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ABSTRACT

Line detection is the process of identifying straight lines or line segments in a given im
age. Potential applications are commonly found in a variety of fields, such as analysis of
geospatial data, image compression and road extraction, to name a few. In this disser
tation an approach to the above problem based on probabilistic clustering is explored. A
variation of the Gaussian probability distribution centered around a line segment is defined
accordingly for the two dimensional space in order to model the line segments in the im
age under study and an algorithm, called Probabilistic Line Segment CLustering (PLSC)
that follows the Mixture Decomposition approach is proposed. The process of finding
the optimal positioning of the line segments is carried out by an iterative Expectation
Maximizationlike procedure in which the segments are gradually moved in order to fit the
actual edges of the image using a heuristic rule. In order to find the appropriate number
of segments/clusters, the algorithm starts with an overestimation of it and progressively
reduces it via appropriate elimination and unification mechanisms. Toward supporting the
value of the proposed method, experimental results have been carried out and discussed
in which it is shown that the current method is able to appropriately identify clusters in
multiple scenarios. The algorithm can perform mostly comparably and in some cases,
even favorably with regard to a selection of relevant published methods.

SUBJECT AREA: Pattern Recognition

KEYWORDS: Image Processing, Clustering, Probability Theory, Line Detection, Expectation
Maximization Algorithm





ΠΕΡΙΛΗΨΗ

Ένα σημαντικό πρόβλημα που απαντάται σε διάφορα πεδία εφαρμογών, όπως η ανάλυση
γεωχωρικών δεδομένων (geospatial data analysis), η συμπίεση εικόνας (image compres
sion) και η εξαγωγή δρόμων (road extraction), μεταξύ άλλων παραδειγμάτων, είναι αυτό
της ανίχνευσης ευθείων γρμμών ή ευθυγράμμων τμημάτων σε μια δεδομένη εικόνα. Στη
διατριβή αυτή, προτείνεται μια νέα προσέγγιση στο παραπάνω πρόβλημα, η οποία βασί
ζεται στην πιθανοτική ομαδοποίηση (probabilistic clustering). Πιο συγκεκριμένα, ορίζεται
μια νέα κατανομή πυκνότητας πιθανότητας η οποία αποτελεί παραλλαγή της Γκαουσσια
νής κατανομής πιθανοτήτων (Gaussian probability distribution), στην οποία το κέντρο της
δεν είναι πλέον σημείο, αλλά ένα ευθύγραμμο τμήμα, με στόχο τη μοντελοποίηση ευθυ
γράμμων τμημάτων. Στη συνέχεια, το σύνολο των δεδομένων σημείων θεωρείται ότι προ
έρχεται από μία κατανομή που εκφράζεται ως ένα σταθμισμένο άθροισμα (μίξη)επιμέρους
κατανομών και ο στόχος είναι ο προσδιορισμός αυτών των κατανομών, κάθε μία από τις
οποίες μοντελοποιεί και μια (γραμμική) συστάδα (linear cluster). Προτείνεται ένας αγόριθ
μος, ο οποίος ονομάζεται Αγλόριθμος Πιθανοτικής Συσταδοποίησης Ευθυγράμμων Τμη
μάτων (Probabilistic Line Segment Clustering algorithm – PLSC) και ακολουθεί τη λογική
της Αποδόμησης Μίξης (Mixture Decomposition). Η διαδικασία εύρεσης βέλτιστων τοπο
θετήσεων των ευθυγράμμων τμημάτων (κέντρων των κατανομών πιθανοτήτων) φέρεται
εις πέρας μέσω μιας επαναληπτικής διαδικασίας παρόμοιας του αλγορίθμου Αναμενό
μενης Τιμής  Βελτιστοποίησης (Expectation Maximization), κατά την οποία, τα τμήματα
μετακινούνται σταδιακά με σκοπό να ταιριάξουν στις γραμμικές ομάδες που σχηματίζονται
από τα δεδομένα, βάσει ενός ευρετικού κανόνα (heuristic rule). Ο αλγόριθμος δεν απαι
τεί εκ των προτέρων γνώση του αριθμού των συστάδων. Αντί αυτού, ξεκινά κάνοντας μiα
υπερεκτίμηση του πλήθους τους και σταδιακά τις μειώνει μέσω κατάλληλων μηχανισμών
απαλοιφής και συνένωσης. Με σκοπό την τεκμηρίωση της αξίας της προτεινώμενης μεθό
δου, διεξήχθησαν αρκετά πειράματα, τα αποτελέσματα των οποίων δείχνουν ότι η τρέχου
σα μέθοδος είναι ικανή να αναγνωρίσει σε πολύ ικανοποιητικό βαθμό συστάδες τόσο σε
απλούστερες όσο και σε πολυπλοκότερες περιπτώσεις. Ο αλγόριθμος μπορεί να αποδώ
σει παρόμοια και, σε μερικές περιπτώσεις, καλύτερα απολέσματα συγκρινόμενος με ένα
επιλεγμένο πλήθος σχετικών δημοσιευμένων μεθόδων.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Αναγνώριση Προτύπων

ΛΕΞΕΙΣΚΛΕΙΔΙΑ: Επεξεργασία Εικόνας, Ομαδοποίηση, Θεωρία Πιθανοτήτων, Ανίχνευση
Γραμμικών Στοιχείων, Αλγόριθμος Αναμενόμενης Τιμής  Μεγιστοποίησης
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A Novel Probabilitybased Data Clustering Algorithm for Detecting Elongated Clusters with Application to the Line Detection Problem

1. INTRODUCTION

1.1 The Process of Edge Detection

In the context of computer vision and digital image processing, feature detection is the
stage where semantic information from input images is extracted. The resulting informa
tion is often subsequently utilized in solving pattern recognition, classification and image
editing problems. A popular kind of feature detection is the detection of discontinuities
(i.e., sharp changes) in the brightness of neighbouring points in an image domain. Those
points are termed edge points and subsequently, the task of identifying the lines they form
is termed edge detection. The motivation behind edge detection is that discontinuities
in pixels are assumed to indicate changes in the visual elements of an image (e.g. [1]),
containing thus information about its content. In this dissertation, the focus lies on the
special case of edge detection, in which, edges form straight lines (or line segments) in
the image. An example of edge detection is shown in figure 1.1:. Two different algorithms
are applied to the original image providing different results. In (c) the number of true edge
pixels detected is greater than the result in (b) but so is the number of false edges. This
figure helps to realize that edge detection by itself is not a trivial task.

(a) original greyscale image (b) edge points with Sobel’s
method [2]

(c) edge points with Canny edge
detector [3]

Figure 1.1: An example of edge detection.

In the following paragraphs, the basic methodologies of edge detection and line extraction
are synopsized.

1.1.1 Overview of Edge Detection Algorithms

Typical edge detection methods can be regarded as processes consisted of the three
following discrete steps: 1

Smoothing – the process of applying noise reduction and regularization techniques in the
1The reader may find a detailed review of edge detection algorithms in [4].
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image to filter out sharp changes in pixel values and facilitate numerical computations.
The operation is being carried out with a convolution of the image with a suitable filter,
such as the Gaussian filter [5] in the case where the image under study is contaminated
with Gaussian noise and the median filter in the case where the image is contaminated
with saltandpepper noise [6].
Differentiation – the step in which, edge pixels are located by computing first or second
order derivatives. Approaches in literature may estimate the magnitude and direction of
the gradient at each pixel (e.g. with the use of Prewitt’s [7] or Sobel’s [2] masks) or zero
crossings of a secondorder derivative measure, such as the Laplacian operator used in
[8].
Edge labeling – as a final step, the aim is to localize detected edges and discard false
ones. While in the simplest form, a threshold of the gradient value can be used to discard
unwanted edges, additional operations, such as edge thinning or edge tracing, must be
carried out to provide satisfactory results.

A widely used edge detection algorithm, the Canny edge detector, has been introduced
in [9]. According to this, a Gaussian smoothing filter is first applied, that is shown to ap
proximate the optimal filter for ideal edge step (i.e., single pixels) extraction. The intensity
gradient is computed by such operators, as those discussed above. As a thinning policy,
suppression of points with non local maximum gradient magnitude along the direction of
the gradient is used. Finally, a high and a low threshold values are both used for elimi
nating false edges. Specifically, edges with magnitude above the high threshold are kept
by default and edges with magnitude between the high and low thresholds are kept only
if they are linked to some edge with value above the high threshold.

1.1.2 Detecting Lines and Segments

An important early stage step in recognizing the content of an image, in a variety of com
puter vision applications, is the detection of straight lines and/or line segments. The main
reason behind this is that silhouettes of man made objects are often consisted of straight
edges.

The task of tracing edge segments itself can be thought of as a subproblem of edge detec
tion. Conceptually, it can be described as detecting edge regions of the image under the
assumption that those regions have approximately the form of straight lines. Algorithms
that perform straight line detection take as input a set of edge pixels already discovered
by a standard edge detection process and output either a parametric representation of the
detected lines or groups of points each one comprising a line – or both.

In the context of image processing, a vast amount of algorithms have been proposed for
detecting lines. Most notably, Hough transform was introduced in [10]. The algorithm
works by defining a transformation between the image domain and a parametric space,
termed Hough space. Points in the image domain are transformed to lines in the paramet
ric space and points in the Hough space can be interpreted as lines in the original image.
Collinear points will result in intersected lines in the parametric space. As a result, image
lines can be detected by finding Hough space points, on which, a certain amount of lines
intersect. Then one can map those points back to the image domain to get the corre
sponding lines. Over the years a number of variations on the original method have been
explored. For instance, in [11] it shown that the idea can be modified to detect distinct line
segments, rather than lines and in [12], a generalized version is proposed for identifying
arbitrary shapes.

K. Stylianopoulos 22
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Another proposed method is given [13]. The algorithm works by first identifying regions of
image with gradients with similar directions and then by grouping pixels of such regions to
gether (encapsulating them in rectangles in order to finally construct edge line segments).
Additionally, in [14], a simple approach is described that uses a convolutionbased tech
nique similar to the ones discussed in section 1.1.1 with filters that detect horizontal, ver
tical and oblique edge points. When the detection phase is over, an edge linking routine
can be applied to group points to distinct lines.

1.2 Clustering Approaches to Line Detection

In recent decades, machine learning has provided an alternative important direction in the
field of image understanding. Traditional unsupervised learning algorithms are commonly
applied in different areas of computer vision 2 (e.g. in image segmentation [15]). In the
context of this work, the focus lies on clustering algorithms and especially their applications
in line detection.

Formally, clustering can be defined as the process of finding groups (clusters) of ade
quately similar objects within a data set – i.e. a collection of data points. Typically, data
points are represented as vectors of numerical values. Each numerical value represents
the measurement of an observed property, termed a feature. Thus data points are re
garded as feature vectors in a vector or metric space. Subsequently, the measure of
similarity between points is often defined via a norm or distance function on the feature
space.

The specific problem of identifying edge segments in images can be regarded as a clus
tering problem, in which the data set is comprised of edge points (i.e. x ∈ R2) forming
elongated clusters and the features used for the representation of each edge point are
simply its spatial coordinates (i.e. x1, x2) of the pixels.

A number of different clustering categories exist based on the philosophy the correspond
ing algorithms follow to group the data points. Hard clustering is used to describe algo
rithms that assign each data point to a single cluster. In contrast, fuzzy and possibilistic
clustering algorithms assign points to all clusters with different (nonnegative) ”degrees of
membership” or ”compatibility”. Their difference is that under the fuzzy paradigm, the de
grees of membership for each single point must add up to 1, while possibilistic algorithms
pose no such restrictions. In addition to the above, we have the probabilistic clustering
family which exhibits close affinity with fuzzy clustering, where degrees of membership
are interpreted as probabilities or likelihoods of points belonging to clusters.

1.2.1 Elongated Clusters

”Elongated clusters” is a term given to clusters, the points of which, have feature values
that are strongly linearly correlated. That is to say, the variance of the values for a certain
feature is significantly greater than the variance of the values for the rest of the features.
The term is used rather informally. An adequate but still loose definition for two linearly
correlated features can be given terms of the Pearson correlation coefficient.

2Of course, other types of machine learning algorithms apart from unsupervised learning have been used
in the domain of image processing but they lie out of the scope of this work.
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In statistical terms, given a population associated with random variables A and B, Pear
son’s coefficient of correlation is defined as:

ρA,B =
cov(A,B)

σA, σB

where, cov(A,B) denotes the covariance of random variables A and B and σA, σB denote
the respective standard deviations. In case there is no confusion about the random vari
ables, the subscripts are often emitted. ρA,B takes values in [−1, 1]. Values close to 1
indicate a strong positive linear correlation between A and B, values close to 1 indicate
a strong negative correlation and in case the value is 0, no correlation is indicated.

With that in mind, we define a set of points to be elongated if

|ρ| ≥ thresh

In this context, each cluster is treated as a population and the features of the data set as
random variables. thresh ∈ [0, 1] is an arbitrary threshold value that depends on our inter
pretation of the underlying problem. A visual representation of elongated clusters of points
in the two dimensional plane along with the corresponding coefficients is shown in figure
1.2:. In each picture, 1000 points have been produced from the twodimensional Gaussian
distributions. Their elongated shapes are the result of different covariance matrices used
in each case. In (a) through (d), ρ is positive and the sets exhibit positive correlation  the
values in the vertical axis tend to grow as values of the horizontal axis grow. The greater
the value of ρ, the stronger the correlation. In (e) through (h), negative ρ values indicate
negative correlation with the smallest values corresponding to strong correlations.

(a) ρ = 0.50 (b) ρ = 0.80 (c) ρ = 0.90 (d) ρ = 0.98

(e) ρ = −0.50 (f) ρ = −0.80 (g) ρ = −0.90 (h) ρ = −0.98
Figure 1.2: Elongated sets of points with the corresponding Pearson Coefficients.

The task of identifying elongated clusters in a set of points entails fundamentally new
complications. As a brief example, four cases are depicted in figure 1.3:. The first case
in (a) is rather straightforward. For the rest of the subfigures, different algorithms may fail
to detect all the distinct segments and erroneously classify points in a single cluster. The
intersection of clusters depicted in (b) may confuse some approaches, while in (c) and
(d), it is difficult to be determined whether there are three distinct clusters or a single one,
affected by noise.

In the following section, clustering approaches to elongated data are presented.
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(a) A simple case (b) intersecting clusters (c) colinear clusters (d) parallel clusters
Figure 1.3: Four cases of elongated or linearly shaped clusters.

1.2.2 Related work

The literature of clustering methods suitable for elongated shaped data usually entails
modifications of well studied algorithms or problems, such as Lloyd’s or kMeans algo
rithm [16], [17]. In [18], Philips and Rosenfeld introduced one such variation able to fit a
specified number of lines in a data set. They compute the principal axis for each cluster
as an update step. Then, for each point x its perpendicular distance from the principal
axis of each cluster is computed and x is assigned to the cluster corresponding to the
minimum distance. Building upon this idea in [19], Yin proposed three improvements; one
of those, titled “Algorithm B” in the article, suggests a fast approximation procedure for
finding the principal axis for a set of points. In this work, a redefinition of this method,
suitable for the context of probabilistic clustering, is used for the same purpose. From a
similar point of view, another variant of kMeans was explored in [20], defining line seg
ments as cluster representatives. The distances of the points to the segments are then
calculated by a simple geometrical model and the update of the segments relies on princi
pal component analysis of the assigned points and on their projections on segment axes.
That geometric approach and the intuition behind the update mechanism is close to the
algorithm proposed in the next chapter.

Under the fuzzy clustering taxonomy, a variation of the Fuzzy cMeans algorithm is intro
duced in [21], aptly titled “Fuzzy cLines”. This algorithm uses parametric form of lines as
cluster prototypes. The assignment step calculates the degrees of membership of points
to clusters based on a notion of point to line distance and the parameters of each line are
next updated via a mixture of weighted sums and eigenvector calculations.

Considering the family of possibilistic clustering algorithms, the SPCLS algorithm is intro
duced in [22], with an intended application in line detection, as part of image processing.
SPCLS opts for representing elongated clusters by line segments, specifically by keep
ing track of the resulting endpoints. The algorithm is fitted under a general possibilistic
sparsity framework, also introduced in the article. The term sparsity commonly refers to
an algorithm’s mechanism for being unaffected by distant points (such as outliers). The
update of the line segments is carried out via a function optimization process and the pro
cedure is also accompanied by a means of eliminating clusters that do not represent any
point well enough.
The proposed algorithm of this thesis shares with SPCLS the following: a) the initialization
stage – since it is suitable for elongated clusters, b) the use of line segment endpoints for
representing the line segments (cluster representatives), c) an equivalent definition of the
distance between a point and a line segment and d) the intend of eliminating unnecessary
clusters (though the respective policies are not related).

Furthermore, a closely related method to the proposed in the present work can be found
in [23]. There, an algorithm is proposed that also makes use of Mixture Models and the
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ExpectationMaximization process for extracting line segments in a probabilistic frame
work. In order to completely define the optimization function, the authors use the affine
transformation model, which is common in remote sensing applications. Their algorithm
is proposed in the context of road extraction and experiments are applied using geospatial
imagery.

The structure of the present study is as follows. Chapter 2 describes the EMalgorithm
in the frame of the mixture decomposition problem. In Chapter 3 the proposed algorithm
is fully analyzed, while in Chapter 4 extensive experimentation is conducted in order to
assess its performance. Finally, Chapter 5 contains a discussion on the proposed method
while some directions for further research are also provided.
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2. EXPECTATIONMAXIMIZATION AND MIXTURE MODELS

Since the proposed method includes a variation of ExpectationMaximization (EM), this
chapter is devoted to a brief presentation of this algorithm. Combined with the problem
of Mixture Models, a methodology for applying EM in probabilistic clustering is also dis
cussed.

2.1 The EM Algorithm

EM was first introduced in [24] and can be used for Maximum Likelihood Estimation (MLE)
of parameters of a probability distribution function (pdf) given a set of observations. It is
as an iterative optimization method that falls under the general category of gradientbased
optimizers.

The EM algorithm is applied to problems in which the observed data set is (or can be con
sidered as) incomplete. In detail, we assume a data set of complete samples y ∈ Y ⊆ Rl1

that was generated from an (unknown) multivariate probability distribution function py(y;θ)
that is parameterized by an unknown vector of parameters, θ. Those points however
cannot be observed directly. Instead, we can observe a set of samples x ∈ X ⊆ Rl2,
where l2 ≤ l1. We assume that each x is related to a corresponding y by a relation
g : Y ⊆ Rl1 → X ⊆ Rl2, so that g(y) = x. Under this framework, Y and X are often
termed as the complete and incomplete data sets respectively.

The likelihood of Y is defined as:

p(Y ;θ) =
N∏
i=1

py(yi;θ) (2.1)

The intend is to find the maximum loglikelihood estimation of parameter θ given the com
plete data:

θ̂MLE = arg max
θ∈Ω
{log py(Y ;θ)} (2.2)

In the above, Ω is the parametric space of θ and the natural logarithm is used, since it is a
monotonically increasing function, in order to convert the product of (2.1) to a sum of loga
rithms of probability distributions. This is extremely helpful when dealing with exponential
distributions, such as the Gaussian or the one presented in section 3.2.2.

However, as stated before, Y is not observable. Therefore the likelihood of Y is not directly
accessed and, as a consequence, the optimization problem in Equation (2.2) cannot be
solved directly. Instead, the incomplete data set, X, is the only one at our disposal. Thus,
a way out of this situation is to consider the expected value of the logarithmic likelihood
function over the complete, unobserved data set, conditioned to the observed samples
and our current estimation of the parameters, in the place of likelihood of Y (see Equation
(2.3) below). Note that the former is a function of θ and it has been given the name ”Q
function”. Here is the entrance point of EM, which performs iterative maximization on the
above cost function.

The iterative process makes at t = 0 an initial guess about the value of θ(0) and then it
repeats the following two steps:
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• Estep: Using θ(t), calculate the conditional probability distribution py(Y |X;θ(t)) and
then calculate:

Q(θ;θ(t)) = EY |X,θ(t) [log py(Y ;θ)] (2.3)

• Mstep Find the value of θ(t+1) that maximizes Q(θ;θ(t)). That is,

θ(t+1) = arg max
θ∈Ω
{Q(θ;θ(t))} (2.4)

Assuming differentiability for Q, θ(t+1) is set equal to the solution of:

∂Q(θ;θ(t))

∂θ
= 0 (2.5)

The names of the steps come from the words Expectation and Maximization respectively.
In the Estep, the value of Qfunction does not affect the MStep and so there is no need for
explicitly computing it. During that step, the values that need to be calculated are problem
specific and they are the ones that play a role in the maximization process. The procedure
stops when an appropriate condition is fulfilled; usually when ∥θ(t+1) − θ(t)∥ < ϵ, for some
small ϵ > 0 that denotes the tolerance of convergence. Citing results of theoretical studies
on this method, such as the ones that can be found in [25], it is shown that a) iterations do
not reduce the value of the likelihood function (Monotonicity Theorem) and b) the algorithm
converges to a local maximum or a saddle point. This convergence result is typically
adequate in many instances.

2.2 Mixtures Models and Clustering

A typical use case of EM is when a data setX of sizeN is assumed to have been generated
by the effect of m distinct distributions so that each data point has been produced by one
of them. In this case, the distribution (pdf) that generates the data is expressed as a
weighted sum of distributions (pdfs):

p(xi) =
m∑
j=1

pj(xi|j)Prj , subject to
m∑
j=1

Prj = 1 (2.6)

Due to its definition, this distribution is also known as a Mixture Model. Under this model,
we may treat the sample X of data points as the incomplete data set. Subsequently, the
complete data set can be expressed as:

Y = {(xi, ci) | ∀xi ∈ X, ci ∈ {1, ...,m}, i = 1, ..., N} (2.7)

In that context, each ci is a latent variable indicating the distribution that produced its
associatedxi. Under the above formalization, using the elementary property of conditional
probabilities, we can deduct that:

py(yi;θ) = px(xi, ci;Θ) = px(xi|ci;θ)Prci (2.8)

Prci, or simpler, Prj, for j = 1, ...,m denote the a priori probabilities of the distinct distribu
tions of our model. Since we have no way of knowing the values of Prj, they are treated
as part of the parameter vector, along with the specific parameters of each distribution.
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For the rest of this work, θj will be used to denote the parameters associated with the jth
distribution. Subsequently, Θ = [θT

1 , ..., θ
T
m]

T will denote the concatenated vector of the
parameters of all distributions. Similarly, vector Pr = [Pr1, ..., P rm]

T will hold information
about the a priori of all distributions.

The parameters that affect the Qfunction are now bothΘ andPr. The expectation is now
over the space space of all possible distributions, cj and as a result, utilizing Equation (2.8)
the Qfunction of Equation (2.3) for the problem of Mixture Models can be expressed as:

Q(Θ,Pr;Θ(t),Pr(t)) =
N∑
i=1

m∑
j=1

P (cj|xi;θ
(t)
j )log(p(xi|cj;θ(t)

j )Prj) (2.9)

Assuming that all individual pdfs are of the same form, we have simplified the notation
from px() to p(). Next, we compute P (cj|xi;θ

(t)
j ) using the extended form of the Bayes

Theorem:

P (cj|xi;θ
(t)
j ) =

p(xi|cj;θ(t)
j )Pr

(t)
j∑m

k=1 p(xi|ck;θ(t)
k )Pr

(t)
k

, ∀i = 1, ...,M , ∀j = 1, ...,m (2.10)

Hence, we can now derive more specific equations for the maximization step:

• Since we interpret Prj as probabilities, the process of finding Pr
(t)
j that maximize

the Qfunction is now a constrain optimization problem with the constrains being:
m∑
j=1

Prj = 1 and Prj ≥ 0, j = 1, ...,m (2.11)

Such a problem can be solved [26], resulting in the following closed form equation:

Pr
(t)
j =

1

N

N∑
i=1

P (cj|xi;θ
(t)) (2.12)

• Finally, considering Equations (2.5) and (2.9), assuming p() is differentiable and that
θi, θj (i ̸= j) are independent from each other, θj can be computed by solving:

N∑
i=1

m∑
j=1

P (cj|xi;θ
(t))

∂

∂θj

log(p(xi|cj;θj)) = 0 (2.13)

The above framework fits nicely with probabilistic clustering. More specifically, one can
assume that each cluster is associated with a specific distribution and that data points are
drawn by those distributions (one point from each distribution). Finding an optimalΘ value
means that we have the optimal overall distribution, whose constituent pdfs represent the
clusters. This procedure is often called a Mixture Decomposition. If needed, one can then
use those pdfs (as they are defined utilizing the final values of the respective parameter
vectors) to deterministically assign points to clusters (i.e. perform hard clustering) with the
following profound rule:

xi → cj = arg max
j=1,...,m

{Prj p(cj|xi;θj)} , i = 1, ..., N (2.14)
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A very common application of Mixture Decomposition is to model each cluster with a dis
tinct multivariate Gaussian distribution. In this case, each θj is comprised of the mean,
µj, and covariance matrix, Σj of the corresponding pdf. It is worth noting here that this
Gaussian Mixture Model (GMM), for the special case of covariance matrices of the form
Σj = σ2I – where I is the identity matrix, that result to spherical distributions, is very
closely related to kmeans clustering.

In [26], the Generalized Mixture Decomposition Algorithmic Scheme (GMDAS) which is
actually the utilization of the EM and Mixture Models, in the frame of clustering is given.
Expressed in pseudocode with necessary notation changes, GMDAS is shown in Algo
rithm 1:. The proposed in the present thesis method, described in the next chapter is also
expressed using a modified version of this scheme.

Algorithm 1: GMDAS
Require: Data set X
Require: Initial values: Θ(0), Pr

(0)
1 , Pr

(0)
2 , ... ,Pr

(0)
m

1: t← 0
2: repeat
3:
4: // EStep
5: for j ← 1 to m do
6: for i← to N do
7: Compute P (cj|xi; Θ

(t)) from (2.10)
8: end for
9: end for

10:
11: // MStep
12: for j ← 1 to m do
13: Compute θ

(t+1)
j by solving (2.13)

14: Compute Pr
(t+1)
j from (2.12)

15: end for
16:
17: t← t+ 1
18: until ∥Θ(t) −Θ(t−1)∥ < ϵ
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3. THE PROBABILISTIC LINE SEGMENTS CLUSTERING (PLSC)
ALGORITHM

3.1 Introduction

In this chapter, a novel probabilistic clustering algorithm for detecting line segments in
images, called Probabilistic Line Segment Clustering (PLSC) is presented. The algorithm
uses line segments (defined by their endpoints) to represent elongated clusters in the
image. A twodimensional probability distribution centered around a line segment is used
to model each linear cluster and to quantify the membership between data points and
clusters. It is expressed so as to loosely fit under the GMDAS, presented in Paragraph
2.2, while it also exhibits a number of additional key features.

For one, it is supposed to start with more clusters than those actually exist in the image.
Using a pair of elimination policies (to be disclosed later in detail), the iterative scheme
is able to identify false line segments and deal with them accordingly by either merging
them together or by removing them. Secondly, the maximization step no longer applies
in this framework in a strict sense. This is, in the one hand, due to the fact that since the
number of clusters changes at certain iterations, there is no correspondence between the
respective Qfunctions and, on the other hand, due to difficulties in coming up with closed
form solutions when attempting to find maximizing values of the parameter vector. Instead
of directly finding parameter values via maximization of the expected loglikelihood of the
underlying distributions, an approach similar to Least Square Error (LSE) regression is
used in each iteration in order to reposition line segments. This approach of fitting line
segments to points and then deciding whether merges should happen resulted in two
procedures under the names of FIT and MERGE. In order not to deviate completely
from the maximization spirit, during consecutive iterations in which the number of clusters
remains the same, the set of segments that produced the best Q value is stored along
with additional information. MERGE then attempts to unify those stored segments rather
than segments of the current iteration.

While PLSC can be used in any type of clustering problem, in this work, it is expressed
in the context of detecting line segments in images. In particular, the data set is always
assumed to be two dimensional, where each edge pixel is represented by its two spa
tial coordinates in the image. The edge pixels are identified by a process such as those
described in the first chapter. This choice, while strict, allows for a more concise descrip
tion of certain components such as the initialization, the optimization stage, as well as a
clearest use of the required hyperparameters.

The rest of this chapter continues as follows: Section 3.2 defines the probability distribution
function to be used by the algorithm, Section 3.3 deals with the initialization process,
Section 3.4 discusses relevant difficulties in performing the maximization step of EM and
Section 3.5 proposes alternative update procedures. Finally, the algorithm is described in
full in Section 3.6.

3.2 The Proposed Probability Distribution Function

In order for PLSC to fit under a Mixture Models framework, an appropriate probability
distribution function (pdf) needs to be defined. Since that pdf incorporates elements from
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the Euclidean geometry, relevant prerequisites are presented first.

3.2.1 Point  Segment Distance

The aim of this paragraph is to provide a definition of the distance between a line segment
and a point. That distance is central in formulating the probability distribution function of
the following subsection.

Given a line segment, L, and a point x ∈ R2 the pointsegment distance of x from L is
defined as: 1

D(x, L) = min
p∈L
∥x− p∥

That definition, however, is of no direct use from a computational point of view. Thus, the
above distance is expressed in a more analytic form. At first, a few simple definitions are
needed in order to build upon.

Given a line H expressed in Cartesian coordinates as: ax + by + c = 0, the distance of a
point x(x0, y0) from H is defined as:

d(x, H) =
|ax0 + by0 + c|√

a2 + b2
(3.1)

When H passes through two known points a(x1, y1), b(x2, y2), it can be derived that

a = y2 − y1
b = x2 − x1

c = x1y2 − y1x2

(3.2)

Substituting the above in (3.1), we obtain

d(x, H) =
|(y2 − y1)x0 + (x2 − x1)y0 + x2y2 − y2x1|√

(y2 − y1)2 + (x2 − x1)2
(3.3)

Additionally, the orthogonal projection of a point, x′ onto a line H, x′
H that passes through

a and b needs to be defined. An algebraic notation will be used as it provides a simpler
formula. Points are thus treated as vectors. H can be expressed through the equation
wTx+w0 = 0, for w ∈ R2, w0 ∈ R, and since it passes through a(x1, y1) and b(x2, y2), w
and w0 can be expressed as:

w = [y2 − y1, x2 − x1]
T (3.4)

w0 = x1y2 − y1x2 (3.5)

Then, the orthogonal projection of any point x′ onto H, x′
H , is given by the following ex

pression:

x′
H = projH{x′} = x′ − wTx′ + w0

∥w∥2
w (3.6)

1Actually, this is the general definition of a point from an arbitrary set of points.
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Finally, given a line segment L(a, b) and a point x′ that belongs in the carrier line of L , x′

belongs in L if and only if the following condition is true:

(∥x′∥ ≤ ∥a∥ AND ∥x′∥ ≥ ∥b∥) OR (∥x′∥ ≥ ∥a∥ AND ∥x′∥ ≤ ∥b∥) (3.7)

Using the above prerequisites, the distance between a point x and a line segment L(a, b)
can be expressed as:

D(x, L) =

{
d(x, HL) , if xH ∈ L

min{∥x− a∥ , ∥x− b∥} , otherwise
(3.8)

A geometrical illustration of the distance definition is presented in figure 3.1. More specifi
cally, 3.1:a, helps illustrate the computational process implied by Equation (3.8). All three
points have the same distance, d, from the segment, L, with endpoints a and b. In detail,
the projection of x1 lies onto the segment, so the first branch of Equation (3.8) is activated
in this case. On the contrary, points x2 and x3 are not projected orthogonally onto L. In
those cases, D(x2, L) is computed as ∥x2 − b∥ and D(x3, L) as ∥x3 − a∥, through the
second branch of Equation (3.8).

Figure 3.1:b shows a contour line of the distance function from a line segment of fixed
endpoints. (i.e. a curve in which all points have the same distance from the segment).
The shape of the contour line slightly resembles an ellipse, without actually being one.
That shape is referred to as a ”cylinder” in [20], however ”capsuloid” may constitute a
more appropriate term.

(a) Three points of equal distance from a seg
ment that comprise three distinct cases of
Equation (3.8).

(b) A contour line of the distance seen as spe
cial a shaped, twodimensional curve

Figure 3.1: Geometrical overview of the point to segment distance.

3.2.2 A Probability Distribution Centered Around Line Segments

The assumption under which this algorithm is to be used is that data points form elon
gated clusters. In order to assign meaningful probabilities of each data point belonging to
each cluster, the underlying probability distribution needs to take into consideration that
assumption. Thus, the proposed pdf peaks around a line segment and has an exponential
decay around it, the rate of which can be parametrized.
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Given a point x ∈ R2, a line segment L(a, b) and some σ > 0, the probability distribution
function is defined as:

p(x;L, σ) =
1

2πσ2 +
√
2πlLσ

exp(− 1

2σ2
D2(x, L)) (3.9)

in which, lL is the length of line segment L, namely ∥a− b∥ and distanceD(L,x) is defined
in Equation (3.8). The value of σ determines how abruptly the values of the probability
decrease as points move away from the central segment. It a sense, it holds information
about the variance of the distribution around the line segment. Since in the application
of line detection, edge segments are commonly expected to have approximately equal
widths, σ is treated as a hyperparameter and its value is selected so that it prevents
numerical underflow in the implementation of the algorithm. That underflow may arise in
cases of distant points, when computing the exponent part of the equation.

The proof that p(x, L, σ) in Equation (3.9) actually represents a probability distribution
function (i.e. its values are non negative and it integrates to 1) can be found in ANNEX I.

In Figure 3.2:, two surface plots are shown that map the values of a probability distribution
centered around a line segments with endpoints at (0, 0) and (0, 1). In 3.2:a, σ is set to
1 while in 3.2:b the value of σ is 1.1, resulting in differences in both the maximum values
of the respective probabilities and their slopes. Higher σ values lead to lower peaks and
slower decays.

(a) σ = 1 (b) σ = 1.1

Figure 3.2: Surface plots of areas of two probability density functions centered around the same
line segment and using different σ’s.

An interesting property of this distribution is that when a = b, lL becomes 0 and D(x, L)
becomes ∥x− a∥, allowing (3.9) to be rewritten as:

p(x;L, σ) =
1

2πσ2
exp(− 1

2σ2
∥x− a∥2) (3.10)

which is the twodimensional Gaussian Distribution for the special case where Σ = σ2I2
2

and µ = a.
2I2 denotes the 2× 2 identity matrix.
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3.3 Initialization and Number of Clusters

A crucial part of clustering algorithms that require the number of clusters, m, as a param
eter, like EM, is how to find an appropriate m value for different problems. PLSC deals
with that issue by starting with more clusters than those physically formed in the data and
continues by either eliminating or merging together clusters until no further changes con
cerning the number of clusters can be performed. At this point, it is assumed that the
algorithm has learned the correct number of clusters for a given data set. In order for that
approach to work, initial line segments need to be positioned in a way so that there is at
least one (and preferably more) segments near each physical cluster. In the special case
of intersecting segments, a suitable initialization needs to ensure that there will be at least
one initial segment in each side of each intersection.

The quality of the results of PLSC greatly depends on whether the initialization procedure
tasked with finding initial segments is able to fulfill the above conditions. A suitable initial
ization method that this work uses without any modification is discussed in [22], where a
clustering algorithm for line segment detection in images is proposed that also contains a
stage of eliminating false clusters. That method is applied explicitly on images consisted
of binary edge pixels. It works by first sampling every T th column and T th row of the
image (where T is a userdefined parameter). Edge pixels found by either process are
marked in a new image with the same size as the original. After that, the new image
is scanned both horizontally and vertically for existing line segments. Every time one is
found, its corresponding pixels are erased apart from its midpoint. This process results to
an image of isolated edge pixels. For each such point, a small line segment with random
orientation and length is centered at those coordinates, representing a cluster. Note that
the use of decreased or increased values of T results in more or fewer initial segments,
respectively. While the initialization also uses another parameter, ρ to control the length
of the generated segments, its value is left to

√
2, as proposed in [22].

An illustration of the initialization process is shown in figure 3.3: with T = 2. The original
image is shown in (a) with black pixels on white background. Figure (b) is the result of
sampling all pixels of every second row (shown in black). Non sampled pixels are shown
in gray for reference purposes to the original image only. Similarly, in (c) the result of
sampling pixels of every second column is displayed. In (d), pixels from (b) and (c) are
added in an elementwisemanner 3 and in (e) horizontal and vertical segments are located,
having all their pixels removed apart from the middle one (or previous to middle in case
of even sized segments). Initial segments are produced in (f) centered at the points left in
(e). Their direction and size are random. Notice that multiple segments may be produced
for the same actual segment. This was intended to happen. Instead, a problem would
arise if a whole segment was skipped altogether by the sampling process.

3.4 Parameter Updates Under GMDAS

In order to maximize the value of the Qfunction, EM needs to find at each iteration the
value ofΘ(t) that maximizes the current instance ofQ(Θ,Pr;Θ(t),Pr(t)). This is normally
carried out by computing the partial derivatives ofQ(Θ,Pr;Θ(t),Pr(t))w.r.t. θj and setting

3Since pixels are either black or white, their values are treated as binary with 1 indicating an edge pixel
(black) and 0 a background pixel (white). In that sense, the OR operation is actually performed instead of
addition.
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(a) Original image (b) Sampling pixels every sec
ond row

(c) Sampling pixels every sec
ond column

(d) Two previous images added
together

(e) Shrinkage of vertical and
horizontal segments to points

(f) Initial random segments

Figure 3.3: Initialization procedure of SPCLS and PLSC

them equal to 0, as shown in Equation (2.5). In the case of PLSC, the parameters con
cerning line segments are treated as a set of segments C = {L1(a1, b1), ..., Lm(am, bm)}
that represent the respective clusters. Subsequently, since a line segment is defined via
four parameters, the coordinates of its endpoints, the parameter vector, Θ, is defined as
:

Θ = [aT
1 , b

T
1 , ..., a

T
m, b

T
m]

T ∈ R4m (3.11)

Those two notations may be used interchangeably when referring to line segments for the
rest of the chapter as the vector representation is useful in equations while sets facilitate
algorithmic operations. The specific form of the Qfunction, derived from Equation (2.9)
and using the newly defined pdf of Equation (3.9), can now be fully expressed as:

Q(Θ,Pr;Θ(t),Pr(t)) =
N∑
i=1

m∑
j=1

P (cj|xi;θ
(t)
j )

(
−log(2πσ2+

√
2πlLj

σ)− 1

2σ2
D2(Lj,xi)+logPrj

)
(3.12)

Attempting to take the appropriate partial derivatives of each coordinateelement of Θ
does not provide with closed form solutions of the maximizing Equation (2.13) 4 . This
is a setback since convergence analysis of the EM and the Monotonicity Theorem both
assume that at each time step, t, Θ(t) has values that maximize Q(Θ;Θ(t−1),Pr(t−1)).

One naive solution would be to use a global optimization method for high dimensional
vector spaces such as DIRECT [27], Stochastic Gradient Descent [28], or its more recent
variant, Adam [29]. There are however inherent problems with the use of such techniques,
namely their prohibitive computation time and the extensive parameter tuning required.
This solution is, for all practical purposes, unfeasible, as PLSC would be required to solve
an iterative optimization problem in high dimensions for each iteration of the GDMAS.

Finally, it is worth mentioning that even if computing optimal Θ(t) values was possible,
a strict maximization process still cannot be carried out. This is because the algorithm

4Another problem with the M step is that Q(Θ) is not differentiable in all of its domain. This second
implication could be overcome, but another direction is taken for that step altogether.
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intends to eliminate clusters at certain iterations, resulting tom(t1) < m(t2) for some t1 > t2.
Since the vector space of Θ(t), Ω(t) ⊆ R4m(t) depends on the number of clusters of the
current iteration, it is also the case that Ω(t1) ̸≡ Ω(t2). As a result, comparing values of Q
functions that have the dimensions of their domains changing during the iterative process
is nonsensical.

Because of those two facts, PLSC necessarily deviates from the classical EM algorithm,
as far as the maximization step is concerned. The Expectation step and the part of the
Mstep that focuses on updating the prior probabilities are still performed but updates ofΘ
are being carried out using a heuristic approach. The relevant procedures are presented
in the next paragraph.

3.5 FIT and MERGE Procedures

FIT and MERGE procedures substitute the maximization step. The first heuristic repo
sitions the segments so as to best fit the data points, according to their a posteriori prob
abilities of belonging to the clusters, while the second reduces decisively the number of
detected clusters.

The parts of those two processes are discussed in detail in the next subsections. PLSC
uses the related algorithms as subroutines. During each iteration, PLSC calls FIT first.
Then, if no clusters are eliminated due to this procedure (see 3.5.2), theMERGE step can
be applied in order to try to find segments that can be merged together. It must be noted
that even though those heuristic seem intuitive, there is no theoretical guarantee that they
optimize criteria, neither that they force the algorithm to converge in every possible case.
Experimental results, however, indicate that the methods described next have a strong
proposition of value.

3.5.1 Defining Line Segments from Data Points

While the problem of finding the line that best fits a set of data is often solved using some
form of LSE fitting, the approach adopted in the present framework follows a slight modifi
cation of a method proposed in [19], titled Algorithm B because of its execution time: While
the time complexity of both strategies for a set of n points is Θ(n), Algorithm B involves
fewer calculations. More crucially, it is also able, once the line has been computed and a
single point is either added or removed from the set of interest, to reconfigure the line in
constant time.

Algorithm B works by arbitrarily splitting a set of n points, S, into two sets of equal size (or
almost equal in the case n is an odd number). Those sets are given the names Sf and Sr

and for simplicity it is assumed to contain nf = ⌈n
2
⌉ and nr = ⌊n2 ⌋ points, accordingly. The

centroid vectors cf , cr of those sets are computed as:

cf =
1

nf

∑
x∈Sf

x (3.13)

and
cr =

1

nr

∑
x∈Sr

x (3.14)

Then, lineH is defined by these two points and can be expressed from the Equation (3.2).
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In PLSC, three modifications of this technique are introduced. The first one concerns the
splitting policy of points into Sf and Sr. PLSC opts for sorting the points in S with regard
to their values of the axis (x or y) of the greatest variance. When this is done, the first half
of the points is assigned to Sf , while the second half constitutes Sr. Note that this change
comes at the cost of computational time due to the sorting involved.

The second modification is simply a distinction between probabilistic and hard clustering.
In the original algorithm, the hard clustering philosophy is followed and set S contains
all the data points that have been assigned to a given cluster. In the GMDAS however,
no explicit assignment of points to clusters is performed. Because of that, for a given
cluster cj, the set Sj is defined to be the set of points of the data set whose maximum
posterior probability is given for cj. For the rest of the work, the term ”cluster points” is
used excessively when referring to S. Formally:

Sj = {x ∈ X | arg max
k=1,...,m

{p(ck|x)} = j} j = 1, ...,m (3.15)

The final change allows for weights to be used when determining the exact orientation
of each line. The posterior probabilities act as a weight for each data point. Since in
probabilistic clustering it is assumed that every point potentially belongs to any cluster,
using Sj alone for finding the optimal line would be restrictive. Instead, the entire data
set, X is used to compute cf,j , cr,j. This is carried out via a twostep procedure. More
specifically, cf,j , cr,j are initially estimated via Equations (3.13) and (3.14), where Sf , Sr

are defined as described before. Let cinif,j , cinir,j denote the values of cf,j , cr,j respectively,
as they are computed by Equations (3.13) and (3.14) . Then, based on these estimations,
every data point, xi ∈ X, is classified to one of two sets according to the following nearest
neighbor rule:

xi ∈

{
Xf,j , if ∥xi − cinif,j∥ ≤ ∥xi − cinir,j∥
Xr,j , otherwise

(3.16)

Then the centroids are recomputed via the weighted averages of those sets:

cf,j =

∑
x∈Xf,j

p(cj|x)x∑
x∈Xf,j

p(cj|x)
(3.17)

cr,j =

∑
x∈Xr,j

p(cj|x)x∑
x∈Xr,j

p(cj|x)
(3.18)

It is noted now that the hyperplane H is defined by cf,j and cr,j

The final part of the fitting process is to determine the endpoints of each line segment.
This can be accomplished by first projecting all points of Sj onto H. In case H is not a
vertical line (not perpendicular to the x axis), the endpoints can be located as the projected
points with the lowest and highest x coordinate. If the line is vertical, the endpoints are
simply the projected points with the lowest and highest y coordinate.

The exact algorithm for finding the best fit line segment for a given cluster, c, is given in
Algorithm 2:. It takes as input the complete data set X, cluster points S and the posterior
probabilities, P (c|xi), for each data point belonging to that cluster. It returns points a, b
that constitute the endpoints of the computed line segment. This algorithm is to be used
at each iteration of PLSC for estimating each line segment.
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Algorithm 2: FIT procedure for segment of cluster c
Require: X = {x1, ..., xN}
Require: S = {s1, ..., sk}
Require: P (c|xi) , i = 1, ..., N
1: // Create Sf and Sr sets based on the sorted data data set
2: x̄← 1

k

∑k
i=1 si,x , ȳ ← 1

k

∑k
i=1 si,y

3: σx ←
√∑N

i=1(xi,x − x̄)2 , σy ←
√∑N

i=1(xi,y − ȳ)2

4: if σx > σy then
5: Sort all si by their x coordinates.
6: else
7: Sort all si by their y coordinates.
8: end if
9: nf ← ⌈k2⌉ , nr ← ⌊k2⌋

10: Sf ← {si | i = 1, ..., nf} , Sr ← {si | i = nf + 1, ..., k}
11:
12: Compute cinif , cinir from Eq. (3.13), Eq. (3.14).
13:
14: // Split the entire data set according to the points’ proximity to centroids
15: Xf ← ∅ , Xr ← ∅
16: for i = 1 to N do
17: if ∥xi − cinif ∥ ≤ ∥xi − cinir ∥ then
18: Xf ← Xf ∪ {xi}
19: else
20: Xr ← Xr ∪ {xi}
21: end if
22: end for
23:
24: // Define principal axis with respect to the new, weighted centroids
25: Compute cf , cr from Eq. (3.17), (3.18).
26: Define H from Eq. (3.2) based on cf , cr .
27:
28: // Project cluster points onto line to determine endpoints
29: for i = 1 to k do
30: s′i ← projH{si}
31: end for
32: if H is not vertical then
33: a← arg min

i=1,..,k
{s′i,x}

34: b← arg max
i=1,..,k

{s′i,x}
35: else
36: a← arg min

i=1,..,k
{s′i,y}

37: b← arg max
i=1,..,k

{s′i,y}
38: end if
39:
40: return a, b
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3.5.2 Implicit Cluster Elimination Mechanism

By design, FIT procedure also helps in eliminating clusters that fail to represent ade
quately any part of the edge image. This takes place before the execution Algorithm 2:.
It is remarked that, in order for probabilistic line fitting to be performed for a given cluster
cj, the set Sj as defined in Equation (3.15) must contain at least two data points. Other
wise, no endpoints of the line segment can be determined. When |Sj| < 2 , j = 1, ...,m ,
Algorithm 2: fails to calculate the endpoints. Because of that cj must be eliminated. That
means that at each iteration, before the FIT step is executed, all clusters with less than
two cluster points are removed. Interpreting the above condition, it is equivalent to say that
a cluster cj is eliminated if there is at most one data point that belongs with higher prob
ability to cj than to any other cluster, ck, for j, k = 1, ...,m. Such clusters are by definition
superfluous and their elimination under the probabilistic framework is intuitively justified.

3.5.3 Merging Clusters

Another mechanism of PLSC is the one that decides on the merging of two line segments.
Such segments must be both ”sufficiently close” and ”sufficiently collinear”. In effect, using
this mechanism is instrumental to the general policy of PLSC of starting with an overes
timation of the true number of clusters and continue by reducing it until it is no longer
possible to do so.

At first, it is important to define the terms ”sufficiently close” and ”sufficiently collinear”.
Two line segments L1(a1, b1), L2(a2, b2) are considered sufficiently close if:

min{D(L1,a2), D(L1, b2), D(L2,a1), D(L2, b1)} ≤ ϵgap (3.19)

for a userspecified parameter ϵgap. In the context of segment detection in images, this
hyperparameter is expressed in terms of pixels and thus, it is expected to be easy for an
appropriate value to be determined. Such value must be less than the minimum distance
between pixels of different actual segments of the input image. The notation D(L1, L2) is
used for denoting that distance.

Continuing, L1, L2 are considered sufficiently collinear if:

|sim_cos(L1, L2)| ≥ ϵang (3.20)

where sim_cos(L1, L2) is the cosine similarity expressed in terms of line segmentsL1(a1, b1),
L2(a2, b2) rather than vectors. It is computed by simply applying the cosine similarity to
the vectors that occur when subtracting the endpoints of each segment:

sim_cos(L1, L2) =
(b1 − a1) · (b2 − a2)

∥b1 − a1∥ ∥b2 − a2∥
(3.21)

In Equation (3.20), ϵang is a hyperparameter that represents the lowest angular difference
allowed for two segments to be considered collinear. Usually, good values for ϵang tend to
reside in [0.95, 1].

The merging policy can be simply worded as: Clusters ci, cj, represented by Li(ai, bi),
Lj(aj, bj) respectively are chosen for merging if a) Lj is the segment closest to Li and b)
Li, Lj are sufficiently collinear and c) Li, Lj are sufficiently close. Let it be noted that a
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single cluster may be a candidate for merging (i.e. fulfills all of the above properties) in
more than one pairs. The merging policy will simply merge only the first of those pairs.

The algorithm for determining possible merges given a set of clusters C, represented by
their line segments, is presented in Algorithm 3:. It returns a set of clusters containing
newly merged clusters.

The merging itself is simply the process of returning a new line segment, L(a, b) that
fits well with regard to the data points contained in the clusters represented from both of
the original segments. For that purpose, the Fit procedure is applied whenever a merge
happens.

The implementation uses a set of indices, calledMERGED, in order to keep track of which
clusters have already been merged. For each cluster, cj, that has not been yet merged
with any other, it checks if any other, not yet merged, cluster satisfies both conditions
(3.19) and (3.20). From those that do, it finds the one with the minimum distance from cj,
say cq, and then merges cj and cq together. This produces a new segment L as described
above and the algorithm adds it to the set of clusters to be returned, C ′. After all clusters
have been examined, it iterates them once again in order to append to C ′ all of the original
clusters that have not been affected by merging.

Let it be noted that this implementation does not find necessarily optimal merges, i.e.
those segments that have the highest angular similarity or affinity. It rather focuses on
finding ”adequate” merges without increasing the computational complexity. The rationale
behind this decision is that in case where there are many candidates for merging, then
all of them together ultimately constitute a single line segment and so, the ordering of the
merges is not important – candidates may still be merged in future iterations, assuming
that segments do not deviate substantially at each iteration.

A final point to be made is that in the context of PLSC, MERGE considers for merging
the segments that have produced the best value of Qfunction (for the current number
of clusters) and not (necessarily) the segments of the current iteration. This makes the
algorithm more stable as it will not attempt to merge segments from an iteration in which
the segments are not fitted accurately enough on the data points.
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Algorithm 3: MERGE procedure
Require: ϵgap, ϵang
Require: C = {L1(a1, b1), ..., Lm(am, bm)}
Require: X = {x1, ..., xN}
Require: P (cj|xi) , i = 1, ..., N , j = 1, ...,m
1: MERGED ← {}
2: C ′ ← ∅ , P r′ ← ∅
3: for j = 1 to m do // for each cluster
4: if j /∈MERGED then // as long as it has not already been merged
5: min_dist←∞
6: k∗ ← −1
7: for k = 1 to m do // for each potential pair
8: if j ̸= k and k /∈MERGED then
9:

10: // Check for sufficiently close and sufficiently collinear conditions
11: if |sim_cos(Lj, Lk)| ≥ ϵang and D(Lj, Lk) ≤ ϵgap then
12: min_dist← min{min_dist,D(Lj, Lk)}
13: // Save closest segment
14: if min_dist = D(Lj, Lk) then
15: k∗ ← k
16: end if
17: end if
18:
19: end if
20: end for
21: if k∗ ̸= −1 then // pair found – perform merging
22: Compute Sj,Sk∗ from (3.15).
23: Snew ← Sj ∪ Sk∗
24: a, b← FIT (X,Snew, P )
25: C ′ ← C ′ ∪ {L(a, b)}
26: MERGED ←MERGED ∪ {j, k∗}
27: end if
28: end if
29: end for
30:
31: // Append all unaffected clusters to returning structures
32: for j = 1 to m do
33: if j /∈MERGED then
34: C ′ ← C ′ ∪ {Lj(aj, bj)}
35: end if
36: end for
37: return C ′
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3.6 PLSC Algorithm: The Complete Description

At this point, all aspects of the proposed method have been discussed. Written in pseu
docode notation, PLSC is presented in algorithmic form in Algorithm 4:. It is assumed
that the processes related to locating edge pixels of the input image and finding initial
segments have been carried out prior to the execution of PLSC. To avoid unnecessary
repetitions and to confine the length of the code, equations used throughout the algorithm
are referenced and procedures FIT and MERGE are called. The initialization policy is
an important but not an integral part of this method and since it is given in detail in [22], it
is not included.

The algorithm starts every loop by computing the posterior probabilities of data points over
the clusters. Then the value of Qfunction is computed. If either the number of clusters
was reduced in the previous iteration or the current value of Q is the highest found so far
(for the current number of clusters), current segments and probabilities are stored. The
iteration then proceeds to the FIT Step. Cluster points for each cluster are computed
and those clusters that have at least two cluster points have their segments repositioned
using the FIT procedure. The rest are eliminated. The algorithm keeps track of howmany
clusters are left after the completion of this procedure. If no clusters were eliminated in
that step, PLSC applies the MERGE procedure in order to identify and merge suitable
segments. In caseMERGE was able to unify segments, the set of segments for the next
iteration is substituted by the set C ′ resulting from theMERGE call.It is important to note
here that the segments that are considered for merging are the ones that produced the
highest Q value for the current number of clusters. Because of that, if one or more clusters
were eliminated during the previously applied FIT procedure, the saved segments that
produced the highest Q value are no longer valid, and so the MERGE does not apply.
Finally, the prior probabilities of the clusters for the next iteration are computed using the
general closed form formula for the Mixture Decomposition and the termination criterion
is checked. If it is not met, the process proceeds onto the next iteration.

The iterative scheme is terminated when either of the following happens:

a) Coordinates of cluster segments during two consecutive iterations (were the number
of clusters was not reduced) vary by an amount less than ϵ. This indicates conver
gence. That variance is expressed in terms of theL1 metric of the difference between
Θ(t−1) and Θ(t) and convergence is implied when its value is less than the respective
user defined tolerance, ϵ. The choice of L1 is due to the fact that it is affected equally
by both larger and close to zero values.

b) Iterations exceed a user defined threshold. This is used as a remedy to the fact that
convergence is not guaranteed.

Upon termination, C∗ contains the endpoints of segments that maximized the Qfunction
for the final value of m, m∗. The posterior probabilities are stored in P ∗.
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Algorithm 4: Probabilistic Line Segments Clustering (PLSC)
Require: X,C(0), σ, ϵ, ϵgap, ϵang,max_iters
1: N ← |X| , m(0) ← |C(0)|
2: Q∗ ← −∞ , m∗ ←∞
3: t← 0
4: Pr

(0)
j ← 1/m , j = 1, ...,m(0)

5: P (0)(cj|xi)← 0 , i = 1, ..., N, j = 1, ...,m(0)

6: repeat
7: for i = 1 to N do // EStep
8: for j = 1 to m(t) do
9: Compute P (t)(cj|xi) from Eq. (2.10) using Θ(t), X, Pr(t), σ.

10: end for
11: end for
12:
13: Compute Q(t) from Eq. (3.12) using Θ(t), X, Pr(t), P (t), σ. // Save best Q value
14: if Q(t) > Q∗ or m(t) < m∗ then
15: Q∗ ← Q(t)

16: C∗ ← C(t) , m∗ ← m(t)

17: P ∗ ← P (t)

18: end if
19:
20: C(t+1) ← ∅ , m(t+1) ← 0 // FIT Step
21: for j = 1 to m(t) do
22: Compute S

(t)
j from Eq. (3.15) using X,P (t).

23: if |S(t)
j | ≥ 2 then

24: a
(t+1)
j , b

(t+1)
j ← FIT (X,S

(t)
j , P (t)(cj|X)).

25: C(t+1) ← C(t+1) ∪ {L(t+1)
j (a

(t+1)
j , b

(t+1)
j )}

26: m(t+1) ← m(t+1) + 1
27: end if
28: end for
29:
30: if m(t+1) = m(t) then // No eliminations due to FIT  proceed to MERGE Step
31: C ′ ←MERGE(ϵgap, ϵang, C

∗, X, P ∗)
32: if |C ′| < m(t) then // Some clusters were merged successfully
33: C(t+1) ← C ′ // Update clusters of next iteration
34: m(t+1) ← |C ′|
35: end if
36: end if
37:
38: for j = 1 to m(t+1) do // Maximization of a priori probabilities
39: Update Pr

(t+1)
j from Eq. (2.12) using P (t), N .

40: end for
41:
42: t← t+ 1
43: until (m(t) = m(t−1) and ∥Θ(t) −Θ(t−1)∥1 < ϵ) or t ≥ num_iters
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Note that the two ways of representing line segments, i.e C = {L1(a1, b1), ..., L1(am, bm)}
and Θ = [aT

1 , b
T
1 , ...,a

T
m, b

T
m]

T , are treated as equivalent notations and used interchange
ably in the algorithm. A full description of the variables used can be found in the next tables:
In Table (3.1:) input variables along with user parameters are defined and explained ap
propriately and, similarly, explanation of internal variables of PLSC is presented in Table
(3.2:).

Table 3.1: Input variables and user parameters of PLSC
X The set of edge pixels represented by their spatial coordinates of the

input image.
C(0) Initial set of pairs of endpoints of cluster segments, C =

{(a1, b1), ..., (am, bm)}.
σ The expansion term of the defined pdf.
ϵ Tolerance of variance when checking the termination condition.

ϵgap Tolerance of segment proximity during Merge procedure.
ϵang Tolerance of segment collinearity during Merge procedure.

max_iters Maximum number of iterations the algorithm may take.

Table 3.2: Internal variables of PLSC
•(t) Value of any variable during the tth iteration.
N The size of X i.e. number of edge pixels.
m Number of clusters.
Q∗ Highest value of Qfunction for a certain value of m.
t Iteration counter.
Pr Vector of prior probabilities of clusters.
P N ×m array with cell i, j being the posterior probability that the data point xi

belongs to cluster cj, i.e. P (xi|cj).
i Counter of data points – to be used while looping.
j Counter of clusters or segments – to be used while looping.

Q(t) Value of Qfunction at the tth iteration.
C∗ Set of segments that produced the highest Q value.
P ∗ Posterior probabilities that produced the highest Q value.
m∗ Number of clusters that produced the highest Q value.
Sj Set containing data points of cluster cj.

aj, bj Endpoints of jth segment.
C ′ Set of segments that was returned by a call MERGE procedure.
Θ The vector containing the coordinates of the endpoints of line segments.

The source code for a MATLAB® implementation is provided in AΝΝΕΧ ΙI. The implemen
tation is not focused on strictly transferring the algorithm into a programming language. In
stead, it is split in multiple code files while using the object oriented programming paradigm
so as to allow for ease in maintenance, experimentation, and future modifications.
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4. EXPERIMENTAL RESULTS

This section focuses on the evaluation of the performance of the proposed algorithm
(PLSC), based on a number of experimental data sets. Most sets are either artificially
generated images or hand drawn pictures. A synthetic data set is also used as an exam
ple while an image resulted from an observation in the area of solar physics is presented
for showcasing the application of the algorithm in different scientific domains. Some of
the data sets are used for comparing PLSC against other approaches in literature. Such
a comparison has been published in [22]. With the author’s consent, original imagery and
resulting pictures from the article are also displayed, allowing for side by side comparisons
of their respective output images. Finally, failure or less successful cases are given and
discussed appropriately.

Algorithms used as benchmarks include a variation of Hough Transform (HT) [30] for seg
ment detection as discussed in [22], the Fuzzy clines (FCL) [21], as well as SPCLS algo
rithm [22]. The experiments are next enumerated and discussed accordingly, accompa
nied by figures showing input images and output line segments for each algorithm.

4.1 Experiments

We consider first an experiment involving an artificially generated data set. This is useful
for illustrating the probabilistic nature of PLSC as well as how segments are fitted onto
clusters. The next experiment involves a relatively simple configuration of line segments,
in order to give a first ”flavor” of the performance of the algorithm on images, before we
proceed with the comparison with the above mentioned algorithms.

Experiment 1 – A synthetic data set comprised of a mixture of samples from different
Gaussian probability distributions. Points of figure 4.1: have been produced by five distinct
normal distributions, with different means and covariance matrices. PLSC is applied to
that mixed data set and the resulting segments are drawn and colored in figure 4.1:a. The
carriers of those segments approximate closely the principal directions, along which the
data points of the respective clusters are spread. Additionally, this example illustrates the
probabilistic assignment of points to clusters that is central to the basic idea of Mixture
Decomposition. The RGB value of the color of each pixel in Figure 4.1:b indicates the
likelihood of each point belonging to each cluster. The more similar the color of a pixel
to that of a segment in Figure 4.1:a, the higher the probability that the data point belongs
to the specific cluster. For this specific experiment, it can be observed that when clusters
are sufficiently far away from each other, the effect of probability functions onto points of
other clusters is negligible. Only points that are near the area of intersection have a high
probability in belonging to two clusters.

Experiment 2 – A hand drawn image of a floppy disk is shown in figure 4.2:. The original
image, 4.2:a, essentially depicts two distorted rectangles. The result of PLSC, displayed
in figure 4.2:b by overlaying resulting segments onto the original pixels, illustrates that
the proposed method identifies all appropriate edges. Two of the detected segments,
appearing in top right corners of both rectangles, are the result of the method’s effort to
classify rounded corners that are the effects of noise.

Experiment 3 – Figure 4.3:a: Three straight lines intersecting at the same point. Compar
ative results are shown in figures 4.3:a through 4.3:e. All considered algorithms, including
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(a) Points sampled from Gaussian distributions
and resulting segments of PLSC

(b) Visual representation of likelihoods of data
points belonging to clusters after the termination
of the algorithm

Figure 4.1: Experiment 1: A synthetic data set

PLSC, can detect those lines flawlessly.

Experiment 4 – Figure 4.4:a depicts eight straight lines, all sharing a common midpoint,
forming thus an asterisk. This case is found to be more demanding than the one of the
previous experiment, as points of distinct lines are now closer to each other. Especially
near the intersection point, the same area is occupied by pixels from all segments. HT
(4.4:b) and FCL (4.4:c) face difficulties in detecting all segments. The first one fails to
identify half of them, while FCL detects even fewer and not correctly located segments.
Both SPCLS and PLSC manage to identify all clusters correctly, as shown in figures 4.4:d
and 4.4:e respectively.

Experiment 5 – A configuration where distinct line segments need to be identified rather
than lines that cut through the image. The original image is presented in figure 4.5:a.
The modified Hough Transform detects accurately only a small fraction of the segments
appearing in the original image (figure 4.5:b). The FCM (figure 4.5:c) fails totally in cap
turing even a single line segment, mainly due to the fact that it does not involve any notion
of endpoints (figure 4.5:c). On the contrary, the approaches that use line segments as
cluster representatives, SPCLS (Figure 4.5:d) and PLSC (Figure 4.5:e), are able to detect
parts of the image with greater accuracy – albeit with a number of misidentified segments,
in case of PLSC.

From now on, we consider more involved configurations where only line segments are
present. Thus, based on the results obtained from the previous experiments, the perfor
mance of the Hough Transform and the FCL algorithms is expected to be poor. Therefore,
they are not considered in the subsequent experiments.
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(a) Edge pixels image (b) PLSC
Figure 4.2: Experiment 2: A drawing of a floppy disk

(a) Edge pixels
image

(b) HT (c) FCL (d) SPCLS (e) PLSC

Figure 4.3: Experiment 3: Three intersecting lines

Experiment 6 – A drawing of books placed on a table. This illustration, depicted in figure
4.6:a, contains a large number of segments that can be considered as noise with regard to
the ones conveying information about the content of the image. The results of PLSC (4.6:c)
are adequate in capturing important edges of the image but a number of them is distorted
due to those noisy clusters. In contrast, SPCLS, shown in 4.6:b seems less affected due to
its possibilistic nature combined with the sparsity framework in which it is applied. Overall,
the performances of the above algorithms in this experiment are comparable, since some
segments that have been detected by one of them have not been detected by the other
and vice versa. However, SPCLS gives a slightly smaller number of misplaced segments.

Experiment 7 – A pattern of geometric shapes is displayed in figure 4.7:a. A number of
smaller segments appear that are positioned with their endpoints touching larger ones.
This challenging layout is a failure case for PLSC, with the resulting segments depicted
in 4.7:c. In this scenario, the initialization needed to be fine grained enough in order to
generate initial representatives for all segments. This results to a vast amount of initial
clusters. Even with extremely strict thresholds while merging, the algorithm ends up erro
neously merging many of those together. The method of this work compares unfavorably
to SPCLS shown in 4.7:b.

In the three last experiments, PLSC failed to converge. Instead, the execution stopped
due to exceeding the limit of iterations. A number of misplaced segments continued to
move during the final iterations, preventing the termination condition from being fulfilled.
This behavior was exhibited in all three cases.

Experiment 8 – The image of figure 4.8:a is a solar observation image. Dark tubes of the
image correspond to spicules (i.e. jets) in the atmosphere of the Sun. The intend is to
locate and represent spicules of the image using line segments. Following the same pro
cess as in [22], a thresholding step is first applied so as to only keep pixels corresponding
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(a) Original Image (b) HT (c) FCL (d) SPCLS (e) PLSC
Figure 4.4: Experiment 4: Eight intersected lines

(a) Original image (b) HT (c) FCL (d) SPCLS (e) PLSC
Figure 4.5: Experiment 5: A case of line segments

to spicules, resulting in figure 4.8:b. Then the clustering algorithm can be applied . PLSC
is able to identify and assign segments to all distinct spots appeared in the image. The
resulting segments are shown in figure 4.8:d with the ones resulted from SPCLS appear
ing in 4.8:c for reference purposes. Both methods identify appropriately all areas with the
resulting segments positioned so as to indicate the general direction of the dark areas in
the original image.

4.2 Discussion

For further analysis of the performance of PLSC, table 4.1: provides details regarding input
data sets, parameter values and execution results for each experiment.. Parameters are
denoted with the names assigned to them during the discussion of the algorithm in section
3.6. Execution time concerns the MATLAB® implementation provided in ANNEX II and
was measured on a machine using Intel 8th Generation CPU and 16GB of RAM. Apart
from the parameters displayed on the table, PLSC requires two additional input variables
from the user that affect the termination condition: ϵ, the tolerance and max_iters, the
maximum number of iterations the algorithm is allowed to perform. In all experiments,
those values were set to 10−3 and 100 respectively.

Using the information provided in table 4.1:, a few observations are in order. A great
importance lies in the initial clusters. Their number needs to be considerably greater than
the actual number of the physical clusters formed by the data. Because of that, the value
of the initialization parameter, T needs to be configured properly. As shown in the table,
its value does not directly correspond neither to the dimensions of the image nor the edge
pixels contained there. Its value is rather affected by the size of the smallest clusters
as well the number of intersections between image segments, as the initialization needs
to locate initial cluster representatives in all ”subsegments”. A disadvantage with small
T values is that the initialization will produce multiple segments even in clusters that do
not intersect with any others. Under appropriate parameter values, those segments will
be eventually merged together but this process results to many iterations and increased
execution time.
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(a) Original image (b) SPCLS (c) PLSC
Figure 4.6: Experiment 6: A drawing of books

(a) Original image (b) SPCLS (c) PLSC
Figure 4.7: Experiment 7: A geometrical pattern

Table 4.1: Execution Details of PLSC per experiment
Input Image Parameters Results

Exp.
Num
ber

Image Di
mensions

Data
Points

Actual
Seg
ments

T ϵgap ϵang σ Clusters
(Initial
/ Final)

Iterations
/ Execu
tion Time
(mins)

1 209× 264 2118 5 50 10 0.80 2 17/5 13 / 0.45
2 646× 499 10199 8 60 3 0.95 3 53/10 21 / 8.25
2 553× 553 1494 3 80 40 0.99 3 22/3 8 / 0.34
4 553× 553 3913 8 80 40 0.99 3 58/8 17 / 2.43
5 225× 225 5381 56 15 1 0.99 2 254/62 100∗ / 29.63
6 227× 226 3966 45− 50 15 3 0.99 1 251/39 100∗ / 28.85
7 383× 386 6249 52 28 1 0.99 1 141/39 100∗ / 34.17
8 477× 434 9889 18− 22 20 10 0.98 1 91/21 78 / 16.05
* The algorithm stopped due to limit in number of iterations without converging.

For most of the parameters involved in PLSC, finding proper values is rather straightfor
ward. Firstly, ϵ needs little modification. The value of 0.1, used in the presented experi
ments and during the development process, is found to be a good fit. Similarly,max_iters
does not require any fine tuning  a relative high value will not normally prevent the itera
tive process from converging. In that respect, while convergence analysis is not included
in this work, Experiments 5  7 indicate that PLSC is unable to converge in cases where
actual segments are not correctly identified.

Additionally, values for parameters σ, the ”variance” around the line segment representa
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(a) Original image (b) After thresholding
(shown in negative)

(c) SPCLS (d) PLSC

Figure 4.8: Experiment 8: A solar observation containing spicules

tives and ϵang, the tolerance of collinearity, can be found effortlessly. Namely, σ requires
values that are just enough so as to prevent floating point underflow from happening.
Since underflow may happen when computing values of the pdf for points that are far
away from the respective segments, an appropriate value for σ is mainly affected by the
size of the image. In the experiments, that value was initially set to 1 or 2, and in case
underflow was detected, that value was incremented, normally by 1. High values of σ will
result in high likelihood values for far away points, deteriorating the results. Using the
lowest value that does not result in numerical errors is recommended. In a similar way,
ϵang may start wih a value as high as 0.99 and in case merges fail to happen, that threshold
can be relaxed. Those cases typically correspond to images in which elongated clusters
appear rather than segments (Experiments 1,8), or segments do appear but their pixels
do not strictly form straight lines but are rather noisy (Experiment 2).

The final parameter is ϵgap, , the distance threshold between different clusters. It has a
principal effect on the overall performance of the algorithm. Its value should be large
enough so as to allow for segments to be merged correctly but also small enough in order
to prevent merging segments corresponding to different clusters. Since this is a threshold
of distance between segments, its values are measured in pixel units. That means fitting
valuesmay be identified by observing the input image directly. Values that are smaller than
the smallest pixel gap between two different line segments, may constitute appropriate
choices. Difficulties in determining optimal values may be found in cases that combine
intersecting clusters with clusters that are parallel to each other and in close proximity
(e.g. Experiments 5, 6, 7) . Exhibiting the same limitation with T , using a single threshold
for the entirety of the image may be too restrictive. A few modifications were explored that
accounted for other variables such as cluster thickness during experimentation on this
work, but none was able to provide consistently better results; thus they are not included
in the dissertation.
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5. CONCLUSION

5.1 Summary

In this dissertation, a clustering algorithm, called Probabilistic Line Segment Clustering
(PLSC) is proposed, which is suitable for identifying linear clusters formed in a data set.
It has been applied in the identification of line segments formed by edge pixels in digital
images. In the present set up, each cluster is represented by a pdf especially tailored
for representing distribution of data points around a line segment and the entire data set
is represented by a weighted sum of these pdfs. The challenge here is to decompose
the sum of all pdfs, so as to identify the individual pdfs corresponding to the line seg
ments formed by the data. PLSC falls under the probabilistic framework. It is based on
the paradigm of Mixture Decomposition of the Expectation Maximizationlike algorithm.
However, PLSC deviates from classical EM philosophy in the maximization step where
a regressionlike fitting procedure as well as a unification policy are applied instead of a
strict direct maximization. However, this feature gives the flexibility to bypass the require
ment of the classical EM for knowing the exact number of clusters (pdfs). In order for the
appropriate number of segments to be determined, the algorithm starts with more clusters
than those actually formed by the data points and (hopefully) ends up with a set of line
segments, fitted to the clusters underlying in the data set.

5.2 Evaluation

Experimental results of the proposed PLSC algorithm were presented and discussed. The
data sets used were originated from a relevant publication [22]. A comparison of the algo
rithm of this work with the ones examined in that article was conducted. The results have
shown that the algorithm compares equally or favorably to a couple of benchmark algo
rithms from the literature. When comparing to a recent, state of the art approach, PLSC
is able to produce comparable results most of the time, even though it is outperformed in
a few cases.

To the best of the author’s knowledge, this work constitutes the first proposed probabilistic
clustering algorithm that can be used for detecting line segments in any type of digital im
age. Previously related works have either explored approaches of alternative taxonomies
or focused on special cases of imagery.

5.3 Future Work

As it may have been clear by the description of the proposed algorithm, there is signifi
cant room for improvements. Future work may concern a number of issues. At first, an
implementation allowing for speeding up the execution time of the algorithm can be pro
vided. Such implementation may use sophisticated data structures and policies in order
to reduce the computations needed at each iteration as well as the number of iterations
itself. The latter may be attributed e.g. to utilization of the fact that an update in one area
of the image does not affect significantly the rest areas of it. Thus, not all clusters may
need to be updated at each iteration. Furthermore, using this spatial locality, along with
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the identification of tasks that can be executed without any need of information exchange,
the algorithm may be implemented in a form suitable for parallel execution.

Local sensitive hyperparameters may also be explored since they can encode information
that varies throughout different parts of the image. Literature of traditional edge detection
techniques may provide a starting point for approaches for finding local values for the
involved hyperparameters. A more sophisticated initialization that will be able to estimate
areas of intersections and producemultiple clusters only in those areas would also improve
computational performance. Additionally, imposing the notion of sparsity, similarly to [22],
may be a suitable improvement.

Finally, theoretical analysis may also contribute in establishing more rigorously the behav
ior of the algorithm. Relevant results on convergence or modifications of the procedure
that can be proven to maximize the expected likelihood function could be of use as they
could help in fully incorporating the algorithm in the Expectation  Maximization frame
work.
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TABLE OF TERMINOLOGY

Ξενόγλωσσος Όρος Ελληνικός Όρος

Cluster Συστάδα / Ομάδα

Clustering Συσταδοποίηση / Ομαδοποίηση

Elongated Clusters Επιμήκεις Συστάδες

Expectation  Maximization Αναμενόμενη Τιμή  Μεγιστοποίηση

Gaussian Probability Distribution Γκαουσσιανή Kατανομή Πιθανότητας

Geospatial Data Analysis Ανάλυση Γεωχωρικών Δεδομένων

Heuristic Rule Ευρετικός Κανόνας

Image Compression Συμπίεση Εικόνας

Image Processing Επεξεργασία Εικόνας

Line Detection Εντοπισμός Γραμμικών Στοιχείων

Mixture Decomposition Αποδόμηση Μίξης

Pattern Recognition Αναγνώριση Προτύπων

Probability Theory Θεωρία Πιθανοτήτων

Probabilistic clustering Πιθανοτική Ομαδοποίηση / Συσταδοποίηση

Probabilistic Line Segment Clustering Πιθανοτική Ομαδοποίηση Ευθυγράμμων
Τμημάτων

Road Extraction Εξαγωγή Δρόμων
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ABBREVIATIONS  ACRONYMS

E Expectation

EM Expectation  Maximization

FCL Fuzzy cLines

GMDAS General Mixture Decomposition Algorithmic Scheme

GMM Gaussian Mixture Model

HT Hough Transform

LSE Least Square Error

M Maximization

MLE Maximum Likelihood Estimation

pdf Probability Density Function

PLSC Probabilistic Line Segment Clustering

RGB Red  Green  Blue

SPCLS Sparse Possibilistic Clustering of Line Segments
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ANNEX I. STUDY OF THE PROPOSED PROBABILITY DISTRIBUTION
FUNCTION

In order to prove that Equation (3.9) is, in fact, a probability distribution function, given a
line segment L with endpoints a, b ∈ R2, some σ > 0 and the definition of D(x, L) from
Equation (3.8), the following properties must hold:

p(x;L, σ) ≥ 0 , ∀x ∈ R2 (1)

and ∫
R2

p(x, L, σ)dx = 1 (2)

The first property is relatively straightforward to show. Given that:

σ > 0 (3)

exp(x) > 0 , ∀x ∈ R (4)

lL = ∥a− b∥ ≥ 0 (5)

D(x, L) : R6 → R (6)
we have:

2πσ2 +
√
2πlLσ > 0⇒ 1

2πσ2 +
√
2πlLσ

> 0 (7)

and
exp

(
− 1

2σ2
D2(x, L)

)
> 0 (8)

Combining (7) and (8) we reach the conclusion that:

p(x;L, σ) =
1

2πσ2 +
√
2πlLσ

exp
(
− 1

2σ2
D2(x, L)

)
> 0 (9)

For the integral property, let us first compute the circumference, Ar, of the curve that is
formed by all points that have a constant (squared) distance of r2 from L, for some r ≥ 0.
That integral can be computed geometrically from figure I.1:

Figure I.1 The circumference of all points that have a distance of r2 from L

Ar ≡
∫
D(x,L)=r2

dAr = 2πr + 2lL (10)
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Now, let us define:
f(x) = exp

(
− D(x, L)

2σ2

)
(11)

and subsequently:
erf(z) =

2√
π

∫ z

0

e−t2dt (12)

with lim
z→+∞

erf(z) = 1.

In order to prove that property (2) holds, it will suffice to show that:

I ≡
∫
R2

f(x)dx = 2πσ2 +
√
2πlLσ (13)

The proof for (13) starts as follows:

I ≡
∫
R2

f(x)dx =

∫
R2

exp

(
− D(x, L)

2σ2

)
dx =

∫ +∞

0

[ ∫
D(x,L)=r2

exp
(
− r2

2σ2

)
dAr

]
dr =

=

∫ +∞

0

exp
(
− r2

2σ2

)[∫
D(x,L)=r2

dAr

]
dr

(10)
==

∫ +∞

0

exp
(
− r2

2σ2

)
[2πr + 2lL]dr =

=

∫ +∞

0

2πr exp
(
− r2

2σ2

)
dr︸ ︷︷ ︸

A

+2lL

∫ +∞

0

exp
(
− r2

2σ2

)
dr︸ ︷︷ ︸

B

(14)

Dealing with A and B separately we have:

A =

∫ +∞

0

2πr exp
(
− r2

2σ2

)
dr = 2π

∫ +∞

0

r exp
(
− r2

2σ2

)
dr

= π

∫ +∞

0

exp
(
− r2

2σ2

)
dr2

z=r2
== π

∫ +∞

0

exp
(
− z

2σ2

)
dz

= 2πσ2

∫ +∞

0

exp
(
− z

2σ2

)
d
( z

2σ2

) y= z
2σ2== 2πσ2

∫ +∞

0

exp(−y)dy

= 2πσ2
[
− exp(−y)

]+∞

0
= 2πσ2(0 + 1) = 2πσ2

(15)

B = σ

∫ +∞

0

exp
(
− 1

2

( r

σ

)2)
d
( r

σ

) y= r
σ== σ

∫ +∞

0

exp
(
− y2

2

)
dy

=
√
2σ

∫ +∞

0

exp
(
−

( y√
2

)2)
d
( y√

2

) t= y√
2

==
√
2σ

∫ +∞

0

exp(−t2)dt

=
√
2σ

√
π

2

2√
π

∫ +∞

0

exp(−t2)dt (12)
==
√
2σ

√
π

2
lim

z→+∞
erf(z) = σ

√
π√
2

(16)

Substituting values of A and B from (15) and (16) into (14) we are left with:

I = 2πσ2 + 2lLσ

√
π√
2
= 2πσ2 +

√
2πlLσ (17)

which concludes the proof.
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ANNEX IΙ. MATLAB® CODE

The source code of a MATLAB® implementation of PLSC is presented next. The source is
split over a number of files. The only function that needs to be run by the user is PLSC(),
found in PLSC.m. All .m files need to be in MATLAB’s working directory or in the path. A
minimal example of how to run PLSC() can be found in run_PLSC.m script. You may type
help PLSC for details on input and output variables.

• File run_PLSC.m

1 % Minimal example of how to use PLSC. Substitute variables appropriately
in

2 % order to run PLSC on a desired image with the corresponding parameters
3

4

5 % Substitute here accordingly
6 image_name = "some_image.png"; % Desired image name (or path if needed)
7 T = 20; % Initialization parameter of PLSC
8 e = 0.1; % Coveregence tolerance. 0.1 is usually

good
9 e_gap = 5; % Distance threshold for merging segments

10 e_ang = 0.99; % Angular similarity threshold for merging
11 sigma = 2; % Variance of distribution.
12 max_iters = 100; % Threshold of iterations in case PLSC

does
13 % not converge
14 verbose = true; % Flag indicating whether PLSC should

print
15 % messages per iteration as well as plot
16 % current segments. Set to false if only

the
17 % result is needed.
18

19 % read image file from disk
20 Im = imread(image_name);
21

22 % keep only greyscale information
23 Im = Im(:,:,1);
24

25 % Assuming image has a white background , convert it so as to be used from
26 % PLSC. Skip next line if image has a black backgounrd.
27 Im = 1-Im;
28

29 % Vector that will contain concatenated endpoints of identified segments
30 theta = [];
31

32 % Structure with additional information
33 INFO = [];
34

35 % Run PLSC here
36 [theta, INFO] = PLSC(Im, T, e, e_gap, e_ang, sigma, max_iters , verbose);
37

38 % use internal plotting function to display segments. You may plot those
39 % segments any way you like.
40 plot_state(INFO.clusters , 101, [], [], [], "Final Result");
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• File PLSC.m

1 function [theta, INFO] = PLSC(Im, T, e, e_gap, e_ang, s, max_iters ,
verbose)

2 % PLSC - Perform probabilistic line segment clustering on an image to
3 % locate its segments.
4 %
5 % [theta, INFO] = PLSC(Im, T, e, e_gap, e_ang, s, max_iters , verbose)
6 % applies PLSC algorithm on black and white image of edge points, Im.
7 % Im should be a two dimensional array representing an edge
8 % image. Elements with positive value are considered edge pixels and
9 % elements with 0 are considered background.

10 % PLSC uses appropriate parameters T, e (epsilon), e_gap (epsilon_gap
),

11 % e_ang( epsilon_ang), s (sigma) and max_iters. Optional variable
12 % verbose may have a boolean value, true indicating that information
13 % will be printed on console and figures will be shown per iteration.
14 % It is set to false by default.
15 % The function returns the endpoints of the final segments with

their
16 % endpoints concatenated to theta vector. Structure INFO has the
17 % following fields:
18 % INFO.clusters : An array of resulting Cluster objects
19 % INFO.posteriors : An N x m array, namely P(c_j | x_i )
20 % INFO.num_clusters : The number of segments finally identified
21

22 if nargin < 7
23 error("Wrong usage. Type help PLSC for instructions");
24 elseif nargin < 8
25 verbose = false;
26 end
27

28 rho = sqrt(2);
29

30 [I,J]=find(Im>0);
31 X=[I,J];
32

33 Im = (1-Im);
34 Im = Im';
35

36

37 if verbose
38 [rows, cols] = size(Im);
39 fprintf("Initializing image with dimensions %dx%d, containing %d

datapoints\n", rows, cols, length(X));
40 end
41

42 segments = SPCLS_initialization(Im, T, rho);
43

44 non_zero_segments = [];
45 for i=1:length(segments)
46 if segments(i,:) ~= zeros(1,4)
47 non_zero_segments = [non_zero_segments; segments(i,:)];
48 end
49 end
50 segments = non_zero_segments;
51 m = length(segments);
52
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53 if verbose
54 fprintf("Initialization produced %d clusters\n", m);
55 end
56

57 PARAMS.num_iterations = max_iters;
58 PARAMS.initial_sigma = s;
59 PARAMS.stopping_criterion = @(a,b,c)

rate_of_clusters_movement_criterion(a,b,c);
60 PARAMS.rate_of_movement_tol = e;
61 PARAMS.compute_Q = true;
62 PARAMS.verbose = verbose;
63 PARAMS.unification_ang_tol = e_ang;
64 PARAMS.unification_gap_tol = e_gap;
65 PARAMS.iters_wo_merge = 3;
66 PARAMS.T = T;
67

68 tic;
69 [classification , clusters , num_clusters , ~] = GMDAS(X, m, segments ,

PARAMS);
70 if verbose
71 toc;
72 end
73

74 INFO.clusters = clusters;
75 INFO.posteriors = classification;
76 INFO.num_clusters = num_clusters;
77

78 theta = serialize_to_theta_vector(clusters);
79 end

• File centroid.m

1 function [c] = centroid(X, weighted)
2 % c = centroid(X)
3 % Get the centroid vector of some vectors.
4 % INPUT:
5 % X : The row-vectors for computing their cetnroid.
6 % An N*l array of numbers where N is the number of vectors and l

is
7 % the number of dimensions.
8 % OUTPUT :
9 % c : A ROW vector (of dimension l) which is the centroid of vectors

10 % in X.
11

12 [N, l] = size(X);
13 c = zeros(l,1);
14

15 if nargin == 1
16 for i=1:l
17 c(i) = sum(X(:,i)) / N;
18 end
19 elseif nargin == 2 && weighted == true
20 for i=1:N
21 c = c + X(i,:)/norm(c-X(i,:));
22 c = c / N;
23 end
24 end
25
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26 c = c';
27 end

• File Cluster.m

1 classdef Cluster < handle
2 % A class modeling the cluster representation of the algorithm while
3 % also containing the functionality for updating its parameters and
4 % estimating pdf.
5

6 properties
7 id
8 lineSegment
9 aPriori

10 sigma
11 color
12 end
13

14 methods
15

16 function obj = Cluster(id, x1, x2, sigma, aPriori)
17 % Create a new Cluster object
18

19 if nargin == 0
20 obj.id = 0;
21 obj.sigma = 0;
22 obj.aPriori = 0;
23 return
24 end
25

26

27 obj.id = id;
28 obj.sigma = sigma;
29 obj.aPriori = aPriori;
30 obj.lineSegment = LineSegment(x1, x2);
31 obj.color = rand(1,3);
32 end
33

34

35 function update_a_priori_probability(obj, N, cluster_posteriors)
36 % Update its a priori probability computed as 1/N * Sum{P(Cj|x

)}
37 obj.aPriori = sum(cluster_posteriors) / N;
38 end
39

40 function update_line_segment(obj, Y)
41 % Update line segment information. Currently using the fast
42 % method of random centroids
43

44 [Ni,~] = size(Y);
45 if Ni == 0
46 obj.aPriori = 0;
47 obj.lineSegment = LineSegment([0,0],[0,0]);
48 return
49 end
50

51 carrier = principal_axis(Y);
52 [a, b] = line_segment_endpoints(Y, carrier);
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53 obj.lineSegment = LineSegment(a,b);
54

55 if a ~= b
56 plot_state([obj], -1, Y, [], obj.id);
57 a = a;
58 end
59 end
60

61

62 function bool = is_eliminated(obj)
63 bool = any(isnan(obj.lineSegment.A));
64 bool = bool | any(isnan(obj.lineSegment.B));
65 bool = bool | (obj.aPriori == 0);
66 bool = bool | (obj.sigma == 0);
67 end
68 end
69 end

• File compute_posterior_probabilities.m

1 function P_Cj_xi = compute_posterior_probabilities(X, m, clusters)
2 [N,l] = size(X);
3 P_Cj_xi = -1*ones(N,m);
4 nominators = zeros(1,m);
5 for i=1:N
6 for j=1:m
7 x = X(i,:);
8 c = clusters(j);
9 if ~c.lineSegment.isNull()

10 P_x_C = pdf(x, c.sigma, c.lineSegment);
11 else
12 P_x_C = 0;
13 end
14 nominators(j) = P_x_C * c.aPriori;
15 end
16

17 denominator = sum(nominators);
18 for j=1:m
19 aPosteriori = nominators(j)/denominator;
20 if (isnan(aPosteriori))
21 aPosteriori = 0;
22 end
23

24 P_Cj_xi(i,j) = aPosteriori;
25 end
26 end
27 end

• File cosine_similarity.m

1 function [d] = cosine_similarity(L1,L2)
2

3 u = L1.A - L1.B;
4 v = L2.A - L2.B;
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5 if all(v==0) || all(u==0), d = 1; end % zero vectors are treated as
Null segments. Explicitly allowing them to be merged.

6 if length(v) ~= length(u), error("Cosine similarity cannot be
computed for vectors of different dimensions"); end

7

8 d = dot(u,v) / (norm(u)*norm(v));
9 end

• File GMDAS.m

1 function [classification , clusters , m_, frames] = GMDAS(X,m, segments ,
PARAMS)

2 [N,l] = size(X);
3

4 %
5 % Clusters Initializations
6 %
7 aPriori = 1/m;
8 clusters = Cluster.empty(0,m);
9 for j=1:m

10 x1 = segments(j, 1:l);
11 x2 = segments(j, l+1:2*l);
12 clusters(j) = Cluster(j, x1, x2, PARAMS.initial_sigma , aPriori);
13 end
14

15

16 %
17 % Auxiliary variables initialization
18 %
19 converged = false;
20 frames = [];
21 t = 0;
22 Q_val = 0;
23 confidence = 0;
24 movement_rate = 0;
25 str = "";
26 best_Q = -Inf;
27 best_clusters = Cluster.empty(0,m);
28 best_posteriors = zeros(N,m);
29 best_t = 0;
30

31 if PARAMS.verbose, frames = plot_state(clusters, 0, X, [], frames, "
initial clusters"); end

32

33 %
34 % Iterative procedure
35 %
36 while ~converged && t <= PARAMS.num_iterations
37

38 %
39 % E - Step
40 %
41 posteriors = compute_posterior_probabilities(X,m,clusters);
42 best_cluster_per_point = hard_clustering(posteriors);
43 if PARAMS.compute_Q , Q_val = Q_function(X,clusters ,posteriors);

end
44

45
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46 %
47 % Save best Q
48 %
49 if (Q_val >= best_Q)
50 best_clusters = copy_clusters(clusters);
51 best_Q = Q_val;
52 best_posteriors=posteriors;
53 best_t=t;
54 end
55

56

57 if PARAMS.verbose
58 str =sprintf("%d: Q: %.0f | Theta rate: %.2f | clusters: %d %

s",...
59 t, Q_val, movement_rate , length(clusters), str);
60 frames = plot_state(clusters , t, X, best_cluster_per_point ,

frames, str);
61 fprintf("%s\n",str);
62 str = "";
63 end
64

65

66 %
67 % Apply FIT and MERGE procedures
68 %
69 clusters = maximization(clusters , X, posteriors);
70 if m == length(clusters)
71 [new_clusters , ~ , str] = merge_clusters(clusters , X,

posteriors , str, PARAMS);
72 if length(new_clusters) ~= m
73 clusters = copy_clusters(new_clusters);
74 end
75 end
76 m = length(clusters);
77

78 t = t+1;
79 [converged , movement_rate] = PARAMS.stopping_criterion(t,

clusters, PARAMS);
80 end
81

82

83

84

85 classification = compute_posterior_probabilities(X,length(clusters),
clusters);

86 if PARAMS.verbose
87 frames = plot_state(clusters , t, [], [], frames, "Final result");
88 end
89 m_ = m;
90

91 end

• File hard_clustering.m

1 function [best_cluster_per_point] = hard_clustering(
posteriorProbabilities)

2 [N,m] = size(posteriorProbabilities);
3 best_cluster_per_point = -1 * zeros(N,1);
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4 for i = 1:N
5 [max_p, argmax] = max(posteriorProbabilities(i,:));
6 if max_p > 0
7 best_cluster_per_point(i) = argmax;
8 else
9 best_cluster_per_point(i) = 0;

10 end
11 end
12 end

• File maximization.m

1 function [new_clusters] = maximization(clusters , X, posteriors)
2 m = length(clusters);
3 new_aPrioris = zeros(1,m);
4 [N,l] = size(X);
5 best_cluster_per_point = hard_clustering(posteriors);
6 for j=1:m
7 c = clusters(j);
8 new_aPrioris(j) = sum(posteriors(:,j))/N;
9 end

10

11 new_clusters = [];
12 for j=1:m
13 c = clusters(j);
14 cluster_points = X(best_cluster_per_point==j,:);
15 if length(cluster_points)<2, continue , end
16 c.lineSegment = principal_axis(cluster_points , X, posteriors(:,j)

);
17 c.lineSegment.fit_endpoints(cluster_points);
18 c.aPriori = new_aPrioris(j);
19 new_clusters = [new_clusters c];
20 end
21

22

23 end

• File merge_clusters.m

1 function [new_clusters , unified_ids , str_] = merge_clusters(clusters , X,
posteriors , str, PARAMS)

2 ANGULAR_TOL = PARAMS.unification_ang_tol;
3 GAP_TOL = PARAMS.unification_gap_tol;
4 m = length(clusters);
5 unified_ids = [];
6 deleted_clusters_indexes = [];
7 new_clusters = [];
8

9 for i=1:m
10 if any(deleted_clusters_indexes==i), continue , end
11 min_dist = Inf;
12 best_j = 0;
13

14 for j=1:m
15 if i==j, continue , end
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16 if any(deleted_clusters_indexes==j), continue , end
17 sim =abs(cosine_similarity(clusters(i).lineSegment , clusters(

j).lineSegment));
18 if sim >= ANGULAR_TOL && are_closeby(clusters(i).lineSegment ,

clusters(j).lineSegment , GAP_TOL)
19

20 dist = min_line_segment_distance(clusters(i).lineSegment ,
clusters(j).lineSegment);

21 if dist < min_dist
22 min_dist = dist;
23 best_j = j;
24 end
25 end
26 end
27

28

29 if min_dist < Inf
30 if PARAMS.verbose
31 fprintf("Unifying %d and %d\n", clusters(i).id, clusters(

best_j).id);
32 end
33 best_cluster_per_point = hard_clustering(posteriors);
34 C1_points = X(best_cluster_per_point == i,:);
35 C2_points = X(best_cluster_per_point == best_j ,:);
36

37 if length(C1_points) > length(C2_points), C1 = clusters(i);
38 else, C1 = clusters(

best_j);
39 end
40

41 C_new_points = [C1_points; C2_points];
42 L = C1.lineSegment;
43 L.fit_endpoints(C_new_points);
44 aPriori = clusters(i).aPriori+clusters(best_j).aPriori;
45 C_new = Cluster(C1.id, L.A, L.B, C1.sigma, aPriori);
46 C_new.color = C1.color;
47

48 new_clusters = [new_clusters C_new];
49 deleted_clusters_indexes = [deleted_clusters_indexes i best_j

];
50 end
51 end
52

53 unified_ids = arrayfun(@(c)(c.id), clusters(deleted_clusters_indexes)
);

54

55 old_clusters = copy_clusters(clusters);
56 old_clusters(deleted_clusters_indexes) = [];
57 new_clusters = [old_clusters new_clusters];
58

59 if isempty(unified_ids)
60 str_ = sprintf("%s | No unifications", str);
61 else
62 str_ = sprintf("%s | %d unifications", str, length(unified_ids)

/2);
63 reshape(unified_ids , 2, length(unified_ids)/2); unified_ids =

unified_ids ';
64 end
65 end
66
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67

68 function d = min_line_segment_distance(L1, L2)
69 d1 = point_segment_distance(L1.A, L2);
70 d2 = point_segment_distance(L1.B, L2);
71 d3 = point_segment_distance(L2.A, L1);
72 d4 = point_segment_distance(L2.B, L1);
73

74 d = min([d1,d2,d3,d4]);
75 end
76

77

78 function bool = are_closeby(L1, L2, TOL2)
79 bool = min_line_segment_distance(L1, L2) <= TOL2;
80 end

• File pdf.m

1 function [p] = pdf(x, s, L)
2 if L.isNull(), p=0; return; end
3 D_x_L = point_segment_distance(x, L);
4 D_x_L = D_x_L ^2;
5 p = (1 / (2 * pi *s^2 + sqrt(2*pi)*L.length()*s))*exp(-D_x_L/(2*s^2))

;
6 end

• File plot_state.m

1 function F = plot_state(clusters , t, X, classification , F_old, info,
SINGLE)

2 m = length(clusters);
3

4

5 if nargin == 7
6 figure('Name',num2str(t));
7 C = clusters(1);
8 centroid = (C.lineSegment.A + C.lineSegment.B) ./ 2;
9 darker_color = 0.8 * C.color;

10 plot([C.lineSegment.A(1) C.lineSegment.B(1)],[C.lineSegment.A(2)
C.lineSegment.B(2)], 'color', darker_color , 'LineWidth', 3);

11 text(centroid(1),centroid(2),num2str(C.id));
12 hold on
13 scatter(X(:,1), X(:,2), 'MarkerEdgeColor', C.color);
14 hold off
15 else
16 figure('Name',num2str(t));
17 grid on
18 if ~isempty(X)
19 for i=1:m
20 C = clusters(i);
21 Y = X(classification==i, :);
22 scatter(Y(:,1), Y(:,2), 'MarkerEdgeColor', C.color);
23 hold on;
24 end
25

26 Y = X(classification==0, :);
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27 if isempty(classification), Y = X; end
28 scatter(Y(:,1), Y(:,2), 'MarkerFaceColor', [0,0,0]);
29 hold on;
30

31

32 end
33 for i=1:m
34 C = clusters(i);
35 centroid = (C.lineSegment.A + C.lineSegment.B) ./ 2;
36 hold on
37 darker_color = 0.8 * C.color;
38 plot([C.lineSegment.A(1) C.lineSegment.B(1)],[C.lineSegment.A

(2) C.lineSegment.B(2)], 'color', darker_color , 'LineWidth', 3);
39 text(centroid(1),centroid(2),num2str(C.id));
40 end
41

42 dim = [0 1 0 0];
43 annotation('textbox',dim,'String',info,'FitBoxToText','on');
44

45 hold off
46 end
47 F = [F_old getframe(gcf)];
48 end

• File point_segment_distance.m

1 function [d] = point_segment_distance(p, L)
2 % [d] = point_segment_distance(point, lineSegmentStart ,

lineSegmentEnd)
3 % Calculate distance from a point to line segment as described in
4 % [Koutr 18]
5 % INPUT
6 % p : An N-dimension vector
7 % L : A LineSegment object
8 % OUTPUT
9 % d : The distance from `point` to the line segment

10

11 if L.isNull()
12 d = Inf;
13 else
14 p_proj = L.project(p);
15 if L.belongs(p_proj)
16 d = norm(p-p_proj);
17 else
18 d = min( norm(p-L.A), norm(p-L.B) );
19 end
20 end
21 end

• File principal_axis.m

1 function [axis_] = principal_axis(S, X, cluster_posteriors)
2 % [axis_] = principal_axis(S)
3 % Compute princial axis of a set of points using Algorithm B
4
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5 [N,l] = size(S);
6 if N==0 || N == 1 % no points for this line segment
7 cf = zeros(l,1);
8 cs = zeros(l,1);
9 axis_ = LineSegment(cf, cs);

10 return;
11 end
12

13 stds_by_col = std(S); % compute std in each
dimension

14 [~, largest_dev_col] = max(stds_by_col); % find dimension of
largest std

15 S = sortrows(S, largest_dev_col); % sort corpus in
accordance to that dimension

16

17 Nf = ceil(N/2); % number of points in the
first subgroup

18 Ns = N - Nf; % number of points in the
second subgroup

19

20 cf = centroid(S(1:Nf, :)); % centroid of first
subgroup

21 cs = centroid(S(Nf+1:N, :)); % centroid of second
subgroup

22

23 axis_ = LineSegment(cf, cs);
24

25 weighted_cf = [0 0];
26 weighted_cs = [0 0];
27

28 Nf = 0;
29 Ns = 0;
30

31 for i=1:length(X)
32 x = X(i,:);
33

34 if norm(x-cf) < norm(x-cs)
35 times = cluster_posteriors(i)*1000;
36 for t=1:times
37 weighted_cf = weighted_cf + x;
38 end
39 Nf = Nf+times;
40 else
41 times = cluster_posteriors(i)*1000;
42 for t=1:times
43 weighted_cs = weighted_cs + x;
44 end
45 Ns = Ns+times;
46 end
47 end
48

49 weighted_cf = weighted_cf / Nf;
50 weighted_cs = weighted_cs / Ns;
51

52 axis_ = LineSegment(weighted_cf , weighted_cs);
53 axis_.fit_endpoints(S);
54

55 end
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• File Q_function.m

1 function q_value = Q_function(X, clusters , posteriors)
2 Q_t_plus_1 = 0;
3 N = length(X);
4 m = length(clusters);
5 for i=1:N
6 for j=1:m
7 x = X(i,:);
8 s = clusters(j).sigma;
9 P = clusters(j).aPriori;

10 L = clusters(j).lineSegment;
11 P_j_given_x = posteriors(i,j);
12 prev = Q_t_plus_1;
13 Q_t_plus_1 = Q_t_plus_1 + ( P_j_given_x * log(pdf(x,s,L)*P) );
14 if isnan(Q_t_plus_1)
15 Q_t_plus_1 = prev;
16 end
17 end
18 end
19 q_value = Q_t_plus_1;
20 end

• File rate_of_clusters_movement_criterion.m

1 function [stop, movement_rate] = rate_of_clusters_movement_criterion(t,
clusters, PARAMS)

2 TOL = PARAMS.rate_of_movement_tol;
3 persistent previous_theta;
4 persistent previous_variance;
5

6 theta = serialize_to_theta_vector(clusters);
7

8 if t==1
9 previous_theta = theta;

10 previous_variance = 1;
11 stop = false;
12 movement_rate = nan;
13 return;
14 else
15 if length(theta) ~= length(previous_theta)
16 stop = false;
17 movement_rate = nan;
18 else
19 variance = norm(previous_theta -theta, 1);
20 movement_rate = abs(variance -previous_variance);
21

22 if movement_rate <= TOL
23 stop = true;
24 else
25 stop = false;
26 end
27 previous_variance = variance;
28 end
29 previous_theta = theta;
30 return;
31 end

K. Stylianopoulos 70



A Novel Probabilitybased Data Clustering Algorithm for Detecting Elongated Clusters with Application to the Line Detection Problem

32

33 end

• File serialize_to_theta_vector.m

1 function theta = serialize_to_theta_vector(clusters)
2 m = length(clusters);
3 theta = [];
4 k=1;
5 for i=1:m
6 c = clusters(i);
7 if c.is_eliminated(), continue , end
8 theta(k) = c.lineSegment.A(1);
9 theta(k+1) = c.lineSegment.A(2);

10 theta(k+2) = c.lineSegment.B(1);
11 theta(k+3) = c.lineSegment.B(2);
12 k = k+4;
13 end
14 end

• File SPCLS_initialization.m

1 function [segments] = SPCLS_initialization(pixelImage , T, rho)
2 A = ~pixelImage;
3 [rows, cols] = size(A);
4 B = zeros(rows, cols);
5 for i = 1:T:rows
6 B(i,:) = A(i,:);
7 end
8 C = zeros(rows, cols);
9 for j = 1:T:cols

10 C(:,j) = A(:,j);
11 end
12 D = ~((B + C) == 0);
13 E = zeros(rows, cols);
14 centers(1,:) = [0,0] ;
15 k = 1;
16 for i=1:rows
17 for j=1:cols
18 if D(i,j) == 1
19 [x1, y1, len_hor, D] = locate_horizontal_segment(D, [i,j

]);
20 [x2, y2, len_vert , D] = locate_vertical_segment(D, [i,j])

;
21 if x1 == x2 && y1 == y2
22 E(x1, y1) = 1;
23 centers(k,:) = [y1,x1];
24 k = k + 1;
25 else
26 if len_hor > 1
27 E(x1,y1) = 1;
28 centers(k,:) = [y1,x1];
29 k = k + 1;
30 end
31 if len_vert > 1
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32 E(x2,y2) = 1;
33 centers(k,:) = [y2,x2];
34 k = k + 1;
35 end
36 end
37 end
38 end
39 end
40 if length(centers) < 2 || length(centers(:,1)) < 2
41 error("Initialization could not locate any segments. Bad image or

high T value");
42 end
43 segments = convert_to_segments(centers, rho);
44 end
45

46 function [x, y, len, D_new] = locate_horizontal_segment(D, start_)
47 D_new = D;
48 [~, cols] = size(D);
49 i0 = start_(1); j0 = start_(2);
50 len = 1;
51 for j=j0+1:cols
52 if D(i0,j) == 1
53 len = len+1;
54 D_new(i0,j) = 0;
55 else
56 break
57 end
58 end
59 [x, y] = find_midpoint(start_, [i0, j0+len-1]);
60 end
61

62 function [x, y, len, D_new] = locate_vertical_segment(D, start_)
63 D_new = D;
64 [rows, ~] = size(D);
65 i0 = start_(1); j0 = start_(2);
66 len = 1;
67 for i=i0+1:rows
68 if D(i,j0) == 1
69 len = len+1;
70 D_new(i,j0) = 0;
71 else
72 break
73 end
74 end
75 [x, y] = find_midpoint(start_, [i0+len-1, j0]);
76 end
77

78 function initial_segments = convert_to_segments(centers, rho)
79 initial_segments = zeros(size(centers)*2);
80 for k=1:length(centers)
81 m = centers(k,:);
82 v = rand(1,2);
83 a = m - rho*v;
84 b = m + rho*v;
85 initial_segments(k,:) = [a,b];
86 end
87 end
88

89 function [midpoint_x , midpoint_y] = find_midpoint(start_, end_)
90 midpoint_x = ceil( (start_(1) + end_(1)) / 2 );
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91 midpoint_y = ceil( (start_(2) + end_(2)) / 2 );
92 end

• File copy_clusters.m

1 function curr_clusters = copy_clusters(clusters)
2 for i=1:length(clusters)
3 c_old = clusters(i);
4 c_new = Cluster(c_old.id, c_old.lineSegment.A, c_old.lineSegment.

B, c_old.sigma, c_old.aPriori);
5 c_new.color = c_old.color;
6 curr_clusters(i) = c_new;
7 end
8 end
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