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Abstract 

The main objective of this M.Sc. Thesis was to compare the aerosol 

classification results of three different aerosol classification methods, named:  

(1) “Mahalanobis distance automatic aerosol type classification”, (2) “Neural 

Network Aerosol Typing Algorithm” (NATALI) and (3) “Source Classification 

Analysis” (SCAN). The current work has been triggered by both the difficulties 

on aerosol typing due to aerosol mixtures and the demand on aerosol properties 

studies to quantify assessments of aerosol radiative impacts on climate. The 

data selection for this study has been made through the EARLINET database 

depending on the aerosols optical properties availability, specifically 

concerning the backscatter (b) extinction (a) and linear particle depolarization 

ratio (δ) values as 3b+2a+1δ. Ninety seven aerosol layers from four 

EARLINET stations (Bucharest, Kuopio, Leipzig and Potenza) have been 

classified. 

In this M.Sc. Thesis we firstly introduce a new classification method called 

SCAN. It uses HYSLPIT (6-days) back-trajectories and takes into account the 

atmospheric layer height above the aerosol source regions (<1km for marine, 

<2 km for continental polluted, clean continental and dust, 3km for smoke) and 

distance from the potential fire spot (<8km) as well as fire spot confidence 

(>80%). Its classification results are based on the amount of time that the air 

parcel spends above certain already characterized aerosol source region. It is 

capable of handling a considerable amount of layers in a negligible time. 

However, the above criteria may not serve well all the layers under study. Also, 

SCAN does not take into account the tropospheric humidity  which plays a 

crucial role to the aerosol modification. 

We show that Natali is capable to well classify the pure continental polluted 

aerosol layers but it has a difficulty to classify the pure clean continental and 

pure smoke aerosol types probably due to the overlapping mean values of 

aerosol optical properties of these aerosol types, compared to SCAN 

classification algorithm.  

We also show that Mahalanobis is capable to classify the pure continental 

polluted aerosol layers, having a difficulty to classify the pure clean continental 

and pure smoke aerosol types probably due to the overlapping mean values of 

aerosol optical properties of these aerosol types, just like Natali, compared to 

SCAN classification algorithm. Finally, Mahalanobis is not able to classify 

aerosol layers which consist of more than two aerosol types with relatively 
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equal contribution to the layer, compared to SCAN classification algorithm. 

These layers are classified as “no type” by Mahalanobis algorithm. 

Concerning the mean values of aerosol optical properties, we found relatively 

smaller values compared to those available in the literature, especially to the 

“lidar ratios” and the “linear particle depolarization ratios“. This behavior 

might be a result of the dependence of the optical properties on the time the 

trajectory spent above the source area, concerning the pure types. 
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Περίληψη 

Αντικείμενο της παρούσας διπλωματικής εργασίας αποτέλεσε η σύγκριση των 

αποτελεσμάτων τριών διαφορετικών μεθόδων, “Mahalanobis distance 

automatic aerosol type classification”, “Neural Network Aerosol Typing 

Algorithm” (NATALI) and “Source Classification Analysis” (SCAN), οι 

οποίες κατηγοριοποιούν τα αιωρούμενα σωματίδια της ατμόσφαιρας σε 

συγκεκριμένες κατηγορίες. Αφορμή για την εκπόνηση της συγκεκριμένης 

διπλωματικής εργασίας αποτέλεσε τόσο η δυσκολία για γρήγορη και εύκολη 

κατηγοριοποίηση των αιωρούμενων σωματιδίων, όσο και η ζήτηση των 

ιδιοτήτων των αιωρούμενων σωματιδίων από τα κλιματικά και μετεωρολογικά 

μοντέλα με σκοπό τη μελέτη της επίδρασης των αιωρούμενων σωματιδίων 

στον καιρό και το κλίμα. Χρησιμοποιήθηκαν δεδομένα από τη βάση 

δεδομένων του δικτύου “EARLINET”, ανάλογα με τη διαθεσιμότητα των 

3b+2a+1δ οπτικών ιδιοτήτων των αιωρούμενων σωματιδίων. Συνολικά, 

μελετήθηκαν ενενήντα επτά στρωματώσεις αιωρούμενων σωματιδίων από 

τέσσερις σταθμούς του δικτύου “EARLINET” (Βουκουρέστι, Κουόπιο, Λειψία 

και Ποτέντσα). 

Ο αλγόριθμος Scan χρησιμοποιεί τις οπισθοτροχιές από το μοντέλο HYSPLIT 

και λαμβάνει υπόψην του το ύψος της οπισθοτροχιάς πάνω από τις πηγές 

(<1km για τις θαλάσσιες πηγές, <2km για τις ρυπασμένες ηπειρωτικές πηγές, 

μη ρυπασμένες ηπειρωτικές και πηγές ερημικής σκόνης, <3km για τις πηγές 

καπνού). Τα αποτελέσματά της κατηγοριοποίησης από αυτόν τον αλγόριθμο 

στηρίζονται στο χρόνο παραμονής της οπισθοτροχιάς πάνω από τις πηγές 

αιωρούμενων σωματιδίων. Είναι γρήγορος και αποτελεσματικός αλγόριθμος, 

ενώ δεν εξαρτάται από τις οπτικές ιδιότητες των αιωρούμενων σωματιδίων. 

Ωστόσο, τα παραπάνω κριτήρια ενδεχομένως να μην ικανοποιούν όλες τις 

εμφανιζόμενες στρωματώσεις αιωρούμενων σωματιδίων. Τέλος, το Scan δε 

λαμβάνει υπόψη του την επίδραση της ατμοσφαιρικής υγρασίας στις οπτικές 

ιδιότητες των αιωρούμενων σωματίδιων. 

Παρατηρήσαμε ακόμη  ότι ο αλγόριθμος Natali είναι ικανός να 

κατηγοριοποιήσει σωστά τα ρυπασμένα ηπειρωτικά αιωρούμενα σωματίδια. 

Παρατηρείται, όμως, μια δυσκολία στην κατηγοριοποίηση των μη ρυπασμένων 

ηπειρωτικών αιωρούμενων σωματιδίων καθώς και των αιωρούμενων 

σωματιδίων από καύση βιομάζας, πιθανώς λόγω των κοινών τιμών των 

οπτικών ιδιοτήτων που τα χαρακτηρίζουν. 

Επιπρόσθετα, παρατηρούμε ότι ο αλγόριθμος Mahalanobis είναι ικανός να 

κατηγοριοποιήσει σωστά τα ρυπασμένα ηπειρωτικά αιωρούμενα σωματίδια, 
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όμως, υπάρχει και μια δυσκολία στην κατηγοριοποίηση των μη ρυπασμένων 

ηπειρωτικών αιωρούμενων σωματιδίων και των αιωρούμενων σωματιδίων από 

καύση βιομάζας, πιθανώς λόγω των κοινών τιμών των οπτικών ιδιοτήτων που 

τα χαρακτηρίζουν. Τέλος, παρατηρούμε ότι ο αλγόριθμος Mahalanobis, 

αντιμετωπίζει μια δυσκολία στο να κατηγοριοποιήσει σωστά τα αιωρούμενα 

σωματίδια στρωματώσεων οι οποίες περιέχουν μίξη αιωρούμενων σωματιδίων 

με περίπου ισάξια συνεισφορά στη μελετούμενη στρωμάτωση. 

Σε ό,τι αφορά τις μέσες τιμές των οπτικών ιδιοτήτων των αιωρούμενων 

σωματιδίων που εντοπίζονται σε στρωματώσεις με έναν τύπο αιωρούμενων 

σωματιδίων, παρατηρούμε ότι είναι μικρότερες συγκριτικά με τις αντίστοιχες 

μέσες τιμές που αναφέρονται στην σχετική διεθνή  βιβλιογραφία. Ενδεχομένως 

αυτό να οφείλεται στην επίδραση της ατμοσφαιρικής υγρασίας, στις ιδιότητες 

των αιωρούμενων σωματιδίων, καθώς επίσης, και στην επίδραση του χρόνου 

παραμονής τους πάνω από την πηγή στις οπτικές ιδιότητες των αιωρούμενων 

σωματιδίων.  

Η παρούσα διπλωματική εργασία αποτελείται από πέντε κεφάλαια. Στο 

Κεφάλαιο 1, παρουσιάζουμε το αντικείμενο της εργασίας και τη σημασία της 

τεχνικής των lidar για τη μελέτη των αιωρούμενων σωματιδίων 

Στο Κεφάλαιο 2, εισάγουμε τις έννοιες των αιωρούμενων σωματιδίων, καθώς 

και της τεχνικής “lidar”. 

Το Κεφάλαιο 3 στοχεύει στην παρουσίαση της μεθοδολογίας η οποία 

ακολουθήθηκε κατά τη διάρκεια της παρούσας διπλωματικής εργασίας, 

συμπεριλαμβανομένης της λεπτομερής παρουσίασης της μεθόδου “SCAN”. 

Το αντικείμενο του Κεφαλαίου 4 αποτελεί η συζήτηση των ευρημάτων της 

παρούσας μεθοδολογίας. 

Τέλος, τα συμπεράσματα και οι στόχοι για μελλοντικές μελέτες 

παρουσιάζονται στο Κεφάλαιο 5. 
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1. Introduction 

Aerosol particles affect directly the Earth’s radiation budget by interacting, 

mainly, with the solar radiation through the processes of absorption and 

scattering (aerosol-radiation interaction, “ari”) (Hobbs, et al., 1993). 

Furthermore, aerosols affect clouds formation and behavior both serving as 

seeds (Cloud Condensation Nuclei, Ice Nuclei) upon which cloud droplets and 

ice crystals form, and influencing the cloud albedo due to changing 

concentrations of cloud condensation and ice nuclei, also known as the 

Twomey effect (aerosol-cloud interaction, “aci”) (Hobbs, et al., 1993). 

Despite an increasing number of laboratory and field aerosol studies over the 

last years (IPCC, 2014), the uncertainty associated with the estimated radiative 

forcing attributed to aerosols and aerosol−cloud interactions has not decreased, 

owning to the high spatial and temporal variability of aerosol properties (IPCC, 

2014). A number of atmospheric studies have targeted to address this issue by 

providing the mean values of aerosol optical properties of each type as input to 

the radiation and the numerical weather prediction models (Jacobson, et al., 

2005). 

One such technique is the active remote sensing of the atmosphere (Weitcamp, 

et al., 2005). The Lidar technique has received a considerable  attention, thanks 

to the numerous  possibilities to retrieve near real time information about the 

structure and the composition  of the atmosphere providing  very high vertical 

(i.e. down to few meters) and temporal (i.e. down to few minutes) resolution. 

Specifically, multi-wavelength Raman/depolarization lidars can be used for 

aerosol detection and characterization (i.e. dust, smoke, continental, etc.) as 

they provide vertically-resolved information of extensive (particle backscatter 

and extinction coefficient, volume depolarization ratio) and intensive (lidar 

ratio (LR), Ångström exponent (AEλα/λβ), linear particle depolarization ratio 

(LPDR)) optical properties (Burton, et al., 2012; Groß, et al., 2013; Nicolae, et 

al., 2015; Giannakaki, et al., 2016; Soupiona, et al., 2018). 

In the light of the above technique, Mahalanobis distance aerosol classification 

algorithm (Papagiannopoulos, et al., 2018) uses the lidar intensive properties 

(Lidar Ratio, ratio of Lidar Ratio (LRλ1/LRλ2), Ångström Exponent and Linear 

Particle Depolarization Ratio (if provided)) in order to classify the measured 

aerosol layers into a number of aerosol types. 

Similarly, Neural Network Aerosol Classification Algorithm (Nicolae, et al., 

2018) is based on artificial neural networks (ANNs) trained to estimate the 
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most probable aerosol type from, solely, a set of multispectral lidar data (Color 

Index (CI), Color Ratio (CR), LR, AEλα/λβ and LPDR (if provided)). 

One of the classic ways to classify the aerosol layers observed is based on the 

trajectory analysis in order to find the air mass origin. The method is usually 

applied in combination with model results (e.g. DREAM) and/or satellite data 

(MODIS fire system, cf. Giglio, et al., 2013) in a case-by-case level. This 

methodology certainly involves a rather subjective element as it is not 

automated.  

In this study we use our experience, in the by-eye identification to develop an 

improved automated layer identification algorithm, based on backward 

trajectory analysis and satellite data in combination with the application of 

criteria. The algorithm is called Source Classification Analysis (SCAN) and is 

firstly introduced in this study. It is based on the amount of time that the air 

parcel spends above certain already characterized source region. 

Since the Mahalanobis algorithm and Natali code are newly published 

(Papagiannopoulos et al., 2018; Nicolae et al., 2018) they are not widely used. 

Moreover, Nicolae et al. (2018) published recently a report conserning the 

strenghts and limitations of the Natali algorithm, focusing mainly on the effect 

of lidar data quality to the retrievals of this method. Moreover, a first attempt of 

classification comparison between Natali and Mahalanobis is in progress by 

Voudouri et al. (2019, in progress), dealing with data from the Thessaloniki 

lidar station without the use of the linear particle depolarization ratio optical 

property. 

This study aims to compare, the results of the three different aerosol 

classification methods, “Mahalanobis distance automatic aerosol type 

classification”, “Neural Network Aerosol Typing Algorithm” (NATALI) and 

“Source Classification Analysis” algorithm. This comparison aims to 

investigate reasons of misclassification and to address which aerosol properties 

are needed to associate an observed aerosol layer to a certain aerosol type.  

This Thesis is structured in five chapters.  

In Chapter 1, we introduce the lidar technique in the detection of the 

atmospheric aerosols. 

In Chapter 2, we present the theoretical background concerning the aerosols 

and the lidar technique. 

Chapter 3 is aiming to exhibit the methodology of this study, including a 

detailed presentation of SCAN. 

The subject of Chapter 4 is the findings resulting from this study. 
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Finally, the conclusions and perspectives for future studies are provided in 

Chapter 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



P a g e  | 16 

 

 

 

 

 

 

 



 
 

2. Theoretical Background 

2.1. Aerosols 
Whereas an aerosol is technically defined as a suspension of fine solid or liquid 

particles in a gas (Schmauß, al., 1929), common usage refers to the aerosol as 

the particulate component only (Poschl, et. al., 2005). Aerosols can be emitted 

directly as particles (primary aerosols) or formed in the atmosphere by gas-to-

particle conversion processes (secondary aerosols) (Poschl, et. al., 2005). 

Atmospheric aerosols are generally considered to be the particles that range in 

size from a few nanometers (nucleation and Aitken mode, ultrafine, 

nanoparticles) to tens of micrometers (accumulation and coarse mode) in 

diameter (Poschl, et. al., 2005). Once airborne, particles can change their size 

and composition by condensation of vapor species or by evaporation, by 

coagulating with other particles, by chemical reaction or by activation in the 

presence of water supersaturation to become fog and cloud droplets (Poschl, et. 

al., 2005).  

Eventually, particles are removed from the atmosphere by two mechanisms: 

deposition at Earth’s surface (dry deposition) and incorporation into cloud/rain 

droplets during the formation of precipitation (wet deposition) (Poschl, et. al., 

2005). 

 

Figure 2.1 Pictures of volcanic, pollen, NaCl and biomass burning aerosols captured by Scanning Electron 
Microscopy (NASA Earth Observatory : Home https://www.earthobservatory.nasa.gov/). 

2.1.1. Tropospheric Aerosol Sources 

Particles in the atmosphere arise from natural sources, such as windborne dust, 

seaspray, and volcanoes, and from anthropogenic activities, such as combustion 

of fuels. Aerosols contain sulfate, ammonium, nitrate, sodium, chloride, trace 

metals, carbonaceous material, crustal elements, and water (Seinfeld and 

Pandis, 2006). The carbonaceous fraction of the aerosols consists of both 

elemental and organic carbon. Elemental carbon, also called black carbon or 

graphitic carbon, is emitted directly into the atmosphere, predominantly from 



P a g e  | 18 

 

combustion processes. Particulate organic carbon is emitted directly by sources 

or can result from atmospheric condensation of low-volatility organic gases 

(Seinfeld, et al., 2006). 

 

Figure 2.2 Global aerosol distribution as seen by Moderate Resolution Imaging Spectroradiometer (MODIS). 
AOD at 550 nm averaged over the 10-year period 2001-2010 (Remer, et al., 2008). Pie charts show how various 
aerosol types contribute to the total AOD for different regions, as estimated by a global aerosol model (Myhre, 
et al., 2009). Aerosol types are Sul (sulfate), BC and OC from fossil fuel usage, Bio (OC and BC from BB), Nitrate, 
Sea (sea salt), and Min (mineral dust). Gray areas indicate lack of MODIS data. Some aerosol types, e.g. 
sulfate, have enhanced contributions to AOD due to hygroscopic growth. Picture was adapted from Myhre et 
al. (2013). 

2.1.2. Aerosol Types 

Continental polluted 

Continental polluted aerosols are mixtures of primary particulate emissions 

from industries, transportation, power generation, and natural sources and 

secondary material formed by gas-to-particle conversion mechanisms 

(Seinfeld, et al., 2006). The aerosol size distribution is quite variable in urban 

area. Extremely high concentrations of fine particles (less than 0.1 μm in 
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diameter) are found close to sources (e.g., highways), but their concentration 

decreases rapidly with distance from the source (Seinfeld, et al., 2006). 

Anthropogenic particles show a strong wavelength dependence of their optical 

properties, i.e., high Ångström exponent values. Moreover, they are typically 

small and do not significantly depolarize the backscattered light (    
   = 0.04 ± 

0.04; (Heese, et al., 2016), and due to the high carbon content, these particles 

reveal high lidar ratios (Giannakaki, et al., 2010). 

Table 2.1 Pure aerosol types and components (Nicolae, et al., 2018). 

Aerosol types Basic component types 

Range variation of the 

number density mixing 

ratios for aerosol 

components (limits are 

consistent with OPAC 

and literature) 

Aspect ratio 

Continental 

Water soluble 

Insoluble 

Soot 

0.4914-0.5914 

0.0086-0.0086 

0.4000-0.5000 

1.100 

Continental polluted 

Water soluble 

Insoluble 

Soot 

Sulfate 

0.1998-0.2998 

1.8E-4-1.8E-4 

0.6000-0.7000 

0.1000-0.1000 

1.040 

Smoke 

Water soluble 

Soot 

Sulfate 

0.3900-0.4900 

0.5000-0.6000 

0.0100-0.0100 

1.150 

Dust 

Water soluble 

Mineral 

Nucleation mode 

Accumulation mode 

Coarse mode 

Soot 

0.1949-0.2949 

 

0.1170-0.1170 

0.0880-0.0880 

0.6E-4-0.6E-4 

0.5000-0.6000 

0.870 

Marine 

Water soluble 

Sea Salt 

Accumulation mode 

Coarse mode 

Insoluble 

0.1652-0.1662 

 

0.8320-0.8320 

0.0e+00-0.1e-06 

0.5000-0.6000 

1.007 

Volcanic 

Mineral 

Nucleation mode 

Accumulation mode 

Coarse mode 

Soot 

Sulfate 

 

0.0915-0.1070 

0.1470-0.1719 

0.4e-4-0.5e-4 

0.0391-0.0457 

0.6753-0.7224 

0.850 

Clean Continental 

The clean continental type differentiates from the polluted continental type due 

to its less light absorbing properties. The clean continental type shows low 

depolarizing ability with values lower than 0.07 (Omar, et al., 2009), low lidar 

ratio values, i.e., 20–40 sr and relatively high Ångström exponents, i.e., 1.0–2.5 

(Ansmann, et al., 2001; Giannakaki, et al., 2010). 
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Marine (sea spray) 

In the absence of significant transport of continental aerosols, particles over the 

remote oceans are largely of marine origin (Prospero, et. al., 1989). Marine 

atmospheric particle concentrations are normally in the range of 100-300 cm
-3

. 

Their size distribution is usually characterized by three modes: the Aitken (Dp 

< 0.1 μm) the accumulation (0.1 < Dp < 0.6 μm), and the coarse one (Dp > 0.6 

μm) (Fitzerald, 1991). 

When sea water is emitted as sea spray or spume drops, the chlorine-to-sodium 

mass ratio, originally 1.8:1, sometimes decreases because the chlorine is 

removed by sea-spray acidification (Hitchcock, 1980). Sea-spray acidification 

occurs when sulfuric or nitric acid enters a sea-spray drop and forces chloride 

to evaporate as hydrochloric acid. Some sea-spray drops lose all of their 

chloride in the presence of sulfuric or nitric acid. 

The size of a sea-spray drop is also affected by dehydration (loss of water) 

which occurs when water from a drop evaporates due to a decrease in the 

relative humidity between the air just above the ocean surface and that a few 

meters higher. Dehydration increases the concentration of solute in a drop 

(Hitchcock, 1980). 

The sea-salt particles feature a predominant coarse mode, however, they are 

spherical in humid conditions and weakly absorbing, in contrast to the dust 

particles. Therefore, they yield low particle lidar ratio values, are almost non 

depolarizing and exhibit low Ångström exponent values (Burton, et al., 2013; 

Dawson, et al., 2015). This aerosol type is mainly identifiable by the low value 

of the particle lidar ratio, i.e., 15–25 sr at 532nm (Burton, et al., 2012). 

Dust aerosols 

Desert areas around the world emit huge quantities of dust aerosols which also 

actually extend considerably over adjacent regions, such as oceans (Jaenicke, et 

al., 1978) and can be transported over very long distances (Prospero, et al., 

1989; Papayannis, et al., 2008; Mona, et al., 2012). The shape of the dust size 

distribution is similar to that of remote continental aerosol but depends strongly 

on the wind velocity. Its number distribution tends to exhibit three overlapping 

modes at diameters of 0.01 μm or less, 0.05 μm, and 10 μm, respectively 

(Jaenicke, et al., 1978). 

The optical properties are considerably different from the other types, thus 

making them easy to identify. The irregular shape and the large size (< 50μm; 

Mahowald, et al., 2014) lead to a significant high depolarization of the 
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backscattered radiation (e.g.,     
    = 0.34 ± 0.02 for Saharan dust over 

Germany, cf. Wiegner, et al., 2011), and to medium lidar ratio values (e.g., 

    
    = 55±10 sr (cf. Tesche, et al., 2013; Mona, et al., 2014). Desert aerosols 

are spectrally neutral to backscatter and extinction, and thus produce low 

Ångström exponent values (Wiegner, et al., 2011). Therefore, the aerosol lidar 

ratio, particle linear depolarization ratio, and the Ångström exponent are 

excellent physical parameters to characterize mineral dust and to distinguish it 

from other aerosol types.  

Moreover, it needs to be taken into account that the dust optical properties 

depend on their source region and the transport pattern (Valenzuela, et al., 

2014), with an important variability mainly shown in the respective lidar ratio 

values  (Nisantzi, et al., 2015). Recently, Mamouri et al. (2013) showed that 

dust originating from the Arabian desert produced significantly lower lidar 

ratio values (34–39 sr at 532nm) than respective values (50–60 sr at 532nm) for 

dust particles origination from the western Saharan region. 

Table 2.2 Conventional names of the aerosol types (Nicolae, et al., 2018). 

Mixed dust aerosols 

Dust can be transported over continental scales. In particular, Saharan dust 

outbreaks to Europe and across the Atlantic Ocean have been deeply 

investigated, as shown by Ansmann et al. (2003), Papayannis et al. (2014) and 

Binietoglou et al. (2015). The study of Papayannis et al. (2008) indicated a 

large variability of the measured lidar ratio and Ångström exponent values 

among the different sites, suggesting mixing at different levels. Additionally, 

the mixture processes also produce large variability of intensive properties as 

measured at the same site (Mona, et al., 2014).  

Taking into account the complex structure and composition of the dust aerosols 

over Europe, as well as the effects of transport and mixing on the optical and 

microphysical properties of these particles we consider the use of three dust 

groups: pure dust, mixed dust and polluted dust. The pure dust group refers to 

Aerosol Type Source Particle characteristics 

Continental Land surfaces Medium size, medium spherical, medium absorbing 

Dust Desert surfaces Large, non-spherical, medium absorbing 

Continental polluted Industrial sites Small, spherical, highly absorbing 

Marine Sea surface Large, aspherical, non-absorbing 

Smoke Vegetation fires Small, spherical, highly absorbing 

Volcanic Volcanoes Large, non-spherical, highly absorbing 

Mixtures Mixed Combinations of the above 
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particles for which the mixing with other aerosol types is negligible. Mixed 

dust refers to dust particles mixed with marine particles. This leads to less 

depolarizing, and less absorbing particles with respect to pure dust particles. 

Papagiannopoulos et al. (2016a) found this mixture to be important in the 

Mediterranean region and suggested its inclusion in the CALIPSO retrieval 

scheme for improving the accuracy of aerosol backscatter and extinction 

coefficient profiles.  

Dust polluted aerosols 

The dust polluted category consists of dust dominated mixtures with smoke 

and/or continental particles, which produce lower depolarization, higher lidar 

ratios and enhanced Ångström exponent values owing to the presence of small, 

spherical particles (Groß, et al., 2011; Burton, et al., 2012; Tesche, et al., 

2013). 

Biomass burning aerosols 

Biomass burning is a major global source of atmospheric aerosols. Generally, 

smoke particles are relatively small, spherical, and highly absorbing that 

produce low depolarization, high Ångström exponents, and large lidar ratios 

(Amiridis, et al., 2009; Baars, et al., 2012; Nicolae, et al., 2013; Giannakaki, et 

al., 2016). The optical properties of smoke particles may vary due to the 

vegetation type of the emitting source, the combustion type (smouldering or 

flaming fires), and atmospheric conditions (Balis, et al., 2003). Furthermore, 

the particles are susceptible to changes of their optical properties during their 

lifetime in the atmosphere (Nicolae, et al., 2013).  

Several EARLINET-based studies have focused on observations and 

characterization of smoke plumes (Amoiridis, et al., 2009; Ansmann, et al., 

2009; Tesche, et al., 2011), demonstrating that it is a frequently encountered 

aerosol type over Europe. In particular, biomass burning aerosol originating 

from forest fires in Canada and Siberia is regularly observed between May and 

October (Amiridis, et al., 2009; Ortiz-Amezcua, et al., 2017). However, the 

similarities of the physical characteristics of smoke particles and continental 

particles result in similar optical properties, making these types difficult to 

distinguish. 

Volcanic aerosols 

Volcanoes are another important source of atmospheric aerosols. Volcanic 

eruptions eject great amounts of material in the atmosphere (tephra), while the 

fraction smaller than 2mm is labeled as volcanic ash. Most of these aerosols 
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will settle only a few tens of kilometres away from the volcano but smaller 

particles can travel thousands of kilometres and affect wider areas (Mattis, et 

al., 2010; Sicard, et al., 2012; Papayannis, et al., 2012; Kokkalis, et al., 2013; 

Pappalardo, et al., 2013). The optical properties of volcanic ash aerosols is 

generally similar to the one of desert dust, as was shown by Ansmann et al. 

(2010) and Wiegner et al. (2012) for fresh ash with particle linear 

depolarization ratios reaching 0.37 and lidar ratios of 50–65 sr. Aged volcanic 

particles as observed by Papayannis et al. (2012) indicate higher sphericity less 

non-sphericity with depolarization ratio values of about 0.1–0.25 and lidar 

ratios for 355nm within the range 55–67 sr and for 532nm 76–89 sr. 

2.2. Atmospheric lidar 

 

Figure 2.3 Lidar schematic configuration (Weitkamp, 2005). 

A simplified representation of a typical lidar system set-up is demonstrated in 

Figure 2.3. The transmission unit consists of a pulsed laser source, followed by 

a series of high reflection mirrors, and a beam expander which sends the 

collimated laser beam, vertically, up to the atmosphere. Part of the transmitted 

radiation is scattered by the atmospheric components (i.e., gases, molecules, 

aerosols, clouds) backward to the lidar system, where it is collected by an 

optical telescope. The backscattered laser light is driven to an optical analyzer 

(i.e. spectrometer) where the optical signal is, first, spectrally separated, then, 

amplified and, finally, transformed to an electrical signal. Finally, the signal is 

digitized and stored in a computer unit for further signal processing and 

analysis. 
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2.2.1. Aerosol optical properties from a multi-wavelength 

elastic/Raman lidar system 

The backscatter coefficient β(R,λ) defines the scattering coefficient at the 

backward direction (i.e., at a scattering angle of θ = 180
o
). This parameter 

determines the strength of the lidar return at the operational wavelength λ at a 

distance R far from the lidar system. The mathematical expression of the 

backscatter signal is: 

             
       

  
                 

where Nj denotes the concentration of scattering “particles” of kind j in the 

illuminated volume and        /    is the “particles” differential scattering 

cross section for the backward direction. Nevertheless, since this backscatter 

coefficient denotes the backscattered light from both aerosols and molecules in 

the atmosphere, the contribution of molecules to the total backscatter could be 

defined, so as the aerosol backscatter coefficient can be estimated.  

The most commonly used method for calculating the aerosol backscatter 

coefficient is the Fernald-Klett method exclusively described in literature 

Fernald (1984) and Klett (1981). The main uncertainty for the accurate 

calculation of aerosol backscatter coefficient in this method is introduced by 

the assumption of the lidar ratio value, which is characteristic for the type of 

the detected aerosols. Another uncertainty can be introduced by the calibration 

height where aerosol contribution in the backscatter profile is considered 

negligible (Weitcamp, 2005). 

The most accurate technique to derive the aerosol extinction and backscatter 

coefficients is the so-called Raman lidar one. The main advantage of this 

technique compared to the elastic one is that it allows the independent retrieval 

of the aerosol extinction and backscatter coefficients, without any assumption 

of the aerosol Sλ. 

The Raman lidar equation includes the backscatter coefficients βmol(λ,z), 

βaer(λ,z) and extinction coefficients αmol(λ,z), αaer(λ,z) of molecules and aerosols 

respectively. The solution of this differential equation with making use of the 

Raman channels has been proposed (Ansmann, et al., 1990, Papayannis, et al., 

1990) for the simultaneous retrieval of the aerosols’ backscatter and extinction 

coefficients at λ = 355 nm and λ = 532 nm. The inelastic Raman signals are 

only due to the scattering from Nitrogen N2 molecules and therefore, the 

backscattering cross-section determines the intensity of the signals. 
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Figure 2.4 Raman spectrum of a diatomic molecule. The Rayleigh line is at the same frequency of the incident 
photon. Just around the Rayleigh line, the rotational Stokes and anti-Stokes lines lie to the left towards lower 
energies and to the right towards higher energies respectively (Wandinger, 2005). 

In 1928, Sir Raman observed the frequency-shifted lines in the spectrum of 

scattered light (Raman, et al., 1990). The frequency shift relative to the incident 

light frequency corresponds to the vibrational and rotational frequencies of the 

scattering molecules. The frequency shift can be towards lower energies λRa > 

λ0 (Stokes lines) or higher energies λRa < λ0 (anti-Stokes lines). The total Raman 

spectrum of a diatomic molecule can be seen in Figure 2.4. When the scattered 

light is coherent to the incident light, Rayleigh scattering occurs which is much 

stronger than the Raman scattering. When only molecular rotations occur, the 

Rotational Raman (RR) lines are just around the Rayleigh line. However, the 

Vibrational Rotational Raman (VRR) lines are better separated in frequency 

from the incident light. VRR lines consist of Q, S and O branches. The anti-

Stokes lines are weaker than the Stokes lines and usually cannot be observed. 

A molecule is always at a specific vibrational-rotational energy. The frequency 

shift which is caused by the change in vibrational, rotational or vibrational-

rotational energy level of the scattering molecule is estimated by 

              
  

   
 1 

 

where     is the frequency of the incident photon,     is the frequency of the 

scattered photon, ΔE is the difference between the molecular energy levels, h is 

Planck’s constant and c0 the speed of light in vacuum (Long, 1977). 

Figure 2.5 illustrates the rotational-vibrational Raman spectra for several 

atmospheric molecules such as silicon dioxide (SiO2), oxygen (O2), nitrogen 

(N2) and water vapor (H2O) in gas, liquid and solid phase. The incident light at 

355 nm excites the atmospheric nitrogen molecules which emits light at the 

Stokes line of 387 nm. When the incident beam is at 532 nm, the Raman 

scattered photon is detected at 607 nm. The Raman lidar can also detect Raman 

lines of water vapor at 407 nm when incident light beam is at 355 nm. 
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Figure 2.5 Rotational vibrational Raman lines. The Raman backscatter spectrum of the atmosphere for incident 
laser wavelength of 355 and 532 nm. Picture was adapted from Avila et al. (1999). 

2.2.2. EARLINET Lidar Network 

EARLINET (www.earlinet.org) was established in 2000, providing aerosol 

profiling data on a continental scale, and now is part of the Aerosols, Clouds, 

and Trace gases Research InfraStructure (ACTRIS; www.actris.eu/). In these 

19 years of continuous existence, EARLINET has evolved both in the number 

of contributing stations, as well as in its observing capacity (Pappalardo, et al., 

2014). Currently, 30 stations are submitting aerosol extinction and/or 

backscatter coefficient profiles to the EARLINET database, according to 

EARLINET’s measurement schedule (one daytime and two nighttime 

measurements per week). Therefore, these systematic observations consolidate 

a 4D European quantitative and statistically significant aerosol survey. Further 

measurements are devoted to special events, such as volcanic eruptions, forest 

fires, and desert dust outbreaks. Moreover, EARLINET provides correlative 

measurements during CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder 

Satellite Observations) overpasses on each EARLINET station in order to 

validate satellite products (Mamouri, et al., 2009; Mona, et al., 2009).  

The majority of the EARLINET stations (67% of the stations) as described by 

Pappalardo et al. (2014) operate multi-wavelength Raman lidars that combine a 

set of elastic and nitrogen inelastic channels, typically consisting of three 

elastic and two inelastic Raman channels (the so-called 3β +2α configuration). 

In particular, they provide the aerosol extinction (at 355nm and 532nm), and 

backscatter coefficients (at 355 nm, 532 nm, and 1064 nm). This configuration 

allows the retrieval of the range-resolved particle lidar ratio at 355nm and 
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532nm (Saer). This intensive parameter depends on the shape, size, and 

chemical composition of the aerosol (Müller, et al., 2007). When the lidar ratio 

is available for more than one wavelength, the corresponding color ratio can be 

also retrieved (    
  /    

  ). 

 

Figure 2.6 EARLINET Lidar stations (last updated: 21/03/2019) 

This quantity is a robust means to characterize the ageing status of smoke 

particles, as well as the spectral dependence of aerosol (Müller, et al., 2007a; 

Nicolae, et al., 2013). The combination of the optical data allows the retrieval 

of the size sensitive backscatter and/or extinction related Ångström exponent 

and can be calculated as 

   
                

          
 2 

 

with X denoting the backscatter β or extinction coefficient α for a set of 

wavelengths,     and   . Moreover, 52% of EARLINET stations (Pappalardo, et 

al., 2014) are equipped with depolarization channels, thus providing profiles of 

the particle linear depolarization ratio. It can be calculated according to (Biele, 

et al., 2000; Freudenthaler, et al., 2009: 

    
   

                  

              
  

 

with R the backscatter ratio,    the molecular depolarization, and    the volume 

depolarization ratio (Bravo-Aranda, et al., 2016). This parameter provides 

information on the particle shape, thus enhancing the aerosol typing strength of 

the network. Under favourable conditions, the aerosol microphysical 

properties, such as the effective radius, the volume concentration and the 
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refractive index can also be retrieved through complex numerical algorithms 

(Müller, et al., 2004; Veselovskii, et al., 2010; Samaras, et al., 2015; 

Chaikovsky, et al., 2016). 

2.3. Hybrid Single-Particle Lagrangian Integrated 

Trajectory Model, HYSPLIT 
Τhe HYSPLIT model (Draxler, et al., 1998) is a complete system for 

computing simple air parcel trajectories, as well as complex transport, 

dispersion, chemical transformation, and deposition simulations. HYSPLIT 

continues to be one of the most extensively used atmospheric transport and 

dispersion models in the atmospheric sciences community. A common 

application is a back trajectory analysis to determine the origin of air masses 

and establish source-receptor relationships.  

The model calculation method is a hybrid one between the Lagrangian 

approach (using a moving frame of reference for the advection and diffusion 

calculations as the trajectories or air parcels move from their initial location) 

and the Eulerian methodology, which uses a fixed three-dimensional grid as a 

frame of reference to compute pollutant air concentrations (The model name, 

no longer meant as an acronym, originally reflected this hybrid computational 

approach). HYSPLIT has evolved over more than 30 years, from estimating 

simplified single trajectories based on radiosonde observations to a system 

accounting for multiple interacting pollutants transported, dispersed, and 

deposited over local to global scales. 

The dispersion of a pollutant is calculated by assuming either puff or particle 

dispersion. In the puff model, puffs expand until they exceed the size of the 

meteorological grid cell (either horizontally or vertically) and then split into 

several new puffs, each with its share of the pollutant mass. In the particle 

model, a fixed number of particles are advected about the model domain by the 

mean wind field and spread by a turbulent component. The model’s default 

configuration assumes a 3-dimensional particle distribution (horizontal and 

vertical).  

2.4. Moderate Resolution Imaging Spectroradiometer, 

MODIS 
As part of NASA’s Earth Observing System (EOS), MODIS is carried on both 

the Terra and Aqua satellites. The MODIS active fire products fall within the 

suite of terrestrial products and provide information about actively burning 

fires, including their location and timing, instantaneous radiative power, and 
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smoldering ratio, presented at a selection of spatial and temporal scales (Giglio 

et al., 2002; Kaufman et al., 1998). 

An algorithm examines each pixel of the MODIS swath and ultimately assigns 

it to one of the following classes: missing data, cloud, water, non-fire, fire, or 

unknown. Pixels lacking valid data are immediately classified as missing data 

and excluded from further consideration. Cloud and water pixels are identified 

using cloud and water masks and are assigned to the classes cloud and water, 

respectively. The fire detection algorithm considers only those land pixels that 

remain. 

 

Figure 2.9 World satellite image. Red dots represent possible fire sources for the time period 2019/03/27-
2019/03/28 as seen by MODIS Aqua and Terra satellites (https://firms.modaps.eosdis.nasa.gov/map/). 

There are two logical paths through which fire pixels can be identified. The 

first consists of a simple absolute thresh-old test. This threshold must be set 

sufficiently high so that it is triggered only by very unambiguous fire pixels, 

i.e. those with very little chance of being a false alarm. The second path 

consists of a series of contextual tests designed to identify the majority of 

active fire pixels that are less obvious. 

The variable ‘Confidence’ is based on a collection of intermediate algorithm 

quantities used in the detection process. It is intended to help users gauge the 

quality of individual hotspot/fire pixels. Confidence values are set to low, 

nominal and high. Low confidence daytime fire pixels are typically associated 

with areas of sun glint and lower relative temperature anomaly (<15K) in the 

mid-infrared channel. Nominal confidence pixels are those free of potential sun 

glint contamination during the day and marked by strong (>15K) temperature 

anomaly in either day or nighttime data. High confidence fire pixels are 

associated with day or nighttime saturated pixels. 
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3. Methodology 

3.1. Experimental sites 
Lidar station selection depended on the availability of the vertical profiles of 

the full set (3β + 2α + δ) of aerosol optical properties: backscatter coefficient 

(b355, b532, b1064), extinction coefficient (e355, e532), Lidar Ratio (LR355, LR532), 

Ångström exponent (AE355/532, CI355/532, CI532/1064) and Linear Particle 

Depolarization Ratio (LPDR532) at the EARLINET database 

(https://www.earlinet.org) within the years 2014-2018. The 4 lidar stations 

performed the used measurements are: Kuopio, Finland; Bucharest, Romania; 

Leipzig, Germany; and Potenza, Italy (Table 3.1). 

Table 3.1 EARLINET lidar station information. 

Location 
ACTRIS 

Code 
Institute 

Coordinates 

(lat, long, 

altitude amsl) 

Reference 
No of 

layers 
Year 

Bucharest INO 

National Institute of 

R&D for 

Optoelectronics (INOE) 

Link 

44.35 N, 26.03 

E, 93 m 

Nemuc, et al. 

2013 
7 2017 

Kuopio KUO 

Finnish Meteorological 

Institute (FMI), 

Atmospheric Research 

Centre of Eastern 

Finland, Kuopio Link 

62.74 N, 27.54 

E, 190 m 

Althausen, et al., 

2009, Engelmann, 

et al., 2016 

9 
2015, 

2016 

Leipzig LEI 

Leibniz Institute for 

Tropospheric Research, 

Leipzig Link 

51.35 N, 12.43 

E, 90 m 

Althausen, et al., 

2009, Engelmann, 

et al., 2016 

17 2018 

Potenza POT 

Consiglio Nazionale 

delle Ricerche - Istituto 

di Metodologie per 

l'Analisi Ambientale 

(CNR-IMAA), Potenza 

Link 

40.60 N, 15.72 

E, 760 m 

Madonna, et al., 

2011 
64 

2015-

2016 

Bucharest 

Romania is crossroad of different air masses (Fig. 3.1) that arrive from regions 

(Greece, Ukraine, Russia) that are affected episodically by strong biomass 

burning events (Amiridis, et al., 2010). Nicolae, et al., (2013) studied optical 

and microphysical properties of long-range transported biomass burning (BB) 

aerosols and their variation with atmospheric evolution (ageing) observed over 

the lidar station of Magurele, Bucharest.  

The city and region of Bucharest is urban with an intense traffic and 

surrounded by industrial platforms, which gives rise to a variety of aerosol and 

gaseous pollutants (Nicolae, et al., 2006). However the most relevant in the 

characterization of aerosol properties in this area is the desert dust events which 

distort the atmospheric composition (Nemuc, et al., 2008).  

https://www.earlinet.org/
http://www.inoe.ro/en/
http://en.ilmatieteenlaitos.fi/atmospheric-research-centre-of-eastern-finland
http://www.tropos.de/en/
https://www.imaa.cnr.it/
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Kuopio 

Kuopio (population 91.000) is the principal town of the province of Northern 

Savo, in the eastern part of central Finland, 330 km northeast from Helsinki, 

the capital of Finland (Fig. 3.1). The main part of the district of Northern Savo, 

and especially the neighborhood of Kuopio, belongs to the southern boreal 

climatic zone and is characterized by forests with conifer (mostly pine and 

spruce) and deciduous (mostly birch) trees, an undulating terrain with rocky 

soil and moderate height hills, and lots of long lakes in the northwest–southeast 

direction. The vast lake district acts as a heat storage and increases the nightly 

temperatures in summers, thus lengthening the growing period (Leskinen, et 

al., 2009). 

 
Figure 3.1 Geographical location of the 4 EARLINET stations considered in this study (yellow diamonds). Major 
European cities are also presented with pink dots. Major European lakes are indicated with cyan and rivers 
with blue. 

The Puijo measurement station is on the top of an observation tower, 306 m 

a.s.l. and 224 m above the surrounding lake level. The tower is a 75 m high 

building on the Puijo hill, approximately 2 km northwest of the center of 

Kuopio (Leskinen, et al., 2009). 

The most significant local sources are traffic on highways (national/European 

highway 5/E63 and national highway 17), especially between Kuopio and 

Siilinjärvi with approximately 30.000 vehicles/day, the local traffic in Kuopio, 

and point sources, such as a district heating plant 3 km south of Puijo and a 

pulp mill 5 km north-east of Puijo (Leskinen, et al., 2009). 
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Leipzig 

Mattis et al. (2008) presented geometrical properties and seasonal variations of 

appearance of aerosol particle pollution in the free troposphere over the central 

European lidar site at Leipzig, Germany (Fig 3.1). The lofted particle layers 

largely resulted from intercontinental long-range transport. In 19% of all 

regular measurements, free-tropospheric pollution was advected from North 

America. Forest-fire smoke from Canada and anthropogenic pollution from 

urban areas of the United States of America and Canada were the sources of the 

particle layers. They find a strong seasonal dependence of occurrence of these 

layers with a peak in June–August of each year. In a few cases they observed 

forest-fire smoke advected from Siberia and east Asia with winds from 

westerly directions. Pollution advected from areas north of 70°N presented 

another transport channel. That pollution consisted of Arctic haze or mixtures 

of haze with anthropogenic pollution. The main occurrence of such particle 

layers was around springtime of each year. Import of mineral dust from the 

Sahara represents another transport path. Most of such cases were observed 

during late spring time and summer time. Free-tropospheric pollution advected 

from east and southeast Europe and Russia presented one transport channel 

from within the Euro-Asian continent. 

Potenza  

CIAO, the most advanced infrastructure for ground based remote sensing in 

Italy, is located in Tito Scalo, Potenza, Southern Italy, on the Apennine 

mountains (40.60◦N, 15.72◦E, 760 m a.s.l.), less than 150 km from the West, 

South and East coasts (Figure 3.1).  The site is in a plain surrounded by low 

mountains (<1100 m a.s.l.). The observatory operates in a typical mountain 

weather strongly influenced by Mediterranean atmospheric circulation, 

resulting in generally dry, hot summers and cold winters. In this location, 

phenomena like orographically-induced effects on cloud formation can be 

studied (Madonna, et al. 2011). The site is particularly interesting for studying 

aerosol properties because it is affected by a quite large number of Saharan 

dust intrusions per year (Mona, et al., 2014) and it is located 300 km far from 

the Etna Volcano (Pappalardo, et al., 2004). 
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3.2. Experimental data 
48 dates of lidar observations by multiwavelength Raman and depolarization 

lidars from the aforementioned lidar stations have been studied for this Thesis. 

Table 3.2 Dates of lidar observations used for this study (2015-2018). 
Year 

(yyyy) 

Date 

(dd/mm) 
INO KUO LEI POT 

No of 

layers 

SUM 

(dates) 

SUM 

(layers) 

2015 

22/01  *   1 

10 21 

13/04    * 2 

07/05    * 2 

04/06    * 3 

11/06    * 4 

16/07    * 1 

20/07    * 1 

30/07  *  * 1+4 

24/08  *   1 

03/09    * 1 

2016 

04/01  *   1 

14 21 

07/01  *   2 

21/03  *   1 

28/03  *   1 

04/04    * 1 

11/04    * 1 

14/04  *   1 

23/06    * 2 

27/06    * 2 

04/07    * 3 

07/07    * 1 

11/07    * 2 

25/08    * 2 

29/08    * 1 

2017 

23/03    * 1 

17 38 

30/03    * 2 

27/04    * 1 

22/05    * 1 

08/06    * 2 

12/06    * 1 

15/06    * 4 

22/06    * 4 

13/07    * 1 

19/07    * 2 

20/07    * 4 

24/08 *    3 

28/08    * 5 

31/08 *   * 2+2 

07/09 *    1 

21/09 *    1 

19/10    * 1 

2018 

21/06   *  1 

7 17 

19/07   *  3 

26/07   *  2 

30/07   *  3 

02/08   *  2 

16/08   *  1 

27/08   *  5 

SUM 

(dates) 
 4 8 7 31  Sum of layers 

throughout the 

years: 97 
SUM 

(layers) 
 7 9 17 64  
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4 dates by Bucharest site for the year 2017, 8 of Kuopio site for the years 2015-

2016, 7 of Leipzig site for the year 2018 and 31 of Potenza site for the years 

2015-2017 (Table 3.2). For some dates, more than one layer has been observed 

increasing the number of layers to 97.  

 

Figure 3.2 Geometrical properties of the aerosol layers for this study (2015-2018). 

The aerosol layer boundaries were calculated by applying the gradient method 

on the 1064 nm backscatter coefficient profile (Belegante, et al., 2014). 

In Figure 3.2 the bottoms and tops of the aerosol layers are presented for each 

year (2015, 2016, 2017, 2018). The horizontal axis stands for the date (dd/mm) 

of the observed layers beginning from 01/01 to 27/10 of each year and the 

vertical axis stands for the altitude [km]. The red lines present the aerosol 

layers arriving over Kuopio, the blue lines present the aerosol layers arriving 

over Potenza, the green lines present the aerosol layers arriving over Bucharest 

and finally, the black lines present the aerosol layers arriving over Leipzig.  

3.3. Classification 

3.3.1. Source Classification Analysis, SCAN 

SCAN aerosol classification uses the backward trajectories created with 

HYSPLIT in combination with FIRMS satellite fire data to provide the possible 

source of air mass observed above the stations, counting the time that the air 

parcel spends above certain source regions (eg. dust, marine, continental 

polluted and clean continental).  

To identify the source region of the aerosol layers, SCAN makes use of a 

number of criteria. Firstly, it associates each observed layer to the back-

trajectories calculated by HYSPLIT depending on the mean height of the 

observed layer and its arriving date and time. For this study, 6 days back-
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trajectories (144 hours) have been calculated for 6 different arriving heights 

(1500m, 2000m, 2500m, 3000m, 4000m, 5000m) for each layer’s date. 

Using the mean of each aerosol layer’s geometrical properties, each aerosol 

layer is associated to the closest (in terms of the minimum difference with 

HYSPLIT’s arriving height) HYSPLIT trajectory (Table 3.3) 

Table 3.3 Geometrical properties of the aerosol layers for this study (2015-2018) and HYSPLIT arriving height 
and time. 

Year (yyyy) 
Date (dd/mm-

hh:mm UTC) 
Bottom (m) Top (m) 

HYSPLIT arriving 

height (m) 

2015 

22/01-18:05 3744 4402 4000 

13/04-19:45 1330 

2410 

1570 

2650 

1500 

2500 

07/05-20:45 2890 

3910 

3190 

4570 

3000 

4000 

04/06-19:17 1570 

2710 

3910 

1810 

3130 

4590 

1500 

3000 

4000 

11/06-23:35 1270 

1690 

2350 

3370 

1570 

1990 

2710 

3730 

1500 

2000 

2500 

4000 

16/07-21:00 1810 3130 2500 

20/07-23:59 1510 3250 3000 

30/07-19:25 

          21:26 

1324 

2830 

3490 

4570 

5710 

2041 

3130 

3790 

4930 

6010 

1500 

3000 

4000 

5000 

5000 

24/08-18:00 1204 1802 1500 

03/09-20:16 1930 2710 2500 

2016 

04/01-15:18 2399 3296 3000 

07/01-15:19 965 

1982 

1145 

2191 

1500 

2000 

21/03-18:21 1115 1294 1500 

28/03-23:11 4701 4970 5000 

04/04-18:47 2290 3310 3000 

11/04-20:27 2050 2530 2500 

14/04-21:00 1742 1922 2000 

23/06-19:30 1930 

4150 

3430 

5110 

3000 

5000 

27/06-21:07 1570 

2530 

1870 

2890 

1500 

2500 

04/07-19:56 1750 

2470 

2950 

1930 

2710 

3310 

2000 

2500 

3000 

07/07-19:01 1210 1510 1500 

11/07-19:22 1090 

3010 

2830 

4630 

2000 

4000 

25/08-18:29 1030 

2350 

1870 

3850 

1500 

3000 

29/08-19:16 1930 2590 2500 

2017 

23/03-18:10 1990 2170 2000 

30/03-18:08 1270 

1990 

1450 

2350 

1500 

2000 

27/04-19:48 3250 4210 4000 

22/05-19:01 1090 2170 1500 

08/06-19:14 1390 

2290 

1750 

2650 

1500 

2500 

12/06-19:29 1630 1990 2000 

15/06-20:00 1090 1930 1500 
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2350 

2830 

3850 

2650 

3250 

4270 

2500 

3000 

4000 

22/06-19:18 1030 

2110 

3130 

4150 

1570 

2590 

3970 

5230 

1500 

2500 

4000 

5000 

13/07-20:15 1810 3130 2500 

19/07-18:57 1030 

1990 

1450 

2530 

1500 

2500 

20/07-20:15 1030 

1870 

3490 

4990 

1450 

2830 

4510 

6010 

1500 

2500 

4000 

5000 

24/08-16:56 

            

           17:59 

1068 

1968 

1668 

1368 

2418 

2268 

1500 

2000 

2000 

28/08-18:45 1750 

3250 

4330 

4810 

5710 

1990 

3430 

4570 

5050 

5890 

2000 

3000 

4000 

5000 

5000 

31/08-17:59 

 

          18:26 

1218 

2118 

1510 

2470 

1668 

2418 

1750 

2950 

1500 

2500 

1500 

2500 

07/09-16:33 1968 2268 2000 

21/09-16:16 1968 2268 2000 

19/10-17:14 1930 2110 2000 

2018 

21/06-20:30 1807 2375 2000 

19/07-21:30 1710 

2988 

4011 

2330 

3571 

4512 

2000 

3000 

4000 

26/07-20:00 1112 

1434 

1352 

2398 

1500 

2000 

30/07-21:45 1112 

1904 

3070 

1516 

2667 

3339 

1500 

2500 

3000 

02/08-23:00 1120 

2681 

2181 

3212 

1500 

3000 

16/08-21:20 1613 2442 2000 

27/08-19:00 1112 

1934 

3107 

4557 

6111 

1673 

2592 

4310 

5341 

6313 

1500 

2500 

4000 

5000 

5000 

The back-trajectories calculated by HYSPLIT are shown in Figure 3.3. The 

blue color illustrates the back-trajectories arriving over Potenza, the black color 

illustrates the back-trajectories arriving over Leipzig, the red color illustrates 

the back-trajectories arriving over Kuopio and finally, the green color 

illustrates the back-trajectories arriving over Bucharest.  

Afterwards, SCAN assumes predifened, in terms of aerosol sources, regions 

(Fig. 3.4 colored squares) (Penning de Vries, et al., 2015): marine (Fig. 3.4 blue 

squares), clean continental (Fig. 3.4 brown squares), polluted continental (Fig. 

3.4 black squares) and dust (Fig. 3.4 orange squares). 
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Figure 3.3 HYSPLIT 6-days back-trajectories arriving at Potenza (blue lines), Bucharest (green lines), Kuopio (red 
lines), Leipzig (black lines), used for this study (2015-2018). 

 

Figure 3.4 SCAN’s colored squares according to the aerosol source type. Orange squares stand for dust aerosol 
sources, blue squares for marine aerosol sources, brown squares for clean continental aerosol sources and 
black squares for continental polluted aerosol sources. 

Finally, fire spots are defined using FIRMS fire/hotspot information according 

to the duration of HYSPLIT back-trajectories. A hotspot is assumed significant 

if the value of variable ‘confidence’ is higher than 80% (Amiridis, et al., 2010). 

SCAN counts the time that the air parcel spends above the fire hotspots, or 

within 8km distance from them, with height below 3km taking into account 

that the mean injection height for fires is 3km according to Amiridis et al., 

2010. 
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Figure 3.5 Schematics of the SCAN algorithm for aerosol typing. 

If these criteria are indulged into more than one region, a mixture of more than 

one aerosol type is assumed. Else, if they are not indulged to none of the 

regions, then the source of the observed layer is considered as unknown. 

3.3.2. Neural network aerosol-typing algorithm, NATALI 

NATALI considers six classes of pure aerosol: continental, continental 

polluted, dust, marine, smoke, and volcanic (cf. section 2.1) (Nicolae, et al., 

2018). It uses an aerosol model to calculate the optical properties of the 

aforementioned pure aerosols which are generated by a single source (e.g. dust 

produced by the deserts, marine particles produces by the oceans). This aerosol 

model combines the Global Aerosol Data Set (GADS, Koepke, et al., 1997) 

along with the T-matrix numerical method (Waterman, 1971; Mishchenko, et 

al., 1996) to iteratively compute the intensive optical properties of each aerosol 

type. The chemical composition of each pure aerosol type was picked up from 

the OPAC (Optical Properties of Aerosols and Clouds) software package 

(Hess, et al., 1998). The synthetic database, developed using the aerosol model, 

is built for 350, 550, and 1000 nm sounding wavelengths. These wavelengths 

were selected from the 61 wavelengths (0.25–40 μm) of OPAC for which the 

microphysical characteristics of the aerosols are available from GADS. The 

selected wavelengths are then rescaled to the usual lidar wavelengths (i.e. 355, 
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532, and 1064 nm) using an Ångström exponent equal to 1. The mixtures were 

obtained by linear combination of pure aerosol properties. 

Table 3.4 Correspondence between the aerosol types defined in the algorithm, as they can be retrieved by 
NATALI in high resolution and low resolution (Nicolae, et al., 2018). 
Aerosol types High-resolution 

type 

Low-resolution typing 

with LPDR 

Low-resolution typing 

without LPDR 

Continental Continental Continental Continental 

Continental Polluted Continental polluted Continental polluted Continental polluted 

Smoke Smoke Smoke Smoke 

Dust Dust Dust Dust 

Marine Marine Marine Marine 

Volcanic Volcanic Volcanic Dust or continental 

Continental and dust Continental dust Continental or dust Continental or dust 

Dust and marine Marine mineral Dust or marine Dust or marine 

Volcanic and marine Marine mineral Durst or marine Dust or marine 

Continental and smoke Continental smoke Continental polluted or 

smoke 

Continental polluted or 

smoke 

Dust and smoke Dust polluted Dust or smoke Dust or smoke 

Continental and marine Coastal Continental or marine Continental or marine 

Continental polluted and 

marine 

Coastal polluted Continental polluted or 

marine 

Continental polluted or 

marine 

Continental and dust and 

marine 

Mixed dust Continental or dust Continental or dust 

Continental and smoke and 

marine 

Mixed smoke Continental polluted or 

smoke 

Continental polluted or 

smoke 

 

The Neural Network Aerosol Typing Algorithm based on Lidar data 

(NATALI) developed in the Python programming language is built on three 

modules: (a) an input module to prepare the inputs in the specific format of the 

ANNs, (b) a typing module to run the ANNs and decide on the most probable 

aerosol type and (c) an output module to save the results and logs. The input 

module reads the lidar files in EARLINET NetCDF format, checks for the 

availability of all required parameters (β1064, β532, β355, α532, α355, and optionally 

δ532 nm), identifies the layer geometrical boundaries and calculates within each 

layer the mean intensive optical parameters (i.e. Ångström exponent, colour 

indexes colour ratios, lidar ratios, particle linear depolarization ratio) and their 

associated uncertainty). 

The input parameters for NATALI are typical data products from EARLINET 

database: backscatter coefficient (β) profiles at 1064, 532 and 355 nm, 

extinction coefficient (α) profiles at 532 and 355 nm, and, optionally, linear 

particle depolarization (δ) profile at 532 nm. 

Τhree classification schemes are used with different aerosol type 

(classification) resolutions. First, when particle depolarization is available and 

all optical parameters are provided with a high-quality (uncertainty of the 

aerosol extinction coefficient ≤ 50 %, uncertainty of the aerosol backscatter 

coefficient ≤ 20 %, uncertainty of the particle linear depolarization ration δ ≤ 

30 %), the typing is performed in high resolution (AH) mode. This means that 
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the mixtures can be resolved and the number of outputs types is 14 (i.e. pure 

with minimum 90 %, mixtures of two, and mixtures of three pure aerosol 

types). 

Second, when particle depolarization is available and the optical parameters 

have a high uncertainty (uncertainty of the aerosol extinction coefficient > 50 

%, uncertainty of the aerosol backscatter coefficient > 20 %, uncertainty of the 

particle linear depolarization ration > 30 %), the typing is performed in low 

resolution (AL) mode. In this case, the number of outputs types is six (i.e. pure 

with maximum 30% traces of other types). 

 

Figure 3.6 Schematics of the NATALI algorithm for aerosol typing (Nicolae, et al., 2018). 

Third, when the particle depolarization is not available, the typing is performed 

in low resolution mode, again meaning that the aerosol mixtures cannot be 

resolved. In this case, the predominant aerosol type is retrieved for four outputs 

(pure with maximum 30% traces of other types), whereby if only spectral 

parameters are provided, the volcanic type cannot be distinguished from dust 

nor continental pollution and are therefore excluded as output type. 

A voting procedure selects the most probable answer out of the three (possibly 

different) individual returns. The correct answer is selected based on a 

statistical approach considering two criteria: (a) which answer has a higher 

confidence; (b) which answer is more stable over the uncertainty range (i.e. the 

percentage of agreement for values between error limits). 
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The layer boundaries are calculated by applying the gradient method on the 

1064 nm backscatter coefficient profile (Belegante, et al., 2014). The inflexion 

points of the second derivative of the profile data, computed with the Savitzky- 

Golay filter, give the top and the bottom of the layers. The layer boundaries are 

moved towards the median height until the SNR criteria (<5) is met; if the 

criteria cannot be satisfied with a layer height greater than 300 m, the layer is 

discarded. 

The netcdf files from EARLINET database containing the optical properties 

(b355, b532, b1064, e355, e532, d532) useful for this study were used as inputs to the 

Natali classification algorithm. For each case, the ‘finesse’ variable was 

adapted accordingly in order to be achieved the best match of the geometrical 

properties of each layer compared to the ones calculated manually.  

3.3.3. Automatic observation-based aerosol typing method, 

Mahalanobis distance aerosol classification algorithm 

Distance-based classification methods aim to assign an observation to a 

particular class based on the distance of the observation from each class center. 

In general, the Mahalanobis distance between an observation x=(x1,…,xp)
t
 and 

the mean class   =(   , …,      )
t 
in the p-dimensional space ℝ

p
 is defined as 

                              

where S is the class covariance matrix. The surfaces identified by the equation 

DM = const. are ellipsoids that are centered around the mean    (McLachlan, 

1999). 

The Mahalanobis distance of an observation from an aerosol class can be 

estimated, and assigned to the aerosol class for which the distance is minimum. 

Two screening criteria are applied to the minimum distance following the 

procedure of Burton et al. (2012). The methodology uses 3 and 4 classifying 

parameters and the minimum accepted distance for a measurement to be 

labeled is 4 and 4.3, respectively. Moreover, the normalized probability of the 

aerosol class needs to be higher than 50 %. Otherwise, the type assignment is 

difficult as the measurement can be equidistant from 2 or more aerosol type 

classes, and possibly indicate the mixing of these aerosol types 

(Papagiannopoulos, et al., 2018). 

EARLINET aerosol classified layers from Pappalardo et al. (2013), 

Papagiannopoulos et al. (2016), and Schwarz et al. (2016) were used as dataset 

for the training phase of the Mahalanobis algorithm. EARLINET observations 

from 2008 to 2010 present the backbone of the reference dataset. 8 aerosol 

https://www.atmos-chem-phys.net/18/15879/2018/#bib1.bibx78
https://www.atmos-chem-phys.net/18/15879/2018/#bib1.bibx78
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classes are used: clean continental (CC), continental polluted (CP), pure dust 

(D), mixed dust (MD = dust + marine), dust polluted (DP = dust + smoke and/or 

dust + polluted continental), mixed marine (MM), smoke (S), and volcanic (V). 

 

Figure 3.7 Colored pre-specified classes and 90 % confidence ellipses for 8 and 4 aerosol classes. The error bars 
correspond to the standard deviation of the selected mean intensive properties. CC stands for clean 
continental, D stands for dust, MD stands for mixed dust, MM stands for mixed marine, PD stands for polluted 
dust, PC stands for polluted continental, S stands for smoke, and V stands for volcanic particles 
(Papagiannopoulos, et al., 2018). 

Table 3.5 shows the characteristics of the reference dataset in terms of the     
    

and κβ(355,1064) for the 8 classes, already mentioned. The coloring 

corresponds to the various classes and the crosshairs indicate the standard 

deviation of each of the aerosol layers. The 90 % confidence ellipses are 

calculated using the eigenvalues and eigenvectors of the covariance matrix and 

define the region that contains 90 % of all the points that can be drawn from the 

underlying normal class distribution. 

Calibrated particle linear depolarization ratio profiles were not available in the 

selected dataset. So, Papagiannopoulos et al. (2018) used general literature 

values for particle linear depolarization ratio at 532 nm (Table 3.6) in order to 

train the algorithm. 

Table 3.5 Reference dataset: mean type-dependent intensive properties along with the standard deviation 
(Papagiannopoulos, et al., 2018). 

Type κβ(355,1064) κβ(532,1064) κβ(355,532) κα(355,532)     
        

    

CC 1.0 ± 0.2 1.0 ± 0.3 1.3 ± 0.3 1.7 ± 0.6 50 ± 8 41 ± 6 

CP 1.3 ± 0.3 1.3 ± 0.2 1.4 ± 0.6 1.7 ± 0.5 69± 12 63 ± 13 

D 0.4 ± 0.1 0.4 ± 0.1 0.3 ± 0.2 0.3 ± 0.4 58 ± 12 55 ± 7 

MD 0.5 ± 0.2 0.4 ± 0.3 0.7 ± 0.3 0.5 ± 0.3 42 ± 4 47 ± 6 

DP 0.9 ± 0.3 0.8 ± 0.1 1.0 ± 0.5 0.6 ± 0.2 54 ± 8 64 ± 9 
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MM 0.8 ± 0.1 0.8 ± 0.2 1.0 ± 0.3 0.9 ± 0.3 25 ± 7 24 ± 8 

S 1.3 ± 0.1 1.3 ± 0.1 1.2 ± 0.3 1.3 ± 0.3  81 ± 16 78 ± 11 

V 0.1 ± 0.1 0.4 ± 0.3 0.2 ± 0.3 0.2 ± 0.3 50 ± 11 48 ± 13 

Table 3.6 The mean and standard deviation of the particle depolarization ratio used for the pre-specified 
classes and the corresponding bibliographic references (Papagiannopoulos, et al., 2018). 

Type     
    References 

Clean continental 0.04 ± 0.02 Burton et al. (2013) 

Continental  polluted 0.05 ± 0.03 Burton et al. (2013) 

Dust 0.30 ± 0.01 Gross et al. (2011) 

Mixed dust 0.15 ± 0.02 Gross et al. (2016) 

Dust polluted  0.20 ± 0.05 Burton et al. (2013) 

Marine 0.03 ± 0.01 Gross et al. (2013) 

Smoke 0.10 ± 0.04 Burton et al. (2013) 

Volcanic 0.33 ± 0.03 Pappalardo et al. (2013) 

As indicated by Papagiannopoulos et al. (2018), of the most importance in the 

aerosol typing classification has the set of parameters: κβ(355,1064),     
   , and 

    
   /    

   . The decision for the selected parameters stems solely from the 

lowest arithmetic value of the total Wilks’ lambda, Λ (Wilks, 1963). To this set, 

the particle linear depolarization ratio at 532 nm was added. 

The mean values of the optical properties (b355, b532, b1064, e355, e532, d532) for 

each layer calculated both manually and by Natali were used as inputs for the 

Mahalanobis distance automatic aerosol classification algorithm.  

3.4.  Aerosol categories 
Four different categories were created depending on the results from SCAN: 

“pure”, “mixture of 2”, “mixture of 3” and “no type”. The “pure” category 

consists of the cases that SCAN counted only 1 aerosol type during their back-

trajectory. The “mixture of 2” consists of the cases that SCAN counted 2 

aerosol types during their back-trajectory. The “mixture of 3” consists of the 

cases that SCAN counted 3 aerosol types during their back-trajectory. Finally, 

“no type” consists of the cases that SCAN was unable to identify the potential 

source of the observed layers. Each of the categories mentioned above, was, 

then, divided into subcategories depending on the typing results of SCAN. The 

“pure” category was divided into 5 subcategories “Continental Polluted” (cp), 

“Clean Continental” (cc), “Smoke” (bb), “Dust” (d) and “Marine” (m). The 

“mixture of 2” category was divided into 5 subcategories, “Continental 
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Polluted and Smoke”, “Continental Polluted and Clean Continental” (cp+cc), 

“Continental Polluted and Marine” (cp+m), “Clean Continental and Marine” 

(cc+m) and “Continental Polluted and Dust” (cp+d). Finally, the “mixture of 3” 

category was divided into 3 subcategories “Continental Polluted, Clean 

Continental and Marine” (cp+cc+m), “Continental Polluted, Smoke and 

Marine” (cp+bb+m) and “Continental Polluted, Smoke and Dust” (cp+bb+d). 

 

Figure 3.8 Schematics of the methodology of this study. 

The shorthands of Natali’s and Mahalanobis’s results were used so that the 

comparison between the 3 different methods be feasible (Table 3.7). 

Table 3.7 Correspondence between the aerosol types and shorthand, as they can be retrieved by Natali, 
Mahalanobis and SCAN. 
Aerosol types Natali  Mahalanobis SCAN 

Continental 

(cc) 

Continental Continental Clean Continental 

Continental Polluted  

(cp) 

Continental polluted Continental polluted Continental polluted 

Smoke  

(bb) 

Smoke Smoke Smoke 
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Dust  

(d) 

Dust Dust Dust 

Marine  

(m) 

Marine Marine Marine 

Continental and dust  

(cp+d) 

Continental dust Dust polluted Continental and dust 

Dust and marine  

(d+m) 

Marine mineral Mixed dust Dust and marine 

Continental and smoke  

(cp+bb) 

Continental smoke - Continental polluted and 

smoke 

Dust and smoke  

(d+bb) 

Dust polluted Dust polluted Dust and smoke 

Continental and marine  

(cc+m) 

Coastal - Clean continental and marine 

Continental polluted and 

marine 

(cp+m) 

Coastal polluted - Continental polluted and 

marine 

Continental polluted and 

clean continental 

(cp+cc) 

- - Continental polluted and clean 

continental 

Continental and dust and 

marine 

(cc+d+m) 

Mixed dust - Clean continental and dust 

and marine 

Continental and smoke 

and marine 

(cc+bb+m) 

Mixed smoke - Clean continental and smoke 

and marine 

Continental polluted and 

smoke and marine 

(cp+bb+m) 

- - Continental polluted and 

smoke and marine 

Continental and smoke 

and dust 

(cp+bb+d) 

- - Continental and smoke and 

dust 

Continental and clean 

continental and marine 

(cp+cc+m) 

- - Continental and clean 

continental and marine 

The performance of Mahalanobis and Natali algorithms was studied for each of 

the above categories.  

 

 

 

 

 

 

 

 

 

 



 
 

4. Results 

The results of the 3 different classification algorithms can be found at the Table 

4.1. The date (dd/mm-hh:mm), bottom (m) and top (m) of each layer is also 

given. 

Table 4.1 Classification results from SCAN, Natali and Mahalanobis, for each date and layer. 

Year 

(yyyy) 

Date 

(dd/mm-

hh:mm 

UTC) 

Bottom 

(m) 

Top 

(m) 
SCAN classification Natali classification 

Mahalanobis 

classification 

2015 

22/01-18:05 3744 4402 no type cc cc 

13/04-19:45 1330 

2410 

1570 

2650 

cp 

cp 

cp 

cc 

dp 

cc 

07/05-20:45 2890 

3910 

3190 

4570 

no type 

no type 

m/cc 

bb 

cp 

no type 

04/06-19:17 1570 

2710 

3910 

1810 

3130 

4590 

cp 

cp 

cp 

cp 

cc 

cp 

cp 

cc 

cp 

11/06-23:35 1270 

1690 

2350 

3370 

1570 

1990 

2710 

3730 

cp+m 

cp 

no type 

no type 

bb 

cp 

cp 

cc 

no type 

cp 

cp 

cc 

16/07-21:00 1810 3130 bb cc cp+m/cc 

20/07-23:59 1510 3250 cp+bb+m cc cc 

30/07-19:25 

          21:26 

1324 

2830 

3490 

4570 

5710 

2041 

3130 

3790 

4930 

6010 

cp+cc+m 

cp+d 

cp 

cp+m 

cp+m 

cp 

m/cc 

m/cc 

d+m 

cc+d+m/cc 

cp 

cp 

m 

no type 

m 

24/08-18:00 1204 1802 cc cp cp 

03/09-20:16 1930 2710 no type cc+d+m/cc no type 

2016 

04/01-15:18 2399 3296 no type cp+m/cc no type 

07/01-15:19 965 

1982 

1145 

2191 

cp+cc 

cp+cc 

cp+m/cc 

cp 

no type 

cp 

21/03-18:21 1115 1294 cc+m cp cc 

28/03-23:11 4701 4970 no type d no type 

04/04-18:47 2290 3310 d cc+d+m/cc d+m 

11/04-20:27 2050 2530 no type cc+d+m/cc d+m 

14/04-21:00 1742 1922 cc bb no type 

23/06-19:30 1930 

4150 

3430 

5110 

cp 

d 

m/cc 

no type 

cp 

d+bb/cp 

27/06-21:07 1570 

2530 

1870 

2890 

cp+cc+m 

no type 

cc+bb+m/cc 

m/cc 

no type 

no type 

04/07-19:56 1750 

2470 

2950 

1930 

2710 

3310 

cp+bb 

no type 

no type 

cp+m/cc 

cc 

m/cc 

cc 

cc 

cc 

07/07-19:01 1210 1510 cp cp cp 

11/07-19:22 1090 

3010 

2830 

4630 

cp+d 

no type 

cc 

cp+m/cc 

cc 

no type 

25/08-18:29 1030 

2350 

1870 

3850 

cp+bb 

cp 

cc 

cp+m/cc 

cp 

cc 

29/08-19:16 1930 2590 bb cc cc 

2017 

23/03-18:10 1990 2170 cp+d cp no type 

30/03-18:08 1270 

1990 

1450 

2350 

cp+bb 

cp+bb 

no type 

cc 

no type 

cc 

27/04-19:48 3250 4210 no type cc+d+m/cc d+m 

22/05-19:01 1090 2170 cp+bb cp no type 

08/06-19:14 1390 

2290 

1750 

2650 

cp 

m 

cp+m/cc 

cp+m/cc 

cc 

no type 

12/06-19:29 1630 1990 cp cp+m/cc cc 



P a g e  | 48 

 

15/06-20:00 1090 

2350 

2830 

3850 

1930 

2650 

3250 

4270 

cp+bb 

cp+bb 

d 

d 

cc 

m/cc 

m/cc 

m/cc 

no type 

no type 

cc 

cc 

22/06-19:18 1030 

2110 

3130 

4150 

1570 

2590 

3970 

5230 

cp+bb 

no type  

no type  

no type 

cp+bb/cc 

cp+bb/cc 

m/cc 

cc 

no type 

no type 

no type 

cc 

13/07-20:15 1810 3130 no type cc cc 

19/07-18:57 1030 

1990 

1450 

2530 

cp+bb 

bb 

cp 

cp 

cp 

cc 

20/07-20:15 1030 

1870 

3490 

4990 

1450 

2830 

4510 

6010 

cp 

bb 

no type 

no type 

cp+bb 

cp+m/cc 

cc+d+m 

cp+m 

no type 

cc 

no type 

no type 

24/08-16:56 

            

           17:59 

1068 

1968 

1668 

1368 

2418 

2268 

cp 

cp+bb 

cp+bb 

d+m 

cc 

cc 

no type 

no type 

no type 

28/08-18:45 1750 

3250 

4330 

4810 

5710 

1990 

3430 

4570 

5050 

5890 

cp+bb 

no type 

no type 

no type 

no type 

cc 

cc+d+m/cc 

no type 

cc+bb+m 

cp+m/cc 

cc 

d+m 

no type 

no type 

cc 

31/08-17:59 

 

          18:26 

1218 

2118 

1510 

2470 

1668 

2418 

1750 

2950 

cp+bb 

bb 

cp+bb 

cp+bb+d 

cc 

cc 

cc 

cc 

no type 

cc 

no type 

cc 

07/09-16:33 1968 2268 cp cc cc 

21/09-16:16 1968 2268 cp+bb cp no type 

19/10-17:14 1930 2110 cp cc+bb+m/cc no type 

2018 

21/06-20:30 1807 2375 cp+cc+m m/cc m 

19/07-21:30 1710 

2988 

4011 

2330 

3571 

4512 

cp 

no type 

no type 

cc 

no type 

cc 

cc 

no type 

no type 

26/07-20:00 1112 

1434 

1352 

2398 

cp 

cp 

cp 

cp 

cp 

cp 

30/07-21:45 1112 

1904 

3070 

1516 

2667 

3339 

cp+cc 

no type 

no type 

cp 

cp 

cp+m/cc 

cp 

cc 

cc 

02/08-23:00 1120 

2681 

2181 

3212 

cp 

no type 

cp 

cp 

cp 

cp 

16/08-21:20 1613 2442 cp cc cc 

27/08-19:00 1112 

1934 

3107 

4557 

6111 

1673 

2592 

4310 

5341 

6313 

cp 

no type 

cc 

no type 

no type 

cc 

cp 

cp+bb 

cp+bb 

cp+bb 

cp 

no type 

no type 

no type 

no type 

The comparison between these three classification algorithms are shown in the 

figures below (Fig. 4.1, Fig. 4.2, Fig. 4.3). The axes demonstrate the aerosol 

types introduced in Table 3.8. The numbers in the cells indicate the number of 

the aerosol layers classified by each aerosol classification algorithm. 
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Figure 4.1 Heatmap of Scan’s and Natali’s results comparison. The numbers in the cells indicate the number of 
layers classified by NATALI (row label) and SCAN (column label). 

 

Figure 4.2 Heatmap of Scan’s and Mahalanobis’s results comparison. The numbers in the cells indicate the 
number of layers classified by MAHALANOBIS (row label) and SCAN (column label). 
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Figure 4.3 Heatmap of Natali’s and Mahalanobis’s results comparison. The numbers in the cells indicate the 

number of layers classified by MAHALANOBIS (row label) and NATALI (column label). 

4.1. Pure types 

To further investigate the discrepancies between the three aerosol classification 

algorithms, SCAN’s results are classified into 4 major categories: “pure” (36%, 

35 cases, yellow slice of the pie, Fig. 4.4), “mixture of 2” (26%, 25 cases, cyan 

slice of the pie, Fig. 4.4), “mixture of 3” (5%, 5 cases, magenta slice of the pie, 

Fig. 4.4) and “no type” (33%, 32 cases, grey slice of the pie, Fig. 4.4). 

 
Figure 4.4 Major categories of SCAN’s results. 

Each of the above categories is divided into minor subcategories depending on 

the typing results of SCAN. 

The “pure” major category is divided into 5 minor subcategories: “Continental 

Polluted”, “Clean Continental”, “Smoke”, “Marine” and “Dust”. 
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Figure 4.5 Minor categories of SCAN’s results for major category “pure”. 

The “Continental Polluted” category (dark red slice of the pie, Fig. 4.5) 

represents the 63% (22 cases) of the pure aerosol types detected by SCAN. The 

“Smoke” category (dark grey slice of the pie, Fig. 4.5) represents the 14% (5 

cases) of pure aerosol types detected by SCAN. The “Dust” category (orange 

slice of the pie, Fig. 4.5) represents the 11% (4 cases) of the pure aerosol types 

detected by SCAN. The “Clean Continental” category (green slice of the pie, 

Fig. 4.5) represents the 8% of the pure aerosol types detected by SCAN. 

Finally, the “Marine” category (blue slice of the pie, Fig.4.5) represents the 3% 

(1 case) of the pure aerosol types detected by SCAN.  

4.1.1. Continental Polluted 

The Mahalanobis algorithm classified as “continental polluted” the 36% of the 

SCAN “continental polluted” cases (Fig. 4.6, left part of the figure, black 

column). At the same time, Mahalanobis classified as “clean continental” the 

40% of the same cases (Fig. 4.6, left part of the figure, blue column), while it 

couldn’t classify the 14% of the SCAN’s cp cases (Fig. 4.6, left part of the 

figure, orange column). The 5% of the SCAN’s cp cases were classified by 

Mahalanobis as mixtures, specifically as “dust and smoke” (Fig. 4.6, left part of 

the figure, olive column). Finally, the 5% of the SCAN’s cp cases were 

classified by Mahalanobis as “marine” (Fig. 4.6, left part of the figure, magenta 

column). 

Natali algorithm classified as “continental polluted” the 36% (Fig. 4.6, right 

part of the figure, black column) of the same cases mentioned above 

(“continental polluted”), and as “clean continental” the 27% of them (Fig. 4.6, 

right part of the figure, blue column). The 27% of the SCAN’s cp cases were 

classified by Natali as mixtures, specifically as “dust and marine” (Fig. 4.6, 

right part of the figure, medium blue column), as “continental polluted and 

marine” (Fig. 4.6, right part of the figure, brown column), as “continental 

polluted and smoke” (Fig. 4.6, right part of the figure, pink column) and “clean 
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continental, smoke and marine” (Fig. 4.6, right part of the figure, green 

column). Finally, the 9% of the SCAN’s cp cases were classified by Natali as 

“marine or continental” (Fig. 4.6, right part of the figure, dark blue column). 

 

Figure 4.6 Frequencies of observed aerosol types by Mahalanobis and Natali for the layers classified by SCAN as 
“Continental Polluted”. 

Natali and Mahalanobis have a 59% agreement in their results.  

Simultaneously, both Mahalanobis and Natali result with a high frequency of 

“clean continental” aerosol type for the layers classified as “continental 

polluted” by SCAN. Finally, the 100% of Mahalanobis “no type” results 

(concerning the cp cases by SCAN), classified by Natali as a mixture. 

In Table 4.2 we introduce the mean values of the intensive optical properties 

for the layers classified as “continental polluted” by SCAN for this study. 

Table 4.2 Mean values of intensive optical properties of the “continental polluted” classified layers by SCAN. 
Intensive optical properties Mean ± error 

AE355/532 1.30 ± 0.25 

CI355/532 1.29 ± 0.24 

CI532/1064 0.99 ± 0.14 

CR355/532 1.70 ± 0.17 

CR532/1064 2.02 ± 0.21 

LR355 [sr] 49 ± 5 

LR532 [sr] 52 ± 5 

LPDR532 [%] 3 ± 1 

4.1.2. Clean Continental 

The Mahalanobis algorithm classified as “continental polluted” the 33% of the 

SCAN “clean continental” cases (Fig. 4.7, left part of the figure, black 
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column). At the same time, couldn’t classify the 67% of them (Fig. 4.7, left 

part of the figure, orange column).  

 

Figure 4.1 Frequencies of observed aerosol types by Mahalanobis and Natali for the layers classified by SCAN as 
“Clean Continental”. 

Natali algorithm classified as “continental polluted” the 33% (Fig. 4.7, right 

part of the figure, black column) of the same cases mentioned above (“clean 

continental”) and as “smoke” the other 33% of them (Fig. 4.7, right part of the 

figure, red column). Finally, the last 33% of the SCAN’s cc cases were 

classified by Natali as “continental polluted and smoke” (Fig. 4.7, right part of 

the figure, pink column). 

Natali and Mahalanobis algorithm have 33% agreement in their results 

concerning the SCAN’s cc type. 

Mahalanobis has a high percentage of “no type” results (67%), 50% of them 

classified by Natali as a mixture.  

Table 4.3 Mean values of intensive optical properties of the “clean continental” classified layers by SCAN. 
Intensive optical properties Mean ± error 

AE355/532 1.06 ± 0.21 

CI355/532 2.15 ± 0.18 

CI532/1064 0.99 ± 0.10 

CR355/532 2.43 ± 0.15 

CR532/1064 1.98 ± 0.14 

LR355 [sr] 50 ± 4 

LR532 [sr] 73 ± 6 

LPDR532 [%] 2 ± 1 
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In Table 4.3 we introduce the mean values of the intensive optical properties 

for the layers classified as “clean continental” by SCAN for this study. 

4.1.3. Smoke 

The Mahalanobis algorithm classified as “clean continental” the 100% of the 

SCAN “smoke” cases (Fig. 4.8, left part of the figure, blue column).  

 

Figure 4.8 Frequencies of observed aerosol types by Mahalanobis and Natali for the layers classified by SCAN as 
“Clean Continental”. 

Natali algorithm classified as “continental polluted” the 20% (Fig. 4.8, right 

part of the figure, black column) of the “smoke” cases of SCAN  and as “clean 

continental” the other 40% (Fig. 4.8, right part of the figure, blue column). 

Finally, the last 40% of the SCAN’s bb cases were classified by Natali as 

“continental polluted and marine” (Fig. 4.8, right part of the figure, brown 

column). 

We can observe that Natali and Mahalanobis have 40% agreement in their 

results concerning the SCAN’s bb type. 

Moreover, Mahalanobis has a high percentage of “clean continental” results 

(100%).  

In Table 4.4 we introduce the mean values of the intensive optical properties 

for the layers classified as “smoke” by SCAN for this study. 

Table 4.4 Mean values of intensive optical properties for the “smoke” classified layers by SCAN. 
Intensive optical properties Mean ± error 

AE355/532 1.55 ± 0.30 
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CI355/532 0.92 ± 0.25 

CI532/1064 1.33 ± 0.15 

CR355/532 1.47 ± 0.15 

CR532/1064 2.58 ± 0.29 

LR355 [sr] 46 ± 8 

LR532 [sr] 37 ± 4 

LPDR532 [%] 3 ± 1 

4.1.4. Dust 

The Mahalanobis algorithm classified as “clean continental” the 50% of the 

SCAN dust cases (Fig. 4.9, left part of the figure, blue column). At the same 

time, Mahalanobis classified as “dust and smoke” or “clean continental” the 

25% of the same cases (Fig. 4.9, left part of the figure, olive column), while the 

last 25% classified it as “dust and marine” (Fig. 4.9, left part of the figure, 

medium blue column). 

 

Figure 4.2 Frequencies of observed aerosol types by Mahalanobis and Natali for the layers classified by SCAN as 
“dust”. 

For the same cases, Natali algorithm classified as “marine” or “clean 

continental” the 50% (Fig. 4.9, right part of the figure, dark blue column) and 

as “clean continental, dust and marine” the other 25% (Fig. 4.9, right part of the 

figure, purple column). Finally, the last 25% of the SCAN’s “dust” cases Natali 

was not able to classify it (Fig. 4.9, right part of the figure, orange column). 

Natali and Mahalanobis algorithm have 25% agreement at their results 

concerning the SCAN’s d type. 
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Moreover, Mahalanobis has a relatively high percentage of “clean continental” 

results (50%).  

In Table 4.5 we introduce the mean values of the intensive optical properties 

for the layers classified as “dust” by SCAN for this study. 

Table 4.5 Mean values of intensive optical properties for the “dust” classified layers by SCAN. 
Intensive optical properties Mean ± error 

AE355/532 0.94 ± 0.22 

CI355/532 0.43 ± 0.22 

CI532/1064 0.82 ± 0.13 

CR355/532 1.25 ± 0.12 

CR532/1064 1.78 ± 0.16 

LR355 [sr] 39 ± 3 

LR532 [sr] 32 ± 3 

LPDR532 [%] 11 ± 3 

4.1.5. Marine  

The Mahalanobis algorithm couldn’t classify the 100% of the SCAN “marine” 

cases (Fig. 4.10, left part of the figure, orange column), while Natali classified 

the 100% of the SCAN “marine” cases as “continental polluted and marine” or 

“clean continental” (Fig. 4.10, right part of the figure, brown column). 

 

Figure 4.3 Frequencies of observed aerosol types by Mahalanobis and Natali for the layers classified by SCAN as 
“marine”. 

We should mention here that there is only one case classified by SCAN as a 

pure “marine” type. 

In Table 4.6 we introduce the mean values of the intensive optical properties 

for the layers classified as “marine” by SCAN for this study. 
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Table 4.6  Mean values of intensive optical properties for the “marine” classified layers by SCAN. 
Intensive optical properties Mean ± error 

AE355/532 0.42 ± 0.29 

CI355/532 1.14 ± 0.29 

CI532/1064 0.88 ± 0.17 

CR355/532 1.59 ± 0.18 

CR532/1064 1.85 ± 0.21 

LR355 [sr] 29 ± 3 

LR532 [sr] 39 ± 5 

LPDR532 [%] 1 ± 1 

4.2. Mixtures of 2 aerosol types 
The “mixture of 2” major category is divided into 5 minor subcategories: 

“Continental Polluted and Smoke”, “Continental Polluted and Dust”, 

“Continental Polluted and Clean Continental”, “Continental Polluted and 

Marine” and “Clean Continental and Marine”. 

 

Figure 4.4 Minor categories of SCAN’s results for major category “mixture of 2”. 

The “Continental Polluted and Smoke” category (black slice of the pie, Fig. 

4.11) represents the 60% (15 cases) of the mixture of 2 aerosol types detected 

by SCAN. The “Continental Polluted and Dust” category (red slice of the pie, 

Fig. 4.11) represents the 12% (3 cases) of the mixture of 2 aerosol types 

detected by SCAN. The “Continental Polluted and Clean Continental” category 

(green slice of the pie, Fig. 4.11) represents the 12% (3 cases) of the mixture of 

2 aerosol types detected by SCAN. The “Continental Polluted and Marine” 

category (blue slice of the pie, Fig. 4.11) represents the 12% of the mixture of 2 

aerosol types detected by SCAN. Finally, the “Clean Continental and Marine” 

category (cyan slice of the pie, Fig. 4.11) represents the 4% (1 case) of the 

mixture of 2 aerosol types detected by SCAN.  

4.2.1. Continental Polluted and Smoke  

The Mahalanobis algorithm classified as “continental polluted” the 13% of the 

SCAN “continental polluted and smoke” cases (Fig. 4.12, left part of the figure, 

black column). At the same time, Mahalanobis classified as “clean continental” 
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the 20% of the same cases (Fig. 4.12, left part of the figure, blue column), 

while it couldn’t classify the 67% of the SCAN’s cp+bb cases (Fig. 4.12, left 

part of the figure, orange column).  

Natali algorithm classified as “continental polluted” the 33% (Fig. 4.12, right 

part of the figure, black column) of the same cases mentioned above 

(“continental polluted and smoke”), and as “clean continental” the 40% of them 

(Fig. 4.12, right part of the figure, blue column). The 13% of the SCAN’s 

cp+bb cases were classified by Natali as mixtures, specifically as “continental 

polluted and marine or clean continental” (Fig. 4.12, right part of the figure, 

brown column). The 7% of the SCAN’s cp+bb cases were classified by Natali 

as “marine or continental” (Fig. 4.12, right part of the figure, dark blue column) 

and the last 7% as “no type”. 

 

Figure 4.5 Frequencies of observed aerosol types by Mahalanobis and Natali for the layers classified by SCAN as 
“Continental Polluted and Smoke”. 

In Table 4.7 we introduce the mean values of the intensive optical properties 

for the layers classified as “continental polluted and smoke” by SCAN for this 

study. 

Table 4.7 Mean values of intensive optical properties for the “continental polluted and smoke” classified layers 
by SCAN. 
Intensive optical properties Mean ± error 

AE355/532 1.63 ± 0.40 

CI355/532 0.78 ± 0.35 

CI532/1064 1.31 ± 0.21 

CR355/532 1.41 ± 0.20 

CR532/1064 2.67 ± 0.40 

LR355 [sr] 52.73 ± 7.95 
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LR532 [sr] 45.87 ± 6.96 

LPDR532 [%] 4.02 ± 1.94 

4.2.2. Continental Polluted and Dust  

The Mahalanobis algorithm classified as “continental polluted” the 33% of the 

SCAN “continental polluted and dust” cases (Fig. 4.13, left part of the figure, 

black column). At the same time, Mahalanobis classified as “clean continental” 

the 33% of the same cases (Fig. 4.13, left part of the figure, blue column), 

while it could not classify the 33% of the SCAN’s cp+d cases (Fig. 4.13, left 

part of the figure, orange column).  

 

Figure 4.6 Frequencies of observed aerosol types by Mahalanobis and Natali for the layers classified by SCAN as 
“Continental Polluted and Dust”. 

Natali algorithm classified as “continental polluted” the 33% (Fig. 4.13, right 

part of the figure, black column) of the same cases mentioned above 

(“continental polluted and dust”), and as “clean continental” the 33% of them 

(Fig. 4.13, right part of the figure, blue column). The 33% of the SCAN’s cp+d 

cases were classified by Natali as “marine or continental” (Fig. 4.13, right part 

of the figure, dark blue column). 

In Table 4.8 we introduce the mean values of the intensive optical properties 

for the layers classified as “continental polluted and dust” by SCAN for this 

study. 

Table 4.8 Mean values of intensive optical properties for the “continental polluted and dust” classified layers 
by SCAN. 
Intensive optical properties Mean ± error 
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AE355/532 1.04 ± 0.28 

CI355/532 0.83 ± 0.28 

CI532/1064 0.93 ± 0.17 

CR355/532 1.41 ± 0.17 

CR532/1064 1.91 ± 0.22 

LR355 [sr] 44.67 ± 5.07 

LR532 [sr] 43.33 ± 5.13 

LPDR532 [%] 4.33 ± 1.68 

4.2.3. Continental Polluted and Clean Continental  

The Mahalanobis algorithm classified as “continental polluted” the 33% of the 

SCAN “continental polluted and clean continental” cases (Fig. 4.14, left part of 

the figure, black column). At the same time, Mahalanobis classified as “no 

type” the 67% of the same cases (Fig. 4.14, left part of the figure, orange 

column).  

 

Figure 4.7 Frequencies of observed aerosol types by Mahalanobis and Natali for the layers classified by SCAN as 
“Continental Polluted and Clean Continental”. 

Natali algorithm classified as “continental polluted” the 67% (Fig. 4.14, right 

part of the figure, black column) of the same cases mentioned above 

(“continental polluted and clean continental”), and as “continental polluted and 

marine or clean continental” the 33% of them (Fig. 4.14, right part of the 

figure, brown column).  

In Table 4.9 we introduce the mean values of the intensive optical properties 

for the layers classified as “continental polluted and clean continental” by 

SCAN for this study. 
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Table 4.9 Mean values of intensive optical properties for the “continental polluted and clean continental” 
classified layers by SCAN. 
Intensive optical properties Mean ± error 

AE355/532 1.04 ± 0.28 

CI355/532 0.83 ± 0.28 

CI532/1064 0.93 ± 0.17 

CR355/532 1.41 ± 0.17 

CR532/1064 1.91 ± 0.22 

LR355 [sr] 44.67 ± 5.07 

LR532 [sr] 43.33 ± 5.13 

LPDR532 [%] 4.33 ± 1.68 

4.2.4. Continental Polluted and Marine  

The Mahalanobis algorithm classified as “marine” the 50% of the SCAN 

“continental polluted and marine” cases (Fig. 4.15, left part of the figure, 

magenta column). At the same time, Mahalanobis classified as “no type” the 

other 50% of the same cases (Fig. 4.15, left part of the figure, orange column).  

 

Figure 4.8 Frequencies of observed aerosol types by Mahalanobis and Natali for the layers classified by SCAN as 
“Continental Polluted and Marine”. 

Natali algorithm classified as “smoke” the 50% (Fig. 4.15, right part of the 

figure, red column) of the same cases mentioned above (“continental polluted 

and marine”), and as “clean continental, dust and marine” the other 50% of 

them (Fig. 4.15, right part of the figure, purple column).  

In Table 4.10 we introduce the mean values of the intensive optical properties 

for the layers classified as “continental polluted and marine” by SCAN for this 

study. 



P a g e  | 62 

 

Table 4.10  Mean values of intensive optical properties for the “continental polluted and marine” classified 
layers by SCAN. 
Intensive optical properties Mean ± error 

AE355/532 0.51 ± 0.32 

CI355/532 0.33 ± 0.32 

CI532/1064 0.74 ± 0.18 

CR355/532 1.22 ± 0.16 

CR532/1064 1.68 ± 0.22 

LR355 [sr] 47.00 ± 6.14 

LR532 [sr] 49.33 ± 6.58 

LPDR532 [%] 8.22 ± 4.01 

 

4.2.5. Clean Continental and Marine  

The Mahalanobis algorithm classified as “clean continental” the 100% of the 

SCAN “clean continental and marine” cases (Fig. 4.16, left part of the figure, 

blue column).  

 

Figure 4.9 Frequencies of observed aerosol types by Mahalanobis and Natali for the layers classified by SCAN as 
“Clean Continental and Marine”. 

Natali algorithm classified as “continental polluted” the 100% (Fig. 4.16, right 

part of the figure, red column) of the same cases mentioned above (“continental 

polluted and marine”). 

In Table 4.11 we introduce the mean values of the intensive optical properties 

for the layers classified as “clean continental and marine” by SCAN for this 

study. 
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Table 4.11  Mean values of intensive optical properties for the “clean continental and marine” classified layers 
by SCAN. 
Intensive optical properties Mean ± error 

AE355/532 0.69 ± 0.29 

CI355/532 0.14 ± 0.29 

CI532/1064 0.73 ± 0.17 

CR355/532 1.78 ± 0.21 

CR532/1064 1.66 ± 0.19 

LR355 [sr] 51.00 ± 5.88 

LR532 [sr] 63.00 ± 7.26 

LPDR532 [%] 1.99 ± 0.81 

4.3. Mixtures of 3 aerosol types 
The “mixture of 3” major category is divided into 3 minor subcategories: 

“Continental Polluted, Clean Continental and Marine”, “Continental Polluted, 

Smoke and Marine” and “Clean Continental, Smoke and Dust”. 

 

Figure 4.10 Minor categories of SCAN’s results for major category “mixture of 3”. 

The “Continental Polluted, Clean Continental and Marine” category (black 

slice of the pie, Fig. 4.17) represents the 60% (3 cases) of the mixture of 3 

aerosol types detected by SCAN. The “Continental Polluted, Smoke and 

Marine” category (red slice of the pie, Fig. 4.17) represents the 20% (1 cases) 

of the mixture of 3 aerosol types detected by SCAN. Finally, the “Clean 

Continental, Smoke and Dust” category (green slice of the pie, Fig. 4.17) 

represents the last 20% (1 case) of the mixture of 3 aerosol types detected by 

SCAN.  

4.3.1. Continental Polluted, Clean Continental and Marine 

The Mahalanobis algorithm classified as “continental polluted” the 33 % of the 

SCAN “continental polluted, clean continental and marine” cases (Fig. 4.18, 

left part of the figure, black column). At the same time, Mahalanobis classified 

as “marine” the 33% of the same cases (Fig. 4.18, left part of the figure, 

magenta column). Finally, Mahalanobis wasn’t able to classify the last 33% 

(Fig. 4.18, left part of the figure, orange column). 
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Figure 4.11 Frequencies of observed aerosol types by Mahalanobis and Natali for the layers classified by SCAN 
as “Continental Polluted, Clean Continental and Marine”. 

Natali algorithm classified as “continental polluted” the 33% (Fig. 4.18, right 

part of the figure, black column) of the same cases mentioned above 

(“continental polluted, clean continental and marine”), as “marine or clean 

continental” the 33% of them (Fig. 4.18, right part of the figure, dark blue 

column) and as “clean continental, smoke and marine” the last 33% of the 

cases SCAN classified as “continental polluted, clean continental and marine”. 

In Table 4.12 we introduce the mean values of the intensive optical properties 

for the layers classified as “continental polluted, clean continental and marine” 

by SCAN for this study. 

Table 4.12 Mean values of intensive optical properties for the “continental polluted, clean continental and 
marine” classified layers by SCAN. 
Intensive optical properties Mean ± error 

AE355/532 0.77 ± 0.18 

CI355/532 1.30 ± 0.18 

CI532/1064 0.98 ± 0.10 

CR355/532 1.70 ± 0.12 

CR532/1064 2.01 ± 0.13 

LR355 [sr] 43.00 ± 3.24 

LR532 [sr] 55.67 ± 4.78 

LPDR532 [%] 2.89 ± 1.17 

4.3.2. Continental Polluted, Smoke and Marine 

The Mahalanobis algorithm classified as “clean continental” the 100% of the 

SCAN “continental polluted, smoke and marine” cases (Fig. 4.19, left part of 

the figure, blue column). 
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Figure 4.12 Frequencies of observed aerosol types by Mahalanobis and Natali for the layers classified by SCAN 
as “Continental Polluted, Smoke and Marine”. 

At the same time, Natali algorithm classified as “clean continental” the 100% 

(Fig. 4.19, right part of the figure, blue column) of the same cases mentioned 

above (“continental polluted, smoke and marine”).  

Table 4.13 Mean values of intensive optical properties for the “continental polluted, smoke and marine” 
classified layers by SCAN. 
Intensive optical properties Mean ± error 

AE355/532 0.98 ± 0.13 

CI355/532 1.60 ± 0.13 

CI532/1064 0.92 ± 0.08 

CR355/532 1.91 ± 0.10 

CR532/1064 1.90 ± 0.10 

LR355 [sr] 42.00 ± 2.20 

LR532 [sr] 54.00 ± 2.85 

LPDR532 [%] 3.48 ± 0.66 

In Table 4.13 we introduce the mean values of the intensive optical properties 

for the layers classified as “continental polluted, smoke and marine” by SCAN 

for this study. 

4.3.3. Continental Polluted, Smoke and Dust 

The Mahalanobis algorithm classified as “clean continental” the 100% of the 

SCAN “continental polluted, smoke and dust” cases (Fig. 4.20, left part of the 

figure, blue column). 
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Figure 4.13 Frequencies of observed aerosol types by Mahalanobis and Natali for the layers classified by SCAN 
as “Continental Polluted, Smoke and Dust”. 

At the same time, Natali algorithm classified as “clean continental” the 100% 

(Fig. 4.20, right part of the figure, blue column) of the same cases mentioned 

above (“continental polluted, smoke and dust”).  

Table 4.14 Mean values of intensive optical properties for the “continental polluted, smoke and dust” classified 
layers by SCAN. 

Intensive optical properties Mean ± error 

AE355/532 1.25 ± 0.25 

CI355/532 1.01 ± 0.25 

CI532/1064 0.95 ± 0.14 

CR355/532 1.50 ± 0.15 

CR532/1064 1.93 ± 0.19 

LR355 [sr] 51.00 ± 5.09 

LR532 [sr] 47.00 ± 4.71 

LPDR532 [%] 4.08 ± 1.44 

In Table 4.14 we introduce the mean values of the intensive optical properties 

for the layers classified as “continental polluted, smoke and dust” by SCAN for 

this study. 

 



 
 

5. Conclusions and Future Work 

In this study we developed an improved algorithm, for automated aerosol 

optical property layer identification based on backward trajectory analysis and 

satellite data in combination with the application of a number of criteria. SCAN 

uses the HYSLPIT (6-days) back-trajectories and takes into account the 

atmospheric layer height above the aerosol source regions (<1km for marine, 

<2 km for continental polluted, clean continental and dust, 3km for smoke) and 

distance from the potential fire spot (<8km) as well as fire spot confidence 

(>80%). Its classification results are based on the amount of time that the air 

parcel spends above certain already characterized aerosol source region. It is 

capable of handling a considerable amount of layers in a negligible time. The 

innovation of SCAN is that it can be used from stations that have not the full 

set of optical properties in order to characterize the observed aerosol layers 

above them. However, the above criteria may not serve well all the layers 

under study.  

For the first time, a comparison between three different aerosol classification 

methods, named:  (1) “Mahalanobis distance automatic aerosol type 

classification”, (2) “Neural Network Aerosol Typing Algorithm” (NATALI) 

and (3) “Source Classification Analysis” (SCAN) is shown. 

The lidar station selection depended on the availability of the vertical profiles 

of the full set (3β + 2α + δ) of aerosol optical properties: backscatter coefficient 

(b355, b532, b1064), extinction coefficient (e355, e532), Lidar Ratio (LR355, LR532), 

Ångström exponent (AE355/532, CI355/532, CI532/1064) and Linear Particle 

Depolarization Ratio (LPDR532) at the EARLINET database during the period 

2014-2018. The 4 lidar stations from which we obtained the aerosol optical  

properties data : Kuopio (Finland),  Bucharest (Romania), Leipzig (Germany) 

and Potenza (Italy). 

Moreover, 48 dates of lidar observations by multiwavelength Raman and 

depolarization lidars from the aforementioned lidar stations have been studied 

in the frame of this Thesis. For some dates, more than one layer has been 

observed increasing the number of layers to 97. 

Four different categories were created depending on the results from SCAN: 

“pure”, “mixture of 2”, “mixture of 3” and “no type”. Each of these categories 

was, then, divided into subcategories depending on the typing results of SCAN. 

The “pure” category was divided into 5 subcategories “Continental Polluted” 

(cp), “Clean Continental” (cc), “Smoke” (bb), “Dust” (d) and “Marine” (m). 
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The “mixture of 2” category was divided into 5 subcategories, “Continental 

Polluted and Smoke”, “Continental Polluted and Clean Continental” (cp+cc), 

“Continental Polluted and Marine” (cp+m), “Clean Continental and Marine” 

(cc+m) and “Continental Polluted and Dust” (cp+d). Finally, the “mixture of 3” 

category was divided into 3 subcategories “Continental Polluted, Clean 

Continental and Marine” (cp+cc+m), “Continental Polluted, Smoke and 

Marine” (cp+bb+m) and “Continental Polluted, Smoke and Dust” (cp+bb+d). 

The performance of the Mahalanobis and Natali algorithms was studied for 

each of the above categories. The mean values of aerosol optical properties for 

each of these categories have been calculated. 

Natali is an automatic aerosol optical property dependent classification 

algorithm. It is able to identify pure aerosol types, mixtures of two aerosol 

types and mixtures of three aerosol types. Natali takes as inputs the profiles of 

aerosol optical properties uploaded to the EARLINET database and gives all 

the classification results together with the mean values and their uncertainties 

of all aerosol optical properties of the layers under study. We showed that this 

algorithm is capable to well classify the pure continental polluted aerosol layers 

but it has a difficulty to classify the pure clean continental and pure smoke 

aerosol types probably due to the overlapping mean values of aerosol optical 

properties of these aerosol types, compared to the results obtained from the 

SCAN classification algorithm.  

Mahalanobis is an automatic aerosol optical property dependent classification 

algorithm. It is able to identify pure aerosol types and mixtures of two aerosol 

types. Mahalanobis takes as inputs the mean values of the aerosol optical 

properties of each layer under study. We showed that this algorithm is capable 

to classify the pure continental polluted aerosol layers but it has a difficulty to 

classify the pure clean continental and pure smoke aerosol types probably due 

to the overlapping mean values of aerosol optical properties of these aerosol 

types, just like Natali, compared to the results obtained from the SCAN 

classification algorithm. Finally, Mahalanobis is not able to classify aerosol 

layers which consist of more than two aerosol types with relatively equal 

contribution to the layer, compared to the results from SCAN classification 

algorithm. These layers are classified as “no type” by Mahalanobis algorithm. 

Concerning the mean values of aerosol optical properties, we found relatively 

smaller values compared to those of the literature, especially to the “lidar 

ratios” and the “linear particle depolarization ratios“. This behavior might be a 

result of the dependence of the optical property on the time the trajectory spent 

above the source area, concerning the pure types. 
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In the future, we plan to study the role  of the atmospheric humidity onto the 

aerosol transformation and the change that this contribution induces to the 

aerosol optical properties. Moreover, we plan to further investigate the role of 

the predominant aerosol type to the optical properties of the aerosols, through 

the percentages that Mahalanobis and Scan bring upon.  

We would like to perform the same methodology but without the use of the 

linear particle depolarization ratio parameter to investigate how this parameter 

contributes to the final classification of the two aerosol optical property 

dependent algorithms. Finally, but most importantly, we plan to perform our 

methodology to a considerably larger amount of layers so that the statistical 

analysis will be statistically significant. 
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