

NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

MASTER OF SCIENCE
IN INFORMATION AND DATA MANAGEMENT

M.Sc. Thesis

Finding Topic-specific Trends and Influential Users in Social
Networks

Christos D. Daskalakis

Supervisors: Tsalgatidou Afroditi, Associate Professor
Koutrouli Eleni, Post Doc Researcher

ATHENS

JULY 2020

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ

ΣΤΗ ΔΙΑΧΕΙΡΙΣΗ ΠΛΗΡΟΦΟΡΙΑΣ ΚΑΙ ΔΕΔΟΜΕΝΩΝ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΕΥΡΕΣΗ ΤΩΝ ΤΑΣΕΩΝ ΓΙΑ ΣΥΓΚΕΚΡΙΜΕΝΑ ΘΕΜΑΤΑ ΚΑΙ
ΑΝΑΓΝΩΡΙΣΗ ΤΩΝ ΧΡΗΣΤΩΝ ΜΕ ΤΗ ΜΕΓΑΛΥΤΕΡΗ

ΕΠΙΡΡΟΗ ΣΤΑ ΚΟΙΝΩΝΙΚΑ ΔΙΚΤΥΑ

Χρήστος Δ. Δασκαλάκης

Επιβλέπουσες: Τσαλγατίδου Αφροδίτη, Αναπληρώτρια Καθηγήτρια

Κουτρούλη Ελένη, Μεταδιδακτορική Ερευνήτρια

ΑΘΗΝΑ

ΙΟΥΛΙΟΣ 2020

M.Sc. Thesis

Finding Topic-specific Trends and Influential Users in Social Networks

Christos D. Daskalakis

A.M.: M1440

SUPERVISORS: Tsalgatidou Afroditi, Associate Professor
Koutrouli Eleni, Post Doc Researcher

EXAM COMMITTEE: Tsalgatidou Afroditi, Associate Professor
Hadjiefthymiades Stathes, Professor

JULY 2020

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Εύρεση των τάσεων για συγκεκριμένα θέματα και αναγνώριση των χρηστών με τη
μεγαλύτερη επιρροή στα κοινωνικά δίκτυα

Χρήστος Δ. Δασκαλάκης

Α.Μ.: Μ1440

ΕΠΙΒΛΕΠΟΥΣΕΣ: Τσαλγατίδου Αφροδίτη, Αναπληρώτρια Καθηγήτρια

Κουτρούλη Ελένη, Μεταδιδακτορική Ερευνήτρια

ΕΞΕΤΑΣΤΙΚΗ ΕΠΙΤΡΟΠΗ: Τσαλγατίδου Αφροδίτη, Αναπληρώτρια Καθηγήτρια

Χατζηευθυμιάδης Ευστάθιος, Καθηγητής

Ιούλιος 2020

ABSTRACT

Social networks (SNs) have become an integral part of contemporary life, as they are
increasingly used as a basic means for communication with friends, sharing of opinions
and staying up to date with news and current events. The general increase in the
usage and popularity of social media has led to an explosion of available data, which
creates opportunities for various kinds of utilization, such as predicting, finding or even
creating trends.

In this thesis, we first begin with analyzing the current work regarding the
recommendation systems and their value on today’s social networks as well as the
internet. We review the literature on reputation systems, their importance and the use
cases that can be found on modern online applications. Our goal is to combine the two
aforementioned systems in order to identify the most influential users, not only based on
their followership, but also in their respective fields. An influencer is someone who is
known and trusted by a specific audience on specific topics. We try to distinguish
between celebrities, and social media users that actually are respected in their fields
and that other users trust and follow actively (user engagement).

We then extend our system, in order to also identify the most influential URLs, using the
same metrics as before.

 Our approach is based on the functionality of hashtags, which we use as topic
indicators for posts, and on the assumption that a specific topic is represented by
multiple hashtags. We present a neighborhood-based recommender system, which we
have implemented using collaborative filtering algorithms in order to (a) identify
hashtags, URLs and users related with a specific topic, and (b) combine them with SN-
based metrics in order to address the aforementioned questions in Twitter. The
recommender system is built on top of Apache Spark framework in order to achieve
optimal scaling and efficiency. For the verification of our system we have used data
sets mined from Twitter and tested the extracted results for influential users and URLs
concerning specific topics in comparison with the influence scores produced by a state-
of-the-art influence estimation tool for SNs. Finally, we present and discuss the results
regarding two distinct topics and also discuss the offered and potential utility of our
system.

SUBJECT AREA: Recommender Systems, Influencer Systems, Social Networks

KEYWORDS: influence, social networks, collaborative filtering, influence estimation

ΠΕΡΙΛΗΨΗ

Τα κοινωνικά δίκτυα έχουν γίνει αναπόσπαστο κομμάτι της σύγχρονης ζωής. Κάθε μέρα
όλο και περισσότεροι άνθρωποι χρησιμοποιούν αυτά τα δίκτυα για να επικοινωνούν με
τους φίλους τους, να μοιράζονται τις απόψεις τους και να μένουν ενημερωμένοι για νέα
και τρέχοντα γεγονότα. Η γενική αύξηση της χρήσης και της δημοτικότητας των
κοινωνικών μέσων ενημέρωσης οδήγησε σε μια έκρηξη των διαθέσιμων δεδομένων,
γεγονός το οποίο δημιούγησε νέες ευκαιρίες για διάφορα είδη εκμετάλλευσης, όπως η
πρόβλεψη, η εύρεση αλλά και η δημιουργία τάσεων.

Στην παρούσα διπλωματική εργασία, ξεκινάμε αναλύοντας την βιβλιογραφία που
υπάρχει για τα συστήματα συστάσεων, καθώς και την αξία τους, για τα μέσα κοινωνικής
δικτύωσης που υπάρχουν σήμερα, αλλά και γενικότερα για το ίντερνετ. Μετέπειτα
αναλύουμε την συνεισφορά των συστημάτων εύρεσης επιρροής, της σημασίας τους
αλλά και των χρήσεων τους στην μοντέρνες εφαρμογές διαδικτύου.

Στόχος μας είναι να συνδυάσουμε τα δύο προαναφερθέντα συστήματα, προκειμένου να
εντοπίσουμε τους πιο σημαντικούς χρήστες, όχι μόνο με βάση την δημότικότητα τους,
αλλά και στους τομείς που ασκούν την μεγαλύτερη επιρροή. Ένας χρήστης που ασκεί
μεγάλη επιρροή, είναι κάποιος που είναι γνωστός και αξιόπιστος από ένα συγκεκριμένο
κοινό και σε συγκεκριμένα θέματα. Με την προσέγγισή μας προσπαθούμε να κάνουμε
διάκριση μεταξύ διασημοτήτων και χρηστών κοινωνικών μέσων που πραγματικά
γίνονται σεβαστά στους τομείς τους, και άλλοι χρήστες εμπιστεύονται και ακολουθούν
ενεργά (αφοσίωση χρηστών).

Στη συνέχεια επεκτείνουμε το σύστημά μας, προκειμένου να εντοπίσουμε και τις πιο
σημαντικές διευθύνσεις URL, χρησιμοποιώντας τις ίδιες μετρηκές με πριν.

Η προσέγγισή μας για την απάντηση στις παραπάνω ερωτήσεις βασίζεται στη
λειτουργικότητα των hashtags τα οποία θεωρούμε ότι αντιπροσωπεύουν κάποιο θέμα
σε κάθε δημοσίευση και στην υπόθεση ότι υπάρχουν πολλαπλά hashtags που
αντιπροσωπεύουν ένα συγκεκριμένο θέμα. Σε αυτή τη διπλωματική, παρουσιάζουμε
ένα σύστημα συστάσεων, το οποίο υλοποιούμε χρησιμοποιώντας Collaborative Filtering
αλγορίθμους για (α) τον εντοπισμό των hashtags, των Urls και των χρηστών που
σχετίζονται με ένα συγκεκριμένο θέμα, (β) συνδυασμό διαφόρων μετρικών επιλεγμένων
από το κοινωνικό δίκτυο μαζί τους και (γ) να αντιμετωπίσει έτσι τις προαναφερθείσες
ερωτήσεις στο Twitter. Το σύστημά υλοποιήθηκε με την χρήση του Apache Spark
προκειμένου να επιτευχθεί η βέλτιστη κλιμάκωση και να είναι σε θέση να επεξεργάζεται
αποτελεσματικά μεγάλους όγκους δεδομένων.Για την επαλήθευση των αποτελεσμάτων
του συστήματός μας χρησιμοποιήσαμε δεδομένα τα οποία αντλήσαμε από το Twitter.
Τελικά συγκρίνουμε τα αποτελέσματά μας με τα αποτελέσματα επιρροής που
παράγονται από δύο εργαλεία εκτίμησης της επιρροής κοινωνικών δικτύων.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Συστήματα Συστάσεων, Συστήματα εύρεσης κόμβων με υψηλή

 επιρροή

ΛΕΞΕΙ ΚΛΕΙΔΙΑ: επιρροή, κοινωνικά δίκτυα, συνεργατικό φιλτράρισμα, εκτίμηση

επιρροής

ΕΥΧΑΡΙΣΤΙΕΣ

Για την διεκπεραίωση της παρούσας ερευνητικής εργασίας, θα ήθελα να ευχαριστήσω
την επιβλέπουσα καθηγήτρια κ. Αφροδίτη Τσαλγατίδου για την συνεργασία και την
πολύτιμη συμβολή της στην ολοκλήρωση της, καθώς και την κ. Κουτρούλη Ελένη για
την καθοριστική συνεισφορά και βοήθειά της καθ’ όλη την διάρκεια εκπόνησης της
εργασίας μου.

CONTENTS

PROLOGUE .. 12

1. INTRODUCTION .. 13

2. RECOMMENDER SYSTEMS .. 15

2.1 Overview ... 15

2.2 Collaborative filtering .. 15

2.2.1 Hybrid Techniques .. 16

2.3 Collaborative Filtering Process .. 16

2.3.1 User Ratings ... 17

2.3.2 The formation of neighbors ... 17

3. REPUTATION AND INFLUENCE ESTIMATION SYSTEMS 19

3.1 Influence in SNs: An Implicit Reputation Measure ... 19

3.2 Estimating Influence in SNs ... 19

3.2.1 Literature on Influence estimation in SNs ... 20

4. PROPOSED SYSTEM ... 23

4.1 Estimating Influence on a Specific Topic .. 23

4.2 Finding Similar Hashtags for Topic Representation .. 24

4.3 Collection of Data .. 26

4.4 Finding Influential Users on a Specific Topic ... 26

4.5 Finding Influential Urls on a Specific Topic .. 29

5. IMPLEMENTATION OF THE PROPOSED SYSTEM .. 31

5.1 Overview ... 31

5.2 Technology and Datasets ... 31

5.3 Finding Topic-Specific Hashtags and Influential Users and Urls ... 32

6. CONCLUSIONS ... 36

APENDIX Ι ... 38

APPENDIX ΙΙ ... 43

 LIST OF FIGURES

Figure 1: User-Item ratings matrix ... 8

Figure 2: Euclidean similarity formula .. 19

Figure 3: 10 Most similar hashtags with #Marketing ... 33

Figure 4: Influence scores of most influential users based on the topic #marketing 34

Figure 5: InflunceTracker scores for the same users ... 34

Figure 6: Influence scores of most influential urls on the topic “marketing” 35

Figure 7: Most similar hashtags to #bigdata .. 35

Figure 8: “Big data”-based Influence scores of most influential users on topic

“marketing” .. 35

Figure 9: Influence scores of urls for topic “bigdata“ .. 36

LIST OF TABLES

Table 1. Characteristics of Influence Estimation Systems ... 22

PROLOGUE

This thesis was developed for the master program of the Department of Informatics and
Telecommunications of the national and Kapodistrian University of Athens, in the area
of Information and Data Management. In this project, we present a neighborhood-based
recommender system, which is implemented using collaborative filtering algorithms.
We then combine the results from the collaborative filtering mechanisms with influence
estimation techniques in order to find topic-specific trends both for content and for
users.

Ιn this thesis project we use Apache spark,s an open-source cluster computing
framework which is used in order to achieve optimal scaling and to process large
volumes efficiently.

Finding Topic-Specific Trends and Influential Users in Social Networks

C. Daskalakis 13

1. INTRODUCTION

E-communities necessitate mechanisms for the identification of credible entities which

can be trusted and used in a particular context. Various reputation systems have been

proposed to effectively address this need [20], based on the evaluation of individual

transactions. In social networks (SNs), where there is an abundance of information, rich

social activity of many people and dynamic relationships and interactions of various

forms, apart from the need to find credible entities, new requirements and new

possibilities arise, which are related to the identification of influential entities, i.e. entities

which attract the interest of users and can provoke actions [21]. A vast amount of

research works have focused in the exploration of the concept of influence in social

networks, its estimation and its use [1], [2], [3], [15]. These works are usually based on

the various relationships and social actions of entities and focus on different aspects

such as identification of influential entities and content [1], [15], influence propagation

[28], influence maximization [7], combination of influence and trust [26]. Collaborative

Filtering (CF) mechanisms have also been widely studied and used to identify

similarities and to produce recommendations in SN-based applications [9], [16], [27].

SN applications include also the useful “hashtag” functionality, i.e. the possibility to tag

content using hashtags, which is a way of mapping content to specific topics. This

functionality, when combined with the vast amount of social network activity information,

creates the opportunity to explore influence in a more specialized context. Useful

examples of specialized influence estimation include finding influential news and

influential users regarding the specific topic. In this thesis, we present our work towards

answering the following questions: (a) Which are the most influential - popular internet

publications posted in SNs for a specific topic? (b) Which members of SNs are experts

or influential regarding a specific topic? Answers to these questions are vital in various

areas such as marketing, politics, social media analysis, and generally in all fields,

which need to quickly understand and respond to current trends.

Our approach towards answering the aforementioned questions combines influence

estimation techniques and collaborative filtering mechanisms. More specifically, it is

based on (a) the hashtag functionality and the assumption that a topic is represented by

one or more hashtags, (b) collaborative filtering techniques for finding similar hashtags

based on their common usage and the links assigned to them, and (c) analysis of social

network-based actions. The contribution of this work is thus a solution for finding topic-

specific trends both for content and for users: collaborative filtering is used for

Finding Topic-Specific Trends and Influential Users in Social Networks

C. Daskalakis 14

identifying a set of similar hashtags, which represent a topic, which are then used for

filtering user activity in order to find the topic-specific influential users and content. This

solution is, to the best of our knowledge, novel with respect to related works which

examine influence from different perspectives.

Taking as an assumption that a specific hashtag represents a specific topic and as

modern social media marketing dictates, assuming that SN users always use hashtags

that represent the same topic using different representations, we are going to find the

most influential users regarding a specific topic as well as the most influential link

regarding that specific topic.

For the purposes of this thesis we developed a system that takes as input posts with a

specific format. Our findings in the next chapters are focused on tweeter, but can be

used for any SN, given that the posts that will be given as input to our system will be

transformed in the common data model that our system supports.

In the following section we present related work which focuses on influence estimation

in SNs. This is followed by an overview of our approach and a description of its steps. In

the fourth section we present the implemented system and its evaluation using various

scenarios and in relation to a benchmark influence estimation tool and we discuss the

produced results. Our conclusive remarks follow in the last section.

.

Finding Topic-Specific Trends and Influential Users in Social Networks

C. Daskalakis 15

2. RECOMMENDER SYSTEMS

2.1 Overview

With the recent rise of social media as well as the smart phones and tablets, the amount

of information available on the Internet has grown exponentially. Useful information for

users is getting harder to be found. So, the need for a technology that recommends

interesting data to the user is necessary.

Recommender systems are used in order to produce a list of recommendations through

collaborative filtering techniques or content-based filtering approaches in order to help a

user discover products or content by predicting the user’s rating of each item and then

present the user with the produced list. With the term item we are referring to products

in an online shop, to posts on Facebook, to series on portals like Netflix. The

recommendations made by all these sites are specific for a given user or for a group of

users that have similar tastes.

CF techniques use a database of preferences for items by users to predict additional

topics or products a new user might like. In a typical CF scenario, there is a list of m

users and a list of n items, and each user, has a sub-list of these items that he/she has

already rated. The ratings can be indications such as 1-5 stars ratings, or indirect

interest like purchases, click-throughs etc.

There are many challenges for collaborative filtering tasks. CF algorithms are required

to have the ability to deal with highly sparse data, to scale in order to satisfy the

continuously increasing number of users and items, making recommendations in

acceptable by the systems times.

2.2 Collaborative filtering

Collaborative filtering is a technique commonly used to build personalized

recommendations on the web. Some popular websites that make use of the

collaborative filtering technology include Amazon, Netflix, iTunes, IMDB and many

others. One key reason why we need a recommender system in modern society is that

people have too many options to use from due to the prevalence of Internet.

Finding Topic-Specific Trends and Influential Users in Social Networks

C. Daskalakis 16

Collaborative filtering (CF) can be categorized into two main methods as user-based

collaborative filtering (memory-based) and item-based collaborative filtering (model-

based):

• Memory Based: This method makes use of user rating information to calculate the

likeness between the users or items. The first approaches’ basic idea is to

identify similar users in a system and propose items that these users would find

interesting and of use to them based on the preferences of other similar users.

The above systems are call User-Based recommendation systems. In contrast,

the second approach (item-item filtering) will take an item, in order to find the

most similar items, based on characteristics and propose them to users. This

kind of system can be found in a lot of online e-shops like Amazon. (“The users

that bought this item, also bought…”).

• Model Based: Models are created by using data mining, and the system takes

advantage of Machine Learning algorithms in order to predict users ratings of

unrated items.

2.2.1 Hybrid Techniques

All the above-mentioned types have strengths and weaknesses. In order to overcome

the weaknesses, hybrid techniques, that combine the aforementioned types of models

have been developed in order to meet the requirements of the different scenarios and to

increase performance. In general, the hybrid techniques are especially used to solve the

new user problem [30].

• Weighted recommender

The score of different recommender systems are combined into one single

individual recommendation. Before combining them, the scores are weighted

according to their influence on a specific item.

2.3 Collaborative Filtering Process

In a fundamental scenario, collaborative filtering processing can be mainly divided into

three steps:

• Collecting user ratings data matrix

• Selecting similar neighbors by measuring the rating similarity

Finding Topic-Specific Trends and Influential Users in Social Networks

C. Daskalakis 17

• Generating prediction for recommended items

2.3.1 User Ratings

In recommendation systems the input data are usually ratings by users for specific

items as a matrix m x n as shown in figure 1. Symbol m is the total number of users and

n is the total number of items. Rm,n is the rating of item n from user m.

Figure 1 User-Item ratings matrix

2.3.2 The formation of neighbors

The collaborative filtering approaches use statistical techniques to analyze the similarity

between users in order to create a set of users that have common interests called

neighbors. A set of similarity measures is a metric of relevance between two vectors.

User-based similarity is to compute the relevance between users as the values of two

vectors. In user based collaborative filtering, after the similarity is calculated, it is used in

building neighborhoods of the current target user.

In contrast, in item based collaborative filtering there are no neighborhoods formed after

the similarity scores are calculated. This is because the similarity between co-rated

items is computed only as the value of two vectors.

2.3.2.1 Cosine similarity

Cosine similarity measures the similarity between two vectors of an inner product

space. It is measured by the cosine of the angle between two vectors and determines

whether two vectors are pointing in roughly the same direction. If is often used to

measure document similarity in text analysis. In our work we use it to find the most

Finding Topic-Specific Trends and Influential Users in Social Networks

C. Daskalakis 18

similar topics using the hashtag functionality. We also use the Euclidean distance

similarity that we are going to explain in the next paragraph.

2.3.2.2 Euclidean distance

The basis of many measures of similarity and dissimilarity is Euclidean distance. The

distance between vectors X and Y is defined as follows:

Euclidean distance is basically the square root of the sum of squared differences

between corresponding elements of the two vectors. This measure is appropriate only

for data measured on the same scale. It is mostly used to compare profiles of

respondents across variables.

Finding Topic-Specific Trends and Influential Users in Social Networks

C. Daskalakis 19

3. REPUTATION AND INFLUENCE ESTIMATION SYSTEMS

3.1 Influence in SNs: An Implicit Reputation Measure

Reputation systems are systems that allow the users of an online community to rate

each other in order to build trust through the estimation of the reputation of users or

content. Reputation systems may also use implicit evaluations of user behavior, such as

social relationships or similarity between users. They were essential tools long before

the internet existed, with the word of mouth marketing being the main tool of such

systems. In the last years, a new class of reputation systems has emerged to support

social networks, which have changed the way users exchange services, opinions and

make a new kind of trust relationships with each other. Online social networks connect

users and facilitate content sharing in various ways and with various objectives, such as

content sharing, blogging etc. The concept of reputation has new and distinct meaning,

such as the influence that a user has developed towards other users. Effective

reputation systems must carefully choose which aspects of user behavior should be

tracked and reported.

In this thesis, we propose such a reputation system in order to find the most influential

users, content, based on specific topics using the hashtag functionality that is nowadays

part of almost all the online social networks.

3.2 Estimating Influence in SNs

Various works have focused on estimating influence of entities and content in social

networks. Influence is dealt with in various ways: e.g. as an indirect reputation concept

[15], [1], i.e. an indication of how much trust or popularity can be assigned to an entity or

content based on indirect information rather than on direct ratings, or as an indication of

action propagation [11], or from a social analysis perspective, [26], etc.. The various

approaches use data related with the social activity in the SN, i.e. the actions of users

towards other users or content in the SN. Most specifically, these approaches use

algorithms which combine (a) entity-centered characteristics related with social actions,

e.g. the number of likes of a post or the number of followers of a user [6] [11] and (b)

social action-related characteristics of entity pairs, e.g. the number of likes user A

assigns to posts of user B [26]. Trust relationships between two entities are also

incorporated in the latter case, while a usual representation of a SN in the context of

influence estimation is a graph where the nodes represent individual entities and the

Finding Topic-Specific Trends and Influential Users in Social Networks

C. Daskalakis 20

edges represent the links between two entities, accompanied with one or more weights

(each one for different kinds or relationships).

Along with the different kinds of information used, related works differentiate according

to: (a) influence estimation technique (b) requirements stemming from the kind of social

network where influence is estimated.

Various influence estimation techniques are found in the literature, such as probabilistic

[2], deterministic [15], graph-based [26], [6] and machine-learning-based (for influence

prediction) [11].

According to the specific kind of social network, different requirements for influence

estimation occur. For example, in microblogging social networks, such as Twitter [25],

influence is mostly related with a number of factors, such as recognition and preference

[1] ,[15] which are attributed to social network activity of users (numbers of shares, likes,

followers, the followers social activity, etc.). In other works, such as in review social

networks, e.g. Epinions [10], a combination of social activity information with trust

relationships is used [26].

In Section 3.2.1, we briefly present some works related with influence estimation in SNs

with a focus on the influence estimation technique and the data they use.

3.2.1 Literature on Influence estimation in SNs

• Agarwal et al. [1] deal with estimating the influence of bloggers in individual blogs.

Four factors are considered as vital for defining influence: recognition, activity

generation, novelty and eloquence. These properties are defined according to

specific post characteristics and the social activities of bloggers, and are then

combined for assessing the user’s influence.

• Anger et al. [3] measure influence of both users and content in Twitter. They take

into consideration various Twitter statistics, such as the numbers of followers,

tweets, retweets and comments, and they estimate separately two measures,

one based on the content and one based on the action logs. Similarly, to this, the

work in [15] presents an influence estimation system both for Twitter hashtags

and users based on various social activity-based data. Further performance

indicators for Twitter are presented in [3] ,including Klout [14], a widely accepted

influence estimation tool for social networks.

Finding Topic-Specific Trends and Influential Users in Social Networks

C. Daskalakis 21

• A different approach for finding the most important URLs regarding a specific

topic in Twitter is proposed by Yazdanfar et al.[27], who reason about the

importance of url recommendation in Twitter and implement such

recommendations using collaborative filtering techniques and a three-

dimensional matrix of users, urlurls and hashtags.

• Ahmed et al. [2] integrate the concept of trust in their approach for estimating

influence probabilities. Their suggested algorithm discovers the influential nodes

based on trust relationships and action logs of users. Varlamis et al. [26]

integrate also trust relationships in their influence estimation mechanism, which

uses both social network analysis metrics and collaborative rating scores, where

the latter take into account both the direct and the indirect relationships and

actions between two users.

• In [11] various influence models are constructed for a number of different time

models and various algorithms used in the literature are analyzed and discussed.

Bento [6] implements various social network analysis algorithms for finding

influential nodes in location-based SNs and in static SNs.

From the perspective of influence as an indirect reputation concept, we have used a

taxonomy of indirect reputation systems [15], in order to present the specific

characteristics of the aforementioned works in Table 1, with a focus on the information

exploited and the influence estimation technique.

Our approach focuses on topic-specific influence, but unlike topic-specific

recommendation systems for SNs, such as [6], it is not restricted to collaborative

filtering techniques. Furthermore, it is not restricted SN activity–based influence

estimation, which is adapted in [2], [1],[15]. It comprises rather a specialized influence

estimation which combines the user activity characteristics responsible for influence

estimation with collaborative filtering techniques for the topic-specific filtering of posts.

Finding Topic-Specific Trends and Influential Users in Social Networks

C. Daskalakis 22

Table 1. Characteristics of Influence Estimation Systems

“Social
Networking
Metrics”-
Varlamis et al.
[26]

“Measuring
Influence On
Twitter”-
Anger et al.
[3]

“Influential
bloggers”-
Agarwal et al.
[1]

“Influential
nodes from
trust
network”-
Ahmed et al.
[2]

“Learning
influence
probabilities”-
[11]

“Link
Recommender”-
Yazdanfar et
al.[27]

Description of
influence
estimation
technique

 (-) calculates
score by user's
position on the
SN Graph
(-) calculates
user's opinion
score by the
user's reviews
to articles and
other users

Takes into
consideration
various
Twitter
statistcs that
calculate
different
types of
Influence and
combines
them in one
model

Influence of
bloggers
based on the
influence of
one’s posts
according to -
- -post
characteristics
and

-social
activities of
bloggers, e.g.
references to
a post

Influence
probabilities
are
estimated
based on
trust
relationships
and action
logs.

Calculates
influence of a
user and his
influence
probability
for static and
continuous
time model

Produces url
recommendations
based on specific
topics

Target User
User and
Content

User User User Content

Scope

Combination
of
Personalized
and Global

Global Global Global Global Global

Information
Used

Information
Regarding
User position
on SN Graph
and Metrics
about users
each other
opinions

Number of
followers,
tweets,
retweets,
mentions,
comments

Various

information

regarding

social activity

Trust
relatinships
and action
logs

Action log
about user's
interactions
and graph of
the SN

Information
related to the use
of hashtags

Key
Computational
Comonents

Sums all SN
Graph position
information
with the
opinion scores
and each value
weighted

Adds
conversation-
oriented and
content-
oriented
values
separately
and divides
the result by
two (2)

Statistic

functions

Influence

probabilities

based on

action log

and trust

relationships

Suggested

algorithm

discovers

the

influential

nodes

Probability
estimation
using

Collaborative-
filtering
techniques

Display
Method

Ranked list of
users

Ranked list of
users and
content

Ranked list of
users

Ranked list

of users

Influence
Matrix, Table
of activated
(influenced)
users

Ranked list of urls

Finding Topic-Specific Trends and Influential Users in Social Networks

C. Daskalakis 23

4. PROPOSED SYSTEM

4.1 Estimating Influence on a Specific Topic

The goal of the proposed approach is to estimate influence of users and urls regarding
a specific topic, and to find the most influential ones among them. The idea is that we
first choose a hashtag which is representative of the topic of interest and then find a set
of hashtags which are similar to the initial hashtag. We then aggregate social network
metrics for the tweets which have used these hashtags in order to estimate influence
scores for the users which have posted these tweets and for the urls which have been
used in them.

For the purposes of this thesis we focused on micro blogging systems like Twitter [25];
however, the proposed approach can be generalized due to the fact that its elements
(e.g. hashtags, numbers of likes and followers) are common to most social networks.

Here is a step-by-step description of the approach we follow:

• Step 1: Given a specific hashtag hi, we first find the N-top similar hashtags based
on collaborative filtering techniques which take into consideration the level of
usage of hashtags by users and the usage of common urls together with
hashtags, as explained in section 4.1. We define H as the set containing hi and
the most similar hashtags to hi.

• Step 2: We collect the sets of tweets, users and urls which have used at least one
hashtag belonging to H, as analytically presented in section 4.2.

• Step 3: Based on the above sets, we find the most influential users. The criteria for
estimating a user’s influence are based on social activity-based metrics related to
tweets which contain the specific url. This step is presented in section 4.3.

• Step 4: In a similar way, we use the above sets to find the most influential urls,
using various social activity-based criteria, as described in section 4.4.

Finding Topic-Specific Trends and Influential Users in Social Networks

C. Daskalakis 24

4.2 Finding Similar Hashtags for Topic Representation

In order to identify a set of hashtags which represent a topic, we use an initial hashtag

“h” and try to find hashtags which are similar to h, using two criteria for assessing

similarity: (a) the number of common links that two distinct hashtags have (if two

hashtags have the same number of references to a link, this link is related to the same

level to these hashtags) and (b) the level of their usage by users who have used them in

common (if two users have used them with similar frequency this means that these

hashtags are of the same level of interest for the users, and are considered similar in

this context). We thus define two similarity measures for hashtags according to the two

criteria and combine them in one. Specifically, we use the similarity measures (1) and

(2) that appear below, in order to estimate the Euclidean distance of two hashtags

regarding the two criteria.

 (1)

where

• hi, hj are two distinct hashtags,

• L is the set of the links (urls) which have been used in at least one tweet of each of

the hashtags hi, hj

• l is a url belonging to L,

• rhi,l, rhj,l are the numbers of tweets which have used the link l and have also used

the hashtag hi and hj, and

• is the similarity of hashtags hi, hj regarding their usage of

common links.

 (2)

where

Finding Topic-Specific Trends and Influential Users in Social Networks

C. Daskalakis 25

• hi, hj are two distinct hashtags,

• U is the set of the users which have used the two hashtags in their tweets,

• u is a user belonging in U,

• rhi,u, rhj,u are the numbers of tweets of user u which have used the hastag hi and hj,
and

• is the similarity of hashtags hi, hj regarding their common usage

by users.

We also use the cosine similarity measure presented in (3) to estimate the similarity

between two hashtags according to the criteria of the level of interest and the number of

commonly used urls ((hi,hj)user, and (hi,hj)urlr accordingly):

 (3)

where

• is the cosine similarity of hashtags hi, hj regarding their common

urls,

• is the cosine similarity of hashtags hi, hj regarding their common

usage by users,

• hi, hj are two distinct hashtags,

• n is the number of users which have both used the two hashtags (when

 is estimated) or the number of the common urls used by the two

hashtags (when is estimated),

• k is a user (when is estimated) or a url (when is

estimated),

• rik, rjk are the numbers of times a user k has used the hashtags hi, hj respectivley

(when is estimated) or the numbers of times a url k has been

used in hashtags hi and hj respectively (when is estimated)

We use either one of the above similarity measures (Cosine or Euclidean distance-

based similarity), or average measures to define final similarity metrics for user-based

similarity (sim(hi,hj)user) and url-based similarity (sim(hi,hj)url). We then combine the two

similarity measures using a weighted average to estimate the similarity between two

hashtags.

Finding Topic-Specific Trends and Influential Users in Social Networks

C. Daskalakis 26

 (4)

where

• , are the weights we use for the two kinds of similarity, and

• =1

We thus find a list of top-N hashtags which have the highest similarity with the original
hashtag hi. We define as H, the set which contains hi and the N hashtags of this list.
The original set of hashtags which are examined for the extraction of H can be obtained
by various ways e.g. Twitter Streaming API [18], Twitter Rest API [24] Twitter widgets
[23]. The selection of the original hashtag hi from the available hashtags can be done
either based on personalized criteria, e.g. one can select a hashtag which she believes
as representative of a topic, or by searching available hashtags with text similarity
criteria.

4.3 Collection of Data

Having acquired the set H of hashtags, which represent a topic, we collect the following

data, which are needed for finding the influential users and urls in the context of a

specific topic:

1. The set TH of all the tweets which have at least one hashtag belonging to the set H.

2. The set UH of all users which have tweeted at least one tweet belonging to the set

TH, i.e. users which have used hashtags belonging to H.

3. The set LH of all urls which have been attributed to one or more tweets belonging to

the set TH (or equivalently to one or more hashtags belonging to the set H).

In the following sections, we describe the ways we use to extract lists of influential users

and influential urls regarding a specific topic.

4.4 Finding Influential Users on a Specific Topic

For each one of the users belonging to in UH we estimate her influence score regarding

each hashtag belonging to H, based on the triple: (weighted number of likes of related

tweets, weighted number of retweets of related tweets, absolute number of user’s

followers). The triple is used to represent a number of criteria which we consider as

important for determining influence. These criteria are presented in the rest of this

Finding Topic-Specific Trends and Influential Users in Social Networks

C. Daskalakis 27

section, along with the related metrics – formulae used for the estimation of a user’s

influence regarding a hashtag.

Estimating a User’s Influence on a Specific Hashtag. The criteria for estimating a

user’s influence regarding a specific hashtag are described below, together with the

metrics which represent them.

Adaptation: The total number of retweets a user has got for a specific topic (hashtag)

shows the interest of other users to adapt or share the user’s posts. We are interested

in the adaptation level of ui’s tweets containing hi, compared to the general level of

adaptation that tweets containing hi generate. We thus use the following adaptation

metric:

 = the ratio of the number of retweets of the posts of a specific user u i containing

a specific hashtag hi, to the total number of retweets which contain hi. This metric shows

the relative interest of users to share ’s tweets compared to the total amount of

interest that related tweets generate.

Preference: A user’s influence can be measured by the number of her followers; the

more friends a user has got, the more she is trusted / preferred.

Endorsement: (concerning a specific topic expressed by a hashtag hi): In today’s social

networks every post of a user can be endorsed by other users. In Facebook you can

endorse the post of a user by reacting to it (like, Wow, etc.), in Twitter you can declare

you like it. The more users endorse a post, the more influence this post has over users.

This gives us an insight of how valuable is the user’s opinion on some topic. We are

interested in the value of the user’s opinion is on a topic, in relation to the value of other

users’ opinions on that topic. For the endorsement metric we have thus used the

following formula:

= the ratio of the number of favorites that ’s tweets containing a hashtag hi

have been assigned, to the total number of favorites assigned to tweets which contain

Finding Topic-Specific Trends and Influential Users in Social Networks

C. Daskalakis 28

.This metric shows the relative endorsement in user’s tweets compared to the total

endorsement for tweets containing .

We are using a weighted mean to estimate the influence score of a user ui concerning a

specific hashtag hj, as a combination of the result scores of the above three influence

factors:

 (5)

where

• , , are the weights we assign to the factors described above, and

• .

The choise of the values of these weights should be done according to the importantce

we want to give to each criterion. Machine learning methods can also be used to find

the most appropriate values for the weights.

Estimating a User’s Influence on a Topic. Having estimated the individual influence

score of users regarding each (Top-N similar) hashtag of the hashtag set H which is

representative of a topic, according to the previous section, we estimate the total

influence score of every user using the following formula:

 (6)

where

• is the influence score of a user ,

• is the influence score of a user ui concerning a specific

hashtag hj, where hj belongs to the set of the top N similar hashtags H and has the

jth order in similarity with the initial hashtatg), and

Finding Topic-Specific Trends and Influential Users in Social Networks

C. Daskalakis 29

• is the weight assigned to the score of each hashtag ,

We have adjusted the values of weighs which we assign to the various

InfUserHashtag scores, depending on the similarity of the specific hashtag to the initial

hashtag according to (4). Specifically, considering that,

 , …, are ordered according to their similarity

with the initial hashtag, then the first score will refer to the initial hashtag itself (h1) and

its weight w1 will be estimated according to (7) and will be used as reference for

estimating the other weights, in a way that .

 (7)

Where k: 2k <= N * 2 and 2 k+1 > N * 2Using this way of weight estimation, we achieve

1and we give higher weights to the influence scores of the most

similar hashtags.

We finally extract the most influential users regarding the topic based

on the estimated influence of users.

4.5 Finding Influential Urls on a Specific Topic

As explained in section 3.2, for each one of the hashtags belonging to the set of

similar hashtags, we find the links which have been used with them (set) and the

related tweets (set). Then, for each link l of we find the subset of , which

contain the tweets of which have used this link. We also find the numbers of likes and

retweets of the tweets belonging in .

1 When for an integer number k, then .

Finding Topic-Specific Trends and Influential Users in Social Networks

C. Daskalakis 30

We extract thus a list with recommended links, i.e. the ones with the highest influence

score, which depends on the number of likes and retweets (of the relative tweets that

contain them) and the number of tweets that contain these links, according to formula

(5).

 (8)

where

• is the number of likes on tweets belonging to ,

• is the number of retweets of tweets belonging to ,

• is the number of tweets belonging to

• wlikes, wretweets are the weights of the numbers of likes and retweets respectively,

related to the total number of topic-related tweets.

We consider these links as the most influential ones for a specific topic, since they are

the ones which are mapped to the most related hashtags to the topic and also are

attributed to the highest social activity.

Finding Topic-Specific Trends and Influential Users in Social Networks

C. Daskalakis 31

5. IMPLEMENTATION OF THE PROPOSED SYSTEM

5.1 Overview

We have developed a system that implements the proposed approach, as a data

analysis platform for Twitter, which features three core functionalities in Twitter:

• Finding the most similar topics (hashtags) using collaborative filtering techniques
based on the posts gathered from a social network.

• Finding the most influential links in terms of popular internet publications, using the
information extracted from the above step.

• Finding the most influential users for a specific toping, exploiting the set of similar
topics from the first step.

In the following subsections we present the technology used, the collection of real social

network data and the evaluation tests.

5.2 Technology and Datasets

For the implementation of this big data analysis platform we have created an application

that leverages the possibilities provided by the Apache Spark framework [4], as well as

the Java programming language. Apache Spark is used in order to achieve optimal

scaling and the possibility to process large volumes of data faster and more efficiently.

For the purposes of this thesis we used the Twitter Rest API [24] in order to collect the

last 1 to 3.300 tweets for different groups of Twitter users. The first group consisted of

the most followed Twitter accounts. The second one had all the users that are

considered the most influential ones for the Twitter platform according to [22] and the

third one consisted of random Twitter users with a count of total users equal to 52. We

used users from these three selected groups for our tests in order to have a wide range

of users with different levels of popularity and influence in the social network. The

tweets collected where filtered in order to contain at least one hashtag and were stored

in the following format:

• UserId|TweetId|CreatedDate|Lang|text|FavCount|ShareCount|#|…|#|url|…|url|

For each one of the aforementioned users, we stored the following data concerning

them:

• UserId|FollowersCount|FriendsCount|StatusesCount

We note that we intend to expand our experimental evaluation in larger datasets,

leveraging the scalability possibilities offered by Apache Spark, in order (a) to extract

Finding Topic-Specific Trends and Influential Users in Social Networks

C. Daskalakis 32

results for influential urls and users in various scenarios involving different topics and

user groups, and (b) to evaluate the performance of the system, e.g. running times in

big data volumes.

5.3 Finding Topic-Specific Hashtags and Influential Users and Urls

From the 72.029 collected tweets we were able to extract 40.924 pairs of hashtags that

(a) were used by at least two users in their tweets and (b) had at least one url in

common. For each pair we were then able to define their similarity scores according to

the formulae (1)-(4).

For estimating the total similarity between two hashtags, we chose the Cosine similarity

metric, and used formula (4), with the following weight values: wsimuser=0,4 and

wsimurl=0,6, considering that the similarity score of two hashtags regarding their common

urls of greater importance than their similarity concerning their common level of usage

by users. We note that the reason we chose to use the Cosine similarity metric for

estimating both similarity components, is its suitability when we are interested in the

cosine of the rating vectors [5], i.e. the similarity between their trends (in our case the

trends of the url rating vectors and the trends of the user rating vectors).

Influential Users based on a Specific Topic. We have examined the influence scores

of users for various topics and have compared our results with the scores provided by

the user influence estimation tool InfluenceTracker [14] for the same users. We have

chosen InfluenceTracker as a benchmark for our comparison, as it is included in the

state of the art of influencer discovery and Twitter [19]. In the rest of this section we

present preliminary evaluation results for the topics “marketing” and “bigdata”

considering they are represented by the initial hashtags #marketing and #bigdata

respectively. We have thus first extracted from our dataset the top most similar

hashtags for #marketing and present them in Fig. 1, along with their similarity scores

based on (4).

Finding Topic-Specific Trends and Influential Users in Social Networks

C. Daskalakis 33

Figure 3. 10 Most similar hashtags with #Marketing

Fig. 3 presents the influence scores of the top ten most influential users regarding the

topic “marketing”, considering this topic is represented by the hashtag #marketing and

its most similar hashtags presented above. For the same users we have also estimated

the scores produced by InfluenceTracker [17] [13] and present them in Fig. 3. The

InfluenceTracker score combines the numbers of a user’s followers, followees and

tweets. Its lowest value is "0", while the highest has no upper limit. The higher this value

is, the more impact has an account on the social network [13].

Figures 4 and 5 give different insights on the users, as InfluenceTracker takes into

consideration all the tweets of a user, whereas the proposed systems is based on topic-

related tweets. Differences are also due to the different time periods of the tweets that

Figure 5. InflunceTracker scores for the same
users

Figure 4. Influence scores of most
influential users based on the topic

#marketing

Finding Topic-Specific Trends and Influential Users in Social Networks

C. Daskalakis 34

were used in the two metrics, as InfluenceTracker takes into consideration the last 100

tweets of a user, whereas our metric is based on the collected dataset.

Influential Links based on a Specific Topic. In order to extract the most influential

links for a specific topic we have implemented the algorithm described in Section 3.4.

We have used as an example the topic “marketing” and the urls with the highest

influence scores are shown in Fig.6. These urls redirect to articles written about

marketing, and content marketing in social media. We have used as a second example

the hashtag #bigdata assigning to the topic “big data”. We searched for hashtags similar

to #bigdata and have identified the similar hashtags which are shown in Fig. 7. We have

then estimated the influence scores of the users identified in the previous example as

the most influential users regarding the topic “marketing”. The results of these users’

influence scores are presented in Fig. 8. It is evident that influence scores of the users

differ according to the topic examined. We can see that for the “big data” topic the same

users which were first examined for the topic “marketing” have different influencer

scores. For example user uid1 that was the most influencing user in the marketing topic

now has one of the lowest scores. Furthermore, users uid3, uid5 and uid7 have zero

influence score in this specific topic, whereas they were considerably influencing

regarding the topic “marketing”. We also found and present in Fig. 9 the most influential

urls regarding “big data”. These urls redirect to articles related to the hashtags

(#smartcities, #healthtech, etc.) that our platform identified as mostly related with the

used topic.

Figure 6. Influence scores of most influential urls on the topic “marketing”

Finding Topic-Specific Trends and Influential Users in Social Networks

C. Daskalakis 35

Figure 7. Most similar hashtags to #bigdata

 Figure 8. “Big data”-based Influence scores of most influential users on topic

“marketing”

 Figure 9. Influence scores of urls for topic “bigdata“

Finding Topic-Specific Trends and Influential Users in Social Networks

C. Daskalakis 36

6. CONCLUSIONS

In this thesis we describe the design and implementation of a recommendation system

for influential urls and influential users based on specific topics in Social Networks

(SNs). For the purposes of our work, we use the hashtag functionality of SNs and,

based on the assumption that the hashtags represent specific topics, we use

collaborative techniques for identifying a pool of similar hashtags that correspond to a

specific topic. We then use social activity based metrics for estimating the influence of

urls and users by taking into consideration the identified hashtags, so as to achieve

specialization on topics. For the implementation, the Apache Spark framework was

used for achieving scalable searches and data processing. Results for specific topics

based on the datasets we have extracted from Twitter were presented and analyzed.

The benchmark influence estimation tools InfluenceTracker [13] [17] was used for a

comparison of our results with the influence values this system estimates for the most

influential users. Based on the preliminary evaluation of our results and the study of

related work, we consider that our system comprises an innovative approach towards

topic-specific influence estimation, and specifically towards revealing topic-specific

trends in content (as the most influential urls) and topic-specific influencers. We note

that further tests are included in our future plans for (a) examining more use cases with

bigger data sets and evaluating the performance of the proposed system, (b) fine tuning

the various weights and components of our system, and (c) comparing the results and

the performance of the proposed system with other influence tools for SNs and with

topic specialization in mind.

Finding Topic-Specific Trends and Influential Users in Social Networks

C. Daskalakis 37

ABBREVIATIONS AND TERMS

SNs Social Networks like Twitter, Facebook,

Instagram etc.

URL Uniform Resource Locator

Influencer An individual who can drive another

person, or a community of people, to take

some kind of action

Twitter Twitter is a 'microblogging' system that

allows you to send and receive short posts

called tweets

Hashtag (#) A hashtag is simply a relevant word or

series of characters preceded by the #

symbol. Hashtags help categorize

messages and can make it easier for other

Twitter users to search for tweet

Apache Spark Apache Spark is a unified analytics engine

for big data processing, with built-in

modules for streaming, SQL, machine

learning and graph processing.

Finding Topic-Specific Trends and Influential Users in Social Networks

C. Daskalakis 38

APENDIX Ι

Code to subscribe to Twitter’s live feed and save tweets to files that contain maximum

200000 tweets, using Twitter4j framework.

public class SubscribeToTwitterLiveFeedAndSaveTweets {

 public static int numOfFiles = 4;

// public static int numOfFilesUser = 0;

 public static int numOfLines = 0;

// public static int numOfLinesUser = 0;

 public static BufferedWriter outTweets;

// public static BufferedWriter outUsers;

 public static void closeWriter(BufferedWriter out){

 try {

 out.close();

 } catch (IOException ex) {

java.util.logging.Logger.getLogger(SubscribeToTwitterLiveFeedAndSaveTweets.class.g

etName()).log(Level.SEVERE, null, ex);

 }

 }

 public static BufferedWriter changeFiles(BufferedWriter out,int wh){

 try {

 if(wh == 0){

 numOfFiles++;

Finding Topic-Specific Trends and Influential Users in Social Networks

C. Daskalakis 39

 if(numOfFiles == 20)

 exit(0);

 out = new BufferedWriter(new OutputStreamWriter(new

FileOutputStream("06042018/Tweets"+numOfFiles+".txt"),"UTF-8"));

 }

// else{

// numOfFilesUser++;

// out = new BufferedWriter(new FileWriter("Users"+numOfFiles+".txt"));

// }

 } catch (IOException ex) {

java.util.logging.Logger.getLogger(SubscribeToTwitterLiveFeedAndSaveTweets.class.g

etName()).log(Level.SEVERE, null, ex);

 return null;

 }

 return out;

 }

 public static void main(String[] args) throws TwitterException, IOException{

 StatusListener listener = new StatusListener(){

 public void onStatus(Status status) {

 if(numOfLines == 200000){

 numOfLines = 0;

 closeWriter(outTweets);

 outTweets = changeFiles(outTweets, 0);

 }

// if(numOfLinesUser == 200000){

Finding Topic-Specific Trends and Influential Users in Social Networks

C. Daskalakis 40

// numOfLinesUser = 0;

// closeWriter(outUsers);

// outUsers = changeFiles(outUsers,1);

// }

 if(status.getRetweetedStatus() == null){

 try {

 if((status.getHashtagEntities() != null && status.getHashtagEntities().length

> 0)

 && (status.getURLEntities() != null && status.getURLEntities().length

> 0)){

 outTweets.write(status.getUser().getId()+"|"+status.getId()+

 "|"+status.getCreatedAt()+"|"+status.getLang()+

 "|"+status.getFavoriteCount()+"|"

 +status.getRetweetCount()+"|");

 for(HashtagEntity he :status.getHashtagEntities())

 outTweets.write("#"+he.getText()+"|");

 for(URLEntity ur :status.getURLEntities())

 outTweets.write(ur.getURL()+"|");

 if(numOfLines < 200000)

 outTweets.newLine();

 //

outUsers.write(status.getUser().getId()+"|"+status.getUser().getName());

 // outUsers.newLine();

 numOfLines++;

 }

// numOfLinesUser++;

Finding Topic-Specific Trends and Influential Users in Social Networks

C. Daskalakis 41

 } catch (IOException ex) {

java.util.logging.Logger.getLogger(SubscribeToTwitterLiveFeedAndSaveTweets.class.g

etName()).log(Level.SEVERE, null, ex);

 return;

 }

 }

 }

 public void onDeletionNotice(StatusDeletionNotice statusDeletionNotice) {}

 public void onTrackLimitationNotice(int numberOfLimitedStatuses) {}

 public void onException(Exception ex) {

 ex.printStackTrace();

 }

 @Override

 public void onScrubGeo(long userId, long upToStatusId) {

 throw new UnsupportedOperationException("Not supported yet."); //To change

body of generated methods, choose Tools | Templates.

 }

 @Override

 public void onStallWarning(StallWarning warning) {

 throw new UnsupportedOperationException("Not supported yet."); //To change

body of generated methods, choose Tools | Templates.

 }

 };

Finding Topic-Specific Trends and Influential Users in Social Networks

C. Daskalakis 42

 outTweets = changeFiles(outTweets,0);

// outUsers = changeFiles(outUsers,1);

 TwitterStream twitterStream = new TwitterStreamFactory().getInstance();

 twitterStream.addListener(listener);

 // sample() method internally creates a thread which manipulates TwitterStream and

calls these adequate listener methods continuously.

 twitterStream.sample();

 }}

Finding Topic-Specific Trends and Influential Users in Social Networks

C. Daskalakis 43

APPENDIX ΙΙ

Code written for cosine similarity.

private static final

PairFunction<Tuple2<HashTagHashTagPair,Iterable<RatingPair>>,HashTagHashTagP

air,Float> COSINE_SIMILARITY =

 new

PairFunction<Tuple2<HashTagHashTagPair,Iterable<RatingPair>>,HashTagHashTagP

air,Float>(){

 HashTagHashTagPair hhtp;

 float sum_mm = 0;

 float sum_nn = 0;

 float sum_mn = 0;

 float numerator = 0;

 float score ;

 float denominator = 0;

 @Override

 public Tuple2<HashTagHashTagPair, Float>

call(Tuple2<HashTagHashTagPair, Iterable<RatingPair>> t) throws Exception {

 sum_mm = 0;

 sum_nn = 0;

 sum_mn = 0;

 numerator = 0;

 denominator = 0;

 t._2.forEach(x->{

 sum_mm += x.getRating1() * x.getRating1();

 sum_nn += x.getRating2() * x.getRating2();

Finding Topic-Specific Trends and Influential Users in Social Networks

C. Daskalakis 44

 sum_mn += x.getRating1() * x.getRating2();

 });

 numerator = sum_mn;

 score = 0;

 denominator = (float) ((float) Math.sqrt(sum_mm) * Math.sqrt(sum_nn));

 if(denominator != 0)

 score = ((float)numerator/(float)denominator);

 return new Tuple2<HashTagHashTagPair, Float>(t._1,score);

 }

 };

Code written for Euclidean similarity.

private static final

PairFunction<Tuple2<HashTagHashTagPair,Iterable<RatingPair>>,HashTagHashTagP

air,Float> EUCLIDEAN_SIMILARITY =

 new

PairFunction<Tuple2<HashTagHashTagPair,Iterable<RatingPair>>,HashTagHashTagP

air,Float>(){

 HashTagHashTagPair hhtp;

 float sum_euc = 0;

 float score ;

 float finalScore;

 @Override

 public Tuple2<HashTagHashTagPair, Float>

call(Tuple2<HashTagHashTagPair, Iterable<RatingPair>> t) throws Exception {

 sum_euc = 0;

Finding Topic-Specific Trends and Influential Users in Social Networks

C. Daskalakis 45

 score=0 ;

 finalScore = 0;

 t._2.forEach(x->{

 sum_euc += (x.getRating1() - x.getRating2())*(x.getRating1() -

x.getRating2());

 });

 score = (float) Math.sqrt(sum_euc);

 finalScore = (float)1/(float)(1+score);

 return new Tuple2<HashTagHashTagPair, Float>(t._1,finalScore);

 }

 };

Code for weighted average.

private static final

PairFunction<Tuple2<HashTagHashTagPair,Tuple2<Float,Float>>,HashTagHashTagP

air,Float> FINAL_SCORE =

 new

PairFunction<Tuple2<HashTagHashTagPair,Tuple2<Float,Float>>,HashTagHashTagP

air,Float>(){

 float finalScore = 0;

 @Override

 public Tuple2<HashTagHashTagPair, Float>

call(Tuple2<HashTagHashTagPair, Tuple2<Float, Float>> t) throws Exception {

 finalScore = 0;

Finding Topic-Specific Trends and Influential Users in Social Networks

C. Daskalakis 46

 finalScore = (float)((weightA*t._2._1) + (weightB*t._2._2)) /

(weightA+weightB);

 return new Tuple2<HashTagHashTagPair,Float>(t._1,finalScore);

 }

};

Code to Identify influencers (example for #marketing)

String master = "local[*]";

 String hash = "#marketing";

 /*

 * Initializes a Spark context.

 */

 System.setProperty("hadoop.home.dir", "C:\\winutils\\");

 SparkConf conf = new SparkConf()

 .setAppName(Example.class.getName())

 .setMaster(master);

 JavaSparkContext sc = new JavaSparkContext(conf);

 sc.setLogLevel("ERROR");

 // System.setProperty("hadoop.home.dir", "c:\\winutils\\");

 JavaPairRDD<HashTagHashTagPair,Float> scores = null ;

 String inputFilePath = "Users/*";

Finding Topic-Specific Trends and Influential Users in Social Networks

C. Daskalakis 47

 JavaRDD<String> userInfo;

 userInfo = sc.textFile(inputFilePath);

 JavaRDD<Tuple2<Long,Integer>> userFollowersTemp = userInfo.map(x->{

 String[] s = (x.split("\\|"));

 return new Tuple2<Long,Integer>(Long.valueOf(s[0]),Integer.valueOf(s[1]));

 });

 JavaPairRDD<Long,Integer> userFollowers =

userFollowersTemp.mapToPair(new

PairFunction<Tuple2<Long,Integer>,Long,Integer>(){

 @Override

 public Tuple2<Long, Integer> call(Tuple2<Long, Integer> t) throws Exception {

 return new Tuple2<Long,Integer>(t._1,t._2);

 }

 });

// userFollowers.foreach(x->{

// TaskContext tc = TaskContext.get();

// System.out.println("userFollowers "+tc.taskAttemptId()+" "+x);

// });

//

 //Get the hashtag hashtag pairs with their similarity score from the files

previously written

 JavaRDD<Tuple2<HashTagHashTagPair,Float>> hhf = sc.objectFile("scores");

Finding Topic-Specific Trends and Influential Users in Social Networks

C. Daskalakis 48

 scores = hhf.mapToPair(new

PairFunction<Tuple2<HashTagHashTagPair,Float>,HashTagHashTagPair,Float>(){

 @Override

 public Tuple2<HashTagHashTagPair, Float>

call(Tuple2<HashTagHashTagPair, Float> t) throws Exception {

 return new Tuple2<HashTagHashTagPair,Float>(t._1,t._2);

 }

 });

 //Filter RDD with the hashtag in question

 scores = scores.filter(new

Function<Tuple2<HashTagHashTagPair,Float>,Boolean>(){

 @Override

 public Boolean call(Tuple2<HashTagHashTagPair, Float> t1) throws Exception

{

 if(t1._1.getHashTag1().equalsIgnoreCase(hash) ||

t1._1.getHashTag2().equalsIgnoreCase(hash)){

 return true;

 }else

 return false;

 }

 });

 //Revert scores in order to sort them

 JavaPairRDD<Float,HashTagHashTagPair> revertedScores =

scores.mapToPair(new

PairFunction<Tuple2<HashTagHashTagPair,Float>,Float,HashTagHashTagPair>(){

Finding Topic-Specific Trends and Influential Users in Social Networks

C. Daskalakis 49

 @Override

 public Tuple2<Float, HashTagHashTagPair>

call(Tuple2<HashTagHashTagPair, Float> t) throws Exception {

 return new Tuple2<Float,HashTagHashTagPair>(t._2,t._1);

 }

 });

 revertedScores = revertedScores.sortByKey(false);

// revertedScores.foreach(x->{

// TaskContext tc = TaskContext.get();

// System.out.println("reverted "+tc.taskAttemptId()+" "+x);

// });

 //Take the top 10 similar hashtags

 List<Tuple2<Float,HashTagHashTagPair>> topTen = revertedScores.take(10);

 JavaRDD<Tuple2<Float,HashTagHashTagPair>> temp = sc.parallelize(topTen);

 //Make an rdd that has only the hashtags that we need eg the most similar ones

 JavaPairRDD<String,Float> finTopTen = temp.mapToPair(new

PairFunction<Tuple2<Float,HashTagHashTagPair>,String,Float>(){

 @Override

Finding Topic-Specific Trends and Influential Users in Social Networks

C. Daskalakis 50

 public Tuple2<String, Float> call(Tuple2<Float, HashTagHashTagPair> t)

throws Exception {

 return new

Tuple2<String,Float>(t._2.getHashTag1().equalsIgnoreCase(hash)?t._2.getHashTag2():

t._2.getHashTag1(),t._1);

 }

 });

// finTopTen.foreach(x->{

// TaskContext tc = TaskContext.get();

// System.out.println("finTopTen "+tc.taskAttemptId()+" "+x);

// });

 //Collect them as a java map in order to user them below.

 Map<String,Float> msf = finTopTen.collectAsMap();

// msf.put(hash,new Float(1.2));

 HashMap<String,Float> finMsftemp1 = new HashMap(msf);

 finMsftemp1.put(hash,new Float(1.2));

 JavaRDD<Tuple2<String,Integer>> hallLikes = sc.objectFile("HashTagAllLikes");

 //edw 8a ftiaxtei ta maps me ta 11 hashtags pou psaxnoume kai ola tous ta likes

kai shares.

 JavaPairRDD<String,Integer> topTenHashLikes = hallLikes.mapToPair(new

PairFunction<Tuple2<String,Integer>,String,Integer>(){

Finding Topic-Specific Trends and Influential Users in Social Networks

C. Daskalakis 51

 @Override

 public Tuple2<String, Integer> call(Tuple2<String, Integer> t) {

 return new Tuple2<String,Integer>(t._1,t._2);

 }

 }).filter(new Function<Tuple2<String,Integer>,Boolean>(){

 @Override

 public Boolean call(Tuple2<String, Integer> t1) throws Exception {

 if(finMsftemp1.get(t1._1) != null)

 return true;

 return false;

 }

 });

 Map<String,Integer> finTopTenLikesHashTagstemp =

topTenHashLikes.collectAsMap();

 HashMap<String,Integer> finTopTenLikesHashTags = new

HashMap(finTopTenLikesHashTagstemp);

 JavaRDD<Tuple2<String,Integer>> hashShares =

sc.objectFile("allHashTagsShares");

 JavaPairRDD<String,Integer> topTenHashShares = hashShares.mapToPair(new

PairFunction<Tuple2<String,Integer>,String,Integer>(){

 @Override

 public Tuple2<String, Integer> call(Tuple2<String, Integer> t) {

 return new Tuple2<String,Integer>(t._1,t._2);

Finding Topic-Specific Trends and Influential Users in Social Networks

C. Daskalakis 52

 }

 }).filter(new Function<Tuple2<String,Integer>,Boolean>(){

 @Override

 public Boolean call(Tuple2<String, Integer> t1) {

 if(finMsftemp1.get(t1._1) != null)

 return true;

 return false;

 }

 });

 HashMap<String,Integer> hashAllShares = new

HashMap(topTenHashShares.collectAsMap());

 //we add as the 11th element the hashtag in question

 Map<String, Float> finMsf = sortByComparator(finMsftemp1, false);

 float sum = 0;

 int j = 2;

 for(int i = 1; i<(finMsf.size()); i++){

 sum = sum + (float)1/(float)j;

 j = j * 2;

 }

 sum = (float)1/(float)(1+sum);

Finding Topic-Specific Trends and Influential Users in Social Networks

C. Daskalakis 53

 Map<String,Float> weightedHash = new HashMap<String,Float>();

 for(Map.Entry e:finMsf.entrySet()){

 weightedHash.put((String) e.getKey(), sum);

 sum = (float)sum/(float)2;

 }

 float sumtemp = 0;

 for(Map.Entry e: weightedHash.entrySet()){

 System.out.printf("%s %.15f \n",e.getKey(),e.getValue());

// System.out.println(e.getKey()+" "+e.getValue());

 sumtemp += (float)e.getValue();

 }

 JavaRDD<Tuple2<HashTagUser,Integer>> tempHashTagUserL =

sc.objectFile("HashTagUserPairLikes");

 JavaPairRDD<HashTagUser,Integer> hashTagUserL;

 hashTagUserL = tempHashTagUserL.mapToPair(new

PairFunction<Tuple2<HashTagUser,Integer>,HashTagUser,Integer>(){

 @Override

 public Tuple2<HashTagUser, Integer> call(Tuple2<HashTagUser, Integer> t)

throws Exception {

 return new Tuple2<HashTagUser,Integer>(t._1,t._2);

 }

 });

Finding Topic-Specific Trends and Influential Users in Social Networks

C. Daskalakis 54

 JavaRDD<Tuple2<HashTagUser,Integer>> tempHashTagUserS =

sc.objectFile("HashTagUserPairShares");

 JavaPairRDD<HashTagUser,Integer> hashTagUserS;

 hashTagUserS = tempHashTagUserS.mapToPair(new

PairFunction<Tuple2<HashTagUser,Integer>,HashTagUser,Integer>(){

 @Override

 public Tuple2<HashTagUser, Integer> call(Tuple2<HashTagUser, Integer> t)

throws Exception {

 return new Tuple2<HashTagUser,Integer>(t._1,t._2);

 }

 });

 hashTagUserS = hashTagUserS.filter(new

Function<Tuple2<HashTagUser,Integer>,Boolean>(){

 @Override

 public Boolean call(Tuple2<HashTagUser, Integer> t1) throws Exception {

 return (msf.containsKey(t1._1.getHashTag())) ? true:false;

 }

 });

 hashTagUserL = hashTagUserL.filter(new

Function<Tuple2<HashTagUser,Integer>,Boolean>(){

 @Override

 public Boolean call(Tuple2<HashTagUser, Integer> t1) throws Exception {

Finding Topic-Specific Trends and Influential Users in Social Networks

C. Daskalakis 55

 return (msf.containsKey(t1._1.getHashTag()))?true:false;

 }

 });

// hashTagUserL.foreach(x->{

// TaskContext tc = TaskContext.get();

// System.out.println("hashTagUserL "+tc.taskAttemptId()+" "+x);

// });

// hashTagUserS.foreach(x->{

// TaskContext tc = TaskContext.get();

// System.out.println("hashTagUserS "+tc.taskAttemptId()+" "+x);

// });

 JavaPairRDD<HashTagUser,Tuple2<Integer,Integer>> likesSharesRddtemp;

 likesSharesRddtemp = hashTagUserS.join(hashTagUserL);

 JavaPairRDD<Long,HashTagLikesShares> likesSharesRdd;

 likesSharesRdd = likesSharesRddtemp.mapToPair(new

PairFunction<Tuple2<HashTagUser,Tuple2<Integer,Integer>>,Long,HashTagLikesShar

es>(){

 @Override

 public Tuple2<Long,HashTagLikesShares> call(Tuple2<HashTagUser,

Tuple2<Integer, Integer>> t) throws Exception {

Finding Topic-Specific Trends and Influential Users in Social Networks

C. Daskalakis 56

 return new Tuple2<Long,HashTagLikesShares>(t._1.getUserId(),new

HashTagLikesShares(t._1.getHashTag(),t._2._1,t._2._2));

 }

 });

// likesSharesRdd.foreach(x->{

// TaskContext tc = TaskContext.get();

// System.out.println("likesSharesRdd "+tc.taskAttemptId()+" "+x);

// });

 JavaPairRDD<Long,Iterable<HashTagLikesShares>> tempHash =

likesSharesRdd.groupByKey();

// tempHash.foreach(x->{

// TaskContext tc = TaskContext.get();

// System.out.println("tempHash "+tc.taskAttemptId()+" "+x);

// });

 JavaPairRDD<Long,Tuple2<Iterable<HashTagLikesShares>,Integer>>

userHashSLF = tempHash.join(userFollowers);

// userHashSLF.foreach(x->{

// TaskContext tc = TaskContext.get();

// System.out.println("userHashSLF "+tc.taskAttemptId()+" "+x);

// });

 JavaPairRDD<Long,Float> influencers = userHashSLF.mapToPair(new

PairFunction<Tuple2<Long,Tuple2<Iterable<HashTagLikesShares>,Integer>>,Long,Flo

at>(){

Finding Topic-Specific Trends and Influential Users in Social Networks

C. Daskalakis 57

 float score = 0;

 @Override

 public Tuple2<Long, Float> call(Tuple2<Long,

Tuple2<Iterable<HashTagLikesShares>, Integer>> t) throws Exception {

 score = 0;

 t._2._1.forEach(x->{

 int allLikes = finTopTenLikesHashTags.get(x.getHashTag());

 int allShares = hashAllShares.get(x.getHashTag());

// score += (float) weightedHash.get(x.getHashTag()) * ((weightA*

((float)x.getLikes()/(float) t._2._2)) + ((weightB*((float)x.getShares() / (float)t._2._2))) +

weightC*t._2._2);

 score += (float) weightedHash.get(x.getHashTag()) * ((weightA*

((float)x.getLikes()/allLikes))

 + ((weightB*((float)x.getShares() / allShares))) +

weightC*t._2._2);

 });

 return new Tuple2<Long,Float>(t._1,score);

 }

 }).filter(new Function<Tuple2<Long,Float>,Boolean>(){

 @Override

 public Boolean call(Tuple2<Long, Float> t1) throws Exception {

 if (Float.isNaN(t1._2)) return false;

 else return true;

 }

Finding Topic-Specific Trends and Influential Users in Social Networks

C. Daskalakis 58

 });

 JavaPairRDD<Float,Long> inf = influencers.mapToPair((Tuple2<Long, Float> t) ->

new Tuple2<Float,Long>(t._2,t._1));

 inf.foreach(x->{

 TaskContext tc = TaskContext.get();

 System.out.println("inf "+tc.taskAttemptId()+" "+x);

 });

 List<Tuple2<Float,Long>> m = inf.sortByKey(false).take(10);

 JavaRDD<Tuple2<Float,Long>> mtemp = sc.parallelize(m);

 JavaPairRDD<Long,Float> mFin = mtemp.mapToPair(new

PairFunction<Tuple2<Float,Long>,Long,Float>(){

 @Override

 public Tuple2<Long, Float> call(Tuple2<Float, Long> t) throws Exception {

 return new Tuple2<Long,Float>(t._2,t._1);

 }

 });

 mFin.foreach(x->{

 TaskContext tc = TaskContext.get();

 System.out.println("mFin "+tc.taskAttemptId()+" "+x);

 });

 }

Finding Topic-Specific Trends and Influential Users in Social Networks

C. Daskalakis 59

Code to identify most influential urls (example #bigdata)

 String master = "local[4]";

 /*

 * Initializes a Spark context.

 */

 SparkConf conf = new SparkConf()

 .setAppName(Example.class.getName())

 .setMaster(master);

 JavaSparkContext sc = new JavaSparkContext(conf);

 sc.setLogLevel("ERROR");

 System.setProperty("hadoop.home.dir", "C:\\winutils\\");

 JavaPairRDD<HashTagHashTagPair,Float> scores = null ;

 JavaRDD<Tuple2<HashTagHashTagPair,Float>> hhf = sc.objectFile("scores");

 scores = hhf.mapToPair(new

PairFunction<Tuple2<HashTagHashTagPair,Float>,HashTagHashTagPair,Float>(){

 @Override

 public Tuple2<HashTagHashTagPair, Float>

call(Tuple2<HashTagHashTagPair, Float> t) throws Exception {

 return new Tuple2<HashTagHashTagPair,Float>(t._1,t._2);

 }

 });

 JavaRDD<Tuple2<HashTagUrl,Integer>> hastUrlLikes;

 hastUrlLikes = sc.objectFile("HastagUrlLikes");

Finding Topic-Specific Trends and Influential Users in Social Networks

C. Daskalakis 60

 JavaPairRDD<HashTagUrl, Integer> hul;

 hul = hastUrlLikes.mapToPair(new

PairFunction<Tuple2<HashTagUrl,Integer>,HashTagUrl,Integer>(){

 @Override

 public Tuple2<HashTagUrl, Integer> call(Tuple2<HashTagUrl, Integer> t)

throws Exception {

 return new Tuple2<HashTagUrl,Integer>(t._1,t._2);

 }

 });

 JavaRDD<Tuple2<HashTagUrl,Integer>> hashtUrlNo;

 hashtUrlNo = sc.objectFile("HashTagUrlPair");

 JavaPairRDD<HashTagUrl,Integer> hut ;

 hut = hashtUrlNo.mapToPair(new

PairFunction<Tuple2<HashTagUrl,Integer>,HashTagUrl,Integer>(){

 @Override

 public Tuple2<HashTagUrl, Integer> call(Tuple2<HashTagUrl, Integer> t)

throws Exception {

 return new Tuple2<HashTagUrl,Integer>(t._1,t._2);

 }

 });

Finding Topic-Specific Trends and Influential Users in Social Networks

C. Daskalakis 61

 scores = scores.filter(new

Function<Tuple2<HashTagHashTagPair,Float>,Boolean>(){

 @Override

 public Boolean call(Tuple2<HashTagHashTagPair, Float> t1) throws Exception

{

 if(t1._1.getHashTag1().equalsIgnoreCase("#bigdata") ||

t1._1.getHashTag2().equalsIgnoreCase("#bigdata")){

 return true;

 }else

 return false;

 }

 });

 JavaPairRDD<Float,HashTagHashTagPair> revertedScores =

scores.mapToPair(new

PairFunction<Tuple2<HashTagHashTagPair,Float>,Float,HashTagHashTagPair>(){

 @Override

 public Tuple2<Float, HashTagHashTagPair>

call(Tuple2<HashTagHashTagPair, Float> t) throws Exception {

 return new Tuple2<Float,HashTagHashTagPair>(t._2,t._1);

 }

 });

Finding Topic-Specific Trends and Influential Users in Social Networks

C. Daskalakis 62

 revertedScores = revertedScores.sortByKey(false);

 revertedScores.foreach(x->{

 TaskContext tc = TaskContext.get();

 System.out.println("reverted "+tc.taskAttemptId()+" "+x);

 });

 List<Tuple2<Float,HashTagHashTagPair>> topTen = revertedScores.take(10);

 JavaRDD<Tuple2<Float,HashTagHashTagPair>> temp = sc.parallelize(topTen);

 JavaPairRDD<String,Float> finTopTen = temp.mapToPair(new

PairFunction<Tuple2<Float,HashTagHashTagPair>,String,Float>(){

 @Override

 public Tuple2<String, Float> call(Tuple2<Float, HashTagHashTagPair> t)

throws Exception {

 return new

Tuple2<String,Float>(t._2.getHashTag1().equalsIgnoreCase("#bigdata")?t._2.getHashT

ag2():t._2.getHashTag1(),t._1);

 }

 });

 finTopTen.foreach(x->{

 TaskContext tc = TaskContext.get();

 System.out.println("finTopTen "+tc.taskAttemptId()+" "+x);

 });

Finding Topic-Specific Trends and Influential Users in Social Networks

C. Daskalakis 63

 Map<String,Float> msf = finTopTen.collectAsMap();

 hut = hut.filter(new Function<Tuple2<HashTagUrl,Integer>,Boolean>(){

 @Override

 public Boolean call(Tuple2<HashTagUrl, Integer> t1) throws Exception {

 Float temp = null;

 temp = msf.get(t1._1.getHashTag());

 return temp != null ?true:false;

 }

 });

 hul = hul.filter(new Function<Tuple2<HashTagUrl,Integer>,Boolean>(){

 @Override

 public Boolean call(Tuple2<HashTagUrl, Integer> t1) throws Exception {

 Float temp = null;

 temp = msf.get(t1._1.getHashTag());

 return temp != null ?true:false;

 }

 });

Finding Topic-Specific Trends and Influential Users in Social Networks

C. Daskalakis 64

 hul.foreach(x->{

 TaskContext tc = TaskContext.get();

 System.out.println("hup: "+tc.taskAttemptId()+" "+x);

 });

 JavaPairRDD<String,Integer> hulTrans = hul.mapToPair(new

PairFunction<Tuple2<HashTagUrl,Integer>,String,Integer>(){

 @Override

 public Tuple2<String, Integer> call(Tuple2<HashTagUrl, Integer> t) throws

Exception {

 return new Tuple2<String,Integer>(t._1.getUrl(),t._2);

 }

 });

 JavaPairRDD<String,Integer> hutTrans = hut.mapToPair(new

PairFunction<Tuple2<HashTagUrl,Integer>,String,Integer>(){

 @Override

 public Tuple2<String, Integer> call(Tuple2<HashTagUrl, Integer> t) throws

Exception {

 return new Tuple2<String,Integer>(t._1.getUrl(),t._2);

 }

 });

Finding Topic-Specific Trends and Influential Users in Social Networks

C. Daskalakis 65

 hutTrans = hutTrans.reduceByKey((occ1, occ2) -> occ1 + occ2);

 hulTrans = hulTrans.reduceByKey((occ1, occ2) -> occ1 + occ2);

 hutTrans.foreach(x->{

 TaskContext tc = TaskContext.get();

 System.out.println("hutTrans: "+tc.taskAttemptId()+" "+x);

 });

 hulTrans.foreach(x->{

 TaskContext tc = TaskContext.get();

 System.out.println("hulTrans: "+tc.taskAttemptId()+" "+x);

 });

 JavaPairRDD<String,Tuple2<Integer,Integer>> htuI = hutTrans.join(hulTrans);

 hut.foreach(x->{

 TaskContext tc = TaskContext.get();

 System.out.println("hun: "+tc.taskAttemptId()+" "+x);

 });

 htuI.foreach(x->{

 TaskContext tc = TaskContext.get();

 System.out.println("htuI: "+tc.taskAttemptId()+" "+x);

 });

 JavaPairRDD<String,Float> scoresFin = htuI.mapToPair(FINAL_SCORE);

 JavaPairRDD<Float,String> scoresFinTemp = scoresFin.mapToPair(new

PairFunction<Tuple2<String,Float>,Float,String>(){

 @Override

 public Tuple2<Float, String> call(Tuple2<String, Float> t) throws Exception {

 return new Tuple2<Float,String>(t._2,t._1);

Finding Topic-Specific Trends and Influential Users in Social Networks

C. Daskalakis 66

 }

 });

 List<Tuple2<Float,String>> m = scoresFinTemp.sortByKey(false).take(10);

 JavaRDD<Tuple2<Float,String>> mtemp = sc.parallelize(m);

 JavaPairRDD<String,Float> mFin = mtemp.mapToPair(new

PairFunction<Tuple2<Float,String>,String,Float>(){

 @Override

 public Tuple2<String, Float> call(Tuple2<Float, String> t) throws Exception {

 return new Tuple2<String,Float>(t._2,t._1);

 }

 });

 mFin.foreach(x->{

 TaskContext tc = TaskContext.get();

 System.out.println("mFin: "+tc.taskAttemptId()+" "+x);

 });

}

Finding Topic-Specific Trends and Influential Users in Social Networks

C. Daskalakis 67

REFERENCES

[1] Agarwal, N., Liu, H., Tang, L., & Yu, P. S. Identifying the influential bloggers in a community. In: Proc.
Intl Conf. on Web Search and Web Data Mining (WSDM '08), pp. 207-218, ACM (2008)

[2] Ahmed, S. & Ezeife, C. I. Discovering influential nodes from trust network. In: Proc. 28th Annual ACM
Symposium on Applied Computing (SAC '13), pp. 121-128. ACM (2013)

[3] Anger, I. & Kittl, C. Measuring influence on Twitter. In: Proc. 11th Intl Conf. on Knowledge
Management and Knowledge Technologies (i-KNOW '11), ACM (2011)

[4] Apache, https://spark.apache.org/, access 28/6/2018
[5] Bagchi, S. Performance and Quality Assessment of Similarity Measures in Collaborative Filtering

Using Mahout. Procedia Computer Science, Vol. 50, 229 – 234 (2015)
[6] Bento, C. Finding influencers in social networks. Dissertation, Instituto Superior Technico,

Universidate Tecnica de Lisboa (2012)
[7] Chen, W., Wang, Y., Yang, S. Efficient influence maximization in social networks. In: Proc. 15th ACM

SIGKDD Intl Conf. on Knowledge discovery and data mining (KDD '09), pp. 199-208, ACM (2009)
[8] De Meo, P., Ferrara, E., Fiumara, G., Provetti, A. Improving recommendation quality by merging

collaborative filtering and social relationships. In: Proc. 11th Intl Conf. on Intelligent Systems Design
and Applications (ISDA 2011), pp. 587-592, IEEE (2011)

[9] Ekstrand, M. D., Riedl, J. T., Konstan, J. A. Collaborative Filtering Recommender Systems. Found.
Trends Hum.-Comput. Interact. 4 (2) 81-173 (Feb. 2011)

[10] Epinions, http://www.epinions.com/, access 28/6/2018
[11] Goyal, A., Bonchi, F., Lakshmanan, L. Learning influence probabilities in social networks. In: Proc.

3rd ACM Intl Conf. on Web search and data mining (WSDM '10). pp. 241-250, ACM (2010)
[12] Guo, G., Zhang, J.,Thalmann, Basu, A., Yorke-Smith, N. From Ratings to Trust: an Empirical Study of

Implicit Trust in Recommender Systems. In: Proc. 29th ACM Symposium on Applied Computing
(SAC), pp. 248-253 (2014)

[13] InfluenceTracker, http://www.influencetracker.com/, access 28/6/2018
[14] Klout, https://klout.com/, https://www.lithium.com/products/klout, access 28/6/2018
[15] Koutrouli, E., Kanellopoulos, G., Tsalgatidou, A. Reputation Mechanisms in on-line Social Networks:

The case of an Influence Estimation System in Twitter. In Proc. SouthEast European Design
Automation, Comp. Engineering, Computer Networks and Social Media Conference, pp. 98-105,
ACM (2016)

[16] Prawesh, S., Padmanabhan, B. The "Most Popular News" Recommender: Count Amplification and
Manipulation Resistance. Info. Sys. Research 25 (3), 569-589 (Sep. 2014)

[17] Razis, G., Anagnostopoulos, I. InfluenceTracker: Rating the Impact of a Twitter Account. In: 10th IFIP
Intl Conf. on Artificial Intelligence Applications and Innovations, pp. 184-195, Springer, Berlin (2014)

[18] Realtime Tweets, https://developer.twitter.com/en/docs/tweets/filter-realtime/overview, 28/6/2018
[19] Riquelme, F., González-Cantergiani, P. Measuring user influence on Twitter. Inf. Process.

Manage. 52 (5) (Sep. 2016), 949-975
[20] Ruohomaa, S., Kutvonen, L. Koutrouli, E. Reputation Management Survey. In: Proc. 2nd Intl Conf. on

Availability, Reliability and Security (ARES), pp. 103-111 (2007)
[21] Trusov, M., Bodapati, A.V, Bucklin, R. Determining Influential Users in Internet Social Networks.

Journal of Marketing Research, 47 (4), 643-658 (Aug. 2010)
[22] Twitter Counter, https://twittercounter.com/pages/100, access 28/6/2018
[23] Twitter embedded timelines, https://dev.twitter.com/web/embedded-timelines, access 28/6/2018
[24] Twitter Rest API, https://dev.twitter.com/twitterkit/android/access-rest-api, access 28/6/2018
[25] Twitter, https://twitter.com, access 28/6/2018
[26] Varlamis I., Eirinaki M., Louta M. Application of Social Network Metrics to a Trust-Aware Collaborative

Model for Generating Personalized User Recommendations. In: The Influence of Technology on
Social Network Analysis and Mining, vol 6. Springer (2013)

[27] Yazdanfar, N., & Thomo, A. Link Recommender: Collaborative-Filtering for Recommending urls to
Twitter Users, Procedia Computer Science, Vol.19, 412-419 (2013)

[28] Ye, S., Wu, S. F. Measuring message propagation and social influence on Twitter.com. In: Proc. 2nd
Intl Conf. on Social Informatics (SocInfo'10), Springer, pp. 216-231 (2010)

[29] Jensen, Carlos & Davis, John & Farnham, Shelly. (2002). Finding others online: reputation systems
for social online spaces.. 447-454. 10.1145/503376.503456.

[30] Ricci, Francesco & Rokach, Lior & Shapira, Bracha. (2010). Recommender Systems Handbook.
10.1007/978-0-387-85820-3_1.

http://www.influencetracker.com/
https://www.lithium.com/products/klout

