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ABSTRACT

Finding similar objects is a general computational task which serves as a subroutine for
many major learning tasks like classification or clustering. With the recent increase of
availability of complex datasets, the need for analyzing and handling high-dimensional
descriptors has been increased. Likewise, there is a surge of interest into data structures
for trajectory processing, motivated by the increasing availability and quality of trajectory
data from mobile phones, GPS sensors, RFID technology and video analysis.

In this thesis, we investigate proximity problems for high-dimensional vectors and polygo-
nal curves. The natural way to measure dissimilarity between two vectors is by evaluating
a norm function for the vector difference. Popular examples of such distance functions
are the Euclidean distance and the Manhattan distance. Similarly, there exist several
well-studied distance functions for polygonal curves, the main example being the Fréchet
distance.

The core problem, for both data types, is the nearest neighbor searching problem. Given
a set of objects P , we aim for a data structure which supports nearest neighbor queries;
a new object q arrives and the data structure returns the most similar object in P . When
the data complexity is high, aiming for an exact solution is often futile. This has led re-
searchers to the more tractable task of designing approximate solutions. The largest part
of this thesis is devoted to the approximate nearest neighbor problem and the approxi-
mate near neighbor problem: given a set of objects P and a radius parameter r, the data
structure returns an object in P which is approximately within distance r (if there exists
one) from some query object q. Another basic question is that of computing a subset of
good representatives for a dataset. This subset often provides with sufficient information
for a given computational task, and hence it possibly simplifies existing solutions. Finally,
we investigate range systems for polygonal curves: we bound the Vapnik–Chervonenkis
dimension for ranges defined by distance functions for curves. These bounds have direct
implications in range counting problems and density estimation.

The thesis is organized as follows.

Random projections for proximity search. We introduce a new definition of “low-quality”
embeddings for metric spaces [8]. It requires that, for some query point q, there exists an
approximate nearest neighbor among the pre-images of the k > 1 approximate nearest
neighbors in the target space. Focusing on Euclidean spaces, we employ random pro-
jections à la Johnson Lindenstrauss in order to reduce the original problem to one in a
space of dimension inversely proportional to k. This leads to simple data structures which
are space-efficient and also support sublinear queries. By employing properties of certain
LSH functions, we exploit a similar mapping to the Hamming space.

Doubling sets and Manhattan distance. Our primary motivation is the approximate nearest
neighbor problem in ℓ1, for pointsets with low intrinsic dimension. Doubling dimension is



a well-established notion which aims to capture the intrinsic dimension of points. Nearest
neighbor-preserving embeddings are known to exist for both ℓ2 and ℓ1 metrics, as well
as for doubling subsets of ℓ2. We propose a dimension reduction by means of a near
neighbor-preserving embedding for doubling subsets of ℓ1 [40].

Approximate r-nets. Nets offers a powerful tool in computational and metric geometry,
since they serve as a subset of good representatives: all points are within distance r from
some net point and all net points lie at distance at least r from each other. We focus on
high-dimensional spaces and present a new randomized algorithm which efficiently com-
putes approximate r-nets with respect to Euclidean distance [19]. Our algorithm follows a
recent approach by Valiant in reducing the problem to multi-point evaluation of polynomi-
als.

Proximity search for polygonal curves. We propose simple and efficient data structures
[41], based on randomized projections, for a notion of distance between discretized curves,
which generalizes both discrete Fréchet and Dynamic Time Warping distance functions.
We offer the first data structures and query algorithms for the approximate nearest neigh-
bor problem with arbitrarily good approximation factor, at the expense of increasing space
usage and preprocessing time over existing methods.

Proximity search for short query curves. We propose simple and efficient data structures,
based on random partitions, for the discrete Fréchet distance, in the short query regime.
The data structures are especially efficient when queries are much shorter than the polyg-
onal curves which belong to the dataset. We also study the problem for arbitrary metrics
with bounded doubling dimension.

The VC dimension of polygonal curves. The Vapnik-Chervonenkis dimension provides
a notion of complexity for set or range systems. We analyze range systems where the
ground set is a set of polygonal curves in the Euclidean space and the ranges are met-
ric balls defined by curve dissimilarity measures, such as the Fréchet distance and the
Hausdorff distance [36]. Direct implications follow by applying known sampling bounds.

SUBJECT AREA: Computational Geometry

KEYWORDS: Nearest Neighbor, high dimension, polygonal curves



ΠΕΡΙΛΗΨΗ

Η εύρεση όμοιων αντικειμένων είναι ένα γενικό υπολογιστικό πρόβλημα που χρησιμεύει
ως υπορουτίνα για πολλά προβλήματα μηχανικής μάθησης όπως η συσταδοποίηση. Με
την πρόσφατη αύξηση της διαθεσιμότητας πολύπλοκων συνόλων δεδομένων, αυξήθηκε
η ανάγκη για την ανάλυση δεδομένων υψηλών διαστάσεων. Παρομοίως, παρατηρείται
αύξηση ενδιαφέροντος στις δομές δεδομένων για επεξεργασία καμπυλών, λόγω της αυ-
ξανόμενης διαθεσιμότητας και ποιότητας των δεδομένων τροχιάς από τα κινητά τηλέφωνα,
τους αισθητήρες GPS, την τεχνολογία RFID και την ανάλυση βίντεο.

Σε αυτή τη διατριβή, ερευνάμε προβλήματα εγγύτητας για διανύσματα μεγάλης διάστασης
και πολυγωνικές καμπύλες. Ο φυσικός τρόπος μέτρησης της ανομοιότητας μεταξύ δύο
διανυσμάτων είναι η αποτίμηση μιας συνάρτησης νόρμας για τη διανυσματική διαφορά
των δύο διανυσμάτων. Δημοφιλή παραδείγματα τέτοιων συναρτήσεων απόστασης είναι
η Ευκλείδεια απόσταση και η απόσταση Μανχάταν. Παρομοίως, υπάρχουν αρκετές καλά
μελετημένες συναρτήσεις απόστασης για πολυγωνικές καμπύλες, με κύριο παράδειγμα
την απόσταση Fréchet.

Το βασικό πρόβλημα, και για τους δύο τύπους δεδομένων, είναι το πρόβλημα αναζήτησης
του κοντινότερου γείτονα. Δεδομένου ενός συνόλου αντικειμένων P , στοχεύουμε σε μια
δομή δεδομένων που υποστηρίζει ερωτήματα κοντινότερου γείτονα. Ένα νέο αντικείμενο
q δίνεται και η δομή δεδομένων επιστρέφει το ομοιότερο αντικείμενο από το P . Όταν η
πολυπλοκότητα των δεδομένων είναι υψηλή, μια λύση με ακρίβεια είναι σπάνια αποδοτι-
κή. Αυτό οδήγησε τους ερευνητές στον πιο εύκολο στόχο του σχεδιασμού προσεγγιστι-
κών λύσεων. Το μεγαλύτερο μέρος αυτής της εργασίας είναι αφιερωμένο στο πρόβλημα
του προσεγγιστικού κοντινότερου γείτονα και στο πρόβλημα του προσεγγιστικού κοντι-
νού γείτονα: δεδομένου ενός συνόλου αντικειμένων P και μιας παραμέτρου ακτίνας r, η
δομή δεδομένων επιστρέφει ένα αντικείμενο στο P (εφόσον υπάρχει) το οποίο είναι κα-
τά προσέγγιση σε απόσταση r από κάποιο αντικείμενο ερώτησης q. Ένα άλλο βασικό
ερώτημα είναι αυτό του υπολογισμού ενός υποσυνόλου καλών εκπροσώπων για ένα σύ-
νολο δεδομένων. Αυτό το υποσύνολο παρέχει συχνά επαρκείς πληροφορίες για κάποιο
υπολογιστικό πρόβλημα και επομένως απλοποιεί πιθανώς τις υπάρχουσες λύσεις. Τέ-
λος, μελετάμε τους χώρους εύρους για πολυγωνικές καμπύλες: φράσουμε τη διάσταση
Vapnik-Chervonenkis για εύρη που ορίζονται από συναρτήσεις απόστασης για καμπύλες.
Τα αποτελέσματα αυτά έχουν άμεσες συνέπειες σε προβλήματα μέτρησης εύρους και στην
εκτίμηση πυκνότητας.

Η διατριβή έχει δομηθεί ως εξής.

Τυχαίες προβολές για προβλήματα εγγύτητας. Εισάγουμε έναν νέο ορισμό εμβυθίσεων
“χαμηλής ποιότητας” για μετρικούς χώρους [8]. Απαιτεί ότι, για κάποιο σημείο ερωτήμα-
τος q, υπάρχει ένας προσεγγιστικός κοντινότερος γείτονας μεταξύ των προ-εικόνων των
k > 1 προσεγγιστικών κοντινότερων γειτόνων στο χώρο προορισμού. Εστιάζοντας σε Ευ-
κλείδειους χώρους, χρησιμοποιούμε τυχαίες προβολές à la Johnson Lindenstrauss προ-



κειμένου να ανάγουμε το αρχικό πρόβλημα σε ένα πρόβλημα όπου η διάσταση του χώρου
είναι αντιστρόφως ανάλογη του k. Αυτό οδηγεί σε απλές δομές δεδομένων, οι οποίες είναι
αποδοτικές ως προς τον απαιτούμενο χώρο αποθήκευσης και υποστηρίζουν ερωτήματα
σε υπογραμμικό χρόνο. Χρησιμοποιώντας ιδιότητες συγκεκριμένων συναρτήσεων LSH,
εκμεταλλευόμαστε μια παρόμοια απεικόνιση στον χώρο Hamming.

Χαμηλή εγγενής διάσταση και απόσταση Μανχάταν. Το πρωταρχικό μας κίνητρο είναι το
πρόβλημα πλησιέστερου γείτονα στον μετρικό χώρο ℓ1, για σημεία με χαμηλή εγγενή διά-
σταση. Η διάσταση διπλασιασμού είναι μια καθιερωμένη έννοια εγγενούς διάστασης των
σημείων. Εμβυθίσεις που διατηρούν τον κοντινότερο γείτονα υπάρχουν τόσο για ℓ2 όσο
και για ℓ1 μετρικές, καθώς και για υποσύνολα του ℓ2 με χαμηλή διάσταση διπλασιασμού.
Προτείνουμε μια τεχνική μείωσης διάστασης που διατηρεί τον κοντινό γείτονα για υποσύ-
νολα του ℓ1 με χαμηλή διάσταση διπλασιασμού [40].

Προσεγγιστικά r-δίκτυα. Τα r-δίκτυα προσφέρουν ένα ισχυρό εργαλείο στην υπολογιστική
και τη μετρική γεωμετρία, δεδομένου ότι χρησιμεύουν ως υποσύνολο καλών αντιπροσώ-
πων: όλα τα σημεία βρίσκονται σε απόσταση r από κάποιο σημείο του r-δικτύου και όλα
τα κέντρα του r-δικτύου είναι σε απόσταση τουλάχιστον r μεταξύ τους. Εστιάζουμε σε
χώρους μεγάλης διαστάσεως και παρουσιάζουμε έναν νέο πιθανοτικό αλγόριθμο ο οποί-
ος υπολογίζει αποτελεσματικά προσεγγιστικά r-δίκτυα σε Ευκλείδειους χώρους [19]. Ο
αλγόριθμός μας ακολουθεί μια πρόσφατη προσέγγιση του Valiant για τη αναγωγή του
προβλήματος στην αποτίμηση πολλαπλών σημείων πολυωνύμων.

Προβλήματα εγγύτητας για πολυγωνικές καμπύλες. Προτείνουμε απλές και αποτελεσμα-
τικές δομές δεδομένων, βασισμένες σε τυχαίες προβολές, για μια έννοια της απόστασης
μεταξύ διακριτοποιημένων καμπυλών, η οποία γενικεύει την διακριτή απόσταση Fréchet
και την απόσταση Dynamic Time Warping. Προσφέρουμε τις πρώτες δομές δεδομένων
για την εύρεση του κοντινότερου γείτονα με αυθαίρετα καλό συντελεστή προσέγγισης, με
ταυτόχρονη αύξηση του χώρου σε σχέση με τις υπάρχουσες μεθόδους [41].

Προβλήματα εγγύτητας για καμπύλες επερώτησης μικρού μήκους. Προτείνουμε δομές
δεδομένων, βασισμένες σε τυχαίες διαμερίσεις του χώρου, για την διακριτή απόσταση
Fréchet όταν καμπύλες επερώτησης είναι μικρού μήκους. Οι δομές δεδομένων είναι ι-
διαίτερα αποτελεσματικές όταν τα ερωτήματα είναι πολύ μικρότερα από τις πολυγωνικές
καμπύλες που ανήκουν στο σύνολο δεδομένων. Επίσης, μελετάμε το πρόβλημα για αυ-
θαίρετους μετρικούς χώρους με χαμηλή διάσταση διπλασιασμού.

H VC διάσταση πολυγωνικών καμπυλών. Η διάσταση Vapnik-Chervonenkis παρέχει μια
έννοια πολυπλοκότητας για συστήματα συνόλων ή εύρους. Αναλύουμε συστήματα εύρους
όπου το βασικό σύνολο είναι ένα σύνολο πολυγωνικών καμπυλών στον Ευκλείδειο χώρο
και εύρη είναι μετρικές μπάλες που ορίζονται από συναρτήσεις αποστάσεων για καμπύλες,
όπως η απόσταση Fréchet και η απόσταση Hausdorff [36]. Ακολουθούν άμεσες συνέπειες
εφαρμόζοντας γνωστά αποτελέσματα δειγματοληψίας.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Υπολογιστική Γεωμετρία

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Κοντινότερος γείτονας, υψηλή διάσταση, πολυγωνικές καμπύλες



ΣΥΝΟΠΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΤΗΣ ΔΙΔΑΚΤΟΡΙΚΗΣ ΔΙΑΤΡΙΒΗΣ

Με τον αυξανόμενο όγκο δεδομένων και καθώς η πρόσβαση σε δεδομένα υψηλής πολυ-
πλοκότητας γίνεται ευκολότερη, δημιουργείται ανάγκη για αλγοριθμικές λύσεις σε βασικά
υπολογιστικά προβλήματα, των οποίων η απόδοση θα κλιμακώνει ομαλά με την αύξηση
της πολυπλοκότητας των δεδομένων εισόδου. Στην διατριβή αυτή μελετάμε προβλήματα
εγγύτητας, προβλήματα δηλαδή στα οποία η είσοδος είναι ένα σύνολο αντικειμένων και
υπονοείται μια συνάρτηση ομοιότητας ή απόστασης μεταξύ των αντικειμένων. Ίσως το
σημαντικότερο πρόβλημα σε αυτή την περιοχή είναι το πρόβλημα του κοντινότερου γεί-
τονα, στο οποίο πρέπει να σχεδιαστεί δομή δεδομένων η οποία αποθηκεύει ένα σύνολο
αντικειμένων και υποστηρίζει την εύρεση του περισσότερο όμοιου αντικειμένου από το
αποθηκευμένο σύνολο, σε σχέση με ένα νέο αντικείμενο. Προφανώς η εύρεση του κοντι-
νότερου γείτονα πρέπει να γίνεται σε χρόνο αρκετά μικρότερο από αυτόν που θα απαιτείτο
αν ελέγχαμε ένα προς ένα όλα τα αποθηκευμένα δεδομένα. Σχετικός τύπος προβλημάτων
είναι αυτός της συσταδοποίησης. Στην συσταδοποίηση, η είσοδος του προβλήματος είναι
πάλι ένα σύνολο αντικειμένων και μια συνάρτηση απόστασης και στόχος είναι η διαμέριση
των αντικειμένων σε συστάδες: όμοια αντικείμενα πρέπει να ανήκουν στην ίδια συστάδα
για την οποία συνήθως υπάρχει κάποιο αντικείμενο που αποτελεί “αντιπρόσωπο”.

Οι βασικοί τύποι δεδομένων που μελετάμε στην διατριβή αυτή, είναι δύο. Ο πρώτος τύπος
είναι το απλό διάνυσμα ή σημείο, ή αλλιώς πλειάδα πραγματικών αριθμών. Κάθε συντε-
ταγμένη μπορεί να θεωρηθεί ότι αντιστοιχεί σε ένα διαφορετικό γνώρισμα των δεδομένων.
Η υψηλή πολυπλοκότητα των δεδομένων σε αυτό το πλαίσιο μεταφράζεται ώς υψηλή διά-
σταση των διανυσμάτων, δηλαδή τα δεδομένα έχουν πολλά γνωρίσματα. Ως συναρτήσεις
απόστασης θεωρούμε κλασσικά παραδείγματα νορμών και πιο συγκεκριμένα την Ευκλεί-
δεια απόσταση ή την απόσταση Μανχάταν. Ο δεύτερος τύπος δεδομένων που εξετάζεται
στην διατριβή είναι η ακολουθία διανυσμάτων η οποία ορίζει μια πολυγωνική καμπύλη.
Παραδείγματα τέτοιων δεδομένων είναι οι τροχιές από GPS ή οι χρονοσειρές. Σε αυτή
την περίπτωση, οι πιο δημοφιλείς συναρτήσεις απόστασης είναι η Fréchet απόσταση (ή
η διακριτή εκδοχή της) και η απόσταση Dynamic Time Warping. Η υψηλή πολυπλοκό-
τητα τέτοιων δεδομένων μεταφράζεται είτε ως υψηλή διάσταση των διανυσμάτων είτε ως
μεγάλο μήκος των ακολουθιών.

Καθώς οι βασικές λύσεις για προβλήματα εγγύτητας βασίζονται σε προσεκτικό διαχωρι-
σμό του χώρου, αναπόφευκτα αυτές αποτυγχάνουν όταν η διάσταση είναι υψηλή καθώς
ο όγκος του περιβάλλοντος χώρου αυξάνεται εκθετικά. Ως εκ τούτου, βασιζόμαστε σε με-
θόδους μείωσης της διάστασης μέσω τυχαίων προβολών. Το κύριο αποτέλεσμα σε αυτή
την περιοχή είναι το Johnson-Lindenstrauss λήμμα, το οποίο αποτυπώνει το εξής γεγο-
νός: αν n σημεία στο Rd, προβληθούν σε έναν τυχαίο υπόχωρο διάστασης περίπου logn,
τότε με καλή πιθανότητα οι Ευκλείδειες αποστάσεις δεν θα μεταβληθούν πολύ αν εξαιρέ-
σουμε έναν κοινό πολλαπλασιαστικό παράγοντα. Προτείνουμε μια διαφορετική εφαρμογή
του λήμματος, προσαρμοσμένη στις ανάγκες του προβλήματος εύρεσης του προσεγγιστι-
κού κοντινότερου γείτονα. Για ένα πρόβλημα συσταδοποίησης σημείων, βασιζόμαστε σε



πρόσφατα αποτελέσματα για την εύρεση κοντινότερου ζευγαριού μέσω γρήγορου πολ-
λαπλασιασμού πίνακα και δείχνουμε ότι αντίστοιχες βελτιώσεις μπορούν να επεκταθούν
και σε άλλα προβλήματα. Στην περίπτωση των πολυγωνικών καμπυλών, προτείνουμε
μεθόδους για την εύρεση προσεγγιστικού κοντινότερου γείτονα και μελετάμε την Vapnik–
Chervonenkis (VC) διάσταση για τους ψευδομετρικούς χώρους που ορίζονται από τις αντί-
στοιχες συναρτήσεις αποστάσεων. Η μελέτη της VC διάστασης βρίσκει εφαρμογές μέσω
κλασσικών μεθόδων δειγματοληψίας. Ακολουθεί μια πιο λεπτομερής επισκόπηση των
αποτελεσμάτων.

Κοντινότερος γείτονας. Έστω P ένα σύνολο n σημείων σε κάποιο μετρικό χώρο (M,d).
Το πρόβλημα συνίσταται στην δημιουργία μιας δομής δεδομένων τέτοια ώστε, για οποιο-
δήποτε σημείο ερωτήματος q ∈M, η δομή επιστρέφει σημείο p ∈ P για το οποίο d(p, q) ≤
d(p′, q), για κάθε p′ ∈ P . Τότε το σημείο p είναι ένας κοντινότερος γείτονας του q. Συχνά,
μια λύση με απόλυτη ακρίβεια για την αναζήτηση κοντινότερου γείτονα απαιτεί απαγορευ-
τικά βαρείς πόρους. Έτσι, οι περισσότερες λύσεις επικεντρώνονται στο λιγότερο απαιτη-
τικό πρόβλημα της εύρεσης του προσεγγιστικού κοντινότερου γείτονα. Για οποιοδήποτε
μετρικό χώρο (M,d), και δεδομένου πεπερασμένου συνόλου P ⊂ M και πραγματικής
παραμέτρου ϵ > 0, ενας (1 + ϵ)-προσεγγιστικός κοντινότερος γείτονας σε ένα σημείο επε-
ρώτησης q ∈M είναι ένα σημείο p ∈ P τέτοιο ώστε

d(q, p) ≤ (1 + ϵ) · d(q, p′), for all p′ ∈ P.

Ως εκ τούτου, στοχεύοντας σε μια προσεγγιστική λύση, η απάντηση μπορεί να είναι οποιο-
δήποτε σημείο του οποίου η απόσταση από το q είναι το πολύ (1 + ϵ) φορές μεγαλύτερη
από την απόσταση μεταξύ του q και του πραγματικού κοντινότερου γείτονα.

Το αντίστοιχο πρόβλημα απόφασης (με μάρτυρα) είναι γνωστό ως το πρόβλημα εύρεσης
ενός κοντινού γείτονα, το οποίο ορίζεται ως εξής.

Ορισμός 1. Έστω P ⊆M, με |P | = n, όπου (M,d) κάποιος μετρικός χώρος. Δεδομένου
ϵ > 0, r > 0, ζητείται δομή δεδομένων για την οποία, για κάθε επερώτημα q ∈M,

• αν ∃p∗ ∈ P s.t. d(p∗, q) ≤ r, τότε η δομή επιστρέφει οποιοδήποτε p′ ∈ P τ.ω. d(p′, q) ≤
(1 + ϵ) · r,

• αν ∀p ∈ P , d(p, q) > (1 + ϵ) · r, τότε η δομή επιστρέφει “Αποτυχία”.

Η δομή επιτρέπεται να επιστρέψει είτε ένα σημείο σε απόσταση ≤ (1 + ϵ)r είτε το μήνυμα
“Αποτυχία”.

Είναι γνωστό ότι το πρόβλημα εύρεσης του προσεγγιστικού κοντινότερου γείτονα μπο-
ρεί να λυθεί λύνοντας λογαριθμικά πολλές περιπτώσεις του προβλήματος απόφασης με
μάρτυρα [51].

Κοντινότερος γείτονας στον Ευκλείδειο χώρο. Οι ντετερμινιστικές τεχνικές διαμερισμού του
χώρου, όπως τα kd-δέντρα, τα BBD-δέντρα και τα Voronoi διαγράμματα, παρέχουν απο-
δοτικές λύσεις όταν η διάσταση είναι σχετικά χαμηλή αλλά επηρεάζονται από την κατάρα



της διαστασιμότητας. Προς επίλυση αυτού του ζητήματος, έχουν προταθεί τυχαιοκρατικές
μέθοδοι όπως το Locality Sensitive Hashing (LSH), μια δομή που βασίζεται σε τυχαιο-
κρατικό κατακερματισμό ώστε κοντινά σημεία να τείνουν να ανήκουν στην ίδια συστάδα
κατακερματισμού. Κάποιος μπορεί επίσης να εφαρμόσει το Johnson-Lindenstrauss λήμ-
μα σε συνδυασμό με τεχνικές για χαμηλές διαστάσεις. Το πρόβλημα που προκύπτει είναι
είτε ότι η χώρος που απαιτείται από την δομή είναι της τάξης του ω(n) είτε ο χρόνος ε-
περώτησης είναι ω(n). Εμείς εστιάζουμε στο σενάριο κατά το οποίο στοχεύουμε σε χώρο
O(dn) και παράλληλα σε χρόνο επερώτησης o(n).

Για τον σκοπό αυτό εισάγουμε μια νέα έννοια “χαμηλής ποιότητας” τυχαιοκρατικών εμβυθί-
σεων και χρησιμοποιούμε τυχαίες προβολές à la Johnson-Lindenstrauss για να ορίσουμε
μια συνάρτηση από το ℓd2 στο ℓd′2 , όπου

d′ = O
(
ϵ−2 · log n

k

)
,

τέτοια ώστε ένας προσεγγιστικός κοντινότερος γείτονας στον αρχικό χώρο να βρίσκεται
ανάμεσα στους k προσεγγιστικούς κοντινότερους γείτονες στον νέο χώρο. Αυτή η παρα-
τήρηση μας επιτρέπει να συνδυάσουμε τις τυχαίες προβολές με την μέθοδο πλέγματος
[51], και να κατασκευάσουμε μια τυχαιοκρατική δομή δεδομένων για το πρόβλημα από-
φασης με μάρτυρα με βέλτιστο χώρο και υπογραμμικό χρόνο απόκρισης ερωτήματος.

Πιο συγκεκριμένα, μετά την τυχαία προβολή στο ℓd
′

2 , εφαρμόζουμε ένα πλέγμα με μήκος
πλευράς κελιού ϵ/

√
d′ και για κάθε σημείο επερώτησης, εξερευνούμε γειτονικά κελιά που

τέμνουν την Ευκλείδεια μπάλα η οποία περιέχει O(1/ϵ)d′ κελιά. Ο αλγόριθμος σταματάει
αφού εξετάσει k σημεία που περιέχονται στην μπάλα ή όλα τα κελιά της μπάλας. Θέτοντας
κατάλληλα τις παραμέτρους πετυχαίνουμε γραμμικό χρόνο δημιουργίας της δομής, γραμ-
μικό χώρο, και χρόνο επερώτησης O(dnρ), όπου ρ = 1−Θ(ϵ2/log(1/ϵ)). Για κάθε σημείο
επερώτησης q ∈ Rd, η κατασκευή της δομής πετυχαίνει με σταθερή πιθανότητα, η οποία
μπορεί να ενισχυθεί δημιουργώντας πολλές ανεξάρτητες δομές. Επίσης επεκτείνουμε το
αποτέλεσμα για υποσύνολα με χαμηλή εγγενή διάσταση.

Χρησιμοποιώντας γνωστές αναγωγές [51], μπορούμε να σχεδιάσουμε λύση για το πρό-
βλημα του προσεγγιστικού κοντινότερου γείτονα χρησιμοποιώντας την παραπάνω δομή.
Η ιδέα όμως μπορεί να εφαρμοστεί απευθείας στο πρόβλημα του προσεγγιστικού κοντινό-
τερου γείτονα, για παράδειγμα χτίζοντας ένα Balanced Box-Decomposition (BBD) δέντρο
στο νέο χώρο διάστασης d′. Ο συνδυασμός αυτός επιτυγχάνει πιο αδύναμα φράγματα
αλλά μπορεί να βρει πρακτική αξία λόγω της απλότητας του.

Κοντινός γείτονας για μετρικούς χώρους με LSH. Οι παραπάνω ιδέες μπορούν να επε-
κταθούν για οποιοδήποτε μετρικό χώρο για τον οποίο υπάρχουν LSH συναρτήσεις. Η
τυχαία προβολή σε αυτή την περίπτωση ορίζεται από τον αρχικό μετρικό χώρο προς τον
χώρο Hamming ({0, 1}d′ , ∥ · ∥1). Η παρατήρησή αυτή οδηγεί σε μια βελτίωση στον χρόνο
επερώτησης, στην περίπτωση του Ευκλείδειου χώρου. Θέτοντας κατάλληλα τις παραμέ-
τρους πετυχαίνουμε γραμμικό χρόνο δημιουργίας της δομής, γραμμικό χώρο, και χρόνο
επερώτησης O(dnρ), όπου ρ = 1−Θ(ϵ2).

Κοντινός γείτονας και μείωση διάστασης για ℓ1. Η μείωση διάστασης με διατήρηση όλων
των αποστάσεων στον μετρικό χώρο ℓ1, είναι γνωστό ότι αποτελεί δύσκολο εγχείρημα,



ακόμα και όταν η διάσταση διπλασιασμού (doubling dimension) των σημείων είναι αρκετά
μικρή [66]. Στην διατριβή αυτή μελετάμε απλές τεχνικές μείωσης διάστασης που δεν διατη-
ρούν όλες τις αποστάσεις αλλά διατηρούν πληροφορία που είναι αρκετή για το πρόβλημα
του κοντινού γείτονα. Με άλλα λόγια προσφέρουμε μια αναγωγή του προβλήματος εύρε-
σης κοντινού γείτονα σε υψηλή διάσταση στο αντίστοιχο πρόβλημα σε χαμηλή διάσταση.
Για n σημεία στο ℓd1, και για γραμμικό χρόνο προβολής, πετυχαίνουμε διάσταση προβο-
λής πολυωνυμική στο log logn, όταν η εγγενής διάσταση θεωρείται σταθερή. Παρ’ότι οι
συνέπειες του αποτελέσματος δεν περιλαμβάνουν νέα θεωρητικά φράγματα για δομές
δεδομένων, η μείωση διάστασης προσφέρει διάφορα πλεονεκτήματα, όπως την μείωση
μνήμης που απαιτείται ανά σημείο.

Ένα πρόβλημα συσταδοποίησης. Μελετάμε τα r-δίκτυα (r-nets), ένα χρήσιμο εργαλείο της
υπολογιστικής και της μετρικής γεωμετρίας, με πληθώρα εφαρμογών στους προσεγγιστι-
κούς αλγορίθμους. Ένα r-δίκτυο για ένα σημειοσύνολο P στον Ευκλείδειο χώρο (Rd, ∥·∥2),
και για αριθμητική παράμετρο r είναι ένα υποσύνολο N ⊆ P τέτοιο ώστε οι κλειστές μπά-
λες ακτίνας r/2 με κέντρα τα σημεία του N είναι ξένες μεταξύ τους, και οι κλειστές μπάλες
ακτίνας r με κέντρα τα ίδια σημεία καλύπτουν όλο το P . Ορίζουμε ανάλογα τα προσεγγι-
στικά r-δίκτυα.

Ορισμός 2. Δοθέντος ενός σημειοσυνόλου P ⊆ Rd, μιας παραμέτρου ακτίνας r > 0 και
μιας παραμέτρους προσέγγισης ϵ > 0, ένα (1 + ϵ)-προσεγγιστικό r-δίκτυο του P είναι ένα
υποσύνολο N ⊆ P που ικανοποιεί τις ακόλουθες ιδιότητες:

1. Για κάθε p, q ∈ N , p ̸= q, έχουμε ότι ∥p− q∥2 ≥ r.

2. Για κάθε p ∈ P , υπάρχει ένα q ∈ N s.t. ∥p− q∥2 ≤ (1 + ϵ)r.

Ο υπολογισμός ενός r-δικτύου μπορεί να γίνει με έναν πολύ απλό τρόπο: θεωρούμε αρ-
χικά όλα τα σημεία του P μη-καλυμμένα, και επαναληπτικά επιλέγουμε κέντρα από το
σύνολο ακάλυπτων σημείων και με αυτά καλύπτουμε σημεία από το σύνολο ακάλυπτων
σημείων. Η διαδικασία σταματάει όταν καλυφθούν όλα τα σημεία. Όταν η διάσταση είναι
χαμηλή, η παραπάνω διαδικασία μπορεί να γίνει με πιο αποδοτικό τρόπο χρησιμοποιώ-
ντας πλέγματα και πίνακες κατακερματισμού [49].

Όταν η διάσταση είναι υψηλή στοχεύουμε ξανά σε πολυπλοκότητα πολυωνυμική στην
διάσταση. Επίσης η εξάρτηση στο πλήθος σημείων πρέπει να είναι σαφώς μικρότερη α-
πό O(n2), όπου |P | = n, αφού τόσο κοστίζει να εξετάσουμε όλες τις αποστάσεις. Μια
προσέγγιση η οποία υπολογίζει (1 + ϵ)-προσεγγιστικά r-δίκτυα σε υψηλή διάσταση [42],
χρησιμοποιεί LSH. Για αρκετά μικρό ϵ > 0, η πολυπλοκότητα χρόνου είναι Õ(dn2−Θ(ϵ)),
όπου το Õ κρύβει πολυλογαριθμικούς παράγοντες.

Γενικά πολλά από τα προβλήματα εγγύτητας έχουν επιλυθεί σε υψηλές διαστάσεις μέσω
του LSH. Για παράδειγμα το πρόβλημα της εύρεσης του προσεγγιστικού κοντινότερου
ζευγαριού ανάμεσα σε n σημεία σε διάσταση d μπορεί να επιλυθεί σε χρόνο Õ(dn2−Θ(ϵ)).
Πρόσφατα, ο Valiant [77] παρουσίασε έναν αλγόριθμο για τη εύρεση του προσεγγιστικού
κοντινότερου ζευγαριού σε χρόνο Õ(dn2−Θ(

√
ϵ)) ο οποίος δεν βασίζεται στο LSH. Αυτή η



διαφορετική προσέγγιση βασίζεται στον γρήγορο υπολογισμό πινάκων για την αποτίμηση
πολυωνύμων.

Επεκτείνουμε τον αλγόριθμο του Valiant και υπολογίζουμε προσεγγιστικά r-δίκτυα σε χρό-
νο Õ(dn2−Θ(

√
ϵ)), βελτιώνοντας έτσι τον χρόνο του αλγορίθμου που βασίζεται στο LSH,

όταν το ϵ είναι αρκετά μικρό. Η βελτίωση αυτή είναι αντίστοιχη της βελτίωσης για το πρό-
βλημα του κοντινότερου ζευγαριού. Η μελέτη μας ωθείται από τις διάφορες εφαρμογές
των r-δικτύων στους προσεγγιστικούς αλγόριθμους [54].

Μια ενιαία αντιμετώπιση προβλημάτων εγγύτητας καμπυλών. Υπάρχουν διάφοροι τρόποι
καθορισμού της ανομοιότητας ή της απόστασης μεταξύ δύο καμπυλών. Τα δύο πιο δη-
μοφιλή μέτρα ανισότητας είναι η διακριτή απόσταση Fréchet (Discrete Fréchet distance ή
DFD) και η απόσταση Δυναμικής Χρονικής Στρέβλωσης (Dynamic Time Warping ή DTW),
οι οποίες είναι ευρέως μελετημένες και εφαρμόζονται σε προβλήματα ταξινόμησης και α-
νάκτησης για διάφορους τύπους δεδομένων. Το DFD είναι ψευδό-μετρική, σε αντίθεση
με το DTW που δεν ικανοποιεί την τριγωνική ανισότητα.  Είναι σύνηθες, στις αποστάσεις
των καμπυλών, να χρησιμοποιείται η έννοια της διάσχισης (traversal) για δύο καμπύλες.
Διαισθητικά, μια διάσχιση αντιστοιχεί σε ένα χρονοδιάγραμμα σύμφωνα με το οποίο δια-
σχίζουμε τις δύο καμπύλες ταυτόχρονα, ξεκινώντας από το πρώτο σημείο κάθε καμπύλης
και τελειώνοντας στο τελευταίο σημείο κάθε καμπύλης. Με την πάροδο του χρόνου, η διά-
σχιση προχωράει σε τουλάχιστον μία από τις δύο καμπύλες. Το DFD είναι η ελάχιστη (ως
προς τις διασχίσεις) μέγιστη απόσταση των σημείων κατά την διάσχιση. Το DTW είναι το
ελάχιστο (ως προς τις διασχίσεις), άθροισμα των αποστάσεων κατά τη διάσχιση.

Παρουσιάζουμε μια έννοια απόστασης καμπυλών που γενικεύει τις DFD και DTW. H ℓp-
απόσταση δύο καμπυλών ελαχιστοποιεί, ως προς όλες τις διασχίσεις, την ℓp νόρμα του
διανύσματος όλων των Ευκλείδειων αποστάσεων μεταξύ σημείων που επισκέπτονται ταυ-
τόχρονα κατά την διάσχιση. Ως εκ τούτου, η DFD αντιστοιχεί στην ℓ∞-απόσταση πολυγω-
νικών καμπυλών, και το DTW αντιστοιχεί στην ℓ1-απόσταση.

Η βασική μας συνεισφορά είναι μια δομή δεδομένων για το πρόβλημα της εύρεσης του
προσεγγιστικού κοντινότερου γείτονα για τις ℓp-αποστάσεις πολυγωνικών καμπυλών, ό-
ταν 1 ≤ p < ∞. Αυτό επεκτείνεται εύκολα για την ℓ∞-απόσταση καμπυλών λύνοντας για
την ℓp-απόσταση, όπου το p επιλέγεται να είναι αρκετά μεγάλο. Στόχος μας είναι 1 + ϵ
προσέγγιση. Τέτοιοι προσεγγιστικοί παράγοντες επιτυγχάνονται για πρώτη φορά, θυσιά-
ζοντας σε χωρικές απαιτήσεις της δομής. Ένα επιπλέον πλεονέκτημα είναι ότι οι μέθοδοι
μας λύνουν απευθείας το πρόβλημα του κοντινότερου γείτονα. Παρότι υπάρχουν γνωστές
αναγωγές στο πρόβλημα του κοντινού γείτονα για μετρικούς χώρους, δεν είναι γνωστό αν
αντίστοιχες αναγωγές μπορούν να λειτουργήσουν σε μη-μετρικές αποστάσεις όπως το
DTW.

Συγκεκριμένα, όταν p > 2, για n καμπύλες πολυπλοκότητας m, σχεδιάζουμε δομή δεδο-
μένων με χώρο και χρόνο προεπεξεργασίας

Õ

(
n ·
(
d

pϵ
+ 2

)O(dm·αp,ϵ)
)
,

όπου το αp,ϵ εξαρτάται μόνο από τα p, ϵ, και ο χρόνος επερώτησης είναι Õ(24m logn).



Δομές δεδομένων για ερωτήματα χαμηλής πολυπλοκότητας. Όταν μελετάμε προβλήματα
εγγύτητας για καμπύλες είναι φυσιολογικό να υποθέσουμε ότι οι καμπύλες επερώτησης
δεν είναι ίδιας πολυπλοκότητας με αυτές που αποτελούν το σύνολο δεδομένων. Εστιάζου-
με στην περίπτωση όπου οι καμπύλες επερώτησης αποτελούνται από μικρότερο πλήθος
κορυφών.

Για την διακριτή απόσταση Fréchet στον Ευκλείδειο χώρο, δίνουμε μια τυχαιοκρατική δο-
μή δεδομένων με χώρο n · O

(
kd3/2

ϵ

)dk
+ O(dnm) και χρόνο ερωτήματος σε O (dk), όπου

το k δηλώνει το μήκος της καμπύλης ερωτήματος. Ο αλγόριθμος βασίζεται σε τυχαίες
διαμερίσεις του χώρου, και πιο συγκεκριμένα σε διαμερίσεις που δημιουργούνται από τυ-
χαία μετατοπισμένα πλέγματα. Η δομή των δεδομένων μπορεί να γίνει ντετερμινιστική με
ελαφρά επιδείνωση της απόδοσης.

Για αυθαίρετους μετρικούς χώρους με χαμηλή διάσταση διπλασιασμού, δίνουμε ανάλογα
αποτελέσματα, αλλά η επιτυγχανόμενη απόδοση εξαρτάται από τις υποθέσεις που σχετί-
ζονται με το πως έχουμε πρόσβαση στον εν λόγω μετρικό χώρο. Ο αλγόριθμος βασίζεται
και πάλι σε τυχαίες διαμερίσεις του χώρου οι οποίες υλοποιούνται με δομές δεδομένων
για προβλήματα εγγύτητας σημείων σε γενικούς μετρικούς χώρους.

Η VC-διάσταση για πολυγωνικές καμπύλες. Ένας χώρος εύρους (X,R) (γνωστό επίσης
ως σύστημα συνόλων) ορίζεται από ένα σύνολο X και ένα σύνολο από σύνολα R, όπου
κάθε r ∈ R είναι ένα υποσύνολο του X. Ένας βασικός δείκτης για κάθε χώρο εύρους είναι
η VC-διάσταση [79]. Η έννοια αυτή ποσοτικοποιεί το πόσο περίπλοκος είναι ένας χώρος
εύρους και έχει παίξει θεμελιώδη ρόλο στην μηχανική μάθηση, στις δομές δεδομένων και
στην υπολογιστική γεωμετρία.

Η βασική μας συνεισφορά είναι η ανάλυση της VC-διάστασης για χώρους εύρους που ορί-
ζονται από πολυγωνικές καμπύλες. Το σύνολο X αποτελείται από πολυγωνικές καμπύλες
με m κορυφές και το σύνολο R ορίζεται από “μπάλες” της Fréchet απόστασης με κέντρο
πολυγωνικές καμπύλες με k κορυφές. Αντίστοιχη ανάλυση γίνεται και για την Hausdorff
απόσταση. Ειδικότερα για την απόσταση Fréchet και για την απόσταση Hausdorff για
καμπύλες στο επίπεδο δείχνουμε ότι η VC-διάσταση είναι τάξης του O(k2 log(mk)).

Η ανάλυση μας γίνεται με την διάσπαση του βασικού χώρου εύρους σε επιμέρους απλού-
στερους χώρους εύρους. Αφού φράξουμε την VC-διάσταση των απλούστερων χώρων και
αφού δείξουμε ότι η διάσπαση αυτή είναι ορθή, μπορούμε να συνθέσουμε και να βγάλουμε
το επιθυμητό συμπέρασμα για τον αρχικό χώρο εύρους.
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Proximity problems for high-dimensional data

1. INTRODUCTION

1.1 Proximity problems

Nearest neighbor searching is a fundamental computational problem with several applica-
tions in Computer Science and beyond. The setting is very clear: we need to preprocess
a set of objects in a way which assists proximity queries, i.e. when a query object arrives,
we should be able to retrieve the most similar object among the set of preprocessed ob-
jects. The dissimilarity or distance function typically depends on the context and affects
the performance of the solution. Finding similar objects is a general computational task
which serves as a subroutine for many major learning tasks like classification or clustering.
With the recent increase of availability of complex datasets, the need for analyzing and
handling high-dimensional descriptors has been increased. Likewise, there is a surge of
interest into data structures for trajectory processing, motivated by the increasing avail-
ability and quality of trajectory data from mobile phones, GPS sensors, RFID technology
and video analysis.
Definition 1 (Nearest Neighbor (NN) problem). Given a set of objects P which is a finite
subset of some ambient set M , and a distance function d(·, ·), preprocess P into a data
structure which supports the following type of queries:

for any object q inM , find p∗ such that for all p in P : d(q, p∗) ≤ d(q, p).

Obviously, a naive linear scan provides a stable and easy-to-implement solution. The
problem gets really intriguing when we aim for strictly sublinear query time. Then, we hope
that we can exploit properties of the distance function during preprocessing. To simplify
things, we may assume that objects live in a metric space, i.e. (M,d) defines a metric.
Moreover, we can restrict ourselves to some of the most well-studied metrics, e.g. the
Euclidean metric. In particular, for low dimensional Euclidean spaces, we obtain simple
solutions. For dimension d = 1, all points lie on the real line and one can sort them so that
any query reduces to a simple binary search. For d = 2, the solution relies on the notion
of Voronoi Diagram, one of the most classical structures in Computational Geometry.

Proximity problems in metric spaces of ”low dimension” have been typically handled by
methods which discretize the space and hence they are affected by the prominent curse
of dimensionality, so called because it refers to the computational hardness of analyzing
high-dimensional data. In the past two decades, the increasing need for analyzing high-
dimensional data, lead the researchers to devise approximate and randomized algorithms
with polynomial dependence on the dimension. Similarly, other complex data such as time
series or polygonal curves have been typically handled by approximate or randomized
algorithms.
Definition 2 (c-Approximate Nearest Neighbor (c-ANN) problem). Given a finite set P ⊂
M , a distance function d(·, ·), and an approximation factor c > 1, preprocess P into a data
structure which supports the following type of queries:

∀q ∈M , find p∗ such that ∀p ∈ P : d(q, p∗) ≤ c · d(q, p).

29 I. Psarros



Proximity problems for high-dimensional data

The corresponding augmented decision problem (with witness) is known as the approxi-
mate near neighbor problem, defined as follows.

Definition 3 ((c, r)-ANN Problem). Given a finite set P ⊂M , a distance function d(·, ·), an
approximation factor c > 1, and a range parameter r, preprocess P into a data structure
which supports the following type of queries:

• if ∃p∗ ∈ P s.t. d(p∗, q) ≤ r, then return any point p′ ∈M s.t. d(p′, q) ≤ c · r,

• if ∀p ∈ P , d(p, q) > c · r, then report “Fail”.

The data structure is allowed to return either a point at distance ≤ c · r or “Fail”.

It is known that one can solve logarithmically many instances of the decision problem with
witness to solve the (1 + ϵ)-ANN problem [51].

Another problem of interest is that of computing good representatives for a finite metric
space. An r-net for a finite metric space (P, d), |P | = n and for numerical parameter r is
a subset N ⊆ P such that the closed r/2-balls centered at the points of N are disjoint,
and the closed r-balls around the same points cover all of P . We define approximate
r-nets analogously: the closed r/2-balls centered at the points of N are disjoint, and the
closed cr-balls around the same points cover all of P , where c denotes the approximation
factor. These notions are very useful since they lead to an economical representation of
a pointset, while preserving the structure up to a scale O(cr).

In all proximity problems, there is an explicit notion of dissimilarity or distance between
two input objects. It is natural to define ranges based on the distance function: a range is
essentially a pseudo-metric ball. Generally, a range space (X,R) (also called set system)
is defined by a ground set X and a set of ranges R, where each r ∈ R is a subset of X.
A crucial descriptor of any range space is its VC-dimension [79, 75, 74]. These notions
quantify how complex a range space is, and have played foundational roles in machine
learning [80, 13], data structures [29], and geometry [50, 26].

Unless otherwise explicitly stated, log(·) is the logarithm with base 2.

1.2 Related work

In this section, we present previous results on proximity problems in two main settings:
normed spaces and polygonal curves.

1.2.1 Normed spaces

This section details results that existed prior to this thesis, and results which appeared
concurrently. Unless otherwise stated, the results concern the case of points in ℓ2.
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An exact solution to high-dimensional nearest neighbor search, in sublinear time, requires
heavy resources. One notable approach to the problem [69] shows that nearest neighbor
queries can be answered in O(d5 logn) time, using O(nd+δ) space, for arbitrary δ > 0.

In [16], they introduced the Balanced Box Decomposition (BBD) trees. BBD-trees achieve
query time O(cd logn) with cd ≤ d/2⌈1 + 6d/ϵ⌉d, using space in O(dn), and preprocessing
time in O(dn logn). BBD-trees can be used to retrieve the k ≥ 1 approximate nearest-
neighbors at an extra cost of O(d logn) per neighbor. BBD-trees have proved to be very
practical, as well, and have been implemented in software library ANN.

Another relevant data structure is the Approximate Voronoi Diagrams (AVD). They are
shown to establish a tradeoff between the space complexity of the data structure and
the query time it supports [15]. With a tradeoff parameter 2 ≤ γ ≤ 1

ϵ
, the query time

is in O(log(nγ) + 1/(ϵγ)
d−1
2 ) and the space in O(nγd−1 log 1

ϵ
). They are implemented on

a hierarchical quadtree-based subdivision of space into cells, each storing a number of
representative points, such that for any query point lying in the cell, at least one of the
representatives is an approximate nearest neighbor. Further improvements to the space-
time trade offs for ANN are obtained in [14].

One might apply the Johnson-Lindenstrauss Lemma and map the points to O(ϵ−2logn)
dimensions with distortion equal to 1 + ϵ aiming at improving complexity. In particular,
AVD combined with the Johnson-Lindenstrauss Lemma have query time polynomial in
logn, d and 1/ϵ but require nO(log(1/ϵ)/ϵ2) space, which is prohibitive if ϵ ≪ 1. Notice that
we relate the approximation error with the distortion for simplicity.

In high dimensional spaces, classic space partitioning data structures are affected by the
curse of dimensionality, as illustrated above. This means that, when the dimension in-
creases, either the query time or the required space increases exponentially. An impor-
tant method conceived for high dimensional data is Locality Sensitive Hashing (LSH). LSH
induces a data independent random partition and is dynamic, since it supports insertions
and deletions. It relies on the existence of locality sensitive hash functions, which are more
likely to map similar objects to the same bucket. The existence of such functions depends
on the metric space. In general, LSH requires roughly O(dn1+ρ) space and O(dnρ) query
time for some parameter ρ ∈ (0, 1). It has been shown [10] that in the Euclidean case, one
can have ρ = 1/(1 + ϵ)2, which matches the lower bound of hashing algorithms proved in
[71]. Lately, it was shown that it is possible to overcome this limitation by switching to a
data-dependent scheme which achieves ρ = 1

2(1+ϵ)2−1
+ o(1) [12].

For practical applications, memory consumption is often a limitation. Most of the previous
work in the (near) linear space regime dn1+o(1) focuses on the case that ϵ is greater than
0 by a constant term. One approach [73] achieves query time proportional to dnO(1/(1+ϵ))

which is sublinear only when ϵ is large enough. The query time was later improved [10] to
dnO(1/(1+ϵ)2) which is also sublinear only for large enough ϵ. For comparison, in Theorem 35
we show that it is possible to use near linear space, with query time roughly O(dnρ), where
ρ ≈ 1− ϵ2/log(1/ϵ), achieving sublinear query time even for small values of ϵ.

After the original submission of our paper [8], a better query time of O(n1−4ϵ2+O(ϵ3)) has
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been established [11]. The bound has been shown to be optimal for a large class of data
structures. Despite the fact that our algorithm is sub-optimal, it is simpler and easier to
implement. Heuristics which are related to our method have been successful in practice
[76].

Significant amount of work has been done for pointsets with low doubling dimension. For
any finite metric spaceX of doubling dimension ddim(X), there exists a data structure [52]
with expected preprocessing time O(2ddim(X)n logn), space usage O(2ddim(X)n) and query
time O(2ddim(X) logn + ϵ−O(ddim(X))) . In [58], a new notion of nearest neighbor preserv-
ing embeddings has been presented. Moreover, it has been proven that in this context
we can achieve dimension reduction which only depends on the doubling dimension of
the dataset. Naturally, such an approach can be easily combined with any known data
structure for (1 + ϵ)-ANN.

Random projection trees [32] have been shown to adapt to pointsets of low doubling di-
mension. Like kd-trees, every split partitions the pointset into subsets of roughly equal
cardinality. Unlike kd-trees, the space is split with respect to a random direction, not nec-
essarily parallel to the coordinate axes. Classic kd-trees also adapt to the doubling dimen-
sion of randomly rotated data [81]. However, for both techniques, no related worst-case
guarantees about the efficiency of (1 + ϵ)-ANN search were given.

In [61], a different notion of intrinsic dimension has been introduced; namely the expansion
rate ψ which is formally defined in Subsection 3.3.2. The doubling dimension is a more
general notion of intrinsic dimension in the sense that, when a finite metric space has
bounded expansion rate, then it also has bounded doubling dimension, but the converse
does not hold [48]. Several efficient solutions are known for metrics with bounded expan-
sion rate ψ, including for the problem of exact nearest neighbor. One such solution [63]
provides a data-structure which requires ψO(1)n space and answers queries in ψO(1) lnn.
Moreover, Cover Trees [24] require O(n) space and each query costs O(ψ12 logn) time for
exact nearest neighbors. In Theorem 42, we present a data structure for the (1 + ϵ)-ANN
problem with linear space and O((ψlog logψ) · d · logn)) query time. The result concerns
pointsets in d-dimensional Euclidean space.

One related problem is that of computing (1 + ϵ)-approximate r-nets. In [52], they show
that an approximate net hierarchy for an arbitrary finite metricX, such that |X| = n, can be
computed in O(2ddim(X)n logn). This is satisfactory when doubling dimension is constant,
but requires a vast amount of resources when it is high. In the latter case, one approach is
that of [42], which uses LSH and requires time O(n1+1/(1+ϵ)2+o(1)). When ϵ is small enough,
we show in Theorem 66 that time complexity can be improved toO(n2−Θ(

√
ϵ)), without using

LSH.

1.2.2 Polygonal curves

The ANN problem has been mainly addressed for datasets consisting of points. Very little
is known about distances between curves which, in a sense, are the next more complex
type of geometric object. In this thesis, we focus on discrete Fréchet (DFD) and Dynamic
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Time Warping (DTW) distance functions.

The first result for DFD by Indyk [55], defined by any metric (X, d(·, ·)), achieved ap-
proximation factor O((logm + log logn)t−1), where m is the maximum length of a curve,
and t > 1 is a trade-off parameter. The solution is based on an efficient data struc-
ture for ℓ∞-products of arbitrary metrics, and achieves space and preprocessing time in
O(m2|X|)tm1/t · n2t, and query time in (m logn)O(t). Table 6.1 states these bounds for ap-
propriate t = 1 + o(1), hence a constant approximation factor. It is not clear whether the
approach may achieve a 1 + ϵ approximation factor by employing more space.

More recently, a new data structure was devised for the DFD of curves in Euclidean
spaces [37]. The approximation factor is O(d3/2). The space required is O(24mdn logn +
mn) and each query costs O(24mdm logn). They also provide a trade-off between perfor-
mance, and the approximation factor. At the other extreme of this trade-off, they achieve
space in O(n logn +mn), query time in O(m logn) and approximation factor O(m). Our
methods can achieve any user-desired approximation factor at the expense of a reason-
able increase in the space and time complexities. Furthermore, it is shown that the result
establishing an O(m) approximation [37] extends to DTW, whereas the other extreme of
the trade-off has remained open. To compare with, we offer the first data structures and
query algorithms for (1+ ϵ)-ANN with arbitrarily good approximation factor, at the expense
of increasing space usage and preprocessing time.

After the publication of our work, a new deterministic data structure [43] was devised, with
better query performance.

Notice that all related approaches solve the approximate near neighbor problem, which is
essentially a decision problem, instead of the optimization (1 + ϵ)-ANN. It is known that a
data structure for the approximate near neighbor problem can be used as a building block
for solving the (1 + ϵ)-ANN problem. This procedure has provable guarantees on metrics
[51], but it is not clear whether it can be extended to non-metric distances such as the
DTW.

1.3 Contribution

1.3.1 Normed spaces

1.3.1.1 Approximate Nearest Neighbors

In Chapter 3, we introduce a notion of “low-quality” randomized embeddings and we em-
ploy standard random projections à la Johnson-Lindenstrauss in order to define a mapping
from ℓd2 to ℓd′2 , for

d′ = O
(
ϵ−2 · log

(n
k

))
,

such that an approximate nearest neighbor of the query lies among the pre-images of
k approximate nearest neighbors in the projected space. This observation allows us to
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combine random projections with the bucketing method [51], and obtain a randomized data
structure with optimal space and sublinear query for the augmented decision problem.

In particular, after a random projection to ℓd′2 , we simply employ a grid with cell width ϵ/
√
d′

and for each query we explore cells inside the approximate Euclidean ball of size O(1/ϵ)d′.
The query stops after having examinedm candidate points. This is the topic of Section 3.2,
and Theorem 35 states that there exists a randomized data structure for the (1 + ϵ, r)-
ANN problem, with linear space, linear preprocessing time, and query time O(dnρ), where
ρ = 1 − Θ(ϵ2/log(1/ϵ)). For each query q ∈ Rd, preprocessing succeeds with constant
probability, and can be amplified by repetition.

We are able to extend our results to doubling subsets of ℓ2 (see Subsection 3.2.2) by
applying our approach to an r-net of the input pointset. The resulting data structure has
linear space, preprocessing time which depends on the time required to compute an r-net,
and query time (2/ϵ)O(ddim(X)), where ddim(X) is the doubling dimension of X.

Our ideas directly extend to the (1+ϵ)-ANN problem, by building a BBD tree in the projected
d′-dimensional space. This achieves bounds which are weaker than the ones obtained
through the (1 + ϵ, r)-ANN solution, but the algorithm is very simple and quite interesting
in practice, since reducing (1+ ϵ)-ANN to (1+ ϵ, r)-ANN is nontrivial and typically avoided
in implementations. The main result of Section 3.3 is Theorem 39, which offers a random-
ized algorithm for the (1 + ϵ)-ANN problem with optimal O(dn) space, and query time in
O(dnρ logn), where ρ = 1 − Θ(ϵ2/ ln lnn), for ϵ ∈ (0, 1/2]. The total preprocessing time
is O(dn logn). For each query q ∈ Rd, the preprocessing phase succeeds with constant
probability.

This direct approach is extended to finite subsets of ℓ2 with bounded expansion rate ψ
(see Subsection 3.3.2). The pointset is now mapped to a space of dimension O(logψ),
and each query costs roughly O((ψlog logψ)d logn).

Finally, we are able to define a mapping from any metric which admits an LSH family of
functions to the Hamming space. Using this mapping, we achieve improved query time in
Õ(dn1−Θ(ϵ2)) (see Subsection 3.4).

In Chapter 4, we investigate the problem of reducing the dimension for doubling subsets of
ℓ1. While this embeddability question has a negative answer in general due to known lower
bounds [66], we show that one can reduce the dimension considerably when focused on
the (c, r)-ANN problem. The main requirement is that the dimension reduction preserves
enough information for reducing the (c, r)-ANN problem in a high dimensional space to
the (c, r)-ANN problem in a much lower dimensional space. We refer to randomized em-
beddings which satisfy this requirement as near neighbor-preserving. In particular, for
pointsets with doubling constant λP , we show the following:

1. In Theorem 53, we prove that for every ϵ ∈ (0, 1/2) and t ≥ 1, there is a random-
ized mapping h : ℓd1 → ℓd

′
1 that can be computed in time Õ(dn1+1/Ω(t)) and is near

neighbor-preserving for P with distortion 1+6ϵ and probability of correctness Ω(ϵ),
where

d′ = (logλP · log(t/ϵ))Θ(1/ϵ) /ζ(ϵ).
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Although the mapping h depends on the pointset, the parameter t is user-defined
and therefore provides a trade-off between preprocessing time and target dimension.
The term ζ(ϵ) depends only on ϵ.

2. In Theorem 56, we show that for every ϵ ∈ (0, 1/2), there is a randomized mapping
h′ : ℓd1 → ℓd

′
1 that can be computed in time O(dd′n) and is near neighbor-preserving

for P with distortion 1+6ϵ and probability of correctness Ω(ϵ), where

d′ = (logλP · log(d/ϵ))Θ(1/ϵ) /ζ(ϵ).

In this case, the function h′ is oblivious to P and well-defined over the whole space,
but the target dimension depends on d. The term ζ(ϵ) depends only on ϵ.

1.3.1.2 Approximate Nets

In Chapter 5, we present a new randomized algorithm that computes approximate r-nets in
time subquadratic in n and polynomial in the dimension, and improves upon the complexity
of the best known algorithm. With probability 1− o(1), our method returns N ⊆ X, which
is a (1 + ϵ)-approximate r-net of X.

We reduce the problem of computing approximate r-nets for arbitrary vectors (points)
under Euclidean distance to the same problem for vectors on {−1, 1}O(logn/ϵ2). Then, we
extend and simplify Valiant’s framework [77] and we compute r-nets in time Õ(dn2−Θ(

√
ϵ)),

thus improving on the exponent of the LSH-based construction [42], when ϵ is sufficiently
small. This improvement by

√
ϵ in the exponent is the same as the complexity improvement

obtained in [77] over the LSH-based algorithm for the approximate closest pair problem.

Our study is motivated by the fact that computing efficiently an r-net leads to efficient
approximate solutions for several geometric problems. In particular, our extension of r-
nets in high dimensional Euclidean space can be plugged in the framework of [54]. The
new framework has many applications, notably the kth nearest neighbor distance problem,
which we solve in Õ(dn2−Θ(

√
ϵ)).

1.3.2 Polygonal curves

1.3.2.1 Approximate Nearest Neighbors

In Chapter 6, we study the (1 + ϵ)-ANN problem for polygonal curves. We present a
notion of distance between two polygonal curves, which generalizes both DFD and DTW
(for a formal definition see Definition 5). The ℓp-distance of two curves minimizes, over
all traversals, the ℓp norm of the vector of all Euclidean distances between paired points.
Hence, DFD corresponds to ℓ∞-distance of polygonal curves, and DTW corresponds to
ℓ1-distance of polygonal curves.

Our main contribution is an (1+ ϵ)-ANN data structure for the ℓp-distance of curves, when
1 ≤ p < ∞. This easily extends to ℓ∞-distance of curves by solving for the ℓp-distance,
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for a sufficiently large value of p. Our target are methods with approximation factor 1 + ϵ.
Such approximation factors are obtained for the first time, at the expense of larger space
or time complexity. Moreover, a further advantage is that our methods solve (1 + ϵ)-ANN
directly instead of requiring to reduce it to near neighbor search. While a reduction to the
near neighbor problem has provable guarantees on metrics [51], we are not aware of an
analogous result for non-metric distances such as the DTW.

Specifically, when p > 2, we show that there exists a data structure with space and pre-
processing time in

Õ

(
n ·
(
d

pϵ
+ 2

)O(dm·αp,ϵ)
)
,

where αp,ϵ depends only on p, ϵ, and query time in Õ(24m logn).

When specialized to DFD and compared to [37], the two methods are only comparable
when ϵ is a large enough fixed constant. Indeed, the two space and preprocessing time
complexity bounds are equivalent, i.e. they are both exponential in d and m, but our query
time is linear instead of being exponential in d.

When p ∈ [1, 2], there exists a data structure with space and preprocessing time in

Õ
(
n · 2O(dm·αp,ϵ)

)
,

where αp,ϵ depends only on p, ϵ, and query time in Õ (24m logn). This leads to the first ap-
proach that achieves 1+ϵ approximation for DTW at the expense of space, preprocessing
and query time complexities being exponential in m. Hence our method is best suited
when the curve size is small.

In Chapter 7, we focus on DFD, and we provide a solution which is especially efficient in the
short query regime. Moreover, we extend our ideas to non-Euclidean spaces: we provide
a solution for arbitrary metrics with bounded doubling dimension, and can be accessed
through a metric oracle.

For the Euclidean space, we give a randomized data structure with space in n·O
(
kd3/2

ϵ

)dk
+

O(dnm) and query time in O (dk), where k denotes the length of the query curves. This
result improves on the (the more general) result of Chapter 6 on DFD, even in the case
that queries are of the same complexity as the dataset. It also improves upon [43], when
k ≪ m, and it is comparable otherwise. The data structure can be derandomized with a
slight worsening of the performance. For arbitrary doubling metrics, we give analogous
results, but the achieved performance depends on the assumptions associated with the
metric oracle.

1.3.2.2 Vapnik–Chervonenkis dimension

In Chapter 8, we analyze the VC dimension of range spaces defined by polygonal curves.
To the best of our knowledge, the results presented here are the first for this problem. For
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Discrete Hausdorff or Fréchet balls defined on point sets (resp. point sequences) in Rd we
show that the VC dimension is at most near-linear in k, the complexity of the ball centers
that define the ranges, and at most logarithmic inm, the size of the point sets of the ground
set. The same holds for our bounds for the range space induced by the Weak Fréchet
distance. Our lower bounds show that these bounds are almost tight in both parameters
k and m. For the Fréchet distance, where the ground set X are continuous polygonal
curves in R2 we show an upper bound that is quadratic in k and logarithmic in m. These
initial bounds assume a fixed radius of the metric balls that define the rangesR. The same
holds for the Hausdorff distance, where the ground set are sets of line segments in R2.

The bounds in the discrete setting hold for ranges of metric balls of all radii and readily
extend to ground sets of curves defined in Rd for d > 2. In all cases, the bounds are tight
in the dependency on m, the complexity of elements of the ground set.
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2. PRELIMINARIES

In this chapter, we formally define basic concepts and we prove preliminary results which
will be useful in the subsequent chapters.

2.1 Metrics

While this is not always the case, we may assume that the distance functions of inter-
est satisfy certain properties. This often allows us to prove desirable guarantees for the
proposed solutions. Given a set of objects X, a distance function on X is a function
d : X × X 7→ [0,∞). Then, the pair (X, d) defines a metric space if for any x, y, z ∈ X,
the following conditions are satisfied:

1. d(x, y) ≥ 0 (non-negativity )

2. d(x, y) = 0 ⇐⇒ x = y (identity of indiscernibles)

3. d(x, y) = d(y, x) (symmetry)

4. d(x, z) ≤ d(x, y) + d(y, z) (subadditivity or triangle inequality)

A pseudometric space is a pair (X, d) which for any x, y, z ∈ X satisfies

1. d(x, y) ≥ 0

2. d(x, x) = 0

3. d(x, y) = d(y, x)

4. d(x, z) ≤ d(x, y) + d(y, z)

The difference between a pseudometric and a metric is that in a pseudometric, two distinct
objects may have zero distance. Quasimetric spaces satisfy all axioms of a metric space
with the exception of 3. , the axiom of symmetry. Ultrametrics satisfy a stronger version of
the triangular inequality: d(x, z) ≤ max{d(x, y),d(y, z)}.

2.1.1 ℓp norms

Metrics in general can be defined on arbitrary sets. A norm is defined on some vector
space X as follows:

1. ∀x ∈ X : ∥x∥ ∈ [0,∞)

2. ∥x∥ = 0 =⇒ x = 0
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3. ∥αx∥ = α∥x∥ for all α ∈ R

4. ∥x+ y∥ ≤ ∥x∥+ ∥y∥

Every norm ∥ · ∥ defines a metric, in which the distance of points x, y equals ∥x− y∥. The
unit ball of any norm is a symmetric convex body which contains the origin. In addition,
any symmetric convex body K defines a norm: ∥x∥K = min{λ ≥ 0 | x ∈ λK}.

For a point x = (x1, x2, . . . , xd) ∈ Rd and for p ∈ [1,∞), the ℓp norm is defined as

∥x∥p =

(
d∑
i=1

|xi|p
)1/p

.

We denote by ℓdp the normed space (Rd, ∥ · ∥p). When d is not important, we simply use ℓp
denoting (Rd, ∥ · ∥p) for some d ∈ N.

2.1.2 Distance functions for curves

2.1.2.1 Discrete measures

Let us start with point sequences, which are closely related to curves. For metricsM1, . . . ,Mk,
we define the ℓp-product of M1, . . . ,Mk as the metric with domain M1 × · · · ×Mk and dis-
tance function

d((x1, . . . , xk), (y1, . . . , yk)) =

(
k∑
i=1

dpMi
(xi, yi)

)1/p

.

It is common, in distance functions of curves, to involve the notion of a traversal for two
curves. Intuitively, a traversal corresponds to a time plan for traversing the two curves
simultaneously, starting from the first point of each curve and finishing at the last point of
each curve. With time advancing, the traversal advances in at least one of the two curves.

Definition 4 (Traversal). Given polygonal curves V = v1, . . . , vm1, U = u1, . . . , um2, a
traversal T = (i1, j1), . . . , (it, jt) is a sequence of pairs of indices referring to a pairing of
vertices from the two curves such that:

1. i1, j1 = 1, it = m1, jt = m2.

2. ∀(ik, jk) ∈ T : ik+1 − ik ∈ {0, 1} and jk+1 − jk ∈ {0, 1}.

3. ∀(ik, jk) ∈ T : (ik+1 − ik) + (jk+1 − jk) ≥ 1.

Now, we define a class of distance functions for polygonal curves. In this definition, it is
implied that we use the Euclidean distance to measure distance between any two points.
However, the definition easily extends to arbitrary metrics.
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Figure 2.1: The traversal starts from the starting endpoints. Then, it only progresses on the red
curve. Then, it progresses on both curves.

Definition 5 (ℓp-distance of polygonal curves). Given polygonal curves V = v1, . . . , vm1,
U = u1, . . . , um2, we define the ℓp-distance between V and U as the following function:

dp(V, U) = min
T∈T

 ∑
(ik,jk)∈T

∥vik − ujk∥
p
2

1/p

,

where T denotes the set of all possible traversals for V and U .

The above class of distances for curves includes some widely known distance functions.
For instance, d∞(V, U) coincides with the DFD of V and U (defined for the Euclidean
distance). Moreover d1(V, U) coincides with DTW for curves V , U .
Remark 6. The discrete Fréchet distance in an arbitrary metric space defines a pseudo-
metric: the triangular inequality is satisfied, but distinct curves may have zero distance.
However, for our purposes, it is sufficient to consider the metric space which is naturally
induced by that pseudo-metric: two polygonal curves are considered to be equal if their
discrete Fréchet distance is zero. This observation allows us to refer to the metric space
of polygonal curves under the discrete Fréchet distance.

2.1.2.2 Continuous distances

Any polygonal curve V with vertices v1, . . . , vm1 and edges v1v2, . . . , vm1−1vm1 has a uniform
parametrization that allows us to view it as a parametrized curve v : [0, 1] 7→ Rd. Once
again, we assume that curves belong to the Euclidean space.
Definition 7 (Directed Hausdorff distance.). Let X, Y be two subsets of Rd. The directed
Hausdorff distance from X to Y is:

d−→
H
(X,Y ) = sup

u∈X
inf
v∈Y
∥u− v∥2.

Definition 8 (Hausdorff distance.). LetX, Y be two subsets ofRd. The Hausdorff distance
between X and Y is:

dH(X,Y ) = max{d−→
H
(X,Y ), d−→

H
(Y,X)}.

Definition 9 (Fréchet distance). Given two parametrized curves u, v : [0, 1] 7→ Rd, their
Fréchet distance is defined as follows:

dF (u, v) = min
f :[0,1]7→[0,1]

max
α∈[0,1]

∥v(a)− u(f(α))∥2,

where f ranges over all continuous and monotone bijections with f(0) = 0 and f(1) = 1.
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Definition 10 (Weak Fréchet distance). Given two parametrized curves u, v : [0, 1] 7→ Rd,
their Weak Fréchet distance is defined as follows:

dwF (u, v) = min
f :[0,1] 7→[0,1]
g:[0,1] 7→[0,1]

max
α∈[0,1]

∥v(f(α))− u(g(α))∥2,

where f and g range over all continuous functions (not exclusively bijections) with f(0) = 0
and f(1) = 1 and g(0) = 0 and g(1) = 1.

2.2 Random projections and dimensionality reduction

In this section, we present basic results and easily-obtained lemmas about random pro-
jections.

Theorem 11 ([57]). Let G be a d′ × d matrix with i.i.d. random variables following N(0, 1).
There exists a constant C > 0, such that for any v ∈ Rd with ∥v∥2 = 1:

• Pr
[
∥Gv∥22 ≤ (1− ϵ) · d′

d

]
≤ exp (−Cd′ϵ2) ,

• Pr
[
∥Gv∥22 ≥ (1 + ϵ) · d′

d

]
≤ exp (−Cd′ϵ2) .

A simple computation shows the following (see also [58]).

Lemma 12. Let G be a d′ × d matrix with i.i.d. random variables following N(0, 1), and let
D > 3. For any v ∈ Rd with ∥v∥2 = 1:

Pr
[
∥Gv∥22 ≤ (1/D) · d

′

d

]
≤
(

3

D

)d′
.

We also prove concentration inequalities for central absolute moments of the normal dis-
tribution. Some of these results may be folklore, and the reasoning is quite similar to
the one followed by proofs of the Johnson-Lindenstrauss lemma, e.g. [67]. Notice also
that results concerning random projections from ℓ2 to ℓp, p ∈ [1, 2] are folklore, but we are
also interested in the case p > 2. In addition, the properties which are required for ANN
searching are weaker than the ones which are typically investigated.

The 2-stability property of standard normal variables, along with standard facts about their
absolute moments imply the following claim.

Lemma 13. Let v ∈ Rd and let G be d′ × d matrix with i.i.d random variables following
N(0, 1). Then,

E
[
∥Gv∥pp

]
= cp · d′ · ∥v∥p2,

where cp =
2p/2·Γ( p+1

2 )√
π

is a constant depending only on p > 1.
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Proof. Let g = (X1, . . . , Xd) be a vector of random variables which follow N(0, 1) and
any vector v ∈ Rd. The 2-stability property of gaussian random variables implies that
⟨g, v⟩ ∼ N(0, ∥v∥22). Recall the following standard fact for central absolute moments of
Z ∼ N(0, σ2):

E[|Z|p] = σp ·
2p/2 · Γ

(
p+1
2

)
√
π

.

Hence,

E
[
∥Gv∥pp

]
= E

[
d′∑
i=1

|⟨gi, v⟩|p
]
= d′ · ∥v∥p2 ·

2p/2 · Γ
(
p+1
2

)
√
π

.

In the following lemma, we give a simple upper bound on the moment generating function
of |X|p, where X ∼ N(0, 1).

Lemma 14. Let X ∼ N(0, σ2), p ≥ 1, and t > 0, then E[exp(−t|X|p)] ≤ exp(−tE[|X|p] +
t2E[|X|2p]).

Proof. We use the easily verified fact that for any x ≤ 1, exp(x) ≤ 1 + x + x2 and the
standard inequality 1 + x ≤ ex, for all x ∈ R.

E
[
e−t|X|p] ≤ 1− t · E [|X|p] + t2 · E

[
|X|2p

]
≤ e−tE[|X|p]+t2E[|X|2p].

Lemma 15. Let X ∼ N(0, 1). Then, there exists constant C > 0 s.t. for any p ≥ 1,
E[|X|2p] ≤ C · 2p · E[|X|p]2.

Proof. In the following, we denote by f(p) ≈ g(p) the fact that there exist constants 0 <
c < C s.t. for any p > 1, f(p) ≤ C · g(p) and f(p) ≥ c · g(p). In addition, f(p) ≳ g(p)
means that ∃C > 0 s.t. ∀p > 1, C ·f(p) ≥ g(p). In the following we make use of the Stirling
approximation and standard facts about moments of normal variables.

E
[
|X|2p

]
=

2p · Γ
(
2p+1
2

)
√
π

≈ (2p−1)!! =
(2p)!

2p · p!
≈
(
(2p)2p

e

)
·√p · 1

2p ·
(
p
e

)p ≈ 2ppp
√
p

ep
≈ 2p ·p!

E [|X|p]2 ≈ ((p− 1)!!)2 ≳
(
2p/2+1/2 ·

(
(p/2 + 1/2)

e

)(p/2+1/2)
)2

≈ pp+1

ep+1
≳ p!

The following lemma is the main ingredient of our embedding, since it provides us with a
lower tail inequality for one projected vector.
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Lemma 16. Let G be a d′ × d matrix with i.i.d. random variables following N(0, 1) and
consider vector v ∈ Rd, s.t. ∥v∥2 = 1. For appropriate constant c′ > 0, for p ≥ 1 and
δ ∈ (0, 1),

Pr[∥Gv∥pp ≤ (1− δ) · E[∥Gv∥pp]] ≤ e−c′·2−p·d′·δ2 .

Proof. For X ∼ N(0, 1) and any t > 0,

Pr
[
∥Gv∥pp ≤ (1− δ) · E

[
∥Gv∥pp

]]
≤ E

[
e−t|X|p]d′ · e(t(1−δ)d′·E[|X|p]) ≤

≤ ed′(−t·E[|X|p]+t2·C·2p·E[|X|p]2+t·(1−δ)·E[|X|p]).

The last inequality derives from Claim 15. Now, we set t = δ
2·C·2p·E[|X|p] . Hence,

Pr[∥Gv∥pp ≤ (1− δ) · E[∥Gv∥pp]] ≤ e−c′·2−p·d′·δ2 ,

for some constant c′ > 0.

Standard properties of ℓp norms imply a loose upper tail inequality.

Corollary 17. Let G be a d′ × d matrix with i.i.d. random variables following N(0, 1) and
consider vector v ∈ Rd. Let p ≥ 2. Then, for constant C > 0,

Pr
[
∥Gv∥p ≥ (1 + ϵ)∥v∥2

√
d′
]
≤ e−C·d′·ϵ2 .

Proof. Since p ≥ 2, we have that ∀x ∈ Rd ∥x∥p ≤ ∥x∥2. Hence, by Theorem 11,

Pr[∥Gv∥p ≥ (1 + ϵ)∥v∥2
√
d′] ≤ Pr[∥Gv∥2 ≥ (1 + ϵ)∥v∥2

√
d′] ≤ e−C·d′·ϵ2 .

However, an improved upper tail inequality can be derived when p ∈ [1, 2].

Lemma 18. Let G be a d′ × d matrix with i.i.d. random variables following N(0, 1) and
consider vector v ∈ Rd. Let p ∈ [1, 2] . Then, for constant C > 0,

Pr
[
∥Gv∥p ≥ (3 · cp · d′)1/p∥v∥2

]
≤ e−C·d′ .

Proof. Let X ∼ N(0, 1).

E
[
e|X|p/3] = 1√

2π

∫ +∞

−∞
e|x|p/3−x2/2dx ≤

√
2√
π

∫ +∞

0

ex2/3−x2/2dx =
√
3.

Now, assume wlog ∥v∥2 = 1,

Pr
[
∥Gv∥pp ≥ 3 · E

[
∥Gv∥pp

]]
≤ E

[
e|X|p/3]d′ · e−d′·E[|X|p] ≤ e−d′(cp−2/3) ≤ e−d′/10,

where cp =
2p/2·Γ( p+1

2 )√
π

.
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2.3 Doubling dimension and nets

In this section, we define basic notions about doubling metrics and nets.

Definition 19 (Doubling constant). Consider any metric space (X, dX) and let B(p, r) =
{x ∈ X | dX(x, p) ≤ r}. The doubling constant of X, denoted λX , is the smallest integer
λX such that for any p ∈ X and r > 0, the ball B(p, r) can be covered by λX balls of radius
r/2 centered at points in X.

The doubling dimension of (X, dX) is defined to be equal to logλX . Nets play an impor-
tant role in the study of embeddings, as well as in designing efficient data structures for
doubling metrics. They are generally subsets of the original sets, which satisfy the follow-
ing: no two points in the net are within distance r of each other, and for every point in the
original set there exists a net point within distance r. Figure 2.2 illustrates this notion. In
the following we introduce the notion of c-approximate r-nets.

Definition 20 (Approximate nets). For c ≥ 1, r > 0 andmetric space (V, dV ), a c-approximate
r-net of V is a subset N ⊆ V such that no two points of N are within distance r of each
other, and every point of V lies within distance at most c·r from some point of N .

Figure 2.2: r-nets.

Theorem 21. Let P ⊂ ℓd1 consisting of n points. Then, for any c > 0, r > 0, one can
compute a c-approximate r-net of P in time Õ(dn1+1/c′), where c′ = Ω(c). The result is
correct with high probability. The algorithm also returns the assignment of each point of P
to the point of the net which covers it.

Proof. We employ basic ideas from [51]. An analogous result in ℓ2 is stated in [42]. First,
we assume r = 1, since we are able to re-scale the point set. Now, we consider a randomly
shifted grid with side-length 2. The probability that two points p, q ∈ P fall into the same
grid cell, is at least 1 − ∥p − q∥1/2. For each non-empty grid cell we snap points to a
grid: each coordinate is rounded to the nearest multiple of δ = 1/10dc. Then, coordinates
are multiplied by 1/δ and each point x = (x1, . . . , xd) ∈ [2δ]d is mapped to {0, 1}2d/δ by a
function G as follows: G(x) = (g(x1), . . . , g(xd)), where g(z) is a binary string of z ones
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followed by 2/δ− z zeros. For any two points p, q in the same grid cell, let f(p),f(q) be the
two binary strings obtained by the above mapping. Notice that,

∥f(p)− f(q)∥1 ∈ (2/δ) · ∥p− q∥1 ± 1.

Hence,
∥p− q∥1 ≤ 1 =⇒ ∥f(p)− f(q)∥1 ≤ (2/δ) + 1,

∥p− q∥1 ≥ c =⇒ ∥f(p)− f(q)∥1 ≥ (2/δ) · c− 1.

Now, we employ the LSH family of [51], for the Hamming space. After standard concate-
nation, we can assume that the family is (ρ, c′ρ, n−1/c′ , n−1)-sensitive, where ρ = (2/δ) + 1
and c′ = Ω(c). Let α = n−1/c′ and β = n−1.

Notice that for the above two-level hashing table we obtain the following guarantees. Any
two points p, q ∈ P , such that ∥p−q∥1 ≤ 1, fall into the same bucket with probability ≥ α/2.
Any two points p, q ∈ P , such that ∥p − q∥1 ≥ c, fall into the same bucket with probability
≤ β.

Finally, we independently build k = Θ(n1/c′ logn) hashtables as above, where the random
hash function is defined as a concatenation of the function which maps points to their grid
cell id and one LSH function. We pick an arbitrary ordering p1, . . . , pn ∈ P . We follow a
greedy strategy in order to compute the approximate net. We start with point p1, and we
add it to the net. We mark all (unmarked) points which fall at the same bucket with p1, in
one of the k hashtables, and are at distance ≤ cr. Then, we proceed with point p2. If p2 is
unmarked, then we repeat the above. Otherwise, we proceed with p3. The above iteration
stops when all points have been marked. Throughout the procedure, we are able to store
one pointer for each point, indicating the center which covered it.

Correctness. The probability that a good pair p, q does not fall into the same bucket for
any of the k hashtables is ≤ (1− α/2)k ≤ n−10. Hence, with high probability, the packing
property holds, and the covering property holds because the above algorithm stops when
all points are marked.

Running time. The time to build the k hashtables is k · n = Õ(n1+1/c′). Then, at most n
queries are performed: for each query, we investigate k buckets and the expected number
of false positives is≤ k ·n2 ·β = Õ(n1+1/c′). Hence, if we stop after having seen a sufficient
amount of false positives, we obtain time complexity Õ(n1+1/c′) and the covering property
holds with constant probability. We can repeat the above procedure O(logn) times to
obtain high probability of success.

2.4 Range spaces and Vapnik–Chervonenkis dimension

Each range space can be defined as a pair of sets (X,R), where X is the ground set and
R is the range set. Let (X,R) be a range space. For Y ⊆ X, we denote:

R|Y = {r ∩ Y | r ∈ R}.

If R|Y contains all subsets of Y , then Y is shattered by R.
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Definition 22 (Vapnik-Chernovenkis dimension [79]). The Vapnik-Chernovenkis dimen-
sion (VC dimension) of (X,R) is the maximum cardinality of a shattered subset of X.

Definition 23 (Shattering dimension). The shattering dimension of (X,R) is the smallest
δ such that, for all m,

max
B⊂X
|B|=m

|R|B| = O(mδ).

It is well-known [13, 50] that for a range space (X,R) with VC-dimension ν and shattering
dimension δ that ν ≤ O(δ log δ) and δ = O(ν). So bounding the shattering dimension and
bounding the VC-dimension are asymptotically equivalent within a log factor.

Definition 24 (Dual range space). Given a range space (X,R), for any p ∈ X, we define

Rp = {r | r ∈ R, p ∈ r}.

The dual range space of (X,R) is the range space (R, {Rp | p ∈ X}).

It is a well-known fact that if a range space has VC dimension ν, then the dual range space
has VC dimension ≤ 2ν+1 (see e.g. [50]).

It is also known [25] that the composition ranges formed as the k-fold union or intersection
of ranges from a range space with bounded VC-dimension ν induces a range space with
VC-dimension O(νk log k), and this was recently shown that this is tight for even some
simple range spaces such as those defined by halfspaces [31].
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3. RANDOM PROJECTIONS WITH FALSE POSITIVES

Deterministic space partitioning techniques, such as kd-trees, BBD-trees and approximate
Voronoi diagrams, perform well in solving (1 + ϵ)-ANN when the dimension is relatively
low, but are affected by the curse of dimensionality. To address this issue, randomized
methods have been proposed, such as Locality Sensitive Hashing (LSH), which are more
efficient when the dimension is high. One might try applying the celebrated Johnson-
Lindenstrauss Lemma, followed by standard space partitioning techniques, but the prop-
erties of the projected pointset are too strong for designing an efficient (1+ ϵ)-ANN search
method when aiming for near-linear storage.

We introduce a new notion of embedding for metric spaces requiring that, for some query,
there exists an approximate nearest neighbor among the pre-images of its k > 1 approx-
imate nearest neighbors in the target space. In Euclidean spaces, we employ random
projections à la Johnson-Lindenstrauss to a dimension inversely proportional to k. In
other words, we allow k false positives, meaning that at most k far points will appear as
near neighbors in the projected space.

After dimension reduction, we store points in a uniform grid of side length ϵ/
√
d′, where

d′ is the reduced dimension. Given a query, we explore cells intersecting the unit ball
around the query. This data structure requires linear space, and query time in O(dnρ),
ρ ≈ 1 − ϵ2/ log(1/ϵ), where n denotes input cardinality and d space dimension. Bounds
are improved for doubling subsets via r-nets. A small improvement on the exponent ρ
can be achieved by employing certain LSH functions to define a mapping to the Hamming
space.

Organization. Section 3.1 introduces our embeddings to dimension lower than predicted
by the Johnson-Linderstrauss Lemma. Section 3.2 states our main result for the (c, r)-ANN
problem in ℓ2 and an extension to doubling subsets of ℓ2. Section 3.3 states a weaker, yet
practical result on c-ANN in ℓ2, and an extension to pointsets with bounded expansion rate.
Section 3.4 extends the results to the case of LSH-able metrics, and includes a slightly
improved result for the Euclidean space. We conclude with a summary of our results.

In the sequel, the approximation factor c is equal to 1 + ϵ, for some ϵ ∈ (0, 1/2].

3.1 Randomized Embeddings with slack

This section examines standard dimensionality reduction techniques and extends them to
approximate embeddings optimized to our setting.

In [1], they consider non-oblivious embeddings from finite metric spaces with small di-
mension and distortion, while allowing a constant fraction of all distances to be arbitrarily
distorted. In [23], they present non-oblivious embeddings for the ℓ2 case, which preserve
distances in local neighborhoods. In [45], they provide a non-oblivious embedding which
preserves distances up to a given scale and the target dimension mainly depends on
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ddim(X) with no dependence on |X|. In general, embeddings based on probabilistic par-
titions are not oblivious. In [21], they solve ANN in ℓp spaces, for 2 < p <∞, by oblivious
embeddings to ℓ∞ and ℓ2.

But, it is not obvious how to use a non-oblivious embedding in the scenario in which we
preprocess a dataset and we expect a query to arrive. Therefore we focus on oblivious
embeddings.

Let us now revisit the classic Johnson-Lindenstrauss Lemma:

Proposition 25. [59] For any setX ⊂ Rd, ϵ ∈ (0, 1/2] there exists a distribution over linear
mappings f : Rd −→ Rd′, where d′ = O(log |X|/ϵ2), such that for any p, q ∈ X,

(1− ϵ)∥p− q∥22 ≤ ∥f(p)− f(q)∥22 ≤ (1 + ϵ)∥p− q∥22.

In the initial proof [59], they show that this can be achieved by orthogonally projecting
the pointset on a random linear subspace of dimension d′. In [72], they provide a proof
based on elementary probabilistic techniques. In [57], they prove that it suffices to apply
a gaussian matrix G on the pointset. G is a d × d′ matrix with each of its entries inde-
pendent random variables given by the standard normal distribution N(0, 1). Instead of a
gaussian matrix, we can apply a matrix whose entries are independent random variables
with uniformly distributed values in {−1, 1} [2], or even independent random variables with
uniform subgaussian tails [68].

However, it has been realized that this notion of randomized embedding is stronger than
what is required for c-ANN. The following has been introduced in [58] and focuses on the
distortion of the nearest neighbor.

Definition 26. Let (Y, dY ), (Z, dZ) be metric spaces and X ⊆ Y . A distribution over map-
pings f : Y → Z is a nearest-neighbor preserving embedding with distortion D ≥ 1 and
probability of correctness P ∈ [0, 1] if, ∀ϵ ≥ 0 and ∀q ∈ Y , with probability at least P , when
x ∈ X is such that f(x) is an c-ANN of f(q) in f(X), then x is a (D ·c)-approximate nearest
neighbor of q in X.

Let us now consider a closely related problem. While in c-ANN we search one point which
is approximately nearest, in the k approximate nearest neighbors problem, or c-kANNs,
we seek an approximation of the k nearest points, in the following sense. Let X be a set
of n points in Rd, let q ∈ Rd and 1 ≤ k ≤ n. The problem consists in reporting a sequence
S = {p1, . . . , pk} of k distinct points such that the i-th point pi is an c-approximation to
the i-th nearest neighbor of q. Furthermore, the following assumption is satisfied by the
search routine of certain tree-based data structures, such as BBD-trees.

Assumption 27. The c-kANNs search algorithm visits a set S ′ of points in X. Let S =
{p1, . . . , pk} be the k nearest points to the query in S ′. We assume that for all x ∈ X \ S ′

and y ∈ S, d(x, q) > d(y, q) · c.

Assuming the existence of a data structure which solves c-kANNs and satisfies Assump-
tion 27, we propose to weaken Definition 26 as follows.
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Definition 28. Let (Y, dY ), (Z, dZ) be metric spaces and X ⊆ Y . A distribution over
mappings f : Y 7→ Z is a locality preserving embedding with distortion D ≥ 1, probability
of correctness P ∈ [0, 1] and locality parameter k if, ∀c ≥ 1 and ∀q ∈ Y , with probability at
least P , when S = {f(p1), . . . , f(pk)} is a solution to c-kANNs for q under Assumption 27,
then there exists f(x) ∈ S such that x is a (D · c)-approximate nearest neighbor of q in X.

According to this definition we can reduce the problem of c-ANN in dimension d to the
problem of computing k approximate nearest neighbors in dimension d′ < d.

We employ the Johnson-Lindenstrauss dimensionality reduction technique and, more specif-
ically, Theorem 11 and Lemma 12.

Remark 29. In the statements of our results, we use the term (1 + ϵ)2 or (1 + ϵ)3 for
the sake of simplicity. Notice that we can replace (1 + ϵ′)2 by 1 + ϵ just by rescaling
ϵ′ ← ϵ/4 =⇒ (1 + ϵ′)2 ≤ 1 + ϵ, when ϵ < 1/2.

We are now ready to prove the main theorem of this section.

Theorem 30. Under the notation of Definition 28, there exists a randomized mapping
f : Rd → Rd′ which satisfies Definition 28 for

d′ = O
(
ϵ−2 · log n

k

)
,

ϵ ∈ (0, 1/2], distortion D = (1 + ϵ)2 and probability of success 2/3.

Proof. Let X be a set of n points in Rd and consider map

f : Rd 7→ Rd′ : v 7→
√
d/d′ ·G v,

whereG is a matrix chosen from a distribution as in Theorem 11. Without loss of generality
the query point q lies at the origin and its nearest neighbor u lies at distance 1 from q. We
denote by c′ ≥ 1 the approximation ratio guaranteed by the assumed data structure (see
Assumption 27). That is, the assumed data structure solves the c′-kANNs problem. Let
N be the random variable whose value indicates the number of false positives, that is

N = | {x ∈ X : ∥x∥2 > γ ∧ ∥f(x)∥2 ≤ β} |,

where we define β = c′(1 + ϵ), γ = c′(1 + ϵ)2. Hence, by Lemma 11,

E[N ] ≤ n · exp(−C ′d′ϵ2),

whereC ′ > 0 is a constant, which is slightly different than the one that appears in Lemma 11
(since we aim for distortion factor 1/(1+ϵ) instead of (1−ϵ)). The event of failure is defined
as the disjunction of two events:

N ≥ k ∨ ∥f(u)∥2 ≥ (β/c), (3.1)
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and its probability is at most equal to

Pr[N ≥ k] + exp
(
−Cd′ϵ2

)
,

by applying again Theorem 11. Now, we set d′ = Θ
(
log(n

k
)/ϵ2

)
and we bound these two

terms. Hence, there exists d′ such that

d′ = O
(
ϵ−2 · log n

k

)
and with probability at least 2/3, the following two events occur:

∥f(q)− f(u)∥2 ≤ (1 + ϵ)∥u− q∥2,

|{p ∈ X|∥p− q∥2 > c(1 + ϵ)2∥u− q∥2 =⇒ ∥f(q)− f(p)∥2 ≤ c(1 + ϵ)∥u− q∥2}| < k.

Let us assume that the random experiment succeeds, and let S = {f(p1), . . . , f(pk)} be a
solution of the c′-kANNs problem in the projected space, given by a data-structure which
satisfies Assumption 27. It holds that ∀f(x) ∈ f(X)\S ′, ∥f(x)−f(q)∥2 > ∥f(pk)−f(q)∥2/c′,
where S ′ is the set of all points visited by the search routine.

If f(u) ∈ S, then S contains the projection of the nearest neighbor. If f(u) /∈ S, then if
f(u) /∈ S ′ we have the following:

∥f(u)− f(q)∥2 > ∥f(pk)− f(q)∥2/c =⇒ ∥f(pk)− f(q)∥2 < c(1 + ϵ)∥u− q∥2,

which means that there exists at least one point f(p∗) ∈ S s.t. ∥q−p∗∥2 ≤ c′(1+ ϵ)∥u− q∥2.
Finally, if f(u) /∈ S but f(u) ∈ S ′ then

∥f(pk)− f(q)∥2 ≤ ∥f(u)− f(q)∥2 =⇒ ∥f(pk)− f(q)∥2 ≤ (1 + ϵ)∥u− q∥2,

which means that there exists at least one point f(p∗) ∈ S s.t. ∥q−p∗∥2 ≤ c′(1+ϵ)2∥u−q∥2.

Hence, f satisfies Definition 28 for D = (1 + ϵ)2 and the theorem is established.

Theorem 30 essentially translates the c-ANN problem to the c-kANNs problem. While this
is convenient in practice, better bounds can be achieved when working with the (c, r)-ANN
problem.

3.2 Approximate Near Neighbor

This section combines the ideas developed in Section 3.1 with a simple, auxiliary data
structure, namely the grid, yielding an efficient solution for the augmented decision (c, r)-
ANN problem. In the following, the Õ(·) notation hides factors polynomial in 1/ϵ and logn.

The data structure succeeds if it indeed answers the approximate decision problem for
query q. Building a data structure for the Approximate Nearest Neighbor Problem reduces
to building several data structures for the decision (c, r)-ANN problem. For completeness,
we include the corresponding theorem.
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Theorem 31. [51, Theorem 2.9] Let P be a given set of n points in a metric space, and
let c = 1 + ϵ > 1, f ∈ (0, 1), and γ ∈ (1/n, 1) be prescribed parameters. Assume that
we are given a data structure for the (c, r)-ANN that uses space S(n, c, f), has query time
Q(n, c, f), and has failure probability f . Then there exists a data structure for answering
c(1 + O(γ))-NN queries in time O(logn)Q(n, c, f) with failure probability O(f logn). The
resulting data structure uses O(S(n, c, f)/γ · log2 n) space.

A natural generalization of the (c, r)-ANN problem is the k-Approximate Near Neighbors
Problem, denoted (c, r)-kANNs.

Definition 32 ((c, r)-kANNs Problem). Let X ⊂ Rd and |X| = n. Given c > 1, r > 0, build
a data structure which, for any query q ∈ Rd:

• if |{p ∈ X | ∥q− p∥2 ≤ r}| ≥ k, then report S ⊆ {p ∈ X | ∥q− p∥2 ≤ c · r} s.t. |S| = k,

• if a := |{p ∈ X | ∥q − p∥2 ≤ r}| < k, then report S ⊆ {p ∈ X | ∥q − p∥2 ≤ c · r} s.t.
a ≤ |S| ≤ k.

The following algorithm is essentially the bucketing method which is described in [51] and
concerns the case k = 1. We define a uniform grid of side length ϵ/

√
d on Rd. Clearly, the

distance between any two points belonging to one grid cell is at most ϵ. Assume r = 1.
For each ball Bq = {x ∈ Rd | ∥x − q∥2 ≤ r}, q ∈ Rd, let Bq be the set of grid cells that
intersect Bq.

In [51], they show that |Bq| ≤ (C ′/ϵ)d. Hence, the query time is the time to compute the
hash function, retrieve near cells and report the k neighbors:

O(d+ k + (C ′/ϵ)d).

The required space usage is O(dn).

Furthermore, we are interested in optimizing this constant C ′. The bound on |Bq| follows
from the following fact:

|Bq| ≤ V d
2 (R),

where V d
2 (R) is the volume of the ball with radius R in ℓd2, and R = 2

√
d
ϵ

. Now,

V d
2 (R) ≤

2πd/2

d · Γ(d/2)
Rd =

2πd/2

d(d/2− 1)!
Rd ≤ 2πd/2

(d/2)!
Rd ≤ 2πd/2

e(d/(2e))d/2
Rd ≤ 2d+1(18)d/2

ϵde
≤ 9d

ϵd
.

Hence, C ′ ≤ 9.

Theorem 33. There exists a data structure for Problem 32 with required space O(dn) and
query time O

(
d+ k + (9

ϵ
)d
)
.

The following theorem is an analogue of Theorem 30 for the Approximate Near Neighbor
Problem.
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Theorem 34. The ((1 + ϵ)2c, r)-ANN problem in Rd reduces to checking the solution set
of the (c, (1 + ϵ)r)-kANNs problem in Rd′, where d′ = O

(
log
(
n
k

)
/ϵ2
)
, by a randomized

algorithm which succeeds with constant probability. The delay in query time is proportional
to d · k.

Proof. The theorem can be seen as a direct implication of Theorem 30. The proof is
indeed the same.

3.2.1 Finite subsets of ℓ2

We are about to show what Theorems 33 and 34 imply for the (c, r)-ANN problem.

Theorem 35. There exists a data structure for the (c, r)-ANN problem with O(dn) required
space and preprocessing time, and query time Õ(dnρ), where ρ = 1−Θ(ϵ2/log(1/ϵ)) < 1.

Proof. For k = Θ(nρ), (
9

ϵ

)d′
+ dk ≤ O(dnρ).

Since, the data structure succeeds only with probability 9/10, it suffices to build it O(logn)
times in order to achieve high probability of success.

3.2.2 The case of doubling subsets of ℓ2

In this section, we apply our ideas to pointsets with bounded doubling dimension, in order
to obtain non-linear randomized embeddings for the (c, r)-ANN problem.

Now, let X ⊂ Rd s.t. |X| = n and X has doubling constant λX = 2ddim(X). Consider also
Si ⊆ X with diameter 2ri. Then we need λlog 8ri

ϵ
X tiny balls bϵ ⊆ X of diameter ϵ/4 in order

to cover Si. We can assume that r = 1, since we can scale X. The idea is that we first
compute X ′ ⊆ X which satisfies the following two properties:

• ∀p, q ∈ X ′ ∥p− q∥2 > ϵ/8,

• ∀q ∈ X ∃p ∈ X ′ s.t. ∥p− q∥2 ≤ ϵ/8.

This is an r-net for X for r = ϵ/8. The obvious naive algorithm computes X ′ in O(n2) time.
Better algorithms exist for the case of low dimensional Euclidean space [49]. Approximate
r-nets can be also computed in time 2O(ddim(X))n logn for doubling metrics [52] , assuming
that the distance can be computed in constant time.

Then, for X ′ we know that each Si ⊆ X ′ contains ≤ λ
log 8ri

ϵ
X points, since X ′ ⊆ X =⇒

ddim(X ′) ≤ ddim(X).

I. Psarros 54



Proximity problems for high-dimensional data

Theorem 36. The (c3, r)-ANN problem in Rd reduces to checking the solution set of the
(c, cr)-kANNs problem in Rd′, where d′ = O(ddim(X)) and k = (2/ϵ)O(ddim(X), by a ran-
domized algorithm which succeeds with constant probability. Preprocessing costs an ad-
ditional of O(n2) time and the delay in query time is proportional to d · k.

Proof. Once again we proceed in the same spirit as in the proof of Theorem 30.

Let X ′ be an ϵ/8-net of X. Let ri = 2i+3(1 + ϵ) for i ≥ 0 and let Bp(r) ⊆ X ′ denote the
points of X ′ lying in the closed ball centered at p with radius r. We assume 0 < ϵ ≤ 1/2
and we define:

Nclose = | {x ∈ X : ∥x∥2 ∈ [(1 + ϵ)2, r1) ∧ ∥f(x)∥2 ≤ 1 + ϵ} |,

Nfar = | {x ∈ X : ∥x∥2 ≥ r1 ∧ ∥f(x)∥2 ≤ 1 + ϵ} |.

We make use of Lemma 12.

E[Nfar] ≤
∞∑
i=2

|Bp(ri)| ·
(

3

ri−1

)d′
≤

∞∑
i=2

λ
log(16ri/ϵ)
X ·

(
1

2i

)d′
≤ λ

O(log(2/ϵ))
X ·

∞∑
i=2

λiX
2i·d′

=

d′≥Ω(logλX)
= 2O(ddim(X) log(2/ϵ)) =

(2
ϵ

)O(ddim(X))

.

In addition,

E[Nclose] ≤ λ
O(log(1/ϵ))
X · exp(−d′ · ϵ2 · C) ≤ λ

O(log(1/ϵ))
X =

(2
ϵ

)O(ddim(X))

,

whereC > 0 is a constant, which is slightly different than the one that appears in Lemma 11
(since we aim for distortion factor 1/(1 + ϵ) instead of (1− ϵ)). The number of grid cells of
sidewidth ϵ/

√
d′ intersected by a ball of radius 1 in Rd′ is also (2/ϵ)O(ddim(X)). Notice, that

if there exists a point in X which lies at distance 1 from q, then there exists a point in X ′

which lies at distance 1 + ϵ/8 from q. Finally the probability that the distance between the
query point q and one approximate near neighbor gets arbitrarily expanded is less than
λ
−Θ(ϵ2)
X .

Now using the above ideas we obtain a data structure for the (c, r)-ANN problem.

Theorem 37. There exists a data structure which solves the (c, r)-ANN problem which
requires space and preprocessing time O(dn) and the query costs

d

(
2

ϵ

)O(ddim(X))

.

For fixed q ∈ Rd, the building process of the data structure succeeds with constant prob-
ability.
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3.3 Approximate Nearest Neighbor Search

This section combines tree-based data structures which solve c-kANNs with the results of
Section 3.1, in order to obtain a randomized data structure which solves c-ANN. The main
result of this section does not rely on an efficient reduction from the (c, r)-ANN problem,
and hence it is simpler to implement. On the other hand, the obtained bounds are weaker
than those of Section 3.2.

3.3.1 Finite subsets of ℓ2

This subsection examines the general case of finite subsets of ℓ2.

BBD-trees [16] require O(dn) space, and allow computing k points, which are (1 + ϵ)-
approximate nearest neighbors, in time O((⌈1+6d

ϵ
⌉d+ k)d logn). The preprocessing time

is O(dn logn). Notice, that BBD-trees satisfy Assumption 27.

The algorithm for the c-kANNs search visits cells in increasing order with respect to their
distance from the query point q. If the current cell lies at distance more than rk/c, where
rk is the current distance to the kth nearest neighbor, the search terminates. We apply
the random projection for distortion D = c = 1+ ϵ, thus relating approximation error to the
allowed distortion; this is not required but simplifies the analysis.

Moreover, k = nρ; the formula for ρ < 1 is determined below. Our analysis then focuses
on the asymptotic behavior of the term O(⌈1 + 6d

′

ϵ
⌉d′ + k).

Lemma 38. With the above notation, for fixed ϵ ∈ (0, 1), there exists k > 0 s.t., it holds
that ⌈1 + 6d

′

ϵ
⌉d′ + k = O(nρ), where ρ = 1−Θ(ϵ2/log logn) < 1.

Proof. Recall that d′ ≤ c̃
ϵ2

ln n
k

for some appropriate constant C̃ > 0. Since (d
′

ϵ
)d

′ is a
decreasing function of m, we need to choose k s.t. (d′

ϵ
)d

′
= Θ(k). Let k = nρ. It is easy

to see that ⌈1 + 6d
′

ϵ
⌉d′ ≤

(
c′ d

′

ϵ

)d′, for some appropriate constant C ′ ∈ (1, 7). Then, by
substituting d′, k we obtain:

ln
(
C ′d

′

ϵ

)d′
=
C̃(1− ρ)

ϵ2
ln

(
C̃C ′(1− ρ) lnn

ϵ3

)
lnn. (3.2)

We assume ϵ ∈ (0, 1) is a fixed constant. Hence, it is reasonable to assume that 1
ϵ
< lnn.

Substituting ρ = 1 − ϵ2

2C̃(ϵ2+ln(C′ lnn)) into equation (3.2), the exponent of n is bounded as
follows:

C̃(1− ρ)
ϵ2

ln

(
C̃C ′(1− ρ) lnn

ϵ3

)
=

=
C̃

2C̃(ϵ2 + ln(C ′ lnn))
·
(

ln(C ′ lnn) + ln 1

ϵ
− ln (2ϵ2 + 2 ln(C ′ lnn))

)
< ρ.
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Notice that
d′ = O

(
logn

ϵ2 + log logn

)
.

Combining Theorem 30 with Lemma 38 yields the following theorem.

Theorem 39. Given n points inRd, there exists a randomized data structure which requires
O(dn) space and reports an (1 + ϵ)-approximate nearest neighbor in time

O(dnρ logn), where ρ ≤ 1−Θ(ϵ2/ log logn) < 1.

The preprocessing time is O(dn logn). For each query q ∈ Rd, the preprocessing phase
succeeds with any constant probability.

Proof. The space required to store the dataset is O(dn). The space used by BBD-trees
is O(d′n) where d′ is defined in Lemma 38. We also need O(dd′) space for the matrix A
as specified in Theorem 30. Hence, since d′ < d and d′ < n, the total space usage is
bounded above by O(dn).

The preprocessing consists of building the BBD-tree which costs O(d′n logn) time and
sampling A. We sample in time O(dd′), a d×d′ matrix where its elements are independent
random variables with the standard normal distribution N(0, 1). Since d′ = O(logn), the
total preprocessing time is bounded by O(dn logn).

For each query we use A to project the point in time O(dd′). Next, we compute its d′ =
nρ approximate nearest neighbors in time O(d′nρ logn) and we check these neighbors
with their d-dimensional coordinates in time O(dnρ). Hence, each query costs O(d logn+
d′nρ logn + dnρ) = O(dnρ logn) because d′ = O(logn), d′ = O(d). Thus, the query time
is dominated by the time required for ϵ-kANNs search and the time to check the returned
sequence of k approximate nearest neighbors.

To be more precise, the probability of success, which is the probability that the random
projection succeeds according to Theorem. 30, is at least constant and can be amplified
to high probability of success with repetition. Notice that the preprocessing time for BBD-
trees has no dependence on ϵ.

3.3.2 Finite subsets of ℓ2 with bounded expansion rate

This subsection models some structure that the data points may have so as to obtain
tighter bounds.

The bound on the dimension d′ obtained in Theorem 30 is quite pessimistic. We expect
that, in practice, the space dimension needed in order to have a sufficiently good projection
is less than what Theorem 30 guarantees. Intuitively, we do not expect to have instances
where all points in X, which are not approximate nearest neighbors of q, lie at distance
≈ (1 + ϵ)d(q,X). To this end, we consider the case of pointsets with bounded expansion
rate.

57 I. Psarros



Proximity problems for high-dimensional data

Definition 40. LetM be a metric space and X ⊆M be a finite pointset and let Bp(r) ⊆ X
denote the points of X lying in the closed ball centered at p with radius r. We say that X
has (τ, ψ)-expansion rate if and only if, ∀p ∈M and r > 0,

|Bp(r)| ≥ τ =⇒ |Bp(2r)| ≤ ψ · |Bp(r)|.

Theorem 41. Under the notation of Definition 28, there exists a randomized mapping
f : Rd → Rd′ which satisfies Definition 28 for dimension d′ = O(logψ), locality parameter
k = O(τψ3), distortion D = (1 + ϵ)2 and constant probability of success, for pointsets with
(τ, ψ)-expansion rate.

Proof. We proceed in the same spirit as in the proof of Theorem 30.

Let X be a set of n points in Rd and consider map

f : Rd → Rd′ : v 7→
√
d/d′ · A v,

whereA is a matrix chosen from a distribution as in Theorem 11. Without loss of generality
the query point q lies at the origin and its nearest neighbor u lies at distance 1 from q. Let r0
be the distance to the τ−th nearest neighbor, excluding neighbors at distance ≤ (1 + ϵ)2.
For i > 0, let ri = 6 · ri−1. Notice also that r0 ≥ (1 + ϵ)2.

We distinguish the set of bad candidates according to whether they correspond to “close”
of “far” points in the initial space. More precisely,

Nclose = | {x ∈ X : ∥x∥2 ∈ [r0, r1) ∧ ∥f(x)∥2 ≤ β} |,

Nfar = | {x ∈ X : ∥x∥2 ≥ r1 ∧ ∥f(x)∥2 ≤ β} |,
where β = 1 + ϵ. Clearly, by Theorem 11, and for d′ ≥ Ω(logψ),

E[Nclose] ≤ ψ · τ · exp(−d′ · ϵ2 · C ′) = O(ψ · τ),
whereC ′ > 0 is a constant, which is slightly different than the one that appears in Lemma 11
(since we aim for distortion factor 1/(1+ ϵ) instead of (1− ϵ)). and similarly by Lemma 12,

E[Nfar] ≤
∞∑
i=1

ψi+3τ ·
(
1

2

)d′·i
≤ τ · ψ3

∞∑
i=1

ψi
(
1

2i

)d′
= O(τ · ψ3).

Finally, using Markov’s inequality, we obtain constant probability of success.

Employing Theorem 41 we obtain a result analogous to Theorem 39 which is weaker than
those in [63, 24] but underlines the fact that our scheme shall be sensitive to structure in
the input data, for real world assumptions.
Theorem 42. Given n points in ℓd2 with (τ, ψ)-expansion rate, there exists a randomized
data structure which requires O(dn) space and reports an (1 + ϵ)3-approximate nearest
neighbor in time

O((ψlog(logψ/ϵ) + τ · ψ3 ) d logn)).
The preprocessing time is O(dn logn). For each query q ∈ Rd, the preprocessing phase
succeeds with constant probability.
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Proof. We combine the embedding of Theorem 41 with the BBD-trees. Then,

O
((√d′

ϵ

)d′)
= O

(( logψ
ϵ

)logψ)
,

and the number of approximate nearest neighbors in the projected space is

k = O(τ · ψ3).

This establishes the result.

3.4 On LSHable metrics

An important approach for proximity problems today is Locality Sensitive Hashing (LSH).
It has been designed precisely for problems in high dimension. The LSH method is based
on the idea of using hash functions designed so that it is more probable to map nearby
points to the same bucket.

Definition 43. Take reals r1 < r2 and p1 > p2 > 0. We call a family F of hash func-
tions (p1, p2, r1, r2)-sensitive for a metric spaceM if, for any x, y ∈ M, and h distributed
uniformly in F , it holds:

• dM(x, y) ≤ r1 =⇒ Pr[h(x) = h(y)] ≥ p1,

• dM(x, y) ≥ r2 =⇒ Pr[h(x) = h(y)] ≤ p2.

We start our presentation with an idea applicable to any metric admitting an LSH-based
construction, aka LSH-able metric. Then, we study some classical LSH families which are
also simple to implement.

The algorithmic idea is to apply a random projection from any LSH-able metric to the
Hamming hypercube. Given an LSH family of functions F for some metric space, we
uniformly select d′ hash functions, where d′ is specified later. The nonempty buckets
defined by any hash function are randomly mapped to {0, 1}, with equal probability for
each bit.

In particular, the random projection works as follows. We first sample h1 ∈ F . We denote
by h1(P ) the image of P under h1, which is a set of nonempty buckets. Now each nonempty
bucket x ∈ h1(P ) is mapped to {0, 1}: with probability 1/2, set f1(x) = 0, otherwise set
f1(x) = 1.

This is repeated d′ times, and eventually for p ∈M, we compute the function

f(p) = (f1(h1(p)), . . . , fd′(hd′(p))),

where f : P → {0, 1}d′.
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Thus, points are projected to the Hamming cube of dimension d′ and we obtain binary
strings serving as keys for buckets containing the input points. The query algorithm
projects a given point, and tests points assigned to the same or nearby vertices on the
hypercube. To achieve the desired complexities, it suffices to choose d′ = logn.

The main lemma below describes the general ANN data structure whose complexity and
performance depends on the LSH family that we assume is available. The proof details
the data structure construction.

Lemma 44 (Main). Given a (p1, p2, r, cr)-sensitive hash family F for some metric (M,dM)
and input dataset P ⊆ M, there exists a data structure for the (c, r)-ANN problem with
space O(dn), time preprocessing O(dn), and query time O(dn1−δ + nH((1−p1)/2)), where

δ = δ(p1, p2) =
(p1 − p2)2

(1− p2)
· loge

4
,

where e denotes the basis of the natural logarithm, andH(·) is the binary entropy function.
The bounds hold assuming that computing dM(.) and computing the hash function cost
O(d). Given some query q ∈M, the building process succeeds with constant probability.

Proof. The first step is a random projection to the Hamming space of dimension d′, for d′
to be specified in the sequel. We first sample h1 ∈ F . We denote by h1(P ) the image of
P under h1, which is a set of nonempty buckets. Now each nonempty bucket x ∈ h1(P ) is
mapped to {0, 1}: with probability 1/2, set f1(x) = 0, otherwise set f1(x) = 1.

This is repeated d′ times, and eventually for p ∈M, we compute the function

f(p) = (f1(h1(p)), . . . , fd′(hd′(p))),

where f : P → {0, 1}d′. Now, observe that

dM(p, q) ≤ r =⇒ E[∥fi(hi(p))− fi(hi(q))∥1] ≤ 0.5(1− p1), i = 1, . . . , d′ =⇒

=⇒ E[∥f(p)− f(q)∥1] ≤ 0.5 · d′ · (1− p1),

dM(p, q) ≥ cr =⇒ E[∥fi(hi(p)− fi(hi(q))∥1] ≥ 0.5(1− p2), i = 1, . . . , d′ =⇒

=⇒ E[∥f(p)− f(q)∥1] ≥ 0.5 · d′ · (1− p2).

We distinguish two cases.

First, consider the case dM(p, q) ≤ r. Let µ = E[∥f(p)− f(q)∥1]. Then,

Pr[∥f(p)− f(q)∥1 ≥ µ] ≤ 1

2
,

since ∥f(p)− f(q)∥1 follows the binomial distribution.

Second, consider the case dM(p, q) ≥ cr. By standard Chernoff bounds, Pr[∥f(p) −
f(q)∥1 ≤ 1−p1

1−p2 · µ] ≤ exp(−0.5 · µ · (p1 − p2)2/(1− p2)2) ≤ exp(−d′ · (p1 − p2)2/4(1− p2)).
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After mapping the query q ∈ M to f(q) in the d′-dimensional Hamming space we search
for all “near” Hamming vectors f(p) s.t. ∥f(p) − f(q)∥1 ≤ 0.5 · d′ · (1 − p1). This search
costs

(
d′

1

)
+
(
d′

2

)
+ · · ·+

(
d′

⌊d′·(1−p1)/2⌋

)
≤ O(d′ ·2d′·H((1−p1)/2)), where H(·) is the binary entropy

function. The inequality is obtained from standard bounds on binomial coefficients, e.g.
[70]. Now, the expected number of points p ∈ P , for which dM(p, q) ≥ cr but are mapped
”near” q is ≤ n · exp(−d′ · (p1 − p2)2/4(1 − p2))). If we set d′ = logn, we obtain expected
query time

O(nH((1−p1)/2)) + dn1−δ),

where
δ =

(p1 − p2)2

(1− p2)
· log e

4
.

If we stop searching after having seen, say 10n1−δ points for which dM(p, q) ≥ cr , then we
obtain the same time with constant probability of success. Notice that ”success” translates
to successful preprocessing for a fixed query q ∈M. The space required is O(dn).

The value of δ could be somewhat larger, but we have used simplified Chernoff bounds to
keep our exposition simple.

Discussion on parameters. We set the dimension d′ = logn (which denotes the binary
logarithm), since it minimizes the expected number of candidates under the linear space
restriction. We note that it is possible to set d′ < logn and still have sublinear query time.
This choice of d′ is interesting in practical applications since it improves space requirement.
The number of candidate points is set to n1−δ for the purposes of Lemma 44 and under
worst case assumptions on the input.

3.4.1 The ℓ2 case

3.4.1.1 Project on random lines

Let p, q two points in Rd and η the distance between them. Let w > 0 be a real parameter,
and let t be a random number distributed uniformly in the interval [0, w]. In [33], they
present the following LSH family. For p ∈ Rd, consider the random function

h(p) =

⌊
⟨p, v⟩+ t

w

⌋
, p, v ∈ Rd, (3.3)

where v is a vector randomly distributed with the d-dimensional normal distribution. This
function describes the projection on a random line, where the parameter t represents the
random shift and the parameter w the discretization of the line. For this LSH family, the
probability of collision is

α(η, w) =

∫ w

t=0

2√
2πη

exp
(
− t2

2η2

)(
1− t

w

)
dt.
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Lemma 45. Given a set of n points P ⊆ Rd, there exists a data structure for the (c, r)-ANN
problem under the Euclidean metric, requiring space O(dn), time preprocessing O(dn),
and query time O(dn1−δ + n0.9), where

δ ≥ 0.03 (c− 1)2.

Given some query point q ∈ Rd, the building process succeeds with constant probability.

Proof. In the sequel we use the standard Gauss error function, denoted by erf(·). For
probabilities p1, p2, it holds that

p1 = α(1, w) =

∫ w

t=0

2√
2π

exp
(
− t2

2

)(
1− t

w

)
dt = erf

( w√
2

)
−
√

2

π

1

w

(
1− exp

(
− w2

2

))
,

and also that

p2 = α(c, w) =

∫ w

t=0

2√
2πc

exp
(
− t2

2c2

)(
1− t

w

)
dt = erf

( w√
2c

)
−
√

2

π

c

w

(
1−exp

(
− w2

2c2
))
.

The LSH scheme is parameterized byw. One possible value isw = 3, as we have checked
on a computer algebra system. On the other hand, w = c gives similar results, and they
are simpler to obtain. In particular, we have

p1 − p2 = erf
( c√

2

)
−
√

2

π

1

c

(
1− exp

(
− c2

2

))
− erf

( 1√
2

)
+

√
2

π

(
1− exp

(
− 1

2

))
.

We shall prove that, given w = c, for c ∈ (1, 2], it holds that p1 − p2 > 5(c−1)
21

. Let us define

g(c) = p1 − p2 −
5(c− 1)

21
= erf

( c√
2

)
− erf

( 1√
2

)
−

−
√

2

π

1

c

(
1− exp

(
− c2

2

))
+

√
2

π

(
1− exp

(
− 1

2

))
− 5(c− 1)

21
,

c ∈ (1, 2]. Using elementary calculus, it is easy to show that g(c) is concave over c ∈ (1, 2].
Also, g(1) = 0 and g(2) > 0, thus ∀c ∈ (1, 2], g(c) > 0 and consequently p1−p2 > 5(c−1)

21
. In

addition, w = c implies 1−p2 = 1−erf
(

1√
2

)
+
√

2
π

(
1−exp(−1

2
)
)
< 0.64, andH

(
1−p1
2

)
< 0.9.

Hence, for w = c and c ∈ (1, 2], δ > 0.03(c− 1)2.

3.4.1.2 Hyperplane LSH

This section reduces the Euclidean ANN to an instance of ANN for which the points lie
on a unit sphere. The latter admits an LSH scheme based on partitioning the space by
randomly selected halfspaces.

In Euclidean space Rd, let us assume that the dimension is d = O(logn · log logn), since
one can project points à la Johnson-Lindenstrauss [72], and preserve pairwise distances
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up to multiplicative factors of 1± o(1). Then, we partition Rd using a randomly shifted grid,
with cell edge of lengthO(

√
d) = O((logn · log logn)1/2). Any two points p, q ∈ Rd for which

∥p− q∥2 ≤ 1 lie in the same cell with constant probability. Let us focus on the set of points
lying inside one cell. This set of points has diameter bounded by O((logn · log logn)1/2).
Now, a reduction of [77], reduces the problem to an instance of ANN for which all points
lie on a unit sphere Sd−1, and the search radius is roughly r′ = Θ((logn · log logn)−1/2).
These steps have been also used in [11], as a data-independent reduction to the spherical
instance.

Let us now consider the LSH family introduced in [28]. Given n unit vectors P ⊂ Sd−1, we
define, for each q ∈ Sd−1, hash function h(q) = sign⟨q, v⟩, where v is a random unit vector.
Obviously, Pr[h(p) = h(q)] = 1 − θ(p,q)

π
, where θ(p, q) denotes the angle formed by the

vectors p ̸= q ∈ Sd−1. Instead of directly using the family of [28], we employ its amplified
version, obtained by concatenating d′ ≈ 1/r′ functions h(·), each chosen independently
and uniformly at random from the underlying family. The amplified function g(·) shall be
fully defined in the proof below. This procedure leads to the following.

Lemma 46. Given a set of n points P ⊂ Rd, there exists a data structure for the (c, r)-ANN
problem under the Euclidean metric, requiring space O(dn), time preprocessing O(dn),
and query time O(dn1−δ + n0.91), where

δ ≥ 0.05 ·
(c− 1

c

)2
.

Given some query q ∈ Rd, the building process succeeds with constant probability.

Proof. We exploit the reduction described above that translates the Euclidean ANN to a
spherical instance of ANN with search radius r′ = Θ((logn · log logn)−1/2). The latter is
handled by a hyperplane LSH scheme based on [28] as detailed immediately below.

Let us denote by F the aforementioned LSH family of [28]. We build a new (amplified)
family of functionsGd′ = {g(x) = (h1(x), . . . , hd′(x)) : i = 1 . . . d′, hi ∈ F )}. Now, obviously,
for any two unit vectors p ̸= q, we have

Prg∈G[g(p) = g(q)] =
(
1− θ(p, q)

π

)d′
.

Hence, ∥p − q∥2 ≤ r′ =⇒ 2 sin
(
θ(p,q)

2

)
≤ r′ =⇒ θ(p, q) ≤ 2arcsin

(
r′

2

)
= θr, which

defines θr.
Moreover, ∥p− q∥2 ≥ cr′ =⇒ 2 sin

(
θ(p,q)

2

)
≥ cr′ =⇒ θ(p, q) ≥ 2arcsin

(
cr′

2

)
.

By using elementary calculus, it is easy to prove that 2arcsin
(
cr′

2

)
≥ 2c · arcsin

(
r′

2

)
=⇒

θ(p, q) ≥ c·θr.Hence, for d′ = ⌊π/θr⌋ and since r′ = Θ((logn·log logn)−1/2) =⇒ θr = o(1),

p1 = Pr[g(p) = g(q) | ∥p− q∥2 ≤ r] ≥
(
1− θr

π

)d′
≥ exp

(
− π

(π − θr)

)
≥ 1

e1+o(1)
,

p2 = Pr[g(p) = g(q) | ∥p−q∥2 ≥ c·r] ≤
(
1−c · θr

π

)d′
≤ exp

(
−c · θr

π
·
(
π

θr
− 1

))
≤ 1

c · e1−o(1) .
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Now applying Lemma 44 yields

δ ≥ 1

e2+o(1)
·
(
1− eo(1)

c

)2
· 1

1− (c · e)−1
· log(e)

4
≥ 0.059 ·

(
1− 1

c

)2
, for c ∈ (1, 2].

The space required is O(dn+ nd′)) = O(dn). Notice also that H(1−p1
2

) ≤ 0.91.

The data structure of Lemma 46 provides slightly better query time than that of Lemma 45,
when c is small enough.

3.4.2 The ℓ1 case

In this section, we study the (c, r)-ANN problem under the ℓ1 metric. The dataset consists
again of n points P ⊂ Rd and the query point is q ∈ Rd.

For this case, let us consider the following LSH family, introduced in [9]. A point p is hashed
as follows:

h(p) =
(⌊p1 + t1

w

⌋
,

⌊
p2 + t2
w

⌋
, . . . ,

⌊
pd + td
w

⌋)
,

where p = (p1, p2, . . . , pd) is a point in P , w = αr, and the ti are drawn uniformly at random
from [0, . . . , w). Buckets correspond to cells of a randomly shifted grid.

Now, in order to obtain a better lower bound, we employ an amplified hash function, de-
fined by concatenation of d′ = α functions h(·) chosen uniformly at random from the above
family.

Lemma 47. Given a set of n points P ⊆ Rd, there exists a data structure for the (c, r)-ANN
problem under the ℓ1 metric, requiring space O(dn), time preprocessing O(dn), and query
time O(dn1−δ + n0.91), where

δ ≥ 0.05 ·
(c− 1

c

)2
.

Given some query point q ∈ Rd, the building process succeeds with constant probability.

Proof. We denote by F the previously introduced LSH family of [9], which is (1 − 1
α
, 1 −

c
c+α

, 1, c)-sensitive. We build the amplified family of functions

Gd′ = {g(x) = (h1(x), . . . , hd′(x)) : i = 1, . . . , d′, hi ∈ F )}.

Setting α = d′ = logn, we have:

p1 =
(
1− 1

α

)d′
=
(
1− 1

logn

)logn
≥
(

exp
(
− 1

logn− 1

))logn
≥ 1

e1+o(1)
,

p2 =
(
1− c

α + c

)d′
=
(
1− c

logn+ c

)logn
.
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Table 3.1: Juxtaposition of our results with previous and concurrent results on the linear-space
regime.

Space Query
Entropy-based LSH [73] Õ(dn) dnO((1+ϵ)−1)

Entropy-based LSH [10] Õ(dn) dnO((1+ϵ)−2)

Theorem 35 Õ(dn) dn1−Θ(ϵ2/ log(1/ϵ))

Lemma 45 Õ(dn) dn1−Θ(ϵ2)

LSH tradeoffs [11] Õ(dn) O(dn(2(1+ϵ)2−1)/(1+ϵ)4)

Hence,
p2 ≥ exp(−c) ≥ 1

e · (2c− 1)
,

and
p2 ≤ exp

(
− c

1 + c
logn

)
= exp

(
− c

1 + o(1)

)
≤ exp

(
− c+ o(1)

)
≤ eo(1)

ec
.

Therefore, for n large enough, it holds that

δ =

(
p1 − p2

)2(
1− p2

) · log e
4
≥ 1

e2+o(1)
·

(1− 1
c
)
2

1− 1
e(2c−1)

· log e
4
≥ 0.055 · (1− 1

c
)2, for c ∈ (1, 2].

Notice that H((1− p1)/2) ≤ 0.91.

3.5 Summary

In this section, we presented (c, r)-ANN data structures on the linear-space regime with
sublinear query time for any c > 1, and polynomial dependence. As it is shown in Ta-
ble 3.1, previously, most results in this regime were non-trivial only when c was a large
enough constant. After the original submission of our paper [8], a better query time of
O(n1−4ϵ2+O(ϵ3)) has been established [11]. The bound has been shown to be optimal for a
large class of data structures. Despite the fact that our algorithms are sub-optimal, they
are simpler and easier to implement.
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4. NEAR-NEIGHBOR PRESERVING DIMENSION REDUCTION FOR
DOUBLING SUBSETS OF ℓ1

In this chapter we focus on the (1 + ϵ, r)-ANN problem for subsets of ℓ1 with bounded
doubling dimension. It is known that dimension reduction in ℓ1 cannot be achieved in the
same generality as in ℓ2, even assuming that the pointset is of low doubling dimension [66]:
there are arbitrarily large n-point subsets P ⊆ ℓ1 which are doubling with constant 6, such
that every embedding with distortion D of P into ℓd

′
1 requires dimension nΩ(1/D2). Aiming

for more restrictive guarantees, e.g. preserving distances within some pre-defined range,
is a relevant workaround. Then, dimension reduction techniques for doubling subsets
of ℓp, p ∈ [1, 2], exist [22], but they rely on partition algorithms which require the whole
pointset to be known in advance. Hence, applicability of such techniques is quite limited
and, specifically, it is not clear whether they can be used in an online setting where query
points are not known beforehand.

The main result in the context of randomized embeddings for dimension reduction in ℓd1 is
the following theorem, which exploits the 1-stability property of Cauchy random variables
and provides an asymmetric guarantee: The probability of non-contraction is high, but
the probability of non-expansion is constant. Nevertheless, this asymmetric property is
sufficient for proximity search.

Theorem 48 (Theorem 5, [56]). For any ϵ ≤ 1/2, δ > 0, ϵ > γ > 0 there is a probability
space over linear mappings f : ℓd1 → ℓd

′
1 , where d′ = (ln (1/δ))1/(ϵ−γ)/ζ(γ), for a function

ζ(γ) > 0 depending only on γ, such that for any pair of points p, q ∈ ℓd1:

Pr
[
∥f(p)− f(q)∥1 ≤ (1− ϵ) ∥p− q∥1

]
≤ δ,Pr

[
∥f(p)− f(q)∥1 ≥ (1+ ϵ) ∥p− q∥1

]
≤ 1 + γ

1 + ε
.

Note that the embedding is defined as f(u) = Au/T , where A is a d′×d matrix with each
element being an i.i.d. Cauchy random variable. In addition, T is a scaling factor defined
as the expectation of a sum of truncated Cauchy variables, such that T = Θ(d′ log (d′/ϵ))
(see Lemma 5 in [56]).

In this chapter, we establish two non-linear near neighbor-preserving embeddings for dou-
bling subsets of ℓd1. We use a definition which is essentially a modified version of the
nearest neighbor preserving embedding of [58]:

Definition 49 (Near-neighbor preserving embedding). Let (Y, dY ), (Z, dZ) bemetric spaces
and X ⊆ Y . A distribution over mappings f : Y → Z is a near-neighbor preserving em-
bedding with range r > 0, distortion D ≥ 1 and probability of correctness P ∈ [0, 1] if,
∀α ≥ 1 and ∀q ∈ Y , if x ∈ X is such that dY (x, q) ≤ r, then with probability at least P,

• dZ(f(x), f(q)) ≤ D · r,

• ∀p ∈ X : dY (p, q) ≥ D · α · r =⇒ d(f(p), f(q)) ≥ α · r.
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Both embeddings consist of two basic components. First, we represent the pointset P
with an ϵ-covering set, and then we apply a random linear projection à la Indyk [56] to that
set, using Cauchy variables.

The role of the covering set is to exploit the doubling dimension of P . In the analogous
result for ℓ2 [58], no representative sets were used; the mapping was just a random linear
projection of P . In the case of ℓ1 however, a similar analysis of a linear projection with
Cauchy variables without these representative sets seems to be impossible, since the
Cauchy distribution is heavy tailed.

In Theorem 53, we consider c-approximate r-nets as a covering set. Inspired by the al-
gorithm of [42] for ℓ2, we design an algorithm that computes a c-approximate r-net in ℓ1 in
subquadratic –but superlinear– time. On the other hand, Theorem 56 relies on randomly
shifted grids, which can be computed in linear time, but are inferior to nets in terms of
capturing the doubling dimension of the pointset.

To bound the distortion incurred by the randomized projection, we exploit the 1-stability
property of the Cauchy distribution. To this end, we prove a concentration bound for sums
of independent Cauchy variables. To overcome the technical difficulties associated with
the heavy tails of the Cauchy distribution, we study sums of square roots of Cauchy vari-
ables, where in [56], Indyk considers sums of truncated Cauchy variables instead. Al-
though our concentration bound is rather weak, it is sufficient for our purposes and its
analysis is much simpler compared to Indyk’s.

Organization. Section 4.1 establishes a concentration bound on sums of independent
Cauchy variables. Section 4.2, achieves dimensionality reduction by means of represent-
ing the pointset by a carefully chosen net, while Section 4.3 employs randomly shifted
grids for the same task. We conclude with discussion of results and implications.

4.1 Concentration bounds for Cauchy variables

In this section, we prove some basic properties of the Cauchy distribution, which serves
as our main embedding tool.

LetCD denote the Cauchy distribution with density c(x) = (1/π)/(1+x2). One key property
of the Cauchy distribution is the so-called 1-stability property: Let v = (v1, . . . , vd′) ∈ Rd′

and X1, . . . , Xd′ be i.i.d. random variables following CD, then
∑d′

j=1Xivi is distributed as
X∥v∥1, where X ∼ CD.

The Cauchy distribution has undefined mean. However, for 0 < q < 1, the mean of the q-th
power of a Cauchy random variable can be defined. More specifically, for some X ∼ CD
we have

E
[
|X|1/2

]
=

2

π

∫ ∞

0

√
x

1 + x2
dx =

2

π

π√
2
=
√
2.

The following lemma provides a bound for the moment-generating function of |X|1/2.
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Lemma 50. Let X ∼ CD. Then for any β > 1:

E
[
exp (−β|X|1/2)

]
≤ 2

β
.

Proof. For any constant β, ∫ 1

0

e−βx1/2 dx =
2

β2

(
1− β + 1

eβ

)
.

Then, for any β > 1,

E
[
exp (−β|X|1/2)

]
=

∫ ∞

−∞
e−β|x|1/2 · c(x) dx =

2

π

∫ ∞

0

e−βx1/2 · 1

1 + x2
dx =

=
2

π

∫ 1

0

e−βx1/2 · 1

1 + x2
dx+ 2

π

∫ ∞

1

e−βx1/2 · 1

1 + x2
dx ≤

≤ 2

π

∫ 1

0

e−βx1/2 dx+ 2

π

∫ ∞

1

e−β · 1

1 + x2
dx =

=
2

π
· 2
β2

(
1− β + 1

eβ

)
+

1

2eβ
≤ 4

πβ2
+

1

2eβ
≤ 2

β
.

Let S :=
∑d′

j=1 |Xj| where each Xj is an i.i.d. Cauchy variable. To prove concentration
bounds for S, we study the sum S̃ :=

∑d′

j=1 |Xj|1/2. By known bounds, S ≤ S̃2 ≤ d′ · S
hence, for any t > 0,

Pr[S ≤ t] ≤ Pr[S̃ ≤
√
td′]. (4.1)

We use the bound on the moment-generating function, to prove a Chernoff-type concen-
tration bound for S̃, which by Eq. (4.1) translates into a concentration bound for S.

Lemma 51. For every D > 1,

Pr

[
S̃ ≤ E[S̃]

D

]
≤
(
10

D

)d′
.

Proof. Since Xj ’s are independent, E[S̃] =
√
2d′. Then, by Lemma 50 and Markov’s

inequality, for any β > 1, it follows that

Pr

[
S̃ ≤ E[S̃]

D

]
= Pr

[
exp(−βS̃) ≥ exp

(
−β · E[S̃]

D

)]
≤

≤ E[exp(−βS̃)]
exp(−βE[S̃]/D)

=
E[exp(−β|Xj|1/2)]d

′

exp(−β
√
2d′/D)

≤
(
2

β

)d′
· e

√
2βd′/D.

Setting β = D completes the proof.
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4.2 Net-based dimension reduction

In this section we describe the dimension reduction mapping for ℓ1 via r-nets. Let P ⊂ ℓd1
be a set of n points with doubling constant λP . For some point x ∈ Rd and r > 0, we
denote by B1(x, r) the ℓ1-ball of radius r around x. The embedding is non-linear and is
carried out in two steps.

First, we compute a c-approximate (ϵ/c)-net N of P with the algorithm of Theorem 21.
Moreover, the algorithm assigns each point of P to the point of N which covered it. Let
g : P → N be this assignment. In the second step, for every s ∈ N and any query point
q ∈ ℓd1, we apply the linear map of Theorem 48. That is, f(s) = As/T , where A is a
d′×d matrix with each element being an i.i.d. Cauchy random variable. Recall that value
T = Θ(d′ log (d′/ϵ)). By the 1-stability property of the Cauchy distribution, f(s) is distributed
as ∥s∥1 · (Y1, . . . , Yd′), where each Yj is i.i.d. and Yj ∼ CD. Hence, ∥f(s)∥1 = ∥s∥1 ·S where
S :=

∑
j |Yj|.

We define the embedding to be h = f ◦ g. We apply h to every point in P , and f to any
query point q. It is clear from the properties of the net that g incurs an additive error of ±ϵ
on the distance between q and any point in P , so it is sufficient to consider the distortion
of f .

Our analysis consists of studying separately the following disjoint subsets of N : Points
that lie at distance at most D0 from the query and points that lie at distance at least D0,
for some D0 > 1 chosen appropriately. For the former set, we directly apply Theorem 48,
as it has bounded diameter.

The next lemma guarantees the low distortion for points of the latter set, namely those
that are sufficiently far from the query. We consider the sum of the square roots of each
|Yj|, i.e., S̃ =

∑
j |Yj|1/2, in order to employ the tools of Section 4.1.

Lemma 52. Fix a query point q ∈ ℓd1. For any ϵ ≤ 1/2, c ≥ 1, δ ∈ (0, 1), there exists
D0 = O(log(d′/ϵ)) such that for d′ = Θ

(
log2 λP · log(c/ϵ) + log(1/δ)

)
, with probability at

least 1− δ,
∀s ∈ N : ∥s− q∥1 ≥ D0 =⇒ ∥f(s)− f(q))∥1 ≥ 4.

Proof. Assume wlog that the query point is the origin (0, . . . , 0). For some D0 > 1, we
define the following subsets of N :

Ni = {s ∈ N | Di ≤ ∥s∥1 < Di+1}, Di = 22iD0, i = 0, 1, 2, . . .

By the definition of doubling constant and the fact that two points of N lie at distance at
least ϵ, |Ni| is at most λ⌈log(4cDi+1/ϵ)⌉

P ≤ λ
4 log(cDi+1/ϵ)
P . Therefore, by the union bound, and

Eq. (4.1):

Pr
[
∃i∃s ∈ Ni : ∥f(s)∥1 ≤

4 ∥s∥1
Di

]
= Pr

[
∃i∃s ∈ Ni : S ≤

4T

Di

]
≤

≤
∞∑
i=0

|Ni|Pr

[
S̃ ≤

√
4d′T√
Di

]
=

∞∑
i=0

|Ni|Pr

[
S̃ ≤ E[S̃] ·

√
2T

d′22iD0

]
.

I. Psarros 70



Proximity problems for high-dimensional data

By Lemma 51, for D0 = ⌈800T/d′⌉ = Θ(log(d′/ϵ)) and d′ > 4 · logλP · log(cD0/ϵ) +
2 log(2λP/δ):

∞∑
i=0

|Ni|Pr

[
S̃ ≤ E[S̃]

10 · 2i+1

]
≤

∞∑
i=0

λ
4 log (cDi+1/ϵ)
P

(
1

2i+1

)d′
=

∞∑
i=0

2log(λP )(4 log (cD0/ϵ)+2i+2)

2d′(i+1)
≤

≤
∞∑
i=0

2log(λP )·4 log (cD0/ϵ) · 22 log(λP )(i+1)

2(4·logλP ·log(cD0/ϵ))(i+1) · 22 log(2λP /δ))(i+1)
≤

≤
∞∑
i=0

2−2 log(2/δ))(i+1) =
∞∑
i=0

(
δ2

4

)i
− 1 =

δ2

4− δ2
≤ δ.

Finally, for some large enough constant C, we demand that

d′ > C (logλP · log(c log d′/ϵ) + log(1/δ)) > 4 · logλP · log(cD0/ϵ) + 2 log(2λP/δ)

which is satisfied for d′ = Θ
(
log2 λP · log(c/ϵ) + log(1/δ)

)
.

Theorem 53. Let P ⊂ ℓd1 such that |P | = n. For any ϵ ∈ (0, 1/2) and c ≥ 1, there is a non-
linear randomized embedding h = f ◦g : ℓd1 → ℓd

′
1 , where d′ = (logλP · log(c/ϵ))Θ(1/ϵ) /ζ(ϵ),

for a function ζ(ϵ) > 0 depending only on ϵ, such that, for any q ∈ ℓd1 , if there exists p∗ ∈ P
such that ∥p∗ − q∥1 ≤ 1, then, with probability Ω(ϵ):

∥h(p∗)− f(q)∥1 ≤ 1 + 3ϵ,∀p ∈ P : ∥p− q∥1 > 1 + 9ϵ =⇒ ∥h(p)− f(q)∥1 > 1 + 3ϵ.

Set P can be embedded in time Õ(dn1+1/Ω(c)), and any query q ∈ ℓd1 can be embedded in
time O(dd′).

Proof. Let f, g be the mappings defined in the beginning of the section andD0 = Θ(log(d′/ϵ)).
Assume wlog for simplicity that q = 0d. Then, by Lemma 52 for d′ = Θ

(
log2 λP · log(c/ϵ)

)
,

with probability at least 1− ϵ/5, we have:

∀p ∈ P : ∥p− q∥1 ≥ D0 + ϵ =⇒ ∥h(p)− f(q)∥1 ≥ 4.

By Theorem 48, for γ = ϵ/10 and δ = ϵ/(5λ
8 log (cD0/ϵ)
P ), with probability at least 1− ϵ/5, we

get:

∀p ∈ P : ∥p− q∥1 ∈ (1 + 9ϵ,D0 + ϵ) =⇒ ∥h(p)− f(q)∥1 > (1 + 8ϵ)(1− ϵ) ≥ 1 + 3ϵ.

Moreover,

Pr
[
∥h(p∗)− f(q)∥1 ≤ 1 + 3ϵ

]
≥ 1− 1 + ϵ/10

1 + ε
≥ 1− (1− ϵ/2).

Then, the target dimension needs to satisfy the following inequality:

d′ ≥
(

ln (5λ
8 log (cD0/ϵ)
P /ϵ)

)2/ϵ
ζ(ϵ)

=

(
Θ(log log d′ · logλP + logλP · ln(c/ϵ))

)2/ϵ
ζ(ϵ)

.

Hence, for d′ = (logλP · log(c/ϵ))Θ(1/ϵ) /ζ(ϵ), we achieve a total probability of success in
Ω(ϵ), which completes the proof.
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4.3 Dimension reduction based on randomly shifted grids

In this section, we explore some properties of randomly shifted grids, and we present a
simplified embedding which consists of a first step of snapping points to a grid, and a
second step of randomly projecting grid points.

Let w > 0 and t be chosen uniformly at random from the interval [0, w]. The function

hw,t(x) =

⌊
x− t
w

⌋
induces a random partition of the real line into segments of length w. Hence, the function

gw(x) = (hw,t1(x1), ..., hw,td(xd)),

for t1, . . . , td independent uniform random variables in the interval [0, w], induces a ran-
domly shifted grid in Rd. For a set X ⊆ Rd, we denote by gw(X), the image of X on the
randomly shifted grid points defined by gw. For some x ∈ Rd and r > 0, the number of
grid cells of gw(ℓd1) that B1(x, r) intersects per axis is independent, and in expectation is
1+2r/w. Then, the expected total number of grid cells thatB1(x, r) intersects is (1+2r/w)d.

Now let P ⊂ ℓd1 be a set of n points with doubling constant λP and q ∈ ℓd1 a query point.
For w = ϵ/d, the ℓ1-diameter of each cell is ϵ and therefore gw(P ) is an ϵ-covering set of
P .

Lemma 54. Let R > 1 and P ′ := B1(q, R) ∩ P . Then, for w = ϵ/d

E [|gw(P ′)|] ≤ 8λ
2 log(dR/ϵ)
P .

Proof. By the doubling constant definition, there exists a set of balls of radius ϵ/d2 centered
at points in P ′, of cardinality at most λ2 log(dR/ϵ)

P which covers P ′. For each ball, the expected
number of intersecting grid cells is (1 + 2/d)d ≤ e2. The lemma follows by linearity of
expectation.

The next lemma shows that, with constant probability, the growth on the number of repre-
sentatives, as we move away from q, is bounded.

Lemma 55. Let {Di}i∈N be a sequence of radii such that, for any i, Di+1 = 4Di. Let Ai be
the points of gw(P ) within distance Di+1 = 22(i+1)D0 from q. Then, with probability at least
1/3,

∀i ∈ {−1, 0, . . .} : |Ai| ≤ 4i+3λ
2 log(dDi+1/ϵ)
P .

Proof. By Lemma 54, E[|Ai|] ≤ 8λ
2 log(dDi+1/ϵ)
P for every i ∈ {−1, 0, . . .}. Then, a union

bound followed by Markov’s inequality yields

Pr
[
∃i ∈ {0, 1, . . .} : |Ai| ≥ 4i+1E[|Ai|]

]
≤ 1/3.

In addition,
Pr [|A−1| ≥ 4E[|Ai|]] ≤ 1/4.
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Theorem 56. Let P ⊂ ℓd1 such that |P | = n. For any ϵ ∈ (0, 1/2), there is a non-linear ran-
domized embedding h′ : ℓd1 → ℓd

′
1 , where d′ = (logλP · log(d/ϵ))Θ(1/ϵ) /ζ(ϵ), for a function

ζ(ϵ) > 0 depending only on ϵ, such that for any q ∈ ℓd1 , if there exists p∗ ∈ P such that
∥p∗ − q∥1 ≤ 1, then with probability Ω(ϵ),

∥h′(p∗)− f(q)∥1 ≤ 1 + 3ϵ,∀p ∈ P : ∥p− q∥1 > 1 + 9ϵ =⇒ ∥h′(p)− f(q)∥1 > 1 + 3ϵ.

Any point can be embedded in time O(dd′).

Proof. We follow the same reasoning as in the proof of Theorem 53. The embedding is
h′ = f ◦ gϵ/d, where f is the randomized linear map defined in Section 4.2. As before, we
apply h′ to every point in P , and only f to queries. The randomly shifted grid incurs an
additive error of ϵ in the distances between q and P .

Assume wlog that q = 0d and letAi be the points of gϵ/d(P ) within distanceDi+1 = 22(i+1)D0

from q. Hence, by Lemma 55,

Pr
[
∃i∃s ∈ Ai : ∥f(s)∥1 ≤

4 ∥s∥1
Di

]
≤

∞∑
i=0

|Ai|Pr
[
S ≤ 4T

Di

]
≤

≤
∞∑
i=0

4i+3λ
2 log(dDi+1/ϵ)
P Pr

[
S̃ ≤

√
4d′T√
Di

]
.

As in Lemma 52, for D0 = ⌈800T/d′⌉ = Θ(log (d′/ϵ)), d′ ≥ 20 logλP · log
(
dD0

ϵδ

)
and δ = ϵ/5,

∞∑
i=0

4i+3λ
2 log(dDi+1/ϵ)
P Pr

[
S̃ ≤

√
4d′T√
Di

]
≤

∞∑
i=0

22i+6+2 logλP [log(dD0/ϵ)+2(i+1)]

2d′(i+1)
≤ ϵ/5.

Hence, for d′ = Ω
(
(log2 λP · log(d/ϵ)

)
, with probability at least 1− ϵ/5, we have:

∀p ∈ P : ∥p− q∥1 ≥ D0 + ϵ =⇒ ∥h′(p)− f(q)∥1 ≥ 4.

Now, we are able to use Theorem 48 for points which are at distance at mostD0+ϵ from q,
and the near neighbor. By Lemma 55, with constant probability, the number of grid points
at distance ≤ D0 + ϵ, is at most 32 · λ4 log(dD0/ϵ)

P . Hence, by Theorem 48, for γ = ϵ/10 and
δ = ϵ/(160λ

4 log (dD0/ϵ)
P ), with probability at least 1− ϵ/5, it holds:

∀p ∈ P : ∥p− q∥1 ∈ (1 + 9ϵ,D0 + ϵ) =⇒ ∥h′(p)− f(q)∥1 > 1 + 3ϵ.

Moreover, with probability at least ϵ/2, we obtain:

∥h′(p∗)− f(q)∥1 ≤ 1 + 3ϵ.

As in Theorem 53, the target dimension needs to satisfy the following:

d′ ≥
(

ln (160λ
4 log (dD0/ϵ)
P /ϵ)

)2/ϵ
ζ(ϵ)

.

Hence, for d′ = (logλP · log(d/ϵ))Θ(1/ϵ) /ζ(ϵ) we achieve total probability of success Ω(ϵ).
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Table 4.1: Comparison with related dimension reduction results.

Comments Target dimension Time
[56], Nearest-Neighbor preserving, ℓ1 d′ = (logn)Θ(1/ϵ)/ζ(ϵ) O(dd′n)
[58], Nearest-Neighbor preserving, ℓ2 d′ = log(1/ϵ) logλP/ϵ2 O(dd′n)

Theorem 53 d′ = (logλP · log(c/ϵ))Θ(1/ϵ) /ζ(ϵ) Õ(dn1+1/Ω(c))

Theorem 56 d′ = (logλP · log(d/ϵ))Θ(1/ϵ) /ζ(ϵ) O(dd′n)

4.4 Summary and algorithmic implications.

In Table 4.1, we show a comparison of our results with previous results on dimension re-
duction for proximity search. Previous results focus on different scenarios: either subsets
of ℓ1 without any assumption on the doubling dimension, or doubling subsets of ℓ2.

Our results show that efficient dimension reduction for doubling subsets of ℓ1 is possible, in
the context of ANN. In particular, these results imply efficient sketches, meaning that one
can solve (1 + ϵ, r)-ANN with minimal storage per point. Dimension reduction also serves
as a problem reduction from a high-dimensional hard instance to a low-dimensional easy
instance. Since the algorithms presented in this chapter are quite simple, they should also
be of practical interest: they easily extend the scope of any implementation which has been
optimized to solve the problem in low dimension, so that it may handle high-dimensional
data.

Our embedding can be combined with the bucketing method of [51] for the (1 + ϵ, r)-
ANN problem in ℓd1. For instance, setting c = logn in Theorem 53, yields preprocessing
time dn1+o(1), space n1+o(1) and query time O(d)·(logλP · log logn)O(1/ϵ) assuming that the
doubling dimension is a fixed constant. This improves upon existing results: the query
time of [63] depends on the aspect ratio of the dataset, while the data structures of [52,
30] support queries with time complexity which depends exponentially on the doubling
dimension. However, it is worth noting that one could potentially improve the results of
[63, 52, 30] in the special case of ℓ1, by employing ANN data structures with fast query
time, in order to accelerate the traversal of the net-tree. Hence, while our result gives
a simple framework for exploiting the intrinsic dimension of doubling subsets of ℓ1, it is
unlikely that it shall improve upon simple variants of previous results in terms of complexity
bounds.
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5. APPROXIMATE NETS IN HIGH DIMENSIONS

We study r-nets, a powerful tool in computational and metric geometry, with several ap-
plications in approximation algorithms. We focus on the ℓd2 metric, in the high-dimensional
regime. This chapter is essentially a simplified exposition of [19].

An r-net for a finite metric space (X, d), |X| = n and for numerical parameter r is a
subset N ⊆ X such that the closed r/2-balls centered at the points of N are disjoint, and
the closed r-balls around the same points cover all of X. We define approximate r-nets
analogously (see Definition 20). We restate the definition for the special case of finite
subsets of ℓd2.

Definition 57. Given a pointsetX ⊆ Rd, a distance parameter r ∈ R and an approximation
parameter ϵ > 0, a (1 + ϵ)r-net of X is a subset N ⊆ X s.t. the following properties hold:

1. (packing) For every p, q ∈ N , p ̸= q, we have that ∥p− q∥2 ≥ r.

2. (covering) For every p ∈ X, there exists a q ∈ N s.t. ∥p− q∥2 ≤ (1 + ϵ)r.

A simple reduction, which is also utilized in [5] and shares its main idea with results of
Section 3.4 allows us to focus on the space {−1, 1}O(logn/ϵ2). The reduction is based on
the randomized embedding described in Section 3.4 (but to a higher dimension) f : X 7→
{0, 1}O(logn/ϵ2) such that with high probability the following holds: ∀p, q ∈ X, if ∥p− q∥2 ≤ r
then ∥f(p)−f(q)∥1 ≤ r′ and if ∥p−q∥2 ≥ (1+2ϵ)r then ∥f(p)−f(q)∥1 ≥ (1+ϵ)r′. Moreover,
r′ = 1/2 +O(ϵ). Then, translating binary coordinates to sign coordinates is trivial.

Organization. Section 5.1 discusses the main results, and Section 5.2 shows implications.

5.1 Points in {−1, 1}d under inner product

In this section, we resolve the problem of computing nets for subsets of {−1, 1}d. Using
the fact that the Euclidean norms of all vectors in our new space are equal to d, we can
define the new notion of ρ-nets with respect to their inner product.

Definition 58. For any X ⊂ {−1, 1}d, an approximate ρ-net for (X, ⟨·, ·⟩) , with additive
approximation parameter ϵ > 0, is a subset C ⊆ X which satisfies the following properties:

• for any two p ̸= q ∈ C, ⟨p, q⟩ < ρ, and

• for any x ∈ X, there exists p ∈ C s.t. ⟨x, p⟩ ≥ ρ− ϵ.

The algorithm follows the recipe of [77], later also explored in [5]. The main observation
is that finding the correlations between points in {−1, 1}d can be reduced to a polynomial

multi-point evaluation
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problem, which can be solved by fast matrix multiplication. A high-level description follows.
High-level description of net algorithm.

• Compute part of the net greedily; the remaining set is “sparse”.

• For suitable ϕ(·) compute f(X) and f ′(X) s.t.

∀x, y ∈ X : ⟨f(x), f ′(y)⟩ ≈ ϕ(⟨x, y⟩).

• Arbitrary partition of X: P1, . . . , Pm.

• For any x ∈ X:

– For any part Pi:
* compute∑

y∈Pi

⟨f(x), f ′(y)⟩ ≈
∑
y∈Pi

ϕ(⟨x, y⟩) ≈
∨
y∈Pi

[⟨x, y⟩ ≥ d/2 + ϵd] .

* decide: is x correlated with some vector in Pi?

We need ϕ(·) s.t. ϕ(d/2+ϵd)
ϕ(d/2)

as large as possible. To that end, we use the Chebyshev
polynomial which is known to satisfy nice threshold properties.

Definition 59 (Chebyshev Polynomials). An explicit expression for the qth Chebyshev
polynomial of the first kind is the following:

Tq(x) =

⌊q/2⌋∑
k=0

(
q

2k

)
(x2 − 1)kxq−2k.

Fact 60. Let Tq(x) denote the qth Chebyshev polynomial of the first kind, then the following
hold:

• The leading coefficient = 2q−1.

• All roots of Tq(x) are real and within [−1, 1].

• For x ∈ [−1, 1], |Tq(x)| ≤ 1.

• For δ ∈ (0, 1/2], Tq(1 + δ) ≥ 1
2
eq

√
δ.

Valiant’s result [77] includes a double randomized embedding f, f ′ : {−1, 1}d 7→ {−1, 1}d′

which aims for the following property: ⟨f(x), f ′(y)⟩ ≈ Tq(⟨x, y⟩). We refer to this algo-
rithm as Chebyshev Embedding and state the formal guarantees associated with it in the
following theorem.
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Theorem 61 ([77]). Let Y , Y ′ ∈ {−1, 1}d′×n be the matrices output by algorithm Chebyshev
Embedding on input X ∈ {−1, 1}d×n, integers q, d′. With probability 1 − o(1) over the
randomness in the construction of Y, Y ′, for all i, j ∈ [n],

⟨Yi, Y ′
j ⟩ ∈ Tq

(
2
⟨Xi, Xj⟩

d

)
· d′ · 2−3q+1 ±

√
d′ logn

where Tq is the degree-q Chebyshev polynomial of the first kind. The algorithm runs in
time O(d′ · n · q).

Corollary 62. Let Y = [y1, . . . , yn], Y ′ = [y′1, . . . , y
′
n] be the matrices output by algorithm

“Chebyshev Embedding” on input X ∈ {−1, 1}d×n, q = log logn, d′ = log9 n. With proba-
bility 1− o(1), for all pairs i, j, the following holds:

• ⟨xi, xj⟩ ∈ [−d/2, d/2] =⇒ |⟨yi, y′j⟩| ≤ 10 log6 n,

• ⟨xi, xj⟩ ≥ d/2 + ϵd =⇒ ⟨yi, y′j⟩ ≥
(
0.1 · log

√
ϵ n
)
· log6 n.

Lemma 63. Let Y , Y ′ ∈ {−1, 1}d′×n be the output of the algorithm in Corollary 62. Consider
set of indices J ⊂ [n] and the d′-variate polynomial FJ(y) =

∑
j∈J⟨y, y′j⟩q of degree q. Set

q = 0.1 · logn
log d′ = 0.1 · logn

9 log logn assuming q is even. Then, there exists an α = nO(1) such that,

• ∀j ∈ J : |⟨y, y′j⟩| ≤ 10 log6 n =⇒ FJ(y) ≤ |J | · α

• ∃j ∈ J : |⟨y, y′j⟩| ≥
(
0.1 · log

√
ϵ n
)
· log6 n =⇒ FJ(y) ≥ α · n

√
ϵ/100, for large enough

n.

Proof. The statement holds by a simple calculation on the bounds derived by Corollary 62.

Hence, we can partition [n] (equivalently input setX) into n1−
√
ϵ/100 parts which correspond

to n1−
√
ϵ/100 polynomials. Each polynomial has ≤ n0.1 monomials.

To evaluate the n1−
√
ϵ/100 polynomials, we employ fast rectangular matrix multiplication.

Theorem 64 (Coppersmith ’97). For any positive γ > 0, provided that β < 0.29, the product
of a k × kβ with a kβ × k matrix can be computed in time O(k2+γ).

Theorem 65. LetX ⊆ {−1, 1}d, |X| = n, ϵ > 0, and assume that |x, y ∈ X | ⟨x, y⟩ ≥ ρ| ≤ t,
where ρ = 1/2 + Θ(ϵ). We can compute a (ρ, ϵ)-approximate net, as defined in Definition
58, in time n2−O(

√
ϵ) + dtnO(

√
ϵ). The algorithm succeeds with probability 1− o(1).

Proof. We need to multiply a n1−
√
ϵ/100 × n0.1 matrix with a n0.1 × n matrix. Equivalently,

we perform n
√
ϵ/100 fast rectangular matrix multiplications in time:

n
√
ϵ/100 · n(1−

√
ϵ/100)·(2+γ) ≤ n2−

√
ϵ/100+γ ≤ n2−

√
ϵ/200,
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by setting γ to be a sufficiently small multiple of
√
ϵ. Then, there are at most t ”heavy“

elements, each one corresponding to nO(
√
ϵ) points: we visit all of them in a bruteforce

manner.

Theorem 66. Let X ⊆ {−1, 1}d, |X| = n, ϵ > 0. We can compute a (ρ, ϵ)-approximate
net, as defined in Definition 58, in time n2−O(

√
ϵ) + dn1.5+O(

√
ϵ).

Proof. The complete algorithm consists of a first step which aims to compute a subset of
the net greedily. The remaining set of uncovered points has the desired property that it is
”sparse“.

Repeat n0.5 times:

• Choose a column xi uniformly at random.

• C ← C ∪ {xi}.

• Delete column i from matrix X.

• Delete each column k from matrix X s.t. |⟨xi, xk⟩| ≥ ρ.

We perform n0.5 iterations and for each, we compare the inner products between the ran-
domly chosen vector and all other vectors. Hence, the time needed is O(dn1.5).

In the following, we denote by Xi the number of vectors which have “large” magnitude
of the inner product with the randomly chosen point in the ith iteration. Towards proving
correctness, suppose first that E[Xi] > 2n0.5 for all i = 1, . . . n0.5. The expected number of
vectors we delete in each iteration of the algorithm is more than 2n0.5 + 1. So, after n0.5

iterations, the expected total number of deleted vectors will be greater than n. This means
that if the hypothesis holds for all iterations we will end up with a proper net.

Finally, the proof is complete after invoking Theorem 65.

5.2 Applications and Future work

The main result of Section 5.1 is an algorithm for computing approximate r-nets in high
dimensions. Another set of particular interest, is the set of ”far“ points, that is points which
do not have any neighbor at distance ≤ r. This is obviously a subset of any r-net. We
remark that throughout the execution of the algorithm described in Section 5.1, we can
mark points which are approximately far. We denote this modified algorithm by DelFar
with input set X, radius parameter r, and approximation parameter ϵ > 0. This algorithm
outputs X \ S, for a set S such that,

{x ∈ X | ∀y ∈ X∥y − x∥ ≥ (1 + ϵ)r} ⊆ S ⊆ {x ∈ X | ∀y ∈ X∥y − x∥ ≥ r}.

In [54], they design an approximation scheme, which solves various distance optimization
problems. Their algorithm works by randomly sampling a point and computing the distance
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to its nearest neighbor. Let this distance be r. Then they rely on the existence of an
efficient decider for the problem: assuming that r is not a good guess, then if r is too small
then an r-net is computed, and if r is too large then DelFar is computed. In both cases,
the computation proceeds with a subset of the initial set and selects a new random value
for r.

We apply our algorithms to the problem of approximating the kth nearest neighbor dis-
tance.

Definition 67. LetX ⊂ Rd be a set of n points, approximation error ϵ > 0, and let d1 ≤ . . . ≤
dn be the nearest neighbor distances. The problem of computing an (1+ ϵ)-approximation
to the kth nearest neighbor distance asks for a pair x, y ∈ X such that ∥x − y∥ ∈ [(1 −
ϵ)dk, (1 + ϵ)dk].

Now we present an approximate decider for the problem above. This procedure combined
with the framework of [54], results in an efficient solution for this problem in high dimension.

kth NND Decider
Input: X ⊆ Rd, constant ϵ ∈ (0, 1/2], integer k > 0.
Output: An interval for the optimal value f(X, k).

• Call DelFar(X, r
1+ϵ/4

, ϵ/4) and store its output in W1.

• Call DelFar(X, r, ϵ/4) and store its output in W2.

• Do one of the following:

– If |W1| > k, then output ‘‘f(X, k) < r”.
– If |W2| < k, then output ‘‘f(X, k) > r”.

– If |W1| ≤ k and |W2| ≥ k, then output ‘‘f(X, k) ∈ [ r
1+ϵ/4

, 1+ϵ/4
r

]”.

Theorem 68 ([19] Theorem 4.1). Given a pointset X ⊆ Rd, one can compute a (1 + ϵ)-
approximation to the k-th nearest neighbor in Õ(dn2−Θ(

√
ϵ)), with probability 1− o(1).

To the best of our knowledge, this is the best high dimensional solution for this problem,
when ϵ is sufficiently small. Setting k = n and applying Theorem 68 one can compute the
farthest nearest neighbor in Õ(dn2−Θ(

√
ϵ)) with high probability.

Concerning future work, let us start with the problem of finding a greedy permutation.
A permutation Π =< π1, π2, · · · > of the vertices of a metric space (X, ∥·∥) is a greedy
permutation if each vertex πi is the farthest in X from the preceding vertices Πi−1 =<
π1, . . . , πi−1 >. The computation of r-nets is closely related to that of the greedy permuta-
tion.

The k-center clustering problem asks the following: given a set X ⊆ Rd and an integer k,
find the smallest radius r such that X is contained within k balls of radius r. Our algorithm
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can be plugged into the framework of [54] to achieve a (4+ϵ) approximation for the k-center
problem in time Õ(dn2−Θ(

√
ϵ). By [42], a simple modification of our net construction implies

an algorithm for the (1 + ϵ) approximate greedy permutation in time Õ(dn2−Θ(
√
ϵ) logΦ)

where Φ denotes the spread of the pointset. Then, approximating the greedy permutation
implies a (2 + ϵ) approximation algorithm for k-center clustering problem. We expect that
one can avoid any dependencies on Φ.
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6. APPROXIMATE NEAREST NEIGHBORS FOR POLYGONAL
CURVES

Our first contribution is a simple data structure for the (1 + ϵ)-ANN problem in ℓp-products
of finite subsets of ℓd2, for any constant p. The key ingredient is a random projection from
points in ℓ2 to points in ℓp. Although this has proven a relevant approach for (1 + ϵ)-ANN
of pointsets, it is quite unusual to employ randomized embeddings from ℓ2 to ℓp, p > 2,
because such norms are considered “harder” than ℓ2 in the context of proximity searching.
After the random projection, the algorithm “vectorizes” all point sequences. The original
problem is then translated to the (1 + ϵ)-ANN problem for points in ℓd′p , for d′ ≈ d ·m to be
specified later, and can be solved by simple bucketing methods in space Õ

(
d′n · (1/ϵ)d′

)
and query time Õ(d′ logn), which is very efficient when d ·m is low.

Then, we present a notion of distance between two polygonal curves, which generalizes
both DFD and DTW (for a formal definition see Definition 5). The ℓp-distance of two curves
minimizes, over all traversals, the ℓp norm of the vector of all Euclidean distances between
paired points. Hence, DFD corresponds to ℓ∞-distance of polygonal curves, and DTW
corresponds to ℓ1-distance of polygonal curves.

Our main contribution is an (1 + ϵ)-ANN structure for the ℓp-distance of curves, when
1 ≤ p < ∞. This easily extends to ℓ∞-distance of curves by solving for the ℓp-distance,
where p is sufficiently large. Our target are methods with approximation factor 1+ ϵ. Such
approximation factors are obtained for the first time, at the expense of larger space or
time complexity. Moreover, a further advantage is that our methods solve (1 + ϵ)-ANN
directly instead of requiring to reduce it to near neighbor search. While a reduction to the
near neighbor problem has provable guarantees on metrics [51], we are not aware of an
analogous result for non-metric distances such as the DTW.

Specifically, when p > 2, there exists a data structure with space and preprocessing time
in

Õ

(
n ·
(
d

pϵ
+ 2

)O(dm·αp,ϵ)
)
,

where αp,ϵ depends only on p, ϵ, and query time in Õ(24m logn).

When specialized to DFD and compared to [37], the two methods are only comparable
when ϵ is a large enough fixed constant. Indeed, the two space and preprocessing time
complexity bounds are equivalent, i.e. they are both exponential in d and m, but our query
time is linear instead of being exponential in d.

When p ∈ [1, 2], there exists a data structure with space and preprocessing time in

Õ
(
n · 2O(dm·αp,ϵ)

)
,

where αp,ϵ depends only on p, ϵ, and query time in Õ (24m logn). This leads to the first ap-
proach that achieves 1+ϵ approximation for DTW at the expense of space, preprocessing
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Table 6.1: Summary of previous results compared to this chapter’s. The result of [55] holds for
arbitrary metrics and X denotes the domain set of the input metric. All results except [55] are

randomized. All previous results are tuned to optimize the approximation factor. The parameters
ρu, ρq satisfy (1 + ϵ)

√
ρq + ϵ

√
ρu ≥

√
1 + 2ϵ.

Space Query Approx. Comments

DFD
O(m2|X|)m1−o(1) ×O(n2−o(1)) (m logn)O(1) O(1) det. [55]
Õ(24mdn) Õ(24md logn) O(d3/2) ℓd2 [37]

Õ(n)×
(

d
logm + 2

)O(dm1+1/ϵ log(1/ϵ))
Õ(dm1+1/ϵ · 24m logn) 1 + ϵ ℓd2, Thm 74

DTW
Õ(mn) O(m logn) O(m) ℓd2 [37]
Õ(n)× 2O(m·d log(1/ϵ)) Õ(d · 24m logn) 1 + ϵ ℓd2, Thm 75
Õ (24mn1+ρu) Õ (24mnρq) 1 + ϵ ℓd2, Thm 76

and query time complexities being exponential in m. Hence our method is best suited
when the curve size is small.

Our results for DTW and DFD are summarized in Table 6.1 and juxtaposed to existing
approaches in [37, 55].

Organization. The rest of this chapter is structured as follows. In Section 6.1, we present
a data structure for (1 + ϵ)-ANN in ℓp-products of ℓ2, which is of independent interest. In
Section 6.2, we employ this result to address the ℓp-distance of curves. We conclude with
future work.

6.1 ℓp-products of ℓ2

In this section, we present a simple data structure for (1 + ϵ)-ANN in ℓp-products of finite
subsets of ℓ2. Recall that the ℓp-product of X1, . . . , Xm, which are finite subsets of ℓ2, is a
metric space with ground set X1 ×X2 × · · · ×Xm and distance function:

d((x1, . . . , xm), (y1, . . . , ym)) = ∥∥x1 − y1∥2, . . . , ∥xm − ym∥2∥p =

(
m∑
i=1

∥xi − yi∥p2

)1/p

.

For (1+ϵ)-ANN, the algorithm first randomly embeds points from ℓ2 to ℓp. For this purpose,
we build upon results which are probably folklore and the reasoning is quite similar to the
one followed by proofs of the Johnson-Lindenstrauss lemma, e.g. [67]. Then, it is easy to
translate the original problem to (1 + ϵ)-ANN in ℓp for large vectors corresponding to point
sequences.

We now present our main results concerning (1 + ϵ)-ANN for ℓp-products of ℓ2. First,
we show that a simple random projection maps points from ℓd2 to ℓd

′
p , where d′ = Õ(d),
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without arbitrarily contracting norms. The probability of failure decays exponentially with
d′. For our purposes, there is no need for an almost isometry between norms. Hence, our
efforts focus on proving lower tail inequalities which imply that, with good probability, no
far neighbor corresponds to an approximate nearest neighbor in the projected space.

We now prove bounds concerning the contraction of distances of the embedded points.
Our proof builds upon the inequalities developed in Section 2.2.

Theorem 69. Let G be a d′× d matrix with i.i.d. random variables following N(0, 1). Then,

• if 2 < p <∞ then,

Pr
[
∃v ∈ Rd : ∥Gv∥p ≤

(cp · d′)1/p

1 + ϵ
· ∥v∥2

]
≤ O

(
d′

1
2
− 1

p

pϵ
+ 2

)d

· e−c′·2−p·d′·(pϵ/(2+pϵ))2 ,

• if p ∈ [1, 2] then,

Pr
[
∃v ∈ Rd : ∥Gv∥p ≤

(cp · d′)1/p

1 + ϵ
· ∥v∥2

]
≤ O

(
1

ϵ

)d
· e−c′·d′·(pϵ/(2+pϵ))2 ,

where c′ > 1 is a constant, ϵ ∈ (0, 1/2).

Proof. By Lemma 16:

Pr
[
∥Gv∥pp ≤

cp · d′

(1 + ϵ)p
· ∥v∥p2

]
≤ Pr

[
∥Gv∥pp ≤

cp · d′

1 + pϵ/2
· ∥v∥p2

]
≤ e−c′·d′·(pϵ/(2+pϵ))2 .

In order to bound the probability of contraction among all distances, we argue that it suf-
fices to use the strong bound on distance contraction, which is derived in Lemma 16, and
the weak bound on distance expansion from Corollary 17 or Lemma 18, for a δ-dense set
N ⊂ Sd−1 for δ to be specified later. First, a simple volumetric argument [51] shows that
there exists N ⊂ Sd−1 s.t. ∀x ∈ Sd−1 ∃y ∈ N ∥x− y∥2 ≤ δ, and |N | = O (1/δ)d.

We first consider the case p > 2. From now on, we assume that for any u ∈ N , ∥Gu∥p ≥
(cp · d′)1/p/(1 + ϵ) and ∥Gu∥p ≤ 2

√
d′ which is achieved with probability

≥ 1−O
(
1

δ

)d
· e−c′·2−p·d′·(pϵ/(2+pϵ))2 .

Now let x be an arbitrary vector in Rd s.t. ∥x∥2 = 1. Then, there exists u ∈ N s.t. ∥x−u∥2 ≤
δ. Also, by the triangular inequality we obtain the following,

∥Gx∥p ≤ ∥Gu∥p+∥G(x−u)∥p = ∥Gu∥p+∥x−u∥2
∥∥∥∥G (x− u)
∥x− u∥2

∥∥∥∥
p

≤ ∥Gu∥p+δ
∥∥∥∥G (x− u)
∥x− u∥2

∥∥∥∥
p

.

(6.1)
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Let M = maxx∈Sd−1 ∥Gx∥p. The existence of M is implied by the fact that Sd−1 is compact
and x 7→ ∥x∥p, x 7→ Gx are continuous functions. Then, by plugging M into (6.1),

M ≤ ∥Gu∥p + δM =⇒ M ≤ ∥Gu∥p
1− δ

≤ 2
√
d′

1− δ
,

where the last inequality is implied by Corollary 17. Again, by the triangular inequality,

∥Gx∥p ≥ ∥Gu∥p − ∥G(x− u)∥p ≥
(cp · d′)1/p

1 + ϵ
− 2δ

√
d′

1− δ
≥ 1− ϵ/2

1 + ϵ
· (cp · d′)1/p,

for δ ≤ ϵ·(cp·d′)1/p

2
√
d′+ϵ·(cp·d′)1/p

.

Notice now that
1

δ
= O

(
d′1/2−1/p

pϵ

)
+ 1.

In the case p ∈ [1, 2], we are able to use a better bound on the distance expansion;
namely Lemma 18. We now assume that for any u ∈ N , ∥Gu∥p ≥ (cp · d′)1/p/(1 + ϵ) and
∥Gu∥p ≤ (3 · cp · d′)1/p which is achieved with probability

≥ 1−O
(
1

δ

)d
· e−c′·d′·(pϵ/(2+pϵ))2 .

Once again, we use inequality (6.1) to obtain:

M ≤ ∥Gu∥p
1− δ

≤ (3 · cp · d′)1/p

1− δ
=⇒

=⇒ ∥Gx∥p ≥ ∥Gu∥p − ∥Gx−Gu∥p ≥ (cp · d′)1/p
(

1

1 + ϵ
− 31/p · δ

1− δ

)
=⇒

=⇒ ∥Gx∥p ≥ (cp · d′)1/p ·
1− ϵ/2
1 + ϵ

,

for δ ≤ ϵ/(6(1 + ϵ) + ϵ) = Ω(ϵ).

Theorem 69 implies that the (1+ϵ)-ANN problem for ℓp products of ℓ2 translates to the (1+
ϵ)-ANN problem for ℓp products of ℓp. The latter easily translates to the (1+ϵ)-ANN problem
in ℓd′p . One can then solve the approximate near neighbor problem in ℓd′p , by approximating
ℓd

′
p balls of radius 1 with a regular grid with side length ϵ/(d′)1/p. Each approximate ball is

essentially a set of O(1/ϵ)d′ cells [51]. Building not-so-many approximate near neighbor
data structures for various radii leads to an efficient solution for the (1 + ϵ)-ANN problem
[51].

Theorem 70. There exists a data structure which solves the (1+ϵ)-ANN problem for point
sequences in ℓp-products of ℓ2, and satisfies the following bounds on performance:
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• If p ∈ [1, 2], then space usage and preprocessing time is in

Õ(dmn)×
(
1

ϵ

)O(m·d·αp,ϵ)

,

query time is in Õ(dm logn), and αp,ϵ = log(1/ϵ) · (2 + pϵ)2 · (pϵ)−2.

• If 2 < p <∞, then space usage and preprocessing time is in

Õ(dmn)×
(
d

pϵ
+ 2

)O(m·d·αp,ϵ)

,

query time is in Õ (dm · 2p logn), and αp,ϵ = 2p · log(1/ϵ) · (2 + pϵ)2 · (pϵ)−2.

We assume ϵ ∈ (0, 1/2]. The probability of success is Ω(ϵ) and can be amplified to 1− δ,
by building Ω(log(1/δ)/ϵ) independent copies of the data-structure.

Proof. Let δp,ϵ = pϵ/(2 + pϵ). We first consider the case p > 2. We employ Theorem 69
and we map point sequences to point sequences in ℓd′p , for

d′ = Θ

(
d · 2p · log d

pϵ

δ2p,ϵ

)
.

Hence, Theorem 69 implies that,

Pr
[
∃v ∈ Rd : ∥Gv∥p ≤

(cp · d′)1/p

1 + ϵ
· ∥v∥2

]
≤ ϵ/10.

Then, by concatenating vectors, we map point sequences to points in ℓd′mp .

Now, fix query point sequence Q = q1, . . . , qm ∈
(
Rd
)m and its nearest neighbor U∗ =

u1, . . . , um ∈
(
Rd
)m. By a union bound, the probability of failure for the embedding is at

most

Pr
[
∃v ∈ Rd : ∥Gv∥p ≤

(cp · d′)1/p

1 + ϵ
∥v∥2

]
+Pr

[
m∑
i=1

∥Gui −Gqi∥pp ≤ (1 + ϵ)pcpd
′
m∑
i=1

∥ui − qi∥p2

]
.

We know that the first probability is ≤ ϵ/2. Hence, we now bound the second probability.
Notice that

E

[
m∑
i=1

∥Gui −Gqi∥pp

]
=

m∑
i=1

E
[
∥G(ui − qi)∥pp

]
= cp · d′

m∑
i=1

∥ui − qi∥p2.

By Markov’s inequality, we obtain,

Pr

[
m∑
i=1

∥Gui −Gqi∥pp ≤ (1 + ϵ)p · cp · d′
m∑
i=1

∥ui − qi∥p2

]
≤ (1 + ϵ)−p.
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Hence, the total probability of failure is 1+ϵ/10
(1+ϵ)p

. In the projected space, we build AVDs[51].
The total space usage, and the preprocessing time is

Õ(dmn)×O(1/ϵ)d′m = Õ(dmn)×
(
d

pϵ
+ 2

)O(m·d·2p·log(1/ϵ)/δ2p,ϵ)

.

The query time is Õ(dm2p logn). The probability of success can be amplified by repetition.
By building Θ

(
log(1/δ)

ϵ

)
data structures as above, the probability of failure becomes δ.

The same reasoning is valid in the case p ∈ [1, 2], but it suffices to set

d′ = Θ

(
d log 1

ϵ

δ2p,ϵ

)
.

When p ∈ [1, 2], we can also utilize ”high-dimensional” solutions for ℓp and obtain data
structures with complexities polynomial in d · m. Combining Theorem 69 with the data
structure of [11], we obtain the following result.

Theorem 71. There exists a data structure which solves the (1 + ϵ)-ANN problem for
point sequences in ℓp-products of ℓ2, p ∈ [1, 2], and satisfies the following bounds on
performance: space usage and preprocessing time is in Õ(n1+ρu), and the query time is
in Õ(nρq), where ρq, ρu satisfy:

(1 + ϵ)p
√
ρq + ((1 + ϵ)p − 1)

√
ρu ≥

√
2(1 + ϵ)p − 1

We assume ϵ ∈ (0, 1/2]. The probability of success is Ω(ϵ) and can be amplified to 1− δ,
by building Ω(log(1/δ)/ϵ) independent copies of the data-structure.

Proof. We proceed as in the proof of Theorem 70. We employ Theorem 69 and by
Markov’s inequality, we obtain,

Pr

[
m∑
i=1

∥Gvi −Gui∥pp ≤ (1 + ϵ)p · cp · d′
m∑
i=1

∥vi − ui∥p2

]
≤ (1 + ϵ)−p.

Then, by concatenating vectors, we map point sequences to points in ℓd
′m
p , where d′ =

Õ(d). For the mapped points in ℓd′mp , we build the LSH-based data structure from [11] which
succeeds with high probability 1−o(1). By independence, both the random projection and
the LSH-based structure succeed with probability Ω(ϵ)× (1− o(1)) = Ω(ϵ).

6.2 Polygonal Curves

In this section, we show that one can solve the (1 + ϵ)-ANN problem for the class of ℓp-
distance functions defined on polygonal curves, as in Definition 5. Since this class is

I. Psarros 86



Proximity problems for high-dimensional data

related to ℓp-products of ℓ2, we invoke results of Section 6.1, and we show an efficient
data structure for the case of short curves, i.e. when m is relatively small compared to the
other complexity parameters.

The class of ℓp-distances for polygonal curves includes some widely known distance func-
tions. For instance, d∞(V, U) coincides with the DFD of V and U (defined for the Euclidean
distance). Moreover d1(V, U) coincides with DTW for curves V , U .

Theorem 72. Suppose that there exists a randomized data structure for the (1 + ϵ)-ANN
problem in ℓp products of ℓ2, with space in S(n), preprocessing time T (n) and query time
Q(n), with probability of failure less than 2−4m−1. Then, there exists a data structure for
the (1+ ϵ)-ANN problem for the ℓp-distance of polygonal curves, 1 ≤ p <∞, with space in
m · (4e)m+1 ·S(n), preprocessing time (4e)m+1 ·T (n) and query time (4e)m+1 ·Q(n), where
m denotes the maximum length of a polygonal curve, and the probability of failure is less
than 1/2.

Proof. We denote by X the input dataset. Given polygonal curves V = v1, . . . , vm1, Q =
q1, . . . , qm2, and traversal T , one can define VT = v1, . . . , vl, QT = q1, . . . , ql, sequences of
l points (allowing consecutive duplicates) s.t. ∀k, vik = VT [k] and qjk = QT [k], if and only
if (ik, jk) ∈ T .

One traversal of V , Q is uniquely defined by its length l ∈ {max(m1,m2), . . . ,m1 + m2},
the set of indices A = {k ∈ {1, . . . , l} | ik+1 − ik = 0 and jk+1 − jk = 1} for which only Q
is progressing and the set of indices B = {k ∈ {1, . . . , l} | ik+1 − ik = 1 and jk+1 − jk =
1} for which both Q and V are progressing. We can now define Vl,A,B, Ql,A,B to be the
corresponding sequences of l points. In other words if l, A,B corresponds to traversal T ,
Vl,A,B = VT , Ql,A,B = QT . Observe that it is possible that curve V is not compatible with
some triple l, A,B.

We build one (1 + ϵ)-ANN data structure, for ℓp products of ℓ2, for each possible l, A,B.
Each data structure contains at most |X| point sequences which correspond to curves
that are compatible to l, A,B. We denote by m = max(m1,m2). The total number of data
structures is upper bounded by

2m∑
l=m

m∑
t=0

(
l

t

)
·
(
l − t
m− t

)
≤

2m∑
l=m

m∑
t=0

(
l

t

)
·
(

l

m− t

)
=

2m∑
l=m

(
2l

m

)
≤

4m∑
l=m

(
l

m

)
=

(
4m+ 1

m+ 1

)
≤

≤ (4e)m+1. For any query curve Q, we create all possible combinations of l, A,B and
we perform one query per (1 + ϵ)-ANN data structure. We report the best answer. The
probability that the building of one of the ≤ (4e)m+1 data structures is not successful is
less than 1/2 due to a union bound.

We now investigate applications of the above results, to the (1+ϵ)-ANN problem for some
popular distance functions for curves.

87 I. Psarros



Proximity problems for high-dimensional data

Discrete Fréchet Distance. DFD is naturally included in the distance class of Defini-
tion 5 for p = ∞. However, Theorem 72 is valid only when p is bounded. To overcome
this issue, p is set to a suitable large value.

Lemma 73. Let V = v1, . . . , vm1 ∈ Rd and U = u1, . . . , um2 ∈ Rd be two polygonal curves.
Then for any traversal T of V and U :

(1 + ϵ)−1 ·

 ∑
(ik,jk)∈T

∥vik − ujk∥p
1/p

≤ max
(ik,jk)∈T

∥vik − ujk∥ ≤

 ∑
(ik,jk)∈T

∥vik − ujk∥p
1/p

,

for p ≥ log (|T |) / log(1 + ϵ).

Proof. For any x ∈ R|T |, it is known that ∥x∥∞ ≤ ∥x∥p ≤ (|T |)1/p ∥x∥∞.

Theorem 74. There exists a data structure for the (1 + ϵ)-ANN problem for the DFD of
curves, with space and preprocessing time

Õ(dm2n)×
(

d

logm
+ 2

)O(m1+1/ϵ·d·log(1/ϵ))

,

and query time Õ(dm1+1/ϵ ·24m logn), wherem denotes the maximum length of a polygonal
curve, and ϵ ∈ (0, 1/2]. The data structure succeeds with probability 1/2, which can be
amplified by repetition.

Proof. We combine Theorem 72 with Theorem 70 for p ≥ logm/ log(1 + ϵ) ≥ ϵ−1 logm.
Notice that in order to plug the data structure of Theorem 70 into Theorem 72 we need to
amplify the probability of success to 1− 2−4m−1. Hence, the data structure for the (1 + ϵ)-
ANN problem for ℓp-products of ℓp needs space and preprocessing time

Õ(dm2n)×
(
d

pϵ
+ 2

)O(m·d·αp,ϵ)

,

and each query time costs O(dm2), where αp,ϵ = 2p · log(1/ϵ) · (2 + pϵ)2 · (pϵ)−2. Now,
substituting p and invoking Theorem 72 completes our proof.

Dynamic Time Warping. DTW corresponds to the ℓ1-distance of polygonal curves as
defined in Definition 5. Now, we combine Theorem 72 with each of the Theorems 70 and
71.

Theorem 75. There exists a data structure for the (1+ϵ)-ANN problem for DTW of curves,
with space and preprocessing time

Õ(dm2n)×
(
1

ϵ

)O(m·d·ϵ−2)

,
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and query time Õ(d·24m logn), wherem denotes the maximum length of a polygonal curve,
and ϵ ∈ (0, 1/2]. The data structure succeeds with probability 1/2, which can be amplified
by repetition.

Proof. We first amplify the probability of success for the data structure of Theorem 70 to
1 − 2−4m−1. Hence, the data structure for the (1 + ϵ)-ANN problem for ℓ1-products of ℓ1
needs space and preprocessing time

Õ(dm2n)× 2O(m·d·αp,ϵ),

and each query time costs O(dm2), where αp,ϵ = log(1/ϵ) · (2 + ϵ)2 · (ϵ)−2. We plug this
data structure into Theorem 72.

Theorem 76. There exists a data structure for the (1+ϵ)-ANN problem for DTW of curves,
with space and preprocessing time Õ(24mn1+ρu), and the query time is in Õ(24mnρq), where
ρq, ρu satisfy:

(1 + ϵ)
√
ρq + ϵ

√
ρu ≥

√
1 + 2ϵ.

We assume ϵ ∈ (0, 1/2]. The data structure succeeds with probability 1/2, which can be
amplified by repetition.

Proof. First amplify the probability of success for the data structure of Theorem 71 to
1 − 2−4m−1, by building independently Õ(m) such data structures. We plug the resulting
data structure into Theorem 72.

6.3 Conclusion

Thanks to the simplicity of the approach, it should be easy to implement it and should have
practical interest. We plan to apply it to real scenarios with data from road segments or
time series.

The key ingredient of our approach is a randomized embedding from ℓ2 to ℓp which is the
first step to the (1 + ϵ)-ANN solution for ℓp-products of ℓ2. The embedding is essentially a
gaussian projection and it exploits the 2-stability property of normal variables, along with
standard properties of their tails. We expect that a similar result can be achieved for ℓp-
products of ℓq, where q ∈ [1, 2). One related result for (1+ϵ)-ANN [22], provides dimension
reduction for ℓq, q ∈ [1, 2).
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7. APPROXIMATE NEAR NEIGHBORS FOR SHORT QUERY CURVES
UNDER THE DISCRETE FRÉCHET DISTANCE

In this chapter, we study data structures for queries under the discrete Fréchet distance
in the short queries regime. In this scenario, the dataset consists of polygonal curves of
length at most m, but the queries are of length k < m. We base our solution on the O(k)-
approximate data structure proposed by Driemel and Silvestri [38] and achieve a (1 + ϵ)-
approximation with little computational overhead. Our main idea is to handle queries in
two stages. After the input is snapped to a (coarse) randomly shifted grid, each bucket
of the hash table is refined further using (finer) ϵ-grids. For the discrete Fréchet distance,
the data structure improves upon our (more general) result of Chapter 6 even for the case
k = m.

Finally, we show that our techniques generalize to variants of the discrete Fréchet distance
that are derived from other metrics. When the underlying metric is a doubling metric, we
can use net-trees instead of ϵ-grids. This incurs a slight increase in query time since we
cannot simply snap the query to the grid and instead use a lookup table.

We use Xd
m =

(
Rd
)m and treat the elements of this set as ordered sets of points in Rd of

size m called polygonal curves. In the metric case, we assume a metric space (Mm,dm),
write a curve p with m vertices as p = p1, . . . , pm and denote the space of all curves by
Mm. For any polygonal curve p, V (p) denotes the set of its vertices.

Organization. In Section 7.1, we show our results for polygonal curves. In Section 7.2,
we extend our ideas to metric spaces of bounded doubling dimension.

7.1 ANN for short query curves in Euclidean spaces

In this section, we present efficient data structures for the (1 + ϵ, r)-ANN problem, for
polygonal curves under the discrete Fréchet distance ddF in Euclidean spaces. We further
assume that r = 1 since we can uniformly scale the ambient space.

Randomly shifted grids constitute the main ingredient of our algorithm. It has been pre-
viously observed [38] that randomly shifted grids induce a good partition of the space of
curves: with good probability, near curves pass through the same sequence of cells and
hence they belong to the same part. Let δ > 0 and z chosen uniformly at random from the
interval [0, δ]. The function hδ,z(xi) = ⌊δ−1(xi − z)⌋ induces a random partition of the line.
Hence, for any vector x = (x1, . . . , xd), the function gδ,z(x) = (hδ,z(x1), ..., hδ,z(xd)), induces
a randomly shifted grid. Notice that, for our purposes, it suffices to use the same random
variable for all coordinates. It is easy to bound the probability that a set with bounded
diameter is entirely contained in a cell.

For any set X, diam(X) denotes the diameter of X. We begin with simple technical lem-
mas and then we proceed to our main theorems.
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Lemma 77. Let X ⊆ Rd be a set such that diam(X) ≤ ∆. Then,

Prz [∃x ∈ X ∃y ∈ X : gδ,z(x) ̸= gδ,z(y)] ≤
d∆

δ
.

Proof. Let a, b ∈ R such that |a− b| ≤ ∆. Then,

Prz
[⌊
a− z
δ

⌋
̸=
⌊
b− z
δ

⌋]
≤ ∆

δ
.

Hence, by a union bound over all coordinates:

Prz [∃x ∈ X ∃y ∈ X : gδ,z(x) ̸= gδ,z(y)] ≤
d∆

δ
.

The same argument extends to k sets of bounded diameter.

Lemma 78. Let X1, . . . , Xk ⊆ Rd be k sets such that ∀i ∈ [k] : diam(Xi) ≤ ∆.

Prz [∃Xi ∃x ∈ Xi ∃y ∈ Xi : gδ,z(x) ̸= gδ,z(y)] ≤
dk∆

δ
.

Proof. The statement holds by Lemma 77 and a union bound over all sets.

Lemma 79. For any two curves p ∈ Xd
m and q ∈ Xd

k, let XT
1 , . . . , X

T
l be a sequence of

subsets of V (p)∪ V (q), where XT
i denotes the ith disconnected component of an optimal

traversal T . If ddF (p, q) ≤ 1, then for δ = 4dk:

Prz [∃i ∈ [d] ∃x ∈ Xi ∃y ∈ Xi : gδ,z(x) ̸= gδ,z(y)] ≤
1

2
.

Proof. Lemma 78, and the fact that for any i ∈ [k] diam(XT
i ) ≤ 2, imply the result.

The following lemma indicates that the optimal traversal between two polygonal curves
p ∈ Xd

m and q ∈ Xd
k, k ≤ m, can be viewed as a matching between V (p) and V (q).

Lemma 80 (Lemma 3 [38]). For any two curves p ∈ Xd
m1

and q ∈ Xd
m2
, there always exists

an optimal traversal T with the following two properties:

(i) T consists of at most k = min{m1,m2} disconnected components.

(ii) Each component is a star, i.e., all edges of this component share a common vertex.

Hence, by a union bound, we are able to bound the probability of splitting one of the k
disconnected components with a random partition induced by a randomly shifted grid with
side-length Θ(kd). Furthermore, we can precompute and store solutions for polygonal
curves realized by the grid points of a refined grid of side-length Θ(ϵ/

√
d), and use these

solutions to answer any query, after snapping its vertices to the grid.
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Theorem 81. Given as input a set of n polygonal curves P ⊂ Xd
m, and an approximation

parameter ϵ > 0, there exists a randomized data structure with space in n · O
(
kd3/2

ϵ

)kd
+

O(dnm), preprocessing time in dnmk · O
(
kd3/2

ϵ

)kd
, and query time in O(dk), for the (1 +

ϵ, r)-ANN problem under the discrete Fréchet distance. For any query curve q ∈ Xd
k, the

preprocessing algorithm succeeds with constant probability.

Proof. For any vector x = (x1, . . . , xd), we define the random function

gδ,z(x) =

(⌊
x1 − z
δ

⌋
, . . . ,

⌊
x1 − z
δ

⌋)
,

where z is a random variable following the uniform distribution in [0, δ], and δ = 2dk. We
also define

gw,·(x) =
(⌊x1

w

⌋
, . . . ,

⌊x1
w

⌋)
,

where w = ϵ/(2
√
d). The preprocessing algorithm:

(a) Input: n polygonal curves P ⊂ Xd
m.

(b) For each curve p ∈ P , assign a key vector ∈ Zk which is defined by the sequence
of cells induced by gδ,z, which are stabbed by p. The curves which stab more than
k cells are not stored. If the number of stabbed cells is less than k, then for the last
coordinates we use a special character indicating emptiness.

(c) Store curves in a hashtable: each bucket corresponds to a key vector (as described
in (b)).

(d) Let C1, . . . , Ct be the sequence of cells which corresponds to a given bucket: com-
pute the solutions for all curves of complexity k which are defined by points in
gw,·(C1), . . . , gw,·(Ct) (and respect the ordering).

(e) Store the solutions (as indices) in a new hashtable: one new hashtable per bucket
of (c). Any curve within distance 1+ ϵ/2 is considered an appropriate near neighbor.

The query algorithm:

(i) Input: query curve q ∈ Xd
k.

(ii) Hash the curve twice: first by gδ,z(·), and then by gw,·(·). Report the answer.

Storage. We use perfect hashing to store the curves. There are at most n non-empty buck-
ets which contain curves. For each such bucket, we precompute and store (approximate)
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answers for all possible queries. The number of possible queries which are compatible
with a given sequence of k cells is upper bounded by:∑
t1+...+tk=k

∀i: ti≥0
t1≥1,tk≥1

k∏
i=1

(
4d3/2k

ϵ

)tid
≤

∑
t1+...+tk=k

∀i: ti≥0

(
4d3/2k

ϵ

)kd
=

(
2k − 1

k

)
·
(
4d3/2k

ϵ

)kd
≤
(
16d3/2k

ϵ

)kd
.

Hence there are n·O(d3/2kϵ−1)kd indices to store. Indices refer to the input set of polygonal
curves which are stored in O(dnm).

Preprocessing time. For each data curve, we compute the real distance to all possible
queries. Hence, the total preprocessing time is dnmk ·O

(
kd3/2

ϵ

)kd
.

Query time. O(kd) because of perfect hashing.

Correctness. By Lemma 79, we have that if ddF (p, q) ≤ 1, then p, q lie at the same bucket
with probability ≥ 1/2. Now, let any two points x, y ∈ Rd, and let x′ be the image of x in
Gϵ/2

√
d. If ∥x − y∥2 ≤ 1, then ∥x′ − y∥2 ≤ ∥x − x′∥2 + ∥x − y∥2 ≤ 1 + ϵ/2. Similarly, If

∥x− y∥2 > 1 + ϵ then ∥x− y∥2 > 1 + ϵ/2.

One may notice that the above data structure requires limited randomness. In fact, there is
only one random variable which is used for the randomly shifted grid. As a consequence,
the data structure can be easily derandomized.

Theorem 82. Given as input a set of n polygonal curves P ⊂ Xd
m, and an approxima-

tion parameter ϵ > 0, there exists a deterministic data structure with space in O (dnm) +(
d3/2nkϵ−1

)
×O

(
kd3/2

ϵ

)kd
, preprocessing time in O

(
d5/2nmkϵ−1

)
×O

(
kd3/2

ϵ

)kd
, and query

time in O
(
k2d5/2

ϵ

)
, for the (1 + ϵ, r)-ANN problem under the discrete Fréchet distance, for

query curves in Xd
k.

Proof. The data structure is essentially a derandomized version of the data structure of
Theorem 81. First we snap all points to a grid with side-length Θ(ϵ/

√
d). This introduces an

additive error of Θ(ϵ). Then, instead of applying a randomly shifted grid, we build several
shifted grids; one for each interesting value of z. After having discretized the coordinates,
there are O(d3/2k/ϵ) such values.

7.2 ANN for short query curves in doubling spaces

In this section, we consider an arbitrary metric space (M,dM). We assume the existence
of a constant-time oracle that gives us access to the metric space. We refer to the two
computational models relevant for our work as follows:

• black-box model ([30, 53, 63]): there exists a constant-time distance oracle for the
metric space that reports the pairwise distance for any two points,
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• weakly explicit model ([17]): there exists a distance oracle and a doubling oracle for
the metric space. Given any ball in the metric spaceM, the doubling oracle returns
in time λM a covering with λM balls of half the radius.

Note that for any finite setX ⊂M, λX ≤ λM. We present two data structures for the (c, r)-
ANN problem of polygonal curves in arbitrary doubling metric spaces, under the discrete
Fréchet distance. The dataset consists of curves inMm and queries belong toMk. Once
again, we aim for polynomial dependence on m. The first data structure achieves O(k)
approximation in the black-box model when the doubling dimension is constant, and the
second one achieves (1 + ϵ) approximation in the weakly explicit model.

The high-level idea of our solution is very similar to the one of Section 7.1. We use nets, in
order to discretize the input space, and a net-hierarchy which allows for a fast implemen-
tation of a ∆-bounded-diameter random partition. Such partitions are quite common in the
literature (see e.g. [50], Chapter 26). The random partition of points naturally extends to a
random partition of curves by considering k-tuples of parts. Then, we use perfect hashing
and we build a look-up table where the set of non-empty buckets realizes the partition
(each bucket contains only these curves which belong to a certain part). Now, any two
curves which fall into the same bucket are ∆-near, and by carefully adjusting the param-
eters, this already provides with an O(k) approximation. Furthermore, assuming the exis-
tence of a doubling oracle for the ambient space, we can precompute (1+ ϵ)-approximate
answers to all possible queries. To answer a query, we use the net-hierarchy to efficiently
compute the corresponding part and then we retrieve the answer from the look-up table.

7.2.1 Net Hierarchies

We now introduce the main algorithmic tool of this section. Our data structure is based on
the notion of net-trees.

Definition 83 (Net-tree [53]). Let P ⊂M be a finite set. A net-tree of P is a tree T whose
set of leaves is P . We denote by Pv ⊆ P the set of leaves in the subtree rooted at a vertex
v ∈ T . Associate with each vertex v a point repv ∈ Pv. Internal vertices have at least two
children. Each vertex v has a level ℓ(v) ∈ Z ∪ {−∞}. The levels satisfy ℓ(v) < ℓ(p(v)),
where p(v) is the parent of v in T . The levels of the leaves are −∞. Let τ be some large
enough constant, say τ = 11. We require the following properties from T :

• Covering property: For every vertex v ∈ T :

Pv ⊂ bM

(
repv,

2τ

τ − 1
· τ ℓ(v)

)
.

• Packing property: For every nonroot vertex v ∈ T ,

bM

(
repv,

τ − 5

2(τ − 1)
· τ ℓ(p(v))−1

)
∩ P ⊂ Pv.
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• Inheritance property: For every nonleaf vertex u ∈ T , there exists a child v ∈ T of u
such that repu = repv.

Theorem 84 (Theorem 3.1 [53]). Given a set P of n points in M, one can construct a
net-tree for P in λO(1)

P n logn expected time.

Enhancing the net-tree so that it supports several auxiliary operations leads to the following
theorem.

Theorem 85 (Theorem 4.4 [53]). Given a set P of n points in a metric spaceM, one can
construct a data-structure for answering (1+ϵ)-ANN queries (where the quality parameter ϵ
is provided together with the query). The query time is λO(1)

P logn+ϵ−O(logλP ), the expected
preprocessing time is λO(1)

P n logn, and the space used is λO(1)
P n.

Definition 86 (Pruned net-tree). Given some pruning parameter w > 0, we define the
pruned net-tree to be a net-tree as in Definition 83 which is pruned as follows: for any
v ∈ T such that Pv ⊂ bM (repv, w), we delete all points in Pv, except for repv which remains
as the single leaf of v.

We present a data structure for the range search problem on nets, which is entirely based
on [53]. We note that in order to keep the presentation simple, we make use of the main
results there in a black-box manner, but a more straightforward solution is likely attainable.

Theorem 87. Let X ⊂M, where (M,dM) is a metric space, and X is the set of n leaves
in a pruned net-tree T with pruning parameter w (i.e.X is a Ω(w)-net). There exists a data
structure with input X which supports the following type of range queries:

• given q ∈M, r > 0, report bM(q, r) ∩X.

The expected preprocessing time is λO(1)
X n logn, the space consumption is λO(1)

X n and the
query time is λO(1)

X logn+ λ
O(log(r/w))
X .

Proof. We build a data structure as in Theorem 85, and we are able to find a 2-approximate
nearest neighbor of q in time λO(1)

X logn, with expected preprocessing time in λO(1)
X n logn

and space in λO(1)
X n. This point is denoted by q′. By the triangular inequality, it suffices to

seek for the points of bM(q, r) ∩X in bM(q′, 3r) ∩X.

In order to perform a range query for a leaf q′, we invoke an auxiliary data structure from
[53] (see Section 3.5), which, for any query node v, allows us to find all points U within
radius r′ = O(τ ℓ(v)) that are roughly at the same level, i.e ∀u ∈ U : ℓ(u) ≤ ℓ(v) < ℓ(p(u)).
This can be done by maintaining appropriate lists of size λ

O(1)
X , while building the net-

tree, and it does not affect asymptotically the construction of the net-tree. By the packing
property of pruned net-trees, we can retrieve all leaves within distance O(r) from q′ in time
λ
O(log(r/w))
X .
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7.2.2 A data structure for curves

Our data structure is based on a quite standard random partition method which has been
used repeatedly in the literature, especially in results concerning metric embeddings. We
use this method in order to obtain a partition of the curves with the desired property that
near curves probably belong to the same part. For any set X, diam(X) denotes the
diameter of X.

partition(X ⊂M, ∆ > 0)

• Set random permutation of X: x1, x2, . . . , xn.
• Set C0 ← ∅.
• Set ordered set P ← ∅.
• Choose uniformly at random R ∈ [∆/4,∆/2].
• For i = 1, . . . , n:

– Set Ci ← {p ∈ X | dM(xi, p) ≤ r}∪Ci−1, where Ci−1 ⊆ X is the set of covered
points in the (i− 1)th iteration.

– Set Pi ← Ci \ Ci−1. P ← P ∪ {Pi}.

• Return the permutation x1, x2, . . . , xn, and indices to corresponding parts according
to P.

The following lemma describes the performance of the above partition scheme. Typically,
similar guarantees discussed in the literature concern only points participating in the pro-
cedure (e.g. Lemma 26.7 [50]), while we need to take into account a query point which is
not known in advance. To that end, we include a proof for completeness.

Lemma 88. Let (M,dM) be a metric space, X ⊂ M a finite subset, and let P be the
random partition generated by partition(X,∆). For any x ∈ X, let P(x) be the part to
which x has been assigned. Then, the following hold:

• For any P ∈ P, diam(P ) ≤ ∆.

• Let q ∈ M and let xj ∈ X be such that j = min{i | dM(q, xi) ≤ R}. Then, if
bM(q, t) ∩X ̸= ∅ and t ≤ ∆/8,

Pr[bM(q, t) ∩X ̸⊆ P(xj)] ≤
8t

∆
ln (|bM(q,∆) ∩X|) .

Proof. Since R ≤ ∆/2, obviously ∀P ∈ P : diam(P ) ≤ ∆.

Let m = |bM(q,∆)∩X| and let p1, . . . , pm be the points in bM(q,∆)∩X which are ordered
in increasing distance from q. The probability that a certain point pi serves as the first
center for a cluster that intersects (but does not include) bM(q, t) is upper bounded by the
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probability that R ∈ [dM(pi, q) − t, dM(pi, q) + t] and pi appears before p1, . . . , pi−1 in the
permutation, since otherwise one of the previous clusters would have intersected (and
possibly covered) bM(q, t). Formally,

Pr[∃x ∈ X | bM(q, t) ∩ P(x) ̸= ∅ and bM(q, t) ∩X ̸⊆ P(x)] ≤

≤
m∑
i=1

Pr[R ∈ dM(pi, q)± t] ·
1

i
≤ 8t

∆
lnm.

Finally, since bM(q, t) ∩ X ̸= ∅ and t ≤ ∆/8, there exists at least one point which serves
as a center for a cluster containing bM(q, t).

Lemma 89. Given as input parameters∆ > 0, a pruned net-tree T with pruning parameter
w, where X is the set of n leaves in T , partition(X,∆) can be implemented to run in
λ
O(1)
X n · logn+ n · λO(log(∆/w))

X time.

Proof. By Theorem 87, we can build a data structure which supports range queries: given
a point q ∈ M, R ∈ [0,∆/2], we are able to report {x ∈ X | dM(q, x) ≤ R} in time
λ
O(1)
X logn + λ

O(log(R/w))
X ≤ λ

O(1)
X logn + λ

O(log(∆/w))
X . Hence, for any point xi, we cover and

mark points which had not been covered before, and since we need to consider at most
n points, the total amount of time needed is λO(1)

X n · logn+ n · λO(log(∆/w))
X .

Now, for a partition which is obtained by partition (actually for any partition), each polyg-
onal curve inMm stabs at most m distinct parts. Using Theorem 87, we are able to build
a data structure on the centers of the partition. Then, recovering the part that some point
belongs to, is easy: we perform a ∆-range query for the given point and then we examine
all ≤ λ

O(log(∆/w))
X points inside this range.

Theorem 90. Given as input a set of n polygonal curves P ⊂ Mm in the black-box
model, there exists a randomized data structure for the (O(ρ), r)-ANN problem under
the discrete Fréchet distance, with space in λ

O(1)
X nm, expected preprocessing time in

n ·m ·
(
λ
O(log ρ)
X + λ

O(1)
X log(nm)

)
, and query time in k ·

(
λ
O(log ρ)
X + λ

O(1)
X log(nm)

)
, where

X :=
∪
p∈P V (p), and ρ := ρ(λX , k) ∈ O(k logλX). For any query curve q ∈ Mk, the

preprocessing algorithm succeeds with constant probability.

Proof. Preprocessing. Let r′ be the ANN radius search parameter, and let r := 4r′/3.
First, we build a pruned net-tree on X :=

∪
p∈P V (p). A net-tree can be built in expected

time λ
O(1)
X nm log(nm) by [53]. Then, we transform it to a pruned net-tree T with pruning

parameter w := r/4, by visiting at most all nodes and checking which ones should be
deleted. We then build the data structure of Theorem 87 and we run the algorithm of
Lemma 89 with input X, ∆ = 100 · r · (k logλX) log (k logλX). The output consists of an
ordered set of points and the partition.
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We store P in a hashtable as follows. First we compute one vector of indices per curve indi-
cating the corresponding parts. By Theorem 87, this costsm·

(
λ
O(log(∆/w))
X + λ

O(1)
X log(nm)

)
time for each curve. If one polygonal curve stabs more than k parts, we discard it. If it
stabs less than k parts, we use a special character for the remaining coordinates. The
polygonal curves are then stored in a hashtable: each bucket is assigned to a key vector
of dimension k. Any non-empty bucket corresponds to ≤ k parts, of diameter ≤ ∆.

Storage. We store a net tree, which requires λO(1)
X nm space, and a hashtable with at most

n non-empty buckets containing indices to curves.

Query. For any query q ∈ Mk, we perform k ∆-range queries on the leaves of T . For
each of the k vertices, we explore points within distance ∆, in order to find which point
is the first in the permutation used in partition, that covers it. Hence we compute the
corresponding key vector in time k ·

(
λ
O(log(∆/w))
X + λ

O(1)
X log(nm)

)
. We have access to the

bucket in O(k) time, and we report any data curve stored in that bucket.

Correctness. We claim that the above data structure solves the (O(∆/r)), 3r/4)ANN prob-
lem. The choice of our pruning parameter implies that if there is a point in the original
pointset within distance 3r/4 from some query point, then there is a leaf in the net-tree
within distance r. In order to prove that the approximation factor holds, we make use of
Lemma 80, and the fact that the pruning step only induces constant multiplicative error.
This implies that if ddF (p, q) ≤ 3r/4 then there exists an optimal traversal which consists
of k components and each component can be covered by a ball of radius r centered at a
point of X ∪ V (q). By Lemma 88, the probability that partition splits one component is
at most

8r

∆
lnλX · log 8∆

r
≤ 8

100k
· log (800(k logλX) · log(k logλX))

log(k logλX)
≤ 8

100k
· 10 + 2 log ((k logλX))

log(k logλX)

≤ 99/(100k), and by a union bound the probability that q is separated from its near neighbor
is constant.

Theorem 91. Given as input a set of n polygonal curves P ⊂ Mm in the weakly explicit
model, and an approximation parameter ϵ > 0, there exists a randomized data structure
for the (1+ϵ, r)-ANN problem under the discrete Fréchet distance, with space in λO(1)

X nm+

λ
O(k·log ρ)
M n, expected preprocessing time in λO(1)

X nm log(nm) + λ
O(k·log ρ)
M · nmk, and query

time in k ·
(
λ
O(log ρ)
M + λ

O(1)
X log(nm)

)
, where X :=

∪
p∈P V (p), and

ρ := ρ(λX , k, ϵ) ∈ O
(
ϵ−1 · k · (logλX) · log(1/ϵ)

)
.

For any query curve q ∈Mk, the preprocessing algorithm succeeds with constant proba-
bility.

Proof. Preprocessing. The first preprocessing step is similar to the one applied in the
proof of Theorem 90. We build a pruned net-tree T on X :=

∪
p∈P V (p), with pruning
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parameter w = ϵr, in expected time λO(1)
X nm log(nm). We then build the data structure of

Theorem 87 and we run the algorithm of Lemma 89 with input X, and

∆ = 100r · (k logλX log(1/ϵ)) · log (k logλX log(1/ϵ))) .

We compute one vector of indices per curve indicating the corresponding parts. This costs
m ·

(
λ
O(log(∆/w))
X + λ

O(1)
X log(nm)

)
time for each curve. If one polygonal curve stabs more

than k parts, we discard it. If it stabs less than k parts, we use a special character for the
remaining coordinates. The polygonal curves are then stored in a hashtable: each bucket
is assigned to a key vector of dimension k. Any non-empty bucket corresponds to ≤ k
parts, of diameter ≤ ∆. The weakly explicit model assumes that we are able to access
points which ϵr-cover a ball of radius r in λO(log(1/ϵ))

M time. Given a sequence of k pointsets
which ϵr-cover the whole bucket, we precompute and store the answers for all possible
approximate queries. The number of possible queries which are compatible with a given
sequence of k parts is: ≤∑

t1+...+tk=k
∀i: ti≥0
t1≥1,tk≥1

k∏
i=1

λ
ti log(∆/w)
M =

∑
t1+...+tk=k

∀i: ti≥0

λ
k log(∆/w)
M =

(
2k − 1

k

)
· λk log(∆/w)

M ≤ λ
O(k log(∆/w))
M .

Storage. We store a net-tree in λ
O(1)
X nm. We also store a hashtable with at most n non-

empty buckets, which correspond to different parts. For each bucket/part we store a
hashtable with ≤ λ

O(k log(∆/w))
M non-empty buckets, one for each approximate query.

Query. For any query q ∈ Mk, we perform k ∆-range queries on the leaves of T . For
any point x ∈ V (q), we explore points within distance ∆, in order to find which point is
the first in the permutation used in partition, which also covers x. Hence, we compute
the corresponding key vector in time k ·

(
λ
O(log(∆/w))
X + λ

O(1)
X log(nm)

)
. Then, we have

access to the bucket in O(k) time, and we locate the representative sequence of points in
k · λO(log(∆/w))

M time.

Correctness.We claim that the data structure solves the (1+Θ(ϵ), (1−2ϵ)r)-ANN problem.
In order to prove correctness, we make use of Lemma 80 and the fact that approximat-
ing the input dataset by the net, only induces Θ(ϵr) additive error. This implies that if
ddF (p, q) ≤ (1−2ϵ)r then there exists an optimal traversal which consists of k components
and each component can be covered by a ball of radius r centered at a point of X ∪ V (q).
The probability that partition splits one component is at most

8r

∆
lnλX · log ∆

ϵr
≤ 8

100k log(1/ϵ)
· log (100ϵ−1(k logλX log(1/ϵ)) · log(k logλX log(1/ϵ)))

log(k logλX log(1/ϵ))

≤ 8

100k log(1/ϵ)
· 7 + log(1/ϵ) + 2 log ((k logλX log(1/ϵ)))

log(k logλX log(1/ϵ))
≤ 9

10k
,

and by a union bound the probability that q is separated from its approximate near neighbor
is ≤ 1/10.
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8. VAPNIK–CHERVONENKIS DIMENSION FOR POLYGONAL
CURVES

A crucial descriptor of any range space is its VC-dimension [79, 75, 74] and related shat-
tering dimension, which we define formally below. These notions quantify how complex
a range space is, and have played foundational roles in machine learning [80, 13], data
structures [29], and geometry [50, 26]. For instance, the specific task of bounding these
complexity parameters have is critical for tasks as diverse as neural networks [13, 62],
art-gallery problems [78, 44, 64], and kernel density estimation [60].

The last five years have seen a surge of interest into data structures for trajectory process-
ing under the Fréchet distance, manifested in a series of publications [34, 47, 35, 4, 82, 20,
39, 27, 38, 18, 41]. Partially motivated by the increasing availability and quality of trajectory
data from mobile phones, GPS sensors, RFID technology and video analysis [65, 83, 46].
Initial results in this line of research, such as the approximate range counting data struc-
ture by de Berg, Gudmundsson and Cook [34], use classical data structuring techniques.
Afshani and Driemel extended their results and in addition showed lower bounds on the
space-query-time trade-off in this setting [4]. In particular, they showed a lower bound
which is exponential in the complexity of the curves for exact range searching. In 2017,
ACM SIGSPATIAL, the premier conference for geographic information science, devoted
their software challenge (GIS CUP) to the problem of range searching under the Fréchet
distance [82]. Spurring further developments, the most recent results explore the use of
heuristics and randomization, such as locality-sensitive hashing.

The Fréchet distance is a popular distance measure for curves. Intuitively, it can be defined
using the metaphor of a person walking a dog, where the person follows one curve and
the dog follows the other curve, and throughout their traversal they are connected by a
leash of fixed length. The Fréchet distance corresponds to the length of the shortest dog
leash that permits a traversal in this fashion. The Fréchet distance is very similar to the
Hausdorff distance for sets, which is defined as the minimal maximum distance of a pair
of points, one from each set, under all possible matchings between the two sets. The
difference between the two distance measures is that the Fréchet distance requires the
matching to adhere to the ordering of the points along the curve. Both distance measures
allow flexible associations between parts of the input elements which sets them apart
from classical ℓp distances and makes them so suitable for trajectory data under varying
speeds.

Our contribution in this chapter is a comprehensive analysis of the Vapnik-Chervonenkis
dimension of the corresponding range spaces. In particular, we analyze the asymmetric
case: the ground set consists of polygonal curves of complexity m, and the ranges are
defined by polygonal curves of complexity k. The resulting VC dimension bounds, while
being interesting in their own right, have a plethora of applications through the implied
sampling bounds.

Organization. In Section 8.1, we state basic definitions. Section 8.2 provides an overview
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of the results obtained in this chapter. In Section 8.3, we summarize our approach and we
present our first results for the simple discrete setting. Section 8.4 states our results for
the weak Fréchet distance, Section 8.5 extends our results to the Fréchet distance and
Section 8.6 is dedicated to the Hausdorff distance.

8.1 Preliminaries

In this section, we formally define primitives, which are repeatedly used throughout the
chapter.

Geometric primitives. For any p ∈ R2 we denote byCr(p) the circle of radius r, centered
at p. For any p ∈ R2 we denote by Dr(p) the disk of radius r, centered at p. For any two
points s, t ∈ R2, we denote by st the line segment from s to t. For any two points s, t ∈ R2,
we define the stadium centered at st, Br(s, t) =

{
x ∈ R2 | ∃p ∈ st ∥p− x∥2 ≤ r

}
. For any

two points s, t ∈ R2, we define Lr(s, t) =
{
x ∈ R2 | ∃p ∈ ℓ(st) ∥p− x∥2 ≤ r

}
. Finally, for

any two points s, t ∈ R2, we define the rectangle centered at st: Rr(st) = conv{s− u, s+
u, t + u, t − u} and u ∈ R2 s.t. ⟨t − s, u⟩ = 0 and ∥u∥2 = r. For a set A, we denote by ∂A
the boundary of A, e.g. Cr(p) = ∂Dr(p).

We also need to define the ball for pseudometric spaces.

Definition 92. Let (M,d) be a pseudometric space. We define the ball of radius r and
center p, under the distance measure d, as the following set:

bd(p, r) = {x ∈M | d(x, p) ≤ r},

where p ∈M .

8.2 Our Results

Table 8.1 shows an overview of our bounds.

While the VC dimension bounds for the Hausdorff metric balls may seem like an easy im-
plication of composition theorems for VC dimension [25, 31], we still find two things about
these techniques remarkable. First, for Fréchet variants, there are Θ(2k2m) valid align-
ment paths in the free space diagram. And one may expect that these may materialize in
the size of the composition theorem. Yet by a simple analysis of the shattering dimension,
we show that they do not. Second, the VC dimension only has logarithmic dependence
on the size m of the curves in the ground set, rather than a polynomial dependence one
would obtain by simple application of composition theorems (even ignoring the alignment
path issue). This difference has important implications in analyzing real data sets where
we can query with simple curves (small k), but may not have a small bound on the size of
the curves in the data set (large m).
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Table 8.1: Our results on the VC dimension of range space (X,R). In the first column we
distinguish between X consisting of discrete point sequences vs. X consisting of continuous

polygonal curves. The ground set X consists of polygonal curves of complexity m and the range
set R consists of balls centered at polygonal curves of complexity k. Additional upper bounds on

the range space under the directed Hausdorff distance are stated in Theorems 117 and 118.

X, m R, k Upper bound Lower bound
discrete
(d = 2)

Hausdorff
O(k log(km)) (Theorems 93,94,99) (d ≥ 2)

Ω(max(k, logm))
(Theorem 127)

Fréchet

cont.
(d = 2)

weak Fréchet
Fréchet

O(k2 log(km)) (Theorems 106,119)Hausdorff

8.3 Our Approach

Our methods use the fact that both the Fréchet distance and the Hausdorff distance are
determined by one of a discrete set of events, where each event involves a constant num-
ber of simple geometric objects. For example, it is well known that the Hausdorff distance
between two discrete sets of points is equal to the distance between two points from the
two sets. The corresponding event happens as we consider a value δ > 0 increasing from
0 and we record which points of one set are contained in which balls of radius δ centered at
points from the other set. The same phenomenon is true for the discrete Fréchet distance
between two point sequences. In particular, the so-called free-space matrix which can
be used to decide whether the discrete Fréchet distance is smaller than a given value δ
encodes exactly the information about which pairs of points have distance at most δ. The
basic phenomenon remains true for the continuous versions of the two distance measures
if we extend the set of simple geometric objects to include line segments and if we also
consider triple intersections. Each type of event can be translated into a range space of
which we can analyze the VC dimension. Together, the concatenation of the range spaces
encodes the information about which curves lie inside which metric balls in the form of a
set system. This representation allows us to prove bounds on the VC dimension of metric
balls under these distance measures.

We now prove our upper bounds in the discrete setting. Let Xm = (R2)
m; we treat the

elements of this set as ordered sets of points in R2 of size m. The range spaces that
we consider in this section are defined over the ground set Xm and the range set of balls
under either the Hausdorff or the Discrete Fréchet distance. The proofs in the proceeding
sections all follow the basic idea of the proof in the discrete setting.

Theorem 93. Let (Xm,RH,k) be the range space with RH,k the set of all balls under the
Hausdorff distance centered at sets in Xk. The VC dimension is O (k log(km)).

Proof. Let {S1, . . . , St} ⊆ Xm and S =
∪
i Si; we define S so that it ignores the ordering with

each Si and is a single set of size tm. Any intersection of a Hausdorff ball with {S1, . . . , St}
is uniquely defined by a set {D1 ∩ S, . . . , Dk ∩ S}, where D1, . . . , Dk are disks in R2.
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Consider the range space (R2,D), where D is the set of disks in the plane. We know that
the shattering dimension is 3 [50]. Hence,

max
S⊆R2,|S|=tm

|D|S| = O((tm)3).

This implies that |{{D1 ∩ S, . . . , Dk ∩ S} | D1, . . . , Dk are disks in R2}| ≤ O((tm)3k), and
hence1,

2t ≤ 2O(k log(tm)) =⇒ t = O (k log(km)) .

Theorem 94. Let (Xm,RdF,k) be the range space with RdF,k the set of all balls under
the Discrete Fréchet distance centered at polygonal curves in Xk. The VC dimension is
O (k log(km)).

Proof. Let {S1, . . . , St} ⊆ X and S =
∪
i Si. Any intersection of a Discrete Fréchet ball

with {S1, . . . , St} is uniquely defined by a sequence D1 ∩ S, . . . , Dk ∩ S, where D1, . . . , Dk

are disks in R2. The number of such sequences can be bounded by O((tm)3k) as in the
proof of Theorem 93. Enforcing that a sequence contains a valid alignment path only
reduces the number of possible distinct sets formed by t curves, and it can be determined
using these intersections and the two orderings of D1, . . . , Dk and of vertices within some
Sj ∈ Xm.

8.4 Weak Fréchet distance

In this section we prove our upper bounds for the Weak Fréchet distance. Let Wm be the
set of polygonal curves of complexity m; for each s ∈Wm, we associate an ordered set of
vertices V (s) and an ordered set of edges E(s). We consider the range space (Wm,RwF ),
where RwF is the set of all balls under the Weak Fréchet distance.

8.4.1 Some useful lemmas

Lemma 95. Consider the range space (X,R), where X = R2 and R is the set of the form
{Br(s, t) | r ≥ 0, s, t ∈ R2}. The shattering dimension of this range space is O(1).

Proof. Let Y ⊂ X s.t. |Y | = n and let D be the set of all disks in R2. Let Dr(s) = {x ∈
R2 | ∥x − s∥2 ≤ r} and Dr(t) = {x ∈ R2 | ∥x − t∥2 ≤ r}. Consider any intersection
S = Br(s, t) ∩ Y . We can assume that S contains a point q at distance exactly r from
the segment st (otherwise decrease r). Then, S is uniquely defined by the intersections
Dr(s) ∩ Y , Dr(t) ∩ Y and Dr(p) ∩ Y , where ∥p− q∥2 = r, p ∈ st. Hence, |R|Y | ≤ |D|Y |3 =
O(n9).

1for u >
√
e if x/ ln(x) ≤ u then x ≤ 2u lnu. Hence, if tm/ log(tm) ≤ km, then tm = O(km log(km)).
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Corollary 96. Let X = {Br(s, t) | r ≥ 0, s, t ∈ R2}. Consider the range space (X,R),
where R = {Rp | p ∈ R2} and Rp = {r ∈ X | p ∈ r}. The shattering dimension of this
range space is O(1).

Proof. The range space (X,R) is the dual of the range space from Lem. 95.

8.4.2 Representation in terms of predicates

It is known that the Fréchet distance between two polygonal curves can be attained, either
at a distance between their endpoints, at a distance between a vertex and a line supporting
an edge, or at the common distance of two vertices with a line supporting an edge. In this
sense, our representation of the ball of radius r under the Fréchet distance is based on
the following predicates.2 Let s ∈ Wm with vertices s1, . . . , sm and q ∈ Wk with vertices
q1, . . . , qk.

P1 (Endpoints (start)) This predicate returns true if and only if ∥s1 − q1∥2 ≤ r.

P2 (Endpoints (end)) This predicate returns true if and only if ∥sm − qk∥2 ≤ r.

P3 (Vertex-edge (horizontal)) Given an edge of s, sjsj+1, and a vertex qi of q, this pred-
icate returns true iff there exist a point p ∈ sjsj+1, such that ∥p− qi∥2 ≤ r.

P4 (Vertex-edge (vertical)) Given an edge of q, qiqi+1, and a vertex sj of s, this predicate
returns true iff there exist a point p ∈ qiqi+1, such that ∥p− sj∥2 ≤ r.

P5 (Monotonicity (horizontal)) Given two vertices of s, sj and st with j < t and an edge
of q, qiqi+1, this predicate returns true if there exist two points p1 and p2 on the line
supporting the directed edge, such that p1 appears before p2 on this line, and such
that ∥p1 − sj∥2 ≤ r and ∥p2 − st∥2 ≤ r.

P6 (Monotonicity (vertical)) Given two vertices of q, qi and qt with i < t and an directed
edge of s, sjsj+1, this predicate returns true if there exist two points p1 and p2 on the
line supporting the directed edge, such that p1 appears before p2 on this line, and
such that ∥p1 − qi∥2 ≤ r and ∥p2 − qt∥2 ≤ r.

Lemma 97 (Lemma 9, [3]). Given the truth values of all predicates (P1) − (P6) of two
curves s and q for a fixed value of r, one can determine if dF (s, q) ≤ r.

Predicates P1 − P4 are sufficient for representing metric balls under the weak Fréchet
distance. We include a proof for the sake of completeness.

Lemma 98. Given the truth values of all predicates (P1) − (P4) of two curves s and q for
a fixed value of r, one can determine if dwF (s, q) ≤ r.

2 This representation was earlier derived in the context of data structures for range searching under the
Fréchet distance (see [4, 3]). We repeat the relevant definitions and lemmas here.
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Proof. Alt and Godau [7] describe an algorithm for computing the Weak Fréchet distance
which can be used here. In particular, one can construct an edge-weighted grid graph
on the cells (edge-edge pairs) of the parametric space of the two polygonal curves and
subsequently compute a bottleneck-shortest path from the pair of first edges to the pair
of last edges along the two curves. We can use edge weights in {0, 1} to encode if the
corresponding vertex-edge pair has distance at most r, as given by the predicates P3

and P4. If and only if there exists a bottleneck shortest path of cost 0 and the endpoint
conditions are satisfied (as given by the predicates P1 and P2), the Weak Fréchet distance
between q and s is at most r.

8.4.3 Representation as a range space

Predicates P1−P4 can be directly translated into simple range spaces. Consider any two
polygonal curves s ∈ Wm and q ∈ Wk. In order to encode the intersection of polygonal
curves with metric balls, we will make use of the following sets:

• P r
1 (q, s) = Dr(q1) ∩ V (s),

• P r
2 (q, s) = Dr(qk) ∩ V (s),

• P r
3 (q, s) = {Br(si, si+1) ∩ V (q) | sisi+1 ∈ E(s)},

• P r
4 (q, s) = {Br(qi, qi+1) ∩ V (s) | qiqi+1 ∈ E(q)}.

8.4.4 VC dimension bound

Theorem 99. Let RwF be the set of balls under the Weak Fréchet metric centered at
polygonal curves in Wk. The VC dimension of (Wm,RwF ) is O (k log(km)).

Proof. If S is a set of t polygonal curves of complexity m, the set {s ∈ S | dwF (s, q) ≤ r}
is uniquely defined by the sets∪

s∈S

P r
1 (q, s),

∪
s∈S

P r
2 (q, s),

∪
s∈S

P r
3 (q, s),

∪
s∈S

P r
4 (q, s).

Notice that the number of all possible sets
∪
r≥0

∪
s∈S P

r
1 (q, s) is bounded by the shatter

function for the range space of points and disks and it is (tm)O(1). The same holds for the
number of all possible sets

∪
r≥0

∪
s∈S P

r
2 (q, s).

The number of all possible sets
∪
r≥0

∪
s∈S P

r
3 (q, s) and the number of all possible sets∪

r≥0

∪
s∈S P

r
4 (q, s) are both bounded by (tm)O(k) by Lemma 95 and Corollary 96 respec-

tively. Hence, 2t ≤ 2O(k log(tm)) =⇒ t = O (k log(km)) .
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8.5 The Fréchet distance

In this section we prove our upper bounds for the Fréchet distance. Let Wm be the set
of polygonal curves of complexity m; for each s ∈ Wm, we associate an ordered set of
vertices V (s) and an ordered set of edges E(s). We consider the range space (Wm,Rr

F ),
where Rr

F denotes the set of all balls, of radius r, under the Fréchet distance.

8.5.1 Some useful lemmas

Lemma 100. Fix r ≥ 0. Consider the range space (X,R), where X = R2 andR is the set
of the form {Lr(s, t) | s, t ∈ R2}. The shattering dimension of this range space is O(1).

Proof. The VC dimension of halfspaces in R2 is O(1), which also bounds its shattering
dimension. Each Lr(s, t) coincides with the intersection of two parallel halfspaces which
define the set of points at distance ≤ r from ℓ(st). Hence, the shattering dimension is
O(1).

Corollary 101. Fix r ≥ 0. LetX = {Lr(s, t) | s, t ∈ R2}. Consider the range space (X,R),
where R = {Rp | p ∈ R2} and Rp = {r ∈ X | p ∈ r}. The shattering dimension of this
range space is O(1).

Proof. The range space (X,R) is the dual of the range space from Lemma 100.

Lemma 102. Consider the range space (X,R), where X = R2 and R is the set of the
form {A(θ1, θ2) | θ1, θ2 ∈ [0, 2π]}, where

A(θ1, θ2) =
{
x ∈ R2 | θ(x) ∈ [θ1, θ2]

}
,

and θ(x) denotes the angle of vector x. The shattering dimension of this range space is
O(1).

Proof. When |θ1 − θ2| ≤ π, each set A(θ1, θ2) coincides with the intersection of two halfs-
paces crossing the origin. If |θ1 − θ2| ∈ [π, 2π], then A(θ1, θ2) coincides with the union of
two halfspaces crossing the origin. Hence, the shattering dimension is O(1).

Corollary 103. Let X = {A(θ1, θ2) | θ1, θ2 ∈ [0, 2π]}, where

A(θ1, θ2) =
{
x ∈ R2 | θ(x) ∈ [θ1, θ2]

}
,

and θ(x) denotes the angle of vector x. Consider the range space (X,R), where R =
{Rp | p ∈ R2} and Rp = {r ∈ X | p ∈ r}. The shattering dimension of this range space is
O(1).

Proof. The range space (X,R) is the dual of the range space from Lemma 102.
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8.5.2 Representation in terms of predicates

We use the predicates P1−P6 from Section 8.4. Correctness follows from Lemma 97. For
encoding the monotonicity predicates P5 and P6, we repeat the definitions from [4, 3].

Let a1, a2 be the vertices and let ℓ be the line supporting the directed edge e of a mono-
tonicity predicate P5 (respectively, P6). Let points b1, b2 be Cr(a1) ∩ Cr(a2).

(d) The line ℓ intersects the circle of radius r centered at a1.

(e) The line ℓ intersects the circle of radius r centered at a2.

(f) The angle between the translation vector (a2 − a1) and the edge e is at most π
2
.

(h) The line ℓ passes in between the two points b1 and b2

(i) The angle of ℓ is contained in the range of angles of tangents of the circular arc
between b1 and b2 of the circle of radius r centered at a1.

Lemma 104 (Lemma 16, [3]). Given the truth values of the predicates (d)-(i) one can
determine the truth value of the predicate P5 (respectively, P6). Moreover, the predicate
P5 (respectively, P6) is true if and only if the clause (d ∧ e ∧ f) ∨ (h ∨ (d ∧ e ∧ i)) is true.

8.5.3 Representation as a range space

Now, consider any two polygonal curves s and q. In addition to the setsP r
1 (q, s), . . . , P

r
4 (q, s)

which were defined in Section 8.4.3, we need to define sets which describe predicates
P5, P6. We invoke Lemma 104 to show that our sets are sufficient in order to determine
whether dF (s, q) ≤ r or dF (s, q) > r. The new sets are defined as follows:

• Pd∧e(q, s) = {Lr(qi, qi+1) ∩ V (s) | qiqi+1 ∈ E(q)}

• P ′
d∧e(q, s) = {Lr(si, si+1) ∩ V (q) | sisi+1 ∈ E(s)}

• Pf (q, s) = {{x ∈ R2 | ⟨qi+1 − qi, x⟩ ≥ 0} ∩ Ṽ (s)}, where Ṽ (s) = {sk − sj | k >
j, sk, sj ∈ V (s)}

• P ′
f (q, s) = {{x ∈ R2 | ⟨si+1−si, x⟩ ≥ 0}∩Ṽ (q)}, where Ṽ (q) = {qk−qj | k > j, qk, qj ∈
V (q)}

• Ph(q, s) = {h+(qiqi+1) ∩ V ∗
r (s) | qiqi+1 ∈ E(q)} ∪ {ℓ(qiqi+1) ∩ V ∗

r (s) | qiqi+1 ∈ E(q)},
where h+(qiqi+1) denotes the right-side halfspace which is supported by the directed
edge qiqi+1, V ∗

r (s) =
∪
k>j Cr(sk) ∩ Cr(sj)

• P ′
h(q, s) = {h+(sisi+1) ∩ V ∗

r (q) | sisi+1 ∈ E(s)} ∪ {ℓ(sisi+1) ∩ V ∗
r (q) | sisi+1 ∈

E(s)},where h+(sisi+1) denotes the right-side halfspace which is supported by the
directed edge sisi+1, V ∗

r (q) =
∪
k>j Cr(qk) ∩ Cr(qj)
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• Pi(q, s) = {A(θ1(qk, qj), θ2(qk, qj)) ∩ Ẽ(s) | k > j, qk, qj ∈ V (q)},
where [(θ1(qk, qj), θ2(qk, qj)] defines the range of angles of tangents of the circular arc
between the two points of Cr(qk) ∩ Cr(qj), and Ẽ(s) = {si+1 − si | si, si+1 ∈ E(s)}. If
Cr(qk) ∩ Cr(qj) = ∅, then we define A(θ1(qk, qj), θ2(qk, qj)) = ∅

• P ′
i (q, s) = {A(θ1(sk, sj), θ2(sk, sj)) ∩ Ẽ(q) | k > j, sk, sj ∈ V (s)},

where [(θ1(sk, sj), θ2(sk, sj)] defines the range of angles of tangents of the circular
arc between the two points of Cr(sk)∩Cr(sj), and Ẽ(q) = {qi+1−qi | qi, qi+1 ∈ E(q)}.
If Cr(qk) ∩ Cr(qj) = ∅, then we define A(θ1(qk, qj), θ2(qk, qj)) = ∅

Lemma 105. Let s be a polygonal curve inWm with vertices s1, . . . , sm and q be a polygonal
curve inWk with vertices q1, . . . , qk. Fix any r ≥ 0. The following sets are sufficient in order
to determine whether dF (s, q) ≤ r or dF (s, q) > r:

P r
1 (q, s), P

r
2 (q, s), P

r
3 (q, s), P

r
4 (q, s), Pd∧e(q, s), P

′
d∧e(q, s), Pf (q, s), P

′
f (q, s), Ph(q, s),

P ′
h(q, s), Pi(q, s), P

′
i (q, s).

Proof. Sets P r
1 , . . . , P

r
4 correspond to high level predicates (P1), . . . , (P4) from Lemma 97.

We will now use Lemma 104, to show that for any sj, sk ∈ V (s) s.t. j < k and assum-
ing that Cr(sj) ∩ Cr(sk) = {a, b}, the outcome of the high-level monotonicity predicate
P5(sj, sk, qiqi+1) is uniquely defined by the above-mentioned sets.

By Lemma 104, we have that P5(sj, sk, qiqi+1) is true iff one of the following is true:

• [(sj, sk ∈ Lr(qi, qi+1)) ∧ (⟨qi+1 − qi, sk − sj⟩ ≥ 0)] ,

• [((a ∈ h+(qiqi+1) ∧ b /∈ h+(qiqi+1)) ∨ (a /∈ h+(qiqi+1) ∧ b ∈ h+(qiqi+1))) ∨ (a, b ∈ ℓ(qiqi+1))] ,

• [(sj, sk ∈ Lr(qi, qi+1)) ∧ (⟨qi+1 − qi, sk − sj⟩ ≥ 0) ∧ (sk − sj ∈ A(θ1(qk, qj), θ2(qk, qj)))] .

Notice that if |Cr(sj) ∩ Cr(sk)| ≤ 1, then the predicate is equivalent to

[(sj, sk ∈ Lr(qi, qi+1)) ∧ (⟨qi+1 − qi, sk − sj⟩ ≥ 0)] ∨ [Cr(sj) ∩ Cr(sk) ∩ ℓ(qiqi+1) ̸= ∅] .

Similarly for P6.

8.5.4 VC dimension bound

The associated VC dimension is quadratic in k because sets Ph and P ′
h are defined with

respect to V ∗
r (q) which may include all O(k2) pairs of vertices in q.

Theorem 106. Let Rr
F be the set of all balls of radius r, under the Fréchet distance,

centered at polygonal curves in Wk. The VC dimension of (Wm,Rr
F ) is O (k2 log(km)).
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Proof. Due to Lemma 105, if S ⊂ Wm is a set of t polygonal curves and q ∈ Wk, the set
{s ∈ S | dF (s, q) ≤ r} is uniquely defined by the sets∪

s∈S

P r
1 (q, s),

∪
s∈S

P r
2 (q, s),

∪
s∈S

P r
3 (q, s),

∪
s∈S

P r
4 (q, s),

∪
s∈S

Pd∧e(q, s),
∪
s∈S

P ′
d∧e(q, s),

∪
s∈S

Pf (q, s),
∪
s∈S

P ′
f (q, s),

∪
s∈S

Ph(q, s),
∪
s∈S

P ′
h(q, s),

∪
s∈S

Pi(q, s),
∪
s∈S

P ′
i (q, s).

As in the proof of Theorem 99, the number of all possible sets(∪
s∈S P1(q, s),

∪
s∈S P2(q, s),

∪
s∈S P3(q, s),

∪
s∈S P4(q, s)

)
is bounded by (tm)O(k). Now, by

Lemma 100 and Corollary 101 we are able to bound the number of all possible sets(∪
s∈S

Pd∧e(q, s),
∪
s∈S

P ′
d∧e(q, s)

)
,

which is also in (tm)O(k).

The shattering dimension of the range space implied by
∪
s∈S Pf (q, s) is O(1), since each

range is a halfspace. Its dual corresponds to the set
∪
s∈S P

′
f (q, s) and also has shatter-

ing dimension of O(1). The number of all possible sets
(∪

s∈S Pf (q, s),
∪
s∈S P

′
f (q, s)

)
is

bounded by (tm)O(k2), because |Ṽ (q)| = Θ(k2).

The same arguments apply to the range space implied by
∪
s∈S Ph(q, s). The shattering

dimension of this range space is O(1), since each range is a halfspace, and the same
holds for its dual which corresponds to

∪
s∈S P

′
h(q, s). The number of all possible sets(∪

s∈S Ph(q, s),
∪
s∈S P

′
h(q, s)

)
is bounded by (tm)O(k2), because |Ṽ ∗

r (q)| = Θ(k2).

Finally by Lemma 102 and Corollary 103, we are able to bound the number of all possible
sets

(∪
s∈S Pi(q, s),

∪
s∈S P

′
i (q, s)

)
by (tm)O(k2). Hence,

2t ≤ 2O(k2 log(tm)) =⇒ t = O
(
k2 log(km)

)
.

8.6 The Hausdorff distance

In this section we prove our upper bounds for the Hausdorff distance. Let Wm be the set
of polygonal curves3 of complexity m; for each s ∈ Wm, we associate an ordered set of
vertices V (s) and an ordered set of edges E(s). We consider the range space (Wm,Rr

H),
where Rr

H denotes the set of all balls, of radius r, under the Hausdorff distance.

3The proofs in this section are written for polygonal curves, but they readily extend to (not-necessarily
connected) sets of line segments in R2 of size m.
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`
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Figure 8.1: Illustration of the predicate P7: The predicate evaluates to true if and only if the triple
intersection of the line ℓ supporting qiqi+1 with the two stadiums centered at sjsj+1 and stst+1 is

non-empty. Note that qiqi+1 may lie outside of the intersection.

8.6.1 Representation in terms of predicates

According to Alt, Behrends and Blömer [6], the directed Hausdorff distance d−→
H
(A,B) of

two pairwise disjoint sets of line segments A and B is assumed either at some vertex of
A or at some intersection point of A with a Voronoi-edge of B. We can re-use part of the
predicates from the previous section for encoding the first type of event where the distance
is assumed at a vertex of A. We need to derive a new set of predicates for the second
type of event. In particular we need a predicate for testing if a line supporting an edge
intersects the intersection of two stadiums (see Figure 8.1).

Consider any two polygonal curves s ∈Wm and q ∈Wk. In order to encode the intersec-
tion of polygonal curves with metric balls under the Hausdorff metric, we will make use of
the following predicates:

P3 (Vertex-edge (horizontal)) As defined in Section 8.4.

P4 (Vertex-edge (vertical)) As defined in Section 8.4.

P7 (Stadium-stadium-line (horizontal)) given one edge of q, qi, qi+1, and two edges of s,
sj, sj+1, st, st+1, this predicate is equal to ℓ(qi, qi+1) ∩Br(sj, sj+1) ∩Br(st, st+1) ̸= ∅.

P8 (Stadium-stadium-line (vertical)) given one edge of s, si, si+1, and two edges of q,
qj, qj+1, qt, qt+1, this predicate is equal to ℓ(si, si+1) ∩Br(qj, qj+1) ∩Br(qt, qt+1) ̸= ∅.

As in the proofs of Theorems 99 and 106, we argue that the truth values for the first
predicate over all possible inputs, are uniquely defined by the set P r

3 (q, s). Similarly, the
truth values for predicate P4 are uniquely defined by the set P r

4 (q, s). Now predicate P7

(resp. P8) breaks to three simple predicates:

(j) given an edge qiqi+1, an edge sjsj+1, and a point st, determine whether ℓ(qiqi+1) ∩
Rr(sjsj+1) ∩Dr(st) ̸= ∅,
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(k) given an edge qiqi+1, and edges sjsj+1, stst+1, determine whether
ℓ(qi, qi+1) ∩Rr(sjsj+1) ∩Rr(stst+1) ̸= ∅.

(l) given an edge qiqi+1, and points sj, st, determine whether ℓ(qiqi+1)∩Dr(sj)∩Dr(st) ̸=
∅,

Lemma 107. For any two polygonal curves s, q, given the truth values of the predicates
P3, P7 one can determine whether d−→

H
(q, s) ≤ r. Similarly, given the truth values of the

predicates P4, P8 one can determine whether d−→
H
(s, q) ≤ r.

Proof. We first assume for the sake of simplicity that q is a line segment in the plane with
endpoints q1 and q2. We claim that d−→

H
(q, s) ≤ r if and only if there exists a sequence of

edges sj1s(j1+1), sj2s(j2+1), . . . , sjvs(jv+1) for some integer value v, such that the predicates
P3(q1, sj1s(j1+1)), P3(q2, sjvs(jv+1)) both evaluate to true and the conjugate

v−1∧
t=1

P7(q1, q2, sjts(jt+1), sjt+1s(jt+1+1))

evaluates to true.

Assume such a sequence of edges exists. In this case, there exists a sequence of points
p1, . . . , pv on the line supporting q, with p1 = q1, pv = q2 and such that pi ∈ Br(sji , sji+1

) (for
1 ≤ i < v) and such that pi ∈ Br(sji−1

, sji) (for 1 < i ≤ v). Since each stadium is a convex
set, it follows that each line segment connecting two consecutive points of this sequence
pi, pi+1 is contained in one of the stadiums. Moreover, the curve that is formed by these
edges is continuous and contained inside a line and as such the points on the curve form
a convex set U . Since q1 and q2 are contained in U , it follows that q is contained inside the
union of the stadiums and thus d−→

H
(q, s) ≤ r.

Now, in order to prove the other direction, let us assume that d−→
H
(q, s) ≤ r. We invoke

the observation in [6], restricted in the case of polygonal curves, stating that the directed
Hausdorff distance d−→

H
(q, s) is assumed either at some vertex of q or at some intersection

point of q with a Voronoi-edge of the Voronoi-diagram of a set of pairwise disjoint line seg-
ments representing s. To this end, we split each edge of s that intersects another edge
of s at the intersection point in order to obtain a set of pairwise disjoint line segments E ′

which represent s. The sequence of Voronoi cells of the Voronoi-diagram of E ′ that are
intersected by q, induce a sequence of edges of s with the desired properties. Indeed, the
matching induced by the Voronoi diagram is optimal, therefore the corresponding predi-
cates evaluate to true.

In general, for any polygonal curve q ∈Wk with vertices q1, . . . , qk, we have that

d−→
H
(q, s) ≤ r ⇐⇒

k−1∧
i=1

[
d−→
H
(qiqi+1, s) ≤ r

]
.

Thus, we can apply the arguments above to each edge of q individually. Similarly, we
can prove that given the truth values of the predicates P4, P8 one can determine whether
d−→
H
(s, q) ≤ r.
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8.6.2 Representation as a range space

We will make use of the following sets, defined in Sections 8.4 and 8.5:

P r
3 (q, s), P4(q, s), Pd∧e(q, s), P

′
d∧e(q, s), Ph(q, s), P

′
h(q, s), Pi(q, s), P

′
i (q, s).

In addition, we define the following new sets:

• Pj(q, s) = {h+(qiqi+1) ∩ VRC(s) | qiqi+1 ∈ E(q)} ∪ {ℓ(qiqi+1) ∩ VRC(s) | qiqi+1 ∈ E(q)},
where h+(qiqi+1) denotes the right-side halfspace supported by the directed edge
qiqi+1 and

VRC(s) =
∪

e∈E(s)
p∈V (s)

∂Rr(e) ∩ Cr(p),

• P ′
j(q, s) = {h+(sisi+1) ∩ VRC(q) | sisi+1 ∈ E(s)} ∪ {ℓ(sisi+1) ∩ VRC(q) | sisi+1 ∈ E(s)},

where h+(sisi+1) denotes the right-side halfspace supported by the directed edge
si, si+1 and

VRC(q) =
∪

e∈E(q)
p∈V (q)

∂Rr(e) ∩ Cr(p),

• Pk(q, s) = {h+(qiqi+1) ∩ VRR(s) | qiqi+1 ∈ E(q)} ∪ {ℓ(qiqi+1) ∩ VRC(s) | qiqi+1 ∈ E(q)},
where h+(qiqi+1) denotes the right-side halfspace supported by the directed edge
qiqi+1 and

VRR(s) =
∪

e1,e2∈E(s)
e1 ̸=e2

∂Rr(e1) ∩ ∂Rr(e2),

• P ′
k(q, s) = {h+(sisi+1)∩ VRR(q) | sisi+1 ∈ E(s)} ∪ {ℓ(sisi+1)∩ VRC(q) | sisi+1 ∈ E(s)},

where h+(sisi+1) denotes the right-side halfspace supported by the directed edge
si, si+1 and

VRR(q) =
∪

e1,e2∈E(q)
e1 ̸=e2

∂Rr(e1) ∩ ∂Rr(e2),

where Rr(st) = conv{s− u, s+ u, t+ u, t− u} and u ∈ R2 s.t. ⟨t− s, u⟩ = 0 and ∥u∥2 = r.

Lemma 108. Let s be a polygonal curve in Wm and q a polygonal curve in Wk. Fix any
r ≥ 0. The truth values for predicate (j) over all possible inputs qiqi+1 ∈ E(q), sjsj+1 ∈ E(s),
st ∈ V (s) are uniquely defined by the sets Pd∧e(q, s), Pj(q, s).

Proof. Let a, b be the two intersection points. The line ℓ(qi, qi+1) passes between a and b iff
one of the supporting halfspaces contains only one of them. If the line passes between the
two intersection points of ∂Rr(sjsj+1) ∩ Cr(st), then the predicate returns true. Now if the
line does not pass between the two intersection points, then ℓ(qiqi+1)∩Rr(sjsj+1)∩Dr(st) ̸=
∅ iff st ∈ Lr(qiqi+1) and [a ∈ h+(qiqi+1) ∧ b ∈ h+(qiqi+1)] ∨ [a /∈ h+(qiqi+1) ∧ b /∈ h+(qiqi+1)].
If there is just one intersection point, it suffices to check whether ℓ(qiqi+1) intersects that
point.
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Lemma 109. Let s be a polygonal curve in Wm and q a polygonal curve in Wk. Fix any
r ≥ 0. The truth values for predicate (j) over all possible inputs sisi+1 ∈ E(s), qjqj+1 ∈ E(q),
qt ∈ V (q) are uniquely defined by the sets P ′

d∧e(q, s), P ′
j(q, s).

Proof. The statement follows by the same arguments which were used in the proof of
Lemma 108.

Lemma 110. Let s be a polygonal curve in Wm and q a polygonal curve in Wk. Fix any
r ≥ 0. The truth values for predicate (k) over all possible inputs qiqi+1 ∈ E(q), sjsj+1 ∈
E(s), stst+1 ∈ E(s) are uniquely defined by the set Pk(q, s).

Proof. Suppose that |∂Rr(sjsj+1)∩∂Rr(st, st+1)| > 1. The intersectionRr(sjsj+1)∩Rr(st, st+1)
defines a convex polygon and the line ℓ(qi, qi+1) intersects it iff there exist two points
a, b ∈ ∂Rr(sjsj+1) ∩ ∂Rr(st, st+1) which are separated by h+(qi, qi+1). If |∂Rr(sjsj+1) ∩
∂Rr(st, st+1)| = 1, then it suffices to check whether the line ℓ(qi, qi+1) intersects that point.

Lemma 111. Let s be a polygonal curve inWm and q a polygonal curve inWk. Fix any r ≥
0. The truth values for predicate (k) over all possible inputs sisi+1 ∈ E(s), qjqj+1 ∈ E(q),
qtqt+1 ∈ E(q) are uniquely defined by the set P ′

k(q, s).

Proof. The statement follows by the same arguments which were used in the proof of
Lemma 110.

We repeat the following lemma from [3].

Lemma 112 (Lemma 14, [3]). If and only if h∨ (d∧ e∧ i) evaluates to true, then the line ℓ
intersects the lens formed by the two disks of radius r at a1 and a2.

Lemma 113. Let s be a polygonal curve in Wm and q a polygonal curve in Wk. Fix any
r ≥ 0. The truth values for predicate (l) over all possible inputs qiqi+1 ∈ E(q), sj ∈ V (s),
st ∈ V (s) are uniquely defined by the sets Pd∧e(q, s), Ph(q, s), Pi(q, s).

Proof. Predicate (l) is equivalent to h ∨ (d ∧ e ∧ i), according to Lemma 112.

Lemma 114. Let s be a polygonal curve in Wm and q a polygonal curve in Wk. Fix any
r ≥ 0. The truth values for predicate (l) over all possible inputs sisi+1 ∈ E(s), qj ∈ V (q),
qt ∈ V (q) are uniquely defined by the sets P ′

d∧e(q, s), P
′
h(q, s), P

′
i (q, s).

Proof. Predicate (l) is equivalent to h ∨ (d ∧ e ∧ i), according to Lemma 112.

Lemma 115. Let s be a polygonal curve in Wm and q be a polygonal curve in Wk. Fix
any r ≥ 0. The following sets are sufficient in order to determine whether d−→

H
(q, s) ≤ r or

d−→
H
(q, s) > r:

P r
3 (q, s), Pd∧e(q, s), Ph(q, s), Pi(q, s), Pj(q, s), Pk(q, s).

Proof. Lemmas 107, 108, 110, 113 imply the statement.
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Lemma 116. Let s be a polygonal curve in Wm and q be a polygonal curve in Wk. Fix
any r ≥ 0. The following sets are sufficient in order to determine whether d−→

H
(s, q) ≤ r or

d−→
H
(s, q) > r:

P r
4 (q, s), P

′
d∧e(q, s), P

′
h(q, s), P

′
i (q, s), P

′
j(q, s), P

′
k(q, s).

Proof. Lemmas 107, 109, 111, 114 imply the statement.

8.6.3 VC dimension bounds

Theorem 117. Let Rr
H be the set of all balls of radius r, under the directed Hausdorff

distance from polygonal curves in Wk. The VC dimension of (Wm,Rr
H) is O(k log(km)).

Proof. Let S ⊂Wm be a set of t polygonal curves and let q ∈Wk. By Lemma 115, the set
{s ∈ S | d−→

H
(q, s) ≤ r} is uniquely defined by the sets:∪

s∈S

P r
3 (q, s),

∪
s∈S

Pd∧e(q, s),
∪
s∈S

Ph(q, s),
∪
s∈S

Pi(q, s),
∪
s∈S

Pj(q, s),
∪
s∈S

Pk(q, s).

For any s ∈ S, recall that VRC(s) is the set of points which belong to all possible intersec-
tions formed by rectangles centered at edges in E(s) and circles of radius r centered at
points in V (s). Formally,

VRC(s) =
∪

e∈E(s)
p∈V (s)

Rr(e) ∩ Cr(p),

where Rr(st) = conv{s− u, s+ u, t+ u, t− u} and u ∈ R2 s.t. ⟨t− s, u⟩ = 0 and ∥u∥2 = r.
Let VRC(S) =

∪
s∈S VRC(s). Notice that |VRC(S)| = tmO(1). We need to bound the number

of different sets
{h+(qi, qi+1) ∩ VRC(S) | qiqi+1 ∈ E(q)}

over all possible q ∈Wk, where h+(qi, qi+1) defines either one of the two halfspaces defined
by points qi, qi+1. The shattering dimension of the range space of points and halfspaces
is O(1), hence we get an upper bound of (tm)O(k).

Now, for any s ∈ S, recall that VRR(s) is the set of points which belong to all possible
intersections formed by two rectangles centered at different edges in E(s). Formally,

VRR(s) =
∪

e1,e2∈E(s)
e1 ̸=e2

Rr(e1) ∩Rr(e2).

Similarly, we get an upper bound of (tm)O(k) on the number of different sets

{h+(qi, qi+1) ∩ VRR(S) | qiqi+1 ∈ E(q)}

over all possible q ∈Wk. It remains to reclaim, as we did in the proof of Theorem 106, that
the number of all possible sets

∪
s∈S P

r
3 (q, s),

∪
s∈S Pd∧e(q, s),

∪
s∈S Ph(q, s),

∪
s∈S Pi(q, s) is

bounded by (tm)O(k). Hence, the VC dimension of this range space is O(k log(km)).

115 I. Psarros



Proximity problems for high-dimensional data

Theorem 118. Let Rr
H be the set of all balls of radius r, under the directed Hausdorff

distance to polygonal curves in Wk. The VC dimension of (Wm,Rr
H) is O(k2 log(km)).

Proof. We able to follow the same analysis as in the proof of Theorem 117. However,
notice that |VRC(q)| = O(k2), and |VRR(q)| = O(k2). Due to Lemma 116, we can em-
ploy similar arguments to the ones we used in the proof of Theorem 117, now for the
dual range space of the points-halfspaces range space, and for the sets

∪
s∈S P

r
4 (q, s),∪

s∈S P
′
d∧e(q, s),

∪
s∈S P

′
h(q, s),

∪
s∈S P

′
i (q, s) imply that the VC dimension of this range space

is O(k2 log(km)).

Theorem 119. Let Rr
H be the set of all balls of radius r, under the symmetric Hausdorff

distance in Wk. The VC dimension of (Wm,Rr
H) is O(k2 log(km)).

Proof. Lemmas 115 and 115 imply that the set {s ∈ S | dH(q, s) ≤ r} is uniquely defined
by the sets:∪

s∈S

P r
3 (q, s),

∪
s∈S

Pd∧e(q, s),
∪
s∈S

Ph(q, s),
∪
s∈S

Pi(q, s),
∪
s∈S

Pj(q, s),
∪
s∈S

Pk(q, s),

and ∪
s∈S

P r
4 (q, s),

∪
s∈S

P ′
d∧e(q, s),

∪
s∈S

P ′
h(q, s),

∪
s∈S

P ′
i (q, s),

∪
s∈S

P ′
j(q, s),

∪
s∈S

P ′
k(q, s).

Now bounding the number of all possible such sets, as we did in the proofs of Theorems
117 and 118, implies the statement.

8.7 The discrete case in higher dimensions

In the following sections we focus on Euclidean spaces of higher dimension (d > 2) being
the ambient space of the curves of the ground set. In this section we discuss our bounds
in the discrete setting. Let Xd

m =
(
Rd
)m; we treat the elements of this set as ordered sets

of points in Rd of size m.

Theorem 120. Let (Xd
m,RH,k) be the range space with RH,k the set of all balls under the

Hausdorff distance centered at sets in Xd
k. The VC dimension is O (kd log(kdm)).

Proof. The proof is similar to the one from Theorem 93. We are able to extend it to higher
dimensions by making use of known bounds for balls in any dimension instead of just disks.
Let {S1, . . . , St} ⊆ Xm and S =

∪
i Si; we define S so that it ignores the ordering with each

Si and is a single set of size tm. Any intersection of a Hausdorff ball with {S1, . . . , St} is
uniquely defined by a set {Dd

1 ∩ S, . . . , Dd
k ∩ S}, where Dd

1, . . . , D
d
k are balls in Rd.

Consider the range space (Rd,Dd), where Dd is the set of balls in Rd. We know that the
VC dimension is d + 1. Hence, since the shattering dimension is upper bounded by the
VC dimension,

max
S⊆R2,|S|=tm

|D|S| = O((tm)d+1).
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•

•

•
•

••
• •

Figure 8.2: The lower bound for (X1,RdF,2). The two disks correspond to the two polygonal curves
of the ground set. The set of these two polygonal curves is shattered by RdF,2.

This implies that |{{Dd
1 ∩S, . . . , Dd

k ∩S} | Dd
1, . . . , D

d
k are balls in Rd}| ≤ O((tm)(d+1)k), and

hence,
2t ≤ 2O(dk log(tm)) =⇒ t = O (dk log(dkm)) .

Theorem 121. Let (Xm,RdF,k) be the range space with RdF,k the set of all balls under
the Discrete Fréchet distance centered at polygonal curves in Xk. The VC dimension is
O (kd log(kdm)).

Proof. Similar to the proof of Theorem 120. The only difference is that, as with the proof
of Theorem 94, we need to bound the number of sequences Dd

1 ∩ S, . . . , Dd
k ∩ S, which is

also O((tm)d+1).

8.8 Lower bounds

We now state the lower bounds. We denote by RdF,k be the set of all balls, under the
Discrete Fréchet distance, centered at polygonal curves in Xk. We also denote by RwF,k,
RF,k, RH,k, the sets of all balls, under the Weak Fréchet distance, under the Fréchet dis-
tance and under the Hausdorff distance respectively, where balls are centered at polygo-
nal curves in Wk.

We start with a weaker result about Discrete Fréchet distance, that will be easier to extend
to continuous metrics.

Lemma 122. LetRdF,k be the set of all balls, under the Discrete Fréchet distance, centered
at polygonal curves in Xk. The VC-dimension of the range space (Xm,RdF,k) is ≥ k.

Proof. We will show that there exists a configuration S of k polygonal curves of complex-
ity m = 1, i.e. points in R2, which are shattered by Discrete Fréchet balls centered at
polygonal curves of complexity k. Consider k disks D1, . . . , Dk centered at the k polygo-
nal curves of S and let p1, . . . , pk be the vertices of the polygonal curve which is the center
of the Discrete Fréchet ball. Any intersection between a Discrete Fréchet ball and the
set of polygonal curves is defined by the disks which are commonly stabbed by all points
p1, . . . , pk.
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First, we will show that there exists a configuration of disks D1, . . . , Dk such that:

area

(
k∩
i=1

Di

)
> 0,

∩
i ̸=j

i=1,...,k

Di ̸=
k∩
i=1

Di ∀j ∈ [k]

area

 ∩
i ̸=j

i=1,...,k

Di

 > 0 ∀j ∈ [k].

We can easily prove this by induction: two disks can be placed in a way that area(D1 ∩
D2) > 0, D1 ̸= D2. Now consider t disks D1, . . . , Dt which satisfy the induction hypothesis.
Since area

(∩t
i=1Di

)
> 0, we can simply place a disk Dt+1 such that its boundary ∂Dt+1

halves area
(∩t

i=1Di

)
.

Then, the set S of polygonal curves which consists of the k centers of the disks D1, . . . , Dk

is shattered as follows: each point pj either stabs
∩k
i=1Di or it stabs

(∩
i ̸=j,i∈[k]Di

)
\Dj and

hence the corresponding polygonal curve either belongs to the intersection of the set of
polygonal curves with the Discrete Fréchet ball or not. The simple case k = 2 is depicted
in Figure 8.2.

However, we can strengthen this bound for this distance measure.

Lemma 123. LetRdF,k be the set of all balls, under the Discrete Fréchet distance, centered
at polygonal curves in Xk. The VC-dimension of the range space (Xm,RdF,k) is Ω(k log k).

Proof. We will show that there exists a configuration S of κ = Ω(k log k) polygonal curves
of complexity m = 1, i.e. points in R2, which are shattered by Discrete Fréchet balls
centered at polygonal curves of complexity k. Consider k disks D1, . . . , Dκ centered at the
κ polygonal curves of S and let p1, . . . , pk be the vertices of the polygonal curve which is
the center of the Discrete Fréchet ball. Any intersection between a Discrete Fréchet ball
and the set of polygonal curves is defined by the disks which are commonly stabbed by
all points p1, . . . , pk.

We now show this result by reducing to a recent lower bound of Csikos et al. [31] which
gave an Ω(k log k) lower bound for a related range space. This is defined on a ground set
P ⊂ R2 with ranges Rk defined so each range R ∈ Rk is the intersection of k halfspaces.
The first step is to observe that we can set r sufficiently large so that with respect to all
p1, . . . , pk we consider each disk Dj has the same inclusion properties as some halfspace
Hj. That is, we now need to show a set of κ halfspaces can be shattered by a set of k
points, where a ground set object Hj is contained in the range defined by those k points
if it includes all of them.
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The second step is to observe that the standard point-line duality transforms this problem
into the one considered by Csikos et al.. Under this transform a dual point qj (correspond-
ing to primal halfspace Hj) is contained in a dual halfspace hi (corresponding to primal
point pi). Thus the primal halfspace Hj is contained in the range defined by the k points
p1, . . . , pk if and only if its dual representation, the point qj, is contained in all of the halfs-
paces h1, . . . , hk which are the dual representations of the points p1, . . . , pk.

Finally, the lower bound by Csikos et al. [31] shows that there exist a set of κ = Ω(k log k)
points qj which can be shattered by such ranges.

Lemma 124. LetRdF be the set of all balls, under the Discrete Fréchet distance, centered
at polygonal curves in Xk. The VC dimension of the range space (Xm,RdF ) is Ω(logm).

Proof. Theorem 122 and [50, Lemma 5.18], which bounds the VC dimension of the dual
range space as a function of the VC dimension of the primal space, imply the theorem.

The following constructions also works directly for the discrete case of the Hausdorff dis-
tance. We conjecture that they can also be extended for the weak Fréchet, Fréchet, and
Hausdorff for continuous curves, but do not have a complete proof. We can however
extend the weaker bound in Theorem 122. We denote by RwF,k, RF,k, RH,k, the sets
of all balls, under the Weak Fréchet distance, under the Fréchet distance and under the
Hausdorff distance respectively, where balls are centered at polygonal curves in Wk.

Lemma 125. The VC-dimension of the range spaces (Wm,RwF,3k), (Wm,RF,3k), and
(Wm,RH,3k) is ≥ k.

Proof. Consider the case m = 1, that is X consisting of all polygonal curves with 1 vertex.
We place k polygonal curves as in the proof of Thm. 122. Now, consider the corresponding
disksD1, . . . , Dk. The continuous Fréchet balls of complexity 3k shatterX as follows: let 3k
points p1, . . . , pk, q1, . . . , qk, p′1, . . . , p′k s.t. for any j ∈ [k], pj, p′j ∈

(∩k
i=1Di

)
∩∂Dj. For each

i ∈ [k], we have a segment piqi, a segment qip′i and for any i ∈ [k− 1], we have segments
p′ipi+1. Then, either qj ∈

∩k
i=1Di or qj ∈

(∩
i ̸=j,i∈[k]Di

)
\Dj which determines whether the

continuous Fréchet ball covers the jth polygonal curve. Notice that if qj ∈
∩k
i=1Di then the

segments pjqj, qjp′j lie inside
∩k
i=1Di due to convexity. Similarly, if qj ∈

(∩
i ̸=j,i∈[k]Di

)
\Dj

then the segments pjqj, qjp′j lie inside
∩k
i ̸=j,i∈[k]Di.

Lemma 126. Let RF be the set of all balls, under the Fréchet distance, centered at
polygonal curves in Wk. The VC dimension of the range space (Wm,RwF,k), (Wm,RF,k),
(Wm,RH,k) is Ω(logm).

Proof. Theorem 125 and [50, Lemma 5.18], which bounds the VC dimension of the dual
range space as a function of the VC dimension of the primal space, imply the theorem.

Theorem 127. The VC-dimension of the range spaces (Xm,RdF,k), and (Xm,RH,k) is
Ω(max(k log k, logm)), and for (Wm,RwF,k), (Wm,RF,k), and (Wm,RH,k) isΩ(max(k, logm)).
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Proof. The statement essentially combines Lemmas 125, 123, 126, 122 and 124.
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ABBREVIATIONS - ACRONYMS

ΕΚΠΑ Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών

NKUA National and Kapodistrian University of Athens

ΠΙΣ Πανεπιστήμιο του Ιλλινόις στο Σικάγο

UIC University of Illinois at Chicago

ΕΜΠ Εθνικό Μετσόβιο Πολυτεχνείο

NTUA National Technical University of Athens

JL Johnson-Lindenstrauss

DFD Discrete Fréchet Distance

DTW Dynamic Time Warping

LSH Locality Sensitive Hashing

VC Vapnik–Chervonenkis
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