3 levels and each level comprises of 10000 episodes.

As reported in Table 7.6 all methods result to zero hotspots and hierarchical methods

produce more qualitative solutions when utilizing 2 levels in terms of average delay per

flight, number of regulated flights and total delay. The Descending Timesteps (DT) method

seems to produce less qualitative solutions compared to the two levels case. Also all

methods that use unitary timestep and limit the state space explored, significantly outper-

form the Descending Timesteps (DT) method. Again Unitary Timestep, Limit State Space,

No Experience Transfer (UTLSSNET) method seems to be the most dominant, achieving

the best results regarding all metrics.

As reported in tables 7.5 and 7.6 the Descending Timesteps (DT) method produces less

qualitative solutions regarding all metrics with 3 levels compared to the solutions produced

by 2 levels. All other hierarchical methods manage to significantly decrease the average

delay per flight, the number of flights and also the total delay when utilizing 3 levels, com-

pared to the results produced by 2 levels.

Next we present results regarding the average delay per flight, the number of regulated

flights, the total delay and the number of resulting hotspots for the cases where we reduce

significantly the number of episodes.

Table 7.7: Average over 10 independent experiments for the methods that use unitary timestep

also in comparison to the non hierarchical Independent Learners method presented in [1].

Hierarchical methods consist of 3 levels and utilize 8000 episodes in total. The first level

comprises of 5000 episodes while the second and third levels of 1500 episodes. Showing the

Average Delay per Flight, Number of Regulated Flights Total Delay and Number of Resulting

Hotspots as reported by each method.

Method Average

Delay per

Flight

Number of

Regulated

Flghts

Total

Delay

Number of

Resulting

Hotspots

Non Hierarchical 1.866 461.6 10396.5 0

UTLSS 1.411 319.1 7860.4 0

UTCULSS 1.411 316.7 7866.1 0

UTLSSNET 1.292 282.7 7194.1 0

Table 7.7 shows the Average Delay per Flight, Number of Regulated Flights Total Delay

and Number of Resulting Hotspots as reported by the methods that use unitary timestep

and also in comparison to the non hierarchical Independent Learners method presented

in [1]. Hierarchical methods consist of three levels and utilize 8000 episodes in total. The

first level comprises of 5000 episodes while the second and third levels of 1500 episodes.

As shown in Table 7.7, all methods result to zero hotspots. Also hierarchical methods out-

perform the non hierarchical regarding all metrics even with less episodes. We executed

the non hierarchical method for 10000 episodes while the hierarchical methods were exe-

cuted for 8000 episodes in total. Again the Unitary Timestep, Limit State Space, No Expe-

rience Transfer (UTLSSNET) method seems to be the most dominant, achieving the best

results regarding all metrics.

Table 7.8 shows the Average Delay per Flight, Number of Regulated Flights Total Delay

A. Bastas 41

Temporal Abstraction for Hierarchical Reinforcement Learning in Air Traffic Management

Table 7.8: Average over 10 independent experiments for the methods that use unitary timestep

also in comparison to the non hierarchical Independent Learners method presented in [1].

Hierarchical methods consist of 3 levels and utilize 6000 episodes in total. The first level

comprises of 3000 episodes while the second and third levels of 1500 episodes. Showing the

Average Delay per Flight, Number of Regulated Flights, Total Delay and Number of Resulting

Hotspots as reported by each method.

Method Average

Delay per

Flight

Number of

Regulated

Flghts

Total

Delay

Number of

Resulting

Hotspots

Non Hierarchical 1.866 461.6 10396.5 0

UTLSS 1.399 313.8 7804.7 0.2

UTCULSS 1.404 320.8 7829.8 0

UTLSSNET 1.288 280.5 7176.0 0

and Number of Resulting Hotspots as reported by the methods that use unitary timestep

and also in comparison to the non hierarchical Independent Learners method presented

in [1]. Hierarchical methods consist of three levels and utilize 6000 episodes in total. The

first level comprises of 3000 episodes while the second and third levels of 1500 episodes.

As shown in Table 7.8, all methods except the Unitary Timestep, Limit State Space

(UTLSS) method result to zero hotspots. Also hierarchical methods except the Unitary

Timestep, Limit State Space (UTLSS) method that results to 0.2 hotspots, outperform the

non hierarchical regarding all metrics even with less episodes. We executed the non hi-

erarchical method for 10000 episodes while the hierarchical methods were executed for

6000 episodes in total. Again the Unitary Timestep, Limit State Space, No Experience

Transfer (UTLSSNET) seems to be the most dominant, achieving the best results regard-

ing all metrics.

As reported in tables 7.7 and 7.8 all hierarchical methods reduce the Average Delay per

Flight and the Total Delay when utilizing 3000 episodes at the first level, compared to the

case where the first level comprises of 5000 episodes. Regarding the Number of Regu-

lated Flights, the Unitary Timestep, Limit State Space (UTLSS) and the Unitary Timestep,

Limit State Space, No Experience Transfer (UTLSSNET)methodsmanage to reduce them

whereas the Unitary Timestep Concurrently Update Levels, Limit State Space (UTCULSS)

method increases them when the first level comprises of 3000 episodes, in comparison

with the case where the first level comprises of 5000 episodes. Unfortunately as already

stated the Unitary Timestep, Limit State Space (UTLSS) method results to 0.2 hotspots

when it is executed for 3000 episodes at the first level. All other methods at all reported

cases manage to eliminate hotspots.

Further to the quality of solutions, Fig.7.5-Fig.7.6 provide the distribution of delays to

flights. All methods reduce drastically the number of regulated flights, while moving from

small to large delay intervals.

As depicted in Fig. 7.5 the Descending Timesteps (DT) and Unitary Timestep, Limit State

Space, No Experience Transfer (UTLSSNET) methods reduce the number of flights with

delay in the 60-81 interval when utilizing 3 levels, compared to the 2 levels case. Whereas

the Unitary Timestep, Limit State Space (UTLSS) and Unitary Timestep, Concurrently Up-

date Levels, Limit State Space (UTCULSS) methods increase the number of flights with

A. Bastas 42

Temporal Abstraction for Hierarchical Reinforcement Learning in Air Traffic Management

(a) 2 levels (b) 3 levels

Figure 7.5: The distribution of delays to flights for 2 (case (a)) and 3 (case (b)) levels and 10000

episodes at each level. The x axis shows the delay imposed while the y axis corresponds to the

number of flights.

delay in the 60-81 interval when utilizing 3 levels, in comparison with the 2 levels case.

(a) 5000 episodes at first level (b) 3000 episodes at first level

Figure 7.6: The distribution of delays to flights for methods that utilize unitary timestep and

limitation of the state space explored, with 3 levels and 2 levels (case (b)). The first level in case

(a) comprises of 5000 episodes, whereas in case (b) it comprises of 3000 episodes, while the

second and third levels of 1500 episodes. The x axis shows the delay imposed while the y axis

corresponds to the number of flights.

As depicted in Fig. 7.6 the Unitary Timestep, Concurrently Update Levels, Limit State

Space (UTCULSS) method reduces the number of flights with delay in the 60-81 interval

when utilizing 3000 episodes at the first level, compared to the 5000 episodes at first level

case. Whereas the Unitary Timestep, Limit State Space (UTLSS) and Unitary Timestep,

Limit State Space, No Experience Transfer (UTLSSNET) methods increase the number

of flights with delay in the 60-81 interval when utilizing 3000 episodes at the first level, in

comparison with the 5000 episodes at first level case.

A. Bastas 43

Temporal Abstraction for Hierarchical Reinforcement Learning in Air Traffic Management

8. CONCLUSIONS AND FURTHER WORK

In this thesis we formulated the problem of resolving demand-capacity imbalances in the

ATM as a hierarchical multiagent Markov Decision Process (MA-MDP) at multiple levels

of abstraction.

We also explored the effectiveness of alternative hierarchical multiagent reinforcement

learning methods and alternative schemes of transferring experience between levels, to-

wards reducing delays and number of delayed flights. We demonstrated the effectiveness

of our methods by evaluating them on one of the hardest real-world scenarios available

to us. Experimental results show the potential of the proposed methods, in terms of ef-

ficiency (i.e. speed of convergence) and effectiveness (in terms of quality of solutions

achieved) also compared to non hierarchical state of the art methods presented in [1].

By exploiting state-action abstractions we managed to achieve faster convergence and

produce more qualitative solutions compared to non hierarchical state of the art meth-

ods presented in [1]. The DT method was outperformed by methods using unitary time

step and limitation of the state space. Methods using unitary time step manage to gather

experience to an abstract state regarding many ground states that abstract to it. By do-

ing so abstract levels navigate to more promising parts of the state space compared to

the Descending Timesteps (DT) method. By limiting the state space based on the solution

provided by the previous level we were able to achieve faster convergence and more thor-

ough exploration of promising parts of the state space. According to experimental results

the Unitary Timestep, Limit State Space, No Experience Transfer (UTLSSNET) method

achieved the most qualitative results. By working independently of the experience gained

at previous levels this method was able to achieve better exploration in relation to other

methods, as the exploration of the other methods was biased by the Q-values towards the

solution of the previous level. Thus in order to transfer effectively and exploit experience

gained at previous levels we should consider more sophisticated methods.

A direction of future work is to consider methods that assign weights while transferring the

Q values between levels, depending on the distance between corresponding states sLi
and sL+1

i . A possible approach is kernel-based function approximation methods. Such

methods utilize kernel functions to numerically express how relevant knowledge about

any state is to any other state.

Another possible direction of future work is to run multiple instances of each level and ag-

gregate the produced Q tables before transferring the experience to the next level. As in-

stances will probably explore different parts of the state space, we hope to achieve more

thorough exploration of the state space and thus produce more qualitative solutions com-

pared to methods presented in this thesis and in [1].

A. Bastas 44

Temporal Abstraction for Hierarchical Reinforcement Learning in Air Traffic Management

LIST OF ABBREVIATIONS

AI Artificial Intelligence

RL Reinforcement Learning

MA Multiagent

MARL Multiagent Reinforcement Learners

H-MARL Hierarchical Multiagent Reinforcement Learners

ATM Air Traffic Management

TBO Trajectory Based Operations

DCB Demand Capacity Balance

MDP Markov Decision Process

MA-MDP Multiagent-Markov Decision Process

IRL Independent Reinforcement Learners

DT Descending Timesteps

UTLSS Unitary Timestep, Limit State Space

UTCULSS Unitary Timestep, Concurrently Update Levels, Limit State Space

UTLSSNET Unitary Timestep, Limit State Space, No Experience Transfer

TDC Total Duration in Congestions

DC Delay Cost

A. Bastas 45

Temporal Abstraction for Hierarchical Reinforcement Learning in Air Traffic Management

REFERENCES

[1] G. Vouros, T. Kravaris, A. Bastas, K. Blekas, C. Spatharis, J. Manuel Cordero Garcia, G.Andrienko, and

N.Andrienko. Resolving congestions in the air traffic management domain via multiagent reinforcement

learning methods.

[2] Gennady Andrienko, Natalia Andrienko, Peter Bak, Daniel Keim, and Stefan Wrobel. Visual analytics

of movement. Springer Science & Business Media, 2013.

[3] Sam Devlin, Logan Yliniemi, Daniel Kudenko, and Kagan Tumer. Potential-based difference rewards

for multiagent reinforcement learning. In Proceedings of the 2014 international conference on Au-

tonomous agents and multi-agent systems, pages 165–172. International Foundation for Autonomous

Agents and Multiagent Systems, 2014.

[4] Robert W Rosenthal. A class of games possessing pure-strategy nash equilibria. International Journal

of Game Theory, 2(1):65–67, 1973.

[5] Andrew J Cook and Graham Tanner. European airline delay cost reference values. 2015.

[6] Eurocontrol. Air traffic flow and capacity management (atfcm), 2011.

[7] Carlos Guestrin, Michail Lagoudakis, and Ronald Parr. Coordinated reinforcement learning. In ICML,

volume 2, pages 227–234. Citeseer, 2002.

[8] Jelle R Kok and Nikos Vlassis. Collaborative multiagent reinforcement learning by payoff propagation.

Journal of Machine Learning Research, 7(Sep):1789–1828, 2006.

[9] Collaborative reinforcement learning for resolving hotspots in the air traffic management domain. Mas-

ter’s thesis, National and Kapodistrian University of Athens, 2017.

[10] Lihong Li, Thomas J Walsh, and Michael L Littman. Towards a unified theory of state abstraction for

mdps. In ISAIM, 2006.

[11] Nicholas K Jong and Peter Stone. State abstraction discovery from irrelevant state variables. In IJCAI,

volume 8, pages 752–757, 2005.

[12] Xue Bin Peng, Glen Berseth, KangKang Yin, and Michiel Van De Panne. Deeploco: Dynamic loco-

motion skills using hierarchical deep reinforcement learning. ACM Transactions on Graphics (TOG),

36(4):41, 2017.

[13] George Konidaris and Andrew G Barto. Efficient skill learning using abstraction selection. In IJCAI,

volume 9, pages 1107–1112, 2009.

[14] Shie Mannor, Ishai Menache, Amit Hoze, and Uri Klein. Dynamic abstraction in reinforcement learning

via clustering. InProceedings of the twenty-first international conference onMachine learning, page 71.

ACM, 2004.

[15] Amy McGovern and Andrew G Barto. Automatic discovery of subgoals in reinforcement learning using

diverse density. 2001.

[16] Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A framework

for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–211, 1999.

[17] Tejas D Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Josh Tenenbaum. Hierarchical deep

reinforcement learning: Integrating temporal abstraction and intrinsic motivation. InAdvances in neural

information processing systems, pages 3675–3683, 2016.

[18] Thomas G Dietterich. Hierarchical reinforcement learning with the maxq value function decomposition.

Journal of Artificial Intelligence Research, 13:227–303, 2000.

[19] Natalia Hernandez-Gardiol and Sridhar Mahadevan. Hierarchical memory-based reinforcement learn-

ing. In Advances in Neural Information Processing Systems, pages 1047–1053, 2001.

A. Bastas 46

Temporal Abstraction for Hierarchical Reinforcement Learning in Air Traffic Management

[20] Csaba Szepesvari, Richard S Sutton, Joseph Modayil, Shalabh Bhatnagar, et al. Universal option

models. In Advances in Neural Information Processing Systems, pages 990–998, 2014.

[21] Jonathan Sorg and Satinder Singh. Linear options. In Proceedings of the 9th International Confer-

ence on Autonomous Agents and Multiagent Systems: volume 1-Volume 1, pages 31–38. Interna-

tional Foundation for Autonomous Agents and Multiagent Systems, 2010.

[22] Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function approximators.

In International Conference on Machine Learning, pages 1312–1320, 2015.

[23] Daniel Rasmussen, Aaron Voelker, and Chris Eliasmith. A neural model of hierarchical reinforcement

learning. PloS one, 12(7):e0180234, 2017.

[24] Benjamin Van Roy. Planning Under Uncertainty in Complex Structured Environments. PhD thesis, Ph.

D. Dissertation, Massachusetts Institute of Technology, 1998.

A. Bastas 47

	INTRODUCTION
	PROBLEM SPECIFICATION
	Data Sources

	RELATED WORK
	HIERARCHICAL MULTIAGENT REINFORCEMENT LEARNING
	The Hierarchical MDP Framework

	REWARD FUNCTION
	INDEPENDENT Q-LEARNERS AND INDEPENDENT HIERARCHICAL Q-LEARNERS
	Independent Q-Learners
	Independent Hierarchical Q-Learners
	Descending Timesteps (DT)
	Unitary Timestep, Limit State Space (UTLSS)
	Unitary Timestep, Concurrently Update Levels, Limit State Space (UTCULSS)
	Unitary Timestep, Limit State Space, No Experience Transfer (UTLSSNET)

	RESULTS ON SCENARIOS AND COMPARISON BETWEEN VERSIONS AND WITH OTHER METHODS
	Evaluation Criteria
	Methodsâ•Ž configuration
	Descending Timesteps (DT)
	Other Methods

	Efficiency of the methods
	Effectiveness of the methods to resolve imbalances

	CONCLUSIONS AND FURTHER WORK
	LIST OF ABBREVIATIONS

