
NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCES
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

PROGRAM OF POSTGRADUATE STUDIES

PhD THESIS

Provably Secure, Smart Contract-based Naming
Services: Design, Implementation and Evaluation

Christos F. Patsonakis

ATHENS

OCTOBER 2019

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ

ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ

Αποδεδειγμένα Ασφαλείς Υπηρεσίες Ονοματοδοσίας
Βασισμένες σε Έξυπνα Συμβόλαια: Σχεδίαση,

Υλοποιήση και Αξιολόγηση

Χρήστος Φ. Πατσωνάκης

ΑΘΗΝΑ

ΟΚΤΩΒΡΙΟΣ 2019

PhD THESIS

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and
Evaluation

Christos F. Patsonakis

SUPERVISOR: Mema Roussopoulos, Associate Professor EKPA

THREE-MEMBER ADVISORY COMMITTEE:
Mema Roussopoulos, Associate Professor EKPA

Aggelos Kiayias, Associate Professor EKPA

Alex Delis, Professor EKPA

SEVEN-MEMBER EXAMINATION COMMITTEE

Mema Roussopoulos, Aggelos Kiayias,
Associate Professor EKPA Associate Professor EKPA

Alex Delis, Eystathios Xatzieythimiadis,
Professor EKPA Professor EKPA

Alexandros Ntoulas, Yannis Smaragdakis,
Assistant Professor EKPA Professor EKPA

Konstantinos Chatzikokolakis,
Associate Professor EKPA

Examination Date: October 31, 2019

ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ

Αποδεδειγμένα Ασφαλείς Υπηρεσίες Ονοματοδοσίας Βασισμένες σε Έξυπνα Συμβόλαια:
Σχεδίαση, Υλοποιήση και Αξιολόγηση

Χρήστος Φ. Πατσωνάκης

ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: Μέμα Ρουσσοπούλου, Αναπληρώτρια Καθηγήτρια ΕΚΠΑ

ΤΡΙΜΕΛΗΣ ΕΠΙΤΡΟΠΗ ΠΑΡΑΚΟΛΟΥΘΗΣΗΣ:
Μέμα Ρουσσοπούλου, Αναπληρώτρια Καθηγήτρια ΕΚΠΑ

Άγγελος Κιαγιάς, Αναπληρωτής Καθηγητής ΕΚΠΑ
Αλέξης Δελής, Καθηγητής ΕΚΠΑ

ΕΠΤΑΜΕΛΗΣ ΕΞΕΤΑΣΤΙΚΗ ΕΠΙΤΡΟΠΗ

Μέμα Ρουσσοπούλου, Άγγελος Κιαγιάς,

Αναπληρώτρια Καθηγήτρια ΕΚΠΑ Αναπληρωτής Καθηγητής
ΕΚΠΑ

Αλέξης Δελής, Ευστάθιος Χατζηευθυμιάδης,
Καθηγητής ΕΚΠΑ Καθηγητής ΕΚΠΑ

Αλέξανδρος Ντούλας, Ιωάννης Σμαραγδάκης,
Επίκουρος Καθηγητής ΕΚΠΑ Καθηγητής ΕΚΠΑ

Κωνσταντίνος Χατζηκοκολάκης,
Αναπληρωτής Καθηγητής ΕΚΠΑ

Ημερομηνία Εξέτασης: 31 Οκτωβρίου 2019

ABSTRACT

Naming services provide the necessary foundations of developing diverse and important
applications, such as e-commerce and e-banking. Currently, these naming services are
operated by centralized authorities, which have to be trusted for their correct operation.
Unfortunately, centralization (of trust) incurs several downsides in terms of security, avail-
ability and fault tolerance, as illustrated by numerous security incidents throughout the
years where such authorities have been compromised. Decentralization has been pro-
posed as an alternative to deal with these issues. Nevertheless, decentralization raises
other concerns, such as dealing with free-riding and Sybil attacks.

In this thesis, we leverage the scalability, security, as well as, the built-in incentive mech-
anism of blockchain systems and propose the design of a decentralized, smart contract-
based naming service. More specifically, we are the first to fully formalize the naming ser-
vice design problem in the Universal Composability (UC) framework and formally prove
the security of our construction under the strong RSA assumption in the Random Oracle
model and the existence of an ideal smart contract functionality. The main barrier in realiz-
ing a smart contract-based naming service is the size of the contract’s state which, being its
most expensive resource to access and modify, should be minimized for a construction to
be viable. We resolve this issue by defining and using in our naming service a public-state
cryptographic accumulator with constant size, a cryptographic tool which may be of inde-
pendent interest in the context of blockchain protocols. This accumulator incurs constant-
sized storage at the expense of computational complexity. To explore this tradeoff, we
propose and implement a second construction, which preserves the security properties
of the first and, as illustrated through our evaluation, is the only version with constant-
sized state that can be deployed on the live chain of Ethereum, the most notable public
smart contract platform at the time of this writing. We compare these two constructions
with the simple approach of most prior works, e.g., the Ethereum Name Service, where
all identity records are stored on the smart contract’s state, to illustrate several shortcom-
ings of Ethereum and its cost model. To address these issues, and others, we introduce
an alternative paradigm for developing smart contract-based applications in which their
state is of constant size and facilitates the verification of application data that are stored
to and queried from an external, potentially unreliable, storage network. This approach is
relevant for a wide range of applications, such as any key-value store. We illustrate the
efficacy of our approach by presenting a case study where we adapt the most widely de-
ployed standard for fungible tokens, i.e., the ERC20 token standard, to our paradigm. We
address Ethereum’s monotonically increasing state which, if left unchecked, will have a
direct impact on Ethereum’s security and, ultimately, its longevity. We introduce recurring
fees that are proportional to the state of smart contracts and adjustable by the nodes (min-
ers) that maintain the network. We propose a scheme where the cost of storage-related
operations reflects the effort that miners have to expend to execute them. We show that
under such a pricing scheme that encourages economy in the state consumed by smart

contracts, the constructions presented in this work reduce the incurred transaction fees
by up to an order of magnitude. We argue that these improvements are sensible for any
smart contract platform that wishes to support user developed distributed applications.

SUBJECT AREA: Distributed Systems

KEYWORDS: public key infrastructure, smart contract, cryptographic accumulator

ΠΕΡΙΛΗΨΗ

Οι υπηρεσίες ονοματοδοσίας παρέχουν τα απαραίτητα θεμέλια για την ανάπτυξη ποικίλων
και σημαντικών εφαρμογών, όπως το ηλεκτρονικό εμπόριο και η ηλεκτρονική τραπεζική.
Επί του παρόντος, αυτές οι υπηρεσίες ονοματοδοσίας βρίσκονται υπό τον έλεγχο κεντρι-
κοποιημένων οντοτήτων, τις οποίες πρέπει να εμπιστευόμαστε ότι λειτουργούν σωστά.
Δυστυχώς, η κεντρικοποίηση (εμπιστοσύνης) επιφέρει πολλά μειονεκτήματα όσον αφορά
την ασφάλεια, τη διαθεσιμότητα και την ανοχή σφαλμάτων, όπως φαίνεται από μία πλη-
θώρα περιστατικών ασφάλειας κατά τη διάρκεια των ετών όπου τέτοιες οντότητες έχουν
παραβιαστεί. Η αποκέντρωση έχει προταθεί ως εναλλακτική λύση για την αντιμετώπιση
αυτών των ζητημάτων. Παρ ’όλα αυτά, η αποκέντρωση εγείρει άλλα προβλήματα όπως,
π.χ., η αντιμετώπιση της μη ανταποδοτικότητας και οι Σιβυλλικές επιθέσεις.

Σε αυτή τη διατριβή, αξιοποιούμε την επεκτασιμότητα, την ασφάλεια, καθώς και τον ενσω-
ματωμένο μηχανισμό παροχής κινήτρων των συστημάτων blockchain και προτείνουμε τον
σχεδιασμό μιας αποκεντρωμένης υπηρεσίας ονοματοδοσίας βασισμένη σε έξυπνα συμ-
βόλαια. Πιο συγκεκριμένα, είμαστε οι πρώτοι που παρουσιάζουμε τον πλήρη φορμαλισμό
του προβλήματος σχεδιασμού υπηρεσιών ονοματοδοσίας στο πλαίσιο τoυ μοντέλου Γε-
νικής Σύνθεσης και αποδεικνύουμε την ασφάλεια της κατασκευής μας υπό την ισχυρή
υπόθεση RSA στο μοντέλο του Τυχαίου Μαντείου και την ύπαρξη μιας ιδεατής λειτουργι-
κότητας έξυπνου συμβολαίου. Το κύριο εμπόδιο στην πραγματοποίηση μιας υπηρεσίας
ονοματοδοσίας βασισμένη σε έξυπνα συμβόλαια είναι το μέγεθος της αποθηκευμένης
πληροφορίας σε αυτά η οποία, όντας η πιο δαπανηρή πηγή πρόσβασης και τροποποί-
ησης, θα πρέπει να ελαχιστοποιηθεί για να θεωρηθεί μια κατασκευή βιώσιμη. Επιλύουμε
αυτό το ζήτημα ορίζοντας και χρησιμοποιώντας στην υπηρεσία ονοματοδοσίας μας έναν
προσθετικό, παγκόσμιο κρυπτογραφικό συσσωρευτή δημόσιας κατάστασης σταθερού με-
γέθους, ένα κρυπτογραφικό εργαλείο το οποίο μπορεί να είναι ανεξάρτητου ενδιαφέροντος
στο πλαίσιο των πρωτοκόλλων blockchain. Αυτός ο συσσωρευτής προκαλεί αποθήκευση
σταθερού μεγέθους πληροφορίας εις βάρος υπολογιστικής πολυπλοκότητας. Για να διε-
ρευνήσουμε το αντίκτυπο ανάμεσα σε αυτά τα δύο, προτείνουμε και υλοποιούμε μια δεύ-
τερη κατασκευή, η οποία διατηρεί τις ιδιότητες ασφαλείας της πρώτης και, όπως απεικο-
νίζεται μέσα από την αξιολόγησή μας, είναι η μόνη έκδοση με σταθερού μεγέθους απο-
θηκευμένη πληροφορία που μπορεί να αναπτυχθεί στη βασική αλυσίδα του Ethereum,
της πιο αξιοσημείωτης δημόσιας πλατφόρμας έξυπνων συμβολαίων κατα τη στιγμή αυτής
της γραφής. Συγκρίνουμε αυτές τις δύο κατασκευές με την απλή προσέγγιση των περισ-
σότερων προηγούμενων υλοποιήσεων, π.χ., του Ethereum Name Service, όπου όλα τα
αρχεία ταυτότητας αποθηκεύονται πάνω στο έξυπνο συμβόλαιο, για να καταδείξουμε αρ-
κετές ελλείψεις του Ethereum και του μοντέλου κοστολόγησής του. Για την αντιμετώπιση
αυτών των ζητημάτων, καθώς και άλλων, εισαγάγουμε ένα εναλλακτικό παράδειγμα για
την ανάπτυξη εφαρμογών βασισμένες σε έξυπνα συμβόλαια στις οποίες το μέθεγος της
αποθηκευμένης πληροφορίας σε αυτά είναι σταθερή και διευκολύνει την επαλήθευση των
δεδομένων των εφαρμογών, τα οποία αποθηκεύονται σε και αναζητούνται από ένα εξω-

τερικό, δυνητικά αναξιόπιστο, δίκτυο αποθήκευσης. Αυτή η προσέγγιση είναι σχετική για
ένα ευρύ φάσμα εφαρμογών, όπως κάθε σύστημα αποθήκευσης κλειδιών και τιμών. Δεί-
χνουμε την αποτελεσματικότητα της προσέγγιση μας με την παρουσίαση μιας μελέτης
όπου προσαρμόζουμε το πιο ευρέως αναπτυγμένο πρότυπο για ανταλλάξιμα νομίσματα,
δηλ., το πρότυπο νομισμάτων ERC20. Αντιμετωπίζουμε τη μονοτονικά αυξανόμενη απο-
θηκευμένη πληροφορία του Ethereum η οποία, αν δεν ελεγχθεί, θα έχει άμεσο αντίκτυπο
στην ασφάλεια του Ethereum και, τελικά, στη μακροζωία του. Εισαγάγουμε επαναλαμβα-
νόμενα τέλη που είναι ανάλογα με την αποθηκευμένη πληροφορία στα έξυπνα συμβόλαια
και ρυθμιζόμενα από τους κόμβους που διατηρούν το δίκτυο. Προτείνουμε ένα μοντέλο
όπου το κόστος των λειτουργιών αποθήκευσης αντικατοπτρίζει την προσπάθεια που πρέ-
πει να καταβάλουν οι κόμβοι για να τις εκτελέσουν. Δείχνουμε ότι κάτω από ένα τέτοιο
σύστημα τιμολόγησης που ενθαρρύνει οικονομία στην αποθηκευμένη πληροφορία στα
έξυπνα συμβόλαια, οι κατασκευές που παρουσιάζονται σε αυτή τη διατριβή μειώνουν τα
τέλη συναλλαγών κατά μία τάξη μεγέθους. Υποστηρίζουμε ότι αυτές οι βελτιώσεις είναι
λογικές για κάθε πλατφόρμα έξυπνων συμβολαίων που επιθυμεί να υποστηρίζει την ανά-
πτυξη αυθαίρετων κατανεμημένων εφαρμογών από τους χρήστες της.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Κατανεμημένα Συστήματα

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: υποδομή δημοσίου κλειδιού, έξυπνο συμβόλαιο, κρυπτογραφικός συσ-
σωρευτής

ΣΥΝΟΠΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΤΗΣ ΔΙΔΑΚΤΟΡΙΚΗΣ ΔΙΑΤΡΙΒΗΣ

1. Εισαγωγή στη Διατριβή

Σε αντίθεση με τις αρχικές, καθαρές αρχές σχεδιασμού του, το Διαδίκτυο σήμερα δεν είναι
απολύτως αποκεντρομένο. Οι υπηρεσίες ονοματοδοσίας του Διαδικτύου, όπως τα συστή-
ματα ονοματοδοσίας τομέα και οι υποδομές δημοσίου κλειδιού, παρέχουν τους πιο κρί-
σημους δομικούς λίθους που επιτρέπουν και ασφαλίζουν, αντιστοίχως, ψηφιακές επικοι-
νωνίες. Αυτές οι υπηρεσίες διαχειρίζονται αντιστοιχίες ανάμεσα σε ονόματα οντοτήτων και
τιμές (π.χ., μια διεύθυνση IP για τα συστήματα ονοματοδοσίας τομέα, ή ένα δημόσιο κλειδί
για τις υποδομές δημοσίου κλειδιού). Δυστυχώς, αυτές οι κρίσιμες υπηρεσίες βρίσκονται
υπό τον έλεγχο κεντρικοποιημένων, απομακρυσμένων οντοτήτων τις οποίες πρέπει να
εμπιστευτούμε για την σωστή τους λειτουργία. Αυτό είναι προβληματικό όπως έχει απο-
δειχθεί από τα πολλαπλά περιστατικά ασφαλείας σε, π.χ., κεντρικοποιημένες υποδομές
δημοσιού κλειδιού, όπου οι αρχές πιστοποίησης έχουν παραβιαστεί (π.χ., [63, 71, 82]).

Η έλευση του Bitcoin έφερε μία επανάσταση στον κόσμο των ψηφιακών πληρωμών αφού
ήταν το πρώτο σύστημα που επέτρεπε σε οντότητες που δεν εμπιστεύονται η μία την
άλλη να προβούν σε ασφαλείς συναλλαγές χωρίς να βασίζονται σε τρίτες, έμπιστες οντό-
τητες. Η λειτουργία του Bitcoin βασίζετε σε ένα κατανεμημένο δίκτυο ομότιμων οντοτήτων
με ανοιχτή πρόσβαση το οποίο διατηρεί ένα υψηλά αναπαράξιμο, ελέγξιμο και αποκλει-
στικά προσαρτίσιμο αρχείο καταγραφής συναλλαγών, το οποίο αναφέρεται συνήθως ως
“αλυσίδα από μπλοk” (blockchain). Η τεχνολογία αυτή είναι πολλά υποσχόμενη μιας και
επιτρέπει την κατασκευή συστημάτων τα οποία είναι απόλυτα κατανεμημένα. Ως αποτέλε-
σμα αυτών των δυνατοτήτων, έχουν υπάρξει πολλαπλές και επαναλαμβανόμενες κλήσεις
από την κοινότητα για την εκ νέου αποκέντρωση του Διαδυκτίου χρησιμοποιώντας τε-
χνολογίες blockchain για την ανάπτυξη αυτών των κρίσιμων υπηρεσιών ονοματοδοσίας,
εξαλίφωντας έτσι την εξάρτηση του Διαδυκτίου σε κεντρικοποιημένες οντότητες.

ΤοNamecoin ([24]) και το Emercoin ([8]) αποτελούν αξιοσημείωτα παραδείγματα συστημά-
των ονοματοδοσίας που βασίζονται σε τεχνολογίες blockchain. Αυτά τα συστήματα χρη-
σιμοποιούν το blockchain για να αποθηκεύσουν, επικυρώσουν και αναζητήσουν εγγρα-
φές που σχετίζονται με ονόματα οντοτήτων. Ωστόσο, αυτή η προσέγγιση δεν είναι απο-
δοτική για τους ακόλουθους λόγους. Πρώτον, εξαναγκάζει τους πελάτες να κατεβάσουν
και να διατηρήσουν ένα ολοκληρωμένο αντίγραφο του blockchain για να έχουν την δυνα-
τότητα να επικυρώσουν εγγραφές. Δεύτερον, η υπολογιστική και η αποθηκευτική πολυ-
πλοκότητα αυξάνεται γραμμικά με το πλήθος των καταχωρημένων εγγραφών. Τρίτον, η
εφαρμοσιμότητα του συστήματος περιορίζεται αισθητά μιας και αποκλείονται σημαντικές
συσκευές λόγω της περιορισμένης αποθήκευσής τους όπως, π.χ., τα έξυπνα τηλέφωνα
(smartphones). Τέλος, αυξάνει το μέγεθος της πληροφορίας που πρέπει να διατηρούν οι
κόμβοι του δικτύου, το οποίο ενδεχομένως να αποτρέψει νέους κόμβους από το να συγ-
χρονιστούν και να προσφέρουν στην ασφάλεια του δικτύου.

Σε αυτή τη διατριβή, παρουσιάζουμε τον σχεδιασμό, την υλοποίηση και την αξιολόγηση
της πρώτης αποδεδειγμένα ασφαλούς, πλήρως κατανεμημένης υπηρεσίας ονοματοδο-
σίας. Οι δομικοί λίθοι της υπηρεσίας μας είναι τα έξυπνα συμβόλαια και οι κρυπτογραφικοί
συσσωρευτές. Παρουσιάζουμε δύο κατασκευές της υπηρεσίας μας οι οποίες αποθηκεύ-
ουν πληροφορία σταθερού μεγέθους στο έξυπνο συμβόλαιο, ανεξάρτητα του πλήθους
των εγεγγραμένων οντοτήτων. Με αυτόν τον τρόπο, επιλύουμε πλήρως τα προαναφερ-
θέντα προβλήματα που σχετίζονται με την άμεση αποθήκευση εγγραφών στο blockchain.
Η αποθήκευση εγγραφών γίνεται σε ένα εξωτερικό, δυνητικά αναξιόπιστο, κατανεμημένο
δίκτυο αποθήκευσης το οποίο, ανάμεσα σε άλλα, επιτρέπει πιο αποδοτική πρόσβαση στις
εγγραφές.

Συνοπτικά, οι συνεισφορές της διατριβής αυτής έχουν ως εξής:

• Παρουσιάζουμε τον επίσημο σχεδιασμό μιας υπηρεσίας ονοματοδοσίας βασισμένης
σε έξυπνα συμβόλαια.

• Επιλύουμε το βασικό εμπόδιο για την πραγματοποίηση μιας βιώσημης υπηρεσίας
ονοματοδοσίας βασισμένης σε έξυπνα συμβόλαια παρουσιάζοντας δύο κατασκευές
που αποθηκεύουν σταθερού μεγέθους πληροφορίας στο έξυπνο συμβόλαιο.

• Είμαστε οι πρώτοι που επίσημα αποδεικνύουμε την ασφάλεια μιας υπηρεσίας ονο-
ματοδοσίας βασισμένης σε έξυπνα συμβόλαιο στο πλαίσιο του μοντέλου Γενικής
Σύνθεσης, κάτω από θεμελιωμένα κρυπτογραφικά προβλήματα και την ύπαρξη μιας
ιδεατής λειτουργικότητας έξυπνων συμβολαίων.

• Υλοποιούμε και πειραματικά αξιολογούμε τις κατασκευές μας, καθώς και τους δομι-
κούς τους λίθους.

• Εισαγάγουμε ένα εναλλακτικό παράδειγμα για την ανάπτυξη εφαρμογών σε πλατ-
φόρμες έξυπνων συμβολαίων.

• Επιλύουμε το πρόβλημα της μονοτονικά αυξανόμενης πληροφορίας που διατηρεί το
Ethereum με την εισαγωγή ενός προσαρμοστικού, από τους κόμβους του δικτύου,
μοντέλου κοστολόγησης το οποίο ενθαρρύνει οικονομία στον καταναλισκόμενο χώρο
αποθήκευσης από τα έξυπνα συμβόλαια.

2. Υπόβαθρο

Στο κεφάλαιο αυτό παρουσιάζουμαι συνοπτικά έννοιες που μορφοποιούν το υπόβαθρο
για την κατανόηση των υπόλοιπων κεφαλαίων, με στόχο να καταστεί η διατριβή όσο το
δυνατόν πιο αυτόνομη. Πιο συγκεκριμένα, παρουσιάζουμε βασικές έννοιες σχετικά με κρυ-
πτοσυστήματα δημοσίου κλειδιού, ψηφιακά πιστοποιητικά, καθώς και τις υποδομές δημο-
σίου κλειδιού. Εν συνεχεία, περιγράφουμε την λειτουργία των συστημάτων blockchain,
που αποτελούν τον δομικό λίθο πάνω στην οποία χτίστηκε η πλατφόρμα έξυπνων συμβο-
λαίων Ethereum πάνω στην οποία υλοποιήσαμε όλες τις κατασκευές που παρουσιάζονται
σε αυτή τη διατριβή. Τέλος, παρουσιάζουμε μία εισαγωγή για τους κρυπτογραφικούς συσ-
σωρευτές και τις ιδιότητες τους.

3. Σχετική Βιβλιογραφία

Στο κεφάλαιο αυτό παρουσιάζουμε τα αποτελέσματα της μέχρι τωρα βιβλιογραφίας σχε-
τικά με τις υπηρεσίες ονοματοδοσίας, καθώς και τις υποδομές δημοσίου κλειδιού. Βασι-
σμένοι στο γεγόνος ότι αρκετές προηγούμενες προσεγγίσεις χρησιμοποιούν το ίδιο υπό-
βαθρο για την ανάπτυξη τέτοιων υπηρεσιών, τις κατηγοριοποιούμε βάση αυτών. Συνο-
πτικά, εξετάζουμε προηγούμενες κατασκευές που βασίζονται σε: 1) μηχανές αναπαραγό-
μενης κατάστασης, 2) διαφόρων ειδών δικτύων επικάλυψης και, 3) blockchains. Μέσω
της βιβλιογραφικής μας έρευνας παρουσιάζουμε τις αδυναμίες και αστοχίες που έχει τόσο
κάθε κατηγορία, όσο και κάθε σύστημα ατομικά. Παρατηρούμε ότι καμία προηγούμενη
προσέγγιση δεν αντιμετωπίζει, συνολικά, θέματα όπως η χρονική σήμανση εγγραφών, η
ανοχή αυθαίρετων σφαλμάτων, η αντιμετώπιση της μη ανταποδοτικότητας, ανοσία στις
Σιβυλλικές επιθέσεις, επίσημες αποδείξεις ασφαλείας και άλλα.

4. Υπηρεσία Ονοματοδοσίας: Δομικοί Λίθοι και Ορισμός

Στο κεφάλαιο αυτό ξεκινάμε εισαγάγωντας θέματα σχετικά με την σημειογραφία που χρη-
σιμοποιούμε σε αυτήν την διατριβή. Επίσης, παραθέτουμε επίσημα βασικούς ορισμούς
θεμελιωμένων κρυπτογραφικών προβλημάτων, όπως το ισχυρό RSA και οι ανθεκτικές
σε συγκρούσεις κρυπτογραφικές συναρτήσεις κατακερματισμού. Εν συνεχεία, παρουσιά-
ζουμε τον πρώτο επίσημο ορισμό ενός προσθετικού, παγκόσμιου κρυπτογραφικού συσ-
σωρευτή δημόσιας κατάστασης, ο οποίος αποτελεί τον δομικό λίθο για τις κατασκευές της
υπηρεσίας ονοματοδοσίας μας. Τέλος, παρουσιάζουμε τον επίσημο ορισμό της υπηρε-
σίας ονοματοδοσίας μας, στο πλαίσιο του μοντέλου Γενικής Σύνθεσης, την οποία μοντε-
λοποιούμε σαν μία ιδεατή λειτουργικότητα. Επίσης, παρουσιάζουμε τον επίσημο ορισμό
δύο ακόμα ιδεατών λειτουργικοτήτων που μοντελοποιούν το (αναξιόπιστο) δίκτυο αποθή-
κευσης εγγραφών και το έξυπνο συμβόλαιο, αντιστοίχως. Τέλος, παραθέτουμε μία γενι-
κευμένη περιγραφή σχετικά με το πως αλληλεπιδρούν οι πελάτες με όλες τις προαναφερ-
θούσες λειτουργικότητες στα πρωτόκολλα μας, τα οποία τα παρουσιάζουμε στα επόμενα
κεφάλαια.

5. Κατασκευή PKI βασισμένη στο RSA

Στο κεφάλαιο αυτό παρουσιάζουμε την πρώτη κατασκευή της υπηρεσίας ονοματοδοσίας
μας. Ξεκινάμε παρουσιάζοντας μία κατασκευή ενός προσθετικού, παγκόσμιου κρυπτο-
γραφικού συσσωρευτή δημόσιας κατάστασης του οποίου η ασφάλεια βασίζετε στο ισχυρό
RSA στο μοντέλο του Τυχαίου Μαντείου. Το πεδίο ορισμού αυτού του συσσωρευτή είναι
περιορισμένο σε πρώτους αριθμούς. Ωστόσο, η υπηρεσία ονοματοδοσία μας απαιτεί την
συσσώρευση αυθαίρετων ακολουθιών χαρακτήρων. Επιλύουμε αυτό το πρόβλημα πα-
ρουσιάζοντας μία συνάρτηση πολυονημικής πολυπλοκότητας που αντιστοιχίζει αυθαίρε-
τες ακολουθίες χαρακτήρων σε πρώτους αριθμούς. Αυτή η συνάρτηση είναι μία ντετερ-

μινιστική εκδοχή αυτής των Gennaro et al. [68]. Αποδεικνύουμε την ανοχή συγκρούσεων
αυτής της συνάρτησης και πως για κάθε είσοδο θα επιστρέψει έναν πρώτο αριθμό με συ-
ντρηπτική πιθανότητα επιτυχίας. Εν συνεχεία, παρουσιάζουμε την κατασκευή μίας υποδο-
μής δημοσίου κλειδιού η οποία χρησιμοποιεί τους προαναφερθέντες δομικούς λίθους για
να υλοποιήσει τις πράξεις της υπηρεσίας ονοματοδοσίας μας. Πιο συγκεκριμένα, παρου-
σιάζουμε τον κώδικα του έξυπνου συμβολαίου, καθώς και το πρωτόκολλο της κατασκευής
μας. Τέλος, ορίζουμε το βασικό θεώρημα ασφάλειας αυτής της κατασκευής, το οποίο το
αποδεικνύουμε στο παράρτημα της διατριβής.

6. Κατασκευή PKI βασισμένη σε Δέντρα Κατακερματισμού

Στο κεφάλαιο αυτό παρουσιάζουμε την δεύτερη κατασκευή της υπηρεσίας ονοματοδοσίας
μας. Ξεκινάμε παρουσιάζοντας τον παγκόσμιο κρυπτογραφικό συσσωρευτή τωνCamacho
et al. [53], ο οποίος βασίζεται σε δέντρα κατακερματισμού. Αυτός ο συσσωρευτής είναι
ισχυρός, δηλαδή, παρέχει περισσότερες δυνατότητες σε σχέση με αυτόν που ορίσαμε στο
προηγούμενο κεφάλαιο. Ωστόσο, σε αυτόν τον συσσωρευτή, οι δομές που χρησιμοποιού-
νται για να αποδείξουμε αν κάποιο στοιχείο είναι συσσωρευμένο ή οχι έχουν λογαριθμική
πολυπλοκότητα, σε αντίθεση με τον προηγούμενο συσσωρευτή όπου αυτές οι δομές είναι
σταθερού μεγέθους. Εν συνεχεία, παρουσιάζουμε την κατασκευή μίας υποδομής δημο-
σίου κλειδιού η οποία χρησιμοποιεί τον προαναφερθέντα συσσωρευτή για να υλοποιήσει
τις πράξεις της υπηρεσίας ονοματοδοσίας μας. Αντίστοιχα με το προηγούμενο κεφάλαιο,
παρουσιάζουμε τον κώδικα του έξυπνου συμβολαίου, το πρωτόκολλο της κατασκευής μας,
καθώς και το βασικό θεώρημα ασφάλειας της.

7. Αξιολόγηση

Στο κεφάλαιο αυτό περιγράφουμε την διαδικασία και τα αποτελέσματα της αξιολόγησης
της πρωτότυπης υλοποίησης των δύο κατασκευών της υπηρεσίας ονοματοδοσίας μας,
καθώς και των δομικών τους λίθων. Επίσης, διασπείρουμε ανάμεσα στα αποτελέσματα
μας μία σειρά απο παρατηρήσεις και βελτιώσεις, οι οποίες είναι μικρές και δίκαιές, και οι
οποίες θα συνδράμουν αισθητά στη βελτίωση του Ethereum.

Η πρώτη σειρά πειραμάτων μας καταδεικνύει το επιπλέον κόστος που έχει μία υλοποί-
ηση ενός σχήματος ψηφιακών υπογραφών σε ένα έξυπνο συμβόλαιο, σε σχέση με την
υλοποίηση που βασίζεται σε προκατασκευασμένα συμβόλαια που διατείθεντε από την
πλατφόρμα του Ethereum. Υπολογίζουμε ένα μέσο κόστος επιβάρυνσης δύο τάξεων με-
γέθους.

Εν συνεχεία, παρουσιάζουμε τις αξιολογήσεις των κατασκευών δημοσιού κλειδιού. Πα-
ρουσιάζουμε την παραμετροποίηση της κάθε κατασκευής (π.χ., τιμές για την παράμετρο
ασφάλειας) και το κόστος κάθε πράξης του έξυπνου συμβολαίου. Για κάθε κατασκευή,
συζητάμε εκτενώς την σημασιολογία των αποτελεσμάτων και παραθέτουμε την καταλλη-
λότητα εφαρμογής της. Συνοπτικά, για την πρώτη κατασκευή που βασίζετε στο ισχυρό

RSA, τα αποτελέσματα μας δείχνουν ότι δεν μπορεί να εφαρμοστεί στην βασική αλυσίδα
του Ethereum, λόγω του υπέρογκου κόστους της διαδικασίας αντιστοιχίας αυθαίρετων
ακολουθιών χαρακτήρων σε πρώτους αριθμούς. Ωστόσο, η δεύτερη κατασκευή, η οποία
βασίζεται σε δέντρα κατακερματισμού, μπορεί να εφαρμοστεί στην βασική αλυσίδα του
Ethereum για μετρίου μεγέθους υποδομές δημοσίου κλειδιού. Συνοδεύουμε την παρουσί-
αση των αποτελεσμάτων κάθε κατασκευής με μία συζήτηση όπου προτείνουμε μελλοντι-
κές βελτιστοποιήσεις. Τέλος, υλοποιούμε και αξιολογούμε μία υποδομή δημοσίου κλειδιού
όπου όλες οι εγγραφές αποθηκεύονται στο έξυπνο συμβόλαιο, η οποία είναι η προσέγ-
γιση που ακολουθείτο από όλες τις προηγούμενες υπηρεσίες ονοματοδοσίας βασισμένες
σε blockchain και έξυπνα συμβόλαια. Τα αποτελέσματα μας δείχνουν ότι, προς το παρών,
αυτή η προσέγγιση είναι η πιο αποδοτική από άποψη κόστους. Ωστόσο, οι επιπτώσεις
αυτής της προσέγγισης στο μέλλον και στην υγεία της πλατφόρμας είναι σοβαρές. Αυτό
είναι ένα θερμό θέμα συζήτησης στην κοινότητα του Ethereum, η οποία εδώ και χρόνια
αναζητά τρόπους να το αντιμετωπίσει. Ωστόσο, οι δικές μας κατασκευές εναρμονίζονται
άψογα με το μέλλον και την υγεία αφού επιφέρουν σταθερό κόστος αποθήκευσης στο
έξυπνο συμβόλαιο, ανεξάρτητα με το πλήθος των εγεγγραμένων οντοτήτων.

8. Εναλλακτική Μεθοδολογία για την Ανάπτυξη Εφαρμογών και την Τιμολόγηση
Αποθήκευσης σε Πλατφόρμες Έξυπνων Συμβολαίων

Στο κεφάλαιο αυτό, εφορμώμενοι από την έρευνα και τα αποτελέσματα του προηγούμενου
κεφαλαίου, παρουσιάζουμε την προσέγγιση μας για να αντιμετωπίσουμε όλα τα θέματα
που πηγάζουν από την πρακτική του να χρησιμοποιείτε το blockchain ή το έξυπνο συμ-
βόλαιο σαν μέσο άμεσης αποθήκευσης, επικύρωσης και αναζήτησης πληροφορίας. Εισα-
γάγουμε μία εναλλακτική μεθοδολογία για την ανάπτυξη εφαρμογών σε αυτές τις πλατ-
φόρμες όπου ο αποθηκευτικός χώρος του έξυπνου συμβολαίου χρησιμοποιείτε μόνο για
την επικύρωση των δεδομένων της εφαρμογής. Η αποθήκευση και η αναζήτηση δεδο-
μένων μεταφέρεται σε ένα εξωτερικό, πιθανοτικά αναξιόπιστο, δίκτυο αποθήκευσης. Η
μεθοδολογία μας είναι γενική και μπορεί να εφαρμοστεί για την υλοποίηση οποιουδήποτε
συστήματος αποθήκευσης κλειδιών και τιμών. Για να υποστηρίξουμε την αποτελεσματι-
κότητα και προσαρμοστικότητα της προσέγγισης μας, παρουσιάζουμε τον σχεδιασμό και
την υλοποίηση μίας προσαρμογής του πρότυπου νομισμάτων ERC20. Αξιολογούμε την
κατασκευή μας και την συγκρίνουμε με την κλασσική υλοποίηση.

Αντιμετωπίζουμε το πρόβλημα της μονοτονικά αυξανόμενης πληροφορίας που αποθηκεύ-
εται στο Ethereum παρουσιάζοντας ένα προσαρμοστικό, από τους κόμβους του δικτύου,
μοντέλο κοστολόγησης των πράξεων αποθήκευσης. Πιο συγκεκριμένα, εισαγάγουμε επα-
ναλαμβανόμενες χρεώσεις αποθήκευσης ανάλογες με το καταναλισκόμενο χώρο αποθή-
κευσης κάθε έξυπνου συμβολαίου, κοστολογούμε τις πράξεις αποθήκευσης βάση της πο-
λυπλοκότητας εκτέλεσης τους και απελευθερώνουμε αποθηκευτικό χώρο ο οποίος κατα-
λαμβάνεται από συμβόλαια τα οποία δεν χρησιμοποιούνται πλέον. Υπό αυτό το μοντέλο
κοστολόγησης, αξιολογούμε ξανά, τόσο την κατασκευή του ERC20 νομίσματος, όσο και
την κατασκευή της υποδομής δημοσίου κλειδιού που βασίζεται σε δέντρα κατακερματι-
σμού. Τα αποτελέσματά μας δείχνουν ότι και οι δύο κατασκευές παρέχουν βελτιώσεις που

μειώνουν το κόστος μέχρι μία τάξη μεγέθους.

9. Συμπεράσματα και Μελλοντικά Βήματα

Σε αυτή τη διατριβή παρουσιάσαμε τον σχεδιασμό και τις υλοποιήσεις μίας αποδεδειγμένα
ασφαλούς υπηρεσίας ονοματοδοσίας βασισμένη σε έξυπνα συμβόλαια. Η υπηρεσία μας
παρέχει ένα συνδιασμό ιδιοτήτων που καμία προηγούμενη προσέγγιση δεν έχει καταφέρει
να προσφέρει. Εντούτοις, ενδιαφέροντα τεχνικά ζητήματα εξακολουθούν να παραμένουν
προς διερεύνηση. Ενδεικτικά, αναφέρουμε τα παρακάτω:

• Σχεδιασμός, υλοποίηση και αξιολόγηση ενός κατανεμημένου δικτύου αποθήκευσης
το οποίο είναι επεκτάσιμο και ανθεκτικό σε Σιβυλλικές επιθέσεις.

• Μείωση ή απαλειφή του υπολογιστικού φόρτου που μπορούν να επιβάλουν χαιρέ-
κακοι κόμβοι του αποθηκευτικού δικτύου στους πελάτες της υπηρεσίας.

• Εφαρμογή και αξιολόγηση τεχνικών επαληθεύσιμου υπολογισμού για την συνάρ-
τηση αντιστοίχησης αυθαίρετων ακολουθιών χαρακτήρων σε πρώτους αριθμούς.

• Επέκταση του μοντέλου ασφαλείας του κρυπτογραφικού συσσωρευτή τωνCamacho
et al. [53] για την μείωση του κόστους της κατασκευής που βασίζεται σε δέντρα κα-
τακερματισμού.

kms...

ACKNOWLEDGEMENTS

I am trying, to no avail however, to find the right words to express the amount of gratitude
and respect that I have towards my thesis supervisor, Mema Roussopoulos. She was
always present and provided me with firm encouragement and support, even in the (many)
dark times that I had during my studies. I feel extremely fortunate for having had the
opportunity to work under her guidance. From my experiences talking with many other
PhD students from all around the world, I am convinced that she is truly a role model for
supervisors. I know that when she reads this, she will probably ask me to tone down my
praises towards her, but I will kindly decline!

I would also like to thank deeply the other members of my thesis committee. Professor
Aggelos Kiayias, for his involvement and engagement in steering my work and providing
the necessary insight in regards to cryptographic aspects that I was not accustomed with
in the beginning of my studies. Professor Alex Delis, my mentor I could say, whom I
have known and had a close connection with since my undergraduate studies. He is the
one that fired up my interest in computer science and research as a whole. He provided
me with strong motivation to pursue my graduate studies, while also scolding me for my
smoking habbits! His guidance at crucial moments throughout the whole lifecycle of my
studies cannot be overstated.

It has been a great pleasure to work at the Distributed Systems Research group. We
worked on a variety of challenging and very interesting research problems throughout the
years. I especially enjoyed the daily talks that we had, as they helped me grow both as
a scientist and, more importantly, as a person. For similar reasons, I would also like to
thank the members of the CRYPTO.SEC group, especially Katerina Samari, with whom I
worked closely.

I am grateful to my parents for their support over the years and for making an absolutely
astounding job at raising me, in spite of all the troubles that I put them through. My mother
was always willing to make my life easier and ease my struggles in any possible way, be it
by offering kind words of support, or a home cookedmeal, the importance of which I cannot
even begin to describe. My father, a fellow computer scientist, who is largely responsible
for my interest in computers and programming, as he gave me and my brother an Amiga
500 as a present when I was 3 years old!

Last, but not the least, I would like to thank my friends (the ones that lasted). You know
who you are.

CONTENTS

1 INTRODUCTION 31

2 BACKGROUND 37
2.1 Outline . 37
2.2 Public key Cryptosystems . 37
2.3 Digital Certificate . 38

2.3.1 Registration and Certification Authorities . 39
2.3.2 Web of Trust . 40

2.4 Public Key Infrastructure . 41
2.5 Blockchain . 42
2.6 Ethereum . 43
2.7 Cryptographic Accumulators . 45

3 RELATED WORK 47
3.1 Categorization . 47
3.2 RSM-based PKIs . 47
3.3 Overlay-based PKIs . 47
3.4 Blockchain-based Naming Services . 48

4 Naming Service: Building Blocks and Definition 51
4.1 Preliminaries . 51
4.2 Public State, Additive, Universal Accumulator . 51
4.3 Naming Service Definition . 53

5 RSA-based PKI Construction 59
5.1 RSA-based, Public State, Additive, Universal Accumulator 59

5.1.1 Mapping arbitrary strings to primes. 59
5.1.2 Map: A modified version of the algorithm of Gennaro et al. [68]. 59
5.1.3 Security of the accumulator of Figure 5.1. 61
5.1.4 Constructing a universal accumulator from an additive, universal accumulator ([46]). . . 62

5.2 RSA-based PKI . 63
5.2.1 Construction . 63
5.2.2 Using only one accumulator . 65

6 Hash tree-based PKI Construction 67
6.1 Hash tree-based Universal Accumulator . 67

6.2 Hash tree-based PKI . 70
6.2.1 Construction . 70
6.2.2 Using only one accumulator . 73

7 Evaluation 75
7.1 Experimental Setup and Preliminary Results . 75
7.2 RSA-based PKI Evaluation . 76
7.3 Hash tree-based PKI Evaluation . 78
7.4 Linear State PKI Evaluation . 82

8 An Alternative Paradigm for Developing Applications and Pricing Storage
on Smart Contract Platforms 85

8.1 Rationale . 85
8.2 Accumulator-based ERC20 Token . 86

8.2.1 Construction . 86
8.2.2 Evaluation . 89

8.3 Revisiting Ethereum’s Storage Cost Model . 90
8.3.1 Adaptive Pricing of Storage Operations . 90
8.3.2 Adaptive Pricing of Storage: Accumulator-based vs Bare Bones ERC20 Token 92
8.3.3 Adaptive Pricing of Storage: Hash Tree-Based vs Linear State PKI 95

9 Conclusions and Future Work 99

ABBREVIATIONS - ACRONYMS 103

APPENDICES 104

A Proof of Lemma 5.1.1 105

B PROOF OF THEOREM 5.2.1 107

REFERENCES 119

LIST OF FIGURES

4.1 The security game between the adversary A and a challenger C, where C
plays the roles of both T and Tacc. 53

4.2 The naming service functionality Fns interacts with a set of n clients, a set of
m servers, a trusted party T and the simulator S. It allows clients to register,
revoke, retrieve and verify (id, pk) pairs. 54

4.3 The functionality FUDB models an unreliable database that stores informa-
tion relevant to our protocols. It interacts with a set of n clients, a set of ℓ
servers and the adversary A. 55

4.4 The functionalityFTP captures the role of the smart contract. It interacts with
a trusted party T , a set of n clients, a set of m servers and the adversary A. 56

5.1 Construction of a public-state, additive, universal accumulator based on the
strong-RSA assumption in the Random Oracle model. 61

5.2 The program PRSA, which is input to FTP during initialization, in the RSA-
based PKI construction. 63

5.3 Description of the protocol πRSA built upon the program PRSA of Figure 5.2. 64

6.1 Example of a hash tree T that corresponds to the accumulated set X =
{x1, ..., x8}. The minimal subtree T ′, where H(x3, x4) is the starting node’s
value, is comprised by the nodes in bold font. 68

6.2 Construction of the hash-tree based universal accumulator of Camacho et
al. [53]. 69

6.3 The program PHash, which is input to FTP during initialization, in our Hash
tree-based PKI construction. 70

6.4 Description of the protocol πHash built upon the program PHash of Figure 6.3. 72

7.1 Gas cost versus the number of accumulated values of 100,000membership
(green line) and non membership (purple line) witness verifications of the
hash tree-based universal accumulator. 79

7.2 Gas cost versus the number of accumulated values of 100,000 update ver-
ifications (CheckUpdate()) of the hash tree-based universal accumulator. . 79

7.3 Gas cost versus the number of registered (id, pk) pairs of 100,000 regis-
trations (purple line) and revocations (green line) of our hash tree-based
PKI. 80

8.1 Gas cost versus of the transfer, approve and transferFrom operations
of our accumulator-based ERC20 token construction for up to a total of
400,000 accounts and 400,000 approvals. 89

8.2 Gas cost of the transfer operation of the bare-bones and our accumulator-
based ERC20 token for up to a total of 400,000 accounts and 400,000 ap-
provals under our adaptive model for pricing storage operations. 94

8.3 Gas cost of the transferFrom operation of the bare-bones and our accumulator-
based ERC20 token for up to a total of 400,000 accounts and 400,000 ap-
provals under our adaptive model for pricing storage operations. 94

8.4 Gas cost versus of the approve operation of the bare-bones and our accumulator-
based ERC20 token for up to a total of 400,000 accounts and 400,000 ap-
provals under our adaptive model for pricing storage operations. 95

8.5 Gas cost of registering 100,000 (id, pk) pairs on the linear state versus our
hash tree-based PKI under our proposedmodel for pricing storage operations. 96

8.6 Gas cost of revoking 100,000 (id, pk) pairs on the linear state versus our
hash tree-based PKI under our proposedmodel for pricing storage operations. 96

B.1 Simulator S. 108

LIST OF TABLES

2.1 Gas price values depending on desired transaction priority ([11]). One unit
of Ether corresponds to 109 Gwei (Giga wei, also known as Shannon). We
refer the interested reader to [12] for more details regarding ether denomi-
nations. 44

7.1 Min, max, mean and standard deviation (columns 2-5) of the gas cost of:
1) 10,000 modulo multiplications, exponentiations and primality tests, 2)
10,000 accumulations of primes (Add) and (non) membership witness ver-
ifications (VerifyMem,VerifyNonMem) 3) 1,000 mappings (Map) of strings
to primes and, 4) registrations (Register, for (i = 1) and (i ≥ 2)) and revo-
cations (Revoke) of 1,000 (id, pk) pairs in the RSA-based PKI. 76

7.2 Min, max, mean and standard deviation (columns 2-5) of the gas cost of
registering and revoking 10,000 randomly generated (identity,public-key)
pairs in the Linear State PKI contract. 82

PREFACE

The findings in this PhD thesis reflect the author’s contribution to the goals of the “Pro-
tecting and Preserving Human Knowledge for Posterity” (PPP) project, which was funded
under Grant Agreement No. 279237. The main goal of this project was the design and de-
velopment of a secure and decentralized digital preservation system with no single points
of failure that could be applied at an international scale. The project’s research activities
involved work in the following topics:

1. Resilience to adversaries, especially in the face of dynamic subversion and repair
of peers.

2. System recovery after intrusions.
3. Peer identity, trust, and reputation.
4. Peer diversity.
5. Peer-to-peer preservation in other problem domains.

The author was involved in the design and development of topics 1 and 2 and had a leading
role in the works pertaining to topic 3. The constructions presented in this work have
provided a generic, secure and decentralized framework for handling peer identities. This
was previously handled in a centralized fashion by manually binding a peer’s identity to its
(static) IP address. Thus, there was no support for the use of more involved and important
constructs, e.g., public key cryptography, issues which are completely addressed by the
findings presented of this thesis.

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

1. INTRODUCTION

The importance of associating human readable names with the addresses of resources
that span multiple hosts and administrative domains dates back to the early days of the
ARPANET. This association provides the following benefits. First, it diminishes the diffi-
culty of humans, who interface with computer systems, to access resources by relying on
memorable names, instead of, e.g., strings of numbers, such as IP addresses. Second,
it adds a level of indirection which, among others, allows for transparent updates to the
addresses of resources. In the early days of the Internet, the Stanford Research Insti-
tute maintained a mapping between domain names and IP addresses in a text file called
hosts.txt ([62]). However, as the networking environment becamemore and more diverse,
and as the number of resources grew, so did the need to formulate a standardized and au-
tomated Naming Service (NS) that will address technical and personnel issues ([84, 85])
in maintaing these associations. At a high level, a NS allows the registration, revocation,
storage and retrieval of bindings between arbitrary names and addresses.

In today’s Internet, Domain Name System (DNSs) and Public Key Infrastructures (PKIs)
are NSs that provide the most critical building blocks for facilitating and securing digital
communications. Their wide-scale deployment has allowed the development of an impor-
tant and diverse set of applications, such as e-commerce, e-voting and Internet banking.
In DNS, domain names are associated with zone files ([86]), which are sequences of
resource records pertaining to, e.g., IP addresses and textual representations of timing
and expiration parameters. In PKIs, identity names are associated with digital certificates
([73]), i.e., unforgeable data structures that attest, among others, to the authenticity of an
identity’s public key. However, contrary to the original, distributed design principles of the
Internet, these critical systems remain, to this day, under the control of centralized, re-
mote parties. In the following, we briefly overview the operations of a PKI in a centralized
setting, which will allow us to, subsequently, illustrate the issues that centralization of NSs
introduces.

In a centralized PKI (CPKI), a Certification Authority (CA), is responsible for issuing, dis-
tributing and managing the status of digital certificates. At a high level, the correct oper-
ation of CPKIs depends on the following two fundamental assumptions. First, everyone
knows the CA’s (correct) public key, i.e., all involved parties have a copy of the CA’s cer-
tificate. Second, statements signed by the CA’s private key are considered valid, i.e.,
everyone trusts the CA. In a CPKI, registering an identity to public-key mapping is a two-
phase process (from hereon in, we will use the notation (id, pk) to refer to such mappings).
In the first phase, the user proves her claim on an identity, e.g., via a government-issued
identity card or some other form of document, to a Registration Authority (RA). Assuming
the RA validates the claim, it marks the digital certificate request as valid and forwards it
to the CA. In the second phase, the user receives her digital certificate, which is signed
by the CA’s private key, thus, attesting to its validity. CAs periodically publish signed data
structures that contain revoked certificates, e.g., a certificate revocation list (CRL, [73]).
Distribution of certificate-related information is handled either by the CA (online CA), or, it
is delegated to online, publicly accessible directories (offline CA).

31 C. Patsonakis

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

While predominant in use, CPKIs have several shortcomings. First, a CA constitutes a
single point of failure, both in terms of security and availability. Indeed, there have been
several incidents throughout the years where CAs have been compromised. These inci-
dents have had severe repercussions that, for instance, led to the issuance of false cer-
tificates for domain names of high-profile corporations, such as Google ([63]). Symantec,
which represented more than 30% of the Internet’s valid certificates in 2015, was discov-
ered to have mis-issued more than 30,000 certificates ([71]). Furthermore, the Trustwave
([82]) incident reincited the growing concern that governments and private organizations
are able to issue false certificates for surveillance, thus, violating the privacy of end-users
([112]). In practice, there exist multiple CAs, which are linked with well-defined, parent-
child relationships, based on trust and other policies. The most notable example of this ar-
chitecture is the SSL/TLS certificate chain. This hierarchical, tree-like, certification model
is designed to increase the system’s scalability and fault-tolerance. However, root, or
even, subordinate CA compromises, such as the ones we mentioned previously, have
proven to be catastrophic ([61]). Furthermore, Internet browser vendors reserve and en-
force their right to “distrust root certificates present in the operating system’s root certificate
list” (e.g., [80]). Moreover, users must deal with issues regarding cross-domain certifica-
tion policies, as well as, the John Wilson problem ([99]). The latter is an intractable name
distribution problem and refers to how a user can disambiguate if the party she is commu-
nicating with is the intended “John Wilson” and not a namesake. Unfortunately, dealing
with these issues requires access to information that is generally not publicly available
([61, 72]).

In a decentralized PKI (DPKI), multiple, independent nodes cooperate and deliver the
same set of services, without relying on one, or more, trusted third parties (TTPs, e.g.,
CAs). DPKIs have been proposed because, as distributed systems, they have the poten-
tial to offer a number of desirable properties that CPKIs cannot offer, such as scalability,
fault-tolerance, load balancing and availability. Researchers have proposed DPKIs based
on various distributed primitives, such as distributed hash tables (DHTs) (e.g., [37]). To
account for malicious nodes and provide increased security, they employ secret sharing,
threshold and byzantine agreement protocols (e.g., [43, 59]). These techniques, while
more complex to design and implement correctly, lead to systems that do not exhibit single
points of failure. Unfortunately, prior DPKIs do not provide incentives for the participating
nodes to ensure that the offered service remains available in the long term, e.g., they fail
to address the free-riding problem ([76]). To illustrate the importance of incentives and
their effect on the perpetuity of systems, note that CPKIs are deployed on large corpo-
rations whose operations, and profits, are fueled by real-world currency. Thus, despite
multiple, prominent security incidents in which CAs have been involved, they are still in
operation. We posit that we can mimic this is a decentralized setting by leveraging modern
constructs, which we introduce below.

Bitcoin ([88]), the world’s first cryptocurrency, revolutionized the world of digital payments
by allowing untrusted entities to transact securely without relying on TTPs. Its operation is
based on a distributed network of peers (miners) with open membership that maintains a
highly replicated, auditable, append-only log of transactions, which is commonly referred

C. Patsonakis 32

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

to as a blockchain. Blockchains solve the well studied problem of distributed consensus
([77]) in an open networking environment. They feature a reward mechanism that has
empirically demonstrated it incentivizes miners to participate in the protocol. The rewards
come in the form of a digital currency that compensates miners, thus, creating a counter-
incentive to free-riding, while still retaining a highly scalable, free-entry system. Since
the advent of Bitcoin, blockchains show promise for building systems that are completely
distributed. As a result of this potential, there have been calls from the community to “re-
decentralize” the Internet by leveraging blockchain technology to build critical NSs and,
thus, eliminate the Internet’s reliance on centralized entities (e.g., [40, 24]).

Notable examples of blockchain-basedNSs are Namecoin ([24]), Emercoin ([8]) and Block-
stack’s BNS ([40]). These systems employ the blockchain as a medium to store, query
and verify the validity of records pertaining to identities. However, “on-blockchain” storage
is inefficient for several reasons. First, it forces clients to download and maintain an entire
copy of the blockchain to verify the validity of identity records. Second, computational
complexity and storage requirements scale linearly with the number of registered records.
Third, it limits the system’s applicability by excluding important, storage-limited devices,
e.g., smartphones. Lastly, it bloats the blockchain, increasing the size of the state that
miners have to maintain, which may not incentivize new miners to sync and contribute to
the blockchain’s security. These inefficiencies are, to a certain extent, attributed to the lim-
ited set of operations that the underlying blockchain exposes. For instance, Namecoin’s
scripting language forbids even simple arithmetic calculations, such as integer multiplica-
tion. Thus, one can argue that, until recently, on-blockchain storage was the only available
solution of implementing a NS in the face of such a constrained development environment.
However, recently, a new generation of programmable blockchains has emerged that al-
lows the development of smart contracts ([101]). These are stateful agents that “live” in
the blockchain and can execute arbitrary state transition functions. At the time of this writ-
ing, the most notable public smart contract platform is Ethereum ([106]). This ingenious
technology provides us with the necessary means to develop distributed NSs that do not
suffer from the issues stemming from on-blockchain storage.

In this thesis, we present the design of the first provably secure, smart contract-based NS
in the Universal Composability (UC) framework ([55]). Themain barrier in realizing a smart
contract-based NS is the size of the smart contract’s state which, being its most expensive
resource to access and update, should be minimized for a construction to be considered
viable. To address this issue, we harness the power of cryptographic accumulators, i.e.,
data structures that provide a succinct representation of a set of elements and allow for
verifiable, (non) membership proofs (referred to as witnesses). More specifically, our de-
sign’s main building block is a public-state, additive, universal accumulator, based on the
strong-RSA assumption in the Random Oracle model, which we define in this work. This
accumulator favors storage overhead at the expense of computational complexity neces-
sary to achieve constant-sized state and witnesses. To explore this tradeoff, we propose
a second construction, which is built on top of the Hash tree-based, universal accumulator
of Camacho et al. [53]. In this construction, the smart contract’s state is still of constant
size, however, witness sizes and their verification complexity are logarithmic in the number

33 C. Patsonakis

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

of registered identity records. We compare both of our constructions with the simple ap-
proach of most prior schemes, e.g., the Ethereum Name Service ([15]), where all identity
records are stored on the smart contract’s state. We implement and evaluate experimen-
tally on top of Ethereum a PKI variant of all the three aforementioned smart contract-based
NSs and illustrate the monetary costs of their operations and their building blocks, as well
as, their viability in terms of deployment. Furthermore, via our experimentation, we are
able to present several shortcomings of Ethereum’s current cost model and propose sev-
eral modifications, which are minor and fair. Finally, we identify several problem areas
we encountered while developing on top of Ethereum and make concrete proposals for
improving the platform with the aim of increasing both developer productivity and smart
contract reliability. We argue that these improvements are sensible for any smart contract
platform that wishes to support user developed distributed applications.

In summary, the contributions of this thesis are as follows:

• We present the formal design of a smart contract-based NS. Due to the interop-
erability of smart contracts, our design provides a generic naming mechanism that
can be used to provide on-blockchain authentication, in the case of a PKI imple-
mentation, that, up to this point, was handled in an ad-hoc manner. Furthermore,
the programmable nature of smart contract platforms allows us to evolve our im-
plementations with more efficient primitives, when such become available, without
the need for a fork in the blockchain, which is not the case for all prior specialized
blockchains (e.g., [24, 8]). Even though our envisioned application was initially a
PKI, we specifically modeled our design as a generic NS. Thus, our design can be
ported to implement, efficiently, other services that reside in this paradigm, e.g., a
distributed domain name system (DDNS).

• We resolve the main barrier in realizing a viable smart contract based NS by pro-
viding two constructions that have the “constant-ness” property, i.e., the smart con-
tract’s state, which is expensive to access and evenmore so to update, is of constant
bit-size, regardless of the number of registered identity records.

• We are the first to formally prove the security of a smart contract-based NS ([92])
in the Universal Composability (UC) framework ([55]) under standard cryptographic
hardness assumptions and the existence of an ideal smart contract functionality1.
We believe that formal proofs of security are extremely important for such critical
security infrastructures, an issue that was not addressed by any prior work.

• We implement and experimentally evaluate two PKI constructions of our NS, as well
as, all of their building blocks ([93]), in Ethereum. Our results illustrate that one of
our constructions can be deployed on Ethereum’s live chain. Our analysis allows
us to demonstrate several shortcomings of Ethereum’s cost model and the ways
in which: i) it affects each PKI construction, ii) it impedes the establishment of a
standard library of smart contracts and, iii) it incentivizes smart contract developers
to adopt several malpractices. We propose several modifications to Ethereum’s cost
model, which areminor and fair, to address all the aforementioned issues and others.

1Joint work with Katerina Samari ([92]).

C. Patsonakis 34

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

• We introduce an alternative paradigm for developing decentralized applications on
top of smart contract platforms ([91]) by decoupling the issue of storage from verify-
ing the validity of data, which aligns well with the future of smart contract platforms.
Our proposed scheme can be employed by any application that requires a verifiable
representation of its application data, i.e., it can be used to implement any key-value
store. To illustrate the efficacy of our approach, we present a case study of an
ERC20 token construction, the most widely deployed standard for fungible tokens,
which numbers over 130,000 compliant contracts on Ethereum’s live chain ([9]).

• We address, in a two-fold manner, Ethereum’s monotonically increasing state which,
if left unchecked, will have a direct impact on Ethereum’s security and, utlimately,
its longevity. We introduce recurring fees that are proportional to the state of smart
contracts and adjustable by the miners that maintain the network. In addition, we
propose a scheme where the cost of storage-related operations reflects the effort
that miners have to expend to execute them. Lastly, we revisit our ERC20 token and
our hash tree-based PKI constructions and show that under such a pricing scheme
that encourages economy in the state consumed by smart contracts, both of our
constructions reduce the incurred transaction fees by up to an order of magnitude.

35 C. Patsonakis

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

C. Patsonakis 36

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

2. BACKGROUND

2.1 Outline

In this section, we provide background knowledge required to understand the general
framework under which our smart contract-based NS design operates, while also consti-
tuting this thesis as self-contained as possible. We begin by providing a brief and infor-
mal introduction on basic concepts related to public key (asymmetric) cryptosystems and
digital certificates. We introduce a basic overview of blockchains and, subsequently, of
Ethereum, the most notable public smart contract platform at the time of this writing and
our platform of choice with regards to the implementation of the constructions presented
in this work. Lastly, we provide an overview on the topic of cryptographic accumulators,
which lie at the heart of the design of our NS.

2.2 Public key Cryptosystems

The core purpose of public key, or assymetric, cryptosystems is to allow parties to com-
municate securely, over an insecure channel, without having a previously agreed upon
secret key. Furthermore, they simplify the process of key management as they alleviate
the need to manage distinct cryptographic keys per pair-wise communication channel,
which is the case in symmetric cryptosystems. In public-key cryptosystems, each user (or
device) has a pair of cryptographic keys, i.e., a public and a private key. The public key
(pk) of a user is distributed freely and it is assumed that it can be retrieved reliably. The
means under which this takes place is the topic of the next section. The private or se-
cret key (sk), as its name implies, is known only to the user (or device) and should never
be transmitted or revealed to any other party. Public key cryptosystems are associated
with a set of algorithms that employ the aforementioned keys to perform cryptographic
operations that allow for secure communication. Typically, the algorithms of a public key
cryptosystem are a union of those provided by encryption and digital signature schemes.
In the following, we present an informal overview of these algorithms in the asymmetric
setting:

• KeyGen(1λ)→ (pk, sk) : On input the security parameter λ, output a public (pk) and
a private (sk) key pair such that pk, sk ∈ K, where K is the set of all keys.

• Encrypt(m, ek)→ c : On input a messagem ∈M, whereM is the message space,
and an encryption key ek ∈ K, output a ciphertext c ∈ C, where C is the set of all
ciphertexts.

• Decrypt(c, dk) → m : On input a ciphertext c ∈ C and a decryption key dk ∈ K,
output a message m ∈ M. This algorithm “undoes” encryption, i.e., the following
correctness property holds:

Decrypt(Encrypt(m, ek), dk) = m (2.1)

37 C. Patsonakis

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

for all k ∈ K and m ∈M.
• Sign(m, sk) → σ : On input a message m ∈ M and a signing key sk ∈ K, output a
digital signature σ that can be used to verify the authenticity and integrity of message
m.

• V erifySig(m,σ, vk) → {0, 1} : On input a message m ∈ M, a digital signature σ
and a verification key vk ∈ K, output 1, if σ is a valid signature for m, otherwise,
output 0.

The KeyGen() algorithm of a public key cryptosystem outputs key pairs with the following
properties: 1) it is extremely improbable to derive the private key from the public key (the
opposite is trivial) and, 2) a message encrypted with one of the keys in the pair can only
be decrypted with its corresponding key in the pair. In this setting, the sender encrypts
her message with the receiver’s public key and transmits the ciphertext. The receiver, via
her private key, is the only one that can decrypt the transmitted ciphertext and retrieve the
original message. This exchange guarantees data confidentiality, i.e., an eavesdropper
cannot extract information about the message’s plaintext. However, it does not address
the following issues. First, if the ciphertext where to be tampered with during transmission,
either by some malicious party, or due to, e.g., bit rot, the receiver has no way to verify
the integrity of the message. In addition, the receiver of the ciphertext cannot infer the
identity of the sender, i.e., she cannot authenticate from where the ciphertext came from.
To achieve both of these properties, i.e., data integrity and authentication, the sender
generates with her secret key sk a digital signature σ, via the Sign() algorithm, which is
appended, along with her public key, to the transmitted ciphertext. The receiver, as previ-
ously, will decrypt the ciphertext with her private key and verify the validity of the signature
(V erifySig()) by using the public key of the sender as the verification key. An additional
and important property of digital signatures is non-repudiation, or, more precisely, non-
repudiation of origin. This property entails that an entity that has signed a message m
cannot, at a later time, deny having signed it.

2.3 Digital Certificate

A digital certificate, also known as a public key or identity certificate, is a digital document
that is used to prove the ownership of a public key by some entity. Digital certificates
provide information regarding an identity name, its public key and other pertinent details
regarding the key owner and the employed cryptographic algorithms. Unlike real world
documents that are used for identification, e.g., passports, digital certificates can and are
used to identify non-human entities as well, such as software and hardware components.
Furthermore, certificates can (and should) be distributed and copied multiple times, which
is certainly not the case for passports. In the general case, digital certificates do not
contain sensitive information and, thus, their public distribution does not induce privacy or
other security risks.

In the previous section, we (conveniently) assumed that the public key of a user can be re-
trieved reliably via somemechanism. This could be facilitated by a publicly accessible, on-

C. Patsonakis 38

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

line directory that maintains an associative array between identity names and certificates.
However, this directory now constitutes a single point of failure. Indeed, a malicious party
that manages to breach this centralized component will be able to launch impersonation
and key modification attacks. To guard against such incidents, a data integrity mecha-
nism is required. While digital signatures provide this property, we still have no guarantee
that the public key that is contained in a digital certificate belongs to the “claimed” owner.
This is a data authenticity problem. In the following, we briefly introduce the two most
prevalent, but not infallible, approaches in issuing and binding a digital certificate to an
entity.

2.3.1 Registration and Certification Authorities

A Registration Authority (RA) is a company or organization that is responsible for receiving
and validating client requests for digital certificates. An RA acts as an intermediary be-
tween clients and Certification Authorities (CAs), i.e., trusted third parties that are respon-
sible for issuing and managing the status of digital certificates. In this setting, clients gen-
erate an asymmetric key pair and, subsequently, construct a certification request ([104]).
A certification request contains, among others, the client’s public key, an identity name
(e.g., a fully qualified domain name) and other credentials (attributes) that can be used to
prove the client’s claim on the identity. The client signs the certification request with her
private key and sends it to the RA. On receipt, the RA verifies the client’s request and,
if it is deemed valid, it contacts a CA and requests the issuance of a digital certificate.
X.509 v3 ([58]) is an Internet standards protocol that defines, among others, the format
and encoding of digital certificates issued by CAs. An X.509 v3 certificate is comprised,
at minimum, by the following fields:

• Issuer: This field identifies the CA that has signed and issued the certificate via a
non-empty, hierarchical distinguished name composed of various attributes.

• Version: This field describes the version of the encoded certificate and, depending
on its value, implies if only basic fields are present or not.

• Serial Number: A long integer (of up to 20 octets size) that uniquely identifies each
certificate issued by a given issuer.

• Subject: This field identifies, via a non-empty, hierarchical distinguished name, the
entity associated with the public key stored in the corresponding field.

• Not Before: The date on which the certificate validity period begins.

• Not After: The date on which the certificate validity period ends.

• Public Key Info: This field is used to carry the public key and identifies the algorithm
with which the key is used.

39 C. Patsonakis

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

• Signature: This field contains the algorithm identifier for the algorithm used by the
CA to sign the certificate.

• Signature Value: This field contains a digital signature computed upon the ASN.1
DER encoding of all the aforementioned fields.

• Signature Algorithm: This field contains the identifier for the cryptographic algo-
rithm used by the CA to sign this certificate. This field must contain the same algo-
rithm identifier as the “Signature” field introduced previously.

The CA, i.e., the “Issuer”, generates the client’s digital certificate and signs it with its private
key. Consequently, a party that wishes to verify the validity of a client’s digital certificate
must have access to the signing CA’s correct public key (or certificate). However, a veri-
fying party cannot verify a client’s digital certificate without, first, having a valid copy of the
issuing CA’s certificate. But, how do we escape this infinite loop of delegating validation
to some higher tier authority?

To avoid this “chicken” or “egg” paradox, the TLS protocol ([98]) anchors trust in a list of root
certificates. Root certificates are self-signed, i.e., the certificate’s subject is also the issuer
who signed the certificate. In the World WideWeb (WWW), browsers have a list of several
“trustworthy” (quotes reflect the fact that most of them have been compromised) CA root
certificates already incorporated when they ship. A web server that uses a certificate that
is signed by such a trusted CA is automatically trusted by the client’s browser. This is the
most widely deployed mechanism for distributing root certificates and, thus, bootstrapping
trust.

A root CA can issue digital certificates to subordinate or intermediate CAs, which inherit,
to some degree, the trustworthiness of the root CA. This process can be repeated multiple
times and results in the so-called TLS certification hierarchy. The distribution of intermedi-
ary CA certificates is, typically, offloaded to an online and public directory whose contents
can be accessed via the Lightweight Directory Access Protocol (LDAP, [74]).

2.3.2 Web of Trust

Web of Trust (WoT) is a concept that was first introduced by PGP ([114]) to establish the
authenticity of bindings between identity names and public keys (or certificates). In WoT,
the authenticity of a public key is entirely decentralized, i.e., users are able to designate
others as trustworthy by signing their public key. Thus, a user accumulates signatures of
her public key from other others that have deemed her trustworthy. A verifier considers
a public key as “trustworthy” if she is able to find a valid digital signature from one (or
more) users that she trusts. Conceptually, there is no single point of failure regarding
trust, as in the previously reviewed case. However, as in the case of CAs, there is nothing
that prevents multiple users from creating digital certificates for the same identity. In the
following, we provide a high level overview of PGP’s implementation of the WoT model
([57]).

C. Patsonakis 40

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

In PGP, keys are always stored at the user’s end inside structures that are referred to
as key rings. A PGP key ring is a collection of public keys of the entities with whom the
owner intends to communicate. Every PGP user maintains two key rings, a private key
ring and a public key ring. The private key ring of a user stores all of her public and private
key pairs, since users can have multiple pairs associated with them. The private key is
encrypted with a passphrase that the user supplies at the time of the key’s generation.
The public key ring of a user includes information that indicate the validity and the level
of trust that can be placed on the public keys of other users. A user’s trust in her own
key pair is referred to as implicit trust and constitutes the highest level of trust that can be
assigned to a key. In PGP, public key ring keys that are signed by one (or more) keys of
the user’s private key ring, are assumed to be valid. A user can assign the following three
levels of trust to the public key of another user:

• Complete Trust: The owner of the key is trusted to sign and validate the public keys
of other users.

• Marginal Trust: The owner of the key is trusted to validate the public keys of other
users.

• No Trust: The owner of the key is not trusted for anything.

PGP supports X.509 digital certificates, but it also has its own format for certificates, which
is referred to as the PGP certificate format. The unique feature of a PGP certificate is that
it allows for multiple users to sign it. The signature of the owner in the certificate is called
a self−signature and it is contained in every PGP certificate. This means that every user
signs her certificate to ensure non-repudiation of her data.

2.4 Public Key Infrastructure

In the real world, it is (still) relatively easy to identify the parties with which we are com-
municating, either via face recognition based on past knowledge, or various identification
documents, such as government issued identity cards, which are (assumed to be) “un-
forgeable“ (quotes reflect the fact that in countless of cases these documents have been
forged). However, in the digital world, it is quite an involved task to securely establish
the identity of the parties with which we are communicating. Furthermore, since commu-
nication networks, such as the Internet, are by design insecure and unreliable, message
transmissions are susceptible, among others, to eavesdropping and tampering. The pur-
pose of a public key infrastructure (PKI) is to address these underlying problems of trust,
authentication, confidentiality and integrity. PKIs mirror the trust models of the physical
world and couple it with standard cryptographic techniques to enable secure electronic
communications and transactions.

On a high-level, a PKI can be defined as a real-world system that allows the registration,
revocation and distribution (storage and retrieval) of digital certificates. In cryptography,
a PKI is defined as an arrangement that binds public keys to identities. Notice that there

41 C. Patsonakis

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

is a subtle, but very important, difference between the aforementioned definitions. The
cryptographic definition is not concerned with issues of trust and data authenticity, which
are also referred to as accurate registration and where reviewed in Sections 2.3.1 and
2.3.2. Instead, its main focus is providing identity retention, i.e., the inability of a user to
impersonate another registered user. We have already illustrated that these two issues
are orthogonal to each other. Since accurate registration is deployment specific and, in
some cases, not even required (e.g., in DNSs), the main focus of this thesis is to provide
system constructions that offer identity retention.

2.5 Blockchain

Bitcoin ([88]), the world’s first cryptocurrency, introduced the term “blockchain” which,
nowadays, is used to refer to either a data structure, or a peer to peer (P2P) network.
As a data structure, a blockchain is an ordered list of blocks, where each block contains
a collision resistant hash of the previous block, i.e., blocks are sequentially “chained” to-
gether. Thus, the history of blocks cannot be altered without invalidating the hash chain, a
property which is commonly referred to as immutability. The first block is of special value
as it initializes the data structure and it is referred to as the “genesis block”. In the case of
Bitcoin, the genesis block was produced by its pseudonymous creator, Satoshi Nakamoto.
Each block contains a small (possibly empty) list of transactions. Transactions are data
packages that provide the means to clients of the blockchain to encode operations that
they want to invoke. For instance, in Bitcoin, transactions can be used to specify (simple)
rules for transferring currency value. However, clients can also encode arbitrary data in
transactions that are not related to blockchain operations. Thus, the blockchain can be
viewed as a general purpose, append-only, secure log of immutable data.

As a P2P network, a blockchain is comprised by nodes, which are referred to as miners.
Miners aggregate and validate transactions issued by clients of the blockchain and pro-
duce blocks that will be appended on the blockchain. The process of creating a new block
is referred to as mining. Miners broadcast new blocks to the P2P network, thus, each
miner holds a replica of the entire blockchain. The P2P network executes a consensus
algorithm to decide on the block that will be appended on the chain. Depending on the
deployment setting, blockchains employ different consensus algorithms.

In a public setting, i.e., where membership is open and anyone can plug-in a node to the
P2P network, or act as a client, it is imperative to employ a consensus algorithm that can
defend against Sybil attacks. Douceur et al. [60] has proved that to defend against Sybil at-
tacks, distributed systems must employ either authentication, which requires a centralized
authority to assign distinct identifiers to participating entities (e.g., a CA), or, computational
power. As the former is not an option for public blockchains, the most commonly employed
consensus algorithm is based on computation and is referred to as “Proof-of-Work” (PoW).
In a few words, each miner, to produce a new block, must solve a (hard) computational
puzzle, which essentially involves inverting a hash function. Clearly, this procedure is not
(energy) efficient as illustrated by, e.g., Bitcoin’s maximum throughput of 7 transactions

C. Patsonakis 42

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

per second. An alternative consensus algorithm that is on the rise for public blockchains is
“Proof-of-Stake” (PoS), which we do not cover in this work and refer the interested reader
to the work of Badertscher et al. [44]. In all cases, public blockchains feature a reward
mechanism, which comes in the form of a digital currency (cryptocurrency), to compensate
miners, thus, creating a counter-incentive to free-riding, while still retaining a highly scal-
able, free-entry system. Put simply, a miner that produces a new block that is appended
to the blockchain will be rewarded with some units of the blockchains cryptocurrency.

In a private, or permissioned setting, a set of organizations collectively decide to form
a consortium where, typically, each organization hosts one or more peer nodes. In this
setting, node membership is assumed to be a solved problem, i.e., each peer can iden-
tify every other peer in the network by, e.g., having a copy of its digital certificate. Thus,
since Sybil attacks pose no threat, permissioned blockchains can employ far more effi-
cient consensus algorithms. For instance, Hyperledger Fabric ([42]), the most notable
permissioned blockchain, via its “pluggable” consensus feature, can employ a variety of
consensus algorithms, such as Kafka ([67]) for crash fault tolerance and BFT-Smart ([100])
for byzantine fault tolerance. Furthermore, in permissioned settings, there is no need for
an incentive mechanism, as the maintenance of the blockchain itself is assumed to be
of value to the consortium as a whole. As an example, a consortium may be formed
by several banking institutions to maintain a private, but still verifiable log, of cross bank
transactions. In this case, the blockchain can be useful to the banks to provide verifiable
financial information to government tax agencies, while still retaining the privacy of their
internal operations from other members of the consortium.

2.6 Ethereum

A downside of traditional blockchains, such as Bitcoin, is their limited set of pre-defined
operations. This issue is addressed by a new generation of programmable blockchains
that allow users to encode operations of arbitrary complexity. This effectively creates a
decentralized, smart contract ([101]) platform. The rules of the smart contract are ex-
pressed in code and are enforced by the blockchain’s consensus protocol. In this section,
we introduce Ethereum ([106]), the most notable public smart contract platform, on top of
which we implemented our PKI constructions.

Ethereum differentiates itself from Bitcoin, as well as, several other public blockchains that
are simple clones of Bitcoin (known as altcoins), in several ways. First, to track a client’s
ether balance (this is Ethereum’s cryptocurrency), Ethereum employs a simple, account-
based, bank-style model, compared to Bitcoin, where a client’s balance is spread across
multiple unspent transaction outputs (UTXOs). These Ethereum accounts are referred to
as externally owned accounts (EOA) and are created and controlled by user-generated
private keys. Second, Ethereum utilizes ether, which is converted to a unit called gas for
transaction execution, only as a “fuel” for its operation. Its main focus is to provide a plat-
form that facilitates smart contracts, not another cryptocurrency. In Ethereum, smart con-
tracts are stateful, user-defined programs that specify rules governing transactions, thus,

43 C. Patsonakis

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

Table 2.1: Gas price values depending on desired transaction priority ([11]). One unit of Ether
corresponds to 109 Gwei (Giga wei, also known as Shannon). We refer the interested reader to [12]

for more details regarding ether denominations.

Transaction Priority Gas Price
Low 2 Gwei

Medium 2.5 Gwei
High 4 Gwei

allowing mutually distrustful parties to transact safely with each other. This is facilitated
by Ethereum’s (Quasi) Turing complete programming language, a far more expressive
and potent tool than Bitcoin’s script, which currently forbids even simple arithmetic opera-
tions, such as integer multiplication. Developing a smart contract involves writing its code
in a high-level language (e.g., Solidity [28]), which is then compiled to Ethereum Virtual
Machine (EVM) initialization code. To avoid reader confusion, we clarify the following: 1)
the EVM should not be confused with typical VMs, instead, it should be considered as
a sandboxed, network-isolated execution environment, 2) each miner runs its own local
EVM instance and, 3) the initialization code is EVM assembly code that, when executed,
will create the contract’s actual assembly code. Deploying a contract involves wrapping
its initialization code in a transaction, signing it, and broadcasting it to the network. A
successfully mined block containing a contract creation transaction triggers the following
events. First, allminers receiving the block will execute the initialization code and produce,
as a result, the contract’s actual code. Second, a new account is created, which serves
as a means of storing the smart contract’s code and tracking its state. This is Ethereum’s
second account type, which is referred to as a contract account.

To enhance the reader’s understanding of Ethereum and, by extension, of our systems, we
elaborate on a few additional key points regarding contracts. First, contracts are accounts,
i.e., they have their own, separate ether balance, which is controlled by their code. Sec-
ond, contracts “live” in the blockchain, meaning that both their state and code is publicly
accessible. Thus, they can be trusted for correctness (provided their code was properly
audited), but not for privacy. Users “poke” (call) contracts by broadcasting transactions
that specify the code (function) to be executed and its input arguments. Moreover, it is
possible for a contract to call another contract, which is referred to as amessage call. Each
transaction byte, as well as, all EVM operations, ranging from simple contract instruction
fetches, to altering a contract’s state variable, cost some amount of gas. Ethereum em-
ploys a flat cost model, i.e., each EVM operation is priced in isolation of the rest of the code
according to its complexity and input byte size. Both message calls, as well as, transac-
tions that invoke smart contract code, specify an upper bound on the amount of gas that
can be expended by their execution, which is referred to as gas limit. This mechanism
protects miners from, e.g., getting stuck in an infinite loop. This is why Ethereum’s compu-
tational model is referred to as “Quasi” Turing complete. Miners, apart from their standard
block reward, are also compensated with a fee that is proportional to the complexity and

C. Patsonakis 44

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

input length of the executed code. The conversion of ether to gas depends on the gas
price parameter, which is specified in the body of each transaction. Thus, while gas cost
is static (for some computation), its correspondence to ether, i.e., its real monetary cost,
can vary. Assuming that the execution of a transaction costs gcost units of gas and that
the specified gas price in the transaction is gprice, the transaction’s cost in ether units can
be calculated as Ethercost = gcost × gprice. Gas price is one of the factors that influences
the incentive of miners to include a transaction in their next block. Table 2.1 illustrates
standard gas price values, depending on the desired transaction priority (pulled from [11],
note that these values are fairly volatile).

2.7 Cryptographic Accumulators

Cryptographic accumulators provide a representation of a set of elements into a single,
succinct accumulator value. For every element that has been added to the accumulator,
a process which is referred to as accumulation, one can efficiently produce amembership
witness, i.e., a proof that certifies that the element has been accumulated. The party that
is responsible for maintaining the accumulator is commonly referred to in the literature as
the “accumulator manager”. Since their introduction, researchers have proposed several
accumulator schemes, where each provides a different combination of features. In the
following, we provide a rough overview of the main features and properties of proposed
accumulator schemes that are relevant to this work.

A first point of categorization for accumulator schemes pertains to whether the accumu-
lated set of elements can be updated or not. In static accumulator schemes, the accumula-
tor’s value, as well as, any computed membership witnesses, have to be recomputed from
scratch when the accumulated set of elements is updated. Examples of such schemes
are the ones proposed by Benaloh et al. [49], who first introduced the concept of cryp-
tographic accumulators, and the subsequent refinement of their construction by Bari et
al. [47], who strengthened its security property. Camenisch et al. [54] extended previous
works and presented the first dynamic accumulator scheme. In this scheme, both the
accumulator’s value, as well as, membership witnesses can be updated by utilizing only
public information (the accumulator’s public key), i.e., no trapdoor information is required.
Cryptographic accumulators can be further categorized according to the type of updates
that they support. As illustrated in the work of Baldimtsi et al. [46], an accumulator scheme
is considered as additive, if it supports only additions, and subtractive, if it supports only
deletions. Li et al. [79] introduced the notion of universal accumulators, i.e., accumulators
that support both membership, as well as, non membership witnesses. Lastly, accumula-
tor schemes can be categorized based on the hardness of their underlying cryptographic
assumption. All of the aforementioned accumulator schemes are based on the strong
RSA assumption. Other proposed accumulator schemes are based on collision-resistant
hash functions and hash trees (e.g., [90]), known order groups (bilinear pairings, e.g., [89])
and the hardness of the short integer solution problem (lattices, e.g., [75]).

Cryptographic accumulators provide a number of benefits. First, their compact (or even

45 C. Patsonakis

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

constant) size makes them suitable candidates for storage-limited devices (e.g., smart-
phones). Second, their security properties are based on standard hardness assumptions,
thus, making them suitable for critical security infrastructures. Third, in cases where ac-
cumulators are stored on the blockchain, as in our constructions, there is an additional
benefit. Indeed, the blockchain is not employed to enforce consensus on the entire set of
accumulated elements. Instead, the consensus object is the accumulator’s value, which
has the following benefits. First, users are not required to perform a complete retrieval
and verification of the entire transaction history, i.e., downloading and validating the entire
blockchain. Instead, an outdated, or, new client, can download and validate only block
headers to update her state, which is far more efficient both in terms of communication
and computation. Second, it allows the introduction of an unreliable component that users
can query to efficiently obtain, among others, a more compact version of the entire his-
tory of operations, compared to the full transaction history. Due to the verifiable nature of
cryptographic accumulators, this increased efficiency comes at no cost.

C. Patsonakis 46

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

3. RELATED WORK

3.1 Categorization

Several previously proposed systems utilize the same underlying primitive, each in its
own unique way, to provide for a decentralized PKI, or naming service. These similari-
ties allow us to perform a rough categorization of all previously proposed schemes and
discuss each individual category separately. We focus on full-fledged decentralized PKIs
and naming services, i.e., systems that implement registration, revocation, storage and
retrieval of records pertaining to identities. Thus, we will not be concerned with certifica-
tion systems (e.g., [78]), which do not offer revocation, hybrid approaches, e.g., coupling
CAs with structured overlays (e.g., [108]), or, even PGP ([114]), whose operation relies
on centralized servers for revocation and digital certificate distribution.

3.2 RSM-based PKIs

Researchers have proposedDPKIs based on the replicated statemachine (RSM) paradigm
([113, 96]) to enforce a global, consistent view of the system’s state. This is achieved by
having nodes participate in an authenticated agreement protocol and typically assume:
1) a threshold t of faulty nodes, 2) join() and leave() protocols for nodes wishing to en-
ter, or leave, a replica group, to adjust the system’s threshold parameter and, 3) nodes
are able to authenticate any (potential) participant. In RSM-based PKIs, registration re-
quires one to perform an “out-of-band” negotiation with multiple administrative domains,
which is cumbersome for the user. In addition, non-determinism, e.g., time-stamping, is
a key difficulty of consistent replication since it can lead to replica state-divergence, thus,
compromising fault-tolerance. However, time-stamping is essential in a PKI for tracking
certificate lifetime. Blockchain-based systems, on the other hand, do not suffer from this
issue and they have already been used for the implementation of time-stamping services
(e.g., [69]). Furthermore, they employ a different form of agreement which is based on
computation. This alternative agreement algorithm has the nice property of being adapt-
able as nodes freely join and leave the system. Practical experience has illustrated that
the blockchain approach has been highly favored by both the research community, as well
as, the industry, due to its highly scalable, adaptive and non-restrictive nature ([2, 22, 31]).

3.3 Overlay-based PKIs

Structured overlays have also been proposed to distribute the services of a PKI ([43, 59]).
These are, by design, scalable, load-balanced and provide for efficient storage and re-
trieval of data. Other works (e.g., [87]) employ unstructured overlay P2P networks where
data is stored and queried by performing a series of short random walks. Unfortunately,

47 C. Patsonakis

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

none of these systems is able to defend against Sybil attacks. Douceur ([60]) has proved
that to defend against the Sybil attack, distributed systems must employ either authenti-
cation, or, computational power. However, the aforementioned systems do not employ
either, thus, they are insecure. Blockchains, on the contrary, are resilient to the Sybil at-
tack since their operation inherently depends on computational power. Furthermore, in all
of the aforementioned systems, nodes are expected to participate in resource-intensive
protocols without, however, incentivizing node participation, nor, enforcing correct behav-
ior of participating nodes. However, blockchains (e.g., [88, 24]) compensate parties that
engage in their consensus protocol via digital currency units. This reward mechanism has
empirically demonstrated it incentivizes node participation, while still retaining a highly
scalable, free-entry system.

3.4 Blockchain-based Naming Services

Namecoin ([24]) is the first and one of the biggest altcoins, i.e., clones of Bitcoin, that
provides a distributed DNS as its main function. Other notable blockchain-based naming
services are Emercoin ([8]), the Ethereum Name Service (ENS, [15]) and Blockstack’s
BNS ([40]). These naming services employ the blockchain to store, verify and query iden-
tity records. Unfortunately, this approach is inefficient as it forces each user to store an
entire copy of the blockchain and traverse its contents every time she needs to validate a
mapping. This limits the system’s applicability significantly; for example, storing the entire
blockchain on a smartphone is prohibitive. Moreover, validating mappings, which is the
most frequent operation, requires an increasing amount of computation as more blocks
are appended to the blockchain. In contrast, the constructions presented in this work, fol-
low a different design principle that stores in the state of a smart contract a constant-sized
and verifiable representation of all identity records by employing cryptographic accumu-
lators. Clients of our naming service can verify the validity of identity records via these
accumulators and by interacting with a (potentially unreliable) storage network. Thus, in
our design, there is no need to linearly search the blockchain. In addition, our design can
be implemented on top of any system that allows the development of smart contracts.
We chose to implement our constructions on top of Ethereum because it has a more rich
and diverse ecosystem of applications. Multisignature wallets (e.g., [3]) and various (non)
fungible tokens (e.g., [9]) are just a couple example applications that can benefit from the
standard, on-blockchain authentication mechanism that our constructions provide.

Melara et al. [83] introduce CONIKS, a privacy-preserving decentralized PKI where users
can monitor the consistency of their own (id, pk) pairs. While privacy is an important prop-
erty, e.g., for chat applications, it is not a requirement for traditional PKIs. For instance,
in the Web-PKI paradigm, identity names and the public keys of participants have to be
public. CONIKS’s operation is based on “identity providers”, i.e., centralized entities that
sign authenticated bindings and appropriately transform identity names for privacy pur-
poses. CONIKS assumes the existence of a separate PKI to distribute the public keys of
identity providers. Thus, it does not constitute a standalone PKI service, whilst the con-
structions presented in this work do. More importantly, CONIKS, lacks a formal proof of its

C. Patsonakis 48

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

security and privacy guarantees. This is also the case for systems derived from CONIKS,
i.e., EthIKS ([50]), Catena ([103]) and Conifer ([110]), which implement CONIKS on top of
Ethereum and Bitcoin. Certcoin ([64]) is a blockchain-based PKI proposal that employs
cryptographic accumulators but has a number of inefficiencies, e.g., it recomputes, from
scratch, accumulator values during each revocation. Furthermore, Certcoin has no secu-
rity model for the PKI it implements nor a proof that it provides the claimed service. Formal
proofs of security are imperative for such critical security infrastructures.

49 C. Patsonakis

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

C. Patsonakis 50

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

4. NAMING SERVICE: BUILDING BLOCKS AND DEFINITION

4.1 Preliminaries

In this section, we introduce basic notation and definitions that will be used throughout
this thesis. We use λ to denote the security parameter and negl(·) to denote a function
negligible in some parameter.

Definition 4.1.1 (Strong-RSA Assumption [47]). For any p.p.t adversary A,

Pr[n← KeyGen(1λ);x← Z∗
n; (y, e)← A(n, x) : ye = x mod n] = negl(λ),

where, n = pq, p and q are safe primes.

Definition 4.1.2 (Collision-Resistance [53]). LetH : L×M→ Y be a hash function family.
Let λ be a security parameter, where λ = |L| = |Y|. Then, H is collision-resistant if and
only if, for every p.p.t algorithm A, we have:

Pr[λ R← L; (m,m′)← A(λ) : m ̸= m′,Hλ(m) = Hλ(m
′)] = negl(λ)

where, λ R← L means that λ is chosen uniformly at random from the set of keys L.

Definition 4.1.3 (2-Universal Hash Function Family [56]). Let U = {f |f : X → Y } be
a family of functions. We say that U is a 2-Universal Hash Function Family if, for all
x1, x2 ∈ X with x1 ̸= x2 and for all y1, y2 ∈ Y , Prf∈U [f(x1) = y1 ∧ f(x2) = y2] = (1

|Y |)
2.

Definition 4.1.4 (Pseudorandom Generator). Let G : {0, 1}λ → {0, 1}p(λ) be a determinis-
tic polynomial time algorithm and p(·) a polynomial in some parameter λ. We say that G
is a pseudorandom generator if, for any p.p.t. algorithm D,∣∣Pr[D(r) = 1]− Pr[D(G(s)) = 1]

∣∣ ≤ negl(λ),

where, r is a string chosen uniformly at random from {0, 1}p(λ) and s, the seed, is chosen
uniformly at random from {0, 1}λ.

4.2 Public State, Additive, Universal Accumulator

At a high level, we consider an accumulator as public state, if one can perform all of its
operations by only having access to its public key, i.e., no trapdoor knowledge is required.
According to the terminology presented in Baldimtsi et al. [46], an accumulator is additive,
if it only allows for addition of elements, and universal, if it allows for both membership and
non membership witnesses.

In the following, we present the definition of a public state, additive, universal accumula-
tor. Our definition employs two trusted parties. The first one, T , runs the key generation

51 C. Patsonakis

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

algorithm (KeyGen(1λ)) and publishes the accumulator’s public key. The second one, the
“accumulator manager” Tacc, is responsible for maintaining the accumulator. 1

Definition 4.2.1 (public-state, additive, universal accumulator). Let D be the domain of
the accumulator’s elements, and X, the current accumulated set. A public-state, additive,
universal accumulator consists of the following algorithms:

• KeyGen(1λ): On input the security parameter λ, this algorithm generates a key pair
(pk, sk) and outputs pk. This algorithm is run by T .

• InitAcc(pk): On input the accumulator’s public key pk, this algorithm outputs an ini-
tialized accumulator value c0 for an empty accumulated set, i.e., X ← ∅. This algo-
rithm is run by Tacc.

• Add(pk, x, c): On input the accumulator’s public key pk, an element x ∈ D to be
added and an accumulator value c, this algorithm outputs (c′,W), where c′, is the
updated value of the accumulator, and W , is a membership witness for x.

• MemWitGen(pk,X, c, x): On input the accumulator’s public key pk, the accumulated
set of values X, the accumulator’s value c and an element x ∈ X, this algorithm
outputs a membership witness W for x.

• NonMemWitGen(pk,X, c, x): On input the accumulator’s public key pk, the accu-
mulated set of values X, the accumulator’s value c and an element x, such that
x ∈ D ∧ x /∈ X, this algorithm outputs a non membership witness W for x.

• UpdMemWit(pk, x, y,W): On input the accumulator’s public key pk and a member-
ship witness W for x, this algorithm outputs an updated membership witness W ′ for
x. This algorithm is run after (c′,Wy) ← Add(pk, y, c), where Wy is a membership
witness for y.

• UpdNonMemWit(pk, x, y,W): On input the accumulator’s public key pk and a non
membership witness W for x, this algorithm outputs an updated non membership
witness W ′ for x. This algorithm is run after (c′,Wy)← Add(pk, y, c).

• VerifyMem(pk, x,W, c): On input the accumulator’s public key pk, the value of the
accumulator c and an element x ∈ D, this algorithm outputs 1, if W is a valid mem-
bership witness for x, otherwise, it outputs 0.

• VerifyNonMem(pk, x,W, c): On input the accumulator’s public key pk, the value of
the accumulator c and an element x ∈ D, this algorithm outputs 1, ifW is a valid non
membership witness for x, otherwise, it outputs 0.

Informally, an accumulator scheme is correct if, for any honestly produced membership
witness, the membership verification algorithm (VerifyMem) outputs 1, and if, for any
honestly produced non membership witness, the non membership verification algorithm
(VerifyNonMem) outputs 1. Furthermore, we consider a universal accumulator as secure
if, no p.p.t. adversary can produce a valid non membership witness for a member of the

1Note that the notion of a public-state accumulator is weaker from that of a strong accumulator, as defined
by Camacho et al. [53]. In a strong accumulator, the KeyGen algorithm, which produces the initial value of
the accumulator, is publicly executable and any party can verify the validity of its output. In contrast, in a
public-state accumulator, the KeyGen algorithm is run by a trusted party T .

C. Patsonakis 52

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

Gacc−sec
A : On input 1λ,

• C runs KeyGen(1λ), generates (pk, sk) and gives pk to the adversary A.
• A first makes an InitAcc query to C. C initializes a set X ← ∅, runs InitAcc and returns
the value c0 to A.

• When A performs an Add query for an element x, C sets X ← X ∪ {x} and computes
(c′,W)← Add(pk, x, c). Then, C returns the pair (c′,W) to A.

• A outputs (x∗,W ∗).

The game returns 1 if at least one of the following conditions holds:

1. x∗ /∈ X and VerifyMem(pk, x∗,W ∗, c) = 1,

2. x∗ ∈ X and VerifyNonMem(pk, x∗,W ∗, c) = 1.

Figure 4.1: The security game between the adversary A and a challenger C, where C plays the roles
of both T and Tacc.

accumulated set, nor, a valid membership witness for an element which is not a member
of the accumulated set. The security property of an accumulator can be met as collision-
freeness, or, soundness in the literature. A formal definition of security is given below
(Definition 4.2.2), utilizing a game between a Challenger C and an adversary A, as illus-
trated in Figure 4.1. For a formal definition of correctness, we refer the interested reader
to the work of Mashatan et al. [81].

Definition 4.2.2. We say that an accumulator is secure if, for any p.p.t. adversary A
interacting with a challenger C, as illustrated in the security game of Figure 4.1, it holds
that Pr[Gacc−sec

A (1λ) = 1] = negl(λ).

4.3 Naming Service Definition

We define the security of our naming service in the UC framework ([55]) by modeling it as
an ideal functionality Fns (Figure 4.2). Fns interacts with n clients, m servers, a party T ,
which is responsible for setup, and an adversary S, which is called the simulator. It stores
(id, pk) pairs and supports a number of operations. The servers are responsible for run-
ning the naming service and therefore, before the setup, we require that all servers send a
(sid, Init) message. During setup, the party T specifies a relation R, which defines under
which condition a public key can be revoked. In practice, this relation might be a verifica-
tion algorithm for a NIZK proof, or, a signature on a randomly selected message. After the
setup phase, a client can register an (id, pk) pair, assuming the identity is available, and,
can revoke an (id,pk) pair, assuming her public key satisfies relation R. Furthermore, she
is able to retrieve the public key of a registered identity and check, whether an identity, or,
an (id, pk) pair, is registered or not. Our model considers only static corruptions, thus, we

53 C. Patsonakis

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

Fns :

• On input (sid, Init) by a server Si, Fns sends (sid, Init, Si) to S. If S returns allow, Fns

sets Y ← Y ∪{Si} (where Y is initialized as Y = ∅) and returns success to Si. When all
servers have sent a message (sid, Init), Fns sets flag = start. Also, S corrupts a number
of clients. We denote as Ccor the set of corrupted clients.

• On input (sid,Setup, R) by T , Fns checks if flag = start and forwards (sid,Setup, R) to
S. If S returns allow, Fns stores R, initializes a set X ← ∅, sets flag = manage and
returns success to T .

• On input (sid,Register, id, pk) by a client C, if flag = manage, Fns forwards
(sid,Register, id, pk) to S.

– If S returns allow, Fns checks if there is (id, ·) ∈ X. If there is no (id, ·) ∈ X, it sets
X ← X ∪ (id, pk) and returns success to C, otherwise, it returns fail to C.

– If S returns fail, Fns returns fail to C.
– If S returns (sid,Register, id′, pk′, C), Fns checks if C ∈ Ccor and if there is (id′, ·) ∈

X. If there is no (id′, ·) ∈ X, it sets X ← X ∪ (id′, pk′) and returns success to C,
otherwise, it returns fail to C.

• On input (sid,Revoke, id, pk, aux) by C, if flag = manage, Fns forwards
(sid,Revoke, id, pk, aux) to S.

– If S returns allow, Fns checks whetherR(pk, aux) = 1 and (id, pk) ∈ X. If both con-
ditions hold, Fns computes X ← X \ (id, pk) and returns success to C, otherwise,
it returns fail to C.

– If S returns fail, then Fns returns fail to C.
– If S returns (sid,Revoke, id′, pk′,aux′, C), Fns checks if C ∈ Ccor, R(pk′,aux′) = 1

and (id′, pk′) ∈ X. If so, Fns computes X ← X \ (id′, pk′), and returns success to
C, otherwise, it returns fail to C.

• On input (sid,Retrieve, id) by C, if flag = manage, Fns forwards this message to S. If S
returns allow and if (id, pk) ∈ X, Fns returns pk to C, otherwise, it returns ⊥. If S returns
fail to Fns, Fns returns fail to C.

• On input (sid,VerifyID, id) by C, if flag = manage, Fns forwards this message to S. If S
returns allow and if (id, pk) ∈ X, Fns returns 1 to C, otherwise, it returns 0. If S returns
fail to Fns, Fns returns fail to C.

• On input (sid,VerifyMapping, id, pk) by C, if flag = manage, Fns forwards this message
to S. If S returns allow and if (id, pk) ∈ X, Fns returns 1 to C, otherwise, it returns 0. If
S returns fail to Fns, Fns returns fail to C.

Figure 4.2: The naming service functionality Fns interacts with a set of n clients, a set of m servers,
a trusted party T and the simulator S. It allows clients to register, revoke, retrieve and verify (id, pk)

pairs.

C. Patsonakis 54

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

assume that the simulator specifies the set of corrupted clients, Ccor, before setup. The
party T is considered trusted, thus, the simulator, S, is not allowed to corrupt T . Also,
note that, in practice, this functionality cannot be realized for any corruption model for the
m servers. However, the corruption model for the servers depends on the protocol with
which we aim to realize the functionality Fns.

We say that a protocol π securely realizes the ideal functionality Fns if, for any p.p.t adver-
sary A interacting with the real-world protocol π, there is a p.p.t. simulator S interacting
with the functionality Fns, such that, no p.p.t. environment Z can distinguish whether it
interacts with π and A in the hybrid-world, or, with S and Fns in the ideal-world, except
with negligible probability.

FUDB :

• On input r = (sid, InitUDB) by a server Si, FUDB sets S′
init ← S′

init ∪ {Si} (initialized as
S′
init ← ∅) and sends (r, Si) toA. Then, FUDB returns success to Si. If |S′

init| = ℓ, FUDB

sets flag = ready, DBstate← ∅ and p← 0.
• On input r = (sid,Post, x) by C, if flag = ready, send (r, C) toA. IfA sends allow, FUDB

sets p← p+ 1, DBstate[p]← x and returns success to C.
• On input r = (sid,RetrieveDB) by C, if flag = ready, FUDB sends (r, C) toA. IfA sends
allow, FUDB returns DBstate to C.

• On input r = (sid,ChangeDBstate, DBstate′) by A, FUDB sets DBstate← DBstate′.

Figure 4.3: The functionality FUDB models an unreliable database that stores information relevant
to our protocols. It interacts with a set of n clients, a set of ℓ servers and the adversary A.

In Figure 4.3, we introduce the functionality FUDB, which handles the storage of informa-
tion that are relevant to our protocols, e.g., (id, pk) pairs. FUDB interacts with n clients, a
set of ℓ servers and the adversary. This functionality models an “unreliable database”, i.e.,
the adversary may tamper with its contents. Its involvement in our protocols is twofold.
First, a client queries this functionality to retrieve all the necessary information that will
allow her to, subsequently, interact with FTP . Second, following the completion of an in-
teraction with FTP , the client stores in FUDB, among others, information that were output
by the smart contract and reflect the new state of the system. We elaborate more on the
information that clients query from and store to FUDB later on in this chapter where we
provide a high-level description of each operation.

Our naming service’s security depends solely on that of the smart contract platform and
the accumulator scheme. This allows us to employ a variety of primitives to realize FUDB,
whose concrete specification we leave as future work. For instance, even centralized
cloud storage services are a viable option. However, we believe that the best approach
is a distributed file storage system, especially one that has “bridges” with the Ethereum
network, which is the smart platform that we chose for our implementation. Some notable
examples are Swarm ([30]), Storj ([29]) and IPFS ([23]). Another option would be an
authenticated DHT network comprised of nodes that have registered in our PKI; this is a

55 C. Patsonakis

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

FTP :

• On input r = (sid, InitTP) by a server Si, FTP sets Sinit ← Sinit ∪ {Si} (initialized as
Sinit ← ∅) and sends (r, Si) to A. Then, FTP returns success to Si. If |Sinit| = m, FTP

sets flag = ready.
• On input r = (sid, Install, P) by T , if flag = ready, FTP sends (r, T) to A. If A returns
allow, FTP sets flag = start, state← ε, where ε is the empty string, stores P and returns
success to T .

• On input r = (sid, x) by C, if flag = ready, FTP sends (r, C) to A. If A returns allow,
FTP runs P on input (x, state) which outputs (y, state′). FTP sets state ← state′ and
returns (y, state′) to C. If x is an invalid input for P , FTP returns ⊥ to C.

Figure 4.4: The functionality FTP captures the role of the smart contract. It interacts with a trusted
party T , a set of n clients, a set of m servers and the adversary A.

suitable candidate both in terms of security (i.e., it is Sybil resilient), as well as, efficiency,
due to its logarithmic message complexity for querying and storing information.

In Figure 4.4, we define the functionality FTP , which captures the role of the smart contract
in our protocols. This functionality interacts with a party T , a set of n clients and a set ofm
servers, some of which may be corrupted by the adversary prior to the initialization phase.
FTP is initialized by a trusted party T by receiving as input a program P . The state of FTP

is updated after a call to program P and the output is received by the calling party. Note
that the implementation of FTP requires an honest majority of servers, along the lines of
[65, 66, 45]. The adversary has always full knowledge of all the computations performed
and may interfere by either aborting, or, allowing, an execution of P at will. However, he
is restricted from modifying the output. Implementing FTP using a blockchain protocol
has the servers acting as “miners”. Party T and the clients interact with the blockchain by
issuingmessage calls (transactions). The security properties of the underlying blockchain,
specifically related to persistence of transactions, cf. [65, 66, 45], imply the security of
FTP ’s realization.

In our constructions, the smart contract maintains two instances of a public state, additive,
universal accumulator to facilitate the verification of the validity of identities, or, (id, pk)
pairs. The first accumulator, c1, accumulates (id, pk) pairs, allowing clients to infer if an
(id, pk) pair is currently registered or not. The second accumulator, c2, accumulates id
names, allowing clients to infer if an identity is registered or not. For ease of presentation,
in the upcoming chapters, we will describe our protocols using two accumulators. We can
achieve the same net result using only one accumulator since both c1 and c2 accumulate
arbitrary strings. Thus, we are able to accumulate both types of tuples in one accumulator,
while still being able to generate the (non)membership witnesses required in our protocols.
We provide details on how this can be achieved for each construction.

The smart contract is the core and most expensive component with which to interact. Its
active involvement is required only during registration and revocation. To register, a client

C. Patsonakis 56

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

queries FUDB for the history of operations that will allow her to compute a proof that her
id is not accumulated in c2. To revoke her pair, the client, instead, computes a proof that
her pair is accumulated in c1 and proves possession of the secret key (relation R).

57 C. Patsonakis

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

C. Patsonakis 58

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

5. RSA-BASED PKI CONSTRUCTION

5.1 RSA-based, Public State, Additive, Universal Accumulator

In Figure 5.1, we present a construction of a public-state, additive, universal accumulator.
We aim to accumulate identities or (id, pk) pairs, i.e., arbitrary strings. Thus, the accumu-
lator’s domain is D = {0, 1}∗. The construction presented here is a combination of the
RSA-based universal accumulator of Li et al. [79], accompanied with a procedure Map,
which maps arbitrary strings to prime numbers. Namely, for any algorithm run on input
an element z ∈ {0, 1}∗, the party who runs the algorithm, first, executes the procedure
Map, which maps z to a prime number, e.g., zp, and then, proceeds by running the same
algorithm as in the accumulator of Li et al. [79] for the prime number zp. The procedure
Map that we utilize is a modified version of a procedure suggested by Gennaro et al. [68].
Thus, we first present the procedure suggested by Gennaro et al. [68] and then we present
the modified algorithm Map, which is utilized in the construction of Figure 5.1. Lastly, we
prove that the accumulator of Figure 5.1 is secure according to Definition 4.2.2.

5.1.1 Mapping arbitrary strings to primes.

Gennaro et al. [68] describe a procedure that utilizes a universal hash function family U
of functions (Definition 4.1.3), which maps strings of 3k bits to strings of k bits with the
additional property that, for any y ∈ {0, 1}k and given f ∈ U , one can efficiently sample
uniformly from the set {x ∈ {0, 1}3k : f(x) = y}. On input z ∈ {0, 1}∗, it first computes
h(z), where h : {0, 1}∗ → {0, 1}k is a collision-resistant hash function. It then samples
repeatedly from the set {x ∈ {0, 1}3k : f(x) = h(z)} to find a prime number O(k2) times.
This procedure is collision-resistant if h is collision resistant and will output a prime number
with high probability due to the following Lemma.

Lemma5.1.1 ([68]). LetU be aUniversal Hash Function Family from {0, 1}3k to {0, 1}k.Then,
for all but a (1/2k)-fraction of functions f ∈ U and for any y ∈ {0, 1}k, a fraction of at least
1/ck elements in the set {x ∈ {0, 1}3k : f(x) = y} are primes, for a small constant c.

Therefore, an algorithm which samples ck2 times from the set {x ∈ {0, 1}3k : f(x) = h(z)}
will fail to find a prime number only with negligible probability. For completeness, we
provide a proof of Lemma 5.1.1 in Appendix A. The proof presented in Appendix A is
similar to that provided by Sanderand et al. [102].

5.1.2 Map: A modified version of the algorithm of Gennaro et al. [68].

In our RSA-based accumulator construction (Figure 5.1), we employ a deterministic ver-
sion of the Map procedure, which we introduce below. Specifically, we utilize a pseudo-
random generator G : {0, 1}k → {0, 1}p(k), where p(k) is a polynomial in k, and a labeled

59 C. Patsonakis

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

hash function h : {0, 1}∗×{0, 1}∗ → {0, 1}k, which is collision-resistant and is modeled as
a Random Oracle.

We start by picking two labels, i.e., label0, label1 ∈ {0, 1}∗. Then, Map, on input z ∈ {0, 1}∗,
computes h(label0, z) and G(h(label1, z)). Then, Map samples elements from the set {x ∈
{0, 1}3k : f(x) = h(label0, z)} using as randomnessG(h(label1, z)) and stops when a prime
number is found. It is easy to see that since label0, label1 are the same in all invocations
of the algorithm, the algorithm on input z ∈ {0, 1}∗ always outputs the same value. Below,
in Lemma 5.1.2, we show that Map finds a prime, except with negligible probability, and,
in Lemma 5.1.3, we prove that Map is collision-resistant1.

Lemma 5.1.2. Let z ∈ {0, 1}∗. The algorithm Map, on input z, outputs a prime number,
except with negligible probability, assuming that, G is a pseudorandom generator and, the
hash function h, is a random oracle.

Proof. Assume that Map, on input z ∈ {0, 1}∗, fails to find a prime number with non-
negligible probability α. Wewill construct a p.p.t distinguisherD, which breaks the property
of the pseudorandom generator G, as defined in Definition 4.1.4. Recall that the only
difference between the procedure of Gennaro et al. [68] and the algorithm Map, described
in the previous paragraph, is the samping of elements from the set X = {x ∈ {0, 1}3k :
f(x) = h(label0, z)}. In the former case, elements are sampled uniformly at random while,
in the latter case, elements are sampled by using as randomness the output of the PRG
G. Based on that, we consider the following p.p.t. distinguisher D:

• On input a string x ∈ {0, 1}p(k), sample from the set X = {x ∈ {0, 1}3k : f(x) =
h(label0, z)} using as randomness the string x.

• If a prime number p is output, then, return 1, else, return 0.

First, since h is a random oracle, the seed h(label1, z) is considered random. Then, if
x = r, where r is chosen uniformly at random, by Lemma 5.1.1, we have that Pr[D(r) =
1] = 1 − negl(k). By the assumption that Map fails to find a prime with non-negligible
probability α, we have that∣∣Pr[D(r′) = 1]− Pr[G(h(label1, z)) = 1]

∣∣ = 1− negl(k)− (1− α) = α− negl(k), (5.1)

which is a contradiction, according to Definition 4.1.4.

Lemma 5.1.3. The algorithm Map is collision-resistant if the hash function h is collision-
resistant. Namely, no p.p.t. adversary can find z1, z2 ∈ {0, 1}∗ with z1 ̸= z2, such that
Map(z1) = Map(z2) = p.

Proof. We assume that Map is not collision resistant, i.e., there is a p.p.t. adversary A,
which finds z1 ̸= z2, such that Map(z1) = Map(z2) = p. This requires that the algo-
rithm Map samples elements from the same set of solutions X = {x ∈ {0, 1}3k : f(x) =

1The requirement for a deterministic version of Map was suggested by Aggelos Kiayias. Credits for the
proofs of Lemmas 5.1.2 and 5.1.3 go to Katerina Samari.

C. Patsonakis 60

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

The domain of the accumulator is D = {0, 1}∗.
• KeyGen(1λ): Generate a pair of safe primes p, q of equal length, such that p = 2p′ + 1,
q = 2q′+1 and p′, q′ are also primes. Computes n = pq, which has length λ, and choose
g randomly from QRn. Set ℓ = ⌊λ/2⌋ − 2 and choose a deterministic procedure Map,
which receives as input an arbitrary string and outputs a prime number less than 2⌊λ/2⌋−2.
Sets sk = (p, q) and output pk = (n, g,Map).

• InitAcc(pk): Output c0 = g.
• Add(pk, x, c): Invoke xp ← Map(x), compute c′ = cxp mod n, set W = c and output
(c′,W).

• MemWitGen(pk,X, c, x): Compute and output the membership witness W =

g

∏
xi∈X\{x}

Map(xi)

for x.
• NonMemWitGen(pk,X, c, x): Invoke xp ← Map(x) and compute u = Π

xi∈X
Map(xi).

Since gcd(xp, u) = 1, run the extended Euclidean algorithm and compute a, b ∈ Z, such
that au + bxp = 1. By the Euclidean division, a can be written as a = a′ + qxp , where
0 ≤ a′ < xp. Therefore, a′u + (b + qu)xp = 1. Set b′ = b + qu and compute d = g−b′ .
Finally, output the non membership witness W = (a′, d) = (a mod x, g−b−qu) for x.

• UpdMemWit(pk, x, y,W): Invoke yp ← Map(y), compute and output the updated mem-
bership witness W ′ = W yp mod n for x ̸= y.

• UpdNonMemWit(pk, x, y,W): Invoke xp ← Map(x) and yp ← Map(y). Since yp ̸= xp,
execute the extended Euclidean algorithm and compute a0, r0 ∈ Z, such that a0yp +
r0xp = 1. Then, multiply both sides by a, i.e., aa0yp + ar0xp = a, and compute a′ = a0a
mod xp. Then, find r ∈ Z, such that a′yp = a+ rxp, compute d′ = dcr mod n and output
the updated non membership witness W ′ = (a′, d′) for x.

• VerifyMem(pk, x,W, c): Invoke xp ← Map(x) and output 1, if W xp = c mod n, other-
wise, output 0.

• VerifyNonMem(pk, x,W, c): On input W = (a, d), invoke xp ← Map(x). Output 1, if
ca = dxpg mod n, otherwise, output 0.

Figure 5.1: Construction of a public-state, additive, universal accumulator based on the
strong-RSA assumption in the Random Oracle model.

h(label0, z1)}. Thus,A should find a collision in the hash function h, i.e.,A finds z1, z2 such
that h(label0, z1) = h(label0, z2). However, this holds only with negligible probability.

5.1.3 Security of the accumulator of Figure 5.1.

Before formally proving the security of the accumulator of Figure 5.1, we first illustrate,
via a simple example, why the procedure Map has to be deterministic in our construction
and, thus, the reason we cannot use the procedure of Gennaro et al. [68]. First, assume
that we used the procedure of Gennaro et al.[68] without our suggested modification and
that an element x ∈ {0, 1}∗ was added (Add) in the accumulator. Tacc computes xp ←
Map(x) and adds xp to the underlying RSA accumulator. An adversary can produce a

61 C. Patsonakis

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

valid non membership witness W for x simply by producing a different prime x′
p ̸= xp for

the element x and then running the non membership witness generation algorithm for x′
p.

Therefore, the security property of the accumulator, as defined in the security game of
Figure 4.1, would not hold, since the adversary can output (x,W), such that x ∈ X and
VerifyNonMem(pk, x,W, c) = 1.

The security of our accumulator is derived by the security of the accumulator of Li et
al. [79], which is proven secure under the strong-RSA assumption, and the properties of
the algorithm Map, as proven in Lemma 5.1.2 and Lemma 5.1.3.

Theorem 5.1.1. The accumulator of Figure 5.1 is secure according to Definition 4.1 under
the strong-RSA assumption (Definition 4.1.1) and the collision-resistance of the algorithm
Map (Lemma 5.1.3) in the Random Oracle model.

Proof. Assume there is a p.p.t. adversaryA, which breaks the security of the accumulator
of Figure 5.1. Then, according to Definition 4.1, A outputs (x∗,W ∗), such that: (1) x∗ /∈ X
and VerifyMem(pk, x∗,W ∗, c) = 1, or, (2) x∗ ∈ X and VerifyNonMem(pk, x∗,W ∗, c) = 1.
Suppose that (1) holds. Then, there are two possible cases: (a) A comes up with x, x∗,
such that, Map(x) = Map(x∗) and x ∈ X, thus, breaking the collision-resistance of the
Map procedure, or, (b)A computes a valid membership witnessW ∗ for a prime x∗

p, where,
Map(x∗) = x∗

p and x∗ /∈ X. In the latter case, we can construct a p.p.t adversary B,
which breaks the strong-RSA assumption. We refer for further details on this case to
the proof of Li et al. [79]. Next, assume that case (2) holds. This implies two possible
scenarios: First, A comes up with a valid non membership witness W ∗ for a prime x∗

p,
where, Map(x∗) = x∗

p and x ∈ X. This means that we can construct a p.p.t. adversary B,
which breaks the strong-RSA assumption (see the proof of Li et al. [79]) and, therefore,
we have a contradiction. In the second scenario, the procedure Map, on input x∗, outputs
two different primes (with non-negligible probability), e.g., x∗

p1
and x∗

p2
, if we invoke it twice.

This means that if x∗
p1
is added in the accumulator first, then it would be possible for A to

compute a valid non membership witness W ∗ for x∗
p2
. However, this is impossible, since

the procedure Map is deterministic .

5.1.4 Constructing a universal accumulator from an additive, universal accumula-
tor ([46]).

Assume that ACCadd
U is an additive, universal accumulator, which accumulates elements

of the form (x, i, op), where, x is the element to be added, i, is an index, and op, is either
a or d. We construct a universal accumulator ACCU , from ACCadd

U , as follows. When
an element x is added to ACCU for the first time, Tacc adds the value (x, 1, a) to ACCadd

U .
Otherwise, it adds (x, i, a), where, the index i indicates that this is the i-th time that x
is added to ACCadd

U . When an element x is deleted from ACCU , Tacc adds (x, i, d) to
ACCadd

U . In order to prove membership of x in ACCU , one should find an index i, such
that,

(
(x, i, a) ∈ ACCadd

U

)
∧
(
(x, i, d) /∈ ACCadd

U)
)
. Accordingly, to prove that x /∈ X, one

should either prove that (x, 1, a) /∈ ACCadd
U , or, find an index i, such that,

(
(x, i − 1, d) ∈

ACCadd
U

)
∧
(
(x, i, a) /∈ ACCadd

U)
)
.

C. Patsonakis 62

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

5.2 RSA-based PKI

5.2.1 Construction

In this section, we formally present our RSA-based PKI construction, which is built on top
of the RSA accumulator that we previously defined (Section 5.2). Figure 5.2 illustrates
program PRSA for this implementation, which T inputs to FTP in the setup phase. Here,
c1 accumulates (id, pk, i, op) tuples and c2 accumulates (id, i, op) tuples, where op = a or
op = d. We denote as Wi,j the j-th computed witness for accumulator ci (i ∈ {1, 2}) in the
context of an individual PKI operation.

1. On input (Setup, params), where params = (pk1, pk2, R), invoke c0,1 ← InitAcc(pk1)
and c0,2 ← InitAcc(pk2). This procedure initializes two public state, additive, universal
accumulators c1 and c2 by setting c1 ← c0,1, c2 ← c0,2. Store state ← (params, c1, c2)
and return state.

2. On input (Register, id, pk, i,W2,1,W2,2),
(a) Check if VerifyNonMem(pk2, (id, i, a),W2,1, c2) = 1. Otherwise, return fail.
(b) If i ≥ 2, check if VerifyMem(pk2, (id, i− 1, d),W2,2, c2) = 1 and return fail if it does

not.
Compute (c′1,W

′
1,1) ← Add(pk1, (id, pk, i, a), c1) and (c′2,W

′
2,1) ← Add(pk2, (id, i, a), c2).

Update state by setting c1 ← c′1 and c2 ← c′2, and return ((c′1,W
′
1,1), (c

′
2,W

′
2,1)).

3. On input (Revoke, id, pk, i,W1,W2,aux),
(a) Check if R(pk, aux) = 1. Otherwise, return fail.
(b) Check if VerifyMem(pk1, (id, pk, i, a),W1,1, c1) = 1. Otherwise, return fail.
(c) Check if VerifyNonMem(pk1, (id, pk, i, d),W1,2, c1) = 1. Otherwise, return fail.

Compute (c′2,W
′
2,1) ← Add(pk2, (id, i, d), c2) and (c′1,W

′
1,1) ← Add(pk1, (id, pk, i, d), c1).

Update state by setting c1 ← c′1 and c2 ← c′2 and return ((c′1,W
′
1,1), (c

′
2,W

′
2,1)).

4. On input (RetrieveState),
Return state = (params, c1, c2).

Figure 5.2: The program PRSA, which is input to FTP during initialization, in the RSA-based PKI
construction.

A client that wishes to register her (id, pk) pair computes the following. First, a non mem-
bership witness W2,1 for the tuple (id, i, a) in c2. Second, and only if her identity has been
registered at least once in the past (i ≥ 2), a membership witness W2,2 for the tuple
(id, i − 1, d) in c2. If both conditions hold, she will be able to convince the smart con-
tract that id is available. To construct these witnesses, the client queries FUDB for the
history of operations and locates records (if any) pertaining to id to find the proper value
for i. Then, she invokes the Register function of the smart contract and receives the
accumulators’ updated values and two witness values, W ′

1,1 and W ′
2,1. These are mem-

bership witnesses for (id, pk, i, a) in c1 and (id, i, a) in c2, respectively. Next, the client
computes a non membership witness W1,2 for (id, pk, i, d) in c1, sets W1,1 ← W ′

1,1 and
posts a (Register, id, pk, i,W1,1,W1,2) record to FUDB.

63 C. Patsonakis

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

1. On input (sid, Init), a server Si sends (sid, InitTP) and (sid, InitUDB) to FTP and FUDB.
If Si receives success by both FTP and FUDB, then Si returns success.

2. On input (sid,Setup, R), T sends (sid, Install, PRSA) to FTP . If FTP returns as success,
T runs KeyGen(1λ) twice, sets params = (pk1, pk2, R) and sends (sid, (Setup, params))
to FTP , which is input to PRSA (if A returns allow to FTP). If FTP returns state ←
(params, c1, c2) to T , T returns success.

3. On input (sid,Register, id, pk), C sends (sid,RetrieveDB) to FUDB. On receipt of
DBstate, C checks:
(a) If the last (i-th) record for id is a Register record, C returns fail. Otherwise, C

sets i = i + 1 and runs W2,1 ← NonMemWitGen(pk2, X2, c2, (id, i, a)), W2,2 ←
MemWitGen(pk2, X2, c2, (id, i− 1, d)).

(b) If no record for id is found, C sets i = 1, W2,2 = ⊥ and runs W2,1 ←
NonMemWitGen(pk2, X2, c2, (id, i, a)).

C sends (sid,Register, id, pk, i,W2,1,W2,2) to FTP . If FTP re-
turns ((c′1,W

′
1,1), (c

′
2,W

′
2,1), state), C sets W1,1 ← W ′

1,1, X1 ← X1 ∪
{(id, pk, i, a)}, runs W1,2 ← NonMemWitGen(pk1, X1, c

′
1, (id, pk, i, d)), sends(

sid,Post, (Register(id, pk, i,W1,1,W1,2)
)
to FUDB and outputs success, or fail

otherwise.
4. On input (sid,Revoke, id, pk, aux), C sends (sid,RetrieveDB) to FUDB. On receipt of

DBstate, C searches for k ≥ 1 records that follow her Register(id, pk, i,W1,1,W1,2)
record. For each encountered record:
(a) C sets y = (id′, pk′, j, a) or y = (id′, pk′, j, d) if she encounters a

(Register, id′, pk′, j,W ′
1,1,W

′
1,2) or a (Revoke, id′, pk′, j) record, respectively.

(b) C runs W1,1 ← UpdMemWit(pk1, (id, pk, i, a), y,W1,1), W1,2 ←
UpdNonMemWit(pk1, (id, pk, i, d), y,W1,2).

Then, C sends (sid,Revoke, id, pk, i,W1,1,W1,2,aux) to FTP . If FTP returns
((c′1,W

′
1,1), (c

′
2,W

′
2,1), state), C sends

(
sid,Post, (Revoke, id, pk, i)

)
to FUDB and returns

success, or fail otherwise.
5. On input (sid,Retrieve, id), C sends (sid,RetrieveDB) to FUDB. On receipt of DBstate:

(a) If the last record for id is Register(id, pk, i,W1,1,W1,2), C runs Steps 4a and 4b.
Otherwise, C outputs fail.

(b) C sends (sid,RetrieveState) to FTP . If FTP re-
turns state, C runs VerifyMem(pk1, (id, pk, i, a),W1,1, c1) and
VerifyNonMem(pk1, (id, pk, i, d),W1,2, c1). Otherwise, C outputs fail.

If all algorithms of Step 5b output 1, C outputs pk as the retrieved public key, otherwise,
C outputs fail.

6. On input (sid,VerifyID, id), C runs Step 5. If Step 5 outputs some pk, C outputs 1,
otherwise, C outputs 0.

7. On input (sid,VerifyMapping, id, pk), C runs Step 5. If Step 5 outputs pk, C outputs 1,
otherwise, C outputs 0.

Figure 5.3: Description of the protocol πRSA built upon the program PRSA of Figure 5.2.

To revoke an (id, pk) pair, a client computes the following. First, a proof of ownership of
her secret key sk, which is captured by relationR and is implemented as a signature of her

C. Patsonakis 64

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

public key (aux = σsk(pk)). Second, a membership witnessW1,1 for the tuple (id, pk, i, a) in
c1. Third, a non membership witnessW1,2 for the tuple (id, pk, i, d) in c1. Then, she invokes
the Revoke function of the smart contract and, on success, posts a (Revoke, id, pk, i)
record to FUDB.

In Figure 5.3, we present the formal description of protocol πRSA, which realizes the func-
tionalityFns. X1 andX2 denote the sets of accumulated elements of c1 and c2, respectively,
and are constructed as follows. For any record of the form (Register, id, pk, i, ·), a client
adds (id, pk, i, a) to X1 and (id, i, a) to X2. For any record of the form (Revoke, id, pk, i), a
client adds (id, pk, i, d) to X1 and (id, i, d) to X2. We show that this construction is secure
by providing a formal proof of Theorem 5.2.1 in Appendix B.

Theorem 5.2.1. The protocol πRSA of Figure 5.3 securely realizes the functionality Fns

of Figure 4.2 in the (FTP ,FUDB)-hybrid world under the strong-RSA assumption in the
Random Oracle model.

5.2.2 Using only one accumulator

We denote as pkc the public key of the accumulator c that the smart contract manages.
A client that wishes to register her (id, pk) pair computes the following. First, a non
membership witness W1 for the tuple (id, i, a) in c. Second, and only if her identity has
been registered at least once in the past (i ≥ 2), a membership witness W2 for the tu-
ple (id, i − 1, d) in c. The Register operation of the smart contract is modified and per-
forms the following verifications: 1) VerifyNonMem(pkc, (id, i, a),W1, c) = 1 and, 2) If
i ≥ 2, VerifyMem(pkc, (id, i − 1, d),W2, c) = 1. If the aforementioned conditions hold,
the registration is valid and the contract will perform, in order, the following computa-
tions: 1) (c,W ′

1)← Add(pkc, (id, i, a), c), 2) (c,W ′
2)← Add(pkc, (id, pk, i, a), c) and, 3)W ′

1 ←
UpdMemWit(pkc, (id, i, a), (id, pk, i, a),W ′

1). Then, the contract will return (c,W ′
1,W

′
2). Lastly,

the client computes a non membership witnessW1 for (id, pk, i, d) in c, setsW2 ← W ′
2 and

posts a (Register, id, pk, i,W1,W2) record to FUDB. To revoke an (id, pk) pair, a client, as
previously, signs pk (σsk(pk)) and computes the following. First, a membership witnessW1

for tuple (id, pk, i, a) in c. Second, a non membership witnessW2 for tuple (id, pk, i, d) in c.
The contract’s Revoke operation is modified and performs the following verifications: 1)
VerifyMem(pkc, (id, pk, i, a),W1, c) = 1 and, 2) VerifyNonMem(pkc, (id, pk, i, d),W2, c) = 1.
If all the aforementioned verifications succeed and R(pk, aux) = 1, the revocation is valid
and the smart contract will perform, in order, the following computations: 1) (c,W ′

1) ←
Add(pkc, (id, i, d), c) and, 2) (c,W ′

2) ← Add(pkc, (id, pk, i, d), c). Then, the contract will re-
turn (c,W ′

1,W
′
2). Lastly, the client posts a (Revoke, id, pk, i) record toFUDB. This approach

cuts down in half the contract’s state, however, it increases the computation of the Register
operation by one modulo exponentiation which, as discussed in Chapter 7, incurs a no-
table increase in the operation’s cost.

65 C. Patsonakis

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

C. Patsonakis 66

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

6. HASH TREE-BASED PKI CONSTRUCTION

6.1 Hash tree-based Universal Accumulator

In the following, we provide a high level description of the hash tree, universal accumulator
of Camacho et al. [53], which our second PKI construction employs. The security of this
accumulator is based on collision-resistant hash functions (Definition 4.1.2). This accu-
mulator employs a public data structure m = (X,T), which is referred to as memory. The
accumulated set of elements X = {x1, ..., xn}, n ∈ N is ordered and there are two special
elements, x0 = −∞ and xn+1 = +∞, such that x0 ≺ xj ≺ xn+1,∀xj ∈ X, where ≺ is the
order relation on the elements ofX (e.g., the lexicographic order of strings). The main un-
derlying data structure of this accumulator is a binary, balanced, hash tree T . Each node
N of T holds a pair of strings (V alN , P roofN), which are referred to as the node’s value
and proof, respectively. In the following, we illustrate how these strings are computed.
Regarding the former, one might assume that the value of each node of T is an element
(or its hash) of the accumulated set X. This could have been the case if the goal was
to provide only membership witnesses. However, to provide for a universal accumulator,
i.e., one that supports non membership witnesses as well, Camacho et al. [53] follow a
different approach. The value of each node of T is the hash of two consecutive elements
of X (recall that X is ordered), e.g., V alN = H(x1||x2), where x1, x2 ∈ X. In this setting,
the following equivalences hold:

• Proving x ∈ X is equivalent to: (xa, xb) ∈ {(xi, xi+1) : 0 ≤ i ≤ n)}∧ (x = xa∨x = xb).
• Proving x /∈ X is equivalent to: xa ≺ x ≺ xb ∧ (xa, xb) ∈ {(xi, xi+1) : 0 ≤ i ≤ n} .

The proof of a node N of T is computed as ProofN = H(V alN ||ProofLeftN ||ProofRightN),
where LeftN and RightN areN ’s left and right children and ParentLeftN = ParentRightN =
N . If LeftN orRightN are not in T , i.e., if LeftN = Nil orRightN = Nil, then ProofNil = ϵ,
where ϵ denotes the empty string. For instance, if N is a leaf node, its proof is computed
as ProofN = H(V alN ||ϵ||ϵ), or, if N is an inner node and it has no right child, its proof
is computed as ProofN = H(V alN ||ProofLeftN ||ϵ). The accumulator’s value is Acc =
ProofRootT , whereRootT is the root node of the hash tree T . Figure 6.1 depicts an example
of a hash tree T , which corresponds to the accumulated set X = {x1, ..., x8}, where only
node values are presented. Note that the placement of the values in the tree is irrelevant,
since it depends on the order in which they were accumulated.

Before we describe the accumulator’s construction, it is necessary to, first, introduce some
additional notation and, second, describe the notion of a minimal subtree. Camacho et
al. [53] denote the collection of all nodes in a hash tree T , be it a subtree or not, as V(T).
We denote as GenMinSubTree(T,S) a procedure which, on input a hash tree T and a
set of node values S = {Si : V alN = Si, for some node N ∈ V(T)}, outputs a minimal
subtree T ′ of T . In addition, we denote as VerifyTree(T,Acc) a procedure which, on in-
put a (sub) tree and the value of the accumulator Acc, computes ProofRootT and ouputs

67 C. Patsonakis

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

H(−∞, x1)

H(x1, x2)

H(x3, x4)

H(x6, x7) H(x7, x8)

H(x4, x5)

H(x2, x3)

H(x5, x6) H(x8,+∞)

Figure 6.1: Example of a hash tree T that corresponds to the accumulated set X = {x1, ..., x8}. The
minimal subtree T ′, where H(x3, x4) is the starting node’s value, is comprised by the nodes in bold

font.

1, if Acc = ProofRootT , otherwise, it outputs 0. For clarity, we state that the notation of
the aforementioned two procedures is not part of the work of Camacho et al. [53]. How-
ever, we decided to include them here since we believe it will enhance the readability of
the description of the accumulator’s construction. In the following, we illustrate the steps
involved in these algorithms.

The algorithm GenMinSubTree(T,S), for each node value Si ∈ S, finds Ni ∈ V(T), such
that V alNi

= Si, and adds to T ′ all nodes of T that belong to all paths from RootT to Ni,
as well as, the children of these nodes (duplicate nodes are discarded). We illustrate how
T ′ is generated via an example where, for simplicity, we have one starting node whose
value is S1 = H(x3, x4) (Figure 6.1). The nodes that belong to all paths from RootT to
the node with value Si have values {H(−∞, x1),H(x1, x2),H(x3, x4)} and are depicted
in bold font. Next, we need to add to T ′ the children of all the aforementioned nodes,
which are underlined and in bold font in Figure 6.1. The algorithm VerifyTree(T,Acc) is
a simple recursive computation of all node proofs in all of the paths of T , starting from
each path’s leaf nodes and leading all the way up to RootT , which is required to correctly
compute ProofRootT . Clearly, this procedure is very similar to how hash paths are verified
in traditional Merkle trees.

In Figure 6.2, we present the construction of the hash tree-based universal accumulator of
Camacho et al. [53]. The Setup(1λ) algorithm is run by the accumulator manager, which
initializes a new accumulator instance, based on the input security parameter λ. The
Witness(Acc,m, x) algorithm, on input the accumulator’s value Acc, its memory m and an
element x ∈ D, computes a (non) membership witnessW for x, depending on whether x /∈
X or not. The corresponding witness verification algorithm, Belongs(Acc, x,W), outputs
1, if W is a valid membership witness for x, 0, if W is a valid non membership witness
for x, and ⊥, in any other case. The algorithm Updateop(Accbefore,mbefore, x) updates the
accumulator’s value by either adding (op = add) or removing (op = del) the element x
to/from the accumulated set Xbefore. It outputs the updated values of the accumulator
(Accafter) and its memory (mafter), as well as, an update witness Wop. The latter witness,

C. Patsonakis 68

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

The domain of the accumulator is D = {0, 1}λ:

• Setup(1λ): Set X ← ∅ and initialize T to a single root node Nm, where V alNm =
H(−∞|| +∞) and ProofNm = H(V alNm ||ϵ||ϵ). Output (m0, Acc0), where m0 = (X,T)
and Acc0 = ProofNm .

• Witness(Acc,m, x): If x ∈ X, set w1 ← (xa, xb) where, x = xa or x = xb. If x /∈ X, set
w1 ← (xa, xb) where, xa ≺ x ≺ xb. Lastly, set w2 ← GenMinSubTree(T, {H(xa, xb)}),
and output W = (w1, w2).

• Belongs(Acc, x,W): Evaluate conditions: 1) VerifyTree(w2,Acc) = 1, 2) V alN =
H(xa, xb) ∧ N ∈ V(w2), 3) x = xa ∨ x = xb and, 4) xa ≺ x ≺ xb. Output 1, if (1),
(2) and (3) hold, 0, if (1), (2) and (4) hold, and ⊥ otherwise.

• Updateop(Accbefore,mbefore, x):
– If op = add and x /∈ Xbefore, find xa, xb ∈ Xbefore and N ∈ Tbefore, s.t. xa ≺ x ≺ xb

and V alN = H(xa, xb). Set Tafter ← Tbefore, V alN ← H(xa, x) in Tafter, add
a leaf N ′ to Tafter, s.t. V alN ′ = H(x, xb), Tafter is balanced and update node
proofs. Set wadd1 ← GenMinSubTree(Tbefore, {H(xa, xb),ValParentN′}),wadd2 ←
GenMinSubTree(Tafter, {H(xa, x),ValParentN′}), Xafter ← Xbefore ∪
{x},Wop ← (add,wadd1 ,wadd2),mafter ← (Xafter, Tafter) and Accafter ←
ProofRootTafter

.
– If op = del and x ∈ Xbefore, find xa, xb ∈ Xbefore and N1, N2, N3 ∈ Tbefore,

such that xa ≺ x ≺ xb, V alN1 = H(xa, x), V alN2 = H(x, xb) and N3 is
the last (rightmost) leaf node of Tbefore. Set Tafter ← Tbefore, V alN1 ←
H(xa, xb) and V alN2 ← V alN3 in Tafter, delete N3 from Tafter so that it re-
mains balanced and node proofs are updated, set Xafter ← Xbefore \
{x}, wdel1 ← GenMinSubTree(Tbefore, {ValN1 ,ValN2 ,ValN3}), wdel2 ← (xa||xb),
wdel3 ← GenMinSubTree(Tafter, {H(xa, xb)}), Wop ← (del,wdel1 ,wdel2 ,wdel3),
mafter ← (Xafter,Tafter), and Accafter ← ProofRootTafter .

Output (Accafter,mafter,Wop).
• CheckUpdate(Accbefore,Accafter, x,Wop) : If Wop = (add,w1,w2), evaluate conditions:

1. w2 is a tree produced by adding a leaf node to w1.
2. There exist N1,N2 ∈ V(w2), such that ValN1 = H(xa, x) and ValN1 = H(x, xb).
3. Apart from the node with value H(xa, xb) in w1 and nodes N1,N2 of w2, all other

nodes of w1 and w2 have the same values.
4. VerifyTree(w1,Accbefore) = 1.
5. VerifyTree(w2,Accafter) = 1.

If all these conditions are true, output 1, otherwise, output 0. We omit the case where
Wop = (del,w1,w2,w3), which is similar to when op = add.

Figure 6.2: Construction of the hash-tree based universal accumulator of Camacho et al. [53].

69 C. Patsonakis

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

Wop, can be input to CheckUpdate(Accbefore,Accafter, x,Wop) to verify that the accumulator
was updated correctly.

The accumulator of Camacho et al. [53] is a public-state, additive, universal accumulator
with the following differences and additional features. First and foremost, the accumulator
is strong, i.e., the accumulator manager is not required to be trusted. Informally, a strong
accumulator does not require a trusted setup (i.e., there is no KeyGen algorithm as in the
RSA case). Second, it supports the deletion of elements without relying on secret infor-
mation. Third, it allows for updates (additions and deletions) which are publicly verifiable,
via the CheckUpdate() algorithm. The accumulator’s value is of constant size, however,
(non) membership and update witnesses have O(λ log(n)) bit size, where n is the number
of accumulated elements.

6.2 Hash tree-based PKI

6.2.1 Construction

In this section, we propose our second PKI construction, which employs the accumulator of
Camacho et al. [53] that we presented previously. Since this accumulator supports publicly
verifiable updates clients can locally update accumulator values and input to the smart
contract witnesses that prove the operations were performed honestly. To generate all
involved witnesses, clients query FUDB for the history of operations. Figure 6.3 illustrates
program PHash for this implementation, which T inputs to FTP during setup.

1. On input (Setup, params), where params is of the form (λ1, λ2, R), compute c1 ←
Setup(1λ1) and c2 ← Setup(1λ2). Set state← (params, c1, c2) and return state.

2. On input (Register, id, pk,W2, cadd1 ,Wadd1, cadd2 ,Wadd2),
(a) If CheckUpdate(c1, cadd1 , (id, pk),Wadd1) = 0, return fail.
(b) If CheckUpdate(c2, cadd2 , id,Wadd2) = 0 ∨ Belongs(c2, id,W2) ≠ 0, return fail.

Update state by setting c1 ← cadd1 , c2 ← cadd2 and return success.
3. On input (Revoke, id, pk,W1, cdel1 ,Wdel1 , cdel2 ,Wdel2 ,aux),

(a) If R(pk, aux) = 0, return fail.
(b) If Belongs(c1, (id, pk),) ̸= 1∨CheckUpdate(c1, cdel1 , (id, pk),Wdel1) = 0, return fail.
(c) If CheckUpdate(c2, cdel2 , id,Wdel2) = 0, return fail.

Update state by setting c1 ← cdel1 , c2 ← cdel2 and return success.
4. On input RetrieveState, return state← (params, c1, c2).

Figure 6.3: The program PHash, which is input to FTP during initialization, in our Hash tree-based
PKI construction.

To register an (id, pk) pair, a client generates a non membership witness W2 for id in
c2. She accumulates (id, pk) in c1, which produces an update witness Wadd1 and the
accumulator’s updated value cadd1. She also accumulates id in c2, which produces an

C. Patsonakis 70

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

update witness Wadd2 and the accumulator’s updated value cadd2. Assuming that wit-
ness values are computed honestly by the client, the contract will validate them by in-
voking the appropriate verification functions of the accumulator, i.e., Belongs(c2, id,W2),
CheckUpdate(c2, cadd2 , id,Wadd2) andCheckUpdate(c1, cadd1 , (id, pk),Wadd1), and update its
accumulator values. Lastly, the client posts (Register, id, pk) to FUDB.

To revoke an (id, pk) pair, a client signs pk (σsk(pk)) and generates a membership witness
W1 for (id, pk) in c1. She deletes id from c2, which produces an update witness Wdel2 and
the accumulator’s updated value cdel2. She also deletes (id, pk) from c1, which produces
an update witness Wdel1 and the accumulator’s updated value cdel1. Assuming that wit-
ness values are computed honestly by the client, the contract will validate them by invok-
ing the appropriate verification functions of the accumulator, i.e., Belongs(c1, (id, pk),W1),
CheckUpdate(c2, cdel2 , id,Wdel2) and CheckUpdate(c1, cdel1 , (id, pk),Wdel1), and update its
accumulator values. Lastly, the client posts a (Revoke, id, pk) record to FUDB.

In Figure 6.4, we present the formal description of protocol πHash, which realizes the
functionality Fns. The respective memories m1 and m2 of c1 and c2 are constructed as
follows. For each record of the form (Register, id, pk), clients compute (c1,m1,W1) ←
Updateadd(c1,m1, (id,pk)) and (c2,m2,W2) ← Updateadd(c2,m2, id). For each record of
the form (Revoke, id, pk), clients compute (c1,m1,W1) ← Updatedel(c1,m1, (id,pk)) and
(c2,m2,W2)← Updatedel(c2,m2, id). This procedure’s complexity is linear to the history of
operations performed in the system, which can be improved as follows.

First, we extend the interface ofFUDB to allow for queries and updates on an accumulator’s
memory. Second, instead of storing registration/revocation records on FUDB, we store the
memories of the accumulators. In this new setting, prior to their registration/revocation,
clients query FUDB for the hash trees T1 and T2 of accumulators c1 and c2, respectively. To
construct the required witnesses, clients do not need the full sets of accumulated valuesX1

and X2, but just two values xa and xb for each witness to be computed. These two values
can also be used to update the accumulator for the same input element. Thus, prior to a
registration/revocation, clients query FUDB for the trees of the accumulators and a total of
two pairs of values, (xa1 , xb1) and (xa2 , xb2), to compute the involved witnesses and update
c1 and c2. Following a successful registration/revocation, clients directly update the sets
X1 and X2 by inserting (id, pk) and id, respectively, and only the subtrees of T1 and T2

that were affected by the updates. The complexity of this procedure, apart from the initial
retrieval of the hash trees T1 and T2, is logarithmic and we leave it as future work.

The security of both PKI constructions presented in this work is based on the security
property of the underlying accumulator. Due to their inherent similarities, we omit the
proof for protocol πHash, whose security is defined by the following theorem.

Theorem 6.2.1. The protocol πHash of Figure 6.4 securely realizes the functionality Fns

of Figure 4.2 in the (FTP ,FUDB)-hybrid world under the collision-resistance of the hash
function family H.

71 C. Patsonakis

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

1. On input (sid, Init), a server Si sends (sid, InitTP) and (sid, InitUDB) to FTP and FUDB.
If Si receives success by both FTP and FUDB, Si returns success.

2. On input (sid,Setup, R), T sends (sid, Install, PHash) to FTP , where PHash is the pro-
gram of Figure 6.3. If FTP returns success, T sets params = (λ1, λ2, R) and sends
(sid, (Setup, params)) to FTP , which executes PHash on input (Setup, params) (if A re-
turns allow to FTP). If FTP returns state← (params, c1, c2), T outputs success.

3. On input (sid,Register, id, pk), C sends (sid,RetrieveDB) to FUDB. Upon receiving
DBstate, if the last record related to id is of the form Register, C outputs fail, other-
wise C computes:
(a) A non membership witness W2 ←Witness(c2,m2, id).
(b) The accumulator’s updated value, memory and an update witness

(cadd1 ,madd1 ,Wadd1)← Updateadd(c1,m1, (id,pk)).
(c) The accumulator’s updated value, memory and an update witness

(cadd2 ,madd2 ,Wadd2)← Updateadd(c2,m2, id).
Then, C sends (sid,Register, id, pk,W2, cadd1 ,Wadd1, cadd2 ,Wadd2) to FTP , which runs
PHash on this input. If FTP returns success, C sends

(
sid,Post, (Register, id, pk)

)
to

FUDB and ouputs success, or fail otherwise.
4. On input (sid,Revoke, id, pk, aux), C sends (sid,RetrieveDB) to FUDB. Upon receiving

DBstate, C computes:
(a) A membership witness W1 ←Witness(c1,m1, (id, pk)).
(b) The accumulator’s updated value, memory and an update witness

(cdel1 ,mdel1 ,Wdel1)← Updatedel(c1,m1, (id,pk)).
(c) The accumulator’s updated value, memory and an update witness

(cdel2 ,mdel2 ,Wdel2)← Updatedel(c2,m2, id).
Then, C sends (sid,Revoke, id, pk,W1, cdel1 ,Wdel1 , cdel2 ,Wdel2 ,aux) to FTP , which runs
PHash on this input. If FTP returns success, C sends

(
sid,Post, (Revoke, id, pk)

)
to

FUDB and ouputs success, or fail otherwise.
5. On input (sid,Retrieve, id), C sends (sid,RetrieveDB) to FUDB. Upon receiving

DBstate, C acts as follows:
(a) If the last record related to id is of the form Revoke, or, if there is no record related

to id, C outputs fail. Otherwise, C extracts (id, pk) from the last (Register, id, pk)
record in DBstate.

(b) C sends (sid,RetrieveState) to FTP . If FTP returns state, C computes W1 ←
Witness(c1,m1, (id, pk)). If Belongs(c1, (id, pk),W1) = 1, C outputs pk as the re-
trieved public key, otherwise, C outputs fail.

6. On input (sid,VerifyID, id), C runs Step 5. If Step 5 outputs some pk, C outputs 1,
otherwise, C outputs 0.

7. On input (sid,VerifyMapping, id, pk), C runs Step 5. If Step 5 outputs pk, C outputs 1,
otherwise, C outputs 0.

Figure 6.4: Description of the protocol πHash built upon the program PHash of Figure 6.3.

C. Patsonakis 72

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

6.2.2 Using only one accumulator

To register an (id, pk) pair, a client generates a non membership witnessW for id in c. She
accumulates (id, pk) in c, which produces an update witnessWadd1 and the accumulator’s
updated value cadd1. She accumulates id in cadd1, which produces an update witnessWadd2

and the accumulator’s updated value cadd2. The Register operation of the smart contract
is modified and performs, in order, the following verifications: 1) Belongs(c, id,W) = 0, 2)
CheckUpdate(c, cadd1 , (id, pk),Wadd1) = 1 and, 3) CheckUpdate(cadd1 , cadd2 , id,Wadd2) = 1.
If all the aforementioned verifications succeed, the registration is valid and the contract will
set c← cadd2. Lastly, the client posts (Register, id, pk) toFUDB. To revoke an (id, pk) pair, a
client, as previously, signs pk (σsk(pk)) and generates a membership witnessW for (id, pk)
in c. She deletes id from c, which produces an update witnessWdel1 and the accumulator’s
updated value cdel1. She deletes (id, pk) from cdel1, which produces an update witnessWdel2

and the accumulator’s updated value cdel2 . The Revoke operation of the smart contract is
modified and performs, in order, the following verifications: 1) Belongs(c, (id, pk),W) = 1,
2) CheckUpdate(c, cdel1 , id,Wdel1) = 1 and, 3) CheckUpdate(cdel1 , cdel2 , (id, pk),Wdel2) = 1.
If all the aforementioned verifications succeed and R(pk, aux) = 1, the revocation is valid
and the contract will set c← cdel2 . Lastly, the client posts a (Revoke, id, pk) record toFUDB.
The tradeoff in this case is that the contract’s state stores only one accumulator (c) instead
of two. The size of the witnesses is slightly bigger but still logarithmic, i.e., O(λ log(2n)).

73 C. Patsonakis

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

C. Patsonakis 74

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

7. EVALUATION

7.1 Experimental Setup and Preliminary Results

In this section, we present experiments that measure the cost of running on Ethereum the
constructions of Sections 5.2 and 6.2, as well as, their building blocks. We intersperse
our results with recommendations for modifications and improvements to Ethereum that,
we believe, are vital if Ethereum (or any smart contract platform) is to reach its maximum
potential of supporting arbitrary, large-scale, distributed applications. We create a private
blockchain that is maintained by a single mining node. This eliminates the waiting time
that transactions would have in either the live or the test chain to be mined into a block.
Thus, we are able to measure accurately transaction gas costs and perform experiments
on a larger scale. We use geth (v.1.8.17, [20]), the official Ethereum client and conduct our
experiments via the truffle testing suite (v.4.1.13, [32]). Lastly, we use randomly generated
32-byte identities.

Our implementations1 employ a variety of primitives, e.g., signatures and accumulators.
One option would be to deploy each primitive as a separate library and have the front-end
PKI contract issue appropriate message calls. Unfortunately, this option is the most ex-
pensive in terms of gas due to the extra cost of message calls (700 gas) and the increased
cost of reading the deployment address(es) of the library contract(s) from storage. The
more efficient option is to pack all back-end logic into a single library and link it with the
front-end PKI contract. This eliminates the aformentioned costs. Thus, Ethereum imposes
the following tradeoff. On the one hand, developers will tend to pick the second option, as
one of their main incentives is to minimize gas cost. On the other hand, the first option: 1)
promotes modular programming, 2) leads to the construction of an on-blockchain “stan-
dard library”, similar to what common programming languages have and, most importantly,
3) mitigates duplicate logic, i.e., excess, duplicate state and code in the blockchain. Thus,
reducing the costs of the first option will aid in the development of future applications and
incentivize developers to adopt more modular programming approaches.

Recommendation #1: Significantly reduce the cost of issuing message calls to li-
braries.
Our first experiment provides insight regarding the overhead of a library implementation,
compared to a precompiled contract. Precompiled contracts reside on well-known, static
addresses and require less gas because their code does not run in EVM assembly, but in
machine language of the physical node hosting the miner. We evaluate the cost of veri-
fying 1,000 Secp256k1 elliptic curve signatures, based on the library contract of [41]. We
measure a mean cost of 827,765.53 gas, with a standard deviation of 6,021.64 gas. At
the time of this writing, the average gas limit of blocks is about 8 million gas ([14]). Thus,
signature verification on the library contract consumes 10.3% of the current block gas limit,
which is substantial. In contrast, Ethereum’s ecrecover precompiled contract, which oper-

1The code of our implementations can be found at [19].

75 C. Patsonakis

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

Table 7.1: Min, max, mean and standard deviation (columns 2-5) of the gas cost of: 1) 10,000
modulo multiplications, exponentiations and primality tests, 2) 10,000 accumulations of primes
(Add) and (non) membership witness verifications (VerifyMem,VerifyNonMem) 3) 1,000 mappings
(Map) of strings to primes and, 4) registrations (Register, for (i = 1) and (i ≥ 2)) and revocations

(Revoke) of 1,000 (id, pk) pairs in the RSA-based PKI.

Operation Gas Cost
Min Max Mean Std

Mod. Mul. 179,556 182,900 181,470.76 639.16
Mod. Exp. 678,074 745,517 741,846.48 5,001.49

Primality Test 1,481,160 1,502,502 1,490,219.13 5,480.23
Add 810,030 810,158 810,153.32 17.61

VerifyMem 755,130 755,796 755,537.23 126.63
VerifyNonMem 1,473,345 1,525,685 1,519,279.96 5,386.87

Map 1,733,124,331 2,550,435,741 2,141,780,036 577,926,440.35
Register (i = 1) 89,801,425 8,620,016,945 1,681,994,990 1,313,539,096.67
Register (i ≥ 2) 89,160,026 10,676,126,282 2,575,538,734.5 1,715,254,997.91

Revoke 440,467,878 13,805,874,517 3,598,585,618 1,910,918,965.1

ates on the same curve, costs only 3,000 gas. Thus, the cost of the library implementation
is two orders of magnitude higher, which illustrates the benefits and importance of hav-
ing built-in support for a variety of cryptographic operations. In the evaluation of all the
constructions that follow, we have modified the library contract of [41] to operate on the
Secp256r1 curve. We repeat the same experiment and measure the mean cost of signa-
ture verification to be 1,257,103.26 gas, with a standard deviation of 9,178.44 gas.

7.2 RSA-based PKI Evaluation

We evaluate the RSA-based PKI of Section 5.2, which uses the following constructs: sig-
nature verification via the Secp256r1 library contract and arbitrary precision integer arith-
metic, based on the Big Number library developed by Zerocoin [33]. This library supports
operations which are relevant to this construction, such as modulo exponentiation and the
Miller-Rabin probabilistic primality test. We modify the implementation of the primality test
because: 1) it supports only a range of integers, whilst, our implementation supports all
integers, 2) the original algorithm is seeded by externally provided randomness, which
we modify to be based on the hash of the last block, thus, limiting the adversary’s knowl-
edge and influence on its output and, 3) it does not perform sufficient iterations, which we
modify to comply to the NIST standard ([25]). The third construct is the RSA accumulator,
which encompasses the Map procedure. The RSA moduli of the accumulators are 3072
bits long, thus, they provide 128-bit security ([26]). We set Map’s parameter to k = 65,
i.e., Map outputs 3k = 195 bit primes. Thus, except for 1/265 fraction of functions f ∈ U ,
a string will be mapped to a prime number, except with negligible probability ([68]), which

C. Patsonakis 76

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

we deem reasonable.

We conduct four sets of experiments where the exponents, moduli and exponentiation
bases are 195, 3072 and 3072 bits long, respectively. First, we evaluate the operations
of the Big Number library that are relevant to this construction by running 10,000 primal-
ity tests, modulo multiplications and exponentiations, respectively. Second, we evaluate
the RSA accumulator by running 10,000 iterations of each of the following operations: 1)
accumulations (Add) of 195-bit prime numbers, and 2) (non) membership witness verifica-
tions (VerifyMem,VerifyNonMem). Third, wemeasure the cost of mapping 1,000 strings to
195-bit primes (Map). Fourth, we measure the cost of registering (Register) and revoking
(Revoke) 1,000 (id, pk) pairs in the RSA-based PKI. Recall that registration differentiates
between two cases, i.e., whether an identity is registered for the first time (i = 1), or not
(i ≥ 2). Table 7.1 illustrates the results.

Regarding the Big Number library experiments, Table 7.1 shows that modulo exponentia-
tion and primality testing are the more expensive operations. The former is based on one
of Ethereum’s precompiled contracts ([51]) and its cost is dominated by the exponent’s
length, especially in cases where it is larger than 32 bytes. In addition, this operation is
invoked in the (main) witness loop of the Miller-Rabin test, thus, the data suggest that, on
average, the primality test performs two loop iterations. To compute the cost of the RSA ac-
cumulator’s operations, we have to factor in the cost of reading from storage the accumu-
lator’s value, its exponentiation base and its modulus (a total of 36 EVM words). The cost
of reading an EVM word (32 bytes) from storage is 200 gas, thus, 36× 200 = 7, 200 extra
gas. The VerifyMem operation involves one modulo exponentiation. The VerifyNonMem
operation involves two modulo exponentiations and one modulo multiplication. Thus, as
the data suggest, the gas cost of these two operations follows directly from that of read-
ing the appropriate values from the contract’s storage and the invoked operations of the
Big Number library. The Add operation involves one modulo exponentiation and mod-
ifies the accumulator’s value. Thus, in addition to the aforementioned cost of reading
from the contract’s storage, there is also the cost of storing the accumulator’s updated
value to the contract’s state. Updating an EVM word on storage costs 5,000 gas. The
accumulator is 12 EVM words long, thus, 12 × 5, 000 = 60, 000 extra gas, or, a total of
60, 000 + 7, 200 = 67, 200 gas.

The key result of this section is our demonstration of the practical implications of the RSA-
based PKI’s design. Recall that in this construction, the smart contract’s state and (non)
membership witnesses have constant size at the expense of computational overhead.
This tradeoff is embodied by the O(k2) complexity of the Map procedure, which is involved
in both the Register and Revoke operations of the RSA-based PKI to map the contract’s
inputs to prime numbers. These prime numbers are then input to the appropriate wit-
ness verification algorithms of the RSA accumulator. For instance, the Revoke operation
involves one signature verification, one invocation of VerifyNonMem and VerifyMem and
three invocations of Map. We have already illustrated that the cost of signature verification
and of the RSA accumulator’s operations is deterministic, however, the same cannot be
said about Map. While Map is deterministic in terms of its output, the number of iterations
it performs to produce its output is not. Thus, we can have cases where one invocation of

77 C. Patsonakis

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

Map costs more than a Register or Revoke operation of the RSA-based PKI, as illustrated
by the heavily skewed data of Table 7.1. Consequently, Map dominates the cost of the
RSA-based PKI’s operations. We perform an additional experiment where we measure
the cost of running one iteration of Map on input of 100,000 strings. We measure the
mean cost to be 9,488,542 gas, with standard deviation of 17,794 gas. Thus, even one
iteration of Map exceeds Ethereum’s block gas limit.

Result #1: The provably secure, RSA-based smart contract PKI is not viable on
Ethereum.
Discussion: There are two reasons why Map’s gas cost is so high. First, in Ethereum, it is
cheaper to access one EVM word (32 bytes) than one byte. This “was chosen to facilitate
the Keccak256 hash scheme and elliptic-curve computations”, as stated in Ethereum’s
yellow paper ([107]). It has nothing to do with efficiency as no real-world physical ma-
chine, on top of which the EVM runs, supports 32 byte words. Therefore, one potential
improvement would be to modify Ethereum’s cost model to account for this contradiction.
For instance, accessing a single byte could be simply tuned to 1

32
of the cost of loading an

EVM word. This change, apart from being more fair, allows for more packed data encod-
ings, which can reduce transaction size and, as a result, the blockchain’s size. Second,
Map’s computation revolves around bit operations which are, currently, very expensive in
Ethereum as they have to be performed via the EVM’s integer exponentiation function.
For instance, setting one bit of a memory byte array costs 586 gas. However, in the near
future, the EVM will support bitwise shifting ([39]), which will only cost 3 gas and, thus, will
provide substantial improvements for Map.

Recommendation #2: Ethereum’s cost model should be modified to account for the
granularity of the data that are accessed.
For the RSA-based PKI, there are alternatives such as verifiable computation that will
also benefit from all the aforementioned propositions. In this setting, the smart contract
will need only to verify proofs that the client computed Map correctly, instead of invoking
Map itself. We leave this as future work.

7.3 Hash tree-based PKI Evaluation

We evaluate the Hash tree-based PKI, which we proposed in Section 6.2. This construc-
tion employs the following primitives: 1) the Secp256r1 library contract for signature ver-
ification and, 2) the Hash tree-based accumulator, which we presented in Section 6.1.
We employ the SHA-256 hash function, which is exposed as a precompiled contract in
Ethereum. The accumulators were initialized according to the sizes of their respective
input elements. Thus, since c1 accumulates (id, pk) pairs, we set λ1 = 768 bits, and, since
c2 accumulates identities, we set λ2 = 256 bits. Recall that in the Hash tree-based PKI,
witnesses are a logarithmic function of the number of accumulated elements, in contrast
to the RSA-based PKI where they are constant-sized.

In our first experiment, we accumulate a total of 100,000 elements and measure the cost

C. Patsonakis 78

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0 25000 50000 75000 100000

G
a
s
 C

o
s
t

Number of Accumulated Elements

BelongsNonMemWit() BelongsMemWit()

Figure 7.1: Gas cost versus the number of accumulated values of 100,000 membership (green line)
and non membership (purple line) witness verifications of the hash tree-based universal

accumulator.

 0

 200000

 400000

 600000

 800000

 1×10
6

 1.2×10
6

 1.4×10
6

 0 25000 50000 75000 100000

G
a
s
 C

o
s
t

Number of Accumulated Elements

CheckUpdate()

Figure 7.2: Gas cost versus the number of accumulated values of 100,000 update verifications
(CheckUpdate()) of the hash tree-based universal accumulator.

79 C. Patsonakis

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

 0

 500000

 1×10
6

 1.5×10
6

 2×10
6

 2.5×10
6

 3×10
6

 0 25000 50000 75000 100000

G
a
s
 C

o
s
t

Number of Registered Pairs

Register() Revoke()

Figure 7.3: Gas cost versus the number of registered (id, pk) pairs of 100,000 registrations (purple
line) and revocations (green line) of our hash tree-based PKI.

of the Hash tree-based accumulator’s operations. In Figure 7.1, we plot the gas cost
versus the number of accumulated elements of verifying membership (green line) and
non membership (purple line) witnesses. In Figure 7.2, we plot the gas cost versus the
number of accumulated elements of verifying accumulator updates (CheckUpdate()). The
general trend resembles, as expected, that of a logarithmic function. However, the curves
have a large number of dips. This is because proofs are paths of the accumulator’s hash
tree. The size of each proof depends on the position of the starting node(s) in the hash tree
and, thus, its verification cost varies. As illustrated in the graphs, verifying accumulator
updates is more expensive than that of (non) membership witnesses. Indeed, the size
of the former proofs tends to be two, or even, three times the size of the latter, which is
reflected in their respective verification costs.

In our second experiment, we evaluate our Hash tree-based PKI. In Figure 7.3, we plot the
gas cost versus the number of registered pairs of registering and revoking 100,000 (id, pk)
pairs. Results illustrate that revocation is the more costly procedure as it involves the
added cost of verifying signatures. The cost of the most expensive revocation is 2,999,214
gas, i.e., 37.4% of the current block gas limit. Thus, in terms of gas cost, this construction
can be deployed on Ethereum’s live chain.

Result #2: Our probably secure Hash tree-based PKI construction is viable for de-
ployment on the live chain of Ethereum.
Discussion: The Hash tree-based PKI is best suited for small, to moderately sized PKIs,
since the involved proofs are not of constant size. Assuming that the number of registered

C. Patsonakis 80

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

pairs monotonically increases, there will come a point where verifying proofs will exceed
the block’s gas limit. Recall that the cost of a transaction is a function of its computational
complexity and its byte size. One might argue that this issue can be balanced out by
an increase in the block’s gas limit, which is certainly the observed trend up to the time
of this writing ([14]). However, a miner’s main incentive is to produce (hash) blocks as
fast and with as low operational costs as possible. Thus, it can be expected that the
increase in the block’s gas limit will, eventually, plateau. This line of reasoning assumes
that the blockchain’s consensus mechanism revolves around Proof-of-Work (PoW), as is
currently the case. However, Ethereum is planning to replace PoW with Proof-of-Stake
(PoS), a consensus protocol that requires a small amount of computation. Discussing
PoS is out of the scope of this paper, however, it is reasonable to assume that it will
change the incentives of miners. Indeed, in this computationally light paradigm, miners
might be willing to expend their computational resources to mine blocks that contain larger
transactions to maximize their rewards. This will gradually increase the block’s gas limit
which, as a result, will favor the scale of our Hash tree-based PKI even more.

We now illustrate a few important points regarding hash functions and precompiled con-
tracts. Ethereum supports three hash functions: 1) RIPEMD160, whose computation
costs 600 gas plus 120 gas per input word, 2) SHA-256, whose computation costs 60 gas
plus 12 gas per input word, 3) KECCAK-256, whose computation costs 30 gas plus 6 gas
per input word. Functions (1) and (2) comply with the NIST standard and are implemented
as precompiled contracts, however, function (3), does not comply with the standard and
is implemented as an EVM opcode. These distinctions have interesting implications. Be-
cause functions (1) and (2) are precompiled contracts, they incur the extra gas cost of
a message call (700 gas), while function (3) does not. Consequently, Ethereum’s cost
model encourages the use of a non-standard-compliant hash function. Thus, application
developers are forced to either code the client side (at least in part) in JavaScript, for the
sole purpose of having access to Ethereum’s non-standard implementation of (3), or, pay
the extra gas cost. As one of the main incentives of developers in these platforms is to
minimize gas costs, the aforementioned distinctions essentially encourage client imple-
mentations that are unnecessarily complicated and limit the use of standard, mature and
efficient libraries, such as libgcrypt ([70]). Recently, a proposal has been submitted ([48])
to address this issue. If accepted, this change will further diminish the gas cost of the
Hash tree-based PKI, thus, increasing its deployment scale.

Recommendation #3: Reduce message call costs for precompiled contracts and
equalize the costs of all supported hash functions.
Lastly, Ethereum is inconsistent in the way it handles and exposes more complicated in-
structions. Given that: 1) the size of EVM assembly opcodes is one byte, 2) most values
are already in use ([18]) and, 3) the purpose of assembly language is to provide access
to low-level instructions, we believe that more sophisticated functionality (e.g., hash func-
tions) should be offloaded to a standard library of precompiled contracts. Furthermore,
Ethereum should design and incorporate a more developer-friendly way of addressing
these contracts. Currently, developers need to memorize (or look-up) the address of
each precompiled contract, e.g., SHA-256 resides on address 0x02, which is cumber-

81 C. Patsonakis

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

some. Convenient helper functions in EVM assembly that are translated to the appropriate
message calls would be helpful.

Recommendation #4: Sophisticated functionality should be moved to a standard
library of precompiled contracts that can be addressed in a developer-friendly man-
ner.

7.4 Linear State PKI Evaluation

We now present experiments that evaluate a simple smart contract PKI which stores all
(id, pk) pairs in its state. This is the approach that prior proposals employ (e.g., [15, 38,
111]), including the Ethereum Name Service, and allows us to illustrate the shortcomings
of Ethereum’s pricing of storage. In this scheme, registration and revocation are straight-
forward. During registration, the contract checks if there is an entry for the input identity
in its state. If there isn’t one, it adds it. During revocation, the contract first validates the
input signature, as in the prior two constructions, and checks if there is an entry in its state
for that identity. If so, the contract simply removes it from its state. We evaluate this PKI’s
operations by registering and revoking 10,000 (id, pk) pairs. Table 7.2 illustrates the gas
cost of registering and revoking 10,000 (id, pk) pairs in this setting. During revocation,
part of the contract’s storage is freed, and the transaction is refunded gas. As a result, the
overall cost of revocation is less than the verification of a Secp256r1 signature.

Table 7.2: Min, max, mean and standard deviation (columns 2-5) of the gas cost of registering and
revoking 10,000 randomly generated (identity,public-key) pairs in the Linear State PKI contract.

Operation Gas Cost
Min Max Mean Std

Register 89,469 89,661 89,643.91 33.74
Revoke 904,197 949,505 931,150.28 6,410.29

Discussion: This is, currently, the least costly PKI to deploy on Ethereum and the rea-
sons are simple. First, it is light in terms of computation. Indeed, excluding signature
verification, which is revocation’s dominant cost, the contract spans 10 lines of Solidity
code, consisting only of a few if statements. Second, as stated by Buterin ([52]), stor-
age is extremely underpriced and, as of yet, there is no incentive for freeing it. However,
the issue of storage and its effect on the size of Ethereum’s state is complex. Miners
add transactions to their blocks according to their “private cost”, i.e., their local resource
expenditure. Regardless, their decision affects the entire network, as all miners have to
download and validate newly mined blocks. For instance, the Linear State PKI may be
preferable to miners with abundant and inexpensive disk space. However, that may not
be the case for other nodes participating in the protocol. This suggests a “social cost” of
transactions, which may not be completely aligned with an individual miner’s private costs.

C. Patsonakis 82

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

If this social cost of transactions is not completely accounted for, the increasing size of
Ethereum’s state may deincentivize new full nodes from entering the system. Further-
more, the size of Ethereum’s state can also be an obstacle to nodes merely syncing with
the system. This issue affects a variety of topics; from light clients (e.g., smartphones)
being able to interface with smart contracts, to blockchain security.

One of the proposed countermeasures is imposing small, static rent fees on contracts
([105]) so as to avoid being “deactivated”, i.e., no one being able to interact with them.
However, it is Ethereum’s static cost model that has caused this problem in the first place.
We believe storage is a special commodity and that its price should be dynamically ad-
justed. Base storage price should depend on the global size of Ethereum’s state, i.e.,
the bigger the size of its state, the higher the base storage price. In addition, the cost
of transactions that increase the size of a contract’s state should scale accordingly, thus,
providing a counterincentive to over-utilizing contract storage.

Recommendation #5: Storage costs should take into account the size of Ethereum’s
global state, as well as, the size of the invoked contract’s state.
Clearly, the issue of storage costs is complex. In the following chapter, we discuss this
issue more thoroughly and make concrete proposals on how to address aspects of it.
Nonetheless, the constant state PKI constructions discussed in this work are well aligned
with space optimal use of smart contract platforms.

83 C. Patsonakis

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

C. Patsonakis 84

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

8. AN ALTERNATIVE PARADIGM FOR DEVELOPING APPLICATIONS
AND PRICING STORAGE ON SMART CONTRACT PLATFORMS

8.1 Rationale

Smart contract platforms provide the means of developing diverse and important decen-
tralized applications (dApps) in a simple manner which, prior to their introduction, was
challenging to implement. Ethereum ([107]) is probably the most notable smart contract
platform. Its live chain features dApps that implement naming services ([15]), multisigna-
ture wallets ([3]), a large variety of fungible tokens ([9]) and even crypto-collectibles ([4]),
all in just a few lines of code. The simplicity of developing dApps on top of these platforms
stems from the inherent utility of employing the state of smart contracts to store, query
and verify the validity of application data. For instance, all implementations of the most
widely deployed standard for fungible tokens, i.e., the ERC20 token standard ([7]), store
each account’s token balance on the contract’s state.

Today, Ethereum’s cost model does not adequately take into account the amount of stor-
age consumed by smart contracts. This is problematic for several reasons. First, in
Ethereum, storing data on the state of smart contracts requires paying one, non-recurring
fee at the time the data is stored. Thus, regardless of the amount of state that they con-
sume, contracts have zero maintenance costs and can be part of Ethereum’s state for-
ever. Second, storage-related operations are underpriced, as stated by Ethereum’s cre-
ator, Vitalik Buterin, in one of his recent talks ([52]). These two factors facilitate contracts
that gain utility from storing small amounts of data per user or transaction and have low
computational complexity, such as all variants of the “Linear State PKI” of Section 7.4, as
well as, ERC20 tokens. As a result, such contracts have very low transaction fees for their
operations. Third and most importantly, Ethereum’s state must be maintained by all full
nodes, yet there is no incentive mechanism in place for freeing storage. If left unchecked,
this can have serious consequences. It will diminish the mining population as proportion-
ally fewer and fewer miners will be able to contribute to the network. This will lead to
centralization and may prohibit new nodes from joining and syncing to the network, which
will, in turn, have a direct impact on Ethereum’s security and, utlimately, its longevity.

To address this issue, we propose an alternative paradigm for developing dApps on top
of smart contract platforms, which decouples the issue of data storage from verifying data
validity. The former is handled by an external, potentially unreliable, storage network that
allows efficient access to the application’s data (see Section 4.3 for details regarding the
storage network). To verify the validity of data obtained from the storage network, we
maintain cryptographic accumulators in the smart contract’s state. To evaluate our ap-
proach, we present a case study of an accumulator-based implementation of the ERC20
token standard. We chose this standard because it is the most widely deployed token
standard for fungible tokens, numbering over 130,000 compliant contracts on Ethereum’s
live chain ([9]). Via minor modifications, our construction can be modified to fit other, up-
coming standards, such as the ERC721 standard ([10]) for non-fungible tokens. However,

85 C. Patsonakis

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

we stress that our approach can be adapted to any application that requires a verifiable
representation of its application data, e.g., naming services, voting systems or any kind of
key-value store.

By requiring only minimal (constant-sized) state to be stored on the contract, our approach
promotes diversity, scalability, and security of the Ethereum network. Yet, we show that
under Ethereum’s current cost model, this accumulator-based approach is penalized for
the security properties it provides; it is much more (almost prohibitively) costly than the
approach of storing each account’s token balance in the contract state. This illustrates
one of Ethereum’s main incentive misalignments. To address this, we revisit Ethereum’s
storage cost model and propose modifications that: 1) price storage-related operations
based on the effort that miners have to expend to execute them, 2) ensure that contracts
pay recurring fees proportionate to the amount of storage they consume and the system’s
overall capacity and, 3) free space consumed by unused/stale contracts. We show that
under such a pricing scheme, our accumulator-based ERC20 token construction reduces
the incurred transaction fees by up to an order of magnitude. Furthermore, we compare
our Hash tree-based PKI (Section 6.2) with the “Linear State PKI” (Section 7.4) under our
newly proposed cost model and show that our construction reduces the incurred transac-
tion fees by up to an order of magnitude. With these modifications, we hope the Ethereum
developer community will be encouraged to exercise economy in the state consumed by
the smart contracts they develop.

8.2 Accumulator-based ERC20 Token

8.2.1 Construction

The ERC20 token standard ([7]) describes the functions and events that facilitate the ex-
change of arbitrary crypto-assets. At the time of this writing, it is the most widely deployed
token standard, numbering over 130,000 compliant smart contracts ([9]) on the Ethereum
live chain. Each token holder’s account is associated with an Ethereum address data
type. The token balance of each account is commonly represented as a uint data type,
i.e., an unsigned integer. The ERC20 token interface is comprised of the following func-
tions:

1. totalSupply(): Outputs the total supply of tokens accross all accounts.
2. balanceOf(address owner): Outputs the token balance of the input account.
3. approve(address spender,uint tokens); The account that issues the call (trans-

action) to this function authorizes the “spender” account to transfer the specified
number of tokens from her account.

4. allowance(address owner,address spender); Outputs the number of tokens that
the spender’s account is approve’d to transfer from the owner’s account.

5. transfer(address to,uint tokens): The account that issues the call (transaction) to
this function transfers the specified number of tokens to the “to” account.

6. transferFrom(address from,address to,uint tokens): Transfers from the owner’s

C. Patsonakis 86

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

account ”from“ to the approve’d account ”to“ the specified number of tokens.

To facilitate the aforementioned functionality, ERC20 compliant smart contracts store two
mappings, i.e., associative arrays, in their state: 1) balances, which maps account ad-
dresses to token balances and, 2) allowed, which maps account addresses to another
mapping where, the latter, maintains the balance that each approve’d account is allowed
to transfer from the token owner’s account.

We now illustrate how we employ the hash tree, universal accumulator of Camacho et
al. [53] (Section 6.1), to realize an accumulator-based ERC20 token. The core idea is to
replace each aforementioned mapping with one accumulator. We replace the balances
mapping with an accumulator, balancesAcc, that accumulates (owner,tokens) tuples and
allows clients to infer each account’s token balance. For the allowed mapping, which is
a “double” mapping, we need two accumulators. The first accumulator, allowedAddress-
esAcc, accumulates (owner,spender) tuples and allows clients to infer the accounts that
token owners have approve’d. The second accumulator, allowedBalancesAcc, accumu-
lates (spender,tokens) tuples and allows clients to infer the token balance that approve’d
accounts are allowed to transfer from the owner’s account. Thus, we have a constant-
sized and verifiable representation of account balances and allowances.

The storage network’s state is assumed to be comprised of the memory data structure
(see Section 6.1) of each of the aforementioned accumulators. As we show below, the
interaction with accumulator-based ERC20 smart contracts requires the construction of
(non) membership and update witnesses by the clients which, subsequently, are subject
to verification by the smart contract. Clients construct these witnesses by interacting with
the storage network. We stress that clients do not need to download the entire memory
of accumulators to construct these witnesses. The data that needs to be transmitted from
storage nodes to clients are hash paths from the appropriate accumulators’ hash trees,
i.e., they are of logarithmic complexity. Thus, from hereon in, we assume that clients
can efficiently construct the witness values that are required to realize the ERC20 token
interface.

Accumulator-based ERC20 token smart contracts cannot implement the balanceOf and
allowance functions since they do not store account balances and allowances in their
state. Instead, clients are able to infer the information obtained by these functions by in-
teracting with the storage network. To infer the balance y of account x, clients construct
and verify a membership witness that the tuple (x, y) is accumulated in balancesAcc. To
infer the allowance z of a spender’s account x2 from an owner’s account x1, clients con-
struct and verify two membership witnesses. First, a membership witness that the tuple
(x1, x2) is accumulated in allowedAddressesAcc, which proves that the token owner x1

has allowed the spender account x2 to transfer some tokens from her account. Second, a
membership witness that the tuple (x2, z) is accumulated in allowedBalancesAcc, which
proves the number of tokens the spender is allowed to transfer from the token owner’s
account.

Assume that an account x1 wishes to approve z tokens to be transfered from her account
by an account x2. At the time an approval is registered, it is possible that it exceeds

87 C. Patsonakis

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

the token owner’s account balance. This is handled appropriately in the transferFrom
function. The involved proofs for the approve operation vary based on whether this is the
first time that x1 approves x2, or not. In the former case, x1 constructs a non membership
witness for the tuple (x1, x2) in allowedAddressesAcc, an update witness for the addition
of the tuple (x1, x2) in allowedAddressesAcc and, lastly, an update witness for the addition
of the tuple (x2, z) in allowedBalancesAcc. In the case that x1 has approved x2 in the past
for k tokens, the proofs are as follows. First, a membership witness for the tuple (x1, x2)
in allowedAddressesAcc. Second, an update witness for the deletion of the tuple (x2, k)
from allowedBalancesAcc. Third, an update witness for the addition of the tuple (x2, z) in
allowedBalancesAcc. Note that both cases involve one invocation of Belongs, to verify the
appropriate (non) membership witness, and two invocations of CheckUpdate, to verify the
appropriate updates of the accumulators. Thus, both cases have the same computational
complexity.

An account x1 with balance y1 that wishes to transfer z tokens (y1 ≥ z) to an account x2

with balance y2 produces the following proofs. First, a membership witness for the tuple
(x1, y1) in balancesAcc, which proves the owner’s account balance. Second, a member-
ship witness for the tuple (x2, y2), which proves the balance of the destination account.
Third, an update witness for the deletion of the tuple (x1, y1) from balancesAcc. Fourth,
an update witness for the deletion of the tuple (x2, y2) from balancesAcc. Fifth, an update
witness for the addition of the tuple (x1, y1 − z) to balancesAcc. Sixth, an update witness
for the addition of the tuple (x2, y2 + z) to balancesAcc. Notice that the sequence of the
involved updates reflects the transfer of z tokens from x1 to x2.

The transferFrom operation transfers k tokens from an account x1 with balance y1 that
has approved the transfer of a total of z ≥ k tokens by an account x2 with balance y2. This
operation involves the following proofs. First, a membership witness for the tuple (x1, y1)
in balancesAcc. Second, a membership witness for the tuple (x2, y2) in balancesAcc.
Third, a membership witness for the tuple (x1, x2) in allowedAddressesAcc. Fourth, a
membership witness for the tuple (x2, z) in allowedBalancesAcc. Fifth, an update witness
for the deletion of the tuple (x1, y1) from balancesAcc. Sixth, an update witness for the
deletion of the tuple (x2, y2) from balancesAcc. Seventh, an update witness for the addition
of the tuple (x1, y1 − k) to balancesAcc. Eighth, an update witness for the addition of the
tuple (x2, y2 + k) to balancesAcc. Ninth, an update witness for the deletion of the tuple
(x2, z) from allowedBalancesAcc. Tenth, if z = k, an update witness for the deletion of the
tuple (x1, x2) from allowedAddressesAcc, otherwise, if z > k, an update witness for the
addition of the tuple (x2, z− k) to allowedBalancesAcc. Again, both cases have the same
computational complexity.

To summarize, the complexity of the accumulator-based ERC20 token smart contract’s
operations is as follows. The approve operation involves two update witnesses and ei-
ther one non membership, or, one membership witness, depending on whether the to-
ken owner approves the spender’s account for the first time or not, respectively. The
transfer operation involves two membership witnesses and four update witnesses. The
transferFrom operation involves four membership witnesses and six update witnesses.
Thus, the transferFrom is the most expensive operation, followed by transfer and, lastly,

C. Patsonakis 88

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

by approve.

8.2.2 Evaluation

In this section, we evaluate our accumulator-based ERC20 token construction. We ran
our experiments on a private blockchain that is maintained by a single mining node. We
use the latest, stable version of geth (v1.8.17, [20]), Ethereum’s official client, that was
available at the time of this writing. We conducted our experiments via the truffle suite
(v4.1.13, [32]) that employs solc-js (v0.4.24, [27]) to compile smart contracts with opti-
mizations enabled.

 0

 1×10
6

 2×10
6

 3×10
6

 4×10
6

 5×10
6

 6×10
6

 7×10
6

 0 100000 200000 300000 400000

G
a
s
 C

o
s
t

Number of Accounts and Approvals

Transfer()
TransferFrom()

Approve()

Figure 8.1: Gas cost versus of the transfer, approve and transferFrom operations of our
accumulator-based ERC20 token construction for up to a total of 400,000 accounts and 400,000

approvals.

Figure 8.1 illustrates the gas cost of the transfer, approve and transferFrom operations
of our accumulator-based ERC20 token for up to a total of 400,000 accounts and 400,000
approvals. Results illustrate that transaction gas costs scale logarithmically, which is ex-
pected (same holds for the approve operation). Recall that all involved proofs are hash
path(s) starting from some node(s) (not necessarily leaf node(s)) in the accumulator’s tree.
Thus, their size and verification cost varies based on the position of those nodes in the
tree. Our construction’s operations consume a large portion of the block’s limit which is,
currently, about 8 million gas ([14]). In the following, we discuss a series of improvements
that will diminish the cost of our construction’s operations.

The security property of the accumulator of Camacho et al. [53] is based on the presup-

89 C. Patsonakis

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

position that, prior to an invocation of CheckUpdate for the deletion or addition of some
element x, x ∈ X or x /∈ X, respectively. Thus, prior to, e.g., verifying the addition of
some element x via the CheckUpdate algorithm, we have to make sure, via a non mem-
bership witness verification, that x /∈ X. Part of an ongoing project is to provide a proof
extension that will allow us to lift this assumption from the accumulator’s security prop-
erty. Consequently, we will be able to eliminate one, two and four invocations of the
accumulator’s Belongs algorithm from the approve, transfer and transferFrom opera-
tions of the accumulator-based ERC20 token, respectively. Note that one invocation of
Belongs costs, on average, 289,873.23 gas, when |X| = 400, 000 and will, thus, provide a
substantial improvement.

To illustrate the overhead of our accumulator-based ERC20 token construction, we im-
plemented a “bare-bones” ERC20 token (where account balances and allowances are
stored in the contract’s state [17]) and repeated the same experiment. We measure
an average cost of 33,193.12, 42,465.23 and 23,798.35 gas for the transfer, approve
and transferFrom operations, respectively. Thus, our accumulator-based construction is
much more expensive, despite its constant and minimal space overhead on Ethereum’s
state. The large discrepancy between the gas cost of the two constructions’ operations,
as well as, the small and static gas cost of the bare-bones ERC20 token operations, are a
by-product of Ethereum’s flat cost model. The fact that storage-related operations are un-
derpriced ([52]) and that contracts do not pay a recurring fee proportional to the size of their
state is one of Ethereum’s main incentive misalignments. This issue, if left unchecked, will
have severe consequences to the future of, not only Ethereum, but any smart contract plat-
form that employs a flat cost model. Next, we propose modifications to Ethereum’s cost
model to deal with this issue.

8.3 Revisiting Ethereum’s Storage Cost Model

8.3.1 Adaptive Pricing of Storage Operations

Ethereum employs a flat cost model to price all EVM opcodes ([107]), including storage-
related operations. There are two main issues with this approach. First, storing data on
the state of smart contracts incurs a one time fee which is underpriced ([52]). To our
knowledge, there is no other, real world system that provides such high levels of data
replication and availability without a recurring fee that is proportional to the volume of the
stored data. Furthermore, as there is no incentive for freeing storage, Ethereum is faced
with a tragedy of the commons problem with regards to the monotonically increasing size
of its state. Second, Ethereum’s flat cost model does not account for the complexity of
executing storage-related operations, which is a function of the size of the state of smart
contracts. We propose the following modifications to Ethereum’s pricing of storage to
address these issues.

Recurring Storage Fees: The concept of introducing “storage rent”, i.e., a recurring fee
that smart contracts have to pay based on the amount of storage they consume has been

C. Patsonakis 90

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

discussed over the years. Buterin’s original proposal ([5]) has spurred a lot of discussion
and has led to the publication of several articles (e.g., [34, 36, 6]) which, in their vast
majority, stress how important such a mechanism is for the longevity of public blockchains.
An additional use of the rent mechanism is to clean up Ethereum’s state from accounts
(contracts are accounts as well) that are not being used anymore.

Our proposal on the subject of storage rent is based on the following points. First, we
believe that rent fees should not be rewarded to anyone as that could introduce new attack
vectors. Second, since Ethereum is a global computer, it is rational to assume that it has
a predefined storage capacity Smax (e.g., Buterin has suggested 500 GB [35]). Naturally,
this is a conceptual upper bound on the state’s size and will, essentially, reflect an estimate
of what is considered reasonable for the average miner. Third, Smax should be adjustable
by the ones that maintain the network, i.e., the miners, to account for real world, storage
trends. This could be achieved via a mechanism similar to the one that is already in use
for adjusting block difficulty.

We propose that up to a low utilization percentage of the system’s state, e.g., Ulow = 25%,
the rent per storage key of a contract’s state should be static to reflect the low burden
imposed on miners. When the state’s utilization is between Ulow and, e.g., Uhigh = 80%,
the rent per storage key of a contract’s state should increase logarithmically with the total
number of keys in the system’s state. This reflects the fact that Ethereum’s state is orga-
nized on top of LevelDB whose complexity we elaborate more on the following paragraph.
From thereon in, rent fees should be prohibitive, thus, they should scale linearly with the
total number of keys in the system’s state. To derive a base rent fee per storage key, we
consider real world examples of systems that are highly replicated and available and that
charge for storage. Cloud storage providers are a prime example. For instance, Ama-
zon’s EFS ([1]) charges 0.30 USD per GB per month. At the time of this writing, one unit
of Ether corresponds to 202.18 USD ([16]). Based on this analogy, we compute a base
rent fee of Rbase = 530, 657, 634.8 Wei per storage key per year (1 Ether corresponds to
1018 Wei). Thus, we have an adaptable scheme for computing rent fees that follows the
laws of supply and demand by considering the state’s overall utilization and the burden
imposed on miners.

Scaling Storage Costs: A contract’s state is organized on an on-disk Merkle Patricia
(MP) trie ([13]), which is referred to as the storage trie. This is a modified version of a typi-
cal radix tree with the added property of Merkle trees, i.e., the root hash uniquely identifies
the (key,value) pairs in the tree. The nodes of the storage trie and the smart contract’s
state (storage keys) are stored in a LevelDB ([21]) key-value store, whose underlying data
structure is a multi-level Log Structured Merge (LSM) tree. As illustrated in a recent study
([95]), due to Ethereum’s authenticated storage (MP trie), one Ethereum read (e.g., read-
ing the root node of a contract’s storage trie) can lead to 64 LevelDB get() (read) requests.
Each get() may internally involve multiple disk reads due to the large amount of metadata
that LevelDB maintains ([109]). Updates to a contract’s storage, e.g., adding/updating
storage keys, result in updates to its storage trie that have to be committed on disk. In
LevelDB, key-value updates are reinserted into a skip list with a monotonically increasing
sequence number along with a “tombstone” flag that invalidates the pair’s prior version.

91 C. Patsonakis

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

To maintain key-value pairs in sorted order, LevelDB uses a compaction method. This
process involves multiple merge sorts (one per LSM tree level) and incurs a write am-
plification factor, which is the ratio of the amount of data written to the amount of data
requested for writing by users, of ×11 ([109]).

Ethereum’s flat cost model does not reflect the aforementioned complexity of storage-
related operations. One might assume that an ideal scheme would scale the cost of these
operations based on the number of incurred disk operations. However, this is not possi-
ble as Ethereum miners do not have a shared hardware configuration, e.g., their physical
hard disks and their caches vary significantly. This would interfere with Ethereum’s con-
sensus as the execution of the same transaction would lead to different gas costs across
different miners. Instead, we propose a scheme where the cost of storage-related op-
erations is computed on a per transaction basis and scales according to the number of
operations to LevelDB’s LSM tree, which is the same across all miners. Fetching one
key from a LSM tree involves two binary searches ([94]). Accessing the value of a smart
contract’s storage key involves, at minimum, fetching one node of its storage trie and, sub-
sequently, fetching the storage key itself. Thus, it requires a total of four binary searches,
i.e., 4 log2(n) accesses, where n is the number of storage keys. Updating, or, adding a new
storage key, involves the same number of accesses to infer the value of the tombstone
flag. However, since updates are propagated to all levels of LevelDB’s LSM tree during
its compaction process, they are subject to LevelDB’s write amplification factor, which we
discussed above. Thus, updates incur a total of 11 × 4 log2(n) = 44 log2(n) operations.
Currently, reading, storing and updating storage keys costs 200, 20,000 and 5,000 gas,
respectively. Thus, under our proposed scheme, the cost of reading, storing and updating
a storage key can be computed via the following functions:

• readKeyCost(n) = 800 log2(n)

• updateKeyCost(n) = 220, 000 log2(n)

• storeKeyCost(n) = 880, 000 log2(n)

In the following two subsections, we, first, provide details regarding the amount and type
(read/write) of storage operations pertaining to the “bare-bones” ERC20 token and “linear
state” PKI constructions, respectively. Next, we employ our adaptive scheme for pric-
ing storage-related operations and illustrate the overhead of: 1) the “bare-bones” ERC20
token compared to our accumulator-based ERC20 token and, 2) the “linear state” PKI
compared to our hash tree-based PKI.

8.3.2 Adaptive Pricing of Storage: Accumulator-based vs Bare Bones ERC20 To-
ken

We provide a breakdown of the amount and type of storage operations, as well as, the
storage cost pertaining to each function of the “bare-bones” ERC20 token, which is as
follows:

C. Patsonakis 92

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

• The transfer() function involves reading and updating the values of two storage
keys, i.e., its storage cost can be computed by the function:

transferCost(n) = 2× readKeyCost(n) + 2× updateKeyCost(n) (8.1)

• The transferFrom() function involves reading four storage keys and updating the
values of three storage keys, i.e., its storage cost can be computed by the function:

transferFromCost(n) = 4× readKeyCost(n) + 3× updateKeyCost(n) (8.2)

• The approve() function involves storing a new key in the contract’s storage, i.e., its
storage cost can be computed by the function:

approveCost(n) = storeKeyCost(n) (8.3)

Our accumulator-based ERC20 token construction stores on the smart contract’s state
a total of four storage keys (n = 4) pertaining to the values of its three accumulators
(balancesAcc, allowedAddressesAcc, allowedBalancesAcc) and their (common) security
parameter (λ). In the following, we provide a breakdown of the amount and type of storage
operations, as well as, the storage cost pertaining to each function of our accumulator-
based ERC20 token construction:

• The transfer() function involves reading and updating the value of the balancesAcc
accumulator, i.e., its storage cost is:

AccTransferCost = readKeyCost(4) + updateKeyCost(4) (8.4)

• The transferFrom() function involves reading and updating the values of the bal-
ancesAcc, allowedAddressesAcc and allowedBalancesAcc accumulators, i.e., its
storage cost is:

AccTransferFromCost = 3× AccTransferCost (8.5)

• The approve() function involves reading and updating the values of the allowedAd-
dressesAcc and allowedBalancesAcc accumulators, i.e., its storage cost is:

AccApproveCost = 2× AccTransferCost (8.6)

Figures 8.2, 8.3 and 8.4 illustrate the gas cost of the transfer, transferFrom and approve
operations, respectively, of the bare-bones and our accumulator-based ERC20 token un-
der our proposed cost model. Regarding the bare-bones ERC20 token, we only plot the
storage-related cost of its operations, which are the dominant factor. The biggest discrep-
ancy is in the approve operation (Figure 8.4) where our accumulator-based construction
provides an order of magnitude improvement.

93 C. Patsonakis

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

 0

 1×10
6

 2×10
6

 3×10
6

 4×10
6

 5×10
6

 6×10
6

 7×10
6

 8×10
6

 9×10
6

 0 100000 200000 300000 400000

G
a
s
 C

o
s
t

Number of Accounts and Approvals

Transfer() Acc−Transfer()

Figure 8.2: Gas cost of the transfer operation of the bare-bones and our accumulator-based ERC20
token for up to a total of 400,000 accounts and 400,000 approvals under our adaptive model for

pricing storage operations.

 0

 2×10
6

 4×10
6

 6×10
6

 8×10
6

 1×10
7

 1.2×10
7

 1.4×10
7

 0 100000 200000 300000 400000

G
a
s
 C

o
s
t

Number of Accounts and Approvals

TransferFrom() Acc−TransferFrom()

Figure 8.3: Gas cost of the transferFrom operation of the bare-bones and our accumulator-based
ERC20 token for up to a total of 400,000 accounts and 400,000 approvals under our adaptive model

for pricing storage operations.

C. Patsonakis 94

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

 0

 2×10
6

 4×10
6

 6×10
6

 8×10
6

 1×10
7

 1.2×10
7

 1.4×10
7

 1.6×10
7

 1.8×10
7

 0 100000 200000 300000 400000

G
a
s
 C

o
s
t

Number of Accounts and Approvals

Approve() Acc−Approve()

Figure 8.4: Gas cost versus of the approve operation of the bare-bones and our
accumulator-based ERC20 token for up to a total of 400,000 accounts and 400,000 approvals under

our adaptive model for pricing storage operations.

8.3.3 Adaptive Pricing of Storage: Hash Tree-Based vs Linear State PKI

Recall that we assume 32-byte identities and that ECDSA public keys are two elliptic curve
coordinates, where each is 256 bits long. We provide a breakdown of the amount and type
of storage operations, as well as, the storage cost pertaining to each function of the “linear
state” PKI:

• The Register() function involves reading one EVM word from the contract’s storage,
to infer if an (id, pk) pair is registered or not, and, the storage of three new keys
(assuming that the identity is not taken). Thus, the storage cost of this operation can
be computed by the following formula:

LinearStatePKIRegisterCost(n) = readKeyCost(n) + 3× storeKeyCost(n) (8.7)

• The Revoke() function involves reading three EVM words from the contract’s stor-
age, i.e., the (id, pk) pair to infer if it is registered or not, and updating the value of
one storage key. Thus, the storage cost of this operation can be computed by the
following formula:

LinearStatePKIRevokeCost(n) = 3× readKeyCost(n) + updateKeyCost(n) (8.8)

95 C. Patsonakis

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

 0

 5×10
6

 1×10
7

 1.5×10
7

 2×10
7

 2.5×10
7

 3×10
7

 3.5×10
7

 4×10
7

 4.5×10
7

 0 25000 50000 75000 100000

G
a
s
 C

o
s
t

Number of Registered Pairs

LinearStatePKIRegister()
HashTreePKIRegister()

Figure 8.5: Gas cost of registering 100,000 (id, pk) pairs on the linear state versus our hash
tree-based PKI under our proposed model for pricing storage operations.

 1×10
6

 1.5×10
6

 2×10
6

 2.5×10
6

 3×10
6

 3.5×10
6

 4×10
6

 4.5×10
6

 5×10
6

 0 25000 50000 75000 100000

G
a
s
 C

o
s
t

Number of Registered Pairs

LinearStatePKIRevoke()
HashTreePKIRevoke()

Figure 8.6: Gas cost of revoking 100,000 (id, pk) pairs on the linear state versus our hash
tree-based PKI under our proposed model for pricing storage operations.

C. Patsonakis 96

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

Our hash tree-based PKI stores on the smart contract’s state a total of four storage keys
(n = 4) pertaining to the values of its two accumulators (c1, c2) and their respective security
parameters (λ1, λ2). The Register() and Revoke() functions involve reading and updating
the values of both of its accumulators. Thus, their storage costs can be computed by the
following formula:

HashTreePKIRegisterStorageCost = HashTreePKIRevokeStorageCost =

2× readKeyCost(4) + 2× updateKeyCost(4)
(8.9)

Figures 8.5 and 8.6 illustrate the gas cost of the Register() and Revoke() functions, re-
spectively, of the “linear state” PKI, compared to that of our hash tree-based PKI, under
our proposed adaptive cost model. Regarding both PKI operations, our hash tree-based
PKI delivers reduced costs. The biggest improvement is in the Register operation, where
our hash tree-based PKI provides an order of magnitude improvement.

Overall, results illustrate that, under a pricing scheme that reflects the effort that miners
have to expend to execute storage-related operations, the programming paradigm that
we propose in this work, as illustrated by our case studies, provides reduced gas costs
across all operations. Nevertheless, we believe that the most important property of our
approach is that it aligns well with the future of smart contract platforms since it incurs
constant storage overhead to miners.

97 C. Patsonakis

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

C. Patsonakis 98

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

9. CONCLUSIONS AND FUTURE WORK

Naming services provide the necessary foundations to develop important and pervasive
applications, such as e-commerce and e-banking. The volume of monetary value that is
exchanged in today’s online (micro) transactions, coupled with the fact that the underly-
ing networking infrastructure (e.g., the Internet) is, by design, not reliable, necessitates
naming services that are secure and fault-tolerant by design. However, it stands as a
grand contradiction that these fundamental systems are, to this day, under the control of
centralized, trusted, remote parties that have been involved in multiple, prominent security
incidents throughout the years. These have had severe consequences on both end-users,
as well as, large corporations. Undeniably, centralization provides convenience in terms
of systems implementation, as well as, control. Nonetheless, throughout human history,
it has been proven, time and time again, that concentration of power and trust has always
had severe repercussions. To address the dangers stemming from centralization, it is our
firm belief, and the driving force behind this work, that we need to shift to more democratic,
or distributed, structures.

This thesis is dedicated to the design, implementation and evaluation of a provably secure,
decentralized naming service that, contrary to the norm, has no single point of failure or
control and whose security is based on standard cryptographic hardness assumptions.
We are the first to provide a complete formalization of the naming service design problem
in the Universal Composability framework and we formally prove the security of our con-
struction under the strong RSA assumption in the Random Oracle model. Thus, we have
covered one of the literature’s main gaps, as no prior work provided a provably secure
construction which, we believe, is a necessity for such critical infrastructures.

Our design is built on top of smart contract platforms, a modern, ingenious invention that
allows the development of smart contracts, i.e., stateful, programmable agents that can
encode arbitrary state transition functions and are executed over a distributed network of
peers (e.g., blockchains). This layer provides our design a decentralized, secure and fault
tolerant infrastructure that, in addition, encompasses a mechanism that incentivizes its
perpetuity. As a result, it counters the free-riding problem and, simultaneously, is resilient
to Sybil attacks, while still retaining a scalable, free-entry system. This provides a com-
bination of features that is vital for the deployment of publicly-available naming services,
which was not provided by the majority of prior works.

We resolve the issues stemming from on-blockchain, or, on-smart contract storage, by
decoupling the issue of data storage from its validity. The former is handled by an exter-
nal storage network that provides for efficient access to the application’s data, compared
to downloading and validating the entire blockchain. The adversary is allowed to tamper
with its contents in an arbitrary manner which, as we prove in Appendix B, does not af-
fect our design’s security. Regarding the storage network, it is important to clarify a few
additional points. We stress that in cases where the storage network becomes corrupted,
it is possible to establish a clean instance of it. Indeed, the history of operations is still
stored on the blockchain, which the adversary cannot corrupt. This procedure, although

99 C. Patsonakis

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

costly as one might argue, provides a base level of liveness to our design. However, we
believe that a real world deployment mandates greater liveness guarantees, as well as, a
few subtle efficiency improvements, which we discuss below. Consider the case where a
client wants to register a new (id, pk) pair. As we have already illustrated in the description
of our protocols, the client requests the history of operations from the storage network to
construct the appropriate witness values. The client can infer the validity of the state she
received only after she has computed and verified the witnesses. Consequently, a mali-
cious node of the storage network can impose polynomial computational overhead to the
client. In such cases, the client will then need to query an alternative node of the storage
network and repeat the same process again. Thus, the protocol between clients and stor-
age network nodes needs to be enhanced in order to limit the computational overhead that
malicious nodes can impose on clients. Furthermore, it would be desirable to diminish the
amount of data that clients pull from the storage network to construct witness values. This
is a challenging and independent research topic that involves exploring and expanding
the properties of the underlying constructs that provide data validity in our design, which
we discuss below.

To provide for data validity in the face of an unreliable storage network, our design stores,
on the smart contract’s state, cryptographic accumulators. These are data structures that
provide a constant representation of an (updatable) set of elements and allow for (non)
membership witnesses. More specifically, we are the first to define the notion of a public-
state, universal accumulator, a cryptographic tool of independent interest for applications
that employ blockchains, or any type of (public) bulletin board, to verify the validity of their
data. We provide an RSA-based construction of such an accumulator, which favors stor-
age overhead at the expense of computational complexity to provide for constant-sized
smart contract state and witnesses. To explore this tradeoff, we propose a second con-
struction that is built on top of the hash tree, universal accumulator of Camacho et al. [53],
where witnesses are logarithmic in the number of registered identity records. We evaluate
both of our constructions, as well as, their building blocks, by implementing PKI variants
and by comparing them with the approach of most prior schemes, i.e., on-blockchain stor-
age.

Our evaluation illustrates that our RSA-based PKI construction is not viable for deploy-
ment on Ethereum’s live chain. This is attributed to the overwhelming cost of the Map
procedure. The viability of this construction, however, might be improved when the EVM
is extended to support bitwise shifting operations. We leave as future work exploring al-
ternatives, such as verifiable computation, that will diminish the computational complexity
of the smart contract and, thus, the cost of its operations. In contrast, our hash tree-based
PKI construction can be deployed on Ethereum’s live chain and can accommodate small,
to moderately sized PKIs. We stress that the deployment scale of this construction might
be improved in the future where Ethereumwill shift from PoW to PoS consensus. This con-
struction can be further optimized by extending the security property of the accumulator
of Camacho et al. [53] which, in short, will allow update witnesses to act as (non) mem-
bership witnesses as well. Nevertheless, via our evaluation, we show that on-blockchain
storage is the best alternative, in terms of transaction costs. However, we stress that this

C. Patsonakis 100

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

approach will have a direct impact on Ethereum’s security and, ultimately, its longevity, as
its monotonically increasing state will pose as a counterincentive for new nodes to sync
and contribute to the network.

We address several issues that stem from Ethereum’s pricing of storage related opera-
tions. To this end, we propose an adaptive scheme that prices storage-related operations
based on the effort that miners have to expend to execute them, introduces recurring stor-
age fees and frees space consumed by unused/stale contracts. We show that under such
a pricing scheme, our hash tree-based PKI construction reduces the incurred transaction
fees by up to an order of magnitude, compared to the approach of on-blockchain storage.

To conclude, the NS design and constructions presented in this work adhere to the orig-
inal, distributed design principles of the Internet. Our work has shown that we can build
such critical services without blindly trusting centralized entities and suffering the conse-
quences of their security breaches. We believe that our work illustrates the potential that
modern, ingenious constructs have and provides the first steps in building a democratic
and decentralized digital world that is secure and verifiable by cryptography.

101 C. Patsonakis

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

C. Patsonakis 102

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

ABBREVIATIONS - ACRONYMS

SSL Secure Sockets Layer

TLS Transport Layer Security

WWW World Wide Web

LDAP Lightweight Directory Access Protocol

WoT Web Of Trust

PGP Pretty Good Privacy

P2P Peer-to-Peer

PoW Proof-of-Work

PoS Proof-of-Stake

VM Virtual Machine

ENS Ethereum Name Service

BNS Blockstack Name Service

EVM Ethereum Virtual Machine

UTXO Unspent Transaction Output

EOA Externally Owned Account

BFT Byzantine Fault Tolerance

IP Internet Protocol

CA Certification Authority

RA Registration Authority

CRL Certificate Revocation List

TTP Trusted Third Party

UC Universal Composability

NS Naming Service

DNS Domain Name System

DDNS Distributed Domain Name System

PKI Public Key Infrastructure

103 C. Patsonakis

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

CPKI Centralized Public Key Infrastructure

DPKI Decentralized Public Key Infrastructure

NIZK Non Interactive Zero Knowledge

UDB Unreliable Database

LSM Log Structured Merge

MP Merkle Patricia

dApp decentralized application

sk secret key

pk public key

vk verification key

ek encryption key

dk decryption key

id identity

C. Patsonakis 104

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

APPENDIX A. PROOF OF LEMMA 5.1.1

Lemma 5.1.1 ([68]). Let U be a 2-universal hash function family from {0, 1}3k to {0, 1}k.
Then, for all but a 2−k fraction of functions f ∈ U , for any y ∈ {0, 1}k, a fraction of at least
1/ck elements in f−1(y) are primes where c is some small constant.

Lemma 5.1.1 is proven using a sequence of lemmas. We follow the proof given in the
appendix of the paper [102].

Lemma A.0.1. Let U = {f : {0, 1}m → {0, 1}k} be a 2-universal hash function family.
For any A ⊆ {0, 1}m, for all but a O(2

2k

|A|)-fraction of f ∈ U , it holds that for any z ∈
{0, 1}k, |f

−1(z)∩A|
|f−1(z)| > |A|

2m+1 .

Lemma A.0.1 is proven by first showing Lemma A.0.2 and then Lemma A.0.3.

Lemma A.0.2. Let A ⊆ {0, 1}m and z ∈ {0, 1}k. We say that f ∈ U is (A, z)-balanced if
2
3
· |A|

2k
≤ |f−1(z) ∩ A| ≤ 4

3
· |A|

2k
. It holds that Prf∈U [f is not (A, z)-balanced] ≤ 9·2k

|A| .

Proof. Assume thatA = {a1, . . . , aℓ} and that we choose f ∈ U uniformly at random. Since
U is a 2-universal hash function family (Definition 4.1.3) we have that Pr[f(ai) = z] = 1

2k
.

We define the random variableXi, which equals 1 if f(ai) = z and 0 otherwise. Therefore,
it holds that Pr[Xi = 1] = 1

2k
. If X = Σℓ

i=1Xi, then it can be easily observed that X =
|f−1(z) ∩ A|. We also have that µ = E[X] = ℓ · Pr[f(ai) = z] = ℓ · 2−k. We will now utilize
the Chebychev inequality

Pr[|X − µ| ≥ t] ≤ V ar(X)

t2
.

If we set t = µ/3, we have that

Prf∈U [|X − µ| ≥ µ

3
] ≤ 9V ar(X)

µ2
. (A.1)

Since Xi, . . . , Xℓ are pairwise independent, we have that V ar(X) = Σℓ
i=1V ar(Xi). There-

fore, V ar(X) = Σℓ
i=1

(
E[X2

i] − E[Xi]
2
)
= ℓ 1

2k

(
1 − 1

2k

)
≤ ℓ2−k. Hence, 9V ar(X)

µ2 ≤ 9·2k
ℓ
.

Therefore, by (A.1), it holds that

2

3
· |A|
2k

< |f−1(z) ∩ A| < 4

3
· |A|
2k

, (A.2)

except for 9·2k
ℓ

fraction of functions f ∈ U .

Lemma A.0.3. Let A ⊆ {0, 1}m, z ∈ {0, 1}k and f ∈ U . We say that the pair (f, z) is “bad”
for the set A if |f−1(z)∩A|

|f−1(z)| ≤
|A|

2m+1 . Then, for any A ⊆ {0, 1}m, z ∈ {0, 1}k,

Prf∈U [(f, z) is “bad” for A] ≤
18 · 2k

|A|
. (A.3)

105 C. Patsonakis

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

Proof. We fix z ∈ {0, 1}k. Then, by Lemma A.0.2, if we set A = {0, 1}m, we have that

2

3
· 2m−k < |f−1(z)| < 4

3
· 2m−k, (A.4)

except for 9 · 2k−m fraction of functions f ∈ U . Next, by Lemma A.0.2 for an arbitrary
A ⊆ {0, 1}m, we have that

2

3
|A| · 2−k < |f−1(z) ∩ A| < 4

3
|A| · 2−k, (A.5)

except for 9·2k
|A| fraction of functions f ∈ U .

Combining (A.4), (A.5), it holds that

|f−1(z) ∩ A|
|f−1(z)|

>
|A|
2m+1

, (A.6)

except for 18·2k
|A| fraction of functions f ∈ U .

By Lemma A.0.3, using the union bound, we can get Lemma A.0.1.

Proof of Lemma 5.1.1. Now, let A be the set of prime numbers less than 2m andm = 3k,
as Lemma 5.1.1 considers a 2-universal hash function family of functions from {0, 1}3k
to {0, 1}k. By the prime number theorem, we have that the number of primes which are
less or equal to x, denoted as π(x), is asymptotically x

lnx . Making use of a non-asymptotic
bound ([97]), we have that for any x ≥ 55, π(x) > x

lnx+2
. Therefore, we have that

|A| = π(23k) >
23k

ln 23k + 2
. (A.7)

By (A.7) and LemmaA.0.1, it holds that except for (18(3k+2 log2 e)
2k log2 e

)-fraction of functions f ∈ U ,

|f−1(z) ∩ A|
|f−1(z)|

>
1

6k
log2 e

+ 2
≈ 1

4.16k + 2
. (A.8)

C. Patsonakis 106

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

APPENDIX B. PROOF OF THEOREM 5.2.1

The work presented in this Appendix B was partially published in our joint work ([92]) with
Katerina Samari, who is credited for drafting the full proof.

Theorem 5.2.1. Protocol πRSA of Figure 5.3 securely realizes the functionality Fns in the
(FTP ,FUDB)-hybrid world under the Strong-RSA assumption in the RandomOracleModel.
Namely, for any p.p.t. adversaryA interacting with protocol πRSA in the (FTP ,FUDB)-hybrid
world, there is a p.p.t. simulator S interacting with the functionality Fns, such that, for any
p.p.t. environment Z, it holds that:

EXECFns
Z,S

c
≈ EXEC

π
FTP ,FUDB
RSA

Z,A .

Proof. We construct a simulator S (Figure B.1), which emulates an execution of protocol
πRSA in the (FTP ,FUDB)-hybrid world, in the presence of an adversary A. S plays the
role of T , FTP , FUDB, the role of the servers and acts on behalf of a number of honest
clients in the simulation of the hybrid-world protocol πRSA. Based on the construction of our
simulator S, we show that an environment can distinguish between the executions in the
hybrid and the ideal world only by influencing the way the membership or non membership
verifications take place in the hybrid world protocol. In other words, the only inconsistency
between the two executions can be derived if an adversary manages to convince the
functionality FTP about false statements (whether an element belongs to an accumulated
set or not), thus, breaking the security of at least one of the accumulators of protocol πRSA.
Note that relation R(pk, aux) does not provide an opportunity for distinguishing since it is
the same in both worlds.

We assume that Z is a p.p.t. environment. For any message sent by Z to a party (e.g., a
client C or party T), we examine the output in both the hybrid and the ideal world. In the
UCmodel, the parties in the ideal world are dummy, i.e., they simply forward any message
they receive from the environment to a functionality and vice versa. Below, we show that
for any message sent by the environment, the outputs of the parties in the hybrid and
ideal world are indistinguishable and, thus, the environment cannot distinguish between
the executions in the hybrid and ideal world.

Z sends (sid, Init) to server Si: In the hybrid world, server Si sends (sid, InitTP) to FTP

and (sid, InitUDB) to FUDB. The functionalities FTP and FUDB add the server Si to the set
Sinit and S ′

init, respectively, and inform the adversary A that Si is initialized. They both
return success to Si which, in turn, returns success. In the ideal world, the simulator S,
upon receiving (sid, Init, Si) from Fns, according to Step 1 of Figure B.1, sends allow to
Fns, which returns success to Si.

Z sends (sid,Setup,R) to party T: In the hybrid world, T sends (sid, Install, PRSA) to
FTP . If flag = ready and A returns allow, then FTP stores PRSA, sets state ← ε and
returns success to T . Then, T runs KeyGen(1λ) twice (Step 2, Figure 5.3), sets params =
(pk1, pk2, R) and sends (sid, (Setup, params)) to FTP . If A returns allow, FTP runs PRSA

on input (Setup, params), returns state ← (c0,1, c0,2, params) to T and T returns success

107 C. Patsonakis

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

Simulator S:
1. Upon receiving (sid, Init, Si) byFns, S, on behalf ofFTP andFUDB, sends (sid, InitTP, Si)

and (sid, InitUDB, Si) to A and allow to Fns.
2. Upon receiving (sid,Setup, R) by Fns, S, acting as T in the real-world protocol, runs

KeyGen(1λ) twice. Then, S, by acting as FTP in the real-world protocol, sends
(sid, Install, PRSA) to A. If A returns allow, S sends (sid,Setup, params) to A. If A
returns allow, S runs PRSA on input (Setup, params) and sends allow to Fns.

3. Upon receiving (sid,Register, id, pk) by Fns, S, acting as an honest client C and
FUDB in the hybrid-world protocol πRSA, sends (sid,RetrieveDB, C) to A. If A re-
turns allow, S runs Step 3a. If the last record for id is a Register record, S
sends fail to Fns, otherwise, it moves to Step 3b. S, acting as FTP , sends
(sid,Register, id, pk, i,W2,1,W2,2) to A. If A returns allow, S runs PRSA on input
(Register, id, pk, i,W2,1,W2,2). If PRSA outputs fail, S sends fail to Fns, otherwise, S,
acting as C, runs W1,2 ← NonMemWitGen(pk1, X1, c

′
1, (id, pk, i, d)). S, acting as FUDB,

sends
(
sid,Post, (Register(id, pk, i,W1,1,W1,2)

)
to A. If A returns allow, S sends allow

to Fns and updates DBstate by storing (Register, id, pk, i,W1,1,W1,2).
4. Upon receiving (sid,Revoke, id, pk, aux) by Fns, S, acting as an honest client C and
FUDB, sends (sid,RetrieveDB, C) to A. If A returns allow, S runs Steps 4a, 4b
and computes the updated witnesses W1,1,W1,2. S, acting as FTP , sends
(sid,Revoke, id, pk, i,W1,1,W1,2,aux) to A. If A returns allow, S runs PRSA on input
(Revoke, id, pk, i,W1,1,W1,2,aux) and, if it outputs (fail, state), S sends fail to Fns. Oth-
erwise, S returns allow to Fns and updates DBstate by storing (Revoke, id, pk, i).

5. Upon receiving (sid,Retrieve, id) by Fns, S, on behalf of an honest client C and playing
the role of FUDB, sends (sid,RetrieveDB) to A. If A returns allow, S runs Step 5a of
Figure 5.3. If Step 5a returns fail, then, S returns fail toFns, otherwise S runs Step 5b and
simulating FTP , sends (sid,RetrieveState) toA. IfA returns allow and all the algorithms
at Step 5b return 1, then, S sends allow to Fns, otherwise it sends fail.

6. Upon receiving (sid,VerifyID, id) or (sid,VerifyMapping, id, pk) by Fns, S runs the simu-
lation as in Step 5.

7. Upon receiving (sid,ChangeDBstate, DBstate′) by A, S sets DBstate← DBstate′.
8. Upon receiving (sid,Register, id, pk) or (sid,Revoke, id, pk) by Fns for a corrupted client

C, S waits for the actions of A and simulates FTP and FUDB as in previous cases. If S
receives (Register, id′, pk′, i,W ′

2,1,W
′
2,2) byA, S checks if id ̸= id′ or/and pk ̸= pk′. If the

program PRSA does not return (fail, state) on this input, S sends (Register, id′, pk′, C) to
Fns. S runs similarly when it receives (Revoke, id′, pk′, i,W ′

1,1,W
′
1,2).

Figure B.1: Simulator S.

C. Patsonakis 108

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

to Z. In the ideal world, if flag = start, the functionality Fns sends (sid,Setup, R) to S. S
follows Step 2 of Figure B.1 and simulates T and FTP in the execution of protocol πRSA in
the presence of A. Given that A returns allow to S when the latter acts as FTP , S returns
allow to Fns. Then, Fns returns success to T . Therefore, T returns success both in the
hybrid and ideal world.

Below, when we review the cases whereZ sends a Register,Revoke or Retrieve message
to a client C, we will distinguish on whether the adversary A has changed the contents
of DBstate, by sending a ChangeDBstate message to FUDB, or not. In all cases, we will
examine the output of an honest and a corrupted client (i.e. a client who is controlled by
the adversary A) and prove that consistent outputs are returned both in the hybrid and
ideal world.

To simplify the description, in the remainder of the proof we will, first, assume thatA returns
allow in any interaction with FTP and FUDB. If A does not return allow, C returns fail in
both the hybrid and ideal world. Second, as illustrated in protocol πRSA (Figure 5.3), both
in the cases of a Register or a Revoke message, an honest client, first retrieves DBstate
by sending a request to FUDB. In the case of a Register message, the client checks if the
last record in DBstate is a Revoke record or if there is no record related to the identity
(Step 3a). In the case of a Revoke message, a client will check whether there is a register
record inDBstate for the corresponding (id, pk) pair (Step 4a). In both cases, if the above
checks fail, the client will return fail in the hybrid world. In the ideal world, it is easy to see
that fail is also returned. In Steps 3, 4 of Figure B.1, S, simulating an honest client and
FUDB will return in all the aforementioned cases fail to Fns. To avoid repetition, we will not
refer to such cases when they arise in our analysis.

Z sends a message (sid,Register, id,pk) to a client C: Consider the following cases:

Reg1: A has not sent (sid,ChangeDBstate, DBstate′) toFUDB before (sid,Register, id, pk)
is sent to client C. Below, we examine two subcases related to whether the identity id is
registered or not:
(a) The identity id is not registered: In the hybrid world, an honest client C sends

(sid,RetrieveDB) to FUDB. C, on receipt ofDBstate, computes witnessesW2,1,W2,2,
by following the procedure described in Steps 3a, 3b of Figure 5.3. Then, C sends
(sid, (Register, id, pk, i,W2,1,W2,2)) to FTP , FTP returns ((c′1,W

′
1,1), (c

′
2,W

′
2,1), state),

C sets W1,1 ← W ′
1,1 and computes the non membership witness W1,2 for (id, pk, i, d).

Then, C sends (sid,Post, (Register, id, pk, i,W1,1,W1,2)) toFUDB and returns success
in the hybrid world. In the ideal world, C returns success as well, since the simulator
S, acting as C, FTP and FUDB, returns allow to Fns (Step 3, Figure B.1). Finally, Fns,
verifying that id is not registered, sends success to C.

(b) The identity id is currently registered: In the hybrid world, a corrupted client C
may try to convince FTP that id is not registered. Then, C must either provide a
valid non membership witness W2,1 for (id, j, a) in c2, for some j ≥ 2, such that
VerifyNonMem(pk2, (id, j, a),W2,1, c2) = 1 and a valid membership witness W2,2 for
(id, j − 1, d) in c2, such that VerifyMem(pk2, (id, j − 1, d),W2,2, c2) = 1, or, a valid non
membership witnessW2,1 for (id, 1, a) in c2. We show that, by the security of accumu-
lator c2, such an attack takes place only with negligible probability. Recall that since id

109 C. Patsonakis

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

is currently registered, it holds either that (1) there is ℓ ≥ 2 such that (id, ℓ, a) ∈ X2 and
(id, ℓ, d) /∈ X2, where X2 is set accumulated of c2, or, (2) (id, 1, a) ∈ X2. Starting with
(1), we consider the cases where 1 < j ≤ ℓ, and j > ℓ. If 1 < j ≤ ℓ, then (id, j, a) ∈ X2

and (id, j − 1, d) ∈ X2. By the security of accumulator c2, C can produce a valid non
membership witness W2,1 for (id, j, a) only with negligible probability. If j > ℓ, then
(id, j, a) /∈ X2 and (id, j − 1, d) /∈ X2. By the security of the accumulator c2, C cannot
produce a valid membership witness W2,2 for (id, j − 1, d). For case (2), similarly, C
can produce a valid non membership witness W2,1 for (id, 1, a) only with negligible
probability. Hence, if a corrupted client C sends (sid,Register, id, pk, j,W2,1,W2,2)
to FTP , FTP will return (fail, state) and C will return fail in the hybrid world. Corre-
spondingly, in the ideal world, C would also return fail. The simulator S, according to
Step 8, waits for the actions of A, i.e., the corrupted client C. Then, S simulates FTP

in the eyes of the corrupted client C and since FTP returns (fail, state), S sends fail
to Fns. Then, Fns sends fail to C, who returns fail as well.

Reg2: A has sent (sid,ChangeDBstate, DBstate′) to FUDB before (sid,Register, id, pk)
is sent byZ, such thatDBstate′ ̸= DBstate and the setX ′

2 derived byDBstate′ is different
from the set X2 accumulated in c2

1. We consider the following subcases:
(a) The identity id is not registered, but the last record for id in DBstate′ is of the

form (Register, id,pk, j,W1,1,W1,2): In the hybrid world, a corrupted client C may
send (Register, id, pk′, j′,W2,1,W2,2) to FTP . If FTP returns (fail, state), then C will
return fail. In the ideal world, S, simulating FTP , returns fail to Fns, which returns
fail to C. If FTP returns ((c′1,W

′
1,1), (c

′
2,W

′
2,1), state) and FUDB returns success to C

after receiving a (sid,Post, ·)message, C outputs success. Respectively, in the ideal
world, S, simulating FTP and FUDB, returns allow to Fns, which first checks that id
is not registered, adds the pair (id, pk′) and sends success to C. In both cases, C
returns consistent outputs in the hybrid and ideal world.

(b) The identity id is not registered and the last record for id in DBstate′ is of the
form (Revoke, id,pk, j), or there is no record for id: The reasoning is similar to
that of the previous case (Reg2(a)).

(c) The identity id is registered, but the last record for id in DBstate′ is of the form
(Revoke, id,pk, j), or there is no record for id: In the hybrid world, an honest client
C sends (sid,RetrieveDB) to FUDB. Upon receiving DBstate′ from FUDB, she runs
Steps 3a, 3b of protocol πRSA (Figure 5.3) and computes W2,1, a non membership
witness for (id, j+1, a) in c2 andW2,2, a membership witness for (id, j, d) in c2, or sets
W2,2 = ⊥ for the case where there is no record for id in DBstate′. Then, C sends
(sid,Register, id, pk, j + 1,W2,1,W2,2) to FTP . We stress that, using the same argu-
ments as in Reg1(b), if an honest client C, given an accumulated set X ′

2 ̸= X2, could
produce a valid non membership witness W2,1 for (id, j +1, a) in c2 and a valid mem-
bership witness W2,2 for (id, j, d) in c2 with non negligible probability, by invoking the
witness generation algorithms, then, the security of accumulator c2 would be violated.
Therefore, FTP returns (fail, state) to C and C returns fail in the hybrid world. C also

1As we explained in Section 5.2, X ′
2 is derived from DBstate′ as follows: For any record of the form

(Register, id, pk, i,W1,1,W1,2) , (id, i, a) is added to X2, and, for any record of the form (Revoke, id, pk, i),
(id, i, d) is added to X2.

C. Patsonakis 110

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

returns fail in the ideal world, since S simulates FTP and C and returns fail to Fns.
A corrupted client C, in the hybrid world may send (Register, id, pk∗, ℓ,W ∗

2,1,W
∗
2,2) to

convince FTP that id is not registered. Following the same analysis as in subcase
Reg1(b), it is evident that C returns the same output both in the hybrid and the ideal
world.

(d) The identity id is registered, but the last record for id in DBstate′ is of the form
(Register, id,pk, i+ 1,W1,1,W1,2): The reasoning is similar to that of the previous
case (Reg2(c)).

Reg3: A has sent (sid,ChangeDBstate, DBstate′) to FUDB before (sid,Register, id, pk)
is sent by Z, such that DBstate′ ̸= DBstate, but the set X ′

2 derived by DBstate′ is the
same as X2 that is accumulated in c2. In this case, a similar reasoning with Reg1 can be
followed, because the accumulated set remains the same and, thus, an honest client is
able to compute correctly the witnesses W2,1,W2,2.

Z sends a message (sid,Revoke, id,pk,aux) to a client C: In all the cases below, we
assume that R(pk, aux) = 1, otherwise, it can be easily observed that a client C returns
fail both in the hybrid and ideal world.

Rev1: A has not sent (sid,ChangeDBstate, DBstate′) to FUDB before Z sends a mes-
sage (sid,Revoke, id, pk, aux) to C. We consider two different subcases:
(a) (id,pk) is registered: In the hybrid world, an honest clientC sends (sid,RetrieveDB)

to FUDB and FUDB responds with DBstate. C computes the witnessesW1,1,W1,2, by
following the procedure described in Steps 4a, 4b, of protocol πRSA (Figure 5.3). Re-
call thatW1,1 is a membership witness for (id, pk, i, a) in c1 andW1,2 is a non member-
ship witness for (id, pk, i, d) in c1. Then,C sends (sid,Revoke, id, pk, i,W1,1,W1,2,aux)
to FTP and, since R(pk, aux) = 1, FTP returns ((c1,W ′

1,1), (c2,W
′
2,1), state) to C. Then,

C sends (sid,Post, (Revoke, id, pk, i)) toFUDB andFUDB returns success toC. In the
ideal world, S, upon receiving (sid,Revoke, id, pk, aux), simulates C,FTP and FUDB,
as described in Step 4 of Figure B.1, and sends allow to Fns. Then, Fns checks that
R(pk, aux) = 1, (id, pk) ∈ X, deletes the pair (id, pk) and sends success to C. Thus,
an honest client C returns success both in the hybrid and ideal world.

(b) (id,pk) is not registered: In the hybrid world, a corrupted client C may try to con-
vince FTP that (id, pk) is currently registered. Therefore, C must find some i and
compute a membership witness W1,1 for (id, pk, i, a) in c1 and a non membership
witness W1,2 for (id, pk, i, d) in c1.
Consider the case where (id, pk) has been registered before, and more precisely, as-
sume that (id, pk) has been registered ℓ times in the past. If C chooses i ∈ {1, . . . , ℓ},
this means that (id, pk, i, a) ∈ X1 and (id, pk, i, d) ∈ X1, since (id, pk) is not currently
registered. AlthoughC can compute amembership witnessW1,1 for (id, pk, i, a) ∈ X1,
due to the security of accumulator c1, C cannot compute a non membership wit-
ness W1,2 for (id, pk, i, d) ∈ X1, except with negligible probability. Therefore, FTP ,
upon receiving (Revoke, id, pk, i,W1,1,W1,2), will return fail, since program PRSA (Fig-
ure 5.2) will fail at Step 3c. If C chooses i > ℓ, it holds that (id, pk, i, a) /∈ X1

and (id, pk, i, d) /∈ X2. C is able to compute a non membership witness W1,2 for
(id, pk, i, d) /∈ X2, however, since (id, pk, i, a) /∈ X1, C cannot compute a member-

111 C. Patsonakis

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

ship witness W1,1 for (id, pk, i, a) in c1, due to the security of accumulator c1. As a
result, FTP , on input (Revoke, id, pk, i,W1,1,W1,2), will also return fail in this case.
Similarly, for the case where (id, pk) has never been registered before, via similar
reasoning, FTP will again return fail, due to the security of accumulator c1.
In the ideal world, in all the aforementioned cases, S, simulates FTP ,FUDB and since
FTP returns (fail, state), S sends fail to Fns. In turn, Fns sends fail to C.

Rev2: A has sent (sid,ChangeDBstate, DBstate′) to FUDB before a message of the form
(sid,Revoke, id, pk, aux) is sent by Z, such that DBstate′ ̸= DBstate and at least one
of the accumulated sets X ′

i (i ∈ {1, 2}) derived by DBstate′ is different from the corre-
sponding one derived by DBstate: Considering how X ′

1, X
′
2 are computed from DBstate′

(Section 5.2), there are two possible scenarios: (1)X ′
2 ̸= X2 andX ′

1 ̸= X1 and, (2)X ′
2 = X2

and X ′
1 ̸= X1. For both scenarios, we have the following subcases:

(a) (id,pk) is registered: In the hybrid world, an honest clientC sends (sid,RetrieveDB)
to FUDB and then C computes the witnesses W1,1,W1,2 according to Steps 4a, 4b of
Figure 5.3. C sends (Revoke, id, pk, j,W1,1,W1,2) to FTP . If FTP returns fail, then
C returns fail, otherwise, C sends to FUDB (sid,Post, (Revoke, id, pk, j)) and returns
success in the hybrid world. In the ideal world, S, simulates C,FTP and FUDB and if
FTP returns fail, then S returns fail to Fns and Fns returns fail to C. Even in the case
where FTP returns success, it means that S, simulating FTP , will return allow to Fns.
Since (id, pk) is registered, Fns will delete the pair (id, pk) and return success to C.
Therefore, C returns consistent outputs both in the hybrid and ideal world.

(b) (id,pk) is not registered: In the hybrid world, an honest client C will initially send
(sid,RetrieveDB) to FUDB. FUDB returns DBstate′ to C, who then checks whether
there is a record of the form (Register(id, pk, j,W1,1,W1,2)) record in DBstate′. If not,
C returns fail. In the ideal world, S simulates C and FTP and returns fail to Fns.
Thus, C returns fail in the ideal world as well. If C ’s registration record exists in
DBstate′, C, following Steps 4a, 4b of Figure 5.3, computes the witnessesW1,1,W1,2

and sends (Revoke, id, pk, j,W1,1,W1,2,aux) to FTP . By the security of accumulator
c1, FTP returns (fail, state). If an honest client C, given DBstate′, could convince
FTP that (id, pk) is currently registered, then, following similar arguments as in case
Rev1(b), the accumulator’s security would be violated. Therefore, C returns fail in
the hybrid world. In the ideal world, since S simulates C and FTP sends fail to Fns,
which returns fail to C. Consequently, C also returns fail in the ideal world. A cor-
rupted clientC may try to convinceFTP that (id, pk) is currently registered, by sending
(Revoke, id, pk, j∗,W ∗

1,1,W
∗
1,2,aux) to FTP . As in Rev1(b), FTP will return (fail, state).

Therefore, C returns fail both in the hybrid and ideal world.
Rev3: A has sent (sid,ChangeDBstate, DBstate′) before (sid,Revoke, id, pk, aux) is sent
byZ, such thatDBstate′ ̸= DBstate but the setsX ′

1, X
′
2 derived byDBstate′ are the same

as X1, X2: In this case, a similar analysis with Rev1 can be followed, since the witnesses
W1,1,W1,2 can be computed correctly.

Z sends (sid,Retrieve, id) to a client C: Proving that a client C in this case returns con-
sistent outputs in the hybrid and ideal world is simpler than previous cases where a
Register or a Revoke message is sent to C. This is because the only interaction be-
tween C and FTP in protocol πRSA involves C sending a message (sid,RetrieveState) to

C. Patsonakis 112

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

FTP , which replies by sending the values of the two accumulators.

Consider the case whereA has not altered the contents of FUDB and C behaves honestly.
In the hybrid world, C will output some pk, if a pair (id, pk) is registered, and fail otherwise.
In the ideal world, S, simulating C, FTP and FUDB, as in Step 5 of Figure B.1, will return
allow to Fns in the case where a pair (id, pk) is currently registered, and fail otherwise.
Therefore, Fns will return pk in the former case and fail in the latter case, exactly as in the
hybrid world.

In the case where A, by sending (sid,ChangeDBstate, DBstate′) to FUDB, has altered
the contents of FUDB, an honest client C behaves as follows. First, in any scenario where
the last record of DBstate is a Revoke record, C will fail at Step 5a of protocol πRSA and
will return fail. In the ideal world, S, simulating C, FTP and FUDB, will return fail to Fns,
and, thus, C will return fail. Second, if the last record of DBstate is a register record
and id is not currently registered, then at least one of the verification algorithms in Step 5b
(Figure 5.3) will fail, based on the witnesses computed by C in Step 5a, due to the security
of accumulator c1. Therefore, C will return fail in the hybrid world and it is evident that C
will also return fail in the ideal world.

The analysis for the case where C is a corrupted client is similar to the case where C is
honest, as C can still send (sid,Retrievestate) to FTP , but has no advantage in influencing
the output of FTP .

Regarding the cases where (sid,VerifyID, id) or (sid,VerifyMapping, id, pk) is sent by the
environment Z to a client C, it can be easily observed, by the description of Steps 6 and 7
of protocol πRSA, that the analysis is similar to the case where Z sends (sid,Retrieve, id).
This completes our proof.

113 C. Patsonakis

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

C. Patsonakis 114

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

REFERENCES

[1] Amazon elastic file system. https://aws.amazon.com/efs/.

[2] Ascap, prs and sacem join forces for blockchain copyright system. https://www.
musicbusinessworldwide.com/ascap-prs-sacem-join-forces-blockchain-copyright-system/.
Accessed: 2017-07-06.

[3] Consensys: Ethereum multisigwallet. https://github.com/ConsenSys/MultiSigWallet.

[4] Cryptokitties. https://www.cryptokitties.co/.

[5] Eip 103: Blockchain rent. https://tinyurl.com/yc3uc4ak.

[6] Eip 1418 blockchain rent: fixed cost per word-block. https://github.com/ethereum/EIPs/issues/
1418.

[7] Eip20 - erc20 token standard. https://tinyurl.com/ycd8mzb3.

[8] Emercoin - distributed blockchain services for business and personal use. http://www.emercoin.com.

[9] Erc20 token market capitalization. https://etherscan.io/tokens.

[10] Erc721 - a class of unique tokens. http://erc721.org/.

[11] Eth gas station. https://ethgasstation.info/.

[12] Ether - ethereum homestead 0.1 documentation. https://tinyurl.com/ybcerf39.

[13] Ethereum - merkle patricia tree. https://tinyurl.com/zl2z4m8.

[14] Ethereum average gas limit chart. https://tinyurl.com/yaokfvl2.

[15] Ethereum name service. https://ens.domains/.

[16] Ethereum price chart us dollar (eth/usd). https://tinyurl.com/jxsjqqd.

[17] Ethereum wiki - erc20 token standard. https://tinyurl.com/yd9fnw9q.

[18] Evm opcodes and instruction reference. https://tinyurl.com/ya7o3t6c.

[19] Github repository of all our implementations. https://github.com/razaden.

[20] Go ethereum. https://tinyurl.com/jkw5ow9.

[21] Google: Leveldb. https://github.com/google/leveldb.

[22] Ibm pushes blockchain into the supply chain. https://www.wsj.com/articles/ibm-pushes-
blockchain-into-the-supply-chain-1468528824. Accessed: 2017-07-06.

[23] Ipfs is the distributed web. https://ipfs.io/.

[24] Namecoin. https://namecoin.org/.

[25] Nist: Digital signature standard (dss). https://tinyurl.com/ybjakloz.

[26] Nist: Recommendation for key management. https://tinyurl.com/ybcmxqlv.

[27] solc-js. https://github.com/ethereum/solc-js.

[28] Solidity. https://solidity.readthedocs.io/en/v0.5.3/.

[29] Storj - decentralized cloud object storage that is affordable, easy to use, private, and secure. https:
//storj.io/.

115 C. Patsonakis

https://aws.amazon.com/efs/
https://www.musicbusinessworldwide.com/ascap-prs-sacem-join-forces-blockchain-copyright-system/
https://www.musicbusinessworldwide.com/ascap-prs-sacem-join-forces-blockchain-copyright-system/
https://github.com/ConsenSys/MultiSigWallet
https://www.cryptokitties.co/
https://tinyurl.com/yc3uc4ak
https://github.com/ethereum/EIPs/issues/1418
https://github.com/ethereum/EIPs/issues/1418
https://tinyurl.com/ycd8mzb3
http://www.emercoin.com
https://etherscan.io/tokens
http://erc721.org/
https://ethgasstation.info/
https://tinyurl.com/ybcerf39
https://tinyurl.com/zl2z4m8
https://tinyurl.com/yaokfvl2
https://ens.domains/
https://tinyurl.com/jxsjqqd
https://tinyurl.com/yd9fnw9q
https://tinyurl.com/ya7o3t6c
https://github.com/razaden
https://tinyurl.com/jkw5ow9
https://github.com/google/leveldb
https://www.wsj.com/articles/ibm-pushes-blockchain-into-the-supply-chain-1468528824
https://www.wsj.com/articles/ibm-pushes-blockchain-into-the-supply-chain-1468528824
https://ipfs.io/
https://namecoin.org/
https://tinyurl.com/ybjakloz
https://tinyurl.com/ybcmxqlv
https://github.com/ethereum/solc-js
https://storj.io/
https://storj.io/

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

[30] Swarm. https://tinyurl.com/y7fz8q3u.

[31] Swiss industry consortium to use ethereum’s blockchain. https://www.ccn.com/swiss-industry-
consortium-use-ethereums-blockchain/. Accessed: 2017-07-06.

[32] Truffle suite. https://truffleframework.com/.

[33] Zerocoin: Solidity big number library. https://tinyurl.com/yaa34saq.

[34] Ethereum?s vitalik buterin wants to create annual ?rent? fees. https://tinyurl.com/yal56med, July
2018.

[35] A simple and principled way to compute rent fees. https://tinyurl.com/y9vv6w59, March 2018.

[36] Vitalik wants you to pay to slow ethereum’s growth. https://tinyurl.com/y9gj8zvz, March 2018.

[37] K. Aberer. P-grid: A self-organizing access structure for p2p information systems. In Proceedings of
the 9th International Conference on Cooperative Information Systems. Springer-Verlag, 2001.

[38] Mustafa Al-Bassam. Scpki: A smart contract-based pki and identity system. In Proceedings of the
ACM Workshop on Blockchain, Cryptocurrencies and Contracts, 2017.

[39] Pawel Bylica Alex Beregszaszi. Eip 145. https://tinyurl.com/yc4khbj8.

[40] M. Ali, J. Nelson, R. Shea, and M.J. Freedman. Blockstack: A global naming and storage system
secured by blockchains. In USENIX Annual Technical Conferencei (ATC), 2016.

[41] androlo. Solidity contracts. https://tinyurl.com/ya9s68dh.

[42] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis, A. De Caro, D. Enyeart, C. Ferris,
G. Laventman, Y. Manevich, S. Muralidharan, C. Murthy, B. Nguyen, M. Sethi, G. Singh, K. Smith,
A. Sorniotti, C. Stathakopoulou, M. Vukolić, S. Weed Cocco, and J. Yellick. Hyperledger fabric: A
distributed operating system for permissioned blockchains. In Proceedings of the 13th EuroSys Con-
ference. ACM, 2018.

[43] A. Avramidis, P. Kotzanikolaou, C. Douligeris, and M. Burmester. Chord-pki: A distributed trust infras-
tructure based on p2p networks. Computer Networks, 56, January 2012.

[44] Christian Badertscher, Peter Gaži, Aggelos Kiayias, Alexander Russell, and Vassilis Zikas. Ouroboros
genesis: Composable proof-of-stake blockchains with dynamic availability. In Proceedings of the ACM
SIGSAC Conference on Computer and Communications Security (CCS), 2018.

[45] Christian Badertscher, Ueli Maurer, Daniel Tschudi, and Vassilis Zikas. Bitcoin as a transaction ledger:
A composable treatment. In Proceedings of the 37th Annual International Conference on the Advances
in Cryptology (CRYPTO), 2017.

[46] Foteini Baldimtsi, Jan Camenisch, Maria Dubovitskaya, Anna Lysyanskaya, Leonid Reyzin, Kai
Samelin, and Sophia Yakoubov. Accumulators with applications to anonymity-preserving revocation.
In IEEE European Symposium on Security and Privacy (EuroS&P), 2017.

[47] Niko Bari and Birgit Pfitzmann. Collision-free accumulators and fail-stop signature schemes without
trees. In EUROCRYPT, 1997.

[48] Jordi Baylina. Eip 1109. https://tinyurl.com/yckxjogx.

[49] Josh Cohen Benaloh and Michael de Mare. One-way accumulators: A decentralized alternative to
digital sinatures (extended abstract). In Proceedings of Advances in Cryptology - Workshop on the
Theory and Application of Cryptographic Techniques (EUROCRYPT), 1993.

[50] Joseph Bonneau. Eth iks: Using ethereum to audit a coniks key transparency log. In Financial Cryp-
tography and Data Security - International Workshops, FC 2016, BITCOIN, VOTING, and WAHC, 2016.

[51] Vitalik Buterin. Eip 198. https://tinyurl.com/y9mhw6jz.

[52] Vitalik Buterin. Transaction fee economics. https://tinyurl.com/y8ckvboh.

C. Patsonakis 116

https://tinyurl.com/y7fz8q3u
https://www.ccn.com/swiss-industry-consortium-use-ethereums-blockchain/
https://www.ccn.com/swiss-industry-consortium-use-ethereums-blockchain/
https://truffleframework.com/
https://tinyurl.com/yaa34saq
https://tinyurl.com/yal56med
https://tinyurl.com/y9vv6w59
https://tinyurl.com/y9gj8zvz
https://tinyurl.com/yc4khbj8
https://tinyurl.com/ya9s68dh
https://tinyurl.com/yckxjogx
https://tinyurl.com/y9mhw6jz
https://tinyurl.com/y8ckvboh

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

[53] Philippe C., Alejandro H., Marcos A. K., and Roberto O. Strong accumulators from collision-resistant
hashing. In 11th International Conference on Information Security. Springer Berlin Heidelberg, 2008.

[54] Jan Camenisch and Anna Lysyanskaya. Dynamic accumulators and application to efficient revocation
of anonymous credentials. In Proceedings of the 22ond Annual Internation Conference on Advances in
Cryptology (CRYPTO), 2002.

[55] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In IEEE
Symposium on Foundations of Computer Science. IEEE Computer Society, 2001.

[56] Larry Carter and Mark N. Wegman. Universal classes of hash functions. Journal of Computer and
System Sciences, 1979.

[57] Suranjan Choudhury, Kartik Bhatnagar, and Wasim Haque. Public Key Infrastructure Implementation
and Design. John Wiley & Sons, Inc., 1st edition, 2002.

[58] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk. Internet x.509 public key
infrastructure certificate and certificate revocation list (crl) profile. RFC 5280, RFC Editor, May 2008.

[59] A. Datta, M. Hauswirth, and K. Aberer. Beyond ”web of trust”: Enabling p2p e-commerce. In IEEE
International Conference on E-Commerce, June 2003.

[60] John R. Douceur. The sybil attack. Revised Papers from the 1st International Workshop on Peer-to-
Peer Systems (IPTPS), 2001.

[61] C. Ellison and B. Schneier. Ten risks of pki: What you’re not being told about public key infrastructure.
Computer Security Journal, 16, December 2000.

[62] E. Feinler, K. Harrenstien, Z. Su, and V. White. Dod internet host table specification. RFC 810, RFC
Editor, March 1982.

[63] D. Fisher. Final report on diginotar hack shows total compromise of ca servers. https://threatpost.
com/final-report-diginotar-hack-shows-total-compromise-ca-servers-103112/77170/. [On-
line; posted 31-October-2012].

[64] Conner Fromknecht, Dragos Velicanu, and Sophia Yakoubov. A decentralized public key infrastructure
with identity retention. IACR Cryptology ePrint Archive, 2014.

[65] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol: Analysis and
applications. In EUROCRYPT, 2015.

[66] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol with chains
of variable difficulty. In Proceedings of the 37th Annual International Conference on the Advances in
Cryptology (CRYPTO), 2017.

[67] Nishant Garg. Apache Kafka. Packt Publishing, 2013.

[68] Rosario Gennaro, Shai Halevi, and Tal Rabin. Secure hash-and-sign signatures without the random
oracle. In EUROCRYPT, 1999.

[69] Bela Gipp, Norman Meuschke, and André Gernandt. Decentralized trusted timestamping using the
crypto currency bitcoin. iConference, 2015.

[70] GnuPG. Libgcrypt. https://tinyurl.com/yaa8m7ao.

[71] D. Goodin. Google takes symantec to the woodshed for mis-issuing 30,000 https certs.
https://arstechnica.com/information-technology/2017/03/google-takes-symantec-to-the-
woodshed-for-mis-issuing-30000-https-certs/. [Online; posted 24-March-2017].

[72] P. Gutmann. Pki: it’s not dead, just resting. Computer, 35, August 2002.

[73] R. Housley, W. Ford, W. Polk, and D. Solo. Internet x.509 public key infrastructure certificate and crl
profile. RFC 2459, RFC Editor, January 1999.

117 C. Patsonakis

https://threatpost.com/final-report-diginotar-hack-shows-total-compromise-ca-servers-103112/77170/
https://threatpost.com/final-report-diginotar-hack-shows-total-compromise-ca-servers-103112/77170/
https://tinyurl.com/yaa8m7ao
https://arstechnica.com/information-technology/2017/03/google-takes-symantec-to-the-woodshed-for-mis-issuing-30000-https-certs/
https://arstechnica.com/information-technology/2017/03/google-takes-symantec-to-the-woodshed-for-mis-issuing-30000-https-certs/

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

[74] Ed. J. Sermersheim. Lightweight directory access protocol (ldap): The protocol. RFC 4511, RFC
Editor, June 2006.

[75] Mahabir Prasad Jhanwar and Reihaneh Safavi-Naini. Compact accumulator using lattices. In Proceed-
ings of the 5th International Conference on Security, Privacy, and Applied Cryptography Engineering
(SPACE), 2015.

[76] M. Karakaya, I. Korpeoglu, and O. Ulusoy. Free riding in peer-to-peer networks. IEEE Internet Com-
puting, 13, March 2009.

[77] L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem. ACM Trans. Program. Lang.
Syst., 1982.

[78] F. Lesueur, L. Me, and V. V. T. Tong. An efficient distributed pki for structured p2p networks. In IEEE
P2PC, 2009.

[79] Jiangtao Li, Ninghui Li, and Rui Xue. Universal accumulators with efficient nonmembership proofs. In
Proceedings of the 5th International Conference on Applied Cryptography andNetwork Security (ACNS),
2007.

[80] Google LLC. https://www.chromium.org/Home/chromium-security/root-ca-policy. [Online;
posted 04-May-2016].

[81] Atefeh Mashatan and Serge Vaudenay. A fully dynamic universal accumulator. Proceedings of the
Romanian Academy, 2013.

[82] M. Masnick. Trustwave admits it issued a certificate to allow company to run man-in-the-
middle attacks. https://www.techdirt.com/articles/20120208/03043317695/trustwave-admits-
it-issued-certificate-to-allow-company-to-run-man-in-the-middle-attacks.shtml. [Online;
posted 08-February-2012].

[83] Marcela S. Melara, Aaron Blankstein, Joseph Bonneau, Edward W. Felten, and Michael J. Freedman.
CONIKS: Bringing key transparency to end users. In 24th USENIX Security Symposium (USENIX Se-
curity), 2015.

[84] P. V. Mockapetris. Domain names - concepts and facilities. RFC 882, RFC Editor, November 1983.

[85] P. V. Mockapetris. Domain names: Implementation specification. RFC 883, RFC Editor, November
1983.

[86] P. V. Mockapetris. Domain names: Implementation and specification. RFC 1035, RFC Editor, Novem-
ber 1987.

[87] Ruggero Morselli, Bobby Bhattacharjee, Jonathan Katz, and Michael A Marsh. Keychains: A decen-
tralized public-key infrastructure. Technical Reports from UMIACS, 2006.

[88] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. http://bitcoin.org/bitcoin.pdf.
[Online; posted 31-October-2008].

[89] Lan Nguyen. Accumulators from bilinear pairings and applications. In Proceedings of the Conference
on Topics in Cryptology - The Cryptographers’ Track at the RSA Conference (CT-RSA), 2005.

[90] Kaisa Nyberg. Fast accumulated hashing. In Proceedings of the 3rd International Workshop on Fast
Software Encryption (FSE), 1996.

[91] C. Patsonakis and M. Roussopoulos. An alternative paradigm for developing and pricing storage on
smart contract platforms. In IEEE International Conference on Decentralized Applications and Infras-
tructures. IEEE, 2019.

[92] C. Patsonakis, K. Samari, M. Roussopoulos, and A. Kiayias. Towards a smart contract-based, decen-
tralized, public-key infrastructure. In 16th International Conference on Cryptology and Network Security.
Springer International Publishing, 2018.

C. Patsonakis 118

https://www.chromium.org/Home/chromium-security/root-ca-policy
https://www.techdirt.com/articles/20120208/03043317695/trustwave-admits-it-issued-certificate-to-allow-company-to-run-man-in-the-middle-attacks.shtml
https://www.techdirt.com/articles/20120208/03043317695/trustwave-admits-it-issued-certificate-to-allow-company-to-run-man-in-the-middle-attacks.shtml
http://bitcoin.org/bitcoin.pdf

Provably Secure, Smart Contract-based Naming Services: Design, Implementation and Evaluation

[93] C. Patsonakis, K. Samari, M. Roussopoulos, and A. Kiayias. On the practicality of a smart contract
pki. In IEEE International Conference on Decentralized Applications and Infrastructures. IEEE, 2019.

[94] Pandian Raju, Rohan Kadekodi, Vijay Chidambaram, and Ittai Abraham. Pebblesdb: Building key-
value stores using fragmented log-structured merge trees. In Proceedings of the 26th Symposium on
Operating Systems Principles (SOSP), 2017.

[95] Pandian Raju, Soujanya Ponnapalli, Evan Kaminsky, Gilad Oved, Zachary Keener, Vijay Chi-
dambaram, and Ittai Abraham. mlsm: Making authenticated storage faster in ethereum. In 10th USENIX
Workshop on Hot Topics in Storage and File Systems, HotStorage, 2018.

[96] Michael K. Reiter, Matthew K. Franklin, John B. Lacy, and Rebecca N. Wright. The omega key man-
agement service. In ACM Conference on Computer and Communications Security (CCS), 1996.

[97] Barkley Rosser. Explicit bounds for some functions of prime numbers. American Journal of Mathe-
matics, 1941.

[98] J. Salowey and S. Turner. Iana registry updates for tls and dtls. RFC 8447, RFC Editor, August 2018.

[99] A. Slagell, R. Bonilla, and W. Yurcik. A survey of pki components and scalability issues. In IEEE
International Performance Computing and Communications Conference, April 2006.

[100] J. Sousa, A. Bessani, and M. Vukolic. A byzantine fault-tolerant ordering service for the hyperledger
fabric blockchain platform. In Proceeding of the 48th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), 2018.

[101] N. Szabo. Formalizing and securing relationships on public networks. First Monday, 2, 1997.

[102] Tomas Sanderand Amnon Ta-Shma and Moti Yung. Blind, auditable membership proofs. In Proceed-
ings of the 4th International Conference on Financial Cryptography (FC), 2000.

[103] A. Tomescu and S. Devadas. Catena: Efficient non-equivocation via bitcoin. In IEEE Symposium on
Security and Privacy (SP), 2017.

[104] S. Turner. The application/pkcs10 media type. RFC 5967, RFC Editor, August 2010.

[105] V. Buterin. A simple and principled way to compute rent fees. https://tinyurl.com/y9vv6w59.

[106] G. Wood. Ethereum: A secure decentralised generalised transaction ledger. https://github.com/
ethereum/yellowpaper. [Online; posted April-2014].

[107] Gavin Wood. Ethereum yellow paper. https://tinyurl.com/yaptyawg.

[108] Rita H. Wouhaybi and Andrew T. Campbell. Keypeer: A scalable, resilient distributed public-key
system using chord, 2008.

[109] Xingbo Wu, Yuehai Xu, Zili Shao, and Song Jiang. Lsm-trie: An lsm-tree-based ultra-large key-value
store for small data items. In USENIX Annual Technical Conference (USENIX ATC), 2015.

[110] W. Kim Y. Dong and R. Boutaba. Conifer: centrally-managed pki with blockchain-rooted trust. In IEEE
International Conference on Blockchain (Blockchain), 2018.

[111] A. Yakubov, W. M. Shbair, A. Wallbom, D. Sanda, and R. State. A blockchain-based pki management
framework. In IEEE/IFIP Network Operations and Management Symposium (NOMS), 2018.

[112] E. Yüce and A. A. Selçuk. Server notaries: a complementary approach to the web pki trust model.
IET Information Security, 12, September 2018.

[113] Lidong Zhou, Fred B. Schneider, and Robbert Van Renesse. Coca: A secure distributed online certi-
fication authority. ACM Transactions on Computer Systems (TOCS), 2002.

[114] P. R. Zimmermann. The Official PGP User’s Guide. MIT Press, 1995.

119 C. Patsonakis

https://tinyurl.com/y9vv6w59
https://github.com/ethereum/yellowpaper
https://github.com/ethereum/yellowpaper
https://tinyurl.com/yaptyawg

	Εισαγωγή στη Διατριβή
	Υπόβαθρο
	Σχετική Βιβλιογραφία
	Υπηρεσία Ονοματοδοσίας: Δομικοί Λίθοι και Ορισμός
	Κατασκευή PKI βασισμένη στο RSA
	Κατασκευή PKI βασισμένη σε Δέντρα Κατακερματισμού
	Αξιολόγηση
	Εναλλακτική Μεθοδολογία για την Ανάπτυξη Εφαρμογών και την Τιμολόγηση Αποθήκευσης σε Πλατφόρμες Έξυπνων Συμβολαίων
	Συμπεράσματα και Μελλοντικά Βήματα
	CONTENTS
	INTRODUCTION
	BACKGROUND
	Outline
	Public key Cryptosystems
	Digital Certificate
	Registration and Certification Authorities
	Web of Trust

	Public Key Infrastructure
	Blockchain
	Ethereum
	Cryptographic Accumulators

	RELATED WORK
	Categorization
	RSM-based PKIs
	Overlay-based PKIs
	Blockchain-based Naming Services

	Naming Service: Building Blocks and Definition
	Preliminaries
	Public State, Additive, Universal Accumulator
	Naming Service Definition

	RSA-based PKI Construction
	RSA-based, Public State, Additive, Universal Accumulator
	Mapping arbitrary strings to primes.
	Map: A modified version of the algorithm of Gennaro et al. GennaroHR99.
	Security of the accumulator of Figure 5.1.
	Constructing a universal accumulator from an additive, universal accumulator (BaldimtsiCDLRSY17).

	RSA-based PKI
	Construction
	Using only one accumulator

	Hash tree-based PKI Construction
	Hash tree-based Universal Accumulator
	Hash tree-based PKI
	Construction
	Using only one accumulator

	Evaluation
	Experimental Setup and Preliminary Results
	RSA-based PKI Evaluation
	Hash tree-based PKI Evaluation
	Linear State PKI Evaluation

	An Alternative Paradigm for Developing Applications and Pricing Storage on Smart Contract Platforms
	Rationale
	Accumulator-based ERC20 Token
	Construction
	Evaluation

	Revisiting Ethereum's Storage Cost Model
	Adaptive Pricing of Storage Operations
	Adaptive Pricing of Storage: Accumulator-based vs Bare Bones ERC20 Token
	Adaptive Pricing of Storage: Hash Tree-Based vs Linear State PKI

	Conclusions and Future Work
	ABBREVIATIONS - ACRONYMS
	APPENDICES
	Proof of Lemma 5.1.1
	PROOF OF THEOREM 5.2.1
	REFERENCES

