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ABSTRACT 

 

Social networks (SNs) have become an integral part of contemporary life, as they are 
increasingly used as a basic means for communication with friends, sharing of opinions 
and staying up to date with news and current events.  The general increase in the 
usage and popularity of social media has led to an explosion of available data, which 
creates opportunities for various kinds of utilization, such as predicting, finding or even 
creating trends.  

In this thesis, we first begin with analyzing the current work regarding the 
recommendation systems and their value on today’s social networks as well as the 
internet. We review the literature on reputation systems, their importance and the use 
cases that can be found on modern online applications. Our goal is to combine the two 
aforementioned systems in order to identify the most influential users, not only based on 
their followership, but also in their respective fields. An influencer is someone who is 
known and trusted by a specific audience on specific topics. We try to distinguish 
between celebrities, and social media users that actually are respected in their fields 
and that other users trust and follow actively (user engagement). 

We then extend our system, in order to also identify the most influential URLs, using the 
same metrics as before. 

 Our approach is based on the functionality of hashtags, which we use as topic 
indicators for posts, and on the assumption that a specific topic is represented by 
multiple hashtags. We present a neighborhood-based recommender system, which we 
have implemented using collaborative filtering algorithms in order to (a) identify 
hashtags, URLs and users related with a specific topic, and (b) combine them with SN-
based metrics in order to address the aforementioned questions in Twitter. The 
recommender system is built on top of Apache Spark framework in order to achieve 
optimal scaling and efficiency.  For the verification of our system we have used data 
sets mined from Twitter and tested the extracted results for influential users and URLs 
concerning specific topics in comparison with the influence scores produced by a state-
of-the-art influence estimation tool for SNs.  Finally, we present and discuss the results 
regarding two distinct topics and also discuss the offered and potential utility of our 
system.    
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ΠΕΡΙΛΗΨΗ 

 

Τα κοινωνικά δίκτυα έχουν γίνει αναπόσπαστο κομμάτι της σύγχρονης ζωής. Κάθε μέρα 
όλο και περισσότεροι άνθρωποι χρησιμοποιούν αυτά τα δίκτυα για να επικοινωνούν με 
τους φίλους τους, να μοιράζονται τις απόψεις τους και να μένουν ενημερωμένοι για νέα 
και τρέχοντα γεγονότα. Η γενική αύξηση της χρήσης και της δημοτικότητας των 
κοινωνικών μέσων ενημέρωσης οδήγησε σε μια έκρηξη των διαθέσιμων δεδομένων, 
γεγονός το οποίο δημιούγησε νέες ευκαιρίες για διάφορα είδη εκμετάλλευσης, όπως η 
πρόβλεψη, η εύρεση αλλά και η δημιουργία τάσεων.  

Στην παρούσα διπλωματική εργασία, ξεκινάμε αναλύοντας την βιβλιογραφία που 
υπάρχει για τα συστήματα συστάσεων, καθώς και την αξία τους, για τα μέσα κοινωνικής 
δικτύωσης που υπάρχουν σήμερα, αλλά και γενικότερα για το ίντερνετ. Μετέπειτα 
αναλύουμε την συνεισφορά των συστημάτων εύρεσης επιρροής, της σημασίας τους 
αλλά και των χρήσεων τους στην μοντέρνες εφαρμογές διαδικτύου.  

Στόχος μας είναι να συνδυάσουμε τα δύο προαναφερθέντα συστήματα, προκειμένου να 
εντοπίσουμε τους πιο σημαντικούς χρήστες, όχι μόνο με βάση την δημότικότητα τους, 
αλλά και στους τομείς που ασκούν την μεγαλύτερη επιρροή. Ένας χρήστης που ασκεί 
μεγάλη επιρροή, είναι κάποιος που είναι γνωστός και αξιόπιστος από ένα συγκεκριμένο 
κοινό και σε συγκεκριμένα θέματα. Με την προσέγγισή μας προσπαθούμε να κάνουμε 
διάκριση μεταξύ διασημοτήτων και χρηστών κοινωνικών μέσων που πραγματικά 
γίνονται σεβαστά στους τομείς τους, και άλλοι χρήστες εμπιστεύονται και ακολουθούν 
ενεργά (αφοσίωση χρηστών). 

Στη συνέχεια επεκτείνουμε το σύστημά μας, προκειμένου να εντοπίσουμε και τις πιο 
σημαντικές διευθύνσεις URL, χρησιμοποιώντας τις ίδιες μετρηκές με πριν. 

Η προσέγγισή μας για την απάντηση στις παραπάνω ερωτήσεις βασίζεται στη 
λειτουργικότητα των hashtags τα οποία θεωρούμε ότι αντιπροσωπεύουν κάποιο θέμα 
σε κάθε δημοσίευση και στην υπόθεση ότι υπάρχουν πολλαπλά hashtags που 
αντιπροσωπεύουν ένα συγκεκριμένο θέμα. Σε αυτή τη διπλωματική, παρουσιάζουμε 
ένα σύστημα συστάσεων, το οποίο υλοποιούμε χρησιμοποιώντας Collaborative Filtering 
αλγορίθμους για (α) τον εντοπισμό των hashtags, των Urls και των χρηστών που 
σχετίζονται με ένα συγκεκριμένο θέμα, (β) συνδυασμό διαφόρων μετρικών επιλεγμένων 
από το  κοινωνικό δίκτυο μαζί τους και (γ) να αντιμετωπίσει έτσι τις προαναφερθείσες 
ερωτήσεις στο Twitter. Το σύστημά  υλοποιήθηκε με την χρήση του Apache Spark 
προκειμένου να επιτευχθεί η βέλτιστη κλιμάκωση και να είναι σε θέση να επεξεργάζεται 
αποτελεσματικά μεγάλους όγκους δεδομένων.Για την επαλήθευση των αποτελεσμάτων 
του συστήματός μας χρησιμοποιήσαμε δεδομένα τα οποία αντλήσαμε από το Twitter. 
Τελικά συγκρίνουμε τα αποτελέσματά μας με τα αποτελέσματα επιρροής που 
παράγονται από δύο εργαλεία εκτίμησης της επιρροής κοινωνικών δικτύων. 

 

 

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Συστήματα Συστάσεων, Συστήματα εύρεσης κόμβων με υψηλή  
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PROLOGUE 

This thesis was developed for the master program of the Department of Informatics and 
Telecommunications of the national and Kapodistrian University of Athens, in the area 
of Information and Data Management. In this project, we present a neighborhood-based 
recommender system, which is implemented using collaborative filtering algorithms.  
We then combine the results from the collaborative filtering mechanisms with influence 
estimation techniques in order to find topic-specific trends both for content and for 
users.  

Ιn this thesis project we use Apache spark,s an open-source cluster computing 
framework which is used in order to achieve optimal scaling and to process large 
volumes efficiently. 
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1. INTRODUCTION 

E-communities necessitate mechanisms for the identification of credible entities which 

can be trusted and used in a particular context. Various reputation systems have been 

proposed to effectively address this need [20], based on the evaluation of individual 

transactions. In social networks (SNs), where there is an abundance of information, rich 

social activity of many people and dynamic relationships and interactions of various 

forms, apart from the need to find credible entities, new requirements and new 

possibilities arise, which are related to the identification of influential entities, i.e. entities 

which attract the interest of users and can provoke actions [21]. A vast amount of 

research works have focused in the exploration of the concept of influence in social 

networks, its estimation and its use [1], [2], [3], [15]. These works are usually based on 

the various relationships and social actions of entities and focus on different aspects 

such as identification of influential entities and content [1], [15], influence propagation 

[28], influence maximization [7], combination of influence and trust [26]. Collaborative 

Filtering (CF) mechanisms have also been widely studied and used to identify 

similarities and to produce recommendations in SN-based applications [9], [16], [27]. 

SN applications include also the useful “hashtag” functionality, i.e. the possibility to tag 

content using hashtags, which is a way of mapping content to specific topics. This 

functionality, when combined with the vast amount of social network activity information, 

creates the opportunity to explore influence in a more specialized context. Useful 

examples of specialized influence estimation include finding influential news and 

influential users regarding the specific topic. In this thesis, we present our work towards 

answering the following questions: (a) Which are the most influential - popular internet 

publications posted in SNs for a specific topic? (b) Which members of SNs are experts 

or influential regarding a specific topic? Answers to these questions are vital in various 

areas such as marketing, politics, social media analysis, and generally in all fields, 

which need to quickly understand and respond to current trends.   

Our approach towards answering the aforementioned questions combines influence 

estimation techniques and collaborative filtering mechanisms. More specifically, it is 

based on (a) the hashtag functionality and the assumption that a topic is represented by 

one or more hashtags, (b) collaborative filtering techniques for finding similar hashtags 

based on their common usage and the links assigned to them, and (c) analysis of social 

network-based actions. The contribution of this work is thus a solution for finding topic-

specific trends both for content and for users: collaborative filtering is used for 
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identifying a set of similar hashtags, which represent a topic, which are then used for 

filtering user activity in order to find the topic-specific influential users and content. This 

solution is, to the best of our knowledge, novel with respect to related works which 

examine influence from different perspectives. 

Taking as an assumption that a specific hashtag represents a specific topic and as 

modern social media marketing dictates, assuming that SN users always use hashtags 

that represent the same topic using different representations, we are going to find the 

most influential users regarding a specific topic as well as the most influential link 

regarding that specific topic.  

For the purposes of this thesis we developed a system that takes as input posts with a 

specific format. Our findings in the next chapters are focused on tweeter, but can be 

used for any SN, given that the posts that will be given as input to our system will be 

transformed in the common data model that our system supports. 

In the following section we present related work which focuses on influence estimation 

in SNs. This is followed by an overview of our approach and a description of its steps. In 

the fourth section we present the implemented system and its evaluation using various 

scenarios and in relation to a benchmark influence estimation tool and we discuss the 

produced results. Our conclusive remarks follow in the last section. 

. 
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2. RECOMMENDER SYSTEMS 

2.1 Overview 
 

With the recent rise of social media as well as the smart phones and tablets, the amount 

of information available on the Internet has grown exponentially. Useful information for 

users is getting harder to be found. So, the need for a technology that recommends 

interesting data to the user is necessary.  

Recommender systems are used in order to produce a list of recommendations through 

collaborative filtering techniques or content-based filtering approaches in order to help a 

user discover products or content by predicting the user’s rating of each item and then 

present the user with the produced list. With the term item we are referring to products 

in an online shop, to posts on Facebook, to series on portals like Netflix. The 

recommendations made by all these sites are specific for a given user or for a group of 

users that have similar tastes.  

CF techniques use a database of preferences for items by users to predict additional 

topics or products a new user might like. In a typical CF scenario, there is a list of m 

users and a list of n items, and each user, has a sub-list of these items that he/she has 

already rated. The ratings can be indications such as 1-5 stars ratings, or indirect 

interest like purchases, click-throughs etc.  

There are many challenges for collaborative filtering tasks. CF algorithms are required 

to have the ability to deal with highly sparse data, to scale in order to satisfy the 

continuously increasing number of users and items, making recommendations in 

acceptable by the systems times.   

 

 

2.2 Collaborative filtering 

 

Collaborative filtering is a technique commonly used to build personalized 

recommendations on the web. Some popular websites that make use of the 

collaborative filtering technology include Amazon, Netflix, iTunes, IMDB and many 

others. One key reason why we need a recommender system in modern society is that 

people have too many options to use from due to the prevalence of Internet. 
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Collaborative filtering (CF) can be categorized into two main methods as user-based 

collaborative filtering (memory-based) and item-based collaborative filtering (model-

based): 

• Memory Based: This method makes use of user rating information to calculate the 

likeness between the users or items. The first approaches’ basic idea is to 

identify similar users in a system and propose items that these users would find 

interesting and of use to them based on the preferences of other similar users. 

The above systems are call User-Based recommendation systems. In contrast, 

the second approach (item-item filtering) will take an item, in order to find the 

most similar items, based on characteristics and propose them to users. This 

kind of system can be found in a lot of online e-shops like Amazon. (“The users 

that bought this item, also bought…”). 

 

• Model Based:   Models are created by using data mining, and the system takes 

advantage of Machine Learning algorithms in order to predict users ratings of 

unrated items.  

2.2.1 Hybrid Techniques 

All the above-mentioned types have strengths and weaknesses. In order to overcome 

the weaknesses, hybrid techniques, that combine the aforementioned types of models 

have been developed in order to meet the requirements of the different scenarios and to 

increase performance. In general, the hybrid techniques are especially used to solve the 

new user problem [30]. 

• Weighted recommender 

The score of different recommender systems are combined into one single 

individual recommendation. Before combining them, the scores are weighted 

according to their influence on a specific item. 

2.3 Collaborative Filtering Process 

In a fundamental scenario, collaborative filtering processing can be mainly divided into 

three steps: 

• Collecting user ratings data matrix 

• Selecting similar neighbors by measuring the rating similarity 
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• Generating prediction for recommended items 

2.3.1 User Ratings 

In recommendation systems the input data are usually ratings by users for specific 

items as a matrix m x n as shown in figure 1. Symbol m is the total number of users and 

n is the total number of items. Rm,n is the rating of item n from user m. 

 

Figure 1 User-Item ratings matrix 

2.3.2  The formation of neighbors 

The collaborative filtering approaches use statistical techniques to analyze the similarity 

between users in order to create a set of users that have common interests called 

neighbors. A set of similarity measures is a metric of relevance between two vectors. 

User-based similarity is to compute the relevance between users as the values of two 

vectors. In user based collaborative filtering, after the similarity is calculated, it is used in 

building neighborhoods of the current target user. 

In contrast, in item based collaborative filtering there are no neighborhoods formed after 

the similarity scores are calculated. This is because the similarity between co-rated 

items is computed only as the value of two vectors. 

 

2.3.2.1 Cosine similarity 

Cosine similarity measures the similarity between two vectors of an inner product 

space. It is measured by the cosine of the angle between two vectors and determines 

whether two vectors are pointing in roughly the same direction. If is often used to 

measure document similarity in text analysis. In our work we use it to find the most 
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similar topics using the hashtag functionality. We also use the Euclidean distance 

similarity that we are going to explain in the next paragraph. 

2.3.2.2 Euclidean distance 

The basis of many measures of similarity and dissimilarity is Euclidean distance. The 

distance between vectors X and Y is defined as follows:  

     

Euclidean distance is basically the square root of the sum of squared differences 

between corresponding elements of the two vectors. This measure is appropriate only 

for data measured on the same scale. It is mostly used to compare profiles of 

respondents across variables.  
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3. REPUTATION AND INFLUENCE ESTIMATION SYSTEMS 

 

3.1 Influence in SNs: An Implicit Reputation Measure 

Reputation systems are systems that allow the users of an online community to rate 

each other in order to build trust through the estimation of the reputation of users or 

content. Reputation systems may also use implicit evaluations of user behavior, such as 

social relationships or similarity between users. They were essential tools long before 

the internet existed, with the word of mouth marketing being the main tool of such 

systems. In the last years, a new class of reputation systems has emerged to support 

social networks, which have changed the way users exchange services, opinions and 

make a new kind of trust relationships with each other. Online social networks connect 

users and facilitate content sharing in various ways and with various objectives, such as 

content sharing, blogging etc. The concept of reputation has new and distinct meaning, 

such as the influence that a user has developed towards other users. Effective 

reputation systems must carefully choose which aspects of user behavior should be 

tracked and reported.  

In this thesis, we propose such a reputation system in order to find the most influential 

users, content, based on specific topics using the hashtag functionality that is nowadays 

part of almost all the online social networks.  

3.2 Estimating Influence in SNs 

Various works have focused on estimating influence of entities and content in social 

networks. Influence is dealt with in various ways: e.g. as an indirect reputation concept  

[15], [1], i.e. an indication of how much trust or popularity can be assigned to an entity or 

content based on indirect information rather than on direct ratings, or as an indication of 

action propagation [11], or from a social analysis perspective, [26], etc.. The various 

approaches use data related with the social activity in the SN, i.e. the actions of users 

towards other users or content in the SN. Most specifically, these approaches use 

algorithms which combine (a) entity-centered characteristics related with social actions, 

e.g. the number of likes of a post or the number of followers of a user [6] [11] and (b) 

social action-related characteristics of entity pairs, e.g. the number of likes user A 

assigns to posts of user B [26]. Trust relationships between two entities are also 

incorporated in the latter case, while a usual representation of a SN in the context of 

influence estimation is a graph where the nodes represent individual entities and the 
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edges represent the links between two entities, accompanied with one or more weights 

(each one for different kinds or relationships).  

Along with the different kinds of information used, related works differentiate according 

to: (a) influence estimation technique (b) requirements stemming from the kind of social 

network where influence is estimated. 

Various influence estimation techniques are found in the literature, such as probabilistic 

[2], deterministic [15], graph-based [26], [6] and machine-learning-based (for influence 

prediction) [11].  

According to the specific kind of social network, different requirements for influence 

estimation occur. For example, in microblogging social networks, such as Twitter [25], 

influence is mostly related with a number of factors, such as recognition and preference 

[1] ,[15] which are attributed to social network activity of users (numbers of shares, likes, 

followers, the followers social activity, etc.). In other works, such as in review social 

networks, e.g. Epinions [10], a combination of social activity information with trust 

relationships is used [26].  

In Section 3.2.1, we briefly present some works related with influence estimation in SNs 

with a focus on the influence estimation technique and the data they use. 

3.2.1 Literature on Influence estimation in SNs 

• Agarwal et al. [1] deal with estimating the influence of bloggers in individual blogs. 

Four factors are considered as vital for defining influence: recognition, activity 

generation, novelty and eloquence. These properties are defined according to 

specific post characteristics and the social activities of bloggers, and are then 

combined for assessing the user’s influence. 

• Anger et al. [3] measure influence of both users and content in Twitter. They take 

into consideration various Twitter statistics, such as the numbers of followers, 

tweets, retweets and comments, and they estimate separately two measures, 

one based on the content and one based on the action logs. Similarly, to this, the 

work in  [15] presents an influence estimation system both for Twitter hashtags 

and users based on various social activity-based data. Further performance 

indicators for Twitter are presented in [3] ,including Klout [14], a widely accepted 

influence estimation tool for social networks. 
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•  A different approach for finding the most important URLs regarding a specific 

topic in Twitter is proposed by Yazdanfar et al.[27], who reason about the 

importance of url recommendation in Twitter and implement such 

recommendations using collaborative filtering techniques and a three-

dimensional matrix of users, urlurls and hashtags.  

• Ahmed et al. [2] integrate the concept of trust in their approach for estimating 

influence probabilities. Their suggested algorithm discovers the influential nodes 

based on trust relationships and action logs of users. Varlamis et al. [26] 

integrate also trust relationships in their influence estimation mechanism, which 

uses both social network analysis metrics and collaborative rating scores, where 

the latter take into account both the direct and the indirect relationships and 

actions between two users.  

• In [11] various influence models are constructed for a number of different time 

models and various algorithms used in the literature are analyzed and discussed. 

Bento [6] implements various social network analysis algorithms for finding 

influential nodes in location-based SNs and in static SNs. 

From the perspective of influence as an indirect reputation concept, we have used a 

taxonomy of indirect reputation systems [15], in order to present the specific 

characteristics of the aforementioned works in Table 1, with a focus on the information 

exploited and the influence estimation technique.  

Our approach focuses on topic-specific influence, but unlike topic-specific 

recommendation systems for SNs, such as [6], it is not restricted to collaborative 

filtering techniques. Furthermore, it is not restricted SN activity–based influence 

estimation, which is adapted in [2], [1],[15]. It comprises rather a specialized influence 

estimation which combines the user activity characteristics responsible for influence 

estimation with collaborative filtering techniques for the topic-specific filtering of posts.  
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Table 1. Characteristics of Influence Estimation Systems 

  

“Social 
Networking 
Metrics”- 
Varlamis et al. 
[26] 

“Measuring 
Influence On 
Twitter”-
Anger et al. 
[3]  

“Influential 
bloggers”- 
Agarwal et al. 
[1]  

“Influential 
nodes from 
trust 
network”-
Ahmed et al. 
[2] 

“Learning 
influence 
probabilities”- 
[11] 

“Link 
Recommender”- 
Yazdanfar et 
al.[27] 

Description of 
influence 
estimation 
technique 

 (-) calculates 
score by user's 
position on the 
SN Graph           
(-) calculates 
user's opinion 
score by the 
user's reviews 
to articles and 
other users 

Takes into 
consideration 
various 
Twitter 
statistcs that 
calculate 
different 
types of  
Influence and 
combines 
them in one 
model 

Influence of 
bloggers 
based on the 
influence of 
one’s posts 
according to - 
- -post 
characteristics 
and  

-social 
activities of 
bloggers, e.g. 
references to 
a post 

Influence 
probabilities 
are 
estimated 
based on 
trust 
relationships 
and action 
logs. 

 

Calculates 
influence of a 
user and his 
influence 
probability 
for static and 
continuous 
time model  

Produces url 
recommendations 
based on specific 
topics 

Target User 
User and 
Content 

User User User Content 

Scope 

Combination 
of 
Personalized 
and Global 

Global Global Global Global Global 

Information 
Used 

Information 
Regarding 
User position 
on SN Graph 
and Metrics 
about users 
each other 
opinions 

Number of 
followers, 
tweets, 
retweets, 
mentions, 
comments 

Various 

information 

regarding 

social activity 

Trust 
relatinships 
and action 
logs 

Action log 
about user's 
interactions 
and graph of 
the SN 

Information 
related to the use 
of hashtags 

Key 
Computational 
Comonents 

Sums all SN 
Graph position 
information 
with the 
opinion scores 
and each value 
weighted 

Adds 
conversation-
oriented and 
content-
oriented 
values 
separately 
and divides 
the result by 
two (2) 

Statistic 

functions  

Influence 

probabilities 

based on 

action log 

and trust 

relationships 

Suggested 

algorithm 

discovers 

the 

influential 

nodes  

Probability 
estimation 
using  

Collaborative-
filtering 
techniques  

Display 
Method 

Ranked list of 
users 

Ranked list of 
users and 
content 

Ranked list of 
users 

Ranked list 

of users 

Influence 
Matrix, Table 
of activated 
(influenced) 
users   

Ranked list of urls 
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4. PROPOSED SYSTEM 

4.1 Estimating Influence on a Specific Topic 

 

The goal of the proposed approach is to estimate influence of users and urls regarding 
a specific topic, and to find the most influential ones among them. The idea is that we 
first choose a hashtag which is representative of the topic of interest and then find a set 
of hashtags which are similar to the initial hashtag. We then aggregate social network 
metrics for the tweets which have used these hashtags in order to estimate influence 
scores for the users which have posted these tweets and for the urls which have been 
used in them. 

For the purposes of this thesis we focused on micro blogging systems like Twitter [25]; 
however, the proposed approach can be generalized due to the fact that its elements 
(e.g. hashtags, numbers of likes and followers) are common to most social networks.  

Here is a step-by-step description of the approach we follow:  

• Step 1: Given a specific hashtag hi, we first find the N-top similar hashtags based 
on collaborative filtering techniques which take into consideration the level of 
usage of hashtags by users and the usage of common urls together with 
hashtags, as explained in section 4.1. We define H as the set containing hi and 
the most similar hashtags to hi. 

• Step 2: We collect the sets of tweets, users and urls which have used at least one 
hashtag belonging to H, as analytically presented in section 4.2. 

• Step 3: Based on the above sets, we find the most influential users. The criteria for 
estimating a user’s influence are based on social activity-based metrics related to 
tweets which contain the specific url. This step is presented in section 4.3. 

• Step 4: In a similar way, we use the above sets to find the most influential urls, 
using various social activity-based criteria, as described in section 4.4. 
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4.2 Finding Similar Hashtags for Topic Representation 

  

In order to identify a set of hashtags which represent a topic, we use an initial hashtag 

“h” and try to find hashtags which are similar to h, using two criteria for assessing 

similarity: (a) the number of common links that two distinct hashtags have (if two 

hashtags have the same number of references to a link, this link is related to the same 

level to these hashtags) and (b) the level of their usage by users who have used them in 

common (if two users have used them with similar frequency this means that these 

hashtags are of the same level of interest for the users, and are considered similar in 

this context). We thus define two similarity measures for hashtags according to the two 

criteria and combine them in one. Specifically, we use the similarity measures (1) and 

(2) that appear below, in order to estimate the Euclidean distance of two hashtags 

regarding the two criteria. 

 

  (1) 

 

where  

• hi, hj are two distinct hashtags,  

• L is the set of the links (urls) which have been used in at least one tweet of each of 

the hashtags hi, hj  

• l is a url belonging to L, 

• rhi,l, rhj,l  are the numbers of tweets which have used the link l and have also used 

the hashtag hi and hj, and  

• is the similarity of hashtags hi, hj regarding their usage of 

common links. 

 

  (2) 

 

where  
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• hi, hj are two distinct hashtags,  

• U is the set of the users which have used the two hashtags in their tweets,  

• u is a user belonging in U, 

• rhi,u, rhj,u are the numbers of tweets of user u which have used the hastag hi and hj, 
and 

• is the similarity of hashtags hi, hj regarding their common usage 

by users. 

We also use the cosine similarity measure presented in (3) to estimate the similarity 

between two hashtags according to the criteria of the level of interest and the number of 

commonly used urls (  (hi,hj)user, and  (hi,hj)urlr accordingly):  

 

    (3) 

where  

•  is the cosine similarity of hashtags hi, hj regarding their common 

urls, 

•  is the cosine similarity of hashtags hi, hj regarding their common 

usage by users, 

• hi, hj are two distinct hashtags,  

• n is the number of users which have both used the two hashtags (when 

 is estimated) or the number of the common urls used by the two 

hashtags (when  is estimated),  

• k is a user (when  is estimated) or a url (when  is 

estimated), 

• rik, rjk are the numbers of times a user  k has used the hashtags hi, hj respectivley 

(when  is estimated)  or the numbers of times a url k has been 

used in hashtags hi and hj respectively (when  is estimated) 

We use either one of the above similarity measures (Cosine or Euclidean distance-

based similarity), or average measures to define final similarity metrics for user-based 

similarity (sim(hi,hj)user) and url-based similarity (sim(hi,hj)url). We then combine the two 

similarity measures using a weighted average to estimate the similarity between two 

hashtags. 
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 (4) 

 

where  

• ,  are the weights we use for the two kinds of similarity, and  

• =1 

 

We thus find a list of top-N hashtags which have the highest similarity with the original 
hashtag hi. We define as H, the set which contains hi and the N hashtags of this list. 
The original set of hashtags which are examined for the extraction of H can be obtained 
by various ways e.g. Twitter Streaming API [18], Twitter Rest API [24] Twitter widgets 
[23]. The selection of the original hashtag hi from the available hashtags can be done 
either based on personalized criteria, e.g. one can select a hashtag which she believes 
as representative of a topic, or by searching available hashtags with text similarity 
criteria. 

 

4.3 Collection of Data 

Having acquired the set H of hashtags, which represent a topic, we collect the following 

data, which are needed for finding the influential users and urls in the context of a 

specific topic:  

1. The set TH of all the tweets which have at least one hashtag belonging to the set H.  

2. The set UH of all users which have tweeted at least one tweet belonging to the set 

TH, i.e. users which have used hashtags belonging to H. 

3. The set LH of all urls which have been attributed to one or more tweets belonging to 

the set TH (or equivalently to one or more hashtags belonging to the set H). 

In the following sections, we describe the ways we use to extract lists of influential users 

and influential urls regarding a specific topic.  

 

 

4.4  Finding Influential Users on a Specific Topic 

For each one of the users belonging to in UH we estimate her influence score regarding  

each hashtag belonging to H, based on the triple: (weighted number of likes of related 

tweets, weighted number of retweets of related tweets, absolute number of user’s 

followers). The triple is used to represent a number of criteria which we consider as 

important for determining influence. These criteria are presented in the rest of this 
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section, along with the related metrics – formulae used for the estimation of a user’s 

influence regarding a hashtag. 

Estimating a User’s Influence on a Specific Hashtag. The criteria for estimating a 

user’s influence regarding a specific hashtag are described below, together with the 

metrics which represent them. 

Adaptation: The total number of retweets a user has got for a specific topic (hashtag) 

shows the interest of other users to adapt or share the user’s posts.  We are interested 

in the adaptation level of ui’s tweets containing hi, compared to the general level of 

adaptation that tweets containing hi generate. We thus use the following adaptation 

metric: 

 = the ratio of the number of retweets of the posts of a specific user u i containing 

a specific hashtag hi, to the total number of retweets which contain hi. This metric shows 

the relative interest of users to share ’s tweets compared to the total amount of 

interest that related tweets generate. 

 

 

Preference: A user’s influence can be measured by the number of her followers; the 

more friends a user has got, the more she is trusted / preferred. 

 

Endorsement: (concerning a specific topic expressed by a hashtag hi): In today’s social 

networks every post of a user can be endorsed by other users. In Facebook you can 

endorse the post of a user by reacting to it (like, Wow, etc.), in Twitter you can declare 

you like it. The more users endorse a post, the more influence this post has over users. 

This gives us an insight of how valuable is the user’s opinion on some topic. We are 

interested in the value of the user’s opinion is on a topic, in relation to the value of other 

users’ opinions on that topic. For the endorsement metric we have thus used the 

following formula: 

= the ratio of the number of favorites that ’s tweets containing a hashtag hi 

have been assigned, to the total number of favorites assigned to tweets which contain 
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.This metric shows the relative endorsement in user’s tweets compared to the total 

endorsement for tweets containing .  

 

We are using a weighted mean to estimate the influence score of a user ui concerning a 

specific hashtag hj, as a combination of the result scores of the above three influence 

factors: 

  (5) 

where  

• , ,  are the weights we assign to the factors described above, and 

• . 

The choise of the values of these weights should be done according to the importantce 

we want to give to each criterion. Machine learning methods can also be used to find 

the most appropriate values for the weights. 

 

Estimating a User’s Influence on  a Topic.  Having estimated the individual influence 

score of users regarding each (Top-N similar) hashtag of the hashtag set H which is 

representative of a topic, according to the previous section, we estimate the total 

influence score of every user using the following formula: 

   (6) 

 

where  

•  is the influence score of a user , 

•  is the influence score of a user ui concerning a specific 

hashtag hj, where hj belongs to the set of the top N similar hashtags H and has the 

jth order in similarity with the initial hashtatg), and  
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•  is the weight assigned to the score of each hashtag ,  

We have adjusted the values of weighs  which we assign to the various 

InfUserHashtag scores, depending on the similarity of the specific hashtag to the initial 

hashtag according to (4). Specifically, considering that, 

 , …,  are ordered according to their similarity 

with the initial hashtag, then the first score will refer to the initial hashtag itself (h1) and 

its weight w1 will be estimated according to (7) and will be used as reference for 

estimating the other weights, in a way that  . 

 

 (7) 

Where k: 2k <= N * 2 and  2 k+1 > N * 2Using this way of weight estimation, we achieve  

1and we give higher weights to the influence scores of the most 

similar hashtags.  

We finally extract the most influential users regarding the topic based 

on the estimated influence of users. 

 

4.5 Finding Influential Urls on a Specific Topic 

As explained in section 3.2, for each one of the hashtags belonging to the set  of 

similar hashtags, we find the links which have been used with them (set ) and the 

related tweets (set ).  Then, for each link l of  we find the subset  of , which 

contain the tweets of  which have used this link. We also find the numbers of likes and 

retweets of the tweets belonging in . 

 

1 When  for an integer number k, then   . 
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We extract thus a list with recommended links, i.e. the ones with the highest influence 

score, which depends on the number of likes and retweets (of the relative tweets that 

contain them) and the number of tweets that contain these links, according to formula 

(5). 

 (8) 

 

where  

•  is the number of likes on tweets belonging to , 

•  is the number of retweets of tweets belonging to ,  

•  is the number of tweets belonging to  

• wlikes, wretweets are the weights of the numbers of likes and retweets respectively, 

related to the total number of topic-related tweets. 

We consider these links as the most influential ones for a specific topic, since they are 

the ones which are mapped to the most related hashtags to the topic and also are 

attributed to the highest social activity.   
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5. IMPLEMENTATION OF THE PROPOSED SYSTEM 

5.1 Overview 

We have developed a system that implements the proposed approach, as a data 

analysis platform for Twitter, which features three core functionalities in Twitter: 

• Finding the most similar topics (hashtags) using collaborative filtering techniques 
based on the posts gathered from a social network. 

• Finding the most influential links in terms of popular internet publications, using the 
information extracted from the above step. 

• Finding the most influential users for a specific toping, exploiting the set of similar 
topics from the first step. 

In the following subsections we present the technology used, the collection of real social 

network data and the evaluation tests. 

5.2 Technology and Datasets 

For the implementation of this big data analysis platform we have created an application 

that leverages the possibilities provided by the Apache Spark framework [4], as well as 

the Java programming language. Apache Spark is used in order to achieve optimal 

scaling and the possibility to process large volumes of data faster and more efficiently.  

For the purposes of this thesis we used the Twitter Rest API [24] in order to collect the 

last 1 to 3.300 tweets for different groups of Twitter users. The first group consisted of 

the most followed Twitter accounts. The second one had all the users that are 

considered the most influential ones for the Twitter platform according to [22] and the 

third one consisted of random Twitter users with a count of total users equal to 52. We 

used users from these three selected groups for our tests in order to have a wide range 

of users with different levels of popularity and influence in the social network.  The 

tweets collected where filtered in order to contain at least one hashtag and were stored 

in the following format: 

• UserId|TweetId|CreatedDate|Lang|text|FavCount|ShareCount|#|…|#|url|…|url| 

For each one of the aforementioned users, we stored the following data concerning 

them: 

• UserId|FollowersCount|FriendsCount|StatusesCount 

We note that we intend to expand our experimental evaluation in larger datasets, 

leveraging the scalability possibilities offered by Apache Spark, in order (a) to extract 
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results for influential urls and users in various scenarios involving different topics and 

user groups, and (b) to evaluate the performance of the system, e.g. running times in 

big data volumes. 

 

5.3 Finding Topic-Specific Hashtags and Influential Users and Urls 

From the 72.029 collected tweets we were able to extract 40.924 pairs of hashtags that 

(a) were used by at least two users in their tweets and (b) had at least one url in 

common. For each pair we were then able to define their similarity scores according to 

the formulae (1)-(4).   

For estimating the total similarity between two hashtags, we chose the Cosine similarity 

metric, and used formula (4), with the following weight values: wsimuser=0,4 and 

wsimurl=0,6, considering that the similarity score of two hashtags regarding their common 

urls of greater importance than their similarity concerning their common level of usage 

by users. We note that the reason we chose to use the Cosine similarity metric for 

estimating both similarity components, is its suitability when we are interested in the 

cosine of the rating vectors [5], i.e. the similarity between their trends (in our case the 

trends of the url rating vectors and the trends of the user rating vectors). 

Influential Users based on a Specific Topic. We have examined the influence scores 

of users for various topics and have compared our results with the scores provided by 

the user influence estimation tool InfluenceTracker [14] for the same users. We have 

chosen InfluenceTracker as a benchmark for our comparison, as it is included in the 

state of the art of influencer discovery and Twitter [19]. In the rest of this section we 

present preliminary evaluation results for the topics “marketing” and “bigdata” 

considering they are represented by the initial hashtags #marketing and #bigdata 

respectively. We have thus first extracted from our dataset the top most similar 

hashtags for #marketing and present them in Fig. 1, along with their similarity scores 

based on (4).  
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Figure 3. 10 Most similar hashtags with  #Marketing 

Fig. 3 presents the influence scores of the top ten most influential users regarding the 

topic “marketing”, considering this topic is represented by the hashtag #marketing and 

its most similar hashtags presented above. For the same users we have also estimated 

the scores produced by InfluenceTracker [17] [13] and present them in Fig. 3. The 

InfluenceTracker score combines the numbers of a user’s followers, followees and 

tweets. Its lowest value is "0", while the highest has no upper limit. The higher this value 

is, the more impact has an account on the social network [13].  

 

 

 

 

Figures 4 and 5 give different insights on the users, as InfluenceTracker takes into 

consideration all the tweets of a user, whereas the proposed systems is based on topic-

related tweets. Differences are also due to the different time periods of the tweets that 

Figure 5. InflunceTracker scores for the same 
users 

Figure 4. Influence scores of most 
influential users based on the topic 

#marketing 
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were used in the two metrics, as InfluenceTracker takes into consideration the last 100 

tweets of a user, whereas our metric is based on the collected dataset.  

Influential Links based on a Specific Topic. In order to extract the most influential 

links for a specific topic we have implemented the algorithm described in Section 3.4. 

We have used as an example the topic “marketing” and the urls with the highest 

influence scores are shown in Fig.6. These urls redirect to articles written about 

marketing, and content marketing in social media. We have used as a second example 

the hashtag #bigdata assigning to the topic “big data”. We searched for hashtags similar 

to #bigdata and have identified the similar hashtags which are shown in Fig. 7. We have 

then estimated the influence scores of the users identified in the previous example as 

the most influential users regarding the topic “marketing”. The results of these users’ 

influence scores are presented in Fig. 8. It is evident that influence scores of the users 

differ according to the topic examined. We can see that for the “big data” topic the same 

users which were first examined for the topic “marketing” have different influencer 

scores. For example user uid1 that was the most influencing user in the marketing topic 

now has one of the lowest scores. Furthermore, users uid3, uid5 and uid7 have zero 

influence score in this specific topic, whereas they were considerably influencing 

regarding the topic “marketing”. We also found and present in Fig. 9 the most influential 

urls regarding “big data”. These urls redirect to articles related to the hashtags 

(#smartcities, #healthtech, etc.) that our platform identified as mostly related with the 

used topic. 

Figure 6. Influence scores of most influential urls on the topic “marketing” 
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Figure 7. Most similar hashtags to #bigdata 

 

 

       Figure 8. “Big data”-based Influence scores of most influential users on topic 

“marketing” 

 

      Figure 9. Influence scores of urls for topic “bigdata“ 
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6. CONCLUSIONS 

In this thesis we describe the design and implementation of a recommendation system 

for influential urls and influential users based on specific topics in Social Networks 

(SNs). For the purposes of our work, we use the hashtag functionality of SNs and, 

based on the assumption that the hashtags represent specific topics, we use 

collaborative techniques for identifying a pool of similar hashtags that correspond to a 

specific topic. We then use social activity based metrics for estimating the influence of 

urls and users by taking into consideration the identified hashtags, so as to achieve 

specialization on topics. For the implementation, the Apache Spark framework was 

used for achieving scalable searches and data processing. Results for specific topics 

based on the datasets we have extracted from Twitter were presented and analyzed. 

The benchmark influence estimation tools InfluenceTracker [13] [17] was used for a 

comparison of our results with the influence values this system estimates for the most 

influential users. Based on the preliminary evaluation of our results and the study of 

related work, we consider that our system comprises an innovative approach towards 

topic-specific influence estimation, and specifically towards revealing topic-specific 

trends in content (as the most influential urls) and topic-specific influencers. We note 

that further tests are included in our future plans for (a) examining more use cases with 

bigger data sets and evaluating the performance of the proposed system, (b) fine tuning 

the various weights and components of our system, and (c) comparing the results and 

the performance of the proposed system with other influence tools for SNs and with 

topic specialization in mind. 
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ABBREVIATIONS AND TERMS  

 

SNs Social Networks like Twitter, Facebook, 

Instagram etc. 

URL Uniform Resource Locator 

Influencer An individual who can drive another 

person, or a community of people, to take 

some kind of action 

Twitter Twitter is a 'microblogging' system that 

allows you to send and receive short posts 

called tweets 

Hashtag (#) A hashtag is simply a relevant word or 

series of characters preceded by the # 

symbol. Hashtags help categorize 

messages and can make it easier for other 

Twitter users to search for tweet 

Apache Spark Apache Spark is a unified analytics engine 

for big data processing, with built-in 

modules for streaming, SQL, machine 

learning and graph processing. 
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APENDIX Ι 

 
 

Code to subscribe to Twitter’s live feed and save tweets to files that contain maximum 

200000 tweets, using Twitter4j framework. 

public class SubscribeToTwitterLiveFeedAndSaveTweets { 

     

    public static int numOfFiles = 4; 

//    public static int numOfFilesUser = 0; 

    public static int numOfLines = 0; 

//    public static int numOfLinesUser = 0; 

     

    public static BufferedWriter outTweets; 

//    public static BufferedWriter outUsers; 

     

     

    public static void closeWriter(BufferedWriter out ){ 

        try { 

            out.close(); 

        } catch (IOException ex) { 

            

java.util.logging.Logger.getLogger(SubscribeToTwitterLiveFeedAndSaveTweets.class.g

etName()).log(Level.SEVERE, null, ex); 

        } 

    } 

    public static BufferedWriter changeFiles(BufferedWriter out,int wh){ 

        try { 

             if(wh == 0){ 

                numOfFiles++; 
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                if(numOfFiles == 20) 

                    exit(0); 

                out = new BufferedWriter(new OutputStreamWriter(new 

FileOutputStream("06042018/Tweets"+numOfFiles+".txt"),"UTF-8")); 

             } 

//             else{ 

//                 numOfFilesUser++; 

//                 out = new BufferedWriter(new FileWriter("Users"+numOfFiles+".txt")); 

//             } 

        } catch (IOException ex) { 

              

java.util.logging.Logger.getLogger(SubscribeToTwitterLiveFeedAndSaveTweets.class.g

etName()).log(Level.SEVERE, null, ex); 

              return null; 

        } 

        return out; 

    } 

    public static void main(String[] args) throws TwitterException, IOException{ 

     

    StatusListener listener = new StatusListener(){ 

        public void onStatus(Status status) { 

            

            if(numOfLines == 200000){ 

                numOfLines = 0; 

                closeWriter(outTweets); 

                outTweets = changeFiles(outTweets, 0); 

            } 

//            if(numOfLinesUser == 200000){ 
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//                numOfLinesUser = 0; 

//                closeWriter(outUsers); 

//                outUsers = changeFiles(outUsers,1); 

//            } 

             

            if( status.getRetweetedStatus() == null){ 

                try { 

                    if((status.getHashtagEntities() != null && status.getHashtagEntities().length 

> 0) 

                            && (status.getURLEntities() != null && status.getURLEntities().length 

> 0)){ 

                            outTweets.write(status.getUser().getId()+"|"+status.getId()+ 

                                    "|"+status.getCreatedAt()+"|"+status.getLang()+ 

                                    "|"+status.getFavoriteCount()+"|" 

                            +status.getRetweetCount()+"|"); 

                            for(HashtagEntity he :status.getHashtagEntities()) 

                                outTweets.write("#"+he.getText()+"|"); 

                            for(URLEntity ur :status.getURLEntities()) 

                                outTweets.write(ur.getURL()+"|"); 

 

                            if(numOfLines < 200000) 

                                outTweets.newLine(); 

        //                    

outUsers.write(status.getUser().getId()+"|"+status.getUser().getName()); 

        //                    outUsers.newLine(); 

                            numOfLines++; 

                    } 

//                    numOfLinesUser++; 
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                } catch (IOException ex) { 

                    

java.util.logging.Logger.getLogger(SubscribeToTwitterLiveFeedAndSaveTweets.class.g

etName()).log(Level.SEVERE, null, ex); 

                    return; 

                } 

            } 

              

             

        } 

        public void onDeletionNotice(StatusDeletionNotice statusDeletionNotice) {} 

        public void onTrackLimitationNotice(int numberOfLimitedStatuses) {} 

        public void onException(Exception ex) { 

            ex.printStackTrace(); 

        } 

 

        @Override 

        public void onScrubGeo(long userId, long upToStatusId) { 

            throw new UnsupportedOperationException("Not supported yet."); //To change 

body of generated methods, choose Tools | Templates. 

        } 

 

        @Override 

        public void onStallWarning(StallWarning warning) { 

            throw new UnsupportedOperationException("Not supported yet."); //To change 

body of generated methods, choose Tools | Templates. 

        } 

    }; 
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    outTweets =  changeFiles(outTweets,0); 

//    outUsers  = changeFiles(outUsers,1); 

     

    TwitterStream twitterStream = new TwitterStreamFactory().getInstance(); 

    twitterStream.addListener(listener); 

    // sample() method internally creates a thread which manipulates TwitterStream and 

calls these adequate listener methods continuously. 

    twitterStream.sample(); 

      

    }} 
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APPENDIX ΙΙ 

 

Code written for cosine similarity. 

private static final 

PairFunction<Tuple2<HashTagHashTagPair,Iterable<RatingPair>>,HashTagHashTagP

air,Float>  COSINE_SIMILARITY =  

       new 

PairFunction<Tuple2<HashTagHashTagPair,Iterable<RatingPair>>,HashTagHashTagP

air,Float>(){ 

           

           HashTagHashTagPair hhtp; 

           float sum_mm = 0; 

           float sum_nn = 0; 

           float sum_mn = 0; 

           float numerator = 0; 

           float score ; 

           float denominator = 0; 

           @Override 

              public Tuple2<HashTagHashTagPair, Float> 

call(Tuple2<HashTagHashTagPair, Iterable<RatingPair>> t) throws Exception { 

                   sum_mm = 0; 

                   sum_nn = 0; 

                   sum_mn = 0; 

                   numerator = 0; 

 

                   denominator = 0; 

                  t._2.forEach(x->{ 

                    sum_mm += x.getRating1() * x.getRating1(); 

                    sum_nn += x.getRating2() * x.getRating2(); 
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                    sum_mn += x.getRating1() * x.getRating2(); 

                  }); 

                  numerator = sum_mn; 

                  score = 0; 

                  denominator = (float) ((float) Math.sqrt(sum_mm) * Math.sqrt(sum_nn)); 

                  if(denominator != 0) 

                      score = ((float)numerator/(float)denominator); 

                   

                  return new Tuple2<HashTagHashTagPair, Float>(t._1,score); 

              } 

     }; 

Code written for Euclidean similarity. 

private static final 

PairFunction<Tuple2<HashTagHashTagPair,Iterable<RatingPair>>,HashTagHashTagP

air,Float>  EUCLIDEAN_SIMILARITY =  

       new 

PairFunction<Tuple2<HashTagHashTagPair,Iterable<RatingPair>>,HashTagHashTagP

air,Float>(){ 

           

           HashTagHashTagPair hhtp; 

             

           float sum_euc = 0; 

           float score ; 

           float finalScore; 

           @Override 

              public Tuple2<HashTagHashTagPair, Float> 

call(Tuple2<HashTagHashTagPair, Iterable<RatingPair>> t) throws Exception { 

                    sum_euc = 0; 
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                    score=0 ; 

                    finalScore = 0; 

                  t._2.forEach(x->{ 

                      

                    sum_euc += (x.getRating1() - x.getRating2())*(x.getRating1() - 

x.getRating2()); 

                  }); 

                    

                  score = (float) Math.sqrt(sum_euc); 

                  finalScore = (float)1/(float)(1+score); 

                   

                  return new Tuple2<HashTagHashTagPair, Float>(t._1,finalScore); 

              } 

     }; 

 

Code for weighted average. 

private static final 

PairFunction<Tuple2<HashTagHashTagPair,Tuple2<Float,Float>>,HashTagHashTagP

air,Float> FINAL_SCORE =  

          new 

PairFunction<Tuple2<HashTagHashTagPair,Tuple2<Float,Float>>,HashTagHashTagP

air,Float>(){ 

            

              float finalScore = 0; 

            @Override 

            public Tuple2<HashTagHashTagPair, Float> 

call(Tuple2<HashTagHashTagPair, Tuple2<Float, Float>> t) throws Exception { 

                finalScore = 0; 
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                finalScore = (float)((weightA*t._2._1) + (weightB*t._2._2)) / 

(weightA+weightB); 

                 

                return new Tuple2<HashTagHashTagPair,Float>(t._1,finalScore); 

                 

            } 

        

               

}; 

 

Code to Identify influencers (example for #marketing) 

String master = "local[*]"; 

          String hash = "#marketing"; 

     /* 

      * Initializes a Spark context. 

      */ 

            System.setProperty("hadoop.home.dir", "C:\\winutils\\"); 

     SparkConf conf = new SparkConf() 

         .setAppName(Example.class.getName()) 

         .setMaster(master); 

     JavaSparkContext sc = new JavaSparkContext(conf); 

            sc.setLogLevel("ERROR"); 

           // System.setProperty("hadoop.home.dir", "c:\\winutils\\"); 

      

             JavaPairRDD<HashTagHashTagPair,Float> scores = null  ; 

              

             String inputFilePath = "Users/*"; 
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             JavaRDD<String> userInfo; 

             userInfo = sc.textFile(inputFilePath); 

              

             JavaRDD<Tuple2<Long,Integer>> userFollowersTemp = userInfo.map(x->{ 

                 

                 String[] s = (x.split("\\|")); 

                 return new Tuple2<Long,Integer>(Long.valueOf(s[0]),Integer.valueOf(s[1])); 

             }); 

              

             JavaPairRDD<Long,Integer> userFollowers = 

userFollowersTemp.mapToPair(new 

PairFunction<Tuple2<Long,Integer>,Long,Integer>(){ 

              @Override 

              public Tuple2<Long, Integer> call(Tuple2<Long, Integer> t) throws Exception { 

                  return new Tuple2<Long,Integer>(t._1,t._2); 

              } 

                  

             }); 

//             userFollowers.foreach(x->{ 

//                TaskContext tc = TaskContext.get(); 

//                System.out.println("userFollowers "+tc.taskAttemptId()+"   "+x); 

//                    }); 

//                      

             //Get the hashtag hashtag pairs with their similarity score from the files 

previously written 

             JavaRDD<Tuple2<HashTagHashTagPair,Float>> hhf = sc.objectFile("scores"); 
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             scores = hhf.mapToPair(new 

PairFunction<Tuple2<HashTagHashTagPair,Float>,HashTagHashTagPair,Float>(){ 

              @Override 

              public Tuple2<HashTagHashTagPair, Float> 

call(Tuple2<HashTagHashTagPair, Float> t) throws Exception { 

                 return new Tuple2<HashTagHashTagPair,Float>(t._1,t._2); 

              } 

             }); 

              

              

             //Filter RDD with the hashtag in question 

             scores = scores.filter(new 

Function<Tuple2<HashTagHashTagPair,Float>,Boolean>(){ 

              @Override 

              public Boolean call(Tuple2<HashTagHashTagPair, Float> t1) throws Exception 

{ 

               if(t1._1.getHashTag1().equalsIgnoreCase(hash) || 

t1._1.getHashTag2().equalsIgnoreCase(hash)){ 

                   return true; 

               }else 

                   return false; 

              } 

       

      }); 

              

      //Revert scores in order to sort them        

      JavaPairRDD<Float,HashTagHashTagPair> revertedScores = 

scores.mapToPair(new 

PairFunction<Tuple2<HashTagHashTagPair,Float>,Float,HashTagHashTagPair>(){ 
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              @Override 

              public Tuple2<Float, HashTagHashTagPair> 

call(Tuple2<HashTagHashTagPair, Float> t) throws Exception { 

               

                  return new Tuple2<Float,HashTagHashTagPair>(t._2,t._1); 

              } 

       

             

      }); 

               

       

      revertedScores = revertedScores.sortByKey(false); 

//      revertedScores.foreach(x->{ 

//                TaskContext tc = TaskContext.get(); 

//                System.out.println("reverted "+tc.taskAttemptId()+"   "+x); 

//                    }); 

      

      //Take the top 10 similar hashtags 

      List<Tuple2<Float,HashTagHashTagPair>> topTen = revertedScores.take(10); 

       

   

      JavaRDD<Tuple2<Float,HashTagHashTagPair>> temp = sc.parallelize(topTen); 

       

      //Make an rdd that has only the hashtags that we need eg the most similar ones 

      JavaPairRDD<String,Float> finTopTen = temp.mapToPair(new 

PairFunction<Tuple2<Float,HashTagHashTagPair>,String,Float>(){ 

              @Override 
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              public Tuple2<String, Float> call(Tuple2<Float, HashTagHashTagPair> t) 

throws Exception { 

                     

                  return new 

Tuple2<String,Float>(t._2.getHashTag1().equalsIgnoreCase(hash)?t._2.getHashTag2():

t._2.getHashTag1(),t._1); 

               

              } 

           

      }); 

//      finTopTen.foreach(x->{ 

//                TaskContext tc = TaskContext.get(); 

//                System.out.println("finTopTen "+tc.taskAttemptId()+"   "+x); 

//                    }); 

       

       

        //Collect them as a java map in order to user them below. 

        Map<String,Float> msf = finTopTen.collectAsMap(); 

//        msf.put(hash,new Float(1.2)); 

        HashMap<String,Float> finMsftemp1 = new HashMap(msf); 

        finMsftemp1.put(hash,new Float(1.2)); 

         

         

        JavaRDD<Tuple2<String,Integer>> hallLikes = sc.objectFile("HashTagAllLikes"); 

        //edw 8a ftiaxtei ta maps me ta 11 hashtags pou psaxnoume kai ola tous ta likes 

kai shares. 

        JavaPairRDD<String,Integer> topTenHashLikes = hallLikes.mapToPair(new 

PairFunction<Tuple2<String,Integer>,String,Integer>(){ 
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              @Override 

              public Tuple2<String, Integer> call(Tuple2<String, Integer> t) { 

                  return new Tuple2<String,Integer>(t._1,t._2); 

              } 

             

        }).filter(new Function<Tuple2<String,Integer>,Boolean>(){ 

              @Override 

              public Boolean call(Tuple2<String, Integer> t1) throws Exception { 

                  if(finMsftemp1.get(t1._1) != null) 

                      return true; 

                   

                  return false; 

              } 

             

        }); 

         

        Map<String,Integer> finTopTenLikesHashTagstemp = 

topTenHashLikes.collectAsMap(); 

        HashMap<String,Integer> finTopTenLikesHashTags = new 

HashMap(finTopTenLikesHashTagstemp); 

         

        JavaRDD<Tuple2<String,Integer>> hashShares = 

sc.objectFile("allHashTagsShares"); 

        JavaPairRDD<String,Integer> topTenHashShares = hashShares.mapToPair(new 

PairFunction<Tuple2<String,Integer>,String,Integer>(){ 

              @Override 

              public Tuple2<String, Integer> call(Tuple2<String, Integer> t)  { 

                  return new Tuple2<String,Integer>(t._1,t._2); 
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              } 

             

        }).filter(new Function<Tuple2<String,Integer>,Boolean>(){ 

              @Override 

              public Boolean call(Tuple2<String, Integer> t1)  { 

                if(finMsftemp1.get(t1._1) != null) 

                    return true; 

                 

                return false; 

              } 

             

        }); 

         

        HashMap<String,Integer> hashAllShares = new 

HashMap(topTenHashShares.collectAsMap()); 

         

        

         

        //we add as the 11th element the hashtag in question 

          Map<String, Float> finMsf = sortByComparator(finMsftemp1, false); 

          float sum = 0; 

          int j = 2; 

          for(int i = 1; i<(finMsf.size()); i++ ){ 

              sum = sum + (float)1/(float)j; 

              j = j * 2; 

          } 

          sum = (float)1/(float)(1+sum); 
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          Map<String,Float> weightedHash = new HashMap<String,Float>(); 

         

        for(Map.Entry e:finMsf.entrySet()){ 

            weightedHash.put((String) e.getKey(), sum); 

            sum = (float)sum/(float)2; 

        } 

        float sumtemp = 0; 

        for(Map.Entry e: weightedHash.entrySet()){ 

            System.out.printf("%s %.15f \n",e.getKey(),e.getValue()); 

//            System.out.println(e.getKey()+" "+e.getValue()); 

            sumtemp += (float)e.getValue(); 

        } 

        

        JavaRDD<Tuple2<HashTagUser,Integer>> tempHashTagUserL = 

sc.objectFile("HashTagUserPairLikes"); 

        JavaPairRDD<HashTagUser,Integer> hashTagUserL; 

         

             hashTagUserL = tempHashTagUserL.mapToPair(new 

PairFunction<Tuple2<HashTagUser,Integer>,HashTagUser,Integer>(){ 

              @Override 

              public Tuple2<HashTagUser, Integer> call(Tuple2<HashTagUser, Integer> t) 

throws Exception { 

                 return new Tuple2<HashTagUser,Integer>(t._1,t._2); 

              } 

             }); 
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        JavaRDD<Tuple2<HashTagUser,Integer>> tempHashTagUserS = 

sc.objectFile("HashTagUserPairShares"); 

        JavaPairRDD<HashTagUser,Integer> hashTagUserS; 

         

             hashTagUserS = tempHashTagUserS.mapToPair(new 

PairFunction<Tuple2<HashTagUser,Integer>,HashTagUser,Integer>(){ 

              @Override 

              public Tuple2<HashTagUser, Integer> call(Tuple2<HashTagUser, Integer> t) 

throws Exception { 

                 return new Tuple2<HashTagUser,Integer>(t._1,t._2); 

              } 

             }); 

              

        hashTagUserS = hashTagUserS.filter(new 

Function<Tuple2<HashTagUser,Integer>,Boolean>(){ 

              @Override 

              public Boolean call(Tuple2<HashTagUser, Integer> t1) throws Exception { 

                   

                    return  (msf.containsKey(t1._1.getHashTag())) ? true:false; 

                   

              } 

             

        }); 

         hashTagUserL = hashTagUserL.filter(new 

Function<Tuple2<HashTagUser,Integer>,Boolean>(){ 

              @Override 

              public Boolean call(Tuple2<HashTagUser, Integer> t1) throws Exception { 
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                   return (msf.containsKey(t1._1.getHashTag()))?true:false; 

                   

              } 

             

        }); 

          

//        hashTagUserL.foreach(x->{ 

//                TaskContext tc = TaskContext.get(); 

//                System.out.println("hashTagUserL "+tc.taskAttemptId()+"   "+x); 

//                    }); 

//        hashTagUserS.foreach(x->{ 

//                TaskContext tc = TaskContext.get(); 

//                System.out.println("hashTagUserS "+tc.taskAttemptId()+"   "+x); 

//                    }); 

         

         JavaPairRDD<HashTagUser,Tuple2<Integer,Integer>> likesSharesRddtemp; 

 

         likesSharesRddtemp = hashTagUserS.join(hashTagUserL); 

         

          

         JavaPairRDD<Long,HashTagLikesShares> likesSharesRdd; 

         likesSharesRdd = likesSharesRddtemp.mapToPair(new 

PairFunction<Tuple2<HashTagUser,Tuple2<Integer,Integer>>,Long,HashTagLikesShar

es>(){ 

              @Override 

              public Tuple2<Long,HashTagLikesShares> call(Tuple2<HashTagUser, 

Tuple2<Integer, Integer>> t) throws Exception { 
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                   return new Tuple2<Long,HashTagLikesShares>(t._1.getUserId(),new 

HashTagLikesShares(t._1.getHashTag(),t._2._1,t._2._2)); 

              } 

               

              

         }); 

//         likesSharesRdd.foreach(x->{ 

//                TaskContext tc = TaskContext.get(); 

//                System.out.println("likesSharesRdd "+tc.taskAttemptId()+"   "+x); 

//                    }); 

         JavaPairRDD<Long,Iterable<HashTagLikesShares>> tempHash = 

likesSharesRdd.groupByKey(); 

          

//        tempHash.foreach(x->{ 

//                TaskContext tc = TaskContext.get(); 

//                System.out.println("tempHash "+tc.taskAttemptId()+"   "+x); 

//                    }); 

         

        JavaPairRDD<Long,Tuple2<Iterable<HashTagLikesShares>,Integer>> 

userHashSLF = tempHash.join(userFollowers); 

//         userHashSLF.foreach(x->{ 

//                TaskContext tc = TaskContext.get(); 

//                System.out.println("userHashSLF "+tc.taskAttemptId()+"   "+x); 

//                    }); 

        

         JavaPairRDD<Long,Float> influencers = userHashSLF.mapToPair(new 

PairFunction<Tuple2<Long,Tuple2<Iterable<HashTagLikesShares>,Integer>>,Long,Flo

at>(){ 
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              float score = 0; 

              @Override 

              public Tuple2<Long, Float> call(Tuple2<Long, 

Tuple2<Iterable<HashTagLikesShares>, Integer>> t) throws Exception { 

                   

                  score = 0; 

                  t._2._1.forEach(x->{ 

                       int allLikes = finTopTenLikesHashTags.get(x.getHashTag()); 

                       int allShares = hashAllShares.get(x.getHashTag()); 

//                     score += (float) weightedHash.get(x.getHashTag()) * ( (weightA* 

((float)x.getLikes()/(float) t._2._2 )) + ((weightB*( (float)x.getShares() / (float)t._2._2 ))) + 

weightC*t._2._2); 

                       score += (float) weightedHash.get(x.getHashTag()) * ( (weightA* 

((float)x.getLikes()/allLikes  ))  

                                        + ((weightB*( (float)x.getShares() / allShares ))) + 

weightC*t._2._2); 

      

                  }); 

                  return new Tuple2<Long,Float>(t._1,score); 

               

              } 

              

         }).filter(new Function<Tuple2<Long,Float>,Boolean>(){ 

              @Override 

              public Boolean call(Tuple2<Long, Float> t1) throws Exception { 

                  if (Float.isNaN(t1._2)) return false; 

                  else return true; 

              } 
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        }); 

          

         JavaPairRDD<Float,Long> inf = influencers.mapToPair((Tuple2<Long, Float> t) -> 

new Tuple2<Float,Long>(t._2,t._1)); 

          inf.foreach(x->{ 

                TaskContext tc = TaskContext.get(); 

                System.out.println("inf "+tc.taskAttemptId()+"   "+x); 

                    }); 

          

         List<Tuple2<Float,Long>> m =  inf.sortByKey(false).take(10); 

         JavaRDD<Tuple2<Float,Long>> mtemp = sc.parallelize(m); 

         JavaPairRDD<Long,Float> mFin = mtemp.mapToPair(new 

PairFunction<Tuple2<Float,Long>,Long,Float>(){ 

              @Override 

              public Tuple2<Long, Float> call(Tuple2<Float, Long> t) throws Exception { 

                    return new Tuple2<Long,Float>(t._2,t._1); 

              } 

              

         }); 

         mFin.foreach(x->{ 

                TaskContext tc = TaskContext.get(); 

                System.out.println("mFin "+tc.taskAttemptId()+"   "+x); 

                    }); 

          

    } 
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Code to identify most influential urls (example #bigdata) 

  String master = "local[4]"; 

  

     /* 

      * Initializes a Spark context. 

      */ 

     SparkConf conf = new SparkConf() 

         .setAppName(Example.class.getName()) 

         .setMaster(master); 

     JavaSparkContext sc = new JavaSparkContext(conf); 

            sc.setLogLevel("ERROR"); 

          System.setProperty("hadoop.home.dir", "C:\\winutils\\"); 

      

             JavaPairRDD<HashTagHashTagPair,Float> scores = null  ; 

              

             JavaRDD<Tuple2<HashTagHashTagPair,Float>> hhf = sc.objectFile("scores"); 

              

             scores = hhf.mapToPair(new 

PairFunction<Tuple2<HashTagHashTagPair,Float>,HashTagHashTagPair,Float>(){ 

              @Override 

              public Tuple2<HashTagHashTagPair, Float> 

call(Tuple2<HashTagHashTagPair, Float> t) throws Exception { 

                 return new Tuple2<HashTagHashTagPair,Float>(t._1,t._2); 

              } 

             }); 

              

             JavaRDD<Tuple2<HashTagUrl,Integer>> hastUrlLikes; 

             hastUrlLikes = sc.objectFile("HastagUrlLikes"); 
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             JavaPairRDD<HashTagUrl, Integer> hul; 

             hul = hastUrlLikes.mapToPair(new 

PairFunction<Tuple2<HashTagUrl,Integer>,HashTagUrl,Integer>(){ 

                 @Override 

                public Tuple2<HashTagUrl, Integer> call(Tuple2<HashTagUrl, Integer> t) 

throws Exception { 

                   return new Tuple2<HashTagUrl,Integer>(t._1,t._2); 

                } 

         

             }); 

              

             JavaRDD<Tuple2<HashTagUrl,Integer>> hashtUrlNo; 

             hashtUrlNo = sc.objectFile("HashTagUrlPair"); 

              

             JavaPairRDD<HashTagUrl,Integer> hut ; 

             hut = hashtUrlNo.mapToPair(new 

PairFunction<Tuple2<HashTagUrl,Integer>,HashTagUrl,Integer>(){ 

              @Override 

              public Tuple2<HashTagUrl, Integer> call(Tuple2<HashTagUrl, Integer> t) 

throws Exception { 

                  return new Tuple2<HashTagUrl,Integer>(t._1,t._2); 

              } 

                  

             }); 
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             scores = scores.filter(new 

Function<Tuple2<HashTagHashTagPair,Float>,Boolean>(){ 

              @Override 

              public Boolean call(Tuple2<HashTagHashTagPair, Float> t1) throws Exception 

{ 

               if(t1._1.getHashTag1().equalsIgnoreCase("#bigdata") || 

t1._1.getHashTag2().equalsIgnoreCase("#bigdata")){ 

                   return true; 

               }else 

                   return false; 

              } 

       

            }); 

              

              

      JavaPairRDD<Float,HashTagHashTagPair> revertedScores = 

scores.mapToPair(new 

PairFunction<Tuple2<HashTagHashTagPair,Float>,Float,HashTagHashTagPair>(){ 

               

              @Override 

              public Tuple2<Float, HashTagHashTagPair> 

call(Tuple2<HashTagHashTagPair, Float> t) throws Exception { 

               

                  return new Tuple2<Float,HashTagHashTagPair>(t._2,t._1); 

              } 

       

             

      }); 
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      revertedScores = revertedScores.sortByKey(false); 

      revertedScores.foreach(x->{ 

                TaskContext tc = TaskContext.get(); 

                System.out.println("reverted "+tc.taskAttemptId()+"   "+x); 

                    }); 

      

      List<Tuple2<Float,HashTagHashTagPair>> topTen = revertedScores.take(10); 

   

      JavaRDD<Tuple2<Float,HashTagHashTagPair>> temp = sc.parallelize(topTen); 

       

      JavaPairRDD<String,Float> finTopTen = temp.mapToPair(new 

PairFunction<Tuple2<Float,HashTagHashTagPair>,String,Float>(){ 

              @Override 

              public Tuple2<String, Float> call(Tuple2<Float, HashTagHashTagPair> t) 

throws Exception { 

                     

                  return new 

Tuple2<String,Float>(t._2.getHashTag1().equalsIgnoreCase("#bigdata")?t._2.getHashT

ag2():t._2.getHashTag1(),t._1); 

               

              } 

           

      }); 

      finTopTen.foreach(x->{ 

                TaskContext tc = TaskContext.get(); 

                System.out.println("finTopTen "+tc.taskAttemptId()+"   "+x); 

                    }); 
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        Map<String,Float> msf = finTopTen.collectAsMap(); 

         

        hut = hut.filter(new Function<Tuple2<HashTagUrl,Integer>,Boolean>(){ 

              @Override 

              public Boolean call(Tuple2<HashTagUrl, Integer> t1) throws Exception { 

            

                    Float temp = null; 

                    temp = msf.get(t1._1.getHashTag()); 

                    return temp != null ?true:false; 

              } 

             

        }); 

         

        hul = hul.filter(new Function<Tuple2<HashTagUrl,Integer>,Boolean>(){ 

              @Override 

              public Boolean call(Tuple2<HashTagUrl, Integer> t1) throws Exception { 

                  

                 Float temp = null; 

                 temp = msf.get(t1._1.getHashTag()); 

                  return temp != null ?true:false; 

               

               

              } 

         

        }); 
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        hul.foreach(x->{ 

                TaskContext tc = TaskContext.get(); 

                System.out.println("hup: "+tc.taskAttemptId()+"   "+x); 

                    }); 

        

        JavaPairRDD<String,Integer> hulTrans = hul.mapToPair(new 

PairFunction<Tuple2<HashTagUrl,Integer>,String,Integer>(){ 

              @Override 

              public Tuple2<String, Integer> call(Tuple2<HashTagUrl, Integer> t) throws 

Exception { 

               

                  return new Tuple2<String,Integer>(t._1.getUrl(),t._2); 

              } 

             

        }); 

        JavaPairRDD<String,Integer> hutTrans = hut.mapToPair(new 

PairFunction<Tuple2<HashTagUrl,Integer>,String,Integer>(){ 

              @Override 

              public Tuple2<String, Integer> call(Tuple2<HashTagUrl, Integer> t) throws 

Exception { 

               

                  return new Tuple2<String,Integer>(t._1.getUrl(),t._2); 

              } 

             

        }); 

         



Finding Topic-Specific Trends and Influential Users in Social Networks  

C. Daskalakis   65 

        hutTrans = hutTrans.reduceByKey((occ1, occ2) -> occ1 + occ2); 

        hulTrans = hulTrans.reduceByKey((occ1, occ2) -> occ1 + occ2); 

        hutTrans.foreach(x->{ 

                TaskContext tc = TaskContext.get(); 

                System.out.println("hutTrans: "+tc.taskAttemptId()+"   "+x); 

                    }); 

        hulTrans.foreach(x->{ 

                TaskContext tc = TaskContext.get(); 

                System.out.println("hulTrans: "+tc.taskAttemptId()+"   "+x); 

                    }); 

         

          JavaPairRDD<String,Tuple2<Integer,Integer>> htuI = hutTrans.join(hulTrans); 

            hut.foreach(x->{ 

                TaskContext tc = TaskContext.get(); 

                System.out.println("hun: "+tc.taskAttemptId()+"   "+x); 

                    });      

        htuI.foreach(x->{ 

                TaskContext tc = TaskContext.get(); 

                System.out.println("htuI: "+tc.taskAttemptId()+"   "+x); 

                    }); 

         

        JavaPairRDD<String,Float> scoresFin = htuI.mapToPair(FINAL_SCORE); 

        JavaPairRDD<Float,String> scoresFinTemp = scoresFin.mapToPair(new 

PairFunction<Tuple2<String,Float>,Float,String>(){ 

              @Override 

              public Tuple2<Float, String> call(Tuple2<String, Float> t) throws Exception { 

                    return new Tuple2<Float,String>(t._2,t._1); 



Finding Topic-Specific Trends and Influential Users in Social Networks  

C. Daskalakis   66 

              } 

             

        }); 

         List<Tuple2<Float,String>> m =  scoresFinTemp.sortByKey(false).take(10); 

         

        JavaRDD<Tuple2<Float,String>> mtemp = sc.parallelize(m); 

         JavaPairRDD<String,Float> mFin = mtemp.mapToPair(new 

PairFunction<Tuple2<Float,String>,String,Float>(){ 

              @Override 

              public Tuple2<String, Float> call(Tuple2<Float, String> t) throws Exception { 

                    return new Tuple2<String,Float>(t._2,t._1); 

              } 

              

         }); 

          

         mFin.foreach(x->{ 

                TaskContext tc = TaskContext.get(); 

                System.out.println("mFin: "+tc.taskAttemptId()+"   "+x); 

                    }); 

} 
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