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ABSTRACT

Voronoi diagrams are a fundamental geometric data structure for obtaining proximity rela-
tions. We consider axis-aligned orthogonal polyhedra in two and three-dimensional space.
These are polyhedra whose faces meet at right angles and their edges are aligned with
the axes of a coordinate system. We construct the exact Voronoi diagram inside an axis-
aligned orthogonal polyhedron with holes defined by such polyhedra, under the max-norm.
This is a particularly useful scenario in certain application domains, including raster graph-
ics and VLSI design.

Our approach avoids creating full-dimensional elements on the Voronoi diagram and yields
a skeletal representation of the input object, equivalent to the straight skeleton. We intro-
duce a complete algorithm in 2D and 3D that follows the subdivision paradigm relying on
a bounding-volume hierarchy; this is an original approach to the problem. The algorithm
reads in a region bounding the input polyhedron and performs a recursive subdivision into
cells (using quadtrees and octrees for 2D and 3D resp.). Then, a reconstruction technique
is applied to produce an isomorphic representation of the Voronoi diagram. An hierarchi-
cal data structure of bounding volumes is used to accelerate the 2D algorithm for certain
inputs and is necessary for the efficiency of the 3D algorithm.

The complexity is adaptive and comparable to that of previous methods. Under a mild
assumption it is O(n/∆+1/∆2) in 2D and O(nα2/∆2+1/∆3) in 3D, where n is the number
of sites, namely edges or facets respectively,∆ is themaximum cell size for the subdivision
to stop (and is< 1 under the appropriate scaling), and α bounds vertex cardinality per facet.
We also provide a numerically stable, open-source implementation in Julia, illustrating the
practical nature of our algorithm.

Part of the current thesis is given in the paper ”Voronoi diagram of orthogonal polyhedra
in two and three dimensions”, co-authored with Prof. Ioannis Z. Emiris, that is about to
appear in Proceedings of SEA2 2019 (Special Event on Analysis of Experimental Algo-
rithms).

SUBJECT AREA: Computational Geometry

KEYWORDS: max norm, axis-aligned, rectilinear, straight skeleton, subdivision method,
numeric implementation



ΠΕΡΙΛΗΨΗ

Τα διαγράμματα Voronoi αποτελούν μία θεμελιώδη γεωμετρική δομή δεδομένων και εκφρά-
ζουν αποστάσεις σημείων στο χώρο από ένα σύνολο αντικειμένων. Θεωρούμε ορθογώνια
πολύεδρα ευθυγραμμισμένα με τους άξονες. Πρόκειται για πολύεδρα των οποίων οι έδρες
σχηματίζουν ορθές γωνίες, και οι ακμές είναι παράλληλες προς τους άξονες ενός καρτεσια-
νού συστήματος συντεταγμένων. Κατασκευάζουμε το διάγραμμα Voronoi στο εσωτερικό
ενός ορθογώνιου πολυέδρου με τρύπες που ορίζονται από αντίστοιχα πολύεδρα, χρησιμο-
ποιώντας την max-νόρμα. Πρόκειται για έναν συνδυασμό που βρίσκει πολλές εφαρμογές
σε τομείς όπως τα raster graphics και ο σχεδιασμός κυκλωμάτων VLSI.

Παρουσιάζουμε έναν αλγόριθμο για την κατασκευή αυτών των διαγραμμάτων Voronoi σε
δύο και τρεις διαστάσεις. Ακολουθούμε τη μέθοδο υποδιαίρεσης και βασιζόμαστε σε μία
δομή δεδομένων από bounding-volumes: πρόκειται για μία μη τετριμμένη προσέγγιση
του προβλήματος. Επιπλέον αναλύουμε την πολυπλοκότητα του αλγορίθμου, η οποία
είναι γραμμική στο πλήθος των εδρών κάτω από μία υπόθεση ομοιόμορφα κατανεμημένης
εισόδου.

Μέρος της παρούσας εργασίας πρόκειται να δημοσιευθεί στα πρακτικά του συνεδρίου
SEA2 2019 (Special Event on Analysis of Experimental Algorithms).

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Υπολογιστική Γεωμετρία

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: max νόρμα, μέθοδος υποδιαίρεσης, αριθμητική υλοποίηση
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Voronoi diagram of orthogonal polyhedra in two and three dimensions

1. INTRODUCTION

Orthogonal shapes are ubiquitous in numerous applications including raster graphics and
VLSI design. In this thesis, we address Voronoi diagrams of 2- and 3-dimensional orthog-
onal shapes. We focus on the L∞ metric which is used in the relevant applications and
has been studied much less than L2.

A Voronoi diagram partitions space into regions based on distances to a given set S of
geometric objects in Rd. Every s ∈ S is a Voronoi site (or simply a site) and its Voronoi
region under metric µ is

Vµ(s) = {x ∈ Rd | µ(s, x) < µ(x, s′), s′ ∈ S \ s},

comprising all points closer to s than to any other site. The Voronoi diagram is the set

Vµ(S) = Rd \
∪
s∈S

Vµ(s),

consisting of all points that attain their minimum distance to S by at least two Voronoi sites.
For general input, the Voronoi diagram is a collection of faces of dimension 0, 1, . . . , d− 1.
A face of dimension k comprises points equidistant to at least d + 1 − k sites. Faces of
dimension 0 and 1 are called Voronoi vertices and Voronoi edges respectively. The union
of Voronoi edges and vertices is the 1-skeleton.

Equivalently, a Voronoi diagram is defined as the minimization diagram of the distance
functions to the sites. The minimization diagram is a partitioning of space into regions,
each region consisting of points where some function has lower value than any other
function.

Here, we study Voronoi diagrams in the interior of an axis-aligned orthogonal polyhedron;
its faces meet at right angles, and the edges are aligned with the axes of a coordinate
system. It may have arbitrarily high genus with holes defined by axis-aligned orthogonal
polyhedra, not necessarily convex. All facets are simply connected (without holes) for

Figure 1: Voronoi diagram (in blue) of a rectilinear polygon with 2 holes.

C. Katsamaki 11



Voronoi diagram of orthogonal polyhedra in two and three dimensions

simplicity. The two dimensional analog of such a polyhedron is also known as rectilinear
polygon. The sites are all facets on the boundary of all polyhedra.

The L∞ or Chebyshev distance is a metric defined on a vector space where the dis-
tance between two vectors is the greatest of their differences along any coordinate di-
mension. For two points x, y ∈ Rd, with standard coordinates xi and yi respectively, their
L∞ distance is µ∞(x, y) = maxi{|xi − yi|}. The L∞ distance of x to a set S ⊂ Rd is
µ∞(x, S) = inf{µ∞(x, y) | y ∈ S}.

The L∞ Voronoi diagram uses the L∞ metric to measure distances. In Figure 1, the
Voronoi diagram1 of a rectilinear polygon with 2 holes is shown in blue. Our algorithm fol-
lows the Subdivision Paradigm and handles 2D and 3D sites. It reads in a region bounding
all input sites and performs a recursive subdivision into cells (using quadtrees or octrees).
Then, a reconstruction technique is applied to produce an isomorphic representation of
the Voronoi diagram.

1.1 Previous Work

If V is the number of polyhedral vertices, the combinatorial complexity of our Voronoi
diagrams equals O(V ) in 2D [18] and O(V 2) in 3D [4]. In 3D, it is estimated experimentally
to be, in general, O(V ) [16].

Related work in 2D concerns L∞ Voronoi diagrams of segments. In [18], they introduce an
O(n logn) sweep-line algorithm, where n is the number of segments; they offer a robust
implementation for segments with O(1) number of orientations. Another algorithm imple-
mented in library CGAL [6] is incremental. The L∞ Voronoi diagram of orthogonal poly-
hedra (with holes) is addressed in [16] in view of generalizing the sweep-line paradigm to
3D: in 2D it runs in O(n logn) as in [18], and in 3D the sweep-plane version runs in O(kV ),
where k = O(V 2) is the number of events.

When the diagram is restricted in the interior of a polygon or polyhedron, it serves as a
skeletal representation. A skeleton reduces the dimension of the input capturing its bound-
ary’s geometric and topological properties. In particular, straight skeletons are very related
to the L∞ Voronoi diagram of rectilinear polygons [2]. An algorithm for the straight skeleton
of a simple polygon (not necessarily rectilinear) has complexity O(V

17
11

+ε) for fixed ε > 0
[9]. For x-monotone rectilinear polygons, a linear time algorithm was recently introduced
[7]. In 3D, an analogous equivalence of the straight skeleton of orthogonal polyhedra and
the L∞ Voronoi diagram exists [4] and a complete analysis of 3D straight skeletons is pro-
vided in [3]. Specifically for 3D orthogonal polyhedra, in [4] they offer two algorithms that
construct the skeleton in O(min{V 2 logV, k logO(1) V }), where k = O(V 2) is the number
of skeleton features. Both algorithms are rather theoretical and follow a wavefront propa-
gation process. Recently, the straight skeleton of a 3D polyhedral terrain was addressed
[13].

1computed by our software and visualized with Axl viewer.

C. Katsamaki 12



Voronoi diagram of orthogonal polyhedra in two and three dimensions

For polyhedral objects it is common to consider as Voronoi sites the vertices, edges and
higher-dimensional faces (when d ≥ 3) that form their boundary [21, 10, 14]. However,
the combination of the underlying metric and the structure of the input polyhedron may
cause the appearance of full-dimensional faces in the Voronoi diagram. Under this event,
the Voronoi diagram cannot serve as a skeletal representation of the input shape and
the design of an effective algorithm for its computation is significantly more difficult. For
example, the L2 Voronoi diagram of a polygon in the plane, under the standard definition,
contains two dimensional regions of points equidistant to a reflex vertex and its adjacent
edges. A usual approach towards eliminating the appearance of these two-dimensional
regions is to consider as Voronoi sites the open edges and the polygon vertices and define
by convention 1-dimensional bisectors between them. A similar concept is this of defining
the ‘cones of influence” [12] or “zones” [22] of each site.

Full-dimensional faces on the Voronoi diagram in our setting are very frequent [16]; under
L∞, when two points have same coordinate value, their bisector is full dimensional. Con-
ventions have been adopted, to ensure bisectors between sites are not full-dimensional
[18, 16, 6]. We address this issue in the next chapter.

The literature on subdivision algorithms for Voronoi diagrams is vast, e.g. [5, 8, 22] and
references therein. Our work is closely related to [22, 5]. These algorithms are quite
efficient, since they adapt to the input, and rather simple to implement. None exists for
our problem.

1.2 Our contribution

We express the problem by means of the minimization diagram of a set of algebraic func-
tions with restricted domain, that express the L∞ distance of points to the boundary. The
resulting Voronoi diagram, for general input, is (d − 1)−dimensional. We focus on 2D
and 3D orthogonal polyhedra with holes, where the resulting Voronoi diagram is equiva-
lent to the straight skeleton. We introduce an efficient and complete algorithm for both
dimensions, following the subdivision paradigm which is, to the best of our knowledge,
the first subdivision algorithm for this problem. We compute the exact Voronoi diagram
(since L∞ bisectors are linear). The output data structure can also be used for nearest-site
searching.

The overall complexity is output-sensitive, which is a major advantage. Under Hypothe-
sis 1, which captures the expected geometry of the input as opposed to worst-case be-
haviour, the complexity is O(n/∆ + 1/∆2) in 2D, where n is the number of sites (facets)
and ∆ the separation bound (maximum edge length of cells that guarantees termination).
This bound is to be juxtaposed to the worst-case bound of O(n logn) of previous methods.
In 3D it is O(nα2/∆2+1/∆3) where α bounds the vertex cardinality per facet (usually con-
stant). Under a further assumption (Remark 4.1) this bound becomes O(V /∆2 + 1/∆3)
whereas existing worst-case bounds are quasi-quadratic or cubic in V . ∆ is measured un-
der appropriate scaling such the bounding box has edge length 1. Scaling does not affect
arithmetic complexity, but may be adapted to reduce the denominators’ size in rational

C. Katsamaki 13
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calculations. The algorithm’s relative simplicity has allowed us to develop a numerically
stable software in Julia2, a user-friendly platform for efficient numeric computation; it con-
sists of about 5000 lines of code and is the first open-source code in 3D. We use the
algebraic geometric modeler Axl for visualization. All experiments conducted for the pur-
pose of this thesis were run on a 64-bit machine with an Intel(R) Core(TM) i7-8550U CPU
@1.80GHz and 8.00 GB of RAM.

The rest of this thesis is organized as follows. The next chapter provides structural prop-
erties of these Voronoi diagrams. In Chapter 3 we introduce our 2D algorithm: the 2D and
3D versions share some basic ideas which are discussed in detail in this chapter. In par-
ticular, we describe a hierarchical data structure of bounding volumes, used to accelerate
the 2D algorithm for certain inputs and is necessary for the efficiency of the 3D algorithm.
Then we provide the complexity analysis of the 2D algorithm. In Chapter 4 we extend
our algorithm and analysis to 3D. In Chapter 5 we give some experimental results and in
Chapter 6 we conclude with some remarks and we discuss on possible future research
directions.

2https://gitlab.inria.fr/ckatsama/L_infinity_Voronoi/

C. Katsamaki 14
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Voronoi diagram of orthogonal polyhedra in two and three dimensions

2. BASIC DEFINITIONS AND PROPERTIES

We introduce useful concepts in general dimension. Let P be an orthogonal polyhedron of
full dimension in d dimensions, whose boundary consists of n simply connected (without
holes) facets; these are edges or flats in 2D and 3D, respectively. Note that P includes
the shape’s interior and boundary. Now the set of Voronoi sites S consists of the closed
facets that form the boundary of P, including all facets of the interior polyhedra. There are
as many such polyhedra as the genus.

Under the L∞, the Voronoi diagram V∞(S) often contains full-dimensional regions (e.g.
Figure 2a). Aiming at a (d−1)-dimensional Voronoi diagram, we will define an appropriate
set of distance functions and restrict their minimization diagram to P.

Let V∞(s) denote the Voronoi region of site s under the L∞ metric. Lemma 2.1 gives a
property of standard L∞ Voronoi diagram preserved by Definition 2.1.

(a) (b)

Figure 2: Voronoi diagrams (in red): (a) standard, under L∞, (b) under Def. 2.1.

Lemma 2.1. Let s ∈ S. For every point p ∈ V∞(s) it holds that µ∞(p, s) = µ∞(p,aff(s)),
where aff(s) is the affine hull of s.

Proof. Assume without loss of generality that s ⊂ {x ∈ Rd | xj = c}, j ∈ [d] and c ∈ R.
If µ∞(p, s) ̸= µ∞(p,aff(s)), then µ∞(p, s) = inf{maxi∈[d]\j{|pi − qi|} | ∀q ∈ s} and there is
q ∈ ∂s such that µ∞(p, s) = µ∞(p, q). To see this, suppose on the contrary that q is in
the interior of s. Then, we can find another point q′ ∈ s ε-close to q such that |pi − q′i| =
|pi−qi|−ε⇒ µ∞(p, q′) = µ∞(p, q)−ε, for any ε > 0. This leads to a contradiction. Therefore,
there is a site s′ ̸= s with q ∈ s′. Since p ∈ V∞(s), then µ∞(p, s) < µ∞(p, s′) ≤ µ∞(p, q);
contradiction.

For s ∈ S let H(s) be the closed halfspace of Rd induced by aff(s) such that for every
p ∈ s there exists a point q ∈ H(s) : q ∈ int(P) and µ∞(p, q) < ϵ, ∀ϵ > 0. We define the
(unoriented) zone of s as Z(s) := {p ∈ Rd | µ∞(p, s) = µ∞(p,aff(s))}. The oriented zone
of s is Z+(s) := H(s) ∩ Z(s) (Figure 3).

We associate to s the distance function

Ds(·) : Rd → R : p 7→

{
µ∞(p, s), if p ∈ Z+(s),

∞, otherwise.

C. Katsamaki 15
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s

Figure 3: H(s), Z(s), Z+(s) for 2D site s.

The minimization diagram of D = {Ds | s ∈ S} restricted to P yields a Voronoi partitioning.
The Voronoi region of s with respect to Ds(·) is

VD(s) = {p ∈ P | Ds(p) <∞ and ∀s′ ∈ S \ s Ds(p) < Ds′(p)}.

Definition 2.1. The Voronoi diagram ofP with respect toD is the set VD(P) = P\
∪
s∈S

VD(s).

This means one gets the Voronoi diagram of Figure 2b. Clearly P ⊂
∪

s∈S Z+(s). Denoting
by X the closure of a set X, then V∞(s) ⊆ VD(s) ⊆ V∞(s) ⊆ Z+(s) (Figure 2a). The
bisector of s, s′ ∈ S with respect toD is bisD(s, s′) = {x ∈ Rd | Ds(x) = Ds′(x) <∞}. Then
bisD(s, s′) ⊂ affbis(s, s′), where affbis(s, s′) denotes the L∞ (affine) bisector of aff(s),aff(s′).
In 2D (resp. 3D) if sites have not the same affine hull, bisectors under D lie on lines (resp.
planes) parallel to one coordinate axis (resp. plane) or to the bisector of two perpendicular
coordinate axes (resp. planes). Although the latter consists of two lines (resp. planes),
bisD(s, s′) lies only on one, and it can be uniquely determined by the orientation of the
zones.

Degeneracy of full-dimensional bisectors, between sites with the same affine hull, can
therefore be avoided by infinitesimal perturbation of the corresponding sites. This is equiv-
alent to assigning priorities to the sites; the full dimensional region of the former diagram
is ‘to the limit’ assigned to the site with the highest priority (Figure 4b). Such a perturbation
always exists, both for 2D [16, Lem. 13] and 3D [16, Lem. 31].

(a) (b)

Figure 4: (a) 2D Voronoi diagram for polygon with colinear edges. (b) 1D Voronoi diagram after
infinitesimal perturbation of edges, where ϵ→ 0+.

Set X is weakly star shaped with respect to Y ⊆ X if ∀x ∈ X, ∃y ∈ Y such that the
segment (x, y) belongs to X.

Lemma 2.2. For every s ∈ S, VD(s) is weakly star shaped with respect to s.
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Proof. Let p ∈ VD(s) and ρ = Ds(p) = µ∞(p, q), q ∈ s. The open ball B∞(p, ρ) centered at
p with radius ρ is empty of sites. For t ∈ (0, 1), let w = tp + (1 − t)q on the line segment
(p, q). Then, since for every i ∈ [d] it is |wi − qi| = t|pi − qi|, it holds that w ∈ Z+(s) and
Ds(w) = tρ. If w ̸∈ VD(s) there is a site s′ such that Ds′(w) < tρ. But B∞(w, tρ) ⊆ B∞(p, ρ)
and s′ intersects B∞(p, ρ), leading to a contradiction.

Therefore, since every s is simply connected, from Lemma 2.2 VD(s) is simply connected
and VD(s) is also simply connected.

Let the degree of a Voronoi vertex be the number of sites to which it is equidistant. If the
degree is> d+1, the vertex is degenerate. Lem. 2.3 is nontrivial: in metrics like L2 degree
is arbitrarily large. For d = 2, 3 this bound is tight [16].

Lemma 2.3. (a) The maximum degree of a Voronoi vertex is less than or equal to 2dd.
(b) When d = 2, a Voronoi vertex cannot have degree 7.

Proof. (a) Consider the vertex placed at the origin; 2d orthants are formed around the
vertex. To obtain the maximum number of Voronoi regions that share this vertex in each
orthant, we count the maximum number of Voronoi edges in the interior of an orthant that
have this Voronoi vertex as endpoint; at most one such edge can exist in each orthant.
Since these Voronoi edges are equidistant to d sites, result follows.

(b) Let v∗ = (x∗, y∗) be a Voronoi vertex of degree 7. Since 7 Voronoi edges meet at
v∗, due to symmetry, we examine the two cases of Figure 5. When the configuration of
Voronoi regions around the vertex is like in Figure 5a, then s1 is a horizontal site and s2, s7
are vertical. Then, aff(s2),aff(s7) ⊂ {(x, y) ∈ R2 | x > x∗}. Since v∗ ∈ Z+(s2)∩Z+(s7) and
is equidistant to both s2 and s7, the affine hulls of s2, s7 coincide. Then, whichever is the
orientation of s1, the affine bisectors of s1, s2 and s1, s7 cannot intersect like in Figure 5a.
When the configuration of Voronoi regions around the vertex is like in Figure 5b, since b3 is
vertical, s1 is vertical. But since b1 is horizontal, s1 must be horizontal; a contradiction.

b2

b3

b4

b5

b6

b7

b8

VD(s1)

VD(s2)VD(s3)

VD(s4)

VD(s5)

VD(s6) VD(s7)

(a)

b1

b3

b4

b5

b6

b7

b8

VD(s7)

VD(s1)

VD(s2)

VD(s3)

VD(s4)

VD(s5) VD(s6)

(b)

Figure 5: The two cases in proof of Lemma 2.3.
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3. SUBDIVISION ALGORITHM IN TWO DIMENSIONS

Given manifold rectilinear polygon P, i.e. every vertex being shared by exactly two edges,
the input consists of S and a box C0 bounding P. Non-manifold vertices can be trivially
converted to manifold with an infinitesimal perturbation. Subdivision algorithms include
two phases: the subdivision and the reconstruction phase. At the first phase C0 is re-
cursively subdivided to 4 identical cells until some termination criteria are satisfied and
the diagram’s topology can be determined in O(1) time inside each cell. The diagram is
reconstructed in the second phase.

3.1 Subdivision Phase

We consider subdivision cells as closed. Given cell C, let ϕ(C) be the set of sites whose
closed Voronoi region intersects C: ϕ(C) =

{
s ∈ S | VD(s) ∩ C ̸= ∅

}
. For point p ∈ P we

define its label set λ(p) = {s ∈ S | p ∈ VD(s)}. When p ∈ Pc, where Pc is the complement
of P, then λ(p) = ∅. Using the definition of label sets, one can alternatively write ϕ(C) as
ϕ(C) =

∪
p∈C λ(p).

Intuitively, storing ϕ(C) for every cell of the subdivision would ensure that upon termina-
tion and when the cardinality of this set for every leaf cell is a small constant, we could
determine the topology of the Voronoi diagram inside each of them in constant time. The
computation of ϕ(C) is hereditary, since ϕ(C) ⊆ ϕ(C ′), if C ′ is the parent of C. But it is rather
costly; given ϕ(C ′) with |ϕ(C ′)| = κ, it takes O(κ2) to compute ϕ(C), since the relative po-
sition of C to the bisector of every pair of sites in ϕ(C ′) must be specified. Alternatively,
following the work of [22, 5], instead of implementing the exact predicate ϕ(·), we compute
an approximate one. We denote by pC , rC the center and the L∞-radius of C and define
the active set of C as:

ϕ̃(C) :=
{
s ∈ S | Z+(s) ∩ C ̸= ∅, and µ∞(pC , s) ≤ 2rC + δC

}
,

where δC = mins Ds(pC), if pC ∈ P, and 0 otherwise. We now explain how ϕ̃ approximates
ϕ by adapting [5, Lem.2], where ϕ̃ appears as a soft version of ϕ.

Lemma 3.1. (a) For every C, ϕ(C) ⊆ ϕ̃(C).
(b) For a sequence of cells (C)i monotonically convergent to point p ∈ P, ϕ̃(Ci) = ϕ(p) for
i large enough.

Proof. (a) If ϕ(C) = ∅ the assertion is trivial. Let s ∈ ϕ(C) and p ∈ C ∩ VD(s). It holds
that Ds(p) ≤ Ds′(p) ⇒ µ∞(p, s) ≤ µ∞(p, s′) for every s′ ∈ S. We distinguish two cases
according to the position of pC relatively to P. If pC ∈ P and pC ∈ VD(s∗), where s∗ ∈ S,
then:

µ∞(pC , s) ≤ µ∞(pC , p) + µ∞(p, s) ≤ µ∞(pC , p) + µ∞(p, s∗) ≤
≤ 2µ∞(pC , p) + µ∞(pC , s

∗) ≤ 2rC + µ∞(pC , s
∗).
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Otherwise, if pC ̸∈ P, since C∩P ̸= ∅, there is a site s′ intersecting C such that µ∞(p, s′) ≤ rC .
Therefore,

µ∞(pC , s) ≤ µ∞(pC , p) + µ∞(p, s) ≤ µ∞(pC , p) + µ∞(p, s′) ≤ 2rC .

(b) There exists i0 ∈ N such that for i ≥ i0 Ci ∩ P ≠ ∅. Therefore, for i≫ i0, since pCi
→ p

and rCi
→ 0, for every s ∈ Ci, (a) implies that s ∈ λ(p) = ϕ(p). Since ϕ(p) ⊆ ϕ̃(Ci), result

follows.

The previous lemma is crucial in proving correctness of the algorithm. It is also worth
mentioning that a preliminary version of ϕ̃ first appeared in [17].

One can easily verify ϕ̃(C) ⊆ ϕ̃(C ′), therefore the complexity of computing ϕ̃(C) is linear
in the size of ϕ̃(C ′). The algorithm proceeds as follows: For each subdivision cell we
maintain the label sets of its corner points and of its central point, and ϕ̃. The subdivision
of a cell stops whenever at least one of the termination criteria below holds (checked in
turn). Upon subdivision, we propagate ϕ̃ and the label sets of the parent cell to its children.
For every child we compute the remaining label sets and refine its active set. Let M be
the maximum degree of a Voronoi vertex (M ≤ 8).

Termination criteria. The subdivision of a cell stops whenever at least one of the
following criteria holds (checked in turn):

(T1) C ⊆ VD(s) for some s ∈ S

(T2) int(C) ∩ P = ∅

(T3) |ϕ̃(C)| ≤ 3

(T4) |ϕ̃(C)| ≤M and the sites in ϕ̃(C) define a unique Voronoi vertex v ∈ C.

When (T1) holds, C is contained in a Voronoi region so no part of the diagram is in it.
So, there is no need for further subdivision. (T2) stops the subdivision when the open
cell is completely outside the polygon. If (T3) holds, we determine in O(1) the diagram’s
topology in C since there are≤ 3 Voronoi regions intersected. (T4) stops cell subdivision if
it contains a single degenerate Voronoi vertex. The process is summarized in Algorithm 1.

Theorem 3.1. Algorithm 1 halts.

Proof. Consider an infinite sequence of boxes C1 ⊇ C2 ⊇ . . . such that none of the ter-
mination criteria holds. Since (T1) and (T2) do not hold for any Ci with i ≥ 1, the se-
quence converges to a point p ∈ VD(P). From Lem. 3.1(b), there exists i0 ∈ N such that
ϕ̃(Ci0) = ϕ(p) = λ(p). Since |λ(p)| ≤ 8, (T4) will hold.

Lemma 3.2. For a subdivision cell C, let v1, . . . , v4 its corner vertices. For s ∈ S, C ⊆ VD(s)
if and only if v1, . . . , v4 ∈ VD(s).
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Algorithm 1 Subdivision2D(P)
1: root← bounding box of P
2: Q← root
3: while Q ̸= ∅ do
4: C ← pop(Q)

5: Compute ϕ̃(C) and the label sets of the vertices and the central point.
6: if (T1) ∨ (T2) ∨ (T3) ∨ (T4) then
7: return
8: else
9: Subdivide C into C1, C2, C3, C4

10: Q← Q ∪ {C1, C2, C3, C4}
11: end if
12: end while

Proof. Let v1, . . . , v4 ∈ VD(s) and p ∈ C. Then, p ∈ Z+(s), since Z+(s) is convex in 2D and
v1, . . . , v4 ∈ Z+(s). For i = 1, . . . , 4 the open ball Bi := B∞(vi, µ∞(vi, s)) is empty of sites.
Since B∞(p, µ∞(p,aff(s))) ⊂ ∪i∈[4]Bi it holds that µ∞(p,P) ≥ µ∞(p,aff(s)) = µ∞(p, s). On
the other hand, µ∞(p,P) ≤ µ∞(p, s). So, if p ̸∈ VD(s) there is a site s′ s.t. Ds′(p) = Ds(p)
and p ∈ VD(P). Therefore, since Voronoi regions are simply connected and Voronoi edges
are straight lines, p must be on the boundary of C. The two possible configurations are
shown in Fig. 6 and are contradictory; for the first, use an argument similar to that of
Lem. 2.3(b). For the second, notice that this cannot hold since the cell is square. We
conclude that C ⊆ VD(s). The other direction is trivial.

(a) (b)

Figure 6: The two cases in proof of Lemma 3.2. Different colors correspond to different Voronoi
regions.

Lemma 3.3. For a subdivision cell C it holds that int(C) ∩ P = ∅ if and only if λ(pC) = ∅
and for every s ∈ ϕ̃(C) it holds that s ∩ int(C) = ∅.

Proof. Suppose that λ(pC) = ∅, i.e. pC ̸∈ P, and that s ∩ int(C) = ∅, for every s ∈ ϕ̃(C). If
is int(C)∩P ̸= ∅, since the center of the cell is not in P, a segment (site) on the boundary
of P must intersect int(C). This site belongs to ϕ̃(C), leading to a contradiction. Proof of
the other direction is trivial.

Hence one decides (T1) by checking the vertices’ labels. (T2) is valid for C iff λ(pC) = ∅
and ∀s ∈ ϕ̃(C), s ∩ int(C) = ∅. Fot (T4), the presence of a Voronoi vertex in C is verified
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through constructor VoronoiVertexTest: given C with |ϕ̃(C)| ≥ 3, the affine bisectors of
sites in ϕ̃(C) are intersected. If the intersection point is in C and in Z+(s) for every s ∈ ϕ̃(C)
then it is a Voronoi vertex. We do not need to check whether it is in P or not; since (T1)
fails for C, if v ̸∈ P, there must be s intersecting C such that v ̸∈ Z+(s): contradiction.

3.2 Reconstruction Phase

We take the quadtree of the subdivision phase and output a planar straight-line graph
(PSLG) G = (V,E) representing the Voronoi diagram of P. G is a (vertex) labeled graph
and its nodes are of two types: bisector nodes and Voronoi vertex nodes. Bisector nodes
span Voronoi edges and are labeled by the two sites to which they are equidistant. Voronoi
vertex nodes correspond to Voronoi vertices and so are labeled by at least 3 sites.

The reconstruction can be briefly described as follows: We visit the leaves of the quadtree
and, whenever the Voronoi diagram intersects the cell, bisector or vertex nodes are in-
troduced. By connecting them accordingly with straight-line edges, we obtain the exact
Voronoi diagram and not an approximation. We process leaves with |ϕ̃(·)| ≥ 2 that do not
satisfy (T1) nor (T2).

Cell with two active sites. When ϕ̃(C) = {s1, s2}, C intersects VD(s1) or VD(s2) or both; at
this point C cannot be wholly contained in VD(s1) or VD(s2), since (T1) is not satisfied. The
intersection of bisD(s1, s2) with the cell, when non empty, is part of the Voronoi diagram:
for each p ∈ bisD(s1, s2) ∩ C it holds that Ds1(p) = Ds2(p) and λ(p) ⊆ ϕ̃(C) = {s1, s2}.
Therefore p ∈ VD(s1) ∩ VD(s2).

Remark 3.1. If there is no Voronoi vertex in C and p1, p2 ∈ bisD(s1, s2)∩C for s1, s2 ∈ ϕ̃(C),
then p1p2 ⊂ bisD(s1, s2).

Since bisD(s1, s2) ⊂ affbis(s1, s2) we intersect the affine bisector with the boundary of the
cell. An intersection point p ∈ bis∞(aff(s1),aff(s2)) is in bisD(s1, s2) iff p ∈ Z+(s1) ∩ Z+(s2)
(Lemma 3.1). If intersection points are both in Z+(s1) ∩ Z+(s2) (Figure 7a), we introduce
a bisector node in the middle of the line segment joining them, labeled by {s1, s2}. When
only one intersection point is in Z+(s1)∩Z+(s2), then s1, s2 must intersect in C (Figure 7b).
We insert a bisector node at their intersection point labeled by {s1, s2}.

Cell with 3 active sites or more. When |ϕ̃(C)| = 3 and the VoronoiVertexTest finds a
vertex in C or when |ϕ̃(C)| ≥ 4 (a vertex has already been found), we introduce a Voronoi
vertex node at the vertex, labeled by corresponding sites. In the presence of corners of P
in C, bisector nodes are introduced and connected to the vertex node (Fig. 8).

If no Voronoi vertex is in C, we repeat the procedure described in previous paragraph for
each pair of sites. Even if a bisector node is found, it is not inserted at the graph if it is
closer to the third site.
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(a) (b)

Figure 7: The intersection of the affine bisector and the cell. The circled points are in
Z+(s1)∩Z+(s2), whereas the crossed point is not. Square nodes are the bisector nodes inserted to

the output graph.

s1

s3

s2

(a)

s1

s4s3

s2

(b)

Figure 8: (a) A Voronoi vertex node labeled with {s1, s2, s3} connected with two bisector nodes
labeled with {s1, s3} and {s2, s3}. (b) A (degenerate) Voronoi vertex node labeled with {s1, s2, s3, s4}

connected with two bisector nodes.

Connecting the graph nodes. Once the graph nodes are fixed they have to be con-
nected appropriately. The only graph edges added so far are those that are completely
contained in a subdivision cell. The remaining graph edges must cross two subdivision
cells. We apply “dual marching cubes” [19] to enumerate pairs of neighboring cells in time
linear in the size of the quadtree: cells are neighboring if they share a facet.

The traversal method involves two recursive functions: the faceProc and the edgeProc
(see Figure 10). At first we call the faceProc for the bounding box of the input polygon.
This function, for every internal node of the quadtree, recursively calls itself for each of
its children and the edgeProc for every pair of neighboring children. When the faceProc
reaches a leaf it terminates. When the edgeProc reaches two adjacent leaves, then the
corresponding cells share a facet. Let v1, v2 be graph nodes in neighboring cells. We
connect them if and only if:

• v1, v2 are bisector nodes and λ(v1) = λ(v2).

• v1 is a bisector node, v2 is a Voronoi vertex node and λ(v1) ⊂ λ(v2).

• v1, v2 are Voronoi vertex nodes, λ(v1) ∩ λ(v2) = {s, s′} and v1v2 ⊂ P.

See Fig. 9 for an example where v1, v2 are Voronoi vertex nodes with λ(v1)∩λ(v2) = {s, s′}
and v1v2 ̸⊂ P.

Theorem 3.2. The output graph is isomorphic to VD(P).
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Figure 9: C1, C2 are two neighboring subdivision cells and the Voronoi vertices v1, v2 have two
common sites as labels but are not connected with a Voronoi edge.

(a)

(b)

Figure 10: Illustration of (a) the faceProc function (b) the edgeProc function in the dual Marching
Cubes method.

Proof. We need to prove that the nodes in the graph are connected correctly. Let neigh-
boring cells C1, C2 and v1, v2 graph nodes in each of them respectively. If v1, v2 are bisector
nodes and λ(v1) = λ(v2), then the line segment v1v2 is in bisD(s1, s2), for s1, s2 ∈ λ(v1),
and on the Voronoi diagram (Rem. 3.1). If v1 is a bisector node and v2 is a Voronoi vertex
node s.t. λ(v1) ⊆ λ(v2), then v1v2 ⊂ bis∞(s1, s2). If the segment v1v2 is not on the Voronoi
diagram then, there is a Voronoi vertex node different than v2 in C1 or C2; contradiction. At
last, let v1 and v2 be Voronoi vertex nodes such that their labels have two sites in common,
say s, s′, and the edge v1v2 ⊂ P. Vertices v1, v2 are both on the boundary of VD(s)∩VD(s′).
Since v1v2 ⊂ P, if it does not coincide with the Voronoi edge equidistant to s, s′, then both
v1, v2 must also be on the boundary of a Voronoi region other than VD(s) and VD(s′). This
leads to a contradiction.

See Figure 16 for some examples computed with our software. Notably, in Figure 11a a
degenerate Voronoi vertex of the maximum possible degree is found.
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(a) Input consists of 12 sites and 46 cells
are generated. Total time is 3.0 ms. The
Voronoi diagram contains a degenerate

Voronoi vertex of degree 8.

(b) Input consists of 22 sites and 136
cells are generated. Total time is 8.6 ms.

Figure 11: The 1-skeleton of the Voronoi diagram is shown in blue.

3.3 Primitives and Data-structures

Assuming the input vertices are rational, Voronoi vertices are rational [18]. Computing
Voronoi vertices, and intersections between affine bisectors and cell facets require linear
operations, distance evaluations and comparisons. Therefore, they are exact. The above
operations, computing ϕ̃ and deciding site-cell intersection are formulated to allow for a
direct extension to 3D. In the sequel we discuss design of predicates, computation of label
sets and construction of a Bounding Volume Hierarchy.

3.3.1 Primitives

Membership in H(s) is trivial to decide, thus we focus on predicates that decide member-
ship in Z(s). Given p ∈ R2 and s ∈ S, let praff(s)(p) the projection of p to aff(s) and Ip,s the
1d−interval on aff(s) centered at praff(s)(p) with radius µ∞(p,aff(s)). inZone(p, s) decides
if p ∈ Z(s); this holds if and only if Ip,s ∩ s ̸= ∅ (Figure 12).

Given C,s ∈ S, ZoneInCell(s, C) decides if Z(s) ∩ C ̸= ∅. For this evaluation see Lem-

Figure 12: Test performed by inZone(p, s).

C. Katsamaki 24



Voronoi diagram of orthogonal polyhedra in two and three dimensions

ρ

(a)

ρ

(b)

Figure 13: Illustration of test performed by ZoneInCell

mma 3.4 and Figure 13.

Lemma 3.4. Let s ∈ S, f1, f2 the two facets of C parallel to aff(s), ρi = µ∞(fi,aff(s)) for
i = 1, 2 and p′

C
= praff(s)(pC). Then, Z(s) ∩ C ̸= ∅ iff ∃i ∈ {1, 2} s.t. B∞(p′

C
, rC + ρi) ∩ s ̸= ∅.

Proof. Z(s)∩C ̸= ∅ iffZ(s)∩fi ̸= ∅ for at least one i ∈ {1, 2}: Let p ∈ Z(s)∩C s.t. p ̸∈ f1∪f2
and prfi(p) be the projection of p on fi. There exists i ∈ {1, 2} s.t. µ∞(prfi(p),aff(s)) >
µ∞(p,aff(s)). Then, prfi(p) ∈ Z(s). It holds that Z(s) ∩ fi ̸= ∅ iff B∞(p′

C
, rC + ρi) ∩ s ̸= ∅:

Let q ∈ Z(s) ∩ fi and q′ its projection on aff(s). Then µ∞(q′, s) ≤ µ∞(q, aff(s)) = ρi and
µ∞(p′

C
, q′) ≤ rC . We deduce that B∞(p′

C
, rC + ρi) ∩ s ̸= ∅, since µ∞(p′

C
, s) ≤ µ∞(p′

C
, q′) +

µ∞(q′, s) ≤ rC + ρi. For the inverse direction, let B∞(p′
C
, rC + ρi) ∩ s ̸= ∅ and q′ in s s.t.

µ∞(p′
C
, q′) ≤ rC +ρi. Let q be its projection on aff(fi). If q ∈ fi we are done. Otherwise, q is

at L∞ distance from fi equal to µ∞(p′
C
, q′)− rC , attained at a boundary point q′′ ∈ fi. Then,

ρi ≤ µ∞(q′′, s) ≤ µ∞(q′′, q′) = max{ρi, µ∞(p′
C
, q′)− rC} = ρi. It follows that q′′ ∈ Z(s).

To decide if s∩C ̸= ∅ and if s∩int(C) ̸= ∅, we use isIntersecting(s, C) and isStrictlyInt-
ersecting(s, C) respectively. Design is trivial. All these predicates are computed in O(1)
time.

Therefore, deciding whether a site belongs to ϕ̃(C), is done using the predicates:

• isIntersecting: to decide whether the site intersects the cell centered at pC with
radius 2 · rC + δC .

• ZoneInCell: to decide whether the zone of the site intersects C.

Computing label sets. If p ∈ P ∩C then its closest sites are in ϕ̃(C). Deciding if p ∈ P is
done by LocationTest, which identifies position based on the sites that intersect C: among
these we select those with minimum L∞ distance to p and for whom inZone(p, s) is true.
If a convex (resp. concave) corner with respect to the interior of P is formed by these sites
then p ∈ P iff it belongs to the intersection (resp. union) of the oriented zones. If no corner
is formed or even if C is not intersected by any site, decision is trivial. This takes O(|ϕ̃(C)|)
time.

In more details, we define:

• T := {s ∈ S | s ∩ C ̸= ∅}

• d(p, T ) := min{µ∞(p, s) | s ∈ T and p ∈ Z(s)}
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s1

s2

(a)

s1

s2

(b)

Figure 14: The two possible configurations of a corner.

• R(p, T ) := {s ∈ T | µ∞(p, s) = d(p) and p ∈ Z(s)}

• R′(p, s, T ) = {s′ ∈ R(p, T ) | s ∩ s′ ̸= ∅}, s ∈ R(p, T ).

If T = ∅ then the cell is contained in P. Otherwise, even if p ̸∈ P there always exists a
site s intersecting C with p ∈ Z(s). Therefore d(p, T ) is well defined and |R(p, T )| ≥ 1 for
every p ∈ C. We pick a site s ∈ R(p, T ) and then perform the LocationTest for R′(p, s, T )
that returns true if and only if p ∈ P; this test identifies the position of p relative to P using
one site if |R′(p, s, T )| = 1 or a corner formed by two sites in R′(p, s, T ) ortherwise. Note
that R′(p, s, T ) may contain 1 or 2 sites.

LocationTest(p,R′(p, s, T ))

1: if |R′(p, s, T )| = 1 then ▷ R′(p, s, T ) = {s}
2: return p ∈ Z+(s1)
3: else if |R′(p, s, T )| = 2 then ▷ R′(p, s) = {s, s′}
4: if ∠s′s is convex then
5: return p ∈ Z+(s) ∩ Z+(s′)
6: else
7: return p ∈ Z+(s) ∪ Z+(s′)
8: end if
9: end if

Lemma 3.5. Let p ∈ C. The following equivalence holds:

p ∈ P if and only if T = ∅ or LocationTest(p,R′(p, s, T )) returns true for some s ∈ R(p, T )

Proof. When T = ∅ the equivalence is obvious. When T ̸= ∅, we distinguish two cases
according to the cardinality of R′(p, s, T ): When |R′(p, s, T )| = 1 it is straightforward that
p ∈ P ⇔ p ∈ Z+(s). When |R′(p, s, T )| = 2, the configuration of sites in R′(p, s) is like in
Figures 14a and 14b. The test returns true if and only if p ∈ P in any case.
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3.3.2 Rectangular Decomposition and Bounding Volume Hierarchy

We decompose P into a collection of rectangles such that any two of them have disjoint
interior. The resulting decomposition may not be optimal with respect to the number of
rectangles but allows for an immediate construction of a data structure (a Bounding Vol-
ume Hierarchy) that can answer point and rectangle-intersection queries on the decom-
position’s rectangles efficiently. This data structure can accelerate the 2D algorithm for
certain inputs and is essential for efficiency of the 3D version of the algorithm.

Rectangular decomposition.
It is known [20] that the minimum number of rectangles in a partition of a polygon with n
vertices and h holes is n/2+h−g−1, where g is the maximum number of nonintersecting
chords that can be drawn either horizontally or vertically between reflex vertices. To the
direction of minimizing the number of rectangles, the optimal algorithm has O(n3/2 logn)
time complexity [15].

However, for our purpose, the decomposition does not need to be optimal. We observe
that drawing an axis-parallel edge, from every reflex vertex results to a rectangular de-
composition. Thus, we construct a kd-tree on the reflex vertices of the polygon, splitting
always at a vertex. Assuming the polygon has r reflex vertices, the kd-tree subdivides
the plane into at most r+1 regions. Every terminal region contains a disjoint collection of
rectangles (nonempty). We denote by t the maximum number of rectangles in a terminal
region.

Lemma 3.6. For an orthogonal polygon on n vertices with h holes, let r be the number of
its reflex vertices. It holds that:

r =
n

2
+ 2(h− 1)

Proof. A simple orthogonal polygon without holes onN vertices hasN/2−2 reflex vertices.
So, if we denote by n0 the number of the outer contour’s vertices, and by ni the respective
number for every hole (i ∈ [h]) we have that: r = n0/2− 2 +

∑h
i=1

(
ni/2 + 2

)
= n

2
+ 2(h−

1).

Bounding Volume Hierarchy.
A Bounding Volume Hierarchy (BVH) [11] is a tree structure on a set of objects stored at
the leaves along with their bounding volume while internal nodes store information of their
descendants’ bounding volume. Two important properties are minimal volume and small
overlap.

In our setting, the geometric objects are the axis aligned rectangles obtained by the de-
composition. Consequently, the most appropriate bounding shape is the Axis Aligned
Bounding Box (AABB) offering a good tradeoff between minimal volume and simplicity of
representation. As for minimizing the overlap of bounding boxes at the same level in the
hierarchy, we group rectangles in a specific way in order to accomplish that:
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Figure 15: A rectangular decomposition for an orthogonal polygon and the corresponding BVH
tree

The BVH is built in a bottom-up manner, by traversing the kd-tree previously constructed
and adding some additional information to its nodes. At every leaf of the kd-tree we com-
pute the AABB of its rectangles (namely a terminal bounding box) and for every internal
node we find the AABB of its two children. In that way, the bounding volumes of a node’s
children intersect only at their boundary (see Figure 15 for a simple illustration). Space
complexity is linear in tree size.

Rectangle-Intersection queries: Given query rectangle Q the data structure reports all
rectangles in the decomposition overlapping with Q. Starting from the root, for every inter-
nal node, we check whether Q intersects its bounding rectangle or not. In the latter case
the data structure reports no rectangles. In the former, we check the position of Q rela-
tive to the bounding boxes of the node’s children so as to decide for each one if it should
be traversed or not. We continue similarly: when we reach a terminal bounding box, we
check the position of Q relative to every rectangle in it. Let k be the number of terminal
bounding boxes intersected by Q. Following [1], we count the number of internal nodes
visited on each level of the tree and show:

Theorem 3.3. Rectangle intersection queries are answered in O(k lg r + kt).

Proof. Let Q a rectangle-intersection query and v an internal node of the BVH tree visited
during the query. We distinguish two cases; in the first case the subtree rooted at v con-
tains a terminal bounding box that intersects Q. There are O(k) such nodes at each level.
Otherwise, Q intersects with the bounding rectangle V stored at v but does not intersect
any terminal bounding box of the subtree rooted at v . There are at least two such terminal
bounding boxes, say b and b′. SinceQ does not intersect b there is a line ℓ passing through
a facet of Q separating Q from b. Similarly, there exists a line ℓ′ passing through a facet of
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Q that separates it from b′. W.l.o.g. there is a choice of b, b′ such that ℓ and ℓ′ are distinct
-if all the terminal bounding boxes of the subtree can be separated by the same line, then
V cannot intersect Q-. If ℓ, ℓ′ are perpendicular, then their intersection also intersects V .
Since the bounding boxes of each level are strictly non-overlapping, every vertex of Q
intersects a constant number of them (up to 4). So, there is a constant number of such
nodes at a given level. When ℓ, ℓ′ are parallel and no vertex of Q intersects V , then the
terminal bounding rectangles of the subtree can be partitioned to those separated by ℓ
from Q and to those separated by ℓ′ from Q. For these distinct sets of terminal bounding
boxes to be formed, there must occur a split of V by a line parallel and in between ℓ, ℓ′.
So there is a reflex vertex of the polygon in V ∩Q, causing this split. But V ∩Q ∩ P = ∅;
a contradiction.

So there are O(k) internal nodes visited at each level of tree. The visited leaf nodes
correspond to the O(k) terminal bounding boxes that intersect Q and since each of them
encloses at most t rectangles, the additional amount of performed operations equalsO(kt).
Summing over all levels of the tree yields a total query complexity of

∑⌈lg r⌉
i=0 O(k)+O(kt) =

O(k lg r + kt).

Point queries: Given p ∈ R2, we report on the rectangles of the decomposition in which
p lies inside. The number of reported rectangles can be at most 4; for the case of four
rectangles meeting at a vertex. When zero, the point lies outside the polygon. Since it is
a special case of a rectangle-intersection query, the query time complexity is O(lg r + t).

3.4 Complexity analysis

Analysis requires a bound on the height of the quadtree. The edge length of the initial
bounding box is supposed to be 1 under appropriate scaling. Let separation bound ∆ be
the maximum value such that for every cell of edge length ≥ ∆ at least one termination
criterion holds. Then, the maximum tree height is L = O(lg(1/∆)). Let β be the minimum
distance of two Voronoi vertices, and γ the relative thickness of Pc, i.e. the minimum
diameter of a maximally inscribed L∞-ball in Pc, where Pc is the complement of P.

Lemma 3.7. Separation bound ∆ is Ω(min{γ, β}), where the asymptotic notation is used
to hide some constants.

Proof. The algorithm mainly subdivides cells that intersect VD(P), since a cell inside a
Voronoi region or outside P is not subdivided (Termination criteria (T1), (T2)). Most sub-
divisions occur as long as non neighboring Voronoi regions are “too close”. Consider
C centered at pC ∈ VD(s) and s′ ∈ ϕ̃(C) \ ϕ(C), with VD(s), VD(s

′) non neighboring. For
rC <

µ∞(pC ,s
′)−µ∞(pC ,s)

2
site s′ is not in ϕ̃(C). It holds that µ∞(pC , s

′) − µ∞(pC , s) ≥ ζ(s, s′),
where ζ(s, s′) = min{µ∞(p, q) | p ∈ VD(s), q ∈ VD(s′)}, i.e. the minimum distance of the
closure of the two Voronoi regions. When VD(s), VD(s′) are connected with a Voronoi edge,
ζ(s, s′) = Ω(β). When a minimum cell size of Ω(β) is not sufficient for s′ to not belong in
ϕ̃(C), then there is a hole between VD(s), VD(s′) and ∆ is Ω(γ) in this case.
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This lower bound is tight: in Figure 16a for∆ = 0.8125β, and in Figure 16b for∆ = γ. Next
we target a realistic complexity analysis rather than worst-case. For this, assume the site
distribution in C0 is “sufficiently uniform”. Formally:

Uniform Distribution Hypothesis (UDH). For L∞ balls A1 ⊆ A0 ⊂ C0, letN0 (resp.N1) be
the number of sites intersecting A0 (resp. A1). We suppose N1/N0 = O(vol(A1)/vol(A0)),
where vol(·) denotes the volume of a set in Rd, d being the dimension of C0.

Theorem 3.4. Under UDH the algorithm’s complexity is O(n/∆ + 1/∆2), where n is the
total number of boundary edges (including any holes).

Proof. At each node, refinement and checking the termination criteria run in time linear
in the size of its parent’s active set. At the root |ϕ̃(C0)| = n. The cardinality of active
sets decreases as we move to the lower levels of the quadtree: Let A(p, d, R) = {q ∈
R2 | d ≤ µ∞(p, q) ≤ 2R + d}. For cell C and s ∈ ϕ̃(C), s ∩ A(pC , δC , rC) ̸= ∅. Let E =

vol(A(pC , δC , rC)). For C1 a child of C and s1 ∈ ϕ̃(C1), s1∩A(pC1
, δC1 , rC1

) ̸= ∅. SinceB∞(pC , δC)
is empty of sites and may intersect with A(pC1

, δC1 , rC1
), we let E1 = vol(A(pC1

, δC1 , rC1
) \

(A(pC1
, δC1 , rC1

)∩B∞(pC , δC))). We prove that in any combination of δC , δC1 , rC it is E1 ≤ E/2.
Under Hypothesis 1, a cell at tree level i has |ϕ̃(Ci)| = O(n/2i). Computation per tree
level, is linear in sum of active sets’ cardinality, therefore summing over all levels of the
tree, we find the that complexity of the subdivision phase is O(n/∆). The complexity of
the reconstruction phase is O(ñ), where ñ is the number of leaf nodes in the quadtree,
which is in turn O(1/∆2). This allows to conclude.

Queries in the BVH can be used to compute label sets and the active set of a cell. Assume
the number of segments touching a rectangle’s boundary is O(1), which is the typical case.
Then, we prove the following.

(a) Input consists of 28 sites and 164
cells are generated. Minimum cell size is

0.8125 · β.

(b) Input consists of 12 sites and 64 cells
are generated. Minimum cell size is γ.

Figure 16: The 1-skeleton of the Voronoi diagram is shown in blue.
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Lemma 3.8. We denote by C ′ the parent of C in the subdivision. Using BVH accelerates
the refinement of C if |ϕ̃(C ′)|/|ϕ̃(C)| = Ω(lgn+ t).

Proof. A label set λ(p) is determined by performing a point and a rectagle-intersection
query; once the point is detected to lie inside a rectangle R0 of a leaf T0 we find an initial
estimation d0 of µ∞(p,P). Since the closest site to p may be on another leaf, we do a
rectangle-intersection query centered at p with radius d0. The closest site(s) to p are in the
intersected leaves. Thus, finding λ(p) takes O(k(p, d0) lg r + k(p, d0)t) (Thm. 3.3), where
k(p, d0) = O(1) is the number of BVH leaves intersected byB∞(p, d0). Computing the sites
in ϕ̃(C) is accelerated if combined with a rectangle intersection query to find segments at
L∞-distance≤ 2rC+δC from pC . Let kC be the maximum number of BVH leaves intersected
by this rectangle-intersection query. We obtain a total refinement time for the cell equal to
O(kC lg r + kCt). Since kC = O(|ϕ̃(C)|) and r = O(n) the lemma follows.
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4. SUBDIVISION ALGORITHM IN THREE DIMENSIONS

Let P be a manifold orthogonal polyhedron: every edge of P is shared by exactly two and
every vertex by exactly 3 facets. For non-manifold input we first employ trihedralization of
vertices, discussed in [16, 4]. Input consists of S and bounding box C0 of P. An octree is
used to represent the subdivision.

The main difference with the 2D case is that Voronoi sites can be nonconvex. As a con-
sequence, for site s, Z+(s) is not necessarily convex and therefore the distance function
Ds(·) cannot be computed in O(1) time: it is not trivial to check membership in Z+(s). It
is direct to extend the 2D algorithm in three dimensions. However, we examine efficiency
issues.

For an efficient computation of the basic predicates (of Chapter 3.3), we preprocess every
facet of the polyhedron and decompose it to a collection of rectangles. Then a BVH on
the rectangles is constructed. The basic operation of all these predicates in 2D is an
overlap test between an interval and a segment in 1D. In 3D, the analog is an overlap test
between a 2D rectangle and a site (rectilinear polygon). Once the BVH is constructed for
each facet, the rectangle-intersection query takes time logarithmic in the number of facet
vertices (Theorem 3.3).

4.1 Subdivision Phase

The active set ϕ̃, ϕ and the label set of a point are defined as in to 2D. Most importantly,
Lem. 3.1 is valid in 3D as well. The algorithm proceeds as follows: We recursively sub-
divide C0 into 8 identical cells. The subdivision of a cell stops whenever at least one of
the termination criteria below holds. For each cell of the subdivision we maintain the label
set of its central point and ϕ̃. Upon subdivision, we propagate ϕ̃ from a parent cell to its
children for further refinement. We denote byM the maximum degree of a Voronoi vertex
(M ≤ 24).

3D Termination criteria. The subdivision of a cell stops whenever at least one of the
following criteria holds (checked in turn):

(T1’) int(C) ∩ P = ∅,

(T2’) |ϕ̃(C)| ≤ 4,

(T3’) |ϕ̃(C)| ≤M and the sites in ϕ̃(C) define a unique Voronoi vertex v ∈ C.

Subdivision is summarized in Algorithm 2. (T1’) is valid for C if and only if λ(pC) = ∅ and
∀s ∈ ϕ̃(C) it holds that s ∩ int(C) = ∅. Detecting a Voronoi vertex in C proceeds like in
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Algorithm 2 Subdivision3D(P)
1: root← bounding box of P
2: Q← root
3: while Q ̸= ∅ do
4: C ← pop(Q)

5: Compute the label set of central point and ϕ̃(C).
6: if (T1’) ∨ (T2’) ∨ (T3’) then
7: return
8: else
9: Subdivide C into C1, . . . , C8

10: Q← Q ∪ {C1, . . . , C8}
11: end if
12: end while

2D. A Voronoi vertex is equidistant to at least 4 sites and there is a site parallel to each
coordinate hyperplane among them.

(T1) used in 2D is omitted, for it is not efficiently decided: labels of the cell vertices cannot
guarantee that C ⊆ VD(s). However, as the following lemma indicates, termination of the
subdivision is not affected.

Lemma 4.1. Let C ⊆ VD(s). There exists r∗ > 0 s.t. if rC < r∗ it holds that ϕ̃(C) = {s}.

Proof. Let s′ ∈ S \ s. We will prove that if Z+(s′) ∩ C ̸= ∅, it holds that δC < µ∞(pC , s
′).

Therefore there is r(s′) > 0 such that 2r(s′) + δC < µ∞(pC , s
′). Let r∗ be the minimum of

these radii for every site different than s. When rC < r∗, it holds that ϕ̃(C) = {s}.

Suppose that δC = µ∞(pC , s
′) = µ∞(pC , q) for q ∈ s′. Then q ∈ aff(s) and s′ cannot be a

subset of aff(s). So, s′ is adjacent to s. If Z+(s′) ∩ C = ∅ then s′ ̸∈ ϕ̃(C). If Z+(s′) ∩ C ̸= ∅,
since for adjacent sites it holds thatZ+(s)∩Z+(s′) = bisD(s, s′), bisector intersects C which
is a contradiction. Thus, there is no site s′ with Z+(s′) ∩ C ̸= ∅ and µ∞(pC , s

′) = δC .

Theorem 4.1. Algorithm 2 halts.

4.2 Reconstruction Phase

We construct a graphG = (V,E), representing the 1-skeleton of the Voronoi diagram. The
nodes of G are of two types, skeleton nodes and Voronoi vertex nodes, and are labeled
by their closest sites. Skeleton nodes span Voronoi edges and are labeled by 3 or 4 sites.
We visit the leaves of the octree and process cells with |ϕ̃(C)| ≥ 3 and that do not satisfy
(T1’). We introduce the nodes to the graph as in 2D. Graph edges are added between
corners and Voronoi vertex nodes inside a cell. We run dual marching cubes (linear in the
octree size) and connect graph nodes v1, v2 located in neighboring cells, if and only if:
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• v1, v2 are skeleton nodes and λ(v1) = λ(v2), or

• v1 is a skeleton node, v2 is a Voronoi vertex node and λ(v1) ⊂ λ(v2), or

• v1, v2 are Voronoi vertex nodes, λ(v1) ∩ λ(v2) = {s, s′, s′′} and segment v1v2 ⊂ P.

Theorem 4.2 (Correctness). The output graph is isomorphic to the 1-skeleton of the
Voronoi diagram.

An example computed with our software is shown in Figure 17.

Primitives. Deciding membership in H(·) is trivial. The predicates of Chapter 3.3 ex-
tend to 3D and the runtime of each is that of a rectangle-intersection query on the BVH
constructed for the corresponding site at preprocessing: Let praff(s)(p) be the projection of p
to aff(s) and Bp,s the 2d−box on aff(s) centered at praff(s)(p) with radius µ∞(p,aff(s)). Then,
p ∈ Z(s) iff Bp,s ∩ s ̸= ∅. A query with Bp,s is done by inZone(p, s). For ZoneInCell(p, C)
we do a query with B∞(p′

C
, rC + ρi) where p′

C
= praff(s)(pC), ρi = µ∞(fi,aff(s)) and f1, f2

the two facets of C parallel to aff(s). Queries with B∞(p′
C
, rC) are also performed by

isIntersecting(s, C) and isStrictlyIntersecting(s, C). When computing label sets,
LocationTest is slightly modified, since the corners used to identify the position of a point
can also be formed by 3 sites.

4.3 Complexity analysis

Under appropriate scaling so that the edge length of C0 be 1, if ∆ is the separation bound,
then themaximumheight of the octree isL = O(lg(1/∆)). The algorithmmainly subdivides
cells intersectingP, unlike the 2D algorithm that mainly subdivides cells intersecting VD(P),
because a criterion like (T1) is missing. This absence does not affect tree height, since by
Lem. 4.1 the minimum cell size is same as when we separate sites whose regions are non-
neighboring (handled by Lem. 3.7). If β is the minimum distance of two Voronoi vertices
and γ the relative thickness of Pc, taking ∆ = Ω(min{γ, β}) suffices, as in 2D (Lem. 3.7).

Theorem 4.3. Under UDH and if n is the number of polyhedral facets, α the maximum
number of vertices per facet and tα the maximum number of rectangles in a BVH leaf, the
algorithm’s complexity is O(nα(lgα + tα)/∆

2 + 1/∆3).

Figure 17: The 1-skeleton of the Voronoi diagram is shown in blue. Input consists of 12 sites and
386 cells are generated (not shown). Total time is 94.8 ms.
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Proof. We sum active sets’ cardinalities of octree nodes, since refining a cell requires a
number of rectangle-intersection queries linear in the size of its parent’s active set. Let C
and its child C1. Any s ∈ ϕ̃(C) satisfies δC ≤ µ∞(pC , s) ≤ 2rC + δC . We denote by E the
volume of the annulus {q ∈ R2 | δC ≤ µ∞(pC , q) ≤ 2rC + δC} and by E1 the volume of the
respective annulus for C1, minus the volume of the annulus’ intersection with B∞(pC , δC). It
is easy to showE1 ≤ E/2. Under Hypothesis 1, we sum all levels and bound byO(4Ln) the
number of rectangle-intesection queries. Using Theorem 3.3, we find that the complexity
of the subdivision phase is O(nα(lgα + tα)/∆

2). The complexity of the reconstruction
phase is O(ñ), where ñ is the number of leaf nodes in the octree, which is in turn O(1/∆3).
This allows to conclude.

Remark 4.1. tα = O(α) so the bound of Theorem 4.3 is O(nα2/∆2 + 1/∆3). Let V be the
number of input vertices. It is expected that nα = O(V ); also α is usually constant. In this
case, the complexity simplifies to O(V /∆2 + 1/∆3).
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5. IMPLEMENTATION AND EXPERIMENTAL RESULTS

Our algorithms are implemented in Julia and are available in [https://gitlab.inria.fr/
ckatsama/L_infinity_Voronoi/]. We use the algebraic geometric modeler Axl for visu-
alization. All experiments conducted for the purpose of this thesis were run on a 64-bit
machine with an Intel(R) Core(TM) i7-8550U CPU @1.80GHz and 8.00 GB of RAM.

We tested the runtimes of the 2D version of the algorithm for 4000 input polygons, that
consist of up to approximately 2500 sites. The input is generated by using a sample of 10
different rectilinear polygons as holes inside a bounding rectangle. We use BigFloats only,
which suffices for the numerical correctness of our demos. Some large-scale examples
are shown in Figure 18.

As it can be seen in the diagrams of Figures 19,20 the experimental evaluation of run-
times indicates a linear behaviour of the subdivision phase with respect to the number of
sites; the Pearson correlation coefficient is 0.97. Theoretically, the complexity of the re-
construction phase is linear in the tree size and the Pearson correlation coefficient of the
reconstruction times and the number of leaf cells is 0.93. We anticipate that the magnitude
of the coefficient would be increased with a more careful implementation and by using a
bigger sample.
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(a)

(b)

Figure 18: (a) Input consists of 538 sites and 7468 cells are generated. Subdivision and
reconstruction runtimes are 495ms and 363ms respectively. (b) Input consists of 1308 sites and
17044 cells are generated. Subdivision and reconstruction runtimes are 1156ms and 1179ms

respectively.
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(a)

(b)

Figure 19: The abscissa denotes the number of (a) edges of P (sites), (b) leaf cells of the quadtree.
The ordinate denotes the running time in seconds of the subdivision phase. Every blue point

depicts the runtime for a single dataset.
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(a)

(b)

Figure 20: The abscissa denotes the number of (a) edges of P (sites), (b) leaf cells of the quadtree.
The ordinate denotes the running time in seconds of the reconstruction phase. Every blue point

depicts the runtime for a single dataset.
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6. CONCLUSION AND FUTURE WORK

We have provided algorithms for the Voronoi diagram computation of othogonal polyhedra
in 2D and 3D and under the L∞ norm. Our algorithms follow the subdivision paradigm
which is an original approach to the problem. The 2D and 3D versions of the algorithm
share the basic ideas. However, for efficiency reasons, extending the 2D version in three
dimensions is not done in a straightforward manner; we build an hierarchical data structure
of bounding volumes for every site (facet) of the input polyhedron and formulate efficient
predicates relying on it.

Apart from our theoretical results we have provided a numerically stable implementation
of our algorithms in Julia. It is open-source, so that other researchers will benefit from it
and use it for their experimental studies. We are assured that our results will attract the
interest of researchers working on computational geometry and computer aided geometric
design.

Complexity analysis of adaptive subdivision algorithms is non trivial and remains largely
undeveloped. Towards this difficult task, we provided complexity bounds that are output-
sensitive and are comparable to that of previous methods, since linear with respect to
the number of facets. However, our bounds rely on a hypothesis of ‘‘sufficiently uniform”
input. Even though the Uniform Distribution Hypothesis might seem a strong assumption,
note that our analysis does not encounter the width of the subdivision tree and considers
it as a complete tree. This does not exploit to the fullest the local nature of subdivision
algorithms; they perform additional subdivisions only near difficult features of the input.

We anticipate that in instances where our hypothesis does not hold, the ‘‘non-uniform”
distribution of sites causes sudden increases or decreases in the width of the tree passing
from one level of the tree to another. We expect that there is a trade-off between the
number of cells at level i of the subdivision tree variating from 4i and the cardinality of
the active set of a cell being independent of the current level, so that the total complexity
remains linear in the number of sites (facets). We plan to extend our research towards
proving non trivial complexity bounds that exploit to the maximum degree the adaptivity of
subdivision algorithms and do not rely on assumptions.
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