

NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATION

BSc THESIS

Recommender Systems Implementations with Deep
Learning

Panayiotis C. Lolos

Supervisor: Panagiotis Stamatopoulos, Assistant Professor

ATHENS

MAY 2020

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Υλοποιήσεις Συστημάτων Συστάσεων μέσω Βαθιάς
Μάθησης

Παναγιώτης Χ. Λώλος

Επιβλέπων: Παναγιώτης Σταματόπουλος, Επίκουρος Καθηγητής

ΑΘΗΝΑ

ΜΑΪΟΣ 2020

BSc THESIS

Recommender Systems Implementations with Deep Learning

Panayiotis C. Lolos

S.N.: 1115201300088

SUPERVISOR: Panagiotis Stamatopoulos, Assistant Professor

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Υλοποιήσεις Συστημάτων Συστάσεων μέσω Βαθιάς Μάθησης

Παναγιώτης Χ. Λώλος

Α.Μ.: 1115201300088

ΕΠΙΒΛΕΠΟΝΤΕΣ: Παναγιώτης Σταματόπουλος, Επίκουρος Καθηγητής

ABSTRACT

The rise of the Internet as well as the increasingly uncontrollable flow of information in
the web come with multiple advantages for today´s users, yet at the same time giving
birth to an unexpected issue: the paradox of choice. To counter this problem,
recommender systems have been implemented in almost everything that is part of the
Internet. Large-scale data mining algorithms provide users with as many targeted
choices as possible, in an effort to personalize and facilitate user experience. However,
the effectiveness of such systems truly shines when combined with the still young
technology of deep learning algorithms. The purpose of this work is to analyze the
advantages of each system separately, in order to prove the necessity of combining
them. For that reason, a review of a multitude of deep learning algorithms will be
provided. Furthermore, by using a simulated example, one such indicative
implementation will be created and tested to support the theory behind it. Due to lack of
an actual demographic and adequate equipment, the focus of this paper will be in the
procedural approach of each method, while still offering theoretical feedback and trying
to predict its outcome. In the final section of this study, a few optimization problems will
be addressed, as well as some possible unproven solutions.

SUBJECT AREA: Artificial Intelligence

KEYWORDS: Deep learning – Machine learning – Recommender systems – Artificial

Intelligence – Optimization

ΠΕΡΙΛΗΨΗ

Η εξέλιξη του διαδικτύου και η ανεξέλεγκτη αύξηση ροής της πληροφορίας εντός του
προσφέρουν πολλά πλεονεκτήματα στους σημερινούς χρήστες, γεννούν όμως
ταυτόχρονα ένα απροσδόκητο πρόβλημα: το παράδοξο της επιλογής. Ως απάντηση στο
εν λόγω πρόβλημα, έχουν υλοποιηθεί συστήματα προτάσεων σε σχεδόν οτιδήποτε
αποτελεί μέρος του διαδικτύου. Αυτοί οι αλγόριθμοι εξόρυξης μεγάλων δεδομένων
παρέχουν στους χρήστες όσο το δυνατόν περισσότερες στοχευμένες επιλογές, σε μια
προσπάθεια εξατομίκευσης και διευκόλυνσης της εμπειρίας του χρήστη. Ωστόσο, η
αποτελεσματικότητα τέτοιων συστημάτων εντείνεται όταν συνδυαστούν με την ακόμη
νεαρή τεχνολογία αλγορίθμων βαθιάς μάθησης. Ο σκοπός της παρούσας έρευνας είναι
να αναλυθούν τα θετικά στοιχεία κάθε συστήματος ξεχωριστά, ούτως ώστε να
αποδειχτεί η αναγκαιότητα του συνδυασμού τους. Επιπλέον, με χρήση
προσομοιωμένων παραδειγμάτων, θα δημιουργηθεί και θα δοκιμαστεί μία ενδεικτική
υλοποίηση για να υποστηρίξει την θεωρία. Λόγω ελλείψεων όσον αφορά πλήθος
πραγματικών χρηστών και υπάρχοντος εξοπλισμού, το έργο αυτό θα επικεντρωθεί στην
διαδικαστική προσέγγιση κάθε μεθόδου, προσφέροντας ταυτόχρονα ένα θεωρητικό
υπόβαθρο και προσπαθώντας να προβλέψει τα αποτελέσματα της. Στο τελευταίο τμήμα
της έρευνας θα θιχτούν ορισμένα προβλήματα βελτιστοποίησης και θα προταθούν
ορισμένες πιθανές μη αποδεδειγμένες λύσεις.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Τεχνητή Νοημοσύνη

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Βαθιά μάθηση – Μηχανική μάθηση – Συστήματα προτάσεων – Τεχνητή

νοημοσύνη - Βελτιστοποίηση

AKNOWLEDGMENTS

For this BSc Thesis, I would like to thank my supervisor, ass. Prof. Mr. P. Stamatopoulos

for his guidance and valuable contribution to its completion.

CONTENTS

1. INTRODUCTION .. 14

2. RECOMMENDER SYSTEMS ... 15

2.1 Analysis ... 15

2.2 Issues concerning Recommender Systems ... 16

2.2.1 Prediction Accuracy ... 16

2.2.2 Data Sparsity... 17

2.2.3 The cold-start problem ... 18

2.2.4 System scalability .. 19

2.3 Secondary Concerns about Recommender Systems .. 19

3. DEEP LEARNING .. 21

3.1 What is Deep Learning? .. 21

3.2 Benefits of Deep Learning ... 22

3.3 Challenges of Deep Learning .. 23

3.4 Deep Learning Frameworks .. 24

4. TRANSPOSING THE RECOMMENDATION PROBLEM INTO A DEEP LEARNING

PROBLEM ... 25

4.1 An example ...25

4.2 The MovieLens Dataset ..26

4.3 Enhancing the Dataset .. 27

5. IMPLEMENTATIONS ... 28

5.1 Traditional Content Based-Collaborative Filtering Hybrid (CB-CFH) ..28

5.2 Linear Deep Neural Network (LDNN) ..29

5.3 Convolutional Deep Neural Network (ConvDNN) ..………30

6. CONCLUSION AND FUTURE WORK ... 32

ABBREVIATIONS ... 33

REFERENCES .. 35

LIST OF TABLES

Table 1: Sample prediction matrix .. 17

Table 2: Movie x User matrix ... 25

Table 3: Movies and genres list ... 25

Table 4: Numerical results… .. 31

LIST OF FIGURES

Figure 1: Deep Neural Network schematic… .. 21

Figure 2: Convolutional Image Analysis… .. 31

Figure 3: Netflix Interface .. 33

Recommender Systems Implementations with Deep Learning

P.Lolos 14

1. INTRODUCTION

Today’s era, rightfully branded the Information Age, is more than ever defined by an
oversupply of information widely spread over the now prevalent Web. Of the amount of
information provided to users on a daily basis currently 90% has been created and
uploaded in the past 3 years. Combining that with the ever increasing population of
users (currently at 7.7 billion worldwide) [1], it becomes obvious that the flow of data is
out of control. Every day, users of various applications (social media, streaming
services, search engines etc) are bombarded with an infinite amount of choices to pick
from. This phenomenon has given rise to an unexpected problem concerning user
experience, according to which the more choices a user is offered the more negative
feelings he has [2]. This paradox of choice consists of the fact that, when offered with
too many options, a user’s satisfaction from choosing one may be outweighed by his
disappointment from sacrificing the rest, which in turn may lead to confusion before
making the choice [3], thus the need for big data algorithms that not only personalize
said options to fit a user’s needs but also limit them to an acceptable number. Such
algorithms are called recommender systems and their main goal is to adjust search

results, data recommendations, advertisements etc to each user separately according
to his own needs and tastes. Still, the effectiveness of such algorithms is falling behind
the rapidly growing internet industry. The purpose of this work is to propose the
implementation with the still young deep learning technology, by offering a multitude of

algorithms of different approaches and relative comparisons between them. In the
following sections, we will present the two main approaches for creating a recommender
system, as well as their combination, and provide a number of deep learning techniques
that can be implemented within such a system to increase its overall effectiveness.

Recommender Systems Implementations with Deep Learning

P.Lolos 15

2. RECOMMENDER SYSTEMS

As already stated, a recommender system is a big data algorithm, using live or saved
information in order to provide the user with specific results that would more likely suit
his tastes and needs. There are two main approaches when creating a recommender
system, each with its advantages and disadvantages, which will be presented below. To
make this analysis clearer to the reader, we will also examine Netflix’s recommendation
algorithm, which combines both implementations, while yet being a somewhat
ineffective system.

2.1 Analysis

A precise description of recommender systems would be that by [4], where they are
defined as “software tools and techniques providing suggestions for items to be of use
to a user”. In other words, recommender systems (from here on RS) optimize any
amount of data, ranking it from most important or useful to least important or useless
and offering it to the user as a list of items suited to his profile. The goal of said process
is as accurate predictions as possible in pairing a user’s needs with some data traits,
both of which require a fair amount of information to be considered resourceful.
There are a number of ways with which RSs procure the data required for
improvements, some of which include:

 Content-based (CB): A history of choices is saved for each user, creating
a profile and determining the traits that would make an item more
attractive or useful to him. Non-viewed items are filtered by simple
comparisons with viewed items (or a mean trait score of viewed content)
and given a rank accordingly. This is the most basic RS technique and
one of the two main approaches [5].

 Collaborative filtering (CF): This approach treats users as parts of
bigger groups that share common traits like location, language,
preferences, past choices etc. Each group is given an overall or mean
profile by using a content-based technique, then a user will be
recommended items that match his group’s tastes. This is the second
most popular approach in RS so far, as it offers immense versatility and
can be combined with most other approaches effectively [6].

 Demographic: This technique could be treated as a more specialized and
simplified collaborative filtering, with the main difference lying in the group
traits. Each group is strictly divided by specific traits, including countries,
language, religion etc and offered item lists that best match the group’s
mean score. The simplicity of said technique allows many websites to use
demographic RSs for targeted advertising [7].

 Community-based: Yet another type of collaborative filtering. This
approach groups users according to actual relations between them, rather
than common traits. A user is recommended items that would best match
his friends’ preferences or their mean score. These algorithms are best
suited for social media advertising [4].

 Knowledge-based: This approach concerns specified domain knowledge
about an item and is often used to provide the user with items whose
features would best suit his needs rather than his tastes. This is not as
much a prediction making technique as it is a problem solving one and
fairly static. Such systems are mostly case-based and tend to work better

Recommender Systems Implementations with Deep Learning

P.Lolos 16

than the other techniques during early deployment, but without some self-
learning components they can be easily be surpassed [8].

 Contextual Collaborative Filtering: Quite similar to classic collaborative
filtering, this method is focused on a user’s preferences outside the scope
of the recommended data, such as website visits, other services, social
media activity etc. The purpose of this wide approach is to predict a user’s
preferences at a specific time, rather than according to his overall history,
which results in a more adaptable and responsive system. This has
become increasingly effective with the use of internet cookies and is
mainly used for advertising. [9]

 Hybrid RS: Any combination of the above. A notable hybrid is the Netflix

recommendation algorithm, which uses both content-based and
collaborative filtering along with minor demographic implementations [9].

Each of the approaches presented comes with its own set of advantages and
drawbacks, most of which can be mitigated or completely solved with the
implementation of a self-learning algorithm within the RS [10]. As previously stated, RSs
rely heavily on the amount of available information both on the user and on the data
required, thus offering fairly poor results at their deployment, with the exception of
knowledge-based RSs. By implementing deep learning in an RS, a developer can
massively increase its effectiveness during the beginning of its deployment. Such RSs
are already being applied to a variety of domains, such as entertainment (movies,
music, games etc), e-commerce (consumer recommendations), services (travel
agencies, consultants, real estate, matchmaking services), or any kind of content from
e-mail filters to personalized newspapers [11].

2.2 Issues concerning Recommender Systems

The nature of recommending algorithms dictates several notable issues, all of which will
be briefly presented in the following sections. As prediction systems, these challenges
include:

1. Prediction Accuracy
2. Data sparsity
3. The cold-start problem
4. System scalability

There have been various solutions proposed for these issues, most of which revolve
around deep learning technology. [10]

2.2.1 Prediction Accuracy

Arguably the issue that is getting the most attention concerning RSs is about the
accuracy of their predictions. Recommender systems are, in essence, prediction
algorithms, therefore, being able to quantify the scale of their predictions is one of the
most essential tools current developers have in improving them. There are a few
metrics used to measure accuracy, each with its own focus and limitations [4].

The metric used in this work is the most discussed one, Root Mean Squared Error
(RMSE) [12]. This metric takes into account a test set T and its predicted results (ȓ)

along with its true results (r) concerning the set’s user-item pairings (u,i). The RMSE for
prediction accuracy is therefore calculated as shown:

Recommender Systems Implementations with Deep Learning

P.Lolos 17

Clearly, RMSE quantifies the ability of an RS to actively pair a user´s needs or
preferences with specific item features. It should be noted that RMSE is focused on the
accuracy of individual predictions over the mean accuracy of all predictions, meaning
that an algorithm that hits all predictions within the error margin will be evaluated higher
than an algorithm with one or two predictions way over the error margin, even if the last
one had more accurate predictions overall. To be precise, when evaluating an RS using
only accuracy as criteria, one can choose one of two options for improvements:

 By focusing on individual highest accuracy.

 By eliminating low accuracy below a certain threshold.

For the purposes of this work, the latter was chosen, however, the first one could be
simply implemented by using the Mean Absolute Error (MAE) metric, which is a
popular alternative to RMSE, as it offers greater variety of results within a set error
margin [12].

Also, RMSE is used by Netflix to measure prediction accuracy on user ratings on
movies before them being recommended, adding another layer to the factors for each
recommendation [9].

2.2.2 Data Sparsity

To make this issue clearer to the reader, it is important to first understand the way most
RSs work. Assuming there are X users, each with N preferences, and Y items, each
owning M features, an RS creates a user-item matrix using the data at hand as well as
a specific function depending on the algorithm’s focus (Content-based, Collaborative –
filtering, etc). The resulting matrix will be an X*Y matrix with empty cells at the
beginning. For every item y rated by a user x, the cell [x,y] will be filled with a value
processed depending on the function used by the algorithm. Since not every user has
viewed and rated every item, the end result will appear as something like this:

Table 1: Sample prediction matrix

 ITEM#1 ITEM#2 ITEM#3 ITEM#4 ITEM#5 ITEM#6 ITEM#7 … ITEM#Y

USER#1 1 0.8 3.8 4.2

USER#2 2.2 3.1 1

USER#3 0.5 2.7 3 5 1.4

…

USER#X 5 1.1 2.6 1 4.9

The prediction matrix used by RSs at first only contains values in the cells that
represent actual ratings. For example, User 1 has rated Item 7 for 4.2, so cell [1,7] has
a value of 4.2. The empty cells must be filled by the RS with estimated values.

The purpose of every recommender system is to practically fill in the blanks with a
guessed (predicted) value which will eventually be replaced by the user’s real rating. If

Recommender Systems Implementations with Deep Learning

P.Lolos 18

the guessed value of an empty cell is beyond a certain threshold or higher when
compared to all other empty cell values, then the item will be recommended, otherwise
it will be left out. It should be noted here that in dynamic systems, the increase of a user
or item just by one will automatically increase the number of empty cells by Y or X
respectively.

This process poses a challenge: the fact that users only view a small percentage of the
available items and rate an even smaller fraction of that. [13] This means that the
number of empty cells in the matrix is vastly larger than that of the filled cells, thus
making it quite difficult for an algorithm to make valid or even reliable predictions. This is
called the data sparsity issue and concerns especially collaborative-filtering RSs, where
an increase in the number of users instantly and exponentially increases the prediction
difficulty, whereas the users themselves require much longer to actively rate items –
and that’s assuming the items do not increase either [14].

2.2.3 The cold-start problem

Data sparsity is a major issue for all RSs, especially when they are first deployed. It
becomes virtually impossible for an algorithm that uses user/item history (a.k.a content
based RS) to make even the slightest predictions when the data matrix is completely
empty. This phenomenon is also called the cold-start problem [10] and can be observed
in three situations:

 First deployment. When an algorithm is first deployed to operate over an
existing environment of users and items, users have not yet rated anything and
items have only their static features and zero ratings on themselves. This
ultimately means that an RS requires a specific amount of time and
actions/ratings from users before accurately making predictions for them. Various
solutions have been tried to counter this issue, with a core focus in deep learning
and content filtering [10].

 New items. When a new item is added, the prediction matrix is instantly
increased by the number of users. The item, however, is unrated and only has its
static features. This increases the complexity of calculations and reduces
accuracy in the beginning. One way to counter this is by using a reverse
collaborative-filtering algorithm (rCF), which consists of using the ratings of
similar items by all users to determine which user group would find a new item
desirable. [15]

 New users. This issue is the same as that of a new item with one difference:
users’ preferences are ever changing whereas items’ features mostly remain
static [10]. This fact makes the use of similar solutions to rCF tricky, as the
choices of other users do not necessarily provide accurate mean scores for the
new users. This also poses a major challenge for content-based algorithms,
since new users have no history of preferences. One effective solution has been
implemented in the Netflix algorithm, where every new user is immediately
prompted to choose some items that he would enjoy out of a provided list, giving
the Netflix RS a virtual user history right from the get-go. [9]

2.2.4 System scalability

One of the main purposes for the development of RSs is reducing the time a user
spends making a decision, so it is required of the algorithm to calculate the
recommendations rapidly and smoothly [16]. This may become a challenge when the

Recommender Systems Implementations with Deep Learning

P.Lolos 19

data processed is of a large scale, especially if the algorithm is being deployed for the
first time. The cold-start problem poses another issue for RSs when observed from a
business perspective: when a new user tries a content creator or host service, if the
recommendations he is offered are not satisfactory early on, it is highly probable that
the user will seek a different service [10]. For that reason, during development and after
deployment, RSs are constantly being evaluated by factors different than accuracy,
such as speed and resource consumption (for example the number of
recommendations provided per second in a growing dataset).

It is also important to note that although an algorithm may behave adequately when first
deployed on a data set, if that set grows beyond a specific size, the overall
effectiveness of the algorithm might drop. The resources required for training and
testing RSs over actual live datasets are usually much more than what an average
personal computer can provide, which will be proven later on. For that reason,
developers stress-test their RSs for a long time and in different systems before
deploying them, ignoring actual accuracy measures and focusing strictly on the
computational strength of the algorithms [17].

System scalability and the complexity of calculations of an RS may also pose a
challenge for deep learning implementations, as it will be discussed later.

2.3 Secondary Concerns about Recommender Systems

Apart from the main technical issues when developing an RS, there are some other
things to be taken into account:

 Synonymy: this is an issue that plays an important role in all machine learning
problems. In a data set, if two items have similar names or similar features but
not identical, they are treated as completely different, even if the semantics refer
to identical terms. [14] For example, a movie under the term animation and a
movie under the term animated film will be treated as entirely different genres.
This poses an issue of system optimization, where various categories and
features could be grouped up and identified as a single entity, doubling or even
tripling processing speed.

 Gray-sheep: this issue concerns mostly collaborative filtering RSs, yet it can be
a problem for any hybrid as well. It consists of the fact that some users make
inconsistent choices either with their own history or with a group’s overall mean
history. Most RSs have implemented ways of identifying such erratic behaviors
and omitting them from the calculation process [18], even though removing such
behaviors from the calculation process poses a risk of reduced accuracy when a
group’s choices are shifting rapidly and unpredictably.

 Shilling attacks: these are another type of erratic user behavior. A shilling attack
happens when a multitude of actual or fake users are trying to sway an RS
(especially a collaborative filtering one) to calculate specific results and ignore
others. It can be achieved when a large number of users rate specific items very
high and other items very low in a relatively small amount of time, in order for the
former to be more easily recommended than the latter. This is a clear example of
misusage of RSs, requiring specific guidelines and defenses implemented within
the algorithms to ensure objectivity during calculations [19].

 GDPR concerns: as of May 25th, 2018 the General Data Protection Regulation
has been enforced throughout the European Union [20], raising concerns about
the use of recommender systems. It is obvious that all RS have one main

Recommender Systems Implementations with Deep Learning

P.Lolos 20

requirement to operate: user personal data. This includes the risk of
compromising user data to the public, even without a user’s approval. For
example, any user may be exposed when using a collaborative filtering RS, since
his personal preferences will be used for recommendations to other users in his
area [14]. Another great example of GDPR breach involves contextual filtering,
where the user’s entire browsing history may be exposed and shared via cookies
to all content providers.

Recommender Systems Implementations with Deep Learning

P.Lolos 21

3. DEEP LEARNING

3.1 What is Deep Learning?

Recommender systems are a part of the greater field of machine learning, a subset of
artificial intelligence used for data mining. Various techniques are used in machine
learning, one of them being neural networks. Also called artificial neural networks
(ANN), they are loosely based on the neurons of living organisms and consist of a huge

number of processing elements, each connected and cooperating with the others to
solve specific problems. [21] ANNs are widely used today in numerous applications,
including voice recognition, image processing and classification, decision making and
data mining. Deep learning is a technique using ANNs to train an algorithm in order to
better perform a task, usually about predicting or deciding things based on a large
amount of data. [11] To better understand the concept of deep learning and its utility in
RSs, it is important to first examine how it works microscopically, thus to look into how
ANNs work.

Deep neural networks (DNN) are practically ANNs with a specific layout consisting of

three layers:

 Input layer (where data is stored)

 Output layer (where the decision or prediction is returned)

 Hidden layer (where all of the data processing takes place)

All of the above layers are interconnected and each may have from tens to thousands of
neurons. Each neuron takes into account two functions: a calculation function and a
weight function. To better put things into perspective, let’s assume the following deep
learning network as shown in figure 1:

Figure 1: A typical DNN representation.

When a DNN is first deployed, a large dataset is required in order for the algorithm to
create and calibrate its hidden layers. This process is the most time and resource

Recommender Systems Implementations with Deep Learning

P.Lolos 22

consuming part of deep learning and it is called training. There are three types of

training:

 Unsupervised training is when only the input layer is provided to the algorithm.
Then the data is computed and correlated by using forward propagation through
each hidden layer. Propagation means each piece of information is passed
through each node’s calculation function (also called activation function) in
conjunction with each vector’s weight function and processed accordingly. When
all hidden layers have been successfully parsed, data is calculated one last time,
taking into account weight and value limitations, and sent to the output layer. This
process is also called adaptive training.

 Supervised training is where both the input layer and the output layer are
already provided to the algorithm. In this case, the same process as in
unsupervised training is used, only this time the algorithm will compare its results
with the output layer’s required results and then recalibrate the hidden layers by
backwards propagating the errors and tweaking the vector weight. This
procedure happens repeatedly until the output layers that occur from forward
propagation are either the same as the provided ones or within an acceptable
error margin. If after a set amount of repetitions or time the DNN hasn’t
converged, then it is up to the developer to detect possible faults with the
algorithm or the data and change them accordingly [21].

 Reinforcement learning is a process currently used mainly for problem solvers

and other AI, especially in the gaming industry and robotics. During its training,

the network is deployed as an agent within a specific responsive environment

and with no further instructions, then is allowed to freely execute all available

sequences of actions within that environment. Each action results in a new

environment state, some of which are closer to the target state. By trial and error,

the agent recalibrates its network multiple times until it fully adapts to said

environment. [23]

3.2 Benefits of Deep Learning

The application of DNNs comes with a fair amount of advantages [21], some of which
can solve many of the issues concerning recommender systems today. Here is a list of
such benefits and the problems they remedy:

 Pattern recognition. DNNs can create their own correlations between data
during their training, which allows them to vastly improve their accuracy without
any need for human interaction. This ability resolves two secondary issues of
RSs. The first is synonymy, since they can now generalize data without it being
strictly dependent on semantics, and the second is any kind of shilling attack,
since they may be taken into account as “excused patterns” without the algorithm
having to cross out users entirely from the recommendation process.

 Adaptive systems. Deep learning systems are developed through self-learning,
rather than actual programming, meaning they adapt on the data at hand and
improve on the task at hand. This solves issues concerning the human factor
when developing an RS, as DNNs are self-organized and may change data
representation to suit their needs in ways conceptually difficult for a human
developer, yet far more efficient.

 Flexibility. A direct advantage of their adaptability, DNNs are capable of
adjusting to ever-changing environments without suffering in terms of efficiency.

Recommender Systems Implementations with Deep Learning

P.Lolos 23

This solves issues concerning scalability, as many conventional RS approaches
face hardships when the amount of data processed reaches a certain ceiling.
DNNs might be slower in learning new changes but are excellent at eventually
adjusting to them.

 Performance. DNNs are excellent systems when it comes to modeling data and
statistical problems. They prove to be faster than classical approaches and the
models they produce are more accurate. This amounts to a significant
improvement of the accuracy of an RS when it comes to the addition of new
users or items, as well as a better approach on the cold-start problem.

 Complexity. The use of multiple hidden layers, along with the handling of
multiple interconnecting nodes, offers an ability to create accurate models out of
vastly complex data. The sparsity problem of RSs consists on the fact that
conventional algorithms can only do so much at their early deployment. DNNs
can create so many possible pseudo-interactions with themselves and between
data that sparsity can be effectively overcome during their training and even
before their deployment.

 Live Usage. DNNs are highly responsive and adaptable, meaning they can keep
their computations up while being used on multiple fronts. Accelerated computing
environments and the use of Graphics Processor Units (GPU) as computing
processors allow for a large amount of parallel computations, although hardware-
wise the capability of such systems in that capacity is still limited [22]. This type
of usage could prove to be a major asset for personalized RSs in the future by
using client and server devices simultaneously to offer the user with results faster
than ever before.

3.3 Challenges of Deep Learning

Most issues concerning deep learning algorithms have to do with equipment and
processing power. Deep learning networks are vast and require millions of micro-
calculations per second, which in turn requires high computation power and a big
amount of memory. The equipment used for this work was a traditional personal
computer with 8GB RAM and an older generation CPU, which struggled to procure the
test results even for average sized datasets, although in the case of traditional RSs the
same datasets were impossible to process.

In other words, while DNNs are quite demanding in terms of equipment, they scale
excellently for increases in data processed. The added benefit of passing calculations to
a graphics card makes efficiency almost 10 times greater or even more than that. [29]

Another challenge posed by DNNs is what is called overfitting. DNNs have a tendency
of adjusting to their current training datasets, sometimes too quickly, resulting in
prediction accuracies of 100% for the training set. This however means a drop in
accuracy for the test set, because the DNN adapts fully on the training set, without
actually taking advantage of any latent information. Overfitting usually occurs when a
network undergoes training too much or for too many epochs (times of supervised
training). Various solutions have been proposed for overfitting, most of which concern a
change in training times or having some static “filtering” layers between the input layer
and the hidden layers. The most commonly used currently, which is implemented in
every deep learning library, is the use of dropouts. [30] During a network’s training,

random units of data are dropped from the calculations in each epoch. This occurrence
forces the algorithm to treat the training set as a different set every time and reduces
the rate of overfitting significantly without impeding convergence.

Recommender Systems Implementations with Deep Learning

P.Lolos 24

3.4 Deep Learning Frameworks

In this section, some frameworks will be introduced, which seem to be working
efficiently when implemented in RSs. Each comes with its own advantages and
disadvantages, some of which will be analyzed in association with the needs of and RS,
rather than their overall performance and utility. All of the following frameworks can be
used and implemented with the Python programming language.

 TensorFlow: Developed by Google Brain, TensorFlow is an open-source
framework offering a list of machine learning libraries for C++ and Python
programming languages which has gained vast popularity over the past couple of
years. Its advantages rely on its ability to efficiently compute multi-dimensional
arrays (tensors) by using sequential graphs, however, these graphs are mostly
static with little adaptability to dynamic problems [23].

 Microsoft Cognitive Toolkit (CNTK): Developed by Microsoft and Facebook,

CNTK is an open-source framework which, similarly to TensorFlow, offers a DNN
representation of directed and forward or backward propagating graphs. Its latest
release (Ver. 2.7) is highly versatile and compatible with most Windows or Linux
64-bit systems or any C++/C#/Python environment. It is one of the very few
frameworks that supports the Open Neural Network Exchange (ONNX) format,
which allows for easy compilation and shared optimization when combining
different deep learning frameworks [24].

 Caffe: Developed by Berkeley AI Research (BAIR) and community contributors,
Caffe is a framework with its main focus on efficiency. Its main difference with the
previous two frameworks is in the representation of DNNs, where they are
defined layer-by-layer, as opposed to nodes and directed graphs. This allows for
much higher speeds than other frameworks, while being easy to code in Python
and MatLab interfaces. Although suitable for image recognition software, Caffe
lacks in versatility, since layers are predefined and static, making it quite difficult
for a dynamic RS to be developed without creating custom C++ layers
beforehand [25].

 PyTorch: A vastly improved version of the no longer in development Torch
Framework, PyTorch is an extremely versatile and readable library for GPU-
accelerated Deep Learning, developed by Facebook’s AI research team. It
supports ONNX for other frameworks, Windows, Linux or Mac as operating
systems, as well as C++, Java and Python. A core advantage of this system is its
ability for dynamic computational graphs and automatic differentiation, which
allows for responsive RSs and faster live training. As of October 2019, one of its
main disadvantages has been solved with the release of a mobile version for iOS
and Android devices [26].

 Keras: possibly the most popular wrapper library, Keras was developed by
Francois Chollet and supports various deep learning frameworks including
TensorFlow and CNTK. Keras wraps the backend Python libraries of deep
learning frameworks, making them simpler and modular while offering easy
extensibility and running on both CPUs and GPUs [27].

Recommender Systems Implementations with Deep Learning

P.Lolos 25

4. TRANSPOSING THE RECOMMENDATION PROBLEM INTO A

DEEP LEARNING PROBLEM

4.1 An example

Deep learning is a technique, whereas RSs are algorithms that perform specific tasks.
In order to implement deep learning on RSs it is first important to identify their elements
and transform them into elements that can be understood by a deep learning system.
To put things into perspective, let us consider the following matrix:

Table 2: A simplistic user-movie matrix representing the moment a new user and a new movie is
added to a recommender system group. The values in the cells are ratings by the users for the

specified movies, each being on a scale from 1 to 5.

 Movie #1 Movie #2 Movie #3 Movie #4 Movie #5

User #1 5 3.2 1 3

User #2 2.7 4

User #3

Considering the above matrix, let’s assume that there is an RS in place with 2 users and
4 movies in its data. A typical hybrid recommender system (usually content based and
collaborative filtering) would take into account the following:

 Users: for the sake of simplicity, users will be considered unrelatable entities,

although most RSs account for their location, online actions and anything that
can be procured by their personal browsing history.

 Movies: movies are the items of this example. They are static and they have
specific features, according to which they can be related to each other. For this
example, their features could be their respective genres, their titles, even their
language so let’s consider the following list about them.

Table 3: A list of the 5 movie titles and their respective genres. A movie may fall under more than

just one genre, which makes an RS’s computation that much harder.

Movie Genres

Toy Story Comedy / Family Movie / Animation

Star Wars Sci-Fi / Drama / Action / Fantasy

The Exorcist Horror / Thriller

Men in Black Sci-Fi / Comedy / Action

Spirited Away Drama / Anime / Family Movie

It must be noted that the features of movies and the characteristics of users in most
cases are a lot more, especially when it comes to content filtering. The main purpose of
features is for the algorithms to compute relations between items which are as detailed
as possible. For instance, when movies are categorized only by their genre, the
correlations are much weaker than if they are categorized depending on their genre,
their director, their stars and costars, their language and their release date. The same
rule applies to users, although it is debatable to what extend an algorithm should use
personal details for such predictions, as it can lead to GDPR breaches. [20]

Recommender Systems Implementations with Deep Learning

P.Lolos 26

All of the methods mentioned from here on are based on matrix factorization
(henceforth MF), which has proved to be the superior when it comes to classification
systems. [28] Another approach would be the K-nearest-neighbor approach in which
table 2 would be treated as a network of nodes, which would increase the complexity of
the system and the overall cost. In MF two arrays are created: one for the users and
one for the items. Table 2 represents the conjunction of those two arrays but fails to
show the correlations between them. In other words, table 2 is simply a representation
of actual or predicted ratings (the relation between each user and each item), even
though a lot more information has been processed for the predicted numbers. In MF the
value of a predicted rating that will appear in table 2 will take into account all that
“hidden” information and put it in the following equation:

Where ȓ is the end matrix cell with coordinates (u,i) and q and p are the corresponding
vectors for items i and users u respectively. These vectors are calculated by using the
items’ features or the users’ preferences. In content-based RSs only the factor p is
used, whereas in collaborative filtering, only the factor q is used, so it becomes evident
that a hybrid model would procure much more accurate results with a minimal increase
in calculations. [12]

The problem lies in what vectors q and p are going to be, what exact values they are
going to have for each different pair and how they can be best calibrated live. The
process in which an algorithm generates these vectors is the learning stage and
traditional approaches up until recently have been limited to stochastic gradient descent
(SGD) and alternating least squares (ALS) both of which will not be analyzed. The
learning model used in this work is a more DNN-friendly one, called convolutional
matrix factorization (ConvMF). [29]

Five different approaches were implemented for the purposes of this research, each
demonstrating a specific quality for recommender systems: simple content based
filtering (1), simple collaborative filtering (2), enhanced content-based
collaborative filtering hybrid (3), linear deep neural network (4) and convolutional
deep neural network (5). They were all primarily trained and tested with the MovieLens
100K dataset.

4.2 The MovieLens Dataset

Before proceeding to the deep learning techniques it should be noted that for the
experimentation of the algorithms the MovieLens dataset was used. It is a directory of
.csv files containing millions of ratings from random users over actual movies [30]. The
ratings are not necessarily accurate or real, although the dataset itself is adequate
enough for stress testing, relative accuracy testing and scalability evaluation. It is
recommended that such algorithms are also tested in a live responsive environment
consisting of actual users before any claims can be made about their true accuracy.

Due to the dataset’s vast size, an older, smaller version of it was used for experimenting
and testing. The smaller version (ml-latest-small) contains over 100.000 ratings, 1296

tag applications and a combination of over 9000 movies for 671 users.

Recommender Systems Implementations with Deep Learning

P.Lolos 27

4.3 Enhancing the Dataset

For the purposes of this work, the datasets were enhanced via various methods.
Several different combinational and fetching functions were developed to create other
datasets using the dataset at hand as the primary source and the IMDBpy API for
accessing the links in the links.csv file and fetching additional content. An available
enhanced dataset was used from kaggle.com which includes credits.csv and a
movies_metadata.csv, both adding several more features to each rated movie.
Furthermore, a movie poster dataset was created, using the links.csv file. The dataset
contains approximately 99.6% of the movies’ posters, stored in a directory
movie_posters. The 0.3-0.4% of movie posters missing is due to IMDB’s server issues,
broken URLs and missing material. The purpose of the last two datasets will be
discussed in the “Future work” segment.

The above enhancement was partially done on ml-100k, as the time and equipment
required for it were above expectations.

Recommender Systems Implementations with Deep Learning

P.Lolos 28

5. IMPLEMENTATIONS

5.1 Traditional Content Based-Collaborative Filtering Hybrid (CB-CFH)

The traditional model is a highly developer-dependent model. It works like a funnel with
an orifice of certain diameter. The system implemented here was loosely based on the
one proposed by [31] can be split into two distinct but interdependent parts:

Content-based: The algorithm takes in an item I along with its features, a set S of other

items and a value K which signifies the amount of recommendations needed. It checks
S and ranks each item j belonging to S depending on how similar it is with I. The
similarity is measured using the TF-IDF method (a.k.a. Term Frequency – Inverse

Document Frequency), which calculates a respective score for each J using the
following formula:

Where: i represents a feature word for item I, j represents the set of features for item J,
N is the total number of items in the set S, tf is the number of times i appears inside j
and df is the number of items within set S where i appears. [31] Each value is then
combined into a vector with n dimensions, where n is the number of features used for
comparison. When all vectors have been calculated, they are normalized with a
maximum length of 1and they are compared to i’s vector by calculating the angle
between them. The K items with vectors that have the smallest angles are selected and
returned. Cosine similarity between vectors is used as a metric to measure the above,
as it increases when the angle diminishes. This method, tested strictly on the
movies.csv set procured a low accuracy rate of 47-48%, although by extracting more
information from the movies_metadata.csv (thus increasing processing time
significantly) it was able to reach an acceptable rate of 61%.

Collaborative-Filtering: The algorithm takes pairs of either users or items at a time.
For user pairs, if user A is the one who needs recommendations, then it returns user B’s
top item choices, provided that A and B have been chosen as similar. For item pairs, if
item A is an item that the user liked, then a similar-item matrix is created from which the
user is recommended the most similar picks. The similarity this time is decided on what
other items other users who liked item A have liked and is calculated as a distance in
the similar-item matrix using cosine as a metric, just like in the content-based algorithm.
The preset SVD (singular value decomposition) algorithm by Surprise library was used,
wielding sufficient results with an accuracy rate of 63%.

Hybrid: A combination of the above algorithms creates a traditional hybrid RS, which
comes along with almost all of the problems mentioned before, even though mitigated
effectively. Each of the two approaches used may to some extend solve the issues of
the other, but both eventually fail in terms of scalability. The core problems that remain
unsolved revolve around the absence of actual latent data, as well as the algorithms’
inability to generate it. Some of the issues the hybrid would encounter when processing
table 2 would be the following:

Recommender Systems Implementations with Deep Learning

P.Lolos 29

 CB search for Toy Story would consider Men in Black and Spirited Away
equally similar, as it would fail to recognize similarities between feature the
genre Animation and Anime. Consequently, Men in Black would gain a
value of 1 for the term Comedy, and Spirited Away would gain a value of 1
for the term Family Movie, whereas the term Anime would not be taken into
account. This represents a synonymy problem and could be mitigated by
CF to some extent depending on other users’ ratings.

 CB search for Star Wars would also struggle but for a different reason. Men
in Black would gain a value of 2 for being Sci-Fi and Action but would lose 1
since Comedy is opposed to Drama (broadening the vector angle), resulting
in a final value of 1. Spirited Away would also gain a value of 1 for its
feature Drama, resulting in another equalization. This represents an
accuracy problem and would probably not be solved by using CF, since
content similarity and preferences similarity are fundamentally different
vectors.

 CF search for user 3 or movie 5 would encounter a cold-start problem, as
there are no values in their respective columns and rows, and would be
unable to provide any results. User 3 and movie 5 could represent a new
user or movie in the system and the issue posed by them could be solved
with CB on both the user and the movie, although accuracy would still
suffer.

 CF search for user 1 would encounter a sparsity problem, as roughly 40%
of the matrix’s other values have been set, offering a very small amounts of
calculation data, as opposed to the uncalculated values. In actual datasets,
the resulting matrix is usually even sparser (20-25% full at most). The
problem could be mitigated by CB’s presence but would still suffer from
synonymy and accuracy difficulties.

Consequently, the traditional hybrid model is a valid approach only if the two algorithms
are allowed to work in combination. In cases where one has to take over completely, all
of its issues will arise. Additionally, the combination of the two, as well as other various
enhancement techniques (mainly in the CB side, including director name weights,
summary and cast filtering, stemming documents etc), cause a major scalability
problem, which can be eradicated by the use of any traditional DNN instead.

It should be noted that the algorithm developed within this work, achieved very
promising results, while still being unable to handle large scale data, with its scalability
issues still remaining the biggest hurdle.

5.2 Linear Deep Neural Network (LDNN)

The deep learning model is a machine learning model of multiple linearly interconnected
layers. The complexity of said layers is a perfect asset for implementing MF. All of the
issues that occurred with the traditional CB-CFH could be solved if the algorithm could
take into account the latent data that can be extracted from the actual data. For
example, a human who saw tables 2 and 3 would assume that User 1 would like
Spirited Away more than Men in Black, when considering the similarities between Toy
Story and Spirited Away, Star Wars and Men in Black, as well as their existing ratings.
However, the hybrid would struggle to choose between them. An LDNN does not simply
“read” the data provided. It calculates correlations between every piece of information
and implements them as latent data. In this specific example, an LDNN would probably
make the assumption that Animation is directly similar to Anime and would also give

Recommender Systems Implementations with Deep Learning

P.Lolos 30

weights to how much each feature affects a user’s rating specifically, shifting the matrix
vectors significantly. The existence of these weights for each feature is an excellent
countermeasure to any cold-start issues, either concerning users or items. It must be
noted, although, that DNNs require vast amounts of data for training, therefore the
specific set is an unrealistic example for a DNN’s performance.

The LDNN used in this work is proposed and developed by [34], only uses CF and
works as follows:

 Receives the incomplete (and usually sparse) UserXItem matrix. (input layer)

 Decomposes the matrix into two one-dimensional matrices, Users and Items.

 Correlates all features and values within each matrix and recalibrates its
respective vectors. During the correlations and adjustments, the data’s latent
information surfaces and can be stored as weights on each connection between
nodes. (hidden layers)

 Merges the reformed matrices into a new UserXItem’ matrix. (output layer)

The returned matrix is filled with values and estimates, which are then used for training.
The activation function used for all nodes and layers was ReLU, the most commonly
used function for multi-layered networks. The above model is created by using the
PyTorch library for network processing, and first underwent supervised training on a
percentage of data, then tested on the rest. It should be noted that the only dataset
parsed through the matrix was the ratings.csv.

The results were higher than anticipated, although still not as good as the fully
incorporated hybrid. The algorithm’s main focus in CF proved inadequate to surpass the
high accuracy of incorporating content based filtering, although still much better than
any traditional CF model.

5.3 Convolutional Deep Neural Network (ConvDNN)

Convolution is a method primarily used in image processing. Assuming each image is
imported as a two-dimensional matrix where each cell represents a pixel (or a
characteristic for that pixel), an LDNN would simply take each pixel as a separate piece
of information, then correlate them all together. ConvDNN does the same and
something more. It also creates sets between pixels of an image and groups them up
depending on their correlations, while omitting the ones deemed “unnecessary” for
prediction. The same can be done for any type of dataset, including documents, movies,
music etc. [35]

Recommender Systems Implementations with Deep Learning

P.Lolos 31

Figure 2: Representation of image analysis through a convolutional deep learning network

Implementing convolution in PyTorch over the LDNN algorithm is as simple as changing
the name of one command, however it proved trickier as not all hidden layers should be
convolutional. Approximately half of the previous algorithm’s hidden linear layers were
turned into convolutional layers.

The results showed an accuracy increase of almost 4% over the LDNN, which was still
not enough to surpass the hybrid.

Table 4 summarizes the results between each implementation while offering a better
view for comparison. For CF, it was impossible to create the SVD matrix for the actual
dataset, as it required immense amounts of computer memory. This applied to the
hybrid for the same reasons. The DNN implementations have no response times, since
the prediction matrix is calculated fully during training and no further calculations are
needed afterwards. Training for DNNs obviously takes a lot longer than for any
traditional hybrid, however it is possible to pass the larger dataset with a DNN by
splitting it into batches of certain sizes, which reduced significantly the amount of
computer memory required. Still, trying to use even larger datasets proved impossible
with the current equipment.

Table 4: Numerical results of each implementation while using the MovieLens latest 100k small

and regular datasets

Algorithm Training(s)
(small)

Response(s
)
(small)

Accuracy(%)
(small)

Training(s) Response(s) Accuracy(%)

CF 9.771 0.007 62.899 - - -
CB 19.788 0.016 47.601 304.622 12.004 44.920
Hybrid 35.844 0.022 85.203 - - -
LDNN 49.037 - 71.035 689.101 - 70.724
ConvDNN 57.961 - 73.574 842.009 - 73.221

Recommender Systems Implementations with Deep Learning

P.Lolos 32

6. CONCLUSION AND FUTURE WORK

In this work a variety of recommender system implementations were tried and tested
and, while there is a need for further experimentation with more capable equipment,
there is a clear advantage of deep learning technology over traditional development.
The DNN RSs used for this work were strictly focused on collaborative filtering, yielding
promising results, with an increase in accuracy of over 14%. According to [35] a hybrid
implementation of a deep learning model would possibly reach an astonishing accuracy
rate of 92%, which is as high as one can hope. This raises a question of how much
content based filtering can evolve using deep learning implementation. Therefore,
further research on implementing a DNN approach of the hybrid proposed here would
be in order.

During testing, another question arose concerning content based filtering. The current
state of the art, while efficient, is still basic in terms of methodology: Recommender
systems study data history and offer accurate predictions. However, a user’s tastes are
ever changing and often unpredictable, meaning that even if accuracy according to data
may be high,, true accuracy will be lower. A hypothesis proved by [36] is that people’s
needs and wants are influenced by daily activities, current state of mind and a multitude
of other stimulus enough for their choices to be inconsistent with their past. The
hypothesis proves that the gray sheep problem may be much more important than it is
currently considered to be. Could the next level for recommendation systems be the
ability to anticipate a user’s current mood? What other data features would be required
for such a prediction?

A great example would be that of movie recommendations. Every movie streaming
service offers the list of movies as a list of their posters. Netflix’ interface is shown in
Figure 3 for example. If users choose what they would like to watch depending on their
current state of mind, then it is safe to assume that they can be influenced by the movie
posters they see. According to [39], it is possible to predict a movie’s genres by its
poster, a theory proven to a promising extent by [40], who created a ConvDNN capable
of predicting a movie’s genre using pattern classification. Using an improved version of
that algorithm, one could add movie posters to the already dense datasets used for
content filtering. Two questions need to be answered concerning this:

1. Is it possible for movies to have “hidden” genres, besides their official ones and can

they be predicted accurately simply by analyzing their posters? To answer this
question, the classification algorithm should focus on a lower accuracy rate which
allows for more unofficial genres to be inserted as a movie’s poster-genres.

2. Could a RS be implemented in such a way that its recommendations fit a user’s
current mood? According to [41], color plays an important role in users choices and
has been proven to represent and appeal to certain emotional states.

Recommender Systems Implementations with Deep Learning

P.Lolos 33

Figure 3: Netflix’ interface. Screenshot taken on May 2020

Overall, recommender systems have evolved massively over the last few decades and,
with the use of deep neural networks, they have already reached new heights, while still
being based on the same fundamental concepts of data mining and machine learning,
which revolve mainly around items. The only question that remains is how to alter those
fundamentals in a way that revolves more around users and their ever changing needs.

Recommender Systems Implementations with Deep Learning

P.Lolos 34

ABBREVIATIONS

ANN Artificial Neural Network

API Application Programming Interface

CB Content Based filtering

CF Collaborative filtering

ConvDNN Convolutional Deep Neural Network

CPU Computer Processing Unit
DNN Deep Neural Network

GPU Graphics Processing Unit

LDNN Linear Deep Neural Network

MAE Mean Average Error

MF Matrix Factorization

ONNX Open Neural Network Exchange

RAM Random Access Memory

ReLU Rectified Linear Unit

RMSE Root Mean Squared Error

RS Recommendation System

SVD Singular Value Decomposition

TF-IDF Term Frequency – Inverse Document Frequency

Recommender Systems Implementations with Deep Learning

P.Lolos 35

REFERENCES

[1] Miniwatts Marketing Group. (2020) Internet World Stats. [Online].

https://www.internetworldstats.com/stats.htm

[2] Rainer Bohme Stefan Korff, "Too Much Choice: End-User Privacy Decisions in the Context of Choice

Proliferation," in Symposium on Usable Privacy and Security (SOUPS), Menlo Park, CA, Germany,

July 2014, pp. 69 - 87.

[3] Rainer Greifeneder, Peter M. Todd Benjamin Scheibehenne, "Can There Ever Be Too Many

Options? A Meta-Analytic Review of Choice Overload," Journal of Consumer Research, vol. 37, pp.

409 - 425, Oct. 2010.

[4] Lior Rokach, Bracha Shapira, Paul B. Kantor Francesco Ricci, Recommender Systems Handbook.

London: Springer New York Dordrecht Heidelberg, 2011.

[5] Marco de Gemmis, Giovanni Semeraro Pasquale Lops, "Content-Based Recommender Systems:

State of the Art and Trends," Recommender Systems Handbook, pp. 73 - 105, Oct. 2011.

[6] J.B., Frankowski, D., Herlocker, J., Sen, S. Schafer, "Collaborative filtering Recommender Systems,"

The Adaptive Web. Lecture Notes in Computer Science, vol. 4321, pp. 291 - 324, 2007.

[7] T., Ricci, F. Mahmood, "Towards learning user-adaptive state models in a conversational

recommender system.," in 15th Workshop on Adaptivity and User Modeling in Interactive Systems,

Halle, September 2007.

[8] D., Goker, M., McGinty, L., Smyth, B. Bridge, "Case-based recommender systems," The Knowledge

Engineering Review, pp. 315-320, May 2006.

[9] Christina Yip Chung, Long-Ji Lim Wei Guan, "Collaborative-filtering Contextual Model Based on

Explicit and Implicit Ratings for Recommending Items," US 7,590,616 B2, Sep. 15, 2009.

[10] Carlos A. Gomez-Uribe, Neil Hunt, Netflix, Inc., "The Netflix Recommender System: Algorithms,

Business Value and Innovation," ACM Transactions on Management Information Systems, vol. 6, no.

4, pp. 1 - 19, Dec. 2015.

[11] Ali Yurekli, Alper Bilge, Cihan Kaleli Zeynep Batmaz, "A Review on deep learning for recommender

systems: Challenges and Remedies," Artificial Intelligence Review, no. 52, pp. 1 - 37, Aug. 2018.

[12] G., Dlugolinsky, S., Bobák, M. et al. Nguyen, "Machine Learning and Deep Learning frameworks and

libraries for large-scale data mining: a survey," Artificial Intelligence Review, no. 52, pp. 77 - 124,

Jan. 2019.

[13] Gunawardana, Guy Shani and Asela, Microsoft Research, "Evaluating Recommendation Systems,"

Recommender Systems Handbook, pp. 257-297, 2011.

[14] YiBo Chen, "Solving the Sparsity Problem in Recommender Systems Using Association Retrieval,"

Journal of Computers, vol. 6, no. 9, pp. 1896 - 1902, Sep. 2011.

[15] Taghi M. Khoshgoftaar Xiaoyuan Su, "A Survey of Collaborative Filtering Techniques," Advances in

Artificial Intelligence, vol. 2009, pp. 1 - 19, Oct. 2009.

https://www.internetworldstats.com/stats.htm

Recommender Systems Implementations with Deep Learning

P.Lolos 36

[16] Sungchan Park, Woosung Jung, Sang-goo Lee Youngki Park, "Reversed CF: A fast collaborative

filtering algorithm using a k-nearest neighbor graph," Expert Systems with Applications, vol. 42, no. 8,

pp. 4022 - 4028, May 2015.

[17] Gunawardana Asela Shani Guy, "Evaluating Recommendation Systems," Recommender Systems

Handbook, pp. 257 - 297, June 2014.

[18] Srujana Merugu George Thomas, "A scalable collaborative filtering framework based on co-

clustering," in Fifth IEEE International Conference on Data Mining (ICDM'05), Houston, TX, 2005, pp.

4 -.

[19] Adam Prügel-Bennett Mustansar Ali Ghazanfar, "Leveraging clustering approaches to solve the

gray-sheep users problem in recommender systems," Expert Systems with Applications, vol. 41, no.

7, pp. 3261 - 3275, June 2014.

[20] I., Kaleli, C., Bilge, A. et al. Gunes, "Shilling attacks against recommender systems: a

comprehensive survey," Artificial Intelligence Review, no. 42, pp. 767 – 799, Nov. 2012.

[21] European Parliament and the Council of the European Union, "Regulations - General Data

Protection Regulation (GDPR)," Official Journal of the European Union , no. 119, pp. 1 - 88, May

2016. [Online]. https://gdpr-info.eu/

[22] Priyanka Wankar Sonali. B. Maind, "Research Paper on Basic of Artificial Neural Network,"

International Journal on Recent and Innovation Trends in Computing and Communication, vol. 2, no.

1, pp. 96-99, January 2014.

[23] Michael L. Littman, Andrew W. Moore Leslie Pack Kaelbling, "Reinforcement Learning: A Survey,"

Journal of Artificial Intelligence Research, no. 4, pp. 237 - 285, 1996.

[24] NVIDIA. (2020) NVIDIA High Performance Computing. [Online]. https://developer.nvidia.com/hpc

[25]

Schlegel Daniel, ""Deep Machine Learning on GPUs.," in Seminar Talk-Deep Machine Learning on

GPUs, 2015.

[26] N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R Srivastava, "Dropout: a simple way

to prevent neural networks from overfitting," The journal of machine learning research, vol. 15, no. 1,

pp. 1929-1958, 2014.

[27] Abadi et al. (2015) Large-Scale Machine Learning on Heterogeneous Systems. [Online].

https://www.tensorflow.org/overview

[28] Microsoft. (2016, Jan.) The Microsoft Cognitive Toolkit. [Online]. https://docs.microsoft.com/en-

us/cognitive-toolkit/

[29] Yangqing Jia, Berkeley AI Research. Caffe, Deep Learning Framework by BAIR. [Online].

https://caffe.berkeleyvision.org/

[30] PyTorch team, Torch Contributors. (2019) PyTorch. [Online]. https://pytorch.org/features/

[31]

Francois Chollet et al, Keras. (2015) Keras Documentation. [Online]. https://keras.io/

https://gdpr-info.eu/
https://developer.nvidia.com/hpc
https://www.tensorflow.org/overview
https://docs.microsoft.com/en-us/cognitive-toolkit/
https://docs.microsoft.com/en-us/cognitive-toolkit/
https://caffe.berkeleyvision.org/
https://pytorch.org/features/
https://keras.io/

Recommender Systems Implementations with Deep Learning

P.Lolos 37

[32] Yehuda, Robert Bell, and Chris Volinsky Koren, "Matrix Factorization Techniques for Recommender

Systems," Computer, no. 42, pp. 30 - 37, 2009.

[33] D., Park, C., Oh, J., Lee, S., & Yu, H. Kim, "Convolutional matrix factorization for document context-

aware recommendation," in Proceedings of the 10th ACM Conference on Recommender Systems,

2016, pp. 233 - 240.

[34] F. Maxwell Harper, Joseph A. Konstan, "The MovieLens Datasets: History and Context," ACM

Transactions on Interactive Intelligent Systems (TiiS), vol. 5, no. 4, pp. 1 - 19, December 2015,

https://doi.org/10.1145/2827872. [Online]. https://grouplens.org/datasets/movielens/

[35] Safa M., Fancy C., Saranya D. Geetha G., "A Hybrid Approach using Collaborative filtering and

Content based," Journal of Physics: Conference Series, vol. 1000, pp. 1 - 7, Apr. 2018.

[36] W., Yoshida, T., & Tang, X. Zhang, "A comparative study of TF* IDF, LSI and multi-words for text

classification," Expert Systems with Applications, vol. 38, no. 3, pp. 2758-2765, 2011.

[37] Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, Tat-Seng Chua Xiangnan He, "Neural Collaborative

Filtering," in International World Wide Web Conference, Perth, Australia, 2017.

[38] Changyoung Park, Jinoh Oh, Sungyoung Lee, Hwanzo Yu Donghyun Kim, "Convolutional Matrix

Factorization for Document Context-Aware Recommendation," in RecSys '16: Proceedings of the

10th ACM Conference on Recommender Systems, 2016, pp. 233-240.

[39] Daniel Kahneman, Thinking, Fast and Slow.: Penguin Books, 2011.

[40]

Fagerholm Cecilia, "The use of colour in movie poster design: An analysis of four genres,"

Metropolia University of Applied Sciences, 2009.

[41] Guo H. J. Chu W. T., "Movie Genre Classification based on Poster Images with Deep Neural

Networks," in Workshop on Multimodal Understanding of Social, Affective and Subjective Attributes,

2017, pp. 39-45.

[42] Menezes I. L., Tagmouti Y. Ho A. T., "E-mrs: Emotion-based movie recommender system," in IADIS

e-Commerce Conference, Washington, 2006, pp. 1-8.

https://grouplens.org/datasets/movielens/

	NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS
	SCHOOL OF SCIENCE
	Panayiotis C. Lolos
	Παναγιώτης Χ. Λώλος

	ABSTRACT
	ΠΕΡΙΛΗΨΗ
	AKNOWLEDGMENTS
	CONTENTS
	LIST OF FIGURES
	1. INTRODUCTION
	2. RECOMMENDER SYSTEMS
	2.1 Analysis
	2.2 Issues concerning Recommender Systems
	1. Prediction Accuracy
	2.2.1 Prediction Accuracy
	2.2.2 Data Sparsity
	2.2.3 The cold-start problem
	2.2.4 System scalability
	2.3 Secondary Concerns about Recommender Systems

	3. DEEP LEARNING
	3.1 What is Deep Learning?
	3.2 Benefits of Deep Learning
	3.3 Challenges of Deep Learning
	3.4 Deep Learning Frameworks

	4. TRANSPOSING THE RECOMMENDATION PROBLEM INTO A DEEP LEARNING PROBLEM
	4.1 An example
	4.2 The MovieLens Dataset
	4.3 Enhancing the Dataset

	5. IMPLEMENTATIONS
	5.1 Traditional Content Based-Collaborative Filtering Hybrid (CB-CFH)
	5.2 Linear Deep Neural Network (LDNN)
	5.3 Convolutional Deep Neural Network (ConvDNN)

	6. CONCLUSION AND FUTURE WORK
	Figure 3: Netflix’ interface. Screenshot taken on May 2020

	ABBREVIATIONS
	REFERENCES

