
NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

UNDERGRADUATE THESIS

Scanning native binaries to resolve unsoundness in static
analysis of mixed Java-native code

Leonidas S. Triantafyllou

Supervisors: Yannis Smaragdakis, Professor NKUA
George Fourtounis, Research Associate NKUA

ATHENS

OCTOBER 2019

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Σάρωση δυαδικών αρχείων για πληρέστερη στατική ανάλυση
μικτού Java-native κώδικα

Λεωνίδας Σ. Τριανταφύλλου

Επιβλέποντες: Γιάννης Σμαραγδάκης, Καθηγητής ΕΚΠΑ
Γιώργος Φουρτούνης, Ερευνητικός Συνεργάτης ΕΚΠΑ

ΑΘΗΝΑ

ΟΚΤΩΒΡΙΟΣ 2019

UNDERGRADUATE THESIS

Scanning native binaries to resolve unsoundness in static analysis of mixed Java-native
code

Leonidas S. Triantafyllou
S.N.: 1115201400202

SUPERVISORS: Yannis Smaragdakis, Professor NKUA
George Fourtounis, Research Associate NKUA

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Σάρωση δυαδικών αρχείων για πληρέστερη στατική ανάλυση μικτού Java-native κώδικα

Λεωνίδας Σ. Τριανταφύλλου
Α.Μ.: 1115201400202

ΕΠΙΒΛΕΠΟΝΤΕΣ: Γιάννης Σμαραγδάκης, Καθηγητής ΕΚΠΑ
Γιώργος Φουρτούνης, Ερευνητικός Συνεργάτης ΕΚΠΑ

ABSTRACT

Many real-world applications contain native code written in C and/or C++, which interacts
with Java code. Analyzing native files, it is possible to estimate how Java code is called
by native code and furthermore resolve the unsoundness in static analyses of such
applications.

We present an analysis that finds Java method calls in native code by scanning
disassembled binary files of native code. Themain challenge in analyzing these binary files
is the difficulty of finding function boundaries in order to determine which native function
calls which Java method of the same application.

The analysis was written in the Java and Datalog languages and is based on the Doop
framework. Specifically, the implementation of a Java utility for scanning binary files
combined with a specific analysis logic in Datalog demonstrates Doop’s capabilities in
creating concise and expressive static analyses.

SUBJECT AREA: Static program analysis

KEYWORDS: static program analysis, doop framework, java native interface, java,
datalog

ΠΕΡΙΛΗΨΗ

Πολλές εφαρμογές πραγματικού κόσμου σε Java περιέχουν εγγενή κώδικα γραμμένο σε
C και/ή C++, ο οποίος αλληλεπιδρά με τον κώδικα Java. Αν αναλύσουμε τα εγγενή αρχεί-
α, είναι δυνατόν να υπολογίσουμε τον τρόπο με τον οποίο ο κώδικας Java καλείται από
τον εγγενή κώδικα και επιπλέον να επιλύσουμε την αβεβαιότητα στις στατικές αναλύσεις
τέτοιων εφαρμογών.

Παρουσιάζουμε μια ανάλυση η οποία βρίσκει κλήσεις μεθόδων Java σε εγγενή κώδικα με
σάρωση αποσυναρμολογημένων δυαδικών αρχείων εγγενούς κώδικα. Η κύρια πρόκλη-
ση στην ανάλυση αυτών των δυαδικών αρχείων είναι η δυσκολία εύρεσης ορίων μεθόδων
προκειμένου να βρεθεί ποια εγγενής μέθοδος καλεί ποιες μεθόδους Java της ίδιας εφαρ-
μογής.

Η ανάλυση γράφτηκε σε γλώσσα Java και Datalog και βασίζεται στο Doop framework.
Συγκεκριμένα, η υλοποίηση ενός Java utility για τη σάρωση δυαδικών αρχείων σε συν-
δυασμό με μια συγκεκριμένη λογική ανάλυσης σε Datalog επιδεικνύει τις δυνατότητες του
Doop στη δημιουργία περιεκτικών και εκφραστικών στατικών αναλύσεων.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Στατική ανάλυση προγραμμάτων

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: στατική ανάλυση προγραμμάτων, doop framework, java native
interface, java, datalog

To my family.

ACKNOWLEDGMENTS

I would like to express my gratitude to prof. Yannis Smaragdakis for suggesting the idea
of my thesis and for giving me the chance to work on such an interesting topic.

I would also like to thank both my supervisors, Yannis Smaragdakis and George
Fourtounis for their motivation and their continuous support by sharing their expertise on
the subject and providing help and suggestions throughout this project.

October 2019

CONTENTS

PREFACE . 14

1. INTRODUCTION . 15

2. BACKGROUND . 16

2.1 Native Code Development in Android Java Applications 16
2.1.1 Java Native Interface . 16
2.1.2 ABI Management . 18
2.1.3 Android Native Development Kit . 18

2.2 Points-To Analysis in Datalog . 19

3. NATIVE SCANNER . 21

3.1 Packed Files in APK Files . 21

3.2 HelloJNI Example . 21

3.3 Executable and Linkable Format . 24

3.4 Disassembling Native Libraries . 25
3.4.1 X86 Native Libraries . 26
3.4.2 X86_64 Native Libraries . 28
3.4.3 AArch64 Native Libraries . 30
3.4.4 Armeabi Native Libraries . 31
3.4.5 Armeabiv7a Native Libraries . 32

3.5 Possible Java Method Calls . 32

3.6 Mock Objects . 34

3.7 Applicability . 35

4. EXPERIMENTAL EVALUATION . 36

4.1 App-reachable Methods Increase . 36

4.2 Heap Snapshot vs. Our Approach . 37

4.3 Time Increase . 37

5. RELATED WORK . 38

6. CONCLUSIONS . 39

ACRONYMS AND ABBREVIATIONS . 40

REFERENCES . 41

LIST OF FIGURES

Figure 1: ”Hello World” Native Function Example. 16

Figure 2: Call back Java method from native function example. 18

Figure 3: Simple Datalog example for IDB rules. 19

Figure 4: Command to decompress .xz files. 21

Figure 5: Command to decompress .zstd files. 21

Figure 6: Code of HelloJNI.java example file. 22

Figure 7: Code of HelloJNI.c example file. 23

Figure 8: Sections of armeabi libhello.so. 24

Figure 9: Command to dump contents of the .rodata section as strings. . . . 25

Figure 10: Dumping contents of the .rodata section of armeabi libhello.so as
strings. 25

Figure 11: Decode (demangle) low-level symbol names into user-level names. 25

Figure 12: Demangled symbols of x86_64 HelloJNI library. 26

Figure 13: Objdump disassembling function of x86 native code. 27

Figure 14: Disassembled function Java_HelloJNI_sayHello of x86 libhello.so. . 27

Figure 15: Information about the .rodata and .got.plt section of x86
libhello.so. 27

Figure 16: Dumping contents of the .rodata section of x86 libhello.so as strings. 27

Figure 17: Disassembled function Java_HelloJNI_sayHello of x86 libhello.so
compiled with -shared option. 28

Figure 18: GDB disassembling function of x86_64 native code. 29

Figure 19: Disassembled function Java_HelloJNI_sayHello of x86_64
libhello.so. 29

Figure 20: Information about the .rodata section of x86_64 libhello.so. 29

Figure 21: Dumping contents of the .rodata section of x86_64 libhello.so as
strings. 29

Figure 22: Disassembled function Java_HelloJNI_sayHello of AArch64
libhello.so. 30

Figure 23: Information about the .rodata section of AArch64 libhello.so. . . . 30

Figure 24: Dumping contents of the .rodata section of AArch64 libhello.so as
strings. 30

Figure 25: Disassembling HelloJNI native library using objdump. 31

Figure 26: Disassembled function java_HelloJNI_sayHello of armeabi library. . 31

Figure 27: Datalog rule to find possible Java method calls. 33

Figure 28: Datalog rule to find possible Java method calls using an offset. . . . 33

Figure 29: Datalog rule for reachability of methods called from native code. . . 34

Figure 30: Datalog rules to mock arguments and ”this” of methods called from
native code. 34

LIST OF TABLES

Table 1: Java (JNI) and native code type mapping 17

Table 2: Java Method Signatures Examples 17

Table 3: Sizes of test APK files . 36

Table 4: App-reachable methods increase over base 36

Table 5: Base Recall and Recall of test APK files 37

Table 6: Analysis time increase . 37

Table 7: Fact generation time increase . 37

PREFACE

This thesis aims to make an assessment of how Java code is called by native code
of the same application in order to resolve unsoundness in the static analysis of such
applications. It was developed as my undergraduate thesis between March 2019 and
October 2019 at the Department of Informatics and Telecommunications of the University
of Athens.

Scanning native binaries to resolve unsoundness in static analysis of mixed Java-native code

1. INTRODUCTION

Pointer Analysis or Points-to Analysis [1] is a fundamental static program analysis. The
objective of this analysis is to compute an approximation of the set of program objects
referred to by a pointer variable or expression. Doop [2] is a declarative framework for static
analysis that performs Pointer Analysis for Java programs, using the Datalog language.

Many Android applications cannot be implemented entirely in Java. Sometimes it is
necessary to handle different platforms and support their features or use existing non-
Java libraries without rewriting them. There are also situations in which the performance
of an Android application is improved by using code developed in a different programming
language that allows to overcome specific Java constraints. As a result, there are parts of
Java applications that need to be programmed in other high-level languages (HLL), most
likely in C and/or C++, and are included in binaries called native libraries.

In this thesis, we develop a Java utility in order to find Java method calls in disassembled
native binaries of applications and to estimate how Java code is called by native code.
This estimation is important for making the analysis of Doop framework more complete.

The rest of the thesis is organized as follows:

1. In Chapter 2 we (a) give an overview of the development of Android applications
containing native code and (b) introduce the reader to pointer analysis in the Doop
framework.

2. In Chapter 3 we describe the process of finding Java method calls in native libraries
using the Doop framework.

3. In Chapter 4 we present our experimental evaluation.

4. In Chapter 5 we present other important tools related to scanning native libraries.

5. In Chapter 6 we summarize our conclusions.

L. Triantafyllou 15

Scanning native binaries to resolve unsoundness in static analysis of mixed Java-native code

2. BACKGROUND

This chapter gives an overview of (a) developing Android Java applications containing
native code (Section 2.1) and (b) declarative points-to analysis in the Doop framework
(Section 2.2).

2.1 Native Code Development in Android Java Applications

This section shows how Java applications can bundle native code on Android.We describe
three core technologies: the Java Native Interface, the operating system ABI, and the
Android Native Development Kit.

2.1.1 Java Native Interface

The Java Native Interface (JNI) [3] is an interface that enables native libraries written in
other programming languages such as C and C++ to communicate with the Java code
of the application inside the Java Virtual Machine (JVM). JNI allows programmers to use
native code in their applications without requiring any change to the Java VM, whichmeans
that the native code can run inside any Java VM that offers JNI support. Via JNI, it is
possible to create new Java objects and update them in native code functions, call Java
methods of the same application from native code, and load classes and inspect their
information.

In order to write a native library for an application, programmers need to be familiar with
JNI. First of all, there is a specific formula for defining native code functions which is shown
in Figure 1. When a Java method calls a native code function, in addition to Java variable
arguments, it also has to pass two other arguments, a JNIEnv pointer for a reference to
JNI environment and a jobject for a reference to “this” Java object [4]. The JNIEnv type is
a pointer to a structure storing all JNI function pointers, which allow instantiation and use
of objects, conversion between native strings and Java strings, and other functionality.

Naming Convention
Java_{package_and_classname}_{function_name}(JNI_arguments).
The dot in package name is replaced by underscore.

1 JNIEXPORT void JNICALL Java_JNIExample_helloWorld(JNIEnv *env, jobject thisObj) {
2 printf("Hello World!\n");
3 return;
4 }

Figure 1: ”Hello World” Native Function Example.

In JNI there are equivalent types that correspond to Java types. For example, for the

L. Triantafyllou 16

Scanning native binaries to resolve unsoundness in static analysis of mixed Java-native code

Java primitive types boolean, byte, char, short, int, long, float, JNI defines jboolean,
jbyte, jchar, jshort, jint, jlong, jfloat, jdouble, and jchar respectively. Other basic
types are jstring for java.lang.String, jobject for java.lang.Object and jclass
for java.lang.Class. In addition, JNI also supports Java arrays using the jarray type
and there are nine type of arrays which are jbooleanArray, jbyteArray, jcharArray,
jshortArray, jintArray, jlongArray, jfloatArray, jdoubleArray, and an array of
objects jobjectArray.

The communication between Java and native code can be implemented in a hassle-free
way, as the JNI interface provides all the necessary functions. When a native function is
called by the Java code, the arguments that are passed to it are in JNI types. JNI types
are converted or copied to local native types, which are used from the native functions.
The returned value at the end of a function’s execution is of a JNI type.

When using native code in an application, it is possible to call back Java methods from
native functions. In order to call back a Java method, the programmer needs to specify its
name and signature. The name is the Java method’s name, whereas the signature is a
string of the form (parameters)return-value of the Java method.

Table 1: Java (JNI) and native code type mapping.

C type Java type Type signature
unsigned char jboolean Z
signed char jbyte B
unsigned short jchar C
short jshort S
int jint I
long jlong J
float jfloat F
double jdouble D
void void V

Taking into consideration the type signatures, it is possible to create method signatures.
Some examples of methods and their signatures are given in Table 2:

Table 2: Java Method Signatures Examples.

Method Signature
void method1() ()V
int method2(long) (J)I
void method3(String) (Ljava/lang/String;)V
String method4(String, int[]) (Ljava/lang/String;[I)Ljava/lang/String;

The process of calling back a method starts by getting a reference to the object’s class
by using method GetObjectClass() [4]. Then, the method name and signature are given
as arguments in the function GetMethodID() of the class reference and the method id

L. Triantafyllou 17

Scanning native binaries to resolve unsoundness in static analysis of mixed Java-native code

is returned. The method id can be used to call the Java method using the right function
for the specific case, which are CallVoidMethod(), Call<Primitive-type>Method() and
CallObjectMethod(). As for the type of the returned value of the called method, it is void,
<Primitive-type> and Object, respectively. An example of the process for calling a simple
Java method that takes no arguments and returns no value through native code is shown
in Figure 2.

1 JNIEXPORT void JNICALL Java_JNIExample_callBack(JNIEnv *env, jobject thisObj) {
2 jclass cls = (*env)->FindClass(env, "JNIExample");
3 jmethodID helloWorldMethod = (*env)->GetMethodID(env, cls, "helloWorld",

"()V");
4 jint i = (*env)->CallIntMethod(env, obj, helloWorldMethod, obj, obj);
5 printf("callBack(): i = %d\n", i);
6 }

Figure 2: Call back Java method from native function example.

2.1.2 ABI Management

Android is an operating system that is designed primarily for handheld devices, such as
smartphones. To run an application on such a device, it is necessary to define an interface
that determines how the application code will interact with the device. This interface in the
case of Android is called the Application Binary Interface (ABI). Android supports many
different instruction sets because of the different CPUs it is able to run on, resulting in
the existence of many different ABIs. An ABI contains information about the supported
information, such as the CPU instruction set, the endianness of memory, the format of
binaries, how system and code pass data, how system manages registers and stack in
function calls and the list of function symbols of the machine code. Examples of ABIs in
Android are armeabi, armeabi-v7, arm64-v8a, x86, and x86-64.

2.1.3 Android Native Development Kit

The Android Native Development Kit (NDK) [3] is a set of tools enabling programmers to
add C and C++ code in Android applications. This type of code is called native code and
its existence is useful for Android. The NDK can be used to build native static libraries and
dynamic or shared libraries [5]. Native code included in the application can interact with
the Java code of the same application using the Java Native Interface (JNI). Moreover,
at the time application is running, the Application Binary Interface (ABI) is responsible for
determining how the program in machine language instructions will be executed by the
CPU of the system. The NDK supports several architectures, such as x86, x86-64, 32-bit
ARM and AArch64 to name a few.

L. Triantafyllou 18

Scanning native binaries to resolve unsoundness in static analysis of mixed Java-native code

2.2 Points-To Analysis in Datalog

Datalog is a declarative logic-based programming language which is designed to be used
as a query language for deductive databases. Our analysis uses the Doop framework
for Datalog [2], which provides a rich set of points-to analyses (e.g. context insensitive,
call-site sensitive, object sensitive). However, because of the modular way of context
representation in the framework, code built upon any such analysis can be oblivious to
the exact choice of context (which is specified at runtime).

Doop’s defining feature is the use of Datalog for its analyses and its explicit representation
of relations as tables of a database (i.e., all tuples of a relation are represented as
an explicit table), instead of using Binary Decision Diagrams(BDDs), which have been
considered necessary for scalable points-to analysis in the past [6, 7].

Datalog is a great fit for the domain of program analysis and, as a consequence, has
been extensively used both for low-level [8, 9] and for high-level [10, 11] analyses. The
essence of Datalog is its ability to define recursive relations. Mutual recursion is the source
of all complexity in program analysis. For a standard example, the logic for computing a
call-graph depends on having points-to information for pointer expressions, which, in turn,
requires a call-graph. Such recursive definitions are common in points-to analysis.

Soot [12] is a framework that is used by Doop and is responsible for generating input facts
for an analysis as a pre-processing step. By using this framework, Doop expects as input
the bytecode form of a Java program, which means the original source is not needed but
only the compiled classes are necessary. This is important because it enables the use of
libraries whose source code is not public. The set of asserted facts for a program is called
its EDB (Extensional Database) in Datalog semantics. The relations that are generated
and directly produced from the input Java program, and any relation data added to the
asserted facts by user defined rules, constitute the EDB predicates.

Following the pre-processing step a simple pointer analysis can be expressed entirely in
Datalog as a transitive closure computation:

1 VarPointsTo(?heap, ?var) :- AssignHeapAllocation(?heap, ?var).
2 VarPointsTo(?heap, ?to) :- Assign(?to, ?from), VarPointsTo(?heap, ?from).

Figure 3: Simple Datalog example for IDB rules.

The Datalog code of the example in Figure 3 consists of two simple rules known as IDB
(Intensional Database) rules in Datalog semantics. These two rules are used to establish
new facts from a conjunction of facts that are already established. The rule of the first
line constitutes the base case of the computation and states that upon the assignment
of an allocated heap object to a variable, this variable may point to that heap object. The
second rule is the recursive case which states that if the value of a variable is assigned to

L. Triantafyllou 19

Scanning native binaries to resolve unsoundness in static analysis of mixed Java-native code

another variable, then the second variable may point to any heap object the first variable
may point to. For instance, the recursive rule of line 2 states that if Assign(?to, ?from)
and VarPointsTo(?heap, ?from) are both true for some values of ?from, ?to and ?heap,
then that VarPointsTo(?heap, ?to) is also true.

L. Triantafyllou 20

Scanning native binaries to resolve unsoundness in static analysis of mixed Java-native code

3. NATIVE SCANNER

Static disassembly is a problem that has not been solved completely yet [13]. It is a difficult
process because its capabilities and limitations are not always defined in a clear way or
are not fully understood by the researchers. Furthermore, binary files may contain complex
constructs, such as overlapping code and inline data in executable regions. For example,
function boundaries is a construct that cannot be recovered accurately.

In this chapter we describe the tools we use in our analysis and the heuristic techniques
of the process we follow in order to find Java method calls in the native code of the same
application. As we have already stated there are many different AΒΙs in Android (e.g.
armeabi, armeabi-v7, arm64-v8a, x86 and x86_64), so we use different disassembling
tools as the set of features provided by each tool differs for different ABIs. In our analysis,
we use different disassemblers to examine native libraries of the following architectures:
x86, x86_64, aarch64, armeabi and armeabi-v7a.

3.1 Packed Files in APK Files

Many APK files also offer support for packed files, which can contain native code. To be
more specific, files with extensions .xzs and .zstd that include native library code can be
decompressed and this code can also be scanned. Our analysis is able to analyze these
files in search for Java method calls. The commands to decompress .xzs (need to change
extension to .xz first) and .zstd files are shown in Figure 4 and Figure 5 respectively.

1 xz --decompress <xz_file>

Figure 4: Command to decompress .xz files.

1 zstd -d -o <zstd_file>

Figure 5: Command to decompress .zstd files.

3.2 HelloJNI Example

In order to find possible Java method calls in the native code of applications, we started
our analysis by disassembling a small modified example from an online tutorial [4] and
then we tested our utility in real-world applications. The example’s source code is found in
Figure 6 and Figure 7. By using a Toolchain provided with the Android NDK independently,
we were able to compile the C code and create native libraries in different architectures.

L. Triantafyllou 21

Scanning native binaries to resolve unsoundness in static analysis of mixed Java-native code

1 public class HelloJNI {
2 static {
3 String libName = "libhello.so";
4 URL url = HelloJNI.class.getResource("/" + libName);
5 try {
6 File tmpDir = Files.createTempDirectory("libhello").toFile();
7 tmpDir.deleteOnExit();
8 File libTmpFile = new File(tmpDir, libName);
9 libTmpFile.deleteOnExit();

10 try (InputStream in = url.openStream()) {
11 Files.copy(in, libTmpFile.toPath());
12 System.load(libTmpFile.getCanonicalPath());
13 }
14 } catch (IOException ex) {
15 System.err.println("Could not load " + libName);
16 }
17 }
18

19 // Declare a native method sayHello() that receives nothing and returns void
20 private native void sayHello();
21 private native Object newJNIObj();
22 private native void callBack(Object obj);
23

24 static Object sObj;
25

26 // Test Driver
27 public static void main(String[] args) {
28 HelloJNI hj = new HelloJNI();
29 hj.sayHello(); // invoke the native method
30 Object obj = hj.newJNIObj();
31 System.out.println(obj.toString());
32 sObj = hj.newJNIObj();
33 System.out.println(sObj.toString());
34

35 File f = new File(".");
36 FileSystem ufs = FileSystems.getDefault();
37 System.out.println("ufs.getClass() = " + ufs.getClass().getName());
38 String[] list = f.list();
39 System.out.println("== Contents of current dir ==");
40 for (String entry : list) {
41 System.out.println(entry);
42 }
43 hj.callBack(new Object());
44 }
45

46 public int helloMethod(Object obj1, Object obj2) {
47 System.out.println(obj1.hashCode());
48 System.out.println(obj2.hashCode());
49 return 1;
50 }
51 }

Figure 6: Code of HelloJNI.java example file.

L. Triantafyllou 22

Scanning native binaries to resolve unsoundness in static analysis of mixed Java-native code

1 #include <jni.h>
2 #include <stdio.h>
3

4 // Test method to inspect parts of the jobject data structure. This
5 // only examines the first two elements pointed to by <obj>, plus the
6 // first two elements pointed to in each case. We assume these pairs
7 // usually exist
8 // (https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-2.html#jvms-2.7).
9 void inspect_jobject(jobject obj) {

10 printf("obj = %p\n", obj);
11 int i, j;
12 for (i = 0; i < 2; i++) {
13 printf("obj[%d] = %p\n", i, (void*)((long*)obj)[i]);
14 for (j = 0; j < 2; j++)
15 printf("obj[%d][%d] = %p\n", i, j, (void*)((long**)obj)[i][j]);
16 }
17 }
18

19 // Implementation of native method sayHello() of HelloJNI class
20 JNIEXPORT void JNICALL Java_HelloJNI_sayHello(JNIEnv *env, jobject thisObj) {
21 inspect_jobject(thisObj);
22 printf("Hello World!\n");
23 return;
24 }
25

26 JNIEXPORT jobject JNICALL Java_HelloJNI_newJNIObj(JNIEnv *env, jobject thisObj) {
27 inspect_jobject(thisObj);
28 jclass cls = (*env)->FindClass(env, "HelloJNI");
29 jmethodID constructor = (*env)->GetMethodID(env, cls, "<init>", "()V");
30 return (*env)->NewObject(env, cls, constructor);
31 }
32

33 JNIEXPORT void JNICALL Java_HelloJNI_callBack(JNIEnv *env, jobject obj) {
34 inspect_jobject(obj);
35 jclass cls = (*env)->FindClass(env, "HelloJNI");
36 jmethodID helloMethod = (*env)->GetMethodID(env, cls, "helloMethod",

"(Ljava/lang/Object;Ljava/lang/Object;)I");
37 jint i = (*env)->CallIntMethod(env, obj, helloMethod, obj, obj);
38 printf("callBack(): i = %d\n", i);
39 }

Figure 7: Code of HelloJNI.c example file.

L. Triantafyllou 23

Scanning native binaries to resolve unsoundness in static analysis of mixed Java-native code

3.3 Executable and Linkable Format

Executable and Linkable Format (ELF) [14] is a file format for binaries, libraries, and core
files. The structure of an ELF file consists of two parts, the ELF header and the FILE
data. The ELF header contains valuable information about the file, whereas the FILE data
consists of the program headers or segments, the section headers or sections and the
data of the file. We are interested in the sections of the ELF file because in our analysis
we search for constant strings in the .rodata section of the FILE data [5].

A useful command which displays information about ELF format object files is the readelf
command [15]. This program can be used like objdump but its output is more detailed. By
using readelf, we can see the sections of the ELF file and information about every section
(size of section, offset align, etc).

1 There are 24 section headers, starting at offset 0x16d0:
2

3 Section Headers:
4 [Nr] Name Type Addr Off Size ES Flg Lk Inf Al
5 [0] NULL 00000000 000000 000000 00 0 0 0
6 [1] .note.android.ide NOTE 00000134 000134 000098 00 A 0 0 4
7 [2] .dynsym DYNSYM 000001cc 0001cc 0000c0 10 A 3 1 4
8 [3] .dynstr STRTAB 0000028c 00028c 0000cc 00 A 0 0 1
9 [4] .hash HASH 00000358 000358 000044 04 A 2 0 4

10 [5] .gnu.version VERSYM 0000039c 00039c 000018 02 A 2 0 2
11 [6] .gnu.version_d VERDEF 000003b4 0003b4 00001c 00 A 3 1 4
12 [7] .gnu.version_r VERNEED 000003d0 0003d0 000020 00 A 3 1 4
13 [8] .rel.dyn REL 000003f0 0003f0 000018 08 A 2 0 4
14 [9] .rel.plt REL 00000408 000408 000028 08 A 2 0 4
15 [10] .plt PROGBITS 00000430 000430 000050 00 AX 0 0 4
16 [11] .text PROGBITS 00000480 000480 000368 00 AX 0 0 4
17 [12] .ARM.exidx ARM_EXIDX 000007e8 0007e8 000008 08 AL 11 0 4
18 [13] .rodata PROGBITS 000007f0 0007f0 000098 01 AMS 0 0 1
19 [14] .fini_array FINI_ARRAY 00001f18 000f18 000008 00 WA 0 0 4
20 [15] .dynamic DYNAMIC 00001f20 000f20 0000e0 08 WA 3 0 4
21 [16] .data PROGBITS 00002000 001000 000004 00 WA 0 0 4
22 [17] .got PROGBITS 00002004 001004 000020 00 WA 0 0 4
23 [18] .comment PROGBITS 00000000 001024 000108 01 MS 0 0 1
24 [19] .note.gnu.gold-ve NOTE 00000000 00112c 00001c 00 0 0 4
25 [20] .ARM.attributes ARM_ATTRIBUTES 00000000 001148 000036 00 0 0 1
26 [21] .symtab SYMTAB 00000000 001180 0002b0 10 22 32 4
27 [22] .strtab STRTAB 00000000 001430 0001b5 00 0 0 1
28 [23] .shstrtab STRTAB 00000000 0015e5 0000eb 00 0 0 1

Figure 8: Sections of armeabi libhello.so.

In Figure 8, the starting address and the size of the .rodata section can be seen. We can
also use the readelf command to dump the contents of a specific section as strings. By
dumping the .rodata section, we are able to find the offset of every constant string used in
the native library and furthermore calculate its address by adding its offset to the starting

L. Triantafyllou 24

Scanning native binaries to resolve unsoundness in static analysis of mixed Java-native code

address of the .rodata section (Figure 9). The result of dumping the .rodata section of
our example is represented in Figure 10.

1 readelf -p .rodata libhello.so

Figure 9: Command to dump contents of the .rodata section as strings.

1 String dump of section '.rodata':
2 [0] obj = %p^J
3 [a] obj[%d] = %p^J
4 [18] obj[%d][%d] = %p^J
5 [2a] Hello World!^J
6 [38] HelloJNI
7 [41] <init>
8 [48] ()V
9 [4c] helloMethod

10 [58] (Ljava/lang/Object;Ljava/lang/Object;)I
11 [80] callBack(): i = %d^J

Figure 10: Dumping contents of the .rodata section of armeabi libhello.so as strings.

Then, we can use the disassembling tools to analyze native libraries and search for string
references in the disassembled code. We can also find in which native function the strings
are located.

3.4 Disassembling Native Libraries

The point of our analysis is to examine disassembled native libraries of real-word
applications in order to find constant strings that represent Java method names or Java
method signatures and then find possible Java method calls in native code. Depending
on the architecture of the native library we use different disassemblers. Our primary tools
are the GNU Project Debugger (GDB) and the GNU tools objdump and nm.

We start the analysis with GNU nm which is used to list symbols from object files. It can also
be used to demangle/decode low-level symbol names into user-level names. For example,
in C++ and Java it is possible to declare functions with the same name, but different types
of parameters (overloading). To ensure that these functions are distinguished, they are
given a unique low-level assembler name to be identified (mangling). A program, such
as c++filt, is necessary to demangle/decode these names into readable names for
programmers. An example of calling nm can be seen in Figure 11 while the respective
output is represented in Figure 12.

1 nm --demangle libhello.so

Figure 11: Decode (demangle) low-level symbol names into user-level names.

L. Triantafyllou 25

Scanning native binaries to resolve unsoundness in static analysis of mixed Java-native code

1 0000000000004038 b completed.7287
2 w __cxa_finalize@@GLIBC_2.2.5
3 0000000000001070 t deregister_tm_clones
4 00000000000010e0 t __do_global_dtors_aux
5 0000000000003e10 t __do_global_dtors_aux_fini_array_entry
6 0000000000003e18 d __dso_handle
7 0000000000003e20 d _DYNAMIC
8 000000000000134c t _fini
9 0000000000001120 t frame_dummy

10 0000000000003e08 t __frame_dummy_init_array_entry
11 0000000000002190 r __FRAME_END__
12 0000000000004000 d _GLOBAL_OFFSET_TABLE_
13 w __gmon_start__
14 0000000000002098 r __GNU_EH_FRAME_HDR
15 0000000000001000 t _init
16 0000000000001129 T inspect_jobject
17 w _ITM_deregisterTMCloneTable
18 w _ITM_registerTMCloneTable
19 000000000000129a T Java_HelloJNI_callBack
20 000000000000120f T Java_HelloJNI_newJNIObj
21 00000000000011f0 T Java_HelloJNI_sayHello
22 U printf@@GLIBC_2.2.5
23 U puts@@GLIBC_2.2.5
24 00000000000010a0 t register_tm_clones
25 0000000000004038 d __TMC_END__

Figure 12: Demangled symbols of x86_64 HelloJNI library.

The GNU Project debugger (GDB) is well known among programmers for the debugging
and disassembling capabilities it offers. GDB enables programmers to find how their
programs are executed and examine the stacktrace after a crash. Moreover, it can also
be used as a disassembler giving the ability to users to see the disassembled code of
their applications. GDB supports all the following languages: Ada, Assembly, C, C++, D,
Fortran, Go, Objective-C, OpenCL, Modula-2, Pascal and Rust. In our analysis, we use
GNU gdb (GDB) Fedora 8.2-6.fc29 (License GPLv3+: GNU GPL version 3 or later) for
disassembling x86_64 native libraries.

Another disassembler that we use for x86 and ARM native libraries is the GNU objdump.
The objdump is used to display information about object files like the readelf command
does, but it can also be used to provide the disassembled code of native libraries.

3.4.1 X86 Native Libraries

In our approach, we use the objdump disassembler to find string references in x86 native
libraries. In order to find these references we search for lea instructions and furthermore
for a specific pattern in the disassembled code. Figure 14 presents the disassembled code
of Java_HelloJNI_sayHello function of our libhello example.

L. Triantafyllou 26

Scanning native binaries to resolve unsoundness in static analysis of mixed Java-native code

1 objdump -j .text -d libhello.so

Figure 13: Objdump disassembling function of x86 native code.

1 00001228 <Java_HelloJNI_sayHello>:
2 1228: 55 push %ebp
3 1229: 89 e5 mov %esp,%ebp
4 122b: 53 push %ebx
5 122c: 83 ec 04 sub $0x4,%esp
6 122f: e8 45 01 00 00 call 1379 <__x86.get_pc_thunk.ax> # eax = 1234
7 1234: 05 cc 2d 00 00 add $0x2dcc,%eax # eax = 1234(eax) + 2dcc = 4000
8 1239: 83 ec 0c sub $0xc,%esp
9 123c: 8d 90 2a e0 ff ff lea -0x1fd6(%eax),%edx # eax(4000) - 1fd6 = 202A

10 1242: 52 push %edx
11 1243: 89 c3 mov %eax,%ebx
12 1245: e8 16 fe ff ff call 1060 <puts@plt>
13 124a: 83 c4 10 add $0x10,%esp
14 124d: 90 nop
15 124e: 8b 5d fc mov -0x4(%ebp),%ebx
16 1251: c9 leave
17 1252: c3 ret

Figure 14: Disassembled function Java_HelloJNI_sayHello of x86 libhello.so.

1 Sections
2 Idx Name Size VMA LMA File off Algn
3 ...
4 12 .rodata 00000094 00002000 00002000 00002000 2**2
5 ...
6 20 .got.plt 0000001c 00004000 00004000 00003000 2**2
7 ...

Figure 15: Information about the .rodata and .got.plt section of x86 libhello.so.

1 String dump of section '.rodata':
2 [0] obj = %p^J
3 [a] obj[%d] = %p^J
4 [18] obj[%d][%d] = %p^J
5 [2a] Hello World!
6 [37] HelloJNI
7 [40] ()V
8 [44] <init>
9 [4c] (Ljava/lang/Object;Ljava/lang/Object;)I

10 [74] helloMethod
11 [80] callBack(): i = %d^J

Figure 16: Dumping contents of the .rodata section of x86 libhello.so as strings.

L. Triantafyllou 27

Scanning native binaries to resolve unsoundness in static analysis of mixed Java-native code

From the disassembled function in Figure 14, we can see that there is a pattern that is
followed for the string references. The call instruction in line 6 of the code loads the address
1234 into the %eax register. This instruction is used in Position Independent Code [16] on
x86 and enables access to global objects that have a fixed offset from that register as
an offset. In line 7, the value 0x2dcc is added in the %eax register and the new value is
4000 which is the address of the .got.plt section as we can observe from the Figure 15.
Therefore, in line 9, there is a lea instruction that subtract the value 0x1fd6 from the %eax
register and the value of %eax register becomes 202a which is the address of ”Hello
World!” string. This can be easily verified if we subtract from %eax register the starting
address of .rodata section (15).The result of this arithmetic operation is 2a which is the
offset of ”Hello World!” string from the starting address of .rodata section (16).

It is worth noting that if we compile a native library with gcc and the option -shared instead
of -FPIC then the pattern we presented in the previous paragraph does not exist and the
addresses of the strings of the .rodata section can be found directly in the disassembled
code (Figure 17). In line 6, we can easily spot the reference to the string ”Hello World!”.
The -FPIC option can be used to build position independent code, so that a shared library
can be loaded at any address in memory.

1 000011e3 <Java_HelloJNI_sayHello>:
2 11e3: 55 push %ebp
3 11e4: 89 e5 mov %esp,%ebp
4 11e6: 83 ec 08 sub $0x8,%esp
5 11e9: 83 ec 0c sub $0xc,%esp
6 11ec: 68 2a 20 00 00 push $0x202a # string reference: "Hello World!"
7 11f1: e8 fc ff ff ff call 11f2 <Java_HelloJNI_sayHello+0xf>
8 11f6: 83 c4 10 add $0x10,%esp
9 11f9: 90 nop

10 11fa: c9 leave
11 11fb: c3 ret

Figure 17: Disassembled function Java_HelloJNI_sayHello of x86 libhello.so compiled with -shared
option.

3.4.2 X86_64 Native Libraries

In our analysis, we use GDB to disassemble x86_64 native libraries. GDB allows us to
disassemble whole binaries. Nevertheless, we can disassemble and examine functions in
isolation, as we know the names of the functions from the execution of the GNU nm. For
instance, we can use the argument “-ex” combined with the “disassemble” command and
the name of the function we want to disassemble as can be seen in Figure 18. The output
of the command is presented in Figure 19.

L. Triantafyllou 28

Scanning native binaries to resolve unsoundness in static analysis of mixed Java-native code

1 gdb -batch -ex "disassemble Java_HelloJNI_sayHello" libhello.so

Figure 18: GDB disassembling function of x86_64 native code.

1 Dump of assembler code for function Java_HelloJNI_sayHello:
2 0x00000000000011f0 <+0>: push %rbp
3 0x00000000000011f1 <+1>: mov %rsp,%rbp
4 0x00000000000011f4 <+4>: sub $0x10,%rsp
5 0x00000000000011f8 <+8>: mov %rdi,-0x8(%rbp)
6 0x00000000000011fc <+12>: mov %rsi,-0x10(%rbp)
7 0x0000000000001200 <+16>: lea 0xe23(%rip),%rdi # 0x202a
8 0x0000000000001207 <+23>: callq 0x1030 <puts@plt>
9 0x000000000000120c <+28>: nop

10 0x000000000000120d <+29>: leaveq
11 0x000000000000120e <+30>: retq
12 End of assembler dump.

Figure 19: Disassembled function Java_HelloJNI_sayHello of x86_64 libhello.so.

1 [Nr] Name Type Address Offset Size ...
2 ...
3 [13] .rodata PROGBITS 0000000000002000 00002000 0000000000000098 ...
4 ...

Figure 20: Information about the .rodata section of x86_64 libhello.so.

1 String dump of section '.rodata':
2 [0] obj = %p^J
3 [a] obj[%d] = %p^J
4 [18] obj[%d][%d] = %p^J
5 [2a] Hello World!
6 [37] HelloJNI
7 [40] ()V
8 [44] <init>
9 [50] (Ljava/lang/Object;Ljava/lang/Object;)I

10 [78] helloMethod
11 [84] callBack(): i = %d^J

Figure 21: Dumping contents of the .rodata section of x86_64 libhello.so as strings.

From the disassembled function in Figure 19, we can see that lea instructions contain the
address of the constant string we are interested in. We also see that the .rodata section of
the file starts at address 2000 (Figure 20) and by adding the offsets in the starting address
we can find the referenced strings. For example, adding 2000 and the offset 2a of the
“Hello World!” string (Figure 21) we have the hexadecimal value 202a which is found in a

L. Triantafyllou 29

Scanning native binaries to resolve unsoundness in static analysis of mixed Java-native code

lea instruction of the address 1200 of the disassembled code. By repeating this procedure,
we can find all the references of constant strings.

3.4.3 AArch64 Native Libraries

The same process can be followed in AArch64 native libraries. Instead of lea instructions
though, we search for a small set of instructions, namely adrp, add, and mov instructions.
Figure 22 shows the disassembled code of Java_HelloJNI_sayHello function.

1 Dump of assembler code for function Java_HelloJNI_sayHello:
2 0x0000000000000698 <+0>: sub sp, sp, #0x20
3 0x000000000000069c <+4>: stp x29, x30, [sp, #16]
4 0x00000000000006a0 <+8>: add x29, sp, #0x10
5 0x00000000000006a4 <+12>: adrp x8, 0x0
6 0x00000000000006a8 <+16>: add x8, x8, #0x866
7 0x00000000000006ac <+20>: str x0, [sp, #8]
8 0x00000000000006b0 <+24>: str x1, [sp]
9 0x00000000000006b4 <+28>: mov x0, x8

10 0x00000000000006b8 <+32>: bl 0x510 <printf@plt>
11 0x00000000000006bc <+36>: ldp x29, x30, [sp, #16]
12 0x00000000000006c0 <+40>: add sp, sp, #0x20
13 0x00000000000006c4 <+44>: ret
14 End of assembler dump.

Figure 22: Disassembled function Java_HelloJNI_sayHello of AArch64 libhello.so.

1 [Nr] Name Type Address Offset Size ...
2 ...
3 [10] .rodata PROGBITS 000000000000083c 0000083c 0000000000000094 ...
4 ...

Figure 23: Information about the .rodata section of AArch64 libhello.so.

1 String dump of section '.rodata':
2 [0] obj = %p^J
3 [a] obj[%d] = %p^J
4 [18] obj[%d][%d] = %p^J
5 [2a] Hello World!^J
6 [38] HelloJNI
7 [41] <init>
8 [48] ()V
9 [4c] helloMethod

10 [58] (Ljava/lang/Object;Ljava/lang/Object;)I
11 [80] callBack(): i = %d^J

Figure 24: Dumping contents of the .rodata section of AArch64 libhello.so as strings.

L. Triantafyllou 30

Scanning native binaries to resolve unsoundness in static analysis of mixed Java-native code

From the two instructions in addresses 0x6a4 and 0x6a8 (Figure 22) we observe that
there is a reference to a constant string at address x866 of the .rodata section. Using
the readelf command we locate the beginning of the .rodata section at address 0x83c
(Figure 23) and the “Hello World!” string is at 2a offset (Figure 24). The result of adding
0x83c and 2a is the address 0x866 which we also found in the disassembled code.

3.4.4 Armeabi Native Libraries

In applications which contain native code of the armeabi architecture we use the objdump
disassembler. In our analysis, we search for a small set of instructions, such as ldr, add,
and mov instructions. In order to get the disassembled code of the binary file we issue a
command as presented in Figure 25.

1 objdump -j .text -d libhello.so

Figure 25: Disassembling HelloJNI native library using objdump.

1 000005e4 <Java_HelloJNI_sayHello>:
2 5e4: e92d4800 push {fp, lr}
3 5e8: e1a0b00d mov fp, sp
4 5ec: e24dd010 sub sp, sp, #16
5 5f0: e50b0004 str r0, [fp, #-4]
6 5f4: e58d1008 str r1, [sp, #8]
7 5f8: e59d0008 ldr r0, [sp, #8]
8 5fc: ebffff99 bl 468 <inspect_jobject@plt>
9 600: e59f0014 ldr r0, [pc, #20] ; 61c <Java_HelloJNI_sayHello+0x38>

10 604: e08f0000 add r0, pc, r0
11 608: ebffff93 bl 45c <printf@plt>
12 60c: e58d0004 str r0, [sp, #4]
13 610: ebffff97 bl 474 <aaaa@plt>
14 614: e1a0d00b mov sp, fp
15 618: e8bd8800 pop {fp, pc}
16 61c: 00000212 .word 0x00000212

Figure 26: Disassembled function java_HelloJNI_sayHello of armeabi library.

Figure 26 shows that at address 600 there is a ldr instruction that loads the word of the
address 61c in r0 register. In line 10, we can see an add instruction which adds the pc
(usually in armeabi the program counter is the current address plus 8) in r0 register, so
the value of r0 register at address 604 of the disassembled code is 81a. By subtracting
the starting address 7f0 of the .rodata section (Figure 8) from 81a we get the value 2a
which is the offset of ”Hello World” string we search for (Figure 10).

L. Triantafyllou 31

Scanning native binaries to resolve unsoundness in static analysis of mixed Java-native code

3.4.5 Armeabiv7a Native Libraries

For armeabiv7a libraries, we follow a similar process. We use the readelf command to
see the contents of the .rodata section and find the address of every constant string of
the file we analyze. Then, we use objdump to get the disassembled code and by searching
for a small set of instructions, such as load, add, and move instructions, we can find the
string references. For example, in armeabiv7a an address of a contant string is the result
of adding an offset to a loaded address. By looking up the contents of the .rodata section
we can finally find which constant string is at the calculated address.

3.5 Possible Java Method Calls

In Section 3.4, we described some heuristics which help us find possible Java method
names and Java method signatures. In this chapter, we describe some simple processes
for checking if the combination of names and signatures found refer to methods of the
Java code. If such combinations exist, then it is possible that these Java methods are
called by native code.

Aswe have already stated it is sometimes difficult to find function boundaries. By taking this
into consideration, in our approach, we have three options to find possible Java method
calls. These options have different advantages and drawbacks and are the following:

• Finding Java method calls by examining the result of the command ”readelf -p
.rodata” without knowing the function boundaries. This option lacks in precision
because it is not possible to find the native function that each found Java method
belongs in.

• Finding Java method calls by examining the result of the command ”readelf -p
.rodata” without knowing the function boundaries and considering as Java method
calls the Java methods that their name and signature are close enough in the
.rodata section using an offset. This option has a better precision than the previous
one, but it is not possible to find in which native function each found Java method
belongs.

• Finding Java method calls utilizing the heuristics we described in Section 3.4. This
option has the best precision as we find to which native function each found Java
method belong, but it may miss some Java methods as it is based on heuristics.

An efficient way to find possible Java method calls is by using Datalog language. With
the help of Datalog, we are able to implement simple rules in order to check if the found
names and signatures refer to Java methods and the result of our analysis can be easily
accessed by Doop framework.

L. Triantafyllou 32

Scanning native binaries to resolve unsoundness in static analysis of mixed Java-native code

1 .decl PossibleNativeCodeTargetMethod(?method:Method, ?function:symbol,
?file:symbol)

2

3 PossibleNativeCodeTargetMethod(?method, ?function, ?file) :-
4 _NativeMethodTypeCandidate(?file, ?function, ?descriptor, _),
5 _NativeNameCandidate(?file, ?function, ?name, _),
6 Method_SimpleName(?method, ?name),
7 Method_JVMDescriptor(?method, ?descriptor).

Figure 27: Datalog rule to find possible Java method calls.

Using the Datalog rule in Figure 27 we can find possible Java methods. To
be more precise, we store the Java method names and the Java method
signatures with the function in which they were found as facts and can be
accessed by using the rules _NativeNameCandidate(?file, ?function, ?name,_) and
_NativeMethodTypeCandidate(?file, ?function, ?descriptor, _) respectively. By joining
two tables of the database, we can find names and signatures of the same
native code function. We also use the rule Method_SimpleName(?method, ?name)
to get the simplified name of the method and join all the rules together with the
Method_JVMDescriptor(?method, ?descriptor) in order to check if the Java method with
the name ?method and the signature ?descriptor exists. In case we do not know the
function in which we found a Java method or a Java signature we use the symbol ”-”
as function in order to join these found strings and find possible Java methods that we
missed.

1 PossibleNativeCodeTargetMethod(?method, ?function, ?file) :-
2 _NativeMethodTypeCandidate(?file, ?function, ?descriptor, ?offset1),
3 _NativeNameCandidate(?file, ?function, ?name, ?offset2),
4 Method_SimpleName(?method, ?name),
5 Method_JVMDescriptor(?method, ?descriptor),
6 (?offset1 - ?offset2) <= V,
7 (?offset1 - ?offset2) >= -V.

Figure 28: Datalog rule to find possible Java method calls using an offset.

The Datalog rule in Figure 28 is a bit different than the previous one and is for the second
option we stated before. The only difference is that we use the offsets of the Java method
names and signatures in order to find the combinations of names and signatures that are
close enough and refer to Java methods. This is done by having a threshold with value V
for the difference of the offsets of the names and signatures we found.

L. Triantafyllou 33

Scanning native binaries to resolve unsoundness in static analysis of mixed Java-native code

3.6 Mock Objects

In this work we present an analysis that makes use of mock objects in an attempt to make
the Doop framework analyze the possible Java methods called by native code. This step
is important because the arguments of the Java methods found in native libraries are
not created which means that we need to create them in order to run a Doop analysis. To
achieve the creation of mock objects, we did not implement new Datalog rules, but instead
we used existing rules of the Doop Framework (Figure 29 and Figure 30). By using these
rules we are able to create mock objects for every argument and ”this” object of the found
methods in order for this methods to be included in the static analysis of Doop.

1 // Reachability for methods discovered by the native code scanner.
2 .decl ReachableContextFromNative(?ctx:configuration.Context, ?method:Method,

?function:symbol, ?file:symbol)
3 ReachableContextFromNative(?immCtx, ?method, ?function, ?file) :-
4 basic.PossibleNativeCodeTargetMethod(?method, ?function, ?file),
5 isImmutableContext(?immCtx).

Figure 29: Datalog rule for reachability of methods called from native code.

1 // Mock arguments for methods called from native code.
2 MockValueConsMacro(?mockId, ?frmType),
3 VarPointsTo(?immHCtx, ?mockId, ?ctx, ?frm) :-
4 ReachableContextFromNative(?ctx, ?method, ?function, ?file),
5 FormalParam(_, ?method, ?frm),
6 _Var_Type(?frm, ?frmType),
7 isImmutableHContext(?immHCtx),
8 ?mockId = cat("<mock native object of type ", cat(?frmType, cat(" from ",

cat(?file, cat(":", cat(?function, ">")))))).
9

10 // Mock 'this' for methods called from native code.
11 MockValueConsMacro(?mockId, ?type),
12 VarPointsTo(?immHCtx, ?mockId, ?ctx, ?this) :-
13 ReachableContextFromNative(?ctx, ?method, ?function, ?file),
14 ThisVar(?method, ?this),
15 _Var_Type(?this, ?type),
16 isImmutableHContext(?immHCtx),
17 ?mockId = cat("<mock receiver of type ", cat(?type, cat(" from ", cat(?file,

cat(":", cat(?function, ">")))))).

Figure 30: Datalog rules to mock arguments and ”this” of methods called from native code.

The above Datalog rules are necessary in order to create mock objects for the
Java methods found in native libraries. The rule ReachableContextFromNative(?ctx,
?method, ?function, ?file) in Figure 29 is responsible for making every Java method
reachable for the analysis of Doop. The first rule in Figure 30 is used to create
a mock id for every argument and its type of every reachable method by joining

L. Triantafyllou 34

Scanning native binaries to resolve unsoundness in static analysis of mixed Java-native code

the predicate ReachableContextFromNative(?ctx, ?method, ?function, ?file) and the
predicates FormalParam(_, ?method, ?frm) and _Var_Type(?frm, ?frmType). The second
rule has a similar behavior to the first rule as it creates a mock id for ”this” object of Java
methods found in native code.

3.7 Applicability

Our approach does not depend on Android, Linux, or ELF but it works for every platform
where an appropriate disassembler exists, allowing automatic discovery of referenced
constant strings (this information is also known as “string cross-references” or “string x-
refs”). This means that our technique also works, for instance, on Microsoft Windows or
macOS. Moreover, our approach can also work on other programming languages that
have a native language interface with similar principles as JNI.

A restriction of the technique described in this thesis is that we do not handle JNI code that
calls methods using FromReflectedMethod to convert Java reflective method values [17].

L. Triantafyllou 35

Scanning native binaries to resolve unsoundness in static analysis of mixed Java-native code

4. EXPERIMENTAL EVALUATION

This Chapter presents the evaluation of the analyses performed by the Doop framework
for some benachmarks using the native scanner utility we presented in Chapter 3 and we
comment on the experimental results of our analysis.

Table 3 shows the total sizes of the applications analyzed, the size of their (uncompressed)
Dalvik bytecode and native code, the number of methods of the applications and their
native code architecture.

Table 3: Sizes of test APK files and their (uncompressed) contents.

Benchmark Application Dalvik
Bytecode

Native
Code

App
Methods

Architecture

Chrome 99,0 MB 72,4 MB 6,5 MB 37898 x86
Instagram 24,3 MB 21,5 MB 8,0 MB 43420 x86

In our evaluation, we have included the results for the base analysis (an analysis without
the use of native scanner utility) and for the analysis using various modes of the native
scanner utility. These modes are the following:

• -default. In this mode, we utilize the heuristics we described in Section 3.4 to find
Java method calls.

• -dist-<offset>. In this mode, we examine the result of the command ”readelf -p
.rodata” and we consider as Java method calls the Java methods that their name
and signature are close enough in the .rodata section using an offset value equal
to <offset>. We do not know the function boundaries in this mode.

4.1 App-reachable Methods Increase

Using the native scanner utility, there is an increase in reachable methods of applications.
Table 4 presents the percentage of increase between the amount of application’s
reachable methods found in base analyses and the amount of the application’s reachable
methods found using the native scanner utility.

Table 4: App-reachable methods increase over base.

Benchmark Mode Base Scanner Percentage Entry
points

Chrome -default 17003 23781 39.86% 4275
Chrome -dist-40 17003 24060 41.50% 4484
Instagram -default 23921 32425 35.55% 4669
Instagram dist-40 23921 32425 35.55% 4669

L. Triantafyllou 36

Scanning native binaries to resolve unsoundness in static analysis of mixed Java-native code

4.2 Heap Snapshot vs. Our Approach

In this section, we measure the recall of our technique, i.e., the percentage of runtime
behavior that our technique captures (compared to an analysis without our technique). We
use HeapDL [18] in order to get heap snapshots for some Android applications running
on a x86 emulator and our HelloJNI example. By analysing the heap snapshots, we can
see what Java methods were called from native code at runtime and check if our analysis
finds them too.

Let B, N, H be the set of call-graph edges between native functions and Java methods in
base analysis, in native scanner analysis and in HeapDL analysis respectively. Therefore,
base recall BR is BR = (B∩H)

H
and recall R of our technique is R = (N∩H)

H
.

Table 5: Base Recall and Recall of test APK files.

Benchmark Mode HeapDL∩
Base

HeapDL∩
Scanner

HeapDL Base
Recall

Scanner
Recall

Chrome -default 7 83 83 8.43% 100.00%
Chrome -dist-40 7 83 83 8.43% 100.00%
Instagram -default 1 7 7 14.29% 100.00%
Instagram -dist-40 1 7 7 14.29% 100.00%

4.3 Time Increase

In this section we present the time needed for the analysis of the APK files and the time
needed for fact generation. We also present the percentage changes of both the analysis
time (Table 6) and the fact generation time (Table 7) between base analyses and different
modes of the analyses using the native scanner utility. Because of extra computations,
almost in every analysis using the native scanner there is an increase in time.

Table 6: Analysis time increase.

Benchmark Mode Base Scanner Percentage
Chrome -default 456 472 3.51%
Chrome -dist-40 456 526 15.35%
Instagram -default 543 572 5.34%
Instagram -dist-40 543 650 19.71%

Table 7: Fact generation time increase.

Benchmark Mode Base Scanner Percentage
Chrome -default 49 258 426.53%
Chrome -dist-40 49 260 430.61%
Instagram -default 52 87 67.31%
Instagram -dist-40 52 61 17.31%

L. Triantafyllou 37

Scanning native binaries to resolve unsoundness in static analysis of mixed Java-native code

5. RELATED WORK

An interesting approach for finding string references in x86 closed-source executable
files using a static analysis is presented in the work ”String analysis for x86 binaries”
[19]. In this work, two analyses are applied to get some information about types of the
binary, a backward analysis called string-inference analysis and a forward analysis
called stack-height analysis. By making the assumptions that strings in x86 binaries
are represented using the C-style encoding and all string operations use the libc string
functions, the string-inference analysis, using the strcat signature for instance, can
infer that the registers before the call of strcat are C-style strings. On the other hand,
the stack-height analysis relies on the assumptions that x86 binaries use _cdel calling
convention and the caller function passes arguments to the callee using the stack, thus
push instructions can be combined with function calls. Last but not least, an alias
analysis is used in order to overcome C-style strings’ mutability because of string
operations that may affect the memory. For example, the mov or lea instruction establish
an alias between two registers.

A tool that is relevant to our work is the disassembler called Ddisasm which is developed
by GrammaTech, Inc. [20]. Ddisasm is implemented in Datalog and it is a disassembler for
machine code that produces reassembleable assembly by combining heuristics and novel
static analyses. It is fast, precise and can handle large files of real-world applications. After
disassembling a file the resulting code after disassembling contains accurate symbolic
information and provides cross references. This means that Ddisasm can be used to find
constant strings in functions of the native code of applications and more precisely Java
method calls.

Redex is an open source Android bytecode (dex) optimizer that was developed at
Facebook [21]. In order to improve performance and efficiency of Android applications,
Redex tries to reduce .dex file size with optimizations, such as dead code elimination,
inlining, minification. Furthermore, it removes unnecessary metadata and it performs
analysis to remove unnecessary interfaces. Redex scans also native libraries which are
concentrated into .xz and .zstd files to perform optimizations.

L. Triantafyllou 38

Scanning native binaries to resolve unsoundness in static analysis of mixed Java-native code

6. CONCLUSIONS

Using Datalog and the Doop framework, we were able to express a compact and succinct
analysis aiming to resolve the unsoundness in static analysis of applications containing
Java and native code. The key of our process is that we are able to scan native libraries
of real-world applications for which we do not have the source code using disassemblers.
Through the examination of the disassembled code we can find how Java methods are
called by native functions. Last but not least, using the Doop framework, we were also able
to decouple the implementation of the analysis from the context chosen for the points-to
analysis.

Our analysis is based on heuristic techniques that nevertheless had positive results.
However, further work is still necessary because our research is focused on finding only
constant strings that could refer to Java method calls. So, our estimation of how native
code interacts with the Java code of the application cannot be considered complete in any
way. We hope that our research could constitute the basis for future work that could lead
to better results.

L. Triantafyllou 39

Scanning native binaries to resolve unsoundness in static analysis of mixed Java-native code

ACRONYMS AND ABBREVIATIONS

HLL High-Level Languages
JNI Java Native Interface
JVM Java Virtual Machine
ABI Application Binary Interface
NDK Android Native Development Kit
BDDs Binary Decision Diagrams
IDB Intensional Database
EDB Extensional Database
APK Android Application Package

L. Triantafyllou 40

Scanning native binaries to resolve unsoundness in static analysis of mixed Java-native code

REFERENCES

[1] Yannis Smaragdakis and George Balatsouras (2015), “Pointer Analysis”, Foundations and Trends®

in Programming Languages: Vol. 2: No. 1, pp 1-69. http://dx.doi.org/10.1561/2500000014

[2] Martin Bravenboer and Yannis Smaragdakis. “Strictly declarative specification of sophisticated points-

to analyses”, in Proceedings of the 24th Annual ACM SIGPLAN Conference on Object Oriented

Programming, Systems, Languages, and Applications, OOPSLA ’09, New York, NY, USA, 2009. ACM.

[3] “Android Native Development Kit”. https://developer.android.com/ndk

[4] Chua Hock-Chuan. “Java Native Interface Tutorial”. March, 2018. https://www3.ntu.edu.sg/home/

ehchua/programming/java/JavaNativeInterface.html

[5] Levine, John R. “Linkers and Loaders”, Morgen Kaufmann: 10-12, 2000.

[6] JohnWhaley, Dzintars Avots, Michael Carbin, and Monica S. Lam, “Using Datalog with binary decision

diagrams for program analysis”, in Kwangkeun Yi, editor, APLAS, volume 3780 of Lecture Notes

inComputer Science, pages 97–118. Springer, 2005.

[7] Ondrej Lhotak and Laurie Hendren, “Evaluating the benefits of context-sensitive points-to analysis

using a BDD-based implementation”, ACM Trans. Softw. Eng. Methodol., 18(1):1–53, 2008.

[8] Monica S. Lam, John Whaley, V. Benjamin Livshits, Michael C. Martin, DzintarsAvots, Michael Carbin,

and Christopher Unkel, “Context-sensitive program analysis as database queries”, in PODS ’05: Proc.

of the twenty-fourth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems,

pages 1–12, NewYork, NY, USA, 2005. ACM.

[9] Thomas Reps, “Demand interprocedural program analysis using logic databases”, in R.

Ramakrishnan, editor, Applications of Logic Databases, pages 163–196. Kluwer Academic Publishers,

1994.

[10] Michael Eichberg, Sven Kloppenburg, Karl Klose, and Mira Mezini, “Defining andcontinuous checking

of structural program dependencies”, in ICSE ’08: Proc. of the 30th int. conf. on Software engineering,

pages 391–400, New York, NY, USA, 2008. ACM.

[11] Elnar Hajiyev, Mathieu Verbaere, and Oege de Moor, “Codequest: Scalable source code queries with

Datalog”, in Proc. European Conf. on Object-OrientedProgramming (ECOOP), pages 2–27. Spinger,

2006.

[12] P. Lam, E. Bodden, O. Lhotak, and L. Hendren, “The Soot framework for Java program analysis: a

retrospective”, in Cetus Users and Compiler Infastructure Workshop (CETUS 2011), 2011.

[13] Dennis Andriesse, Xi Chen, and Victor van der Veen, Asia Slowinska, and Herbert Bos. “An In-Depth

Analysis of Disassembly on Full-Scale x86/x64 Binaries”, in SEC’16 Proceedings of the 25th USENIX

Conference on Security Symposium, pages 583-600, Austin, TX, USA — August 10 - 12, 2016.

[14] ELF (Executable and Linkable Format) https://wiki.osdev.org/ELF

[15] Free Software Foundation. “GNU Binutils”. 2017. https://www.gnu.org/software/binutils/

[16] Position Independent Code on i386 – what is it, why is it needed, how to write, how to exploit https:

//web.archive.org/web/20140911162958/http://www.greyhat.ch/lab/downloads/pic.html

[17] Chapter 4: JNI Functions, Java Documentation, Oracle https://docs.oracle.com/javase/8/docs/

technotes/guides/jni/spec/functions.html

L. Triantafyllou 41

http://dx.doi.org/10.1561/2500000014
https://developer.android.com/ndk
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaNativeInterface.html
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaNativeInterface.html
https://wiki.osdev.org/ELF
https://www.gnu.org/software/binutils/
https://web.archive.org/web/20140911162958/http://www.greyhat.ch/lab/downloads/pic.html
https://web.archive.org/web/20140911162958/http://www.greyhat.ch/lab/downloads/pic.html
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/spec/functions.html
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/spec/functions.html

Scanning native binaries to resolve unsoundness in static analysis of mixed Java-native code

[18] Neville Grech, George Fourtounis, Adrian Francalanza, and Yannis Smaragdakis. “Heaps don’t

lie: countering unsoundness with heap snapshots”, in Proceedings of the ACM on Programming

Languages, Volume 1, Issue OOPSLA, October 2017, Article No. 68.

[19] Mihai Christodorescu, Nicholas Kidd, and Wen-Han Goh. “String analysis for x86 binaries”, in

Proceedings of the 6th ACM SIGPLAN-SIGSOFT workshop on Program analysis for software tools

and engineering, September 05-06, 2005, Lisbon, Portugal.

[20] Antonio Flores-Montoya and Eric Schulte. “Datalog Disassembly”. Last revised 12 Jun 2019: https:

//arxiv.org/abs/1906.03969

[21] Facebook Inc. “Redex - An Android Bytecode Optimizer”. https://fbredex.com/

L. Triantafyllou 42

https://arxiv.org/abs/1906.03969
https://arxiv.org/abs/1906.03969
https://fbredex.com/

	Preface
	Introduction
	Background
	Native Code Development in Android Java Applications
	Java Native Interface
	ABI Management
	Android Native Development Kit

	Points-To Analysis in Datalog

	Native Scanner
	Packed Files in APK Files
	HelloJNI Example
	Executable and Linkable Format
	Disassembling Native Libraries
	X86 Native Libraries
	X86_64 Native Libraries
	AArch64 Native Libraries
	Armeabi Native Libraries
	Armeabiv7a Native Libraries

	Possible Java Method Calls
	Mock Objects
	Applicability

	Experimental Evaluation
	App-reachable Methods Increase
	Heap Snapshot vs. Our Approach
	Time Increase

	Related Work
	Conclusions
	Acronyms and Abbreviations
	References

