AEROSOL TYPING

BASED ON MULTIWAVELENGTH LIDAR
OBSERVATIONS AND METEOROLOGICAL
MODEL DATA

This study aims to compare, the results of the three different aerosol
classification methods, “Mahalanobis distance automatic aerosol type
classification”, “Neural Network Aerosol Typing Algorithm” (NATALI) and
“Source Classification Analysis” algorithm. This comparison aims to
investigate reasons of misclassification and to address which aerosol
properties are needed to associate an observed aerosol layer to a certain
aerosol type.

Mylonaki G. Maria

National Kapodistrian University of Athens, Faculty of Physics, Section of
Environmental Physics and Meteorology

6/11/2019







4 ;?‘3 HELLENIC REPUBLIC
o U B . ; . .
{.=" National and Kapodistrian

' 5, University of Athens

P2l e . .
£ ¥ i3 /University of
sfec
=37 Athens

National
Kapodistrian University of Athens

Faculty of Physics
Section of Environmental Physics and Meteorology

AEROSOL TYPING BASED ON
MULTIWAVELENGTH LIDAR
OBSERVATIONS AND
METEOROLOGICAL MODEL DATA

M.Sc. Thesis
Mylonaki G. Maria

M.Sc. Thesis Supervisor:
Lect. Eleni Giannakaki

3-member M.Sc. committee:
Lect. Eleni Giannakaki, Prof. Elena Floca, Prof. Alexandros
Papayannis

June 2019



Page |4



Acknowledgements

We acknowledge support of this work by the project “PANhellenic
infrastructure for Atmospheric Composition and climatE change” (MIS
5021516) which is implemented under the Action “Reinforcement of the
Research and Innovation Infrastructure”, funded by the Operational
Programme "Competitiveness, Entrepreneurship and Innovation” (NSRF 2014-
2020) and co-financed by Greece and the European Union (European Regional
Development Fund) (2018-2021).

Part of this research has been co-financed by additional funding from the
European Union under grant RICA 025991 in the FP6 (2006-2011) and FP7
(2007-2013) under grant agreement no 262254,

The authors gratefully acknowledge the NOAA Air Resources Laboratory for
the provision of the HYSPLIT transport and dispersion model and READY
website (http://www.ready.noaa. gov) used in this publication. MODIS-FIRMS
data were provided by EARTHDATA (EOSDIS-NASA).

I would personally like to thank the three members of the M.Sc. Thesis
committee, Lect. Elina Giannakaki, Prof. Alexandros Papayannis and Prof.
Elena Floca, for wisely guiding me for almost a year during my M.Sc. Thesis
development.

Always thankful to the people behind the scenes, my family and friends, who
patiently endure the stressful moments and are still here to celebrate the good
ones. Dedicated to my colleagues, Rania Soupiona and Christianna
Papanikolaou who introduced me to the apothegm “a day without laughter is a
day wasted”.



Page |6



Page |7

Abstract

The main objective of this M.Sc. Thesis was to compare the aerosol
classification results of three different aerosol classification methods, named:
(1) “Mahalanobis distance automatic aerosol type classification”, (2) “Neural
Network Aerosol Typing Algorithm” (NATALI) and (3) “Source Classification
Analysis” (SCAN). The current work has been triggered by both the difficulties
on aerosol typing due to aerosol mixtures and the demand on aerosol properties
studies to quantify assessments of aerosol radiative impacts on climate. The
data selection for this study has been made through the EARLINET database
depending on the aerosols optical properties availability, specifically
concerning the backscatter (b) extinction (a) and linear particle depolarization
ratio (d) values as 3b+2a+1d. Ninety seven aerosol layers from four
EARLINET stations (Bucharest, Kuopio, Leipzig and Potenza) have been
classified.

In this M.Sc. Thesis we firstly introduce a new classification method called
SCAN. It uses HYSLPIT (6-days) back-trajectories and takes into account the
atmospheric layer height above the aerosol source regions (<1km for marine,
<2 km for continental polluted, clean continental and dust, 3km for smoke) and
distance from the potential fire spot (<8km) as well as fire spot confidence
(>80%). Its classification results are based on the amount of time that the air
parcel spends above certain already characterized aerosol source region. It is
capable of handling a considerable amount of layers in a negligible time.
However, the above criteria may not serve well all the layers under study. Also,
SCAN does not take into account the tropospheric humidity which plays a
crucial role to the aerosol modification.

We show that Natali is capable to well classify the pure continental polluted
aerosol layers but it has a difficulty to classify the pure clean continental and
pure smoke aerosol types probably due to the overlapping mean values of
aerosol optical properties of these aerosol types, compared to SCAN
classification algorithm.

We also show that Mahalanobis is capable to classify the pure continental
polluted aerosol layers, having a difficulty to classify the pure clean continental
and pure smoke aerosol types probably due to the overlapping mean values of
aerosol optical properties of these aerosol types, just like Natali, compared to
SCAN classification algorithm. Finally, Mahalanobis is not able to classify
aerosol layers which consist of more than two aerosol types with relatively
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equal contribution to the layer, compared to SCAN classification algorithm.
These layers are classified as “no type” by Mahalanobis algorithm.

Concerning the mean values of aerosol optical properties, we found relatively
smaller values compared to those available in the literature, especially to the
“lidar ratios” and the “linear particle depolarization ratios*. This behavior
might be a result of the dependence of the optical properties on the time the
trajectory spent above the source area, concerning the pure types.
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Iepiinyn

Avtikeipevo g mopodeag SIMAMUATIKNG EPYACIOC OTOTELEGE 1] GUYKPIOT| TOV
OOTELEGUATOV TPV  Olagopetikmv  uebddmv, “Mahalanobis distance
automatic aerosol type classification”, “Neural Network Aerosol Typing
Algorithm” (NATALI) and “Source Classification Analysis” (SCAN), ot
OTOlEC KOTTYOPLOTOOVV TO OULMPOVUEVO, COUATIOW NG OTUOGPOIPAS GE
GUYKEKPIUEVEG KATNYOPieG. A@opur Yo TNV €KTOVNON TNG CLYKEKPUYLEVTG
MMAOUOTIKNG £pYaciog amotélece TOGO 1 dVGKOAIN Yo YPYOPN KOl EVKOAN
KOTNYOPOTOiNon TV alwpoVueEvVOY copatdiov, 6co kot n {fmon tov
WOTATOV TOV 0LOPOVUEVOV COUATIOIMV amd To KAPOTIKO Kol LETE®POAOYIKA
HOVTEADL LE OKOTO TN UEAETN TNG EMOPOONG TOV AOPOVUEVOV GOUOTIOIMV
otov kopd kot 1o KAipo. XpnowomowOnkav dedopéva amd ™ Pdon
dedopévov tov oktvov “EARLINET”, avdioyo pe m Swbecipudtmra tov
3b+2a+18 onTIKOV 1OI0TATOV TOV OOPOVUEVOV COUOTIOI®Y. XVVOMKA,
peAETNONKOY EVEVIVIO EMTE GTPOUATMOGEL OLOPOVUEVOV COUATIOIMV omrd
té60ep1g otapovg Tov diktvov “EARLINET” (Bovkovpéott, Kovdmio, Aswyia
kat [Totévton).

O aAyopBpog Scan ypnowonotet tig omsBotpoyiég amd to poviéAo HYSPLIT
Kol AapBdver véyny tov 10 VYo NG omeoTpoylds mTAVE amd TIC TNYEG
(<1km yuo T1g Bokdooieg myég, <2Km yio TIC pLTOGUEVEG NTEPOTIKES TNYES,
UM PLTOCUEVEG NIEPWOTIKEG Kol TNYEG EPNUIKNAG oKOVNG, <3KM yio Tig nyéc
kamvov). Ta amoteléopotd TG Katnyoplomoinong and avutdv Tov ohyoptopo
otmpilovioar 6t0 Ypdvo mapapovig ¢ omcbotpoylds mhve amd TG TNYES
alwpovpeveov copatdiov. Eival ypriyopog kot amotelespotikdg aryoplOpog,
eved Oev €£0pTATOL ATd TIG OMTIKEG OLOTNTEC TOV UMPOVUEVOV COUATIOIMV.
QoT060, TO TAPATAVE KPITHPLO EVOEXOUEVAOS VO UNV TKOVOTOI0UV OAEG TIG
EUQUVICOUEVEG CTPOUATMOELS o®POVUEVOV couatdiov. Télog, to Scan de
Aoppével vwOY”N TOL TNV EMIOPACN TNG ATUOGPAIPIKNG VYPAGIOG OTIG OMTIKES
010TNTEG TOV AOPOVUEVOV COUATIOWV.

[Moapammpnoope  oakoun 6Tt o aAdyopiOuog Natali eivor  waovog va
KOTNYOPLOTOWGEL GMOOTE TO PLTACUEVO NTEPOTIKA OOPOVUEVO COUATIOWL.
[Mopatnpeitot, OU®S, o SVGKOAIN GTNV KATNYOPLOTOINGT| TWV [T PLTACUEVOV
NREPOTIKOV  OPOVUEVOV  COUATIOIOV  KAODE Kol TOV  OlOPOVLUEVOV
copatdiov amd kavon Propdloc, mOBavdg AOY® TOV KOWAOV TIUOV TOV
OTTIK®V 1010THT®V OV Ta. Yopaktnpilovv.

Emumpooheta, mapatnpodue 611 0 aiyopiBuog Mahalanobis sivor wavog vo
KOTNYOPLOTMOGEL GOGTA TO PLTACUEVO, NTEPWOTIKA OLOPOVUEVO COUATIOW,



Page |10

OUMC, VTAPYEL KOl Lo OVGKOAID GTNV KOTNYOPLOTOINGT TV U PLUTAGUEVOV
NTEPOTIKOV OLOPOVUEVOV COUATIOIMV KOl TOV AOPOVUEVOV COUATIOI®OV omd
Kavon Propdlag, mOavdg AOY®M TOV KOOV TILOV TOV OTTIK®V 1O10THTOV TOV
o yapoaktnpilovv. Téhoc, mapatnpodue o0t 0 oiyopiBuoc Mahalanobis,
OVTILETOTILEL o OLGKOAMO GTO VO KOTIYOPLOTOCEL GMOOTA TA OLMPOVUEVO,
COUATION GTPOUATDOGEDY 01 OTOIES TEPLEYOLY WEN APOVUEVOV GOUATIOIOV
pe mepinov 164E1 cLVEIGPOPE TN LEAETOVUEVT] GTPOUATOOT.

Ye 0,11 aeopd TIC UECEC TIUEG TOV ONMTIKAOV 1O0TNTOV TOV OI®POVUEVOV
cOUATIOIOV OV evTOTILOVTOlL GE GTPOUOTDOGEIS UE Evay TOTO A®WPOVUEVMV
cOUOTOIOV, TapatnpodUE OTL glval PIKPOTEPES GLYKPLTIKA LE TIG OVTIGTOLYES
HEGEG TIUEG TTOV OVOLPEPOVTAL GTNV GYETIKN debvn PipAoypagio. Evdeyopuévmg
avtd Vo, 0QeIAETOL GTNV EMOPACT] TNG ATHOCPAPIKNG VYPAGING, OTIG WOLOTNTES
TOV OPOVUEVOV COUATIOOV, Kab®OS emiong, Kol otV €nidpacn Tov ypovoL
TOPOLOVIG TOVG TTAVE® OO TNV TNYN OTIG ONTIKEG OIO0TNTEG TOV IWPOVUEVOV
COUOTIOIWV.

H mopovca durhopatikn epyacio amoteheiton omd mEVIE KEPAAMLM. XTO
Kepdhao 1, mapovsialovpe To avtiKeilevo g epyoaciog Kol T oNUacio g
Teyvikng tov lidar yio m pedétn tov aimpoduevoy couatidiov

Y10 KepdAaio 2, e10dyovue TG £VVOLEG TOV ALOPOVUEVOV COUATIOIWV, KAOMG
Ko TG teyvikng “lidar”.

To Kepdhoo 3 otoyever otnv mapovcioon g uebodoroyiog m omoio
akoAovOnOnke xotd TN OpKEW TNG TOPOVCOS OUTAMUATIKNG €PYOCiag,
coumeptAapPavoprévng e Aertopepng tapovaciaong g pebodov “SCAN”.

To avtikeipevo tov Keparaiov 4 amotehel n cvlnmon tov gupnudtov g
mapovoac pedodoroyiag.

Téhog, TO OCLUTEPACUOTO KOl Ol OTOYOL Yuo. UEANOVTIKEG HEAETEG
napovctalovral oto Kepdrato 5.
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1. Introduction

Aerosol particles affect directly the Earth’s radiation budget by interacting,
mainly, with the solar radiation through the processes of absorption and
scattering (aerosol-radiation interaction, “ari”’) (Hobbs, et al.,, 1993).
Furthermore, aerosols affect clouds formation and behavior both serving as
seeds (Cloud Condensation Nuclei, Ice Nuclei) upon which cloud droplets and
ice crystals form, and influencing the cloud albedo due to changing
concentrations of cloud condensation and ice nuclei, also known as the
Twomey effect (aerosol-cloud interaction, “aci’) (Hobbs, et al., 1993).

Despite an increasing number of laboratory and field aerosol studies over the
last years (IPCC, 2014), the uncertainty associated with the estimated radiative
forcing attributed to aerosols and aerosol—cloud interactions has not decreased,
owning to the high spatial and temporal variability of aerosol properties (IPCC,
2014). A number of atmospheric studies have targeted to address this issue by
providing the mean values of aerosol optical properties of each type as input to
the radiation and the numerical weather prediction models (Jacobson, et al.,
2005).

One such technique is the active remote sensing of the atmosphere (Weitcamp,
et al., 2005). The Lidar technique has received a considerable attention, thanks
to the numerous possibilities to retrieve near real time information about the
structure and the composition of the atmosphere providing very high vertical
(i.e. down to few meters) and temporal (i.e. down to few minutes) resolution.
Specifically, multi-wavelength Raman/depolarization lidars can be used for
aerosol detection and characterization (i.e. dust, smoke, continental, etc.) as
they provide vertically-resolved information of extensive (particle backscatter
and extinction coefficient, volume depolarization ratio) and intensive (lidar
ratio (LR), Angstrom exponent (AE,/,s), linear particle depolarization ratio
(LPDR)) optical properties (Burton, et al., 2012; Gro8, et al., 2013; Nicolae, et
al., 2015; Giannakaki, et al., 2016; Soupiona, et al., 2018).

In the light of the above technique, Mahalanobis distance aerosol classification
algorithm (Papagiannopoulos, et al., 2018) uses the lidar intensive properties
(Lidar Ratio, ratio of Lidar Ratio (LR;1/LR;,), Angstrdm Exponent and Linear
Particle Depolarization Ratio (if provided)) in order to classify the measured
aerosol layers into a number of aerosol types.

Similarly, Neural Network Aerosol Classification Algorithm (Nicolae, et al.,
2018) is based on artificial neural networks (ANNS) trained to estimate the
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most probable aerosol type from, solely, a set of multispectral lidar data (Color
Index (Cl), Color Ratio (CR), LR, AE,,/,s and LPDR (if provided)).

One of the classic ways to classify the aerosol layers observed is based on the
trajectory analysis in order to find the air mass origin. The method is usually
applied in combination with model results (e.g. DREAM) and/or satellite data
(MODIS fire system, cf. Giglio, et al., 2013) in a case-by-case level. This
methodology certainly involves a rather subjective element as it is not
automated.

In this study we use our experience, in the by-eye identification to develop an
improved automated layer identification algorithm, based on backward
trajectory analysis and satellite data in combination with the application of
criteria. The algorithm is called Source Classification Analysis (SCAN) and is
firstly introduced in this study. It is based on the amount of time that the air
parcel spends above certain already characterized source region.

Since the Mahalanobis algorithm and Natali code are newly published
(Papagiannopoulos et al., 2018; Nicolae et al., 2018) they are not widely used.
Moreover, Nicolae et al. (2018) published recently a report conserning the
strenghts and limitations of the Natali algorithm, focusing mainly on the effect
of lidar data quality to the retrievals of this method. Moreover, a first attempt of
classification comparison between Natali and Mahalanobis is in progress by
Voudouri et al. (2019, in progress), dealing with data from the Thessaloniki
lidar station without the use of the linear particle depolarization ratio optical

property.

This study aims to compare, the results of the three different aerosol
classification methods, ‘“Mahalanobis distance automatic aerosol type
classification”, “Neural Network Aerosol Typing Algorithm” (NATALI) and
“Source Classification Analysis” algorithm. This comparison aims to
investigate reasons of misclassification and to address which aerosol properties
are needed to associate an observed aerosol layer to a certain aerosol type.

This Thesis is structured in five chapters.

In Chapter 1, we introduce the lidar technique in the detection of the
atmospheric aerosols.

In Chapter 2, we present the theoretical background concerning the aerosols
and the lidar technique.

Chapter 3 is aiming to exhibit the methodology of this study, including a
detailed presentation of SCAN.

The subject of Chapter 4 is the findings resulting from this study.
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Finally, the conclusions and perspectives for future studies are provided in
Chapter 5.
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2. Theoretical Background

2.1. Aerosols

Whereas an aerosol is technically defined as a suspension of fine solid or liquid
particles in a gas (SchmauB, al., 1929), common usage refers to the aerosol as
the particulate component only (Poschl, et. al., 2005). Aerosols can be emitted
directly as particles (primary aerosols) or formed in the atmosphere by gas-to-
particle conversion processes (secondary aerosols) (Poschl, et. al., 2005).
Atmospheric aerosols are generally considered to be the particles that range in
size from a few nanometers (nucleation and Aitken mode, ultrafine,
nanoparticles) to tens of micrometers (accumulation and coarse mode) in
diameter (Poschl, et. al., 2005). Once airborne, particles can change their size
and composition by condensation of vapor species or by evaporation, by
coagulating with other particles, by chemical reaction or by activation in the
presence of water supersaturation to become fog and cloud droplets (Poschl, et.
al., 2005).

Eventually, particles are removed from the atmosphere by two mechanisms:
deposition at Earth’s surface (dry deposition) and incorporation into cloud/rain
droplets during the formation of precipitation (wet deposition) (Poschl, et. al.,
2005).

Figure 2.1 Pictures of volcanic, pollen, NaCl and biomass burning aerosols captured by Scanning Electron
Microscopy (NASA Earth Observatory : Home https://www.earthobservatory.nasa.gov/).

2.1.1. Tropospheric Aerosol Sources
Particles in the atmosphere arise from natural sources, such as windborne dust,
seaspray, and volcanoes, and from anthropogenic activities, such as combustion
of fuels. Aerosols contain sulfate, ammonium, nitrate, sodium, chloride, trace
metals, carbonaceous material, crustal elements, and water (Seinfeld and
Pandis, 2006). The carbonaceous fraction of the aerosols consists of both
elemental and organic carbon. Elemental carbon, also called black carbon or
graphitic carbon, is emitted directly into the atmosphere, predominantly from
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combustion processes. Particulate organic carbon is emitted directly by sources
or can result from atmospheric condensation of low-volatility organic gases
(Seinfeld, et al., 2006).

1.0

0.7

0.5

04

wu 0s< 18 AoV

0.2

L 00

Figure 2.2 Global aerosol distribution as seen by Moderate Resolution Imaging Spectroradiometer (MIODIS).
AOD at 550 nm averaged over the 10-year period 2001-2010 (Remer, et al., 2008). Pie charts show how various
aerosol types contribute to the total AOD for different regions, as estimated by a global aerosol model (Myhre,
et al., 2009). Aerosol types are Sul (sulfate), BC and OC from fossil fuel usage, Bio (OC and BC from BB}, Nitrate,
Sea (sea salt), and Min (mineral dust). Gray areas indicate lack of MODIS data. Some aerosol types, e.g.
sulfate, have enhanced contributions to AOD due to hygroscopic growth. Picture was adapted from Myhre et
al. (2013).

2.1.2. Aerosol Types
Continental polluted

Continental polluted aerosols are mixtures of primary particulate emissions
from industries, transportation, power generation, and natural sources and
secondary material formed by gas-to-particle conversion mechanisms
(Seinfeld, et al., 2006). The aerosol size distribution is quite variable in urban
area. Extremely high concentrations of fine particles (less than 0.1 um in
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diameter) are found close to sources (e.g., highways), but their concentration
decreases rapidly with distance from the source (Seinfeld, et al., 2006).

Anthropogenic particles show a strong wavelength dependence of their optical
properties, i.e., high Angstrdm exponent values. Moreover, they are typically
small and do not significantly depolarize the backscattered light (6532= 0.04 +
0.04; (Heese, et al., 2016), and due to the high carbon content, these particles

reveal high lidar ratios (Giannakaki, et al., 2010).

Table 2.1 Pure aerosol types and components (Nicolae, et al., 2018).

Aerosol types

Basic component types

Water soluble

Range variation of the
number density mixing
ratios for aerosol
components (limits are
consistent with OPAC
and literature)

0.4914-0.5914

Aspect ratio

Continental Insoluble 0.0086-0.0086 1.100
Soot 0.4000-0.5000
Water soluble 0.1998-0.2998
. Insoluble 1.8E-4-1.8E-4
Continental polluted Soot 0.6000-0.7000 1.040
Sulfate 0.1000-0.1000
Water soluble 0.3900-0.4900
Soot 0.5000-0.6000 1.150
Sulfate 0.0100-0.0100
Water soluble 0.1949-0.2949
Mineral
Nucleation mode 0.1170-0.1170 0.870
Accumulation mode 0.0880-0.0880 '
Coarse mode 0.6E-4-0.6E-4
Soot 0.5000-0.6000
Water soluble 0.1652-0.1662
Sea Salt
Marine Accumulation mode 0.8320-0.8320 1.007
Coarse mode 0.0e+00-0.1e-06
Insoluble 0.5000-0.6000
Mineral
Nucleation mode 0.0915-0.1070
. Accumulation mode 0.1470-0.1719
Volcanic 0.850

Coarse mode
Soot
Sulfate

0.4e-4-0.5e-4
0.0391-0.0457
0.6753-0.7224

Clean Continental

The clean continental type differentiates from the polluted continental type due
to its less light absorbing properties. The clean continental type shows low
depolarizing ability with values lower than 0.07 (Omar, et al., 2009), low lidar
ratio values, i.e., 2040 sr and relatively high Angstrém exponents, i.e., 1.0-2.5
(Ansmann, et al., 2001; Giannakaki, et al., 2010).
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Marine (sea spray)

In the absence of significant transport of continental aerosols, particles over the
remote oceans are largely of marine origin (Prospero, et. al., 1989). Marine
atmospheric particle concentrations are normally in the range of 100-300 cm™.
Their size distribution is usually characterized by three modes: the Aitken (D,
< 0.1 pm) the accumulation (0.1 < D, < 0.6 pm), and the coarse one (D, > 0.6
um) (Fitzerald, 1991).

When sea water is emitted as sea spray or spume drops, the chlorine-to-sodium
mass ratio, originally 1.8:1, sometimes decreases because the chlorine is
removed by sea-spray acidification (Hitchcock, 1980). Sea-spray acidification
occurs when sulfuric or nitric acid enters a sea-spray drop and forces chloride
to evaporate as hydrochloric acid. Some sea-spray drops lose all of their
chloride in the presence of sulfuric or nitric acid.

The size of a sea-spray drop is also affected by dehydration (loss of water)
which occurs when water from a drop evaporates due to a decrease in the
relative humidity between the air just above the ocean surface and that a few
meters higher. Dehydration increases the concentration of solute in a drop
(Hitchcock, 1980).

The sea-salt particles feature a predominant coarse mode, however, they are
spherical in humid conditions and weakly absorbing, in contrast to the dust
particles. Therefore, they yield low particle lidar ratio values, are almost non
depolarizing and exhibit low Angstrom exponent values (Burton, et al., 2013;
Dawson, et al., 2015). This aerosol type is mainly identifiable by the low value
of the particle lidar ratio, i.e., 15-25 sr at 532nm (Burton, et al., 2012).

Dust aerosols

Desert areas around the world emit huge quantities of dust aerosols which also
actually extend considerably over adjacent regions, such as oceans (Jaenicke, et
al., 1978) and can be transported over very long distances (Prospero, et al.,
1989; Papayannis, et al., 2008; Mona, et al., 2012). The shape of the dust size
distribution is similar to that of remote continental aerosol but depends strongly
on the wind velocity. Its number distribution tends to exhibit three overlapping
modes at diameters of 0.01 um or less, 0.05 um, and 10 um, respectively
(Jaenicke, et al., 1978).

The optical properties are considerably different from the other types, thus
making them easy to identify. The irregular shape and the large size (< 50um;
Mahowald, et al., 2014) lead to a significant high depolarization of the
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backscattered radiation (e.g., 6332 = 0.34 + 0.02 for Saharan dust over
Germany, cf. Wiegner, et al., 2011), and to medium lidar ratio values (e.g.,
$232 = 55+10 sr (cf. Tesche, et al., 2013; Mona, et al., 2014). Desert aerosols
are spectrally neutral to backscatter and extinction, and thus produce low
Angstrom exponent values (Wiegner, et al., 2011). Therefore, the aerosol lidar
ratio, particle linear depolarization ratio, and the Angstrom exponent are
excellent physical parameters to characterize mineral dust and to distinguish it
from other aerosol types.

Moreover, it needs to be taken into account that the dust optical properties
depend on their source region and the transport pattern (Valenzuela, et al.,
2014), with an important variability mainly shown in the respective lidar ratio
values (Nisantzi, et al., 2015). Recently, Mamouri et al. (2013) showed that
dust originating from the Arabian desert produced significantly lower lidar
ratio values (34—39 sr at 532nm) than respective values (5060 sr at 532nm) for
dust particles origination from the western Saharan region.

Table 2.2 Conventional names of the aerosol types (Nicolae, et al., 2018).

Aerosol Type Source Particle characteristics

Continental Land surfaces Medium size, medium spherical, medium absorbing
Dust Desert surfaces Large, non-spherical, medium absorbing
Continental polluted Industrial sites Small, spherical, highly absorbing

Marine Sea surface Large, aspherical, non-absorbing

Smoke Vegetation fires Small, spherical, highly absorbing

Volcanic Volcanoes Large, non-spherical, highly absorbing

Mixtures Mixed Combinations of the above

Mixed dust aerosols

Dust can be transported over continental scales. In particular, Saharan dust
outbreaks to Europe and across the Atlantic Ocean have been deeply
investigated, as shown by Ansmann et al. (2003), Papayannis et al. (2014) and
Binietoglou et al. (2015). The study of Papayannis et al. (2008) indicated a
large variability of the measured lidar ratio and Angstrdom exponent values
among the different sites, suggesting mixing at different levels. Additionally,
the mixture processes also produce large variability of intensive properties as
measured at the same site (Mona, et al., 2014).

Taking into account the complex structure and composition of the dust aerosols
over Europe, as well as the effects of transport and mixing on the optical and
microphysical properties of these particles we consider the use of three dust
groups: pure dust, mixed dust and polluted dust. The pure dust group refers to
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particles for which the mixing with other aerosol types is negligible. Mixed
dust refers to dust particles mixed with marine particles. This leads to less
depolarizing, and less absorbing particles with respect to pure dust particles.
Papagiannopoulos et al. (2016a) found this mixture to be important in the
Mediterranean region and suggested its inclusion in the CALIPSO retrieval
scheme for improving the accuracy of aerosol backscatter and extinction
coefficient profiles.

Dust polluted aerosols

The dust polluted category consists of dust dominated mixtures with smoke
and/or continental particles, which produce lower depolarization, higher lidar
ratios and enhanced Angstrom exponent values owing to the presence of small,
spherical particles (Grof3, et al., 2011; Burton, et al., 2012; Tesche, et al.,
2013).

Biomass burning aerosols

Biomass burning is a major global source of atmospheric aerosols. Generally,
smoke particles are relatively small, spherical, and highly absorbing that
produce low depolarization, high Angstrém exponents, and large lidar ratios
(Amiridis, et al., 2009; Baars, et al., 2012; Nicolae, et al., 2013; Giannakaki, et
al., 2016). The optical properties of smoke particles may vary due to the
vegetation type of the emitting source, the combustion type (smouldering or
flaming fires), and atmospheric conditions (Balis, et al., 2003). Furthermore,
the particles are susceptible to changes of their optical properties during their
lifetime in the atmosphere (Nicolae, et al., 2013).

Several EARLINET-based studies have focused on observations and
characterization of smoke plumes (Amoiridis, et al., 2009; Ansmann, et al.,
2009; Tesche, et al., 2011), demonstrating that it is a frequently encountered
aerosol type over Europe. In particular, biomass burning aerosol originating
from forest fires in Canada and Siberia is regularly observed between May and
October (Amiridis, et al., 2009; Ortiz-Amezcua, et al., 2017). However, the
similarities of the physical characteristics of smoke particles and continental
particles result in similar optical properties, making these types difficult to
distinguish.

Volcanic aerosols

Volcanoes are another important source of atmospheric aerosols. Volcanic
eruptions eject great amounts of material in the atmosphere (tephra), while the
fraction smaller than 2mm is labeled as volcanic ash. Most of these aerosols
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will settle only a few tens of kilometres away from the volcano but smaller
particles can travel thousands of kilometres and affect wider areas (Mattis, et
al., 2010; Sicard, et al., 2012; Papayannis, et al., 2012; Kokkalis, et al., 2013;
Pappalardo, et al., 2013). The optical properties of volcanic ash aerosols is
generally similar to the one of desert dust, as was shown by Ansmann et al.
(2010) and Wiegner et al. (2012) for fresh ash with particle linear
depolarization ratios reaching 0.37 and lidar ratios of 50-65 sr. Aged volcanic
particles as observed by Papayannis et al. (2012) indicate higher sphericity less
non-sphericity with depolarization ratio values of about 0.1-0.25 and lidar
ratios for 355nm within the range 55-67 sr and for 532nm 76-89 sr.

2.2. Atmospheric lidar

[ Atmosphere }
Transmitted Backscatterlight by molecules,
laserbeam aerosols, gases, clouds, etc.

| “Transmitter” T “Receiver” |

| | |

|
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Figure 2.3 Lidar schematic configuration (Weitkamp, 2005).

A simplified representation of a typical lidar system set-up is demonstrated in
Figure 2.3. The transmission unit consists of a pulsed laser source, followed by
a series of high reflection mirrors, and a beam expander which sends the
collimated laser beam, vertically, up to the atmosphere. Part of the transmitted
radiation is scattered by the atmospheric components (i.e., gases, molecules,
aerosols, clouds) backward to the lidar system, where it is collected by an
optical telescope. The backscattered laser light is driven to an optical analyzer
(i.e. spectrometer) where the optical signal is, first, spectrally separated, then,
amplified and, finally, transformed to an electrical signal. Finally, the signal is
digitized and stored in a computer unit for further signal processing and
analysis.
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2.2.1. Aerosol optical properties from a multi-wavelength
elastic/Raman lidar system

The backscatter coefficient f(R,A) defines the scattering coefficient at the
backward direction (i.e., at a scattering angle of & = 180°). This parameter
determines the strength of the lidar return at the operational wavelength 1 at a
distance R far from the lidar system. The mathematical expression of the
backscatter signal is:

B(R,A) = 3 N;(R) <2 (1, )[m~1sr~1] 1

where N; denotes the concentration of scattering “particles” of kind j in the
illuminated volume and doj .,/ df2 is the “particles” differential scattering
cross section for the backward direction. Nevertheless, since this backscatter
coefficient denotes the backscattered light from both aerosols and molecules in
the atmosphere, the contribution of molecules to the total backscatter could be
defined, so as the aerosol backscatter coefficient can be estimated.

The most commonly used method for calculating the aerosol backscatter
coefficient is the Fernald-Klett method exclusively described in literature
Fernald (1984) and Klett (1981). The main uncertainty for the accurate
calculation of aerosol backscatter coefficient in this method is introduced by
the assumption of the lidar ratio value, which is characteristic for the type of
the detected aerosols. Another uncertainty can be introduced by the calibration
height where aerosol contribution in the backscatter profile is considered
negligible (Weitcamp, 2005).

The most accurate technique to derive the aerosol extinction and backscatter
coefficients is the so-called Raman lidar one. The main advantage of this
technique compared to the elastic one is that it allows the independent retrieval
of the aerosol extinction and backscatter coefficients, without any assumption
of the aerosol S;.

The Raman lidar equation includes the backscatter coefficients Snoi(4,2),
Paer(4,2) and extinction coefficients ame(4,2), oqer(4,2) of molecules and aerosols
respectively. The solution of this differential equation with making use of the
Raman channels has been proposed (Ansmann, et al., 1990, Papayannis, et al.,
1990) for the simultaneous retrieval of the aerosols’ backscatter and extinction
coefficients at 2 = 355 nm and 4 = 532 nm. The inelastic Raman signals are
only due to the scattering from Nitrogen N, molecules and therefore, the
backscattering cross-section determines the intensity of the signals.



Page |25

Figure 2.4 Raman spectrum of a diatomic molecule. The Rayleigh line is at the same frequency of the incident
photon. Just around the Rayleigh line, the rotational Stokes and anti-Stokes lines lie to the left towards lower
energies and to the right towards higher energies respectively (Wandinger, 2005).

In 1928, Sir Raman observed the frequency-shifted lines in the spectrum of
scattered light (Raman, et al., 1990). The frequency shift relative to the incident
light frequency corresponds to the vibrational and rotational frequencies of the
scattering molecules. The frequency shift can be towards lower energies Ag, >
Jo (Stokes lines) or higher energies /g, < 4o (anti-Stokes lines). The total Raman
spectrum of a diatomic molecule can be seen in Figure 2.4. When the scattered
light is coherent to the incident light, Rayleigh scattering occurs which is much
stronger than the Raman scattering. When only molecular rotations occur, the
Rotational Raman (RR) lines are just around the Rayleigh line. However, the
Vibrational Rotational Raman (VRR) lines are better separated in frequency
from the incident light. VRR lines consist of Q, S and O branches. The anti-
Stokes lines are weaker than the Stokes lines and usually cannot be observed.

A molecule is always at a specific vibrational-rotational energy. The frequency
shift which is caused by the change in vibrational, rotational or vibrational-
rotational energy level of the scattering molecule is estimated by

— — — AE

Av =v, — v, = heq

where 9, is the frequency of the incident photon, o; is the frequency of the
scattered photon, 4E is the difference between the molecular energy levels, h is
Planck’s constant and ¢, the speed of light in vacuum (Long, 1977).

Figure 2.5 illustrates the rotational-vibrational Raman spectra for several
atmospheric molecules such as silicon dioxide (SiO,), oxygen (O,), nitrogen
(N) and water vapor (H,0O) in gas, liquid and solid phase. The incident light at
355 nm excites the atmospheric nitrogen molecules which emits light at the
Stokes line of 387 nm. When the incident beam is at 532 nm, the Raman
scattered photon is detected at 607 nm. The Raman lidar can also detect Raman
lines of water vapor at 407 nm when incident light beam is at 355 nm.
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Figure 2.5 Rotational vibrational Raman lines. The Raman backscatter spectrum of the atmosphere for incident
laser wavelength of 355 and 532 nm. Picture was adapted from Avila et al. (1999).

2.2.2. EARLINET Lidar Network

EARLINET (www.earlinet.org) was established in 2000, providing aerosol
profiling data on a continental scale, and now is part of the Aerosols, Clouds,
and Trace gases Research InfraStructure (ACTRIS; www.actris.eu/). In these
19 years of continuous existence, EARLINET has evolved both in the number
of contributing stations, as well as in its observing capacity (Pappalardo, et al.,
2014). Currently, 30 stations are submitting aerosol extinction and/or
backscatter coefficient profiles to the EARLINET database, according to
EARLINET’s measurement schedule (one daytime and two nighttime
measurements per week). Therefore, these systematic observations consolidate
a 4D European quantitative and statistically significant aerosol survey. Further
measurements are devoted to special events, such as volcanic eruptions, forest
fires, and desert dust outbreaks. Moreover, EARLINET provides correlative
measurements during CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder
Satellite Observations) overpasses on each EARLINET station in order to
validate satellite products (Mamouiri, et al., 2009; Mona, et al., 2009).

The majority of the EARLINET stations (67% of the stations) as described by
Pappalardo et al. (2014) operate multi-wavelength Raman lidars that combine a
set of elastic and nitrogen inelastic channels, typically consisting of three
elastic and two inelastic Raman channels (the so-called 34 +2a configuration).
In particular, they provide the aerosol extinction (at 355nm and 532nm), and
backscatter coefficients (at 355 nm, 532 nm, and 1064 nm). This configuration
allows the retrieval of the range-resolved particle lidar ratio at 355nm and
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532nm (S,r). This intensive parameter depends on the shape, size, and
chemical composition of the aerosol (Miiller, et al., 2007). When the lidar ratio
is available for more than one wavelength, the corresponding color ratio can be
also retrieved (SAL./S72).

o

* Mad
. '9»1
EARLINET

Figure 2.6 EARLINET Lidar stations (last updated: 21/03/2019)

This quantity is a robust means to characterize the ageing status of smoke
particles, as well as the spectral dependence of acrosol (Miiller, et al., 20074a;
Nicolae, et al., 2013). The combination of the optical data allows the retrieval
of the size sensitive backscatter and/or extinction related Angstrém exponent
and can be calculated as

_ In[X(A1)/X(2)]
X In (A1/22)

with X denoting the backscatter § or extinction coefficient a for a set of
wavelengths, 1, and 1,. Moreover, 52% of EARLINET stations (Pappalardo, et
al., 2014) are equipped with depolarization channels, thus providing profiles of
the particle linear depolarization ratio. It can be calculated according to (Biele,
et al., 2000; Freudenthaler, et al., 2009:

6’1 _ (1+8,)0,R—(1+68,)6,
aer = (1+8,,)R—(1+6,)

with R the backscatter ratio, s,, the molecular depolarization, and s, the volume
depolarization ratio (Bravo-Aranda, et al., 2016). This parameter provides
information on the particle shape, thus enhancing the aerosol typing strength of
the network. Under favourable conditions, the aerosol microphysical
properties, such as the effective radius, the volume concentration and the
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refractive index can also be retrieved through complex numerical algorithms
(Miller, et al., 2004; Veselovskii, et al., 2010; Samaras, et al., 2015;
Chaikovsky, et al., 2016).

2.3. Hybrid Single-Particle Lagrangian Integrated

Trajectory Model, HYSPLIT
The HYSPLIT model (Draxler, et al.,, 1998) is a complete system for
computing simple air parcel trajectories, as well as complex transport,
dispersion, chemical transformation, and deposition simulations. HYSPLIT
continues to be one of the most extensively used atmospheric transport and
dispersion models in the atmospheric sciences community. A common
application is a back trajectory analysis to determine the origin of air masses
and establish source-receptor relationships.

The model calculation method is a hybrid one between the Lagrangian
approach (using a moving frame of reference for the advection and diffusion
calculations as the trajectories or air parcels move from their initial location)
and the Eulerian methodology, which uses a fixed three-dimensional grid as a
frame of reference to compute pollutant air concentrations (The model name,
no longer meant as an acronym, originally reflected this hybrid computational
approach). HYSPLIT has evolved over more than 30 years, from estimating
simplified single trajectories based on radiosonde observations to a system
accounting for multiple interacting pollutants transported, dispersed, and
deposited over local to global scales.

The dispersion of a pollutant is calculated by assuming either puff or particle
dispersion. In the puff model, puffs expand until they exceed the size of the
meteorological grid cell (either horizontally or vertically) and then split into
several new puffs, each with its share of the pollutant mass. In the particle
model, a fixed number of particles are advected about the model domain by the
mean wind field and spread by a turbulent component. The model’s default
configuration assumes a 3-dimensional particle distribution (horizontal and
vertical).

2.4. Moderate Resolution Imaging Spectroradiometer,

MODIS
As part of NASA’s Earth Observing System (EOS), MODIS is carried on both
the Terra and Aqua satellites. The MODIS active fire products fall within the
suite of terrestrial products and provide information about actively burning
fires, including their location and timing, instantaneous radiative power, and
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smoldering ratio, presented at a selection of spatial and temporal scales (Giglio
et al., 2002; Kaufman et al., 1998).

An algorithm examines each pixel of the MODIS swath and ultimately assigns
it to one of the following classes: missing data, cloud, water, non-fire, fire, or
unknown. Pixels lacking valid data are immediately classified as missing data
and excluded from further consideration. Cloud and water pixels are identified
using cloud and water masks and are assigned to the classes cloud and water,
respectively. The fire detection algorithm considers only those land pixels that
remain.
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Figure 2.9 World satellite image. Red dots represent possible fire sources for the time period 2019/03/27-
2019/03/28 as seen by MODIS Aqua and Terra satellites (https://firms.modaps.eosdis.nasa.gov/map/).
There are two logical paths through which fire pixels can be identified. The
first consists of a simple absolute thresh-old test. This threshold must be set
sufficiently high so that it is triggered only by very unambiguous fire pixels,
i.e. those with very little chance of being a false alarm. The second path
consists of a series of contextual tests designed to identify the majority of
active fire pixels that are less obvious.

The variable ‘Confidence’ is based on a collection of intermediate algorithm
quantities used in the detection process. It is intended to help users gauge the
quality of individual hotspot/fire pixels. Confidence values are set to low,
nominal and high. Low confidence daytime fire pixels are typically associated
with areas of sun glint and lower relative temperature anomaly (<15K) in the
mid-infrared channel. Nominal confidence pixels are those free of potential sun
glint contamination during the day and marked by strong (>15K) temperature
anomaly in either day or nighttime data. High confidence fire pixels are
associated with day or nighttime saturated pixels.
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3. Methodology

3.1. Experimental sites

Lidar station selection depended on the availability of the vertical profiles of
the full set (3B + 2a + d) of aerosol optical properties: backscatter coefficient
(b355, b532, b1064), extinction coefficient (9355, e532), Lidar Ratio (LR355, LR532),
Angstrom exponent (AEssssso, Classisz, Clssoioss) and  Linear Particle
Depolarization  Ratio (LPDRs3;) at  the  EARLINET  database
(https://www.earlinet.org) within the years 2014-2018. The 4 lidar stations
performed the used measurements are: Kuopio, Finland; Bucharest, Romania;
Leipzig, Germany; and Potenza, Italy (Table 3.1).

Table 3.1 EARLINET lidar station information.

ACTRIS Coordinates

Location Institute (lat, long, Reference

Code altitude amsl)

National Institute of
R&D for 44,35 N, 26.03 Nemuc, et al.

L | ING Optoelectronics (INOE)  E, 93 m 2013 [ AL
Link
Finnish Meteorological
Institute (FMI), Althausen, et al.,
Kuopio KUO Atmospheric Research 22.17510Nn,]27.54 2009, Engelmann, 9 ggig
Centre of Eastern ' etal., 2016
Finland, Kuopio Link
Leibniz Institute for Althausen, et al.,
Leipzig LEI Tropospheric Research, 2193(? r'r\: L 2009, Engelmann, 17 2018
Leipzig Link ' etal., 2016
Consiglio Nazionale
delle Ricerche - Istituto
di Metodologie per 40.60 N, 15.72  Madonna, et al., 2015-
Sz | POT I'Analisi Ambientale ~ E, 760 m 2011 64 2016
(CNR-IMAA), Potenza

Link

Bucharest

Romania is crossroad of different air masses (Fig. 3.1) that arrive from regions
(Greece, Ukraine, Russia) that are affected episodically by strong biomass
burning events (Amiridis, et al., 2010). Nicolae, et al., (2013) studied optical
and microphysical properties of long-range transported biomass burning (BB)
aerosols and their variation with atmospheric evolution (ageing) observed over
the lidar station of Magurele, Bucharest.

The city and region of Bucharest is urban with an intense traffic and
surrounded by industrial platforms, which gives rise to a variety of aerosol and
gaseous pollutants (Nicolae, et al., 2006). However the most relevant in the
characterization of aerosol properties in this area is the desert dust events which
distort the atmospheric composition (Nemuc, et al., 2008).


https://www.earlinet.org/
http://www.inoe.ro/en/
http://en.ilmatieteenlaitos.fi/atmospheric-research-centre-of-eastern-finland
http://www.tropos.de/en/
https://www.imaa.cnr.it/
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Kuopio

Kuopio (population 91.000) is the principal town of the province of Northern
Savo, in the eastern part of central Finland, 330 km northeast from Helsinki,
the capital of Finland (Fig. 3.1). The main part of the district of Northern Savo,
and especially the neighborhood of Kuopio, belongs to the southern boreal
climatic zone and is characterized by forests with conifer (mostly pine and
spruce) and deciduous (mostly birch) trees, an undulating terrain with rocky
soil and moderate height hills, and lots of long lakes in the northwest-southeast
direction. The vast lake district acts as a heat storage and increases the nightly
temperatures in summers, thus lengthening the growing period (Leskinen, et
al., 2009).
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Figure 3.1 Geographical location of the 4 EARLINET stations considered in this study (yellow diamonds). Major
European cities are also presented with pink dots. Major European lakes are indicated with cyan and rivers
with blue.

The Puijo measurement station is on the top of an observation tower, 306 m
a.s.l. and 224 m above the surrounding lake level. The tower is a 75 m high
building on the Puijo hill, approximately 2 km northwest of the center of
Kuopio (Leskinen, et al., 2009).

The most significant local sources are traffic on highways (national/European
highway 5/E63 and national highway 17), especially between Kuopio and
Siilinjarvi with approximately 30.000 vehicles/day, the local traffic in Kuopio,
and point sources, such as a district heating plant 3 km south of Puijo and a
pulp mill 5 km north-east of Puijo (Leskinen, et al., 2009).
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Leipzig

Mattis et al. (2008) presented geometrical properties and seasonal variations of
appearance of aerosol particle pollution in the free troposphere over the central
European lidar site at Leipzig, Germany (Fig 3.1). The lofted particle layers
largely resulted from intercontinental long-range transport. In 19% of all
regular measurements, free-tropospheric pollution was advected from North
America. Forest-fire smoke from Canada and anthropogenic pollution from
urban areas of the United States of America and Canada were the sources of the
particle layers. They find a strong seasonal dependence of occurrence of these
layers with a peak in June—August of each year. In a few cases they observed
forest-fire smoke advected from Siberia and east Asia with winds from
westerly directions. Pollution advected from areas north of 70°N presented
another transport channel. That pollution consisted of Arctic haze or mixtures
of haze with anthropogenic pollution. The main occurrence of such particle
layers was around springtime of each year. Import of mineral dust from the
Sahara represents another transport path. Most of such cases were observed
during late spring time and summer time. Free-tropospheric pollution advected
from east and southeast Europe and Russia presented one transport channel
from within the Euro-Asian continent.

Potenza

CIAO, the most advanced infrastructure for ground based remote sensing in
Italy, is located in Tito Scalo, Potenza, Southern Italy, on the Apennine
mountains (40.60°N, 15.72°E, 760 m a.s.l.), less than 150 km from the West,
South and East coasts (Figure 3.1). The site is in a plain surrounded by low
mountains (<1100 m a.s.l.). The observatory operates in a typical mountain
weather strongly influenced by Mediterranean atmospheric circulation,
resulting in generally dry, hot summers and cold winters. In this location,
phenomena like orographically-induced effects on cloud formation can be
studied (Madonna, et al. 2011). The site is particularly interesting for studying
aerosol properties because it is affected by a quite large number of Saharan
dust intrusions per year (Mona, et al., 2014) and it is located 300 km far from
the Etna Volcano (Pappalardo, et al., 2004).
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3.2. Experimental data
48 dates of lidar observations by multiwavelength Raman and depolarization
lidars from the aforementioned lidar stations have been studied for this Thesis.

Table 3.2 Dates of lidar observations used for this study (2015-2018).

Year Date No of SUM SUM
(yyyy)  (dd/mm) IO N0 LE] OIS layers (dates) (layers)
22/01 * 1
13/04

07/05

04/06

11/06

16/07

20/07

30/07 ©
24/08
03/09 *

10 21

$iooki kD ook ki ki ¥

*

04/01
07/01
21/03
28/03
04/04 *
11/04
14/04 *
23/06
27/06
04/07
07/07
11/07
25/08
29/08

$iooki ki ook

*

14 21

23/03

30/03

27/04

22/05

08/06

12/06

15/06

22/06

13/07

19/07

20/07

24/08 *
28/08

31/08 * *
07/09
21/09 *

19/10 *

17 38
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4 dates by Bucharest site for the year 2017, 8 of Kuopio site for the years 2015-
2016, 7 of Leipzig site for the year 2018 and 31 of Potenza site for the years
2015-2017 (Table 3.2). For some dates, more than one layer has been observed
increasing the number of layers to 97.
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Figure 3.2 Geometrical properties of the aerosol layers for this study (2015-2018).

The aerosol layer boundaries were calculated by applying the gradient method
on the 1064 nm backscatter coefficient profile (Belegante, et al., 2014).

In Figure 3.2 the bottoms and tops of the aerosol layers are presented for each
year (2015, 2016, 2017, 2018). The horizontal axis stands for the date (dd/mm)
of the observed layers beginning from 01/01 to 27/10 of each year and the
vertical axis stands for the altitude [km]. The red lines present the aerosol
layers arriving over Kuopio, the blue lines present the aerosol layers arriving
over Potenza, the green lines present the aerosol layers arriving over Bucharest
and finally, the black lines present the aerosol layers arriving over Leipzig.

3.3. Classification

3.3.1. Source Classification Analysis, SCAN
SCAN aerosol classification uses the backward trajectories created with
HYSPLIT in combination with FIRMS satellite fire data to provide the possible
source of air mass observed above the stations, counting the time that the air
parcel spends above certain source regions (eg. dust, marine, continental
polluted and clean continental).

To identify the source region of the aerosol layers, SCAN makes use of a
number of criteria. Firstly, it associates each observed layer to the back-
trajectories calculated by HYSPLIT depending on the mean height of the
observed layer and its arriving date and time. For this study, 6 days back-
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trajectories (144 hours) have been calculated for 6 different arriving heights
(1500m, 2000m, 2500m, 3000m, 4000m, 5000m) for each layer’s date.

Using the mean of each aerosol layer’s geometrical properties, each aerosol
layer is associated to the closest (in terms of the minimum difference with
HYSPLIT’s arriving height) HYSPLIT trajectory (Table 3.3)

Table 3.3 Geometrical properties of the aerosol layers for this study (2015-2018) and HYSPLIT arriving height
and time.

Date (dd/mm- HYSPLIT arriving

Year (vyyy) hh:mm UTC) Bottom (m) Top (m) ‘ height (m)
22/01-18:05 3744 4402 4000
13/04-19:45 1330 1570 1500

2410 2650 2500

07/05-20:45 2890 3190 3000
3910 4570 4000

04/06-10:17 1570 1810 1500
2710 3130 3000

3910 4590 4000

11062335 1270 1570 1500
1690 1990 2000

2350 2710 2500

3370 3730 4000

16/07-21:00 1810 3130 2500
20/07-2359 1510 3250 3000
30/07-19:25 1324 2041 1500
21:26 2830 3130 3000

3490 3790 4000

4570 4930 5000

5710 6010 5000

24/08-18:00 1204 1802 1500
03/09-20:16 1930 2710 2500
04/01-15:18 2399 329 3000
07/01-15:19 965 1145 1500
1982 2191 2000

21/03-18:21 1115 1294 1500
28/03-23:11 4701 4970 5000
04/04-18:47 2290 3310 3000
11/04-2027 2050 2530 2500
14/04-21:00 1742 1922 2000
23/06-19:30 1630 3430 3000
4150 5110 5000

27106-21:07 1570 1870 1500
2530 2890 2500

04/07-1956 1750 1930 2000
2470 2710 2500

2950 3310 3000

07/07-19:01 1210 1510 1500
11/07-19:22 1090 2830 2000
3010 4630 4000

25/08-18:29 1030 1870 1500
2350 3850 3000

29/08-19:16 1930 2590 2500
23/03-18:10 1990 2170 2000
30/03-18:08 1270 1450 1500
1990 2350 2000

27104-19:48 3250 4310 4000
22/05-19:01 1090 2170 1500
08/06-19:14 1390 1750 1500
2290 2650 2500

12/06-19:29 1630 1990 2000

15/06-20:00 1090 1930 1500
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2350 2650 2500

2830 3250 3000

3850 4270 4000

22/06-19:18 1030 1570 1500
2110 2590 2500

3130 3970 4000

4150 5230 5000

13/07-20:15 1810 3130 2500
19/07-18:57 1030 1450 1500
1990 2530 2500

20/07-20:15 1030 1450 1500
1870 2830 2500

3490 4510 4000

4990 6010 5000

24/08-16:56 1068 1368 1500
1968 2418 2000

17:59 1668 2268 2000
28/08-18:45 1750 1990 2000
3250 3430 3000

4330 4570 4000

4810 5050 5000

5710 5890 5000

31/08-17:59 1218 1668 1500
2118 2418 2500

18:26 1510 1750 1500

2470 2950 2500

07/09-16:33 1968 2268 2000
21/09-16:16 1968 2268 2000
19/10-17:14 1930 2110 2000
21/06-20:30 1807 2375 2000
19/07-21:30 1710 2330 2000
2988 3571 3000

4011 4512 4000

26/07-20:00 1112 1352 1500
1434 2398 2000

30/07-21:45 1112 1516 1500
1904 2667 2500

3070 3339 3000

02/08-23:00 1120 2181 1500
2681 3212 3000

16/08-21:20 1613 2442 2000
27/08-19:00 1112 1673 1500
1934 2592 2500

3107 4310 4000

4557 5341 5000

6111 6313 5000

The back-trajectories calculated by HYSPLIT are shown in Figure 3.3. The
blue color illustrates the back-trajectories arriving over Potenza, the black color
illustrates the back-trajectories arriving over Leipzig, the red color illustrates
the back-trajectories arriving over Kuopio and finally, the green color
illustrates the back-trajectories arriving over Bucharest.

Afterwards, SCAN assumes predifened, in terms of aerosol sources, regions
(Fig. 3.4 colored squares) (Penning de Vries, et al., 2015): marine (Fig. 3.4 blue
squares), clean continental (Fig. 3.4 brown squares), polluted continental (Fig.
3.4 black squares) and dust (Fig. 3.4 orange squares).
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Figure 3.3 HYSPLIT 6-days back-trajectories arriving at Potenza (blue lines), Bucharest (green lines), Kuopio (red
lines), Leipzig (black lines), used for this study (2015-2018).
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Figure 3.4 SCAN’s colored squares according to the aerosol source type. Orange squares stand for dust aerosol
sources, blue squares for marine aerosol sources, brown squares for clean continental aerosol sources and
black squares for continental polluted aerosol sources.

Finally, fire spots are defined using FIRMS fire/hotspot information according
to the duration of HYSPLIT back-trajectories. A hotspot is assumed significant
if the value of variable ‘confidence’ is higher than 80% (Amiridis, et al., 2010).
SCAN counts the time that the air parcel spends above the fire hotspots, or
within 8km distance from them, with height below 3km taking into account
that the mean injection height for fires is 3km according to Amiridis et al.,
2010.
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Figure 3.5 Schematics of the SCAN algorithm for aerosol typing.

If these criteria are indulged into more than one region, a mixture of more than
one aerosol type is assumed. Else, if they are not indulged to none of the
regions, then the source of the observed layer is considered as unknown.

3.3.2. Neural network aerosol-typing algorithm, NATALI
NATALI considers six classes of pure aerosol: continental, continental
polluted, dust, marine, smoke, and volcanic (cf. section 2.1) (Nicolae, et al.,
2018). It uses an aerosol model to calculate the optical properties of the
aforementioned pure aerosols which are generated by a single source (e.g. dust
produced by the deserts, marine particles produces by the oceans). This aerosol
model combines the Global Aerosol Data Set (GADS, Koepke, et al., 1997)
along with the T-matrix numerical method (Waterman, 1971; Mishchenko, et
al., 1996) to iteratively compute the intensive optical properties of each aerosol
type. The chemical composition of each pure aerosol type was picked up from
the OPAC (Optical Properties of Aerosols and Clouds) software package
(Hess, et al., 1998). The synthetic database, developed using the aerosol model,
is built for 350, 550, and 1000 nm sounding wavelengths. These wavelengths
were selected from the 61 wavelengths (0.25-40 um) of OPAC for which the
microphysical characteristics of the aerosols are available from GADS. The
selected wavelengths are then rescaled to the usual lidar wavelengths (i.e. 355,
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532, and 1064 nm) using an Angstrdm exponent equal to 1. The mixtures were
obtained by linear combination of pure aerosol properties.

Table 3.4 Correspondence between the aerosol types defined in the algorithm, as they can be retrieved by

Aerosol types

NATALI in high resolution and low resolution (Nicolae, et al., 2018).

High-resolution
type

Continental

Continental

Low-resolution
with LPDR

Continental

typing

Low-resolution
without LPDR

Continental

Continental Polluted Continental polluted  Continental polluted Continental polluted
Smoke Smoke Smoke Smoke

Dust Dust Dust Dust

Marine Marine Marine Marine

Volcanic Volcanic Volcanic Dust or continental

Continental and dust
Dust and marine
Volcanic and marine
Continental and smoke

Dust and smoke
Continental and marine

Continental
marine

polluted and

Continental dust
Marine mineral
Marine mineral
Continental smoke

Dust polluted
Coastal
Coastal polluted

Continental or dust

Dust or marine

Durst or marine
Continental polluted or
smoke

Dust or smoke
Continental or marine
Continental polluted or
marine

Continental or dust
Dust or marine
Dust or marine
Continental
smoke

Dust or smoke
Continental or marine
Continental  polluted
marine

polluted

typing

or

or

Continentaland dust and™ IYIECh IS Continental or dust Continental or dust

marine

Continentalhand smokeanc LY [MCe R ¢! Continental polluted or Continental polluted or
marine smoke smoke

The Neural Network Aerosol Typing Algorithm based on Lidar data
(NATALI) developed in the Python programming language is built on three
modules: (a) an input module to prepare the inputs in the specific format of the
ANNSs, (b) a typing module to run the ANNs and decide on the most probable
aerosol type and (c) an output module to save the results and logs. The input
module reads the lidar files in EARLINET NetCDF format, checks for the
availability of all required parameters (81064, f532, Bass, 0532, 0355, and optionally
053 Nm), identifies the layer geometrical boundaries and calculates within each
layer the mean intensive optical parameters (i.e. Angstrdom exponent, colour
indexes colour ratios, lidar ratios, particle linear depolarization ratio) and their
associated uncertainty).

The input parameters for NATALI are typical data products from EARLINET
database: backscatter coefficient (5) profiles at 1064, 532 and 355 nm,
extinction coefficient («) profiles at 532 and 355 nm, and, optionally, linear
particle depolarization (o) profile at 532 nm.

Three classification schemes are wused with different aerosol type
(classification) resolutions. First, when particle depolarization is available and
all optical parameters are provided with a high-quality (uncertainty of the
aerosol extinction coefficient < 50 %, uncertainty of the aerosol backscatter
coefficient < 20 %, uncertainty of the particle linear depolarization ration ¢ <
30 %), the typing is performed in high resolution (AH) mode. This means that
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the mixtures can be resolved and the number of outputs types is 14 (i.e. pure
with minimum 90 %, mixtures of two, and mixtures of three pure aerosol

types).

Second, when particle depolarization is available and the optical parameters
have a high uncertainty (uncertainty of the aerosol extinction coefficient > 50
%, uncertainty of the aerosol backscatter coefficient > 20 %, uncertainty of the
particle linear depolarization ration > 30 %), the typing is performed in low
resolution (AL) mode. In this case, the number of outputs types is six (i.e. pure
with maximum 30% traces of other types).

Backscatter 1064, 532, 355 A Backscatter 1064 Backscatter error 1064, 532, 355
Extinction 532, 355 proféa Extinction error 532, 355
(LPDR 532) (LPDR error 532)
profile ' profia
Mean intensive optical parameters Maan uncertainty of intensive optical |

within the layer - - parameters within the layer
ent Angstrom aexponent

Angstrom

Layer boundaries
tops & bottoms
Lidar ratio
Lidar ratio 355

(LPDR 532) |
Scrambled set of mean Intensive optical parameters
+- uncertainty
[Angstrom exponent - uncertainty] ... [Angstrom exponem + uncert
[Colour index 532/1064 - uncertainty] ... [Colour index 532/1064
[Colour in 2 - uncartainty] ... [Colour index 355/ 2
e - uncertainty] ... [Colour ratio 532/1054 + uncertainty]
) - uncertainty] ... [Colour ratio 355/532 + uncertainty]
- ynoertainty] ... [Lidar ratio 532 + uncertainty]
5 - uncertainty] ... [Lidar ratio 355 + uncertainty]
uncartainty] ... [LPDR 532 + uncertainty))
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Figure 3.6 Schematics of the NATALI algorithm for aerosol typing (Nicolae, et al., 2018).

Third, when the particle depolarization is not available, the typing is performed
in low resolution mode, again meaning that the aerosol mixtures cannot be
resolved. In this case, the predominant aerosol type is retrieved for four outputs
(pure with maximum 30% traces of other types), whereby if only spectral
parameters are provided, the volcanic type cannot be distinguished from dust
nor continental pollution and are therefore excluded as output type.

A voting procedure selects the most probable answer out of the three (possibly
different) individual returns. The correct answer is selected based on a
statistical approach considering two criteria: (a) which answer has a higher
confidence; (b) which answer is more stable over the uncertainty range (i.e. the
percentage of agreement for values between error limits).
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The layer boundaries are calculated by applying the gradient method on the
1064 nm backscatter coefficient profile (Belegante, et al., 2014). The inflexion
points of the second derivative of the profile data, computed with the Savitzky-
Golay filter, give the top and the bottom of the layers. The layer boundaries are
moved towards the median height until the SNR criteria (<5) is met; if the
criteria cannot be satisfied with a layer height greater than 300 m, the layer is
discarded.

The netcdf files from EARLINET database containing the optical properties
(b3s5, D532, D1ges, €355, €532, Us30) Useful for this study were used as inputs to the
Natali classification algorithm. For each case, the ‘finesse’ variable was
adapted accordingly in order to be achieved the best match of the geometrical
properties of each layer compared to the ones calculated manually.

3.3.3. Automatic observation-based aerosol typing method,
Mahalanobis distance aerosol classification algorithm
Distance-based classification methods aim to assign an observation to a
particular class based on the distance of the observation from each class center.
In general, the Mahalanobis distance between an observation X=(x,...,X,)' and
the mean class x=(x, ..., @)t in the p-dimensional space R is defined as

Dy(x,%) = {J(x—0TS1(x—x)5

where S is the class covariance matrix. The surfaces identified by the equation
Dv =const. are ellipsoids that are centered around the mean x (McLachlan,
1999).

The Mahalanobis distance of an observation from an aerosol class can be
estimated, and assigned to the aerosol class for which the distance is minimum.
Two screening criteria are applied to the minimum distance following the
procedure of Burton et al. (2012). The methodology uses 3 and 4 classifying
parameters and the minimum accepted distance for a measurement to be
labeled is 4 and 4.3, respectively. Moreover, the normalized probability of the
aerosol class needs to be higher than 50 %. Otherwise, the type assignment is
difficult as the measurement can be equidistant from 2 or more aerosol type
classes, and possibly indicate the mixing of these aerosol types
(Papagiannopoulos, et al., 2018).

EARLINET aerosol classified layers from Pappalardo etal. (2013),
Papagiannopoulos et al. (2016), and Schwarz et al. (2016) were used as dataset
for the training phase of the Mahalanobis algorithm. EARLINET observations
from 2008 to 2010 present the backbone of the reference dataset. 8 aerosol
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classes are used: clean continental (CC), continental polluted (CP), pure dust
(D), mixed dust (MD = dust + marine), dust polluted (DP = dust + smoke and/or
dust + polluted continental), mixed marine (MM), smoke (S), and volcanic (V).

8 aerosol classes

120 prrrreeeeer T

100 ¢

80F

0 0.5 1 15 2
Ky (355.1064)

Figure 3.7 Colored pre-specified classes and 90 % confidence ellipses for 8 and 4 aerosol classes. The error bars
correspond to the standard deviation of the selected mean intensive properties. CC stands for clean
continental, D stands for dust, MD stands for mixed dust, MM stands for mixed marine, PD stands for polluted
dust, PCstands for polluted continental, Sstands for smoke, and V stands for volcanic particles
(Papagiannopoulos, et al., 2018).

Table 3.5 shows the characteristics of the reference dataset in terms of the S332
and x4(355,1064) for the 8 classes, already mentioned. The coloring
corresponds to the various classes and the crosshairs indicate the standard
deviation of each of the aerosol layers. The 90 % confidence ellipses are
calculated using the eigenvalues and eigenvectors of the covariance matrix and
define the region that contains 90 % of all the points that can be drawn from the

underlying normal class distribution.

Calibrated particle linear depolarization ratio profiles were not available in the
selected dataset. So, Papagiannopoulos et al. (2018) used general literature
values for particle linear depolarization ratio at 532 nm (Table 3.6) in order to
train the algorithm.

Table 3.5 Reference dataset: mean type-dependent intensive properties along with the standard deviation
(Papagiannopoulos, et al., 2018).

K,(3551064)  K,(532,1064) K,(355532)  ,(355,532) §355

T 1.0203

1.0£0.2

1.3+0.3 1.3+0.2 1.4+0.6 1.7+0.5 69+ 12 63 +£13

04+0.1 0.4+0.1 0.3+0.2 0.3+04 58+ 12 55+7

0.5+0.2 04+0.3 0.7+0.3 0.5+0.3 42+4 47+6

09+0.3 0.8+0.1 1.0£0.5 0.6+0.2 54+8 64+9
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0.8+0.1 0.8+0.2 1.0+£0.3 0.9+0.3 25+7 24+8
1.3+0.1 1.3+0.1 1.2+03 1.3+0.3 81+16 78 £11
0.1+0.1 04+0.3 0.2+0.3 0.2+0.3 50+11 48+13

Table 3.6 The mean and standard deviation of the particle depolarization ratio used for the pre-specified
classes and the corresponding bibliographic references (Papagiannopoulos, et al., 2018).

Type _ References

Clean continental 0.04 +0.02 Burton et al. (2013)
Continental polluted 0.05 +0.03 Burton et al. (2013)
Dust 0.30+£0.01 Gross et al. (2011)
Mixed dust 0.15+£0.02 Gross et al. (2016)
Dust polluted 0.20 £ 0.05 Burton et al. (2013)
Marine 0.03+£0.01 Gross et al. (2013)
Smoke 0.10 £ 0.04 Burton et al. (2013)

Volcanic 0.33 +0.03 Pappalardo et al. (2013)

As indicated by Papagiannopoulos et al. (2018), of the most importance in the
aerosol typing classification has the set of parameters: x4(355,1064), S33Z, and
§232/535> The decision for the selected parameters stems solely from the
lowest arithmetic value of the total Wilks’ lambda, 4 (Wilks, 1963). To this set,
the particle linear depolarization ratio at 532 nm was added.

The mean values of the optical properties (Dsss, bs32, D1osa, €355, €530, Us35) foOr
each layer calculated both manually and by Natali were used as inputs for the
Mahalanobis distance automatic aerosol classification algorithm.

3.4. Aerosol categories
Four different categories were created depending on the results from SCAN:
“pure”, “mixture of 27, “mixture of 3” and “no type”. The “pure” category
consists of the cases that SCAN counted only 1 aerosol type during their back-
trajectory. The “mixture of 2” consists of the cases that SCAN counted 2
aerosol types during their back-trajectory. The “mixture of 3” consists of the
cases that SCAN counted 3 aerosol types during their back-trajectory. Finally,
“no type” consists of the cases that SCAN was unable to identify the potential
source of the observed layers. Each of the categories mentioned above, was,
then, divided into subcategories depending on the typing results of SCAN. The
“pure” category was divided into 5 subcategories “Continental Polluted” (cp),
“Clean Continental” (cc), “Smoke” (bb), “Dust” (d) and “Marine” (m). The
“mixture of 2” category was divided into 5 subcategories, “Continental
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Polluted and Smoke”, “Continental Polluted and Clean Continental” (cp+cc),
“Continental Polluted and Marine” (cp+m), “Clean Continental and Marine”
(cctm) and “Continental Polluted and Dust” (cp+d). Finally, the “mixture of 3”
category was divided into 3 subcategories “Continental Polluted, Clean
Continental and Marine” (cptcc+m), “Continental Polluted, Smoke and
Marine” (cp+bb+m) and “Continental Polluted, Smoke and Dust” (cp+bb+d).
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Figure 3.8 Schematics of the methodology of this study.

The shorthands of Natali’s and Mahalanobis’s results were used so that the
comparison between the 3 different methods be feasible (Table 3.7).

Table 3.7 Correspondence between the aerosol types and shorthand, as they can be retrieved by Natali,
Mahalanobis and SCAN.

Aerosol types Natali Mahalanobis SCAN

Continental Continental Continental Clean Continental
(cc)
Continental Polluted Continental polluted  Continental polluted Continental polluted

(cp)

Smoke Smoke Smoke




Dust

(d

Marine

(m)

Continental and dust
(cp+d)

Dust and marine

(d+m)

Continental and smoke
(cp+hbb)

Dust and smoke

(d+bb)

Continental and marine
(cc+m)

Continental polluted and
marine

(cp+m)

Continental polluted and
clean continental

(cp+ce)

Continental and dust and
marine

(cc+d+m)

Continental and smoke
and marine

(cc+bb+m)

Continental polluted and
smoke and marine
(cptbb+m)

Continental and smoke
and dust

(cptbb+d)

Continental and clean
continental and marine
(cptcc+m)
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Dust

Marine
Continental dust
Marine mineral
Continental smoke
Dust polluted
Coastal

Coastal polluted

Mixed dust

Mixed smoke

Dust

Marine

Dust polluted
Mixed dust

Dust polluted

Dust

Marine

Continental and dust

Dust and marine

Continental  polluted and
smoke

Dust and smoke

Clean continental and marine

Continental ~ polluted and
marine

Continental polluted and clean
continental

Clean continental and dust
and marine

Clean continental and smoke
and marine

Continental ~ polluted and
smoke and marine

Continental and smoke and
dust

Continental and clean
continental and marine

The performance of Mahalanobis and Natali algorithms was studied for each of

the above categories.



4. Results

The results of the 3 different classification algorithms can be found at the Table
4.1. The date (dd/mm-hh:mm), bottom (m) and top (m) of each layer is also
given.

Table 4.1 Classification results from SCAN, Natali and Mahalanobis, for each date and layer.

Bottom Mahalanobis

SCAN classification Natali classification

(m)

classification

22/01-18:05 no type cc cc
13/04-19:45 1330 1570 cp cp dp
2410 2650 cp cc cc
07/05-20:45 2890 3190 no type m/cc cp
3910 4570 no type bb no type
04/06-19:17 1570 1810 cp cp cp
2710 3130 cp cc cc
3910 4590 cp cp cp
11/06-23:35 1270 1570 cp+m bb no type
1690 1990 cp cp cp
2015 2350 2710 no type cp cp
3370 3730 no type cc cc
16/07-21:00 1810 3130 bb cc cp+m/cc
20/07-23:59 1510 3250 cp+bb+m cc cc
30/07-19:25 1324 2041 cp+cctm cp cp
21:26 2830 3130 cp+d m/cc cp
3490 3790 cp m/cc m
4570 4930 cp+m d+m no type
5710 6010 cp+m cc+d+m/cc m
24/08-18:00 1204 1802 cc cp cp
03/09-20:16 1930 2710 no type cc+d+m/cc no type
04/01-15:18 2399 3296 no type cp+m/cc no type
07/01-15:19 965 1145 cp+cc cp+m/cc no type
1982 2191 cp+cc cp cp
21/03-18:21 1115 1294 cc+m cp cc
28/03-23:11 4701 4970 no type d no type
04/04-18:47 2290 3310 d cc+d+m/cc d+m
11/04-20:27 2050 2530 no type cc+d+m/cc d+m
14/04-21:00 1742 1922 cc bb no type
23/06-19:30 1930 3430 cp m/cc cp
4150 5110 d no type d+bb/cp
2016 27/06-21:07 1570 1870 cp+cc+m cc+bb+m/cc no type
2530 2890 no type m/cc no type
04/07-19:56 1750 1930 cp+bb cp+mlcc cc
2470 2710 no type cc cc
2950 3310 no type m/cc cc
07/07-19:01 1210 1510 cp cp cp
11/07-19:22 1090 2830 cp+d cc cc
3010 4630 no type cp+m/cc no type
25/08-18:29 1030 1870 cp+bb cc cp
2350 3850 cp cp+m/cc cc
29/08-19:16 1930 2590 bb cc cc
23/03-18:10 1990 2170 cp+d cp no type
30/03-18:08 1270 1450 cp+bb no type no type
1990 2350 cp+bb cc cc
2017 27/04-19:48 3250 4210 no type cc+d+m/cc d+m
22/05-19:01 1090 2170 cp+bb cp no type
08/06-19:14 1390 1750 cp cp+m/cc cc
2290 2650 m cp+m/cc no type
12/06-19:29 1630 1990 cp cp+micc cc
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15/06-20:00 1090 1930 cp+bb cc no type
2350 2650 cp+bb m/cc no type
2830 3250 d m/cc cc
3850 4270 d m/cc cc
22/06-19:18 1030 1570 cp+bb cp+bb/cc no type
2110 2590 no type cp+bb/cc no type
3130 3970 no type m/cc no type
4150 5230 no type cc cc
13/07-20:15 1810 3130 no type cc cc
19/07-18:57 1030 1450 cp+bb cp cp
1990 2530 bb cp cc
20/07-20:15 1030 1450 cp cp+bb no type
1870 2830 bb cp+m/cc cc
3490 4510 no type cc+d+m no type
4990 6010 no type cp+m no type
24/08-16:56 1068 1368 cp d+m no type
1968 2418 cp+bb cc no type
17:59 1668 2268 cp+bb cc no type
28/08-18:45 1750 1990 cp+bb cc cc
3250 3430 no type cc+d+m/cc d+m
4330 4570 no type no type no type
4810 5050 no type cc+bb+m no type
5710 5890 no type cp+m/cc cc
31/08-17:59 1218 1668 cp+bb cc no type
2118 2418 bb cc cc
18:26 1510 1750 cp+bb cc no type
2470 2950 cp+bb+d cc cc
07/09-16:33 1968 2268 cp cc cc
21/09-16:16 1968 2268 cp+bb cp no type
19/10-17:14 1930 2110 cp cc+bb+m/cc no type
21/06-20:30 1807 2375 cp+cc+m m/cc m
19/07-21:30 1710 2330 cp cc cc
2988 3571 no type no type no type
4011 4512 no type cc no type
26/07-20:00 1112 1352 cp cp cp
1434 2398 cp cp cp
30/07-21:45 1112 1516 cp+cc cp cp
1904 2667 no type cp cc
3070 3339 no type cp+m/cc cc
02/08-23:00 1120 2181 cp cp cp
2681 3212 no type cp cp
16/08-21:20 1613 2442 cp cc cc
27/08-19:00 1112 1673 cp cc cp
1934 2592 no type cp no type
3107 4310 cc cp+bb no type
4557 5341 no type cp+bb no type
6111 6313 no type cp+bb no type

The comparison between these three classification algorithms are shown in the
figures below (Fig. 4.1, Fig. 4.2, Fig. 4.3). The axes demonstrate the aerosol
types introduced in Table 3.8. The numbers in the cells indicate the number of
the aerosol layers classified by each aerosol classification algorithm.
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Natali vs Scan [counts]

Figure 4.1 Heatmap of Scan’s and Natali’s results comparison. The numbers in the cells indicate the number of
layers classified by NATALI (row label) and SCAN (column label).

Mahalanobis vs Scan [counts]

Eig9

8

8
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Figure 4.2 Heatmap of Scan’s and Mahalanobis’s results comparison. The numbers in the cells indicate the
number of layers classified by MAHALANOBIS (row label) and SCAN (column label).
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Mahalanobis vs Natali [counts]
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Figure 4.3 Heatmap of Natali’s and Mahalanobis’s results comparison. The numbers in the cells indicate the
number of layers classified by MAHALANOBIS (row label) and NATALI (column label).

4.1. Pure types

To further investigate the discrepancies between the three aerosol classification
algorithms, SCAN’s results are classified into 4 major categories: “pure” (36%,
35 cases, yellow slice of the pie, Fig. 4.4), “mixture of 2” (26%, 25 cases, cyan
slice of the pie, Fig. 4.4), “mixture of 3” (5%, 5 cases, magenta slice of the pie,
Fig. 4.4) and “no type” (33%, 32 cases, grey slice of the pie, Fig. 4.4).

[__pure
— mix2
— mix3
I o type 5.15%

25.77%

36.08%

Figure 4.4 Major categories of SCAN’s results.

Each of the above categories is divided into minor subcategories depending on
the typing results of SCAN.

The “pure” major category is divided into 5 minor subcategories: “Continental
Polluted”, “Clean Continental”, “Smoke”, “Marine” and “Dust”.
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| 8.57%

14.29%

2.86%

11.43%
62.85%

Figure 4.5 Minor categories of SCAN’s results for major category “pure”.

The “Continental Polluted” category (dark red slice of the pie, Fig. 4.5)
represents the 63% (22 cases) of the pure aerosol types detected by SCAN. The
“Smoke” category (dark grey slice of the pie, Fig. 4.5) represents the 14% (5
cases) of pure aerosol types detected by SCAN. The “Dust” category (orange
slice of the pie, Fig. 4.5) represents the 11% (4 cases) of the pure aerosol types
detected by SCAN. The “Clean Continental” category (green slice of the pie,
Fig. 4.5) represents the 8% of the pure aerosol types detected by SCAN.
Finally, the “Marine” category (blue slice of the pie, Fig.4.5) represents the 3%
(1 case) of the pure aerosol types detected by SCAN.

4.1.1. Continental Polluted

The Mahalanobis algorithm classified as “continental polluted” the 36% of the
SCAN “continental polluted” cases (Fig. 4.6, left part of the figure, black
column). At the same time, Mahalanobis classified as “clean continental” the
40% of the same cases (Fig. 4.6, left part of the figure, blue column), while it
couldn’t classify the 14% of the SCAN’s cp cases (Fig. 4.6, left part of the
figure, orange column). The 5% of the SCAN’s cp cases were classified by
Mahalanobis as mixtures, specifically as “dust and smoke” (Fig. 4.6, left part of
the figure, olive column). Finally, the 5% of the SCAN’s cp cases were
classified by Mahalanobis as “marine” (Fig. 4.6, left part of the figure, magenta
column).

Natali algorithm classified as “continental polluted” the 36% (Fig. 4.6, right
part of the figure, black column) of the same cases mentioned above
(“continental polluted”), and as “clean continental” the 27% of them (Fig. 4.6,
right part of the figure, blue column). The 27% of the SCAN’s cp cases were
classified by Natali as mixtures, specifically as “dust and marine” (Fig. 4.6,
right part of the figure, medium blue column), as “continental polluted and
marine” (Fig. 4.6, right part of the figure, brown column), as “continental
polluted and smoke” (Fig. 4.6, right part of the figure, pink column) and “clean
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continental, smoke and marine” (Fig. 4.6, right part of the figure, green
column). Finally, the 9% of the SCAN’s cp cases were classified by Natali as
“marine or continental” (Fig. 4.6, right part of the figure, dark blue column).

. cp
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gg— B d

80 B m

75 | I d+bb/cp

70 - e
— 65 Bl cp+tm/ce
X 60- I cp+bb
> 95 1 B cc+bb+m/cc
o 50
S 45 I G+ m
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Figure 4.6 Frequencies of observed aerosol types by Mahalanobis and Natali for the layers classified by SCAN as
“Continental Polluted”.

Natali and Mahalanobis have a 59% agreement in their results.
Simultaneously, both Mahalanobis and Natali result with a high frequency of
“clean continental” aerosol type for the layers classified as “continental
polluted” by SCAN. Finally, the 100% of Mahalanobis “no type” results
(concerning the cp cases by SCAN), classified by Natali as a mixture.

In Table 4.2 we introduce the mean values of the intensive optical properties
for the layers classified as “continental polluted” by SCAN for this study.

Table 4.2 Mean values of intensive optical properties of the “continental polluted” classified layers by SCAN.
Intensive optical properties Mean =+ error

AE355/532 1.30+0.25
C1355/532 1.29+0.24
C1532/1064 0.99 £0.14
CR355/532 1.70+0.17
CR532/1064 2.02+0.21
LR355 [sr] 49+5
LR532 [sr] 52+5
LPDR532 [%)] 3+1

4.1.2. Clean Continental
The Mahalanobis algorithm classified as “continental polluted” the 33% of the
SCAN “clean continental” cases (Fig. 4.7, left part of the figure, black
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column). At the same time, couldn’t classify the 67% of them (Fig. 4.7, left
part of the figure, orange column).

I cp
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Figure 4.1 Frequencies of observed aerosol types by Mahalanobis and Natali for the layers classified by SCAN as
“Clean Continental”.

Natali algorithm classified as “continental polluted” the 33% (Fig. 4.7, right
part of the figure, black column) of the same cases mentioned above (“clean
continental’’) and as “smoke” the other 33% of them (Fig. 4.7, right part of the
figure, red column). Finally, the last 33% of the SCAN’s cc cases were
classified by Natali as “continental polluted and smoke” (Fig. 4.7, right part of
the figure, pink column).

Natali and Mahalanobis algorithm have 33% agreement in their results
concerning the SCAN’s cc type.

Mahalanobis has a high percentage of “no type” results (67%), 50% of them
classified by Natali as a mixture.

Table 4.3 Mean values of intensive optical properties of the “clean continental” classified layers by SCAN.
Intensive optical properties Mean =+ error

AE355/532 1.06 £0.21
Cl1355/532 2.15+0.18
Cl1532/1064 0.99 +£0.10
CR355/532 2.43£0.15
CR532/1064 1.98 +0.14
LR355 [sr] 50+ 4
LR532 [sr] 73+6
LPDR532 [%)] 2+1
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In Table 4.3 we introduce the mean values of the intensive optical properties
for the layers classified as “clean continental” by SCAN for this study.

4.1.3. Smoke
The Mahalanobis algorithm classified as “clean continental” the 100% of the
SCAN “smoke” cases (Fig. 4.8, left part of the figure, blue column).

55 I cc+bb+m/cc
2 I

40 [ no type

35 - B cc+d+m

30 -

25 - !
20 - .
15 | ]
10 - .
5 4 ]
0 I

T
Mahalanobis Natali

Frequency [%]

Classification algorithms

Figure 4.8 Frequencies of observed aerosol types by Mahalanobis and Natali for the layers classified by SCAN as
“Clean Continental”.

Natali algorithm classified as “continental polluted” the 20% (Fig. 4.8, right
part of the figure, black column) of the “smoke” cases of SCAN and as “clean
continental” the other 40% (Fig. 4.8, right part of the figure, blue column).
Finally, the last 40% of the SCAN’s bb cases were classified by Natali as
“continental polluted and marine” (Fig. 4.8, right part of the figure, brown
column).

We can observe that Natali and Mahalanobis have 40% agreement in their
results concerning the SCAN’s bb type.

Moreover, Mahalanobis has a high percentage of “clean continental” results
(100%).

In Table 4.4 we introduce the mean values of the intensive optical properties
for the layers classified as “smoke” by SCAN for this study.

Table 4.4 Mean values of intensive optical properties for the “smoke” classified layers by SCAN.

1.55 +0.30
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CI1355/532 0.92 +0.25
CI1532/1064 1.33+0.15
CR355/532 1.47 +0.15
CR532/1064 2.58 +0.29
LR355 [sr] 46 +8
LR532 [sr] 37+4
LPDR532 [%] 3+1

4.1.4. Dust

The Mahalanobis algorithm classified as “clean continental” the 50% of the
SCAN dust cases (Fig. 4.9, left part of the figure, blue column). At the same
time, Mahalanobis classified as “dust and smoke” or “clean continental” the
25% of the same cases (Fig. 4.9, left part of the figure, olive column), while the
last 25% classified it as “dust and marine” (Fig. 4.9, left part of the figure,
medium blue column).
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Figure 4.2 Frequencies of observed aerosol types by Mahalanobis and Natali for the layers classified by SCAN as
“dust”.

For the same cases, Natali algorithm classified as “marine” or “clean
continental” the 50% (Fig. 4.9, right part of the figure, dark blue column) and
as “clean continental, dust and marine” the other 25% (Fig. 4.9, right part of the
figure, purple column). Finally, the last 25% of the SCAN’s “dust” cases Natali
was not able to classify it (Fig. 4.9, right part of the figure, orange column).

Natali and Mahalanobis algorithm have 25% agreement at their results
concerning the SCAN’s d type.
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Moreover, Mahalanobis has a relatively high percentage of “clean continental”
results (50%).

In Table 4.5 we introduce the mean values of the intensive optical properties
for the layers classified as “dust” by SCAN for this study.

Table 4.5 Mean values of intensive optical properties for the “dust” classified layers by SCAN.
Intensive optical properties Mean =+ error

AE355/532 0.94+0.22
C1355/532 0.43+0.22
C1532/1064 0.82+0.13
CR355/532 1.25+0.12
CR532/1064 1.78 £ 0.16
LR355 [sr] 39+3
LR532 [sr] 32+3
LPDR532 11+3

4.1.5. Marine
The Mahalanobis algorithm couldn’t classify the 100% of the SCAN “marine”
cases (Fig. 4.10, left part of the figure, orange column), while Natali classified
the 100% of the SCAN “marine” cases as “continental polluted and marine” or
“clean continental” (Fig. 4.10, right part of the figure, brown column).
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Figure 4.3 Frequencies of observed aerosol types by Mahalanobis and Natali for the layers classified by SCAN as
“marine”.

We should mention here that there is only one case classified by SCAN as a
pure “marine” type.

In Table 4.6 we introduce the mean values of the intensive optical properties
for the layers classified as “marine” by SCAN for this study.
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Table 4.6 Mean values of intensive optical properties for the “marine” classified layers by SCAN.
Intensive optical properties Mean =+ error

AE355/532 0.42 +£0.29
CI1355/532 1.14+0.29
C1532/1064 0.88 +0.17
CR355/532 1.59 +£0.18
CR532/1064 1.85+0.21
LR355 [sr] 29+3
LR532 [sr] 39+5
LPDR532 1+1

4.2. Mixtures of 2 aerosol types
The “mixture of 2” major category is divided into 5 minor subcategories:
“Continental Polluted and Smoke”, “Continental Polluted and Dust”,
“Continental Polluted and Clean Continental”, “Continental Polluted and
Marine” and “Clean Continental and Marine”.

Rl cp+bb

I cp+d

T cp+ce

I cp+m 12%

cc+m

12%

4%

Figure 4.4 Minor categories of SCAN’s results for major category “mixture of 2”.

The “Continental Polluted and Smoke” category (black slice of the pie, Fig.
4.11) represents the 60% (15 cases) of the mixture of 2 aerosol types detected
by SCAN. The “Continental Polluted and Dust” category (red slice of the pie,
Fig. 4.11) represents the 12% (3 cases) of the mixture of 2 aerosol types
detected by SCAN. The “Continental Polluted and Clean Continental” category
(green slice of the pie, Fig. 4.11) represents the 12% (3 cases) of the mixture of
2 aerosol types detected by SCAN. The “Continental Polluted and Marine”
category (blue slice of the pie, Fig. 4.11) represents the 12% of the mixture of 2
aerosol types detected by SCAN. Finally, the “Clean Continental and Marine”
category (cyan slice of the pie, Fig. 4.11) represents the 4% (1 case) of the
mixture of 2 aerosol types detected by SCAN.

4.2.1. Continental Polluted and Smoke
The Mahalanobis algorithm classified as “continental polluted” the 13% of the
SCAN “continental polluted and smoke” cases (Fig. 4.12, left part of the figure,
black column). At the same time, Mahalanobis classified as “clean continental”
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the 20% of the same cases (Fig. 4.12, left part of the figure, blue column),
while it couldn’t classify the 67% of the SCAN’s cp+bb cases (Fig. 4.12, left
part of the figure, orange column).

Natali algorithm classified as “continental polluted” the 33% (Fig. 4.12, right
part of the figure, black column) of the same cases mentioned above
(“continental polluted and smoke”), and as “clean continental” the 40% of them
(Fig. 4.12, right part of the figure, blue column). The 13% of the SCAN’s
cp+bb cases were classified by Natali as mixtures, specifically as “continental
polluted and marine or clean continental” (Fig. 4.12, right part of the figure,
brown column). The 7% of the SCAN’s cp+bb cases were classified by Natali
as “marine or continental” (Fig. 4.12, right part of the figure, dark blue column)
and the last 7% as “no type”.
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Figure 4.5 Frequencies of observed aerosol types by Mahalanobis and Natali for the layers classified by SCAN as
“Continental Polluted and Smoke”.

In Table 4.7 we introduce the mean values of the intensive optical properties
for the layers classified as “continental polluted and smoke” by SCAN for this
study.

Table 4.7 Mean values of intensive optical properties for the “continental polluted and smoke” classified layers
by SCAN.

Intensive optical properties Mean + error

AE355/532 1.63 +0.40
CI355/532 0.78 +0.35
C1532/1064 1.31+0.21
CR355/532 1.41+0.20
CR532/1064 2.67 £0.40
52.73+£7.95
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LPDR532 [% 4.02+1.94
4.2.2. Continental Polluted and Dust

The Mahalanobis algorithm classified as “continental polluted” the 33% of the
SCAN *“continental polluted and dust” cases (Fig. 4.13, left part of the figure,
black column). At the same time, Mahalanobis classified as “clean continental”
the 33% of the same cases (Fig. 4.13, left part of the figure, blue column),
while it could not classify the 33% of the SCAN’s cp+d cases (Fig. 4.13, left
part of the figure, orange column).
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Figure 4.6 Frequencies of observed aerosol types by Mahalanobis and Natali for the layers classified by SCAN as
“Continental Polluted and Dust”.

Natali algorithm classified as “continental polluted” the 33% (Fig. 4.13, right
part of the figure, black column) of the same cases mentioned above
(“continental polluted and dust”), and as “clean continental” the 33% of them
(Fig. 4.13, right part of the figure, blue column). The 33% of the SCAN’s cp+d
cases were classified by Natali as “marine or continental” (Fig. 4.13, right part
of the figure, dark blue column).

In Table 4.8 we introduce the mean values of the intensive optical properties
for the layers classified as “continental polluted and dust” by SCAN for this
study.

Table 4.8 Mean values of intensive optical properties for the “continental polluted and dust” classified layers
by SCAN.

Intensive optical properties Mean = error
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AE355/532 1.04 +0.28
C1355/532 0.83+0.28
C1532/1064 0.93+0.17
CR355/532 1.41 +0.17
CR532/1064 1.91+0.22
LR355 [sr] 44.67 +5.07
LR532 [sr] 43.33+5.13
LPDR532 [%] 4.33+1.68

4.2.3. Continental Polluted and Clean Continental
The Mahalanobis algorithm classified as “continental polluted” the 33% of the
SCAN “continental polluted and clean continental” cases (Fig. 4.14, left part of
the figure, black column). At the same time, Mahalanobis classified as “no
type” the 67% of the same cases (Fig. 4.14, left part of the figure, orange
column).
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Figure 4.7 Frequencies of observed aerosol types by Mahalanobis and Natali for the layers classified by SCAN as
“Continental Polluted and Clean Continental”.
Natali algorithm classified as “continental polluted” the 67% (Fig. 4.14, right
part of the figure, black column) of the same cases mentioned above
(“continental polluted and clean continental), and as “continental polluted and

marine or clean continental” the 33% of them (Fig. 4.14, right part of the
figure, brown column).

In Table 4.9 we introduce the mean values of the intensive optical properties

for the layers classified as “continental polluted and clean continental” by
SCAN for this study.
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Table 4.9 Mean values of intensive optical properties for the “continental polluted and clean continental”
classified layers by SCAN.

Intensive optical properties Mean =+ error

AE355/532 1.04+0.28
C1355/532 0.83+0.28
C1532/1064 0.93+0.17
CR355/532 1.41+0.17
CR532/1064 1.91+0.22
LR355 [sr] 44.67 +5.07
LR532 [sr] 43.33+5.13
LPDR532 [% 4.33+1.68

4.2.4. Continental Polluted and Marine
The Mahalanobis algorithm classified as “marine” the 50% of the SCAN
“continental polluted and marine” cases (Fig. 4.15, left part of the figure,
magenta column). At the same time, Mahalanobis classified as “no type” the
other 50% of the same cases (Fig. 4.15, left part of the figure, orange column).
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Figure 4.8 Frequencies of observed aerosol types by Mahalanobis and Natali for the layers classified by SCAN as
“Continental Polluted and Marine”.

Natali algorithm classified as “smoke” the 50% (Fig. 4.15, right part of the
figure, red column) of the same cases mentioned above (“continental polluted
and marine”), and as ‘“clean continental, dust and marine” the other 50% of
them (Fig. 4.15, right part of the figure, purple column).

In Table 4.10 we introduce the mean values of the intensive optical properties
for the layers classified as “continental polluted and marine” by SCAN for this
study.
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Table 4.10 Mean values of intensive optical properties for the “continental polluted and marine” classified
layers by SCAN.

Intensive optical properties Mean =+ error

AE355/532 0.51 +0.32
C1355/532 0.33+0.32
C1532/1064 0.74 +0.18
CR355/532 1.22+0.16
CR532/1064 1.68+0.22
LR355 [sr] 47.00 +6.14
LR532 [sr] 49.33 + 6.58
LPDR532 8.22 +4.01

4.2.5. Clean Continental and Marine
The Mahalanobis algorithm classified as “clean continental” the 100% of the
SCAN “clean continental and marine” cases (Fig. 4.16, left part of the figure,
blue column).
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Figure 4.9 Frequencies of observed aerosol types by Mahalanobis and Natali for the layers classified by SCAN as
“Clean Continental and Marine”.

Natali algorithm classified as “continental polluted” the 100% (Fig. 4.16, right
part of the figure, red column) of the same cases mentioned above (“continental
polluted and marine”).

In Table 4.11 we introduce the mean values of the intensive optical properties
for the layers classified as “clean continental and marine” by SCAN for this
study.
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Table 4.11 Mean values of intensive optical properties for the “clean continental and marine” classified layers
by SCAN.

Intensive optical properties Mean =+ error

AE355/532 0.69 + 0.29
C1355/532 0.14 +0.29
C1532/1064 0.73+0.17
CR355/532 1.78 £0.21
CR532/1064 1.66 +0.19
LR355 [sr] 51.00 + 5.88
LR532 [sr] 63.00 + 7.26
LPDR532 [% 1.99 +0.81

4.3. Mixtures of 3 aerosol types
The “mixture of 3” major category is divided into 3 minor subcategories:
“Continental Polluted, Clean Continental and Marine”, “Continental Polluted,
Smoke and Marine” and “Clean Continental, Smoke and Dust”.

I cp+cc+m
I cp+bb+m
T cp+bb+d

20%

20%

Figure 4.10 Minor categories of SCAN’s results for major category “mixture of 3”.

The “Continental Polluted, Clean Continental and Marine” category (black
slice of the pie, Fig. 4.17) represents the 60% (3 cases) of the mixture of 3
aerosol types detected by SCAN. The “Continental Polluted, Smoke and
Marine” category (red slice of the pie, Fig. 4.17) represents the 20% (1 cases)
of the mixture of 3 aerosol types detected by SCAN. Finally, the “Clean
Continental, Smoke and Dust” category (green slice of the pie, Fig. 4.17)
represents the last 20% (1 case) of the mixture of 3 aerosol types detected by
SCAN.

4.3.1. Continental Polluted, Clean Continental and Marine
The Mahalanobis algorithm classified as “continental polluted” the 33 % of the
SCAN “continental polluted, clean continental and marine” cases (Fig. 4.18,
left part of the figure, black column). At the same time, Mahalanobis classified
as “marine” the 33% of the same cases (Fig. 4.18, left part of the figure,
magenta column). Finally, Mahalanobis wasn’t able to classify the last 33%
(Fig. 4.18, left part of the figure, orange column).
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Figure 4.11 Frequencies of observed aerosol types by Mahalanobis and Natali for the layers classified by SCAN
as “Continental Polluted, Clean Continental and Marine”.

Natali algorithm classified as “continental polluted” the 33% (Fig. 4.18, right
part of the figure, black column) of the same cases mentioned above
(“continental polluted, clean continental and marine”), as “marine or clean
continental” the 33% of them (Fig. 4.18, right part of the figure, dark blue
column) and as “clean continental, smoke and marine” the last 33% of the
cases SCAN classified as “continental polluted, clean continental and marine”.

In Table 4.12 we introduce the mean values of the intensive optical properties
for the layers classified as “continental polluted, clean continental and marine”
by SCAN for this study.

Table 4.12 Mean values of intensive optical properties for the “continental polluted, clean continental and
marine” classified layers by SCAN.

Intensive optical properties Mean =+ error

AE355/532 0.77+0.18
CI355/532 1.30 +0.18
CI1532/1064 0.98+0.10
CR355/532 1.70 £0.12
CR532/1064 2.01+0.13
LR355 [sr] 43.00 + 3.24
LR532 [sr] 55.67 £ 4.78
LPDR532 [%] 2.89 +1.17

4.3.2. Continental Polluted, Smoke and Marine
The Mahalanobis algorithm classified as “clean continental” the 100% of the
SCAN *“continental polluted, smoke and marine” cases (Fig. 4.19, left part of
the figure, blue column).
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Figure 4.12 Frequencies of observed aerosol types by Mahalanobis and Natali for the layers classified by SCAN
as “Continental Polluted, Smoke and Marine”.

At the same time, Natali algorithm classified as “clean continental” the 100%
(Fig. 4.19, right part of the figure, blue column) of the same cases mentioned
above (“continental polluted, smoke and marine”).

Table 4.13 Mean values of intensive optical properties for the “continental polluted, smoke and marine”
classified layers by SCAN.

Intensive optical properties Mean =+ error

AE355/532 0.98 +0.13
C1355/532 1.60+0.13
C1532/1064 0.92+0.08
CR355/532 1.91+0.10
CR532/1064 1.90 +0.10
LR355 [sr] 42.00 +2.20
LR532 [sr] 54.00 + 2.85
LPDR532 [%] 3.48 +0.66

In Table 4.13 we introduce the mean values of the intensive optical properties
for the layers classified as “continental polluted, sSmoke and marine” by SCAN
for this study.

4.3.3. Continental Polluted, Smoke and Dust
The Mahalanobis algorithm classified as “clean continental” the 100% of the
SCAN “continental polluted, smoke and dust” cases (Fig. 4.20, left part of the
figure, blue column).
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Figure 4.13 Frequencies of observed aerosol types by Mahalanobis and Natali for the layers classified by SCAN
as “Continental Polluted, Smoke and Dust”.

At the same time, Natali algorithm classified as “clean continental” the 100%
(Fig. 4.20, right part of the figure, blue column) of the same cases mentioned
above (“continental polluted, smoke and dust”).

Table 4.14 Mean values of intensive optical properties for the “continental polluted, smoke and dust” classified
layers by SCAN.

Intensive optical properties Mean =+ error

AE355/532 1.25+0.25
CI1355/532 1.01+0.25
CI1532/1064 0.95 +0.14
CR355/532 150 +0.15
CR532/1064 1.93+0.19
LR355 [sr] 51.00 + 5.09
LR532 [sr] 47.00 + 4.71
LPDR532 4.08 + 1.4

In Table 4.14 we introduce the mean values of the intensive optical properties
for the layers classified as “continental polluted, smoke and dust” by SCAN for
this study.



5. Conclusions and Future Work

In this study we developed an improved algorithm, for automated aerosol
optical property layer identification based on backward trajectory analysis and
satellite data in combination with the application of a number of criteria. SCAN
uses the HYSLPIT (6-days) back-trajectories and takes into account the
atmospheric layer height above the aerosol source regions (<1km for marine,
<2 km for continental polluted, clean continental and dust, 3km for smoke) and
distance from the potential fire spot (<8km) as well as fire spot confidence
(>80%). Its classification results are based on the amount of time that the air
parcel spends above certain already characterized aerosol source region. It is
capable of handling a considerable amount of layers in a negligible time. The
innovation of SCAN is that it can be used from stations that have not the full
set of optical properties in order to characterize the observed aerosol layers
above them. However, the above criteria may not serve well all the layers
under study.

For the first time, a comparison between three different aerosol classification
methods, named: (1) “Mahalanobis distance automatic aerosol type
classification”, (2) “Neural Network Aerosol Typing Algorithm” (NATALI)
and (3) “Source Classification Analysis” (SCAN) is shown.

The lidar station selection depended on the availability of the vertical profiles
of the full set (3p + 2a + 5) of aerosol optical properties: backscatter coefficient
(bsss, bssp, D1ges), Xtinction coefficient (esss, €s3p), Lidar Ratio (LRzss, LRs3,),
Angstrém exponent (AE355/532, Clssgs3o, C|532/1064) and Linear Particle
Depolarization Ratio (LPDRs3,) at the EARLINET database during the period
2014-2018. The 4 lidar stations from which we obtained the aerosol optical
properties data : Kuopio (Finland), Bucharest (Romania), Leipzig (Germany)
and Potenza (Italy).

Moreover, 48 dates of lidar observations by multiwavelength Raman and
depolarization lidars from the aforementioned lidar stations have been studied
in the frame of this Thesis. For some dates, more than one layer has been
observed increasing the number of layers to 97.

Four different categories were created depending on the results from SCAN:
“pure”, “mixture of 27, “mixture of 3 and “no type”. Each of these categories
was, then, divided into subcategories depending on the typing results of SCAN.
The “pure” category was divided into 5 subcategories “Continental Polluted”

(cp), “Clean Continental” (cc), “Smoke” (bb), “Dust” (d) and “Marine” (m).



Page | 68

The “mixture of 2” category was divided into 5 subcategories, “Continental
Polluted and Smoke”, “Continental Polluted and Clean Continental” (cp+cc),
“Continental Polluted and Marine” (cp+m), “Clean Continental and Marine”
(cctm) and “Continental Polluted and Dust” (cp+d). Finally, the “mixture of 3”
category was divided into 3 subcategories “Continental Polluted, Clean
Continental and Marine” (cptcctm), “Continental Polluted, Smoke and
Marine” (cp+bb+m) and “Continental Polluted, Smoke and Dust” (cp+bb+d).

The performance of the Mahalanobis and Natali algorithms was studied for
each of the above categories. The mean values of aerosol optical properties for
each of these categories have been calculated.

Natali is an automatic aerosol optical property dependent classification
algorithm. It is able to identify pure aerosol types, mixtures of two aerosol
types and mixtures of three aerosol types. Natali takes as inputs the profiles of
aerosol optical properties uploaded to the EARLINET database and gives all
the classification results together with the mean values and their uncertainties
of all aerosol optical properties of the layers under study. We showed that this
algorithm is capable to well classify the pure continental polluted aerosol layers
but it has a difficulty to classify the pure clean continental and pure smoke
aerosol types probably due to the overlapping mean values of aerosol optical
properties of these aerosol types, compared to the results obtained from the
SCAN classification algorithm.

Mahalanobis is an automatic aerosol optical property dependent classification
algorithm. It is able to identify pure aerosol types and mixtures of two aerosol
types. Mahalanobis takes as inputs the mean values of the aerosol optical
properties of each layer under study. We showed that this algorithm is capable
to classify the pure continental polluted aerosol layers but it has a difficulty to
classify the pure clean continental and pure smoke aerosol types probably due
to the overlapping mean values of aerosol optical properties of these aerosol
types, just like Natali, compared to the results obtained from the SCAN
classification algorithm. Finally, Mahalanobis is not able to classify aerosol
layers which consist of more than two aerosol types with relatively equal
contribution to the layer, compared to the results from SCAN classification
algorithm. These layers are classified as “no type” by Mahalanobis algorithm.

Concerning the mean values of aerosol optical properties, we found relatively
smaller values compared to those of the literature, especially to the “lidar
ratios” and the “linear particle depolarization ratios*. This behavior might be a
result of the dependence of the optical property on the time the trajectory spent
above the source area, concerning the pure types.
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In the future, we plan to study the role of the atmospheric humidity onto the
aerosol transformation and the change that this contribution induces to the
aerosol optical properties. Moreover, we plan to further investigate the role of
the predominant aerosol type to the optical properties of the aerosols, through
the percentages that Mahalanobis and Scan bring upon.

We would like to perform the same methodology but without the use of the
linear particle depolarization ratio parameter to investigate how this parameter
contributes to the final classification of the two aerosol optical property
dependent algorithms. Finally, but most importantly, we plan to perform our
methodology to a considerably larger amount of layers so that the statistical
analysis will be statistically significant.
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