
NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCES
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

PROGRAM OF POSTGRADUATE STUDIES

PhD THESIS

Extensions of Logic Programming for Preference
Representation

Antonis K. Troumpoukis

ATHENS

JUNE 2019

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ

ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ

Επεκτάσεις του λογικού προγραμματισμού για την
αναπαράσταση προτιμήσεων

Αντώνιος Κ. Τρουμπούκης

ΑΘΗΝΑ

ΙΟΥΝΙΟΣ 2019

PhD THESIS

Extensions of Logic Programming for Preference Representation

Antonis K. Troumpoukis

SUPERVISOR: Panagiotis Rondogiannis, Professor NKUA

THREE-MEMBER ADVISORY COMMITTEE:
Panagiotis Rondogiannis, Professor NKUA
Panagiotis Stamatopoulos, Assistant Professor NKUA
Christos Nomikos, Assistant Professor Univ. of Ioannina

SEVEN-MEMBER EXAMINATION COMMITTEE

Panagiotis Rondogiannis, Panagiotis Stamatopoulos,
Professor NKUA Assistant Professor NKUA

Christos Nomikos, Manolis Gergatsoulis,
Assistant Professor Univ. of Ioannina Professor Ionian University

Michael Dracopoulos, Nikolaos Papaspyrou,
Assistant Professor NKUA Professor NTUA

Andreas Stafylopatis,
Professor NTUA

Examination Date: June 25, 2019

ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ

Επεκτάσεις του λογικού προγραμματισμού για την αναπαράσταση προτιμήσεων

Αντώνιος Κ. Τρουμπούκης

ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: Παναγιώτης Ροντογιάννης, Καθηγητής ΕΚΠΑ

ΤΡΙΜΕΛΗΣ ΕΠΙΤΡΟΠΗ ΠΑΡΑΚΟΛΟΥΘΗΣΗΣ:
Παναγιώτης Ροντογιάννης, Καθηγητής ΕΚΠΑ
Παναγιώτης Σταματόπουλος, Επίκουρος Καθηγητής ΕΚΠΑ
Χρήστος Νομικός, Επίκουρος Καθηγητής Παν. Ιωαννίνων

ΕΠΤΑΜΕΛΗΣ ΕΞΕΤΑΣΤΙΚΗ ΕΠΙΤΡΟΠΗ

Παναγιώτης Ροντογιάννης, Παναγιώτης Σταματόπουλος,
Καθηγητής ΕΚΠΑ Επίκουρος Καθηγητής ΕΚΠΑ

Χρήστος Νομικός, Εμμανουήλ Γεργατσούλης,
Επίκουρος Καθηγητής Παν. Ιωαννίνων Καθηγητής Ιονίου Πανεπ.

Μιχαήλ Δρακόπουλος, Νικόλαος Παπασπύρου,
Επίκουρος Καθηγητής ΕΚΠΑ Καθηγητής ΕΜΠ

Ανδρέας Σταφυλοπάτης,
Καθηγητής ΕΜΠ

Ημερομηνία Εξέτασης: 25 Ιουνίου 2019

ABSTRACT

We consider the problem of preference representation using extensions of logic program-
ming. The effective representation of preferences is crucial in many scientific disciplines
and it can be proven useful in many real-world applications. Preference representation
formalisms in the literature usually fall into two basic categories: in the qualitative ap-
proach (where preferences are expressed with binary preference relations) and in the
quantitative approach (where preferences are represented with the use of numerical val-
ues that express the degree of interest). In this dissertation, we propose two approaches
for expressing preferences. The first approach uses an infinite-valued extension of logic
programming for expressing quantitative preferences, while the second approach uses
higher-order logic programming for expressing qualitative preferences.

We propose PrefLog, a logic programming language which uses an underlying infinite-
valued truth domain in order to support quantitative preference operators. We introduce
the syntax and the semantics of the language, and we study the properties of the Pre-
fLog operators that are needed in order for programs to behave well from a semantic
point of view. In addition, we introduce a terminating bottom-up evaluation method for
a well-defined class of function-free PrefLog programs. Ensuring termination is not a
straightforward task, because the underlying truth domain of PrefLog and the set of all
possible interpretations of a function-free PrefLog program are both infinite.

We propose the use of higher-order logic programming as a framework for representing
qualitative preferences. In this approach, relations, preferences between tuples, prefer-
ences between sets of tuples and operations on preferences are expressed in the same,
higher-order language. The programs can be evaluated by standard higher-order pro-
gramming systems, and their performance can be enhanced with generic and specialized
optimization techniques. Among these techniques, we propose a novel program trans-
formation technique for translating higher-order programs into first-order ones and we
use this technique for optimizing the higher-order programs of our interest. Finally, we
demonstrate the feasibility of our approach by presenting an implementation and an ex-
perimental evaluation of all the proposed concepts in the higher-order logic programming
language HiLog.

SUBJECT AREA: Programming Languages

KEYWORDS: Preference Representation, Infinite-Valued Logic Programming, Higher-
Order Logic Programming

ΠΕΡΙΛΗΨΗ

Εξετάζουμε το πρόβλημα της αναπαράστασης προτιμήσεων με τη χρήση επεκτάσεων
του λογικού προγραμματισμού. Η αποτελεσματική αναπαράσταση προτιμήσεων είναι
ζωτικής σημασίας σε πολλά επιστημονικά πεδία και μπορεί να αποδειχθεί χρήσιμη σε
πολλές πραγματικές εφαρμογές. Οι φορμαλισμοί αναπαράστασης προτιμήσεων στη βι-
βλιογραφία συνήθως εμπίπτουν σε δύο βασικές κατηγορίες: στην ποιοτική προσέγγιση
(όπου οι προτιμήσεις εκφράζονται με διμερείς σχέσεις προτίμησης) και στην ποσοτική
προσέγγιση (όπου οι προτιμήσεις αναπαριστώνται με τη χρήση αριθμητικών τιμών που
εκφράζουν το βαθμό ενδιαφέροντος). Σε αυτή τη διατριβή, προτείνουμε δύο προσεγγί-
σεις για την έκφραση προτιμήσεων. Η πρώτη προσέγγιση χρησιμοποιεί μια απειρότιμη
επέκταση του λογικού προγραμματισμού για την έκφραση ποσοτικών προτιμήσεων, ενώ
η δεύτερη προσέγγιση χρησιμοποιεί τον λογικό προγραμματισμό υψηλής τάξης για την
έκφραση ποιοτικών προτιμήσεων.

Προτείνουμε τη γλώσσα προγραμματισμού PrefLog, μια επέκταση του λογικού προγραμ-
ματισμού που χρησιμοποιεί ένα άπειρο σύνολο τιμών αλήθειας για να υποστηρίξει τον
ορισμό τελεστών ποσοτικής προτίμησης. Ορίζουμε το συντακτικό και τη σημασιολογία
της γλώσσας και προσδιορίζουμε ένα σύνολο από ιδιότητες τις οποίες πρέπει να ικανο-
ποιούν οι διαθέσιμοι τελεστές προτίμησης έτσι ώστε η γλώσσα να έχει καλώς ορισμένη
σημασιολογία. Επιπλέον, προτείνουμε μία “από-κάτω-προς-τα-πάνω” τεχνική υλοποίη-
σης για ένα καλώς ορισμένο υποσύνολο της PrefLog που αντιστοιχεί στο προτιμησιακό
αντίστοιχο της γλώσσας Datalog. Η εξασφάλιση της ιδιότητας του τερματισμού μιας τέ-
τοιας στρατηγικής δεν είναι προφανής γιατί το σύνολο των τιμών αληθείας και το σύνολο
των πιθανών ερμηνειών για τέτοια προγράμματα είναι και τα δύο άπειρα.

Προτείνουμε τη χρήση του λογικού προγραμματισμού υψηλής τάξης για την αναπαρά-
σταση ποιοτικών προτιμήσεων. Σε αυτήν την προσέγγιση, σχέσεις, προτιμήσεις μεταξύ
πλειάδων, προτιμήσεις μεταξύ συνόλων από πλειάδες και υπολογισμοί σχετικά με προ-
τιμήσεις εκφράζονται στην ίδια γλώσσα υψηλής τάξης. Τα προγράμματα αυτά μπορούν
να εκτελεστούν σε πραγματικά συστήματα λογικού προγραμματισμού υψηλής τάξης και
η απόδοσή τους μπορεί να ενισχυθεί είτε με γενικές είτε με εξειδικευμένες τεχνικές βελτι-
στοποίησης. Ανάμεσα σε αυτές, προτείνουμε μια νέα τεχνική μετατροπής λογικών προ-
γραμμάτων υψηλής τάξης σε κλασικά λογικά προγράμματα (πρώτης τάξης) και την εφαρ-
μόζουμε στα προγράμματα της προσέγγισής μας. Τέλος, αποδεικνύουμε την εφαρμοσι-
μότητα της προσέγγισής μας παρουσιάζοντας μια υλοποίηση και μια πειραματική αξιο-
λόγηση στη γλώσσα λογικού προγραμματισμού υψηλής τάξης HiLog.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Γλώσσες Προγραμματισμού

ΛΕΞΕΙΣΚΛΕΙΔΙΑ: Αναπαράστασηπροτιμήσεων, Απειρότιμος Λογικός Προγραμματισμός,
Λογικός Προγραμματισμός Υψηλής Τάξης

Στους γονείς μου, Κώστα και Τασία
και στην αδερφή μου, Λένα

ACKNOWLEDGEMENTS

First and foremost, I would like to express my gratitude to my advisor, Prof. Panos Ron-
dogiannis, for all his guidance, patience and support throughout my studies. From my
undergraduate years until the present moment, he has been a valuable mentor for me.
I would like to thank him for encouraging my research and for allowing me to grow as a
research scientist. I will always feel proud to have been one of his students, and I look
forward to collaborating with him in the future as well.

I would like to thank the members of the seven-member examination committee, for their
kind comments and suggestions.

Special thanks to Angelos Charalambidis, a co-author and friend, for his invaluable in-
sights and our exchange of ideas. His help had been crucial especially during the second
half of the dissertation.

During the course of this Ph.D., I worked at the Software and Knowledge Engineering
Lab (SKEL) at NCSR “Demokritos”. Studying for Ph.D. while working can be a difficult
task, but it was made easier with the help and support of Stasinos Konstantopoulos,
my supervisor in the Data Engineering Group (DEG) at SKEL. Thanks also to Giannis
Mouchakis, for being a good office-mate.

Thanks also to all of my friends for their encouragement. Especially, Giorgos Papadim-
itriou, for the beers we drank together; Nikos Christou for the summers in Paros; and the
bandmates from Lost N’ Found and Terra Gloria for the jams and the gigs.

Last but not least, I would like to express my deep gratitude to my family, for their tire-
less efforts, their understanding, and their unconditional love. I simply have no words to
explain how I owe to them. Σας ευχαριστώ για όλα.

LIST OF PUBLICATIONS
[1] Angelos Charalambidis, Panos Rondogiannis, and Antonis Troumpoukis. Higher-order logic pro-

gramming: An expressive language for representing qualitative preferences. Sci. Comput. Program.,
155:173–197, 2018.

[2] Antonis Troumpoukis and Angelos Charalambidis. Predicate specialization for definitional higher-order
logic programs. In Fred Mesnard and Peter J. Stuckey, editors, Logic-Based Program Synthesis and
Transformation - 28th International Symposium, LOPSTR 2018, Frankfurt/Main, Germany, September
4-6, 2018, Revised Selected Papers, volume 11408 of Lecture Notes in Computer Science, pages
132–147. Springer, 2018.

[3] Antonis Troumpoukis, Stasinos Konstantopoulos, and Angelos Charalambidis. An extension of
SPARQL for expressing qualitative preferences. In Claudia d’Amato, Miriam Fernández, Valentina
A. M. Tamma, Freddy Lécué, Philippe Cudré-Mauroux, Juan F. Sequeda, Christoph Lange, and Jeff
Heflin, editors, The Semantic Web - ISWC 2017 - 16th International Semantic Web Conference, Vi-
enna, Austria, October 21-25, 2017, Proceedings, Part I, volume 10587 of Lecture Notes in Computer
Science, pages 711–727. Springer, 2017.

[4] Angelos Charalambidis, Panos Rondogiannis, and Antonis Troumpoukis. Higher-order logic program-
ming: an expressive language for representing qualitative preferences. In James Cheney and Germán
Vidal, editors, Proceedings of the 18th International Symposium on Principles and Practice of Declar-
ative Programming, Edinburgh, United Kingdom, September 5-7, 2016, pages 24–37. ACM, 2016.

[5] Panos Rondogiannis and Antonis Troumpoukis. Expressing preferences in logic programming using an
infinite-valued logic. In Moreno Falaschi and Elvira Albert, editors, Proceedings of the 17th International
Symposium on Principles and Practice of Declarative Programming, Siena, Italy, July 14-16, 2015,
pages 208–219. ACM, 2015.

[6] Panos Rondogiannis and Antonis Troumpoukis. The infinite-valued semantics: overview, recent results
and future directions. Journal of Applied Non-Classical Logics, 23(1-2):213–228, 2013.

ΣΥΝΟΠΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΤΗΣ ΔΙΔΑΚΤΟΡΙΚΗΣ ΔΙΑΤΡΙΒΗΣ

Οι προτιμήσεις παίζουν πολύ σημαντικό ρόλο στη λήψη αποφάσεων σε διάφορες κατα-
στάσεις: από απλές προσωπικές επιλογές στην πρώιμη παιδική ηλικία (π.χ., «τι γεύση
παγωτού προτιμάς;») μέχρι πολύπλοκα επαγγελματικά διλήμματα (π.χ., «να ακολου-
θήσω καριέρα στη Μουσική ή στην Πληροφορική;»). Ως εκ τούτου, δεν αποτελεί έκπληξη
το ότι οι προτιμήσεις έχουν μελετηθεί σε πολλά επιστημονικά πεδία, όπως η Φιλοσο-
φία [37], τα Οικονομικά [28], και η Ψυχολογία [49]. Επιπλέον, η περιγραφή και επεξεργα-
σία προτιμήσεων έχει πολλές εφαρμογές στην Πληροφορική κυρίως σε τομείς όπως η Τε-
χνητή Νοημοσύνη [24], οι Βάσεις Δεδομένων [69] και οι Γλώσσες Προγραμματισμού [22].
Βασικός στόχος της μελέτης των προτιμήσεων στην Πληροφορική είναι η δημιουργία
γλωσσών και συστημάτων που θα δίνουν τη δυνατότητα τόσο σε προγραμματιστές όσο
και σε απλούς χρήστες να αναπαριστούν με σαφήνεια τις προτιμήσεις τους ώστε να λαμ-
βάνουν πιο σχετικές ή πιο περιεκτικές απαντήσεις.

Οι φορμαλισμοί που έχουν μέχρι στιγμής προταθεί για την αναπαράσταση προτιμήσεων
μπορούν να χωριστούν σε δύο βασικές κατηγορίες: στουςποσοτικούς και τουςποιοτικούς
φορμαλισμούς. Στους ποσοτικούς φορμαλισμούς [1, 2, 3, 45], οι προτιμήσεις αναπαρι-
στώνται με την χρήση αριθμητικών τιμών που εκφράζουν τον βαθμό προτίμησης (π.χ., «η
προτίμηση μου για μπύρα είναι 0.9 ενώ για κρασί είναι 0.2»). Αντίθετα, στους ποιοτικούς
φορμαλισμούς [17, 19, 32, 36, 80], οι προτιμήσεις αναπαριστώνται με απευθείας συγκρί-
σεις π.χ., «προτιμώ μπύρα από κρασί») που οδηγούν στον ορισμό διμερών σχέσεων
προτίμησης. Κάθε κατηγορία έχει τα δικά της πλεονεκτήματα και μειονεκτήματα. Αφενός,
η ποιοτική προσέγγιση είναι πιο εκφραστική από την ποσοτική: όπως προκύπτει από
τη βιβλιογραφία [17, 69], υπάρχουν διμερείς σχέσεις προτίμησης που δεν μπορούν να
εκφραστούν στο ποσοτικό μοντέλο. Αφετέρου, στις ποσοτικές προσεγγίσεις μπορεί να
διακριθεί το πόσο προτιμητέο είναι ένα αντικείμενο από ένα άλλο απλά συγκρίνοντας τις
δυο τιμές προτίμησης (π.χ., ένα αντικείμενο που έχει βαθμό προτίμησης 0.9 είναι πολύ
πιο προτιμητέο από κάποιο με βαθμό προτίμησης 0,001, αλλά είναι λίγο πιο προτιμητέο
από ένα άλλο με βαθμό προτίμησης 0,899).

Η μελέτη της σχετικής βιβλιογραφίας οδήγησε στην παρατήρηση ότι τόσο οι ποιοτικές
όσο και οι ποσοτικές τεχνικές που έχουν αναπτυχθεί, αφήνουν αρκετά περιθώρια για ση-
μαντική βελτίωση, τόσο από άποψη εκφραστικότητας όσο και αποτελεσματικότητας. Οι
ποσοτικές προσεγγίσεις συνήθως χρησιμοποιούν συναρτήσεις προτιμήσεων [3, 45] για
να υπολογίζουν τους βαθμούς προτίμησης: ωστόσο, δεν είναι πάντοτε δυνατό να οριστεί
μια τέτοια συνάρτηση προτίμησης (βλ. [32]). Επιπλέον, οι χρήστες στις περισσότερες
περιπτώσεις δεν είναι ιδιαίτερα πρόθυμοι να ορίζουν τις προτιμήσεις τους με αριθμητικές
τιμές, αλλά προτιμούν να τις εκφράζουν με δηλωτικό τρόπο (βλ. [24]). Οι ποιοτικές προ-
τιμήσεις έχουν και αυτές τις αδυναμίες τους. Πρώτον, προσφέρουν συνήθως ένα αρκετά
περιορισμένο σύνολο λειτουργιών για την επεξεργασία των προτιμήσεων [17, 80] (συνή-
θως προσφέρεται μόνο ένας τελεστής προτίμησης με το διαισθητικό νόημα «βρες τα πιο
προτιμώμενα αντικείμενα σύμφωνα με την δοθείσα σχέση προτίμησης»). Δεύτερον, σχε-
δόν όλες οι προσεγγίσεις χρησιμοποιούν δύο ξεχωριστές γλώσσες, μία για την αναπαρά-
σταση της βασικής γνώσης και μία για την αναπαράσταση των προτιμήσεων [17, 32, 36],
κάνοντας τη δομή της αναπαράστασης στο σύνολό της σχετικά ανομοιόμορφη. Επιπλέον,
οι ποιοτικές προσεγγίσεις βασίζονται σε δομές όπως οι σχέσεις μερικής διάταξης. Η δια-
δικασία χειρισμού μιας τέτοιας μοντελοποίησης είναι σαφώς πιο πολύπλοκη από εκείνη
μιας ποσοτικής προτίμησης που βασίζεται σε αριθμητικές τιμές. Συνεπώς, η ανάπτυξη
τεχνικών βελτιστοποίησης για την ενίσχυση της απόδοσης των φορμαλισμών ποιοτικών

προτιμήσεων μπορεί να είναι καθοριστικής σημασίας από πρακτική άποψη.

Σκοπός της διδακτορικής διατριβής αυτής είναι η διερεύνηση νέων φορμαλισμών για την
αναπαράσταση και επεξεργασία προτιμήσεων. Πιο συγκεκριμένα, προτείνεται η χρήση
δύο κατάλληλων επεκτάσεων του λογικού προγραμματισμού για την αναπαράσταση και
επεξεργασία προτιμήσεων.

• Η πρώτη προσέγγιση χρησιμοποιεί μια επέκταση του λογικού προγραμματισμού
για την έκφραση ποσοτικών προτιμήσεων. Αυτή η γλώσσα βασίζεται σε ένα άπειρο
σύνολο τιμών αληθείας προκειμένου να υποστηρίξει ποσοτικούς τελεστές προτίμη-
σης.

• Η δεύτερη προσέγγιση χρησιμοποιεί το λογικό προγραμματισμό υψηλής τάξης για
την έκφραση ποιοτικών προτιμήσεων. Στο πλαίσιο αυτό, οι διμερείς σχέσεις προτί-
μησης και οι τελεστές προτιμήσεων εκφράζονται στην ίδια γλώσσα υψηλής τάξης.

Οι προσεγγίσεις μας προσπαθούν να ξεπεράσουν τα μειονεκτήματα που αναφέρθηκαν
προηγουμένως. Στην ποσοτική μας προσέγγιση, ο χρήστης δεν ορίζει την προτίμηση του
απευθείας με κάποια τιμή προτίμησης, αλλά την εκφράζει δηλωτικά, χρησιμοποιώντας
κατάλληλους τελεστές προτίμησης. Στην ποιοτική μας προσέγγιση, η αναπαράσταση των
προτιμήσεων είναι πιο ομοιόμορφη αφού η μοντελοποίηση της βασικής γνώσης, των
προτιμήσεων και τον τελεστών που επεξεργάζονται προτιμήσεις γίνεται χρησιμοποιώ-
ντας την ίδια γλώσσα. Επιπλέον, δίνεται η δυνατότητα για τον ορισμό νέων τελεστών
επεξεργασίας πάνω σε σχέσεις προτίμησης, εκτός από εκείνους που προσφέρονται στις
περισσότερες ποιοτικές προσεγγίσεις στη βιβλιογραφία.

Στη συνέχεια θα περιγράψουμε τις βασικές αρχές των δύο παραπάνω τεχνικών για την
αναπαράσταση προτιμήσεων, δίνοντας μια διαισθητική εισαγωγή και ένα παράδειγμα για
καθεμία από τις προσεγγίσεις που αναπτύσσονται στην διατριβή.

Ποσοτικές Προτιμήσεις και Απειρότιμος Λογικός Προγραμματισμός

Η κεντρική ιδέα της προσέγγισης που χρησιμοποιεί τον απειρότιμο λογικό προγραμματι-
σμό για την έκφραση ποσοτικών προτιμήσεων μπορεί να περιγραφεί συνοπτικά ως εξής:

«Μπορούμε να επιτύχουμε μια εκφραστική περιγραφή προτιμήσεων χρησιμοποιώντας
μια λογική με πολλές τιμές αληθείας στην οποία τα διαφορετικά επίπεδα αλήθειας να αντι-
στοιχούν σε διαφορετικούς βαθμούς προτίμησης. Για να είναι πιο φυσική η περιγραφή, θα
πρέπει ο χειρισμός των διαφορετικών επιπέδων αλήθειας να μη γίνεται με απευθείας επε-
ξεργασία των αληθοτιμών, αλλά με τη χρήση τελεστών που προσομοιάζουν με τελεστές
προτίμησης που υπάρχουν και στις φυσικές γλώσσες».

Η παραπάνω ιδέα μπορεί να εξηγηθεί καλύτερα με ένα παράδειγμα.

Παράδειγμα 1. Ας υποθέσουμε ότι θέλουμε να χρησιμοποιήσουμε ένα ηλεκτρονικό σύ-
στημα κράτησης πτήσεων για να πετάξουμε από την Αθήνα στη Βοστώνη. Ας υποθέσουμε
επίσης ότι θα θέλαμε να πετάξουμε αν είναι δυνατόν με την αεροπορική εταιρία «Reliable
Airlines». Η παραπάνω προτίμηση μπορεί να κωδικοποιηθεί ως εξής:

desired_flight(F) :- from_to(athens,boston,F),
and-if-possible carrier(F,reliable_air).

Το παραπάνωπρόγραμμα μοιάζει με ένα κλασικό πρόγραμμα λογικού προγραμματισμού,
με τη διαφορά ότι χρησιμοποιεί τον τελεστή and-if-possible. Αν μπροστά από ένα άτομο
δεν υπάρχει αυτός ο τελεστής, τότε το άτομο εκφράζει μια συνθήκη που πρέπει οπωσδή-
ποτε να πραγματοποιηθεί. Διαφορετικά, το άτομο εκφράζει μια προτίμηση που «καλό θα
ήταν να ικανοποιηθεί». Τώρα, ας υποθέσουμε την εκτέλεση ενός ερωτήματος της μορφής:

?- desired_flight(F).

Αν το ερώτημα επιτύχει, τότε βρήκαμε μια πτήση από την Αθήνα στη Βοστώνη με την
«Reliable Airlines». Εάν το ερώτημα αποτύχει, τότε δεν υπάρχει καμμία πτήση από Αθήνα
προς Βοστώνη. Εάν το ερώτημα αποτύχει εν μέρει (αυτό σημαίνει ότι υπολογίζεται σε μια
ενδιάμεση τιμή αληθείας), τότε βρέθηκε μια πτήση η οποία όμως δεν είναι με την «Reliable
Airlines». Αυτό σημαίνει ότι μπορούμε μεν να πετάξουμε στον προορισμό μας, αλλά όχι
με την αεροπορική εταιρία της προτίμησής μας.

Για τη θεμελίωση της παραπάνω προσέγγισης [62, 63], προτείνουμε τη γλώσσα PrefLog,
η οποία είναι μια γλώσσα λογικού προγραμματισμού που χρησιμοποιεί τελεστές προτί-
μησης για την έκφραση προτιμήσεων (όπως π.χ. ο and-if-possible). Προσδιορίζουμε
ένα σύνολο από ιδιότητες τις οποίες αν τις ικανοποιούν οι τελεστές προτίμησης, τότε
η γλώσσα PrefLog θα έχει καλώς ορισμένη σημασιολογία. Εισάγουμε διάφορους τελε-
στές προτίμησης και δίνουμε πολλά παραδείγματα αναπαράστασης προτιμήσεων. Τέ-
λος, προτείνουμε μια «από-κάτω-προς-τα-πάνω» μέθοδο υλοποίησης που τερματίζει για
προγράμματα που ανήκουν ένα καλώς ορισμένο υποσύνολο της PrefLog και αποδεικνύ-
ουμε την ορθότητά της.

Ποιοτικές Προτιμήσεις και Λογικός Προγραμματισμός Υψηλής Τάξης

Η κεντρική ιδέα της προσέγγισης που χρησιμοποιεί το λογικό προγραμματισμό υψηλής
τάξης για την έκφραση ποιοτικών προτιμήσεων μπορεί να περιγραφεί συνοπτικά ως εξής:

«Αφού οι προτιμήσεις μπορούν να εκφραστούν με τη χρήση σχέσεων και αφού η επεξερ-
γασία των προτιμήσεων μπορεί να γίνει με τη χρήση τελεστών που παίρνουν ως παραμέ-
τρους σχέσεις, θα μπορούσε κανείς να χρησιμοποιήσει μια γλώσσα λογικού προγραμμα-
τισμού υψηλής τάξης η οποία υποστηρίζει τόσο τον ορισμό σχέσεων όσο και τον ορισμό
τελεστών πάνω σε αυτές».

Η παραπάνω ιδέα μπορεί να εξηγηθεί καλύτερα με ένα παράδειγμα.

Παράδειγμα 2. Έστω ότι έχουμε μια σχέση με ταινίες movie((Name,Genre,Rating)). Ας
υποθέσουμε ότι θέλουμε να εκφράσουμε την παρακάτω σχέση προτίμησης: «Προτιμώ μια
ταινία από μια άλλη αν είναι του ίδιου είδους αλλά η πρώτη έχει υψηλότερη βαθμολογία».
Η σχέση αυτή περιγράφεται πολύ εύκολα με το παρακάτω λογικό πρόγραμμα:

c_pref((N1,G,R1), (N2,G,R2)) :-
movie((N1,G,R1)),
movie((N2,G,R2)),
R1 > R2.

Το παραπάνω λογικό πρόγραμμα είναι πρώτης τάξης, δε χρησιμοποιεί δηλαδή κάποια
χαρακτηριστικά υψηλής τάξης. Αν θέλουμε όμως να ορίσουμε ένα τελεστή που επεξεργά-
ζεται σχέσεις προτίμησης όπως η παραπάνω, χρειαζόμαστε τις σχέσεις υψηλής τάξης. Για
παράδειγμα, μπορούμε να ορίσουμε τον παρακάτω τελεστή προτίμησης winnow(C,R,T)·

ο τελεστής αυτός επιστρέφει τις καλύτερες πλειάδες T από μία σχέση R σύμφωνα με μια δι-
μερή σχέση προτίμησης C. Παρατηρούμε ότι το παρακάτω πρόγραμμα είναι υψηλής τάξης
καθώς έχουμε μεταβλητές που εμφανίζονται στη θέση κατηγορημάτων και κατηγορήματα
που παίρνουν ως παραμέτρους άλλα κατηγορήματα:

winnow(C,R,T) :- R(T), not bypassed(C,R,T).
bypassed(C,R,T) :- R(Z), C(Z,T).

Συνεπώς, το παρακάτω ερώτημα:

?- winnow(c_pref,movie,T).

θα επιστρέψει τις προτιμότερες ταινίες από την σχέση movie σύμφωνα με τη ζητούμενη
σχέση προτίμησης c_pref.

Η παραπάνω προσέγγιση [13, 14] ξεπερνάει τα περισσότερα μειονεκτήματα που έχουν
οι υπάρχουσες ποιοτικές τεχνικές τόσο στις βάσεις δεδομένων όσο και στο λογικό προ-
γραμματισμό. Η τεχνική αυτή παρέχει ένα ενιαίο πλαίσιο για την περιγραφή ποιοτικών
προτιμήσεων, στο οποίο η μοντελοποίηση της βασικής γνώσης, των προτιμήσεων και
τον τελεστών που επεξεργάζονται προτιμήσεις γίνεται στην ίδια γλώσσα λογικού προ-
γραμματισμού υψηλής τάξης. Τα προγράμματα αυτά μπορούν να εκτελεστούν σε πραγ-
ματικά συστήματα λογικού προγραμματισμού υψηλής τάξης και η απόδοσή τους μπορεί
να ενισχυθεί είτε με γενικές είτε με εξειδικευμένες τεχνικές βελτιστοποίησης. Ανάμεσα σε
αυτές, προτείνουμε μια νέα τεχνική μετατροπής λογικών προγραμμάτων υψηλής τάξης
σε κλασικά λογικά προγράμματα (πρώτης τάξης) [73] και την εφαρμόζουμε στα προγράμ-
ματα της προσέγγισής μας. Τέλος, αυτή η ποιοτική προσέγγιση μπορεί να βρει εφαρμογή
σε πρακτικά συστήματα επερωτήσεων έξω από το πεδίο του λογικού προγραμματισμού
και των σχεσιακών βάσεων δεδομένων [74].

Συνεισφορά στην Επιστημονική Γνώση
Η ερευνητική συνεισφορά της διατριβής συνοψίζεται στα παρακάτω σημεία:

• Προτείνεται η γλώσσα προγραμματισμού PrefLog, η οποία είναι μια ποσοτική επέ-
κταση του λογικού προγραμματισμού για την έκφραση προτιμήσεων. Η γλώσσα
αυτή βασίζεται σε ένα άπειρο σύνολο τιμών αληθείας και στοχεύει στην αναπαρά-
σταση ποσοτικών προτιμήσεων με την χρήση κατάλληλων τελεστών προτίμησης.
Προσδιορίζεται ένα σύνολο από ιδιότητες τις οποίες πρέπει να ικανοποιούν οι διαθέ-
σιμοι τελεστές προτίμησης έτσι ώστε η γλώσσα να έχει καλώς ορισμένη σημασιολο-
γία. Προτείνονται διάφοροι τελεστές προτίμησης και δίνονται πολλά παραδείγματα
αναπαράστασης προτιμήσεων.

• Εισάγεται μια «από-κάτω-προς-τα-πάνω» τεχνική υλοποίησης για ένα καλώς ορι-
σμένο υποσύνολο της PrefLog, που αντιστοιχεί στο προτιμησιακό αντίστοιχο της
γλώσσας βάσεων δεδομένων Datalog. Αποδεικνύεται η ορθότητα της τεχνικής αυ-
τής, καθώς και το γεγονός ότι η διαδικασία υπολογισμού τερματίζει για κάθε πρό-
γραμμα που ανήκει στο συγκεκριμένο υποσύνολο της γλώσσας. Αξίζει να σημειωθεί
ότι (αντίθετα με ότι συμβαίνει στην Datalog) η εξασφάλιση της ιδιότητας του τερματι-
σμού μιας τέτοιας στρατηγικής δεν είναι προφανής. Το σύνολο των τιμών αληθείας
είναι άπειρο, οπότε μια αφελής στρατηγική θα χρειαζόταν άπειρα βήματα να λει-
τουργήσει ακόμα και για πεπερασμένα προτασιακά PrefLog προγράμματα.

• Προτείνεται η χρήση του λογικού προγραμματισμού υψηλής τάξης για την αναπα-
ράσταση και την επεξεργασία ποιοτικών προτιμήσεων. Η κεντρική ιδέα της προσέγ-
γισης αυτής βασίζεται στην παρατήρηση ότι εφόσον (όπως αναφέραμε νωρίτερα)
οι ποιοτικές προτιμήσεις εκφράζονται ως διμερείς σχέσεις, άρα η επεξεργασία προ-
τιμήσεων γίνεται με διαδικασίες που λαμβάνουν ως ορίσματα σχέσεις. Συνεπώς η
χρήση μιας γλώσσας υψηλής τάξης (η οποία υποστηρίζει τόσο τον ορισμό σχέσεων
όσο και τον ορισμό τελεστών πάνω σε αυτές) προσφέρει μια ενιαία και κομψή ανα-
παράσταση. Επιπλέον, η φαινομενικά πιο απαιτητική περίπτωση των προτιμήσεων
ανάμεσα σε σύνολα, μπορεί να αναπαρασταθεί εξίσου εύκολα, καθώς οι προτιμή-
σεις μεταξύ συνόλων είναι ουσιαστικά σχέσεις δεύτερης τάξης και επομένως μπο-
ρούν να κωδικοποιηθούν εύκολα σε μια γλώσσα υψηλής τάξης.

• Η ιδέα της χρήσης κατηγορημάτων υψηλής τάξης για την αποτελεσματική αναπα-
ράσταση προτιμήσεων, υλοποιήθηκε με τη χρήση της γλώσσας λογικού προγραμ-
ματισμού υψηλής τάξης HiLog στο σύστημα XSB. Επίσης, χρησιμοποιούνται εξει-
δικευμένες τεχνικές βελτιστοποίησης λογικών προγραμμάτων υψηλής τάξης που
μοντελοποιούν ποιοτικές προτιμήσεις τόσο ανάμεσα σε απλά στοιχεία όσο και σε
σύνολα. Ανάμεσα στις τεχνικές αυτές, προτείνεται μια νέα τεχνική μετατροπής λογι-
κών προγραμμάτων υψηλής τάξης σε κλασικά λογικά προγράμματα πρώτης τάξης.
Η τεχνική αυτή εφαρμόζεται σε ένα σαφώς ορισμένο υποσύνολο του λογικού προ-
γραμματισμού υψηλής τάξης (που εμπεριέχει προγράμματα που εκφράζουν ποιο-
τικές προτιμήσεις). Η αποτελεσματικότητα των τεχνικών αυτών τεκμηριώνεται και
πειραματικά. Ο κώδικας της υλοποίησης καθώς και τα πειράματα είναι διαθέσιμα
σε δημόσια αποθετήρια.

CONTENTS

PREFACE . 29

1. INTRODUCTION . 31
1.1 Motivation . 31

1.2 Our Approaches . 32

1.2.1 The infinite-valued approach . 32

1.2.2 The higher-order approach . 33

1.3 Contributions . 34

1.4 Outline . 35

2. EXPRESSING PREFERENCES USING INFINITE-VALUED LOGIC
PROGRAMMING . 37

2.1 Overview . 37

2.2 The Logic Programming Language PrefLog . 39

2.2.1 Syntax . 39

2.2.2 Infinite-Valued Models . 40

2.2.3 Examples of PrefLog Operators . 41

2.3 The Fixed-Point Semantics of PrefLog . 43

2.4 Continuous Preference Operators . 45

2.4.1 The ϵ operator . 45

2.4.2 The Operators opt and alt . 46

2.4.3 Preferences and Recursion . 48

2.4.4 Defining New Operators . 49

2.4.5 Operators Non-Definable with ∧, ∨ and ϵ . 52

2.5 Expressiveness of PrefLog Programs . 53

2.6 Summary . 54

3. EVALUATION OF A FUNCTION-FREE CLASS OF PREFLOG PROGRAMS . 55
3.1 Overview . 55

3.2 The Class of {ϵ,∧}-programs . 55

3.2.1 {ϵ,∧}-programs . 55

3.2.2 The Gapless Property of {ϵ,∧}-programs . 57

3.3 Bottom-up Evaluation . 58

3.3.1 Inadequacy of Naive Evaluation . 58

3.3.2 Terminating Bottom-up Evaluation of {ϵ,∧}-programs 59

3.3.3 Correctness of Terminating Bottom-up Evaluation 63

3.4 Implementation . 65

3.5 Summary . 65

4. EXPRESSING PREFERENCES USING HIGHER-ORDER LOGIC
PROGRAMMING . 67

4.1 Overview . 67

4.2 Qualitative Preferences and Databases . 68

4.2.1 Preferences over Tuples . 68

4.2.2 Composition of Preference Relations . 71

4.2.3 Preferences over Sets . 72

4.2.4 Discussion . 74

4.3 Higher-Order Logic Programming . 74

4.4 Representing Preferences over Tuples in Higher-Order Logic Programming 76

4.4.1 Representing Database Relations . 77

4.4.2 Representing Preference Relations . 77

4.4.3 Representing Composition Operators . 79

4.4.4 Representing Operators on Preference Relations 81

4.4.5 Additional Complex Representations . 83

4.5 Representing Preferences over Sets in Higher-Order Logic Programming 84

4.6 Summary . 86

5. OPTIMIZING PREFERENTIAL HIGHER-ORDER LOGIC PROGRAMS 89
5.1 Overview . 89

5.2 A Naive Implementation . 89

5.3 Predicate Specialization: A technique for optimizing Definitional Higher-order Logic
Programs . 92

5.3.1 Overview of the Technique . 92

5.3.2 Definitional Higher-order Logic Programs . 94

5.3.3 Partial Evaluation of Logic Programs . 97

5.3.4 Predicate Specialization . 98

5.3.5 Implementation . 100

5.4 Predicate Specialization and Preferential Higher-order Logic Programs 100

5.5 Optimization Strategies for Set Preferences . 104

5.5.1 Overview of the Optimizations . 104

5.5.2 Pruning Sets by Removing Unnecessary Tuples 105

5.5.3 Pruning Sets by Grouping Exchangeable Tuples 107

5.5.4 Implementation . 109

5.6 Summary . 109

6. EXPERIMENTS AND EVALUATION . 111

6.1 Overview . 111

6.2 Experiments on Tuple Preferences . 112

6.3 Experiments on Preference Operators . 115

6.4 Experiments on Path Preferences . 115

6.5 Experiments on Set Preferences . 117

6.6 Experiments on Predicate Specialization . 119

7. RELATED WORK . 123

7.1 Overview . 123

7.2 Preferences in Databases . 124

7.2.1 Quantitative Preferences in Databases . 124

7.2.2 Qualitative Preferences in Databases . 124

7.3 Qualitative Preferences in Logic Programming . 125

7.3.1 Preferences over Program Solutions . 125

7.3.2 Preferences over Program Models . 126

7.4 Quantitative Extensions of Logic Programming . 127

7.4.1 Infinite-Valued Logic Programming . 127

7.4.2 Probabilistic Logic Programming . 128

7.5 Related work on Predicate Specialization . 128

7.5.1 Partial Evaluation . 128

7.5.2 Defunctionalization and its Extensions . 129

7.5.3 Other Higher-order Removal Methods . 129

7.6 Summary . 130

8. CONCLUSIONS AND FUTURE WORK . 131

8.1 Conclusions . 131

8.2 Future Work . 132

8.2.1 Future Work on the Infinite-Valued approach . 132

8.2.2 Future Work on the Higher-Order approach . 133

REFERENCES . 135

PREFACE

This dissertation is submitted for the degree of Doctor of Philosophy at the National and
Kapodistrian University of Athens, Greece. The research described herein was con-
ducted under the guidance and supervision of Professor Panos Rondogiannis in the De-
partment of Informatics and Telecommunications, National and Kapodistrian University
of Athens, Greece.

Part of work has been presented in a series of international conferences and journal
articles, as detailed in the section titled “List of Publications”.

This work is at the best of my knowledge original, except where acknowledgments and
references are made to previous works. Hereby I declare that this doctoral disserta-
tion, my original investigation and achievement, has not been submitted for any other
academic degree, diploma or other qualification at any other university.

Antonis Troumpoukis

June 2019

Extensions of Logic Programming for Preference Representation

1. INTRODUCTION

The purpose of this dissertation is to use extensions of logic programming in order to
express preferences. The effective representation of preferences is crucial in many sci-
entific disciplines and it can be proven useful in many real-world applications. We pro-
pose two approaches for expressing preferences. The first approach uses infinite-valued
logic programming for expressing quantitative preferences. This language is based on
an infinite set of truth values in order to support operators for expressing preferences.
The second approach uses higher-order logic programming for expressing qualitative
preferences. In this approach, preference relations and operations on preferences are
expressed in the same, higher-order language. We argue that infinite-valued logic pro-
gramming and higher-order logic programming are two very expressive frameworks for
representing and manipulating preferences.

1.1 Motivation

Preferences play a major role in human life. They can affect us in many situations; from
simple personal choices in early childhood (e.g., “which ice-cream flavor do you pre-
fer?”) up to complex professional decisions (e.g., “should I pursue a career in music or
in computer science?”). Therefore, it comes as no surprise that preferences have been
explored in many scientific disciplines (such as philosophy [37], economics [28], and
psychology [49]). Research in preferences is very active in Computer Science, mostly
in areas such as Artificial Intelligence [24], Database Systems [69], and Programming
Languages [22]. One of the main objectives of the study of preferences in Computer
Science is the design of languages and frameworks that can provide us with the ability to
choose among alternatives in a declarative way, whether these alternatives are problem
solutions, program answers, or query results. Effective user preference representation
formalisms can be applied in information systems so that the responses presented to the
users can bemore compact and comprehensive because it can reflect their true interests.

Preference representation formalisms usually fall into two basic categories [69]. In the
quantitative approach [1, 2, 3, 45], preferences are represented by a preference value
function. Each object is associated with a preference score, which is a numerical value
that expresses the degree of interest (e.g., “my preference in beer is 0.9 while in wine it is
0.2”). In the qualitative approach [17, 19, 32, 36, 80] preferences are expressed by direct
comparisons between objects (e.g., “I prefer beer over wine”), thus resulting in a binary
preference relation. Each category has its strengths and its weaknesses. The qualitative
approach is more general than the quantitative approach (i.e., not all preference relations
can be expressed by scoring functions or through degrees of interest [17, 69]). On the
other hand, quantitative preferences can distinguish how much preferred one object is
over another (e.g., a preference score of 0.9 is much more preferred than a score of
0.001, but is a little more preferred than a score of 0.899).

As a general observation, we could say that both qualitative and quantitative formalisms
that have been developed leave much room for improvement both in terms of expressive-
ness and efficiency. Quantitative approaches usually rely on the definition of a preference
function. However, a preference function cannot always be defined, and if it can, users
in most cases are rarely willing to express their preferences directly in terms of such a
function. Qualitative approaches have their weaknesses too; first, they usually offer a
quite limited set of preference operations—in most cases, only one preference opera-

31 A. Troumpoukis

Extensions of Logic Programming for Preference Representation

tor can be used (namely, “find the most preferred objects according to this preference”);
second, almost all approaches use two distinct languages, one for representing the base
knowledge and one for representing the preferences, making the structure of the rep-
resentation non-uniform. Moreover, qualitative approaches rely on structures such as
partial order relations, which are more complex than simple numerical values; therefore,
the process of handling a qualitative preference is clearly a more complex task than that
of a quantitative preference. As a result, the development of optimization techniques
for enhancing the performance of qualitative preference frameworks can be of crucial
importance from a practical point of view.

The purpose of this dissertation is to study new, more expressive formalisms for rep-
resenting and manipulating preferences. In particular, we use two extensions of logic
programming:

• The first approach uses infinite-valued logic programming for expressing quantita-
tive preferences. This language is based on an infinite set of truth values in order
to support operators for expressing preferences.

• The second approach uses higher-order logic programming for expressing qualita-
tive preferences. In this approach, preference relations and operations on prefer-
ences are expressed in the same, higher-order language.

Our approaches attempt to overcome the shortcomings that were mentioned previously.
In our quantitative approach, the preference values are not denoted directly but are ex-
pressed using appropriate preference operators. In our qualitative approach, base re-
lations, preferences, and operations on preferences are represented using the same
language making our approach more uniform. In addition, our framework allows the def-
inition of many preference operators other than those that are offered in most qualitative
approaches in the literature.

1.2 Our Approaches
In this section, we present a high-level description of our approaches for extending logic
programming for expressing preferences. The central idea behind each one of our ap-
proaches is illustrated with a simple motivating example.

1.2.1 The infinite-valued approach
The central idea of the infinite-valued approach can be summarized as follows: We can
represent quantitative preferences with an infinite set of truth values, such that the dif-
ferent levels of truth correspond to different degrees of preference. In order for the de-
scription to be more natural though, the manipulation of the different levels of preference
should not be done by processing the truth values directly, but with the use of operators
that resemble preference operations that appear in natural languages. The above idea
can be illustrated in the following example:

Example 1.1. Suppose that we are using an online flight reservation system in order to
fly from Athens to Boston. Assume that we want to book a flight ticket from Athens to
Boston, flying if possible with “Reliable Airlines”. This fact can be encoded as follows:
desired_flight(F) :- from_to(athens,boston,F),

and-if-possible carrier(F,reliable_air).

A. Troumpoukis 32

Extensions of Logic Programming for Preference Representation

The above program looks like a classic logic program, with the difference that it uses
the and-if-possible operator. If this operator is not present then the atom expresses a
necessary condition; otherwise, the atom expresses an optional condition that it “would
be preferable but not necessary, to be satisfied”. Now, suppose that we issue a query of
the form:

?- desired_flight(F).

If the query succeeds then we found a flight from Athens to Boston with Reliable Airlines.
If the query completely fails then there does not exist any flights from Athens to Boston.
If the query partially fails (meaning that it is evaluated into an intermediate truth value),
then a flight has been found which however is not with Reliable Airlines. This means that
we can fly to our destination, but not traveling with the carrier of our preference.

In order to formulate this approach [62, 63] we introduce the logic programming language
PrefLog, its syntax, and its semantics; in particular, we study the properties of the Pre-
fLog operators that are needed in order for the PrefLog programs to behave well from a
semantic point of view. In addition, we introduce a bottom-up evaluation method for a
well-defined class of function-free PrefLog programs.

1.2.2 The higher-order approach
The central idea of the higher-order approach can be summarized as follows: Since qual-
itative preferences can be expressed using binary preference relations, and since oper-
ations on preferences involve operations that take preference relations as arguments, a
higher-order language can offer increased representation capabilities. The above idea
can be illustrated in the following example:

Example 1.2. Suppose that we have a relation of movies movie((Name,Genre,Rating)).
Now, suppose that we want to express the following preference relation: “Prefer one
movie over another iff their genres are the same and the rating of the first is higher”. This
preference relation can be encoded easily using the following logic program:

c_pref((N1,G,R1), (N2,G,R2)) :-
movie((N1,G,R1)),
movie((N2,G,R2)),
R1 > R2.

The above program is a first-order one, so it does not use any higher-order features.
However, if we want to define an operator that processes preference relations such as the
above, we need to define higher-order predicates. For example, the following operator
winnow(C,R,T) returns the best tuples T from a relation R according to a binary preference
relation C:

winnow(C,R,T) :- R(T), not bypassed(C,R,T).
bypassed(C,R,T) :- R(Z), C(Z,T).

As a result, the following query

?- winnow(c_pref,movie,T).

will return the most preferred movies from the relation movie using the preference relation
c_pref of our interest.

33 A. Troumpoukis

Extensions of Logic Programming for Preference Representation

The higher-order approach [13, 14], extends a seminal work by Chomicki [17, 80] and
it goes beyond most disadvantages of existing qualitative techniques both in databases
and in logic programming. The use of higher-order logic programming provides a uni-
form framework in which relations, preferences between tuples, preferences between
sets of tuples and operations on preferences are expressed in the same, higher-order
logic programming language. The programs can be evaluated by standard higher-order
programming systems, and their performance can be enhanced with generic and spe-
cialized optimization techniques. Among these techniques, we propose a novel program
transformation technique for translating higher-order programs into first-order ones and
we used this technique for optimizing the higher-order programs of our interest [73]. Fi-
nally, as we have recently demonstrated [74] this qualitative approach can be used for
implementing practical query systems outside the realm of logic programming and rela-
tional databases.

1.3 Contributions
Our contributions can be summarized as follows:

• We argue that the adoption of many-valued logics is a promising idea for developing
expressive new preferential logic programming languages. We define the simple
preferential logic programming language PrefLog which differs from other prefer-
ential logic programming approaches in that it uses an underlying infinite-valued
truth domain in order to support quantitative preference operators. We show that
the continuity of these operators over the infinite-valued underlying domain ensures
that the resulting logic programming system retains all the standard and well-known
properties of classical logic programming (and most notably the existence of a least
Herbrand model).

• We demonstrate that terminating bottom-up evaluation can be performed for a large
function-free fragment of PrefLog. This result is not obvious: despite the fact that
the Herbrand Base of the programs we consider is finite, an atom may obtain an
infinity of truth values during a bottom-up evaluation, resulting in possible non-
termination.

• We argue that higher-order logic programming is a very expressive framework for
representing and manipulating qualitative preferences. A significant advantage of
our approach is that preference formulas as-well-as operators that are parameter-
ized with such formulas can be expressed in the same language. Moreover, the
seemingly more demanding case of preferences over sets can be handled without
extra notational overhead, because preferences over sets are essentially second-
order relations and can, therefore, be encoded easily in our higher-order language.

• We implement specialized techniques that can enhance higher-order logic pro-
gramming so that it can better handle and manipulate preferences. We propose
Predicate Specialization, a transformation technique based on the abstract frame-
work of Partial Evaluation. This technique is used for optimizing higher-order logic
programs that express preferences over tuples by transforming them into first-order
ones. Moreover, we implement two custom-tailored implementation strategies for
optimizing set-preference higher-order programs. Finally, we provide experimental
results that suggest that the proposed techniques can enhance the performance of
our higher-order framework.

A. Troumpoukis 34

Extensions of Logic Programming for Preference Representation

1.4 Outline
The rest of the dissertation is structured as follows:

Chapter 2 introduces the PrefLog language, a logic programming language based on an
infinite-valued domain in order to support operators for expressing preferences. In
this chapter, we present the syntax and the semantics of the language and we
demonstrate that if the operators used are monotonic and continuous over the
infinite-valued underlying domain, then every PrefLog program has a minimum
infinite-valued model.

Chapter 3 introduces a terminating bottom-up evaluationmethod for a well-defined class
of function-free PrefLog programs. Ensuring termination is not a straightforward
task, because the underlying truth domain of PrefLog and the set of all possible
interpretations of a function-free PrefLog program are both infinite.

Chapter 4 proposes the use of higher-order logic programming as a logical framework
for expressing qualitative preferences. This approach extends a seminal work by
Chomicki [17, 80] and provides a uniform framework in which relations, preferences
between tuples, preferences between sets of tuples and operations on preferences
are expressed in the same, higher-order logic programming language.

Chapter 5 undertakes a HiLog implementation of our higher-order preferential frame-
work. Apart from a basic, unoptimized implementation, we consider several opti-
mization techniques for enhancing its performance. Among the techniques that we
used, we propose Predicate Specialization, which is a transformation technique for
optimizing HiLog programs that express preferences over tuples.

Chapter 6 presents experimental results that suggest the feasibility of the higher-order
logic programming framework of Chapter 4 and the effectiveness of the optimization
techniques presented in Chapter 5, especially when combined with standard logic
programming optimizations, such as tabling.

Chapter 7 discusses related work regarding preference representation formalisms in the
areas of databases and logic programming. We discuss both quantitative and qual-
itative approaches, and we compare them with our work.

Chapter 8 concludes the dissertation with a summary and a discussion of possible future
research directions.

35 A. Troumpoukis

Extensions of Logic Programming for Preference Representation

2. EXPRESSING PREFERENCES USING INFINITE-VALUED LOGIC
PROGRAMMING

In this chapter, we introduce the logic programming language PrefLog. This language is
based on an infinite-valued logic in order to support operators for expressing preferences.
We demonstrate that if the operators used aremonotonic and continuous over the infinite-
valued underlying domain, then the resulting logic programming language retains the
well-known properties of classical logic programming, such as the existence of a unique
minimum Herbrand model.

2.1 Overview
In this section, we present the basic ideas of the PrefLog language. Our starting point
is the infinite-valued approach [64]. In this work, Rondogiannis and Wadge proposed an
infinite-valued logic, which is used in order to provide a purely model-theoretic semantics
for logic programming with negation-as-failure. This logic, apart from the standard true
value, denoted by T0, also uses the truth values T1, T2, . . . that are less and less “true”
than T0; moreover, apart from the standard false value, denoted by F0, it also uses the
values F1, F2, . . . that are less and less “false” than F0. In the middle between the false
and the true values, there exists a “neutral” truth value denoted by 0. More formally:

F0 < F1 < F2 < · · · < 0 < · · · < T2 < T1 < T0

The logic that was developed is a propositional one and uses all standard logical con-
nectives (namely conjunction, disjunction, implication, and negation).

As it was demonstrated by Rondogiannis andWadge [64], negation in logic programming
can be considered as a preference operator. In particular, if the truth value of an atom
has been obtained with one use of the negation-as-failure rule, then its truth value should
be considered weaker (i.e., having a lower preference) than the truth value of an atom
which has been obtained without negation-as-failure. This preferential view of negation
allowed Rondogiannis and Wadge to obtain a minimum-model result for logic programs
with negation which extends the classical least-model theorem [50] of negation-less logic
programs.

Of particular interest is the propositional query language by Agarwal and Wadge [1, 2]
where this underlying infinite-valued logic is used in order to express preferential queries.
In particular, Agarwal andWadge considered a fragment of the aforementioned logic with
only conjunction and disjunction but allowed the use of two extra operators that can be
used to express preferences. The two operators, denoted throughout the chapter1 by opt
and alt, can express preferences of the form “A and optionally B” and “A or alternatively
B”.

The simple and elegant language of Agarwal and Wadge [1, 2] lacks in the following
respects. First, it is a propositional one and does not allow first-order properties to be
expressed. Second, it lacks recursion and therefore it can not express preferences re-
garding situations where no a-priori knowledge of the “depth” of the data is known (such
as for example in the case of finding the best path between two vertices of a graph when
various types of preferred connections are available in the graph). Finally, the set of

1 In the query system of Agarwal and Wadge [1] the two operators are denoted by µ and ω respectively.

37 A. Troumpoukis

Extensions of Logic Programming for Preference Representation

operators used, namely {opt,alt}, is quite restricted, and no indication is given of what
constitutes a “proper” or “well-behaved” preference operator.

We remedy the above issues by proposing PrefLog, a logic programming language that
supports various preference operators and has a clean and simple semantics. In the rest
of this section, we motivate our proposal with a simple example that uses the original opt
and alt operators [1, 2].

Example 2.1. Assume we are using an online flight reservation system in order to fly from
Athens to Boston. Suppose that we want to book a flight ticket from Athens to Boston,
flying if possible with “Reliable Airlines”. A query of this form will look like this:

← from_to(athens, boston, F) ∧ opt carrier(F, reliable_air).

A query of this form can get three possible answers: “yes”, “no, because there is no
flight available from Athens to Boston” and “no, because, although there exists a flight
from Athens to Boston, this is not with “Reliable Airlines”. Intuitively, the second “no”
answer is a much less severe one than the first “no” answer (because it implies we can
fly from Athens to Boston but not with the carrier of our preference, which is an optional
requirement).

Notice that in the above example we have a situation in which we want to express a
conjunction of a compulsory and an optional requirement. There exist situations where
we want to express a disjunction involving preferences. These types of disjunctions will
involve primary requirements and back-up requirements. Continuing the above example,
assume that we also require to have a stopover in our flight (and this is also a compulsory
requirement for us). Actually, we want to have a stopover in Rome or alternatively (but
with smaller preference), a stopover in London. Hence, we have the query:

← stopover(F, rome) ∨ opt stopover(F, london).

A requirement of this type can have three possible answers: “no” (meaning that there
is no flight that has a stopover), “yes” (meaning that there actually exists a flight with a
stopover in Rome), and another weaker “yes” answer (meaning that there exists a flight
with a stopover in London).

These observations suggest that we could use the aforementioned truth domain that con-
tains various “true” and “false” values in order to express various levels of preferences.
Moreover, we could allow preference operators to appear in the bodies of logic program-
ming rules in order for the programmer to be able to specify preferences in a declarative
manner.

The following program captures the above flight example:

desired_flight(F) ← from_to(athens, boston, F) ∧
has_stopover(F) ∧
opt carrier(F, reliable_air).

has_stopover(F) ← stopover(F, rome) ∨
alt stopover(F, london).

The informal meaning of the unary operators opt and alt is “optionally” and “alternatively”
respectively; their formal meaning will be described in the following section. Returning

A. Troumpoukis 38

Extensions of Logic Programming for Preference Representation

to the above example, if a query of the form← desired_flight(F) completely fails then,
either there does not exist a flight from Athens to Boston, or there does not exist such
a flight that has stopovers; if the query partially fails, then a flight has been found which
however is not with the desired carrier; if the query partially succeeds then there exists
a flight which has a stopover in London (but not Rome); finally, the complete success of
our query indicates that the flight found satisfies all our requirements (namely it flies from
Athens to Boston and has a stopover in Rome).

Notice that the above operators can be iterated, expressing in this way more than two
levels of preference. For example, the clause:

has_stopover(F) ← stopover(F, rome) ∨
alt stopover(F, london) ∨
alt2 stopover(F, frankfurt).

expresses that we prefer Rome over London and London over Frankfurt.

The rest of the chapter is organized as follows: in Section 2.2, we present the syntax and
some basic semantic concepts behind the proposed language PrefLog; in Section 2.3
we present the fixed-point semantics of PrefLog; in Section 2.4 we describe a simple
approach for building new continuous operators and we demonstrate their use in example
programs; in Section 2.5 we discuss the expressive power of PrefLog programs; and
finally, we close with a brief summary of the chapter.

2.2 The Logic Programming Language PrefLog
In this section, we introduce the syntax and the basic semantic notions regarding the new
preferential logic programming language PrefLog. In a nutshell, our language extends
classical logic programming with preference operators, whose semantic meanings are
functions, whose domain and range is the infinite set of truth values. Throughout this
chapter, we assume that the reader is familiar with the basic concepts and terminology
of logic programming [50].

2.2.1 Syntax
In this subsection, we define the syntax of PrefLog. We begin by extending the usual set
of symbols in logic programming with a set of preference operators. Then, we continue
with the definition of a PrefLog program and we close with some remarks regarding the
Herbrand universe and Herbrand base of PrefLog programs.

We assume the existence of a set Op of preference operators; programs of our language
use operators of this set in the bodies of rules. We use the symbol ∇ to denote an
arbitrary preference operator. Each operator ∇ has a fixed arity n ∈ N; we denote this
fact by writing ∇/n. For simplicity, we assume that the usual conjunction and disjunction
operators of logic programs belong to Op; we denote conjunction by ∧ and disjunction
by ∨.

Since PrefLog is essentially an extension of first-order logic programming with preference
operators in the bodies of the rules, we need to extend the usual logic programming
syntax of the rule bodies:

Definition 2.1. Body formulas are inductively defined as follows:

39 A. Troumpoukis

Extensions of Logic Programming for Preference Representation

• The constant true is a body formula.

• If A is an atomic formula, then A is a body formula.

• If ∇/n, where n ≥ 1, is a preference operator, and A1, . . . ,An are body formulas,
then ∇(A1, . . . ,An) is a body formula.

When applying an operator to an expression, we often omit the parentheses when this
creates no confusion (as we have done for opt and alt in Example 2.1). We continue with
the definition of a PrefLog program:

Definition 2.2. A PrefLog rule is the universal closure of a formula of the form A ← B
where A is an atom and B is a body formula. A PrefLog rule of the form A← true is called
a PrefLog fact. A PrefLog program is a finite set of PrefLog rules.

A PrefLog fact can be written in the form A ← instead of the full form A ← true. Notice
that the program given in Example 2.1 is a valid PrefLog one (the conjunction and dis-
junction operators are used in their usual infix form instead of the prefix one suggested
by Definition 2.1).

TheHerbrand universe UP and theHerbrand baseBP of a PrefLog program P are defined
as in classical logic programming [50]. In the following, in order to avoid unnecessary
technicalities in the specification of the semantics of PrefLog programs, wemake a simpli-
fying assumption that is common in the logic programming literature: instead of studying
first-order PrefLog programs, we will study their ground instantiations. The ground in-
stantiation of a program can be obtained by replacing the variables in rules with terms
from the Herbrand universe in all possible ways. Essentially, the ground instantiation
is a (possibly infinite) propositional program. In the rest of the chapter, when we refer
to a program we will mean (unless otherwise stated) the ground instantiation of a pro-
gram. However, in examples, we will use the more compact (and more human-readable)
first-order form of a PrefLog program.

2.2.2 Infinite-Valued Models
In this subsection, we define infinite-valued interpretations and infinite-valued models of
PrefLog programs. In order to do so, we must first provide the definitions of the set of
truth values and the semantic meaning of the preference operators.

As mentioned earlier, the logic underlying PrefLog is infinite-valued.

Definition 2.3. The underlying set of truth values of PrefLog is the set

V = {Fi : i ∈ N} ∪ {0} ∪ {Ti : i ∈ N},

with the following ordering:

F0 < F1 < F2 < · · · < 0 < · · · < T2 < T1 < T0.

Moreover, a notion that will prove useful in the following is that of the order of a given
truth value:

Definition 2.4. The order of a truth value is defined as:

ord(v) =

{
n, if v = Tn or v = Fn

+∞, if v = 0

A. Troumpoukis 40

Extensions of Logic Programming for Preference Representation

We can now define Herbrand interpretations in the context of PrefLog (in the rest of the
chapter, the term interpretation will mean an infinite-valued Herbrand interpretation):

Definition 2.5. An infinite-valued Herbrand interpretation I of a PrefLog program P is a
function I : BP → V.

As a special case of interpretation, we write ∅ to denote the interpretation that assigns
the F0 value to all members of BP. Notice that infinite-valued interpretations extend the
classical Herbrand interpretations. This is because a classical Herbrand interpretation
of a classical logic program P is defined as a subset of BP, or equivalently as a function
BP → {true, false}.

The meaning of preference operators is specified as follows:

Definition 2.6. Let ∇/n be a preference operator. The denotation of ∇ is a function
∥∇∥ : Vn → V.

Wewill provide examples of denotations of some preference operators in the next section.
Now, using the above definition, we can extend the notion of interpretation in order to
apply to body formulas:

Definition 2.7. Let I be an interpretation of a PrefLog program P. Then, I can be ex-
tended to apply to ground body formulas as follows:

• I(true) = T0.

• For every preference operator ∇/n and for all body formulas A1, . . . ,An, we define
I(∇(A1, . . . ,An)) = ∥∇∥(I(A1), . . . , I(An)).

Finally, by using the above definitions, we can now define the notion of a model of a
PrefLog program:

Definition 2.8. Let I be an interpretation of a PrefLog program P. Then, I satisfies the
rule A← B of P if I(A) ≥ I(B). Moreover, I is a model of P if I satisfies all rules of P.

2.2.3 Examples of PrefLog Operators
In this subsection, we present some examples regarding the notions that have been intro-
duced in the previous two subsections. We introduce some simple preference operators
and then we show the intuition behind their denotations using the example of Section 2.1.

We start by presenting the denotations of some basic operators on V. That is logical
conjunction and disjunction, as well as a basic operator that is used for changing the
order of a truth value:

Definition 2.9. The denotations of ∧ and ∨ are ∥∧∥ = min and ∥∨∥ = max, respectively.

Definition 2.10. Let v ∈ V and n ∈ N. Then, ϵn is a unary preference operator, whose
denotation is the following:

∥ϵn∥(v) =

Fk+n, if v = Fk

0, if v = 0

Tk+n, if v = Tk.

41 A. Troumpoukis

Extensions of Logic Programming for Preference Representation

Notice how the denotations of ∧ and ∨ actually extend the usual semantic meaning in
classical logic. In addition, notice that ∥ϵ0∥ is the identity function on V. Moreover, we
usually write ϵ instead of ϵ1. As we are going to see, the above operators can be used in
order to define more interesting ones.

The two other families of preference operators that were introduced by Agarwal and
Wadge in their preference query language [1, 2] are optn and altn, n ∈ N. The semantics
of these operators can be specified as follows:

Definition 2.11. Let v ∈ V and n ∈ N. Then, optn and altn are unary preference opera-
tors, whose denotations are the following:

∥optn∥(v) =

Fk+n, if v = Fk

0, if v = 0

Tk, if v = Tk

∥altn∥(v) =

Fk, if v = Fk

0, if v = 0

Tk+n, if v = Tk.

Notice that if v is true, then ∥opt∥(v) is as true as v, but if v is false, then ∥opt∥(v) is less
false than v. This behavior is what we expect from an optional requirement, because
the absence of an optional requirement does not annoy us as much as the absence of
a compulsory requirement. Also, if v is true, then ∥alt∥(v) is less true than v, but if v is
false, then ∥alt∥(v) is as false as v. Again, this is what we expect from an alternative (and
not primary) option, because the presence of an alternative option is not as beneficial to
us as the presence of a primary option. Notice that, as in the case of ϵ1, we usually write
opt and alt instead of opt1 and alt1, respectively.

To see the use of the above operators in the PrefLog framework, we refine Example 2.1
by adding some facts.

Example 2.2. Consider again the flight example with added facts regarding three partic-
ular flights:

desired_flight(F) ← from_to(athens, boston, F) ∧
has_stopover(F) ∧
opt carrier(F, reliable_air).

has_stopover(F) ← stopover(F, rome)∨
alt stopover(F, london).

from_to(athens, boston, fl1).
from_to(athens, boston, fl2).
from_to(athens, boston, fl3).

stopover(fl1, rome).
stopover(fl2, london).
stopover(fl3, rome).

carrier(fl1, delay_air).
carrier(fl2, reliable_air).
carrier(fl3, reliable_air).
Notice that only flight fl3 satisfies fully all our requirements. The other two flights are
not fully satisfactory. More specifically, flight fl1 is not with “Reliable Airlines” and flight

A. Troumpoukis 42

Extensions of Logic Programming for Preference Representation

fl2 has a stopover in London (and not Rome). One can easily verify that one interpre-
tation that is a model of the above program is one in which desired_flight(fl1) has
the value F1, desired_flight(fl2) has the value T1 and desired_flight(fl3) has the
value T0 (we omit listing the truth values of all ground atoms for briefness). As a result,
it is preferable to take flight fl3 over fl2 and fl1 for this journey. In the next section,
the semantics of PrefLog will be specified in detail and it will become apparent that this
particular interpretation is the least model of the above program.

2.3 The Fixed-Point Semantics of PrefLog

In this section, we show that if the preference operators we adopt obey certain simple
properties, then the programs of our language are guaranteed to be well-behaved from
a semantic point of view. In particular, we show that the usual fixed-point semantics of
classical Logic Programming can be extended to PrefLog, provided that the preference
operators that occur in the bodies of the clauses are monotonic and continuous.

We start by defining the usual (pointwise) ordering on n-tuples of elements of V:

Definition 2.12. Let x, y ∈ Vn, n ≥ 1 where x = (x1, . . . , xn) and y = (y1, . . . , yn). We
write x ≤ y if xi ≤ yi, for all 1 ≤ i ≤ n.

It is easy to verify that the set Vn with respect to the above pointwise ordering is a com-
plete lattice for every n ≥ 1. This fact is actually a straightforward extension of a similar
property of the set V [64][Lemma 5.2]. In the following definitions, lub is the usual short-
hand for “least upper bound”.

Proposition 2.1. Let n ≥ 1. Then, (Vn,≤) is a complete lattice. In particular, for every
S ⊆ Vn it holds that lub(S) = (lub{x1 : (x1, . . . , xn) ∈ S}, . . . , lub{xn : (x1, . . . , xn) ∈ S}).
Moreover, the top (resp. bottom) element of the lattice is the element (x1, . . . , xn), where
xi = T0 (resp. xi = F0) for every 1 ≤ i ≤ n.

Now, we can define the notions of monotonicity and continuity for preference operators:

Definition 2.13. Let ∇/n be a preference operator. Then, ∥∇∥ is called monotonic if for
all x, y ∈ Vn it holds x ≤ y =⇒ ∥∇∥(x) ≤ ∥∇∥(y).

Definition 2.14. Let ∇/n be a preference operator. Then, ∥∇∥ is called continuous if
it is monotonic and for all sequences (xn)n≥0 of elements of Vn such that for all n ≥ 0,
xn ≤ xn+1 it holds ∥∇∥(lub({xn : n ≥ 0})) = lub{∥∇∥(xn) : xn ≥ 0}.

By abuse of language, we will often say that “the operator∇ is monotonic (resp. continu-
ous)” instead of the more accurate “the denotation of the operator ∇ is monotonic (resp.
continuous)”.

It is easy to verify that every continuous operator is also monotonic. On the other hand,
not every monotonic operator is continuous. This is illustrated in the example that follows:

Example 2.3. Consider a preference operator whose denotation is the following function:

δ(v) =

{
F0, if v < 0

T0, if v ≥ 0.

43 A. Troumpoukis

Extensions of Logic Programming for Preference Representation

The operator is monotonic, because if x ≤ y < 0 or 0 ≤ x ≤ y, then δ(x) = δ(y);
moreover, if x < 0 ≤ y, then δ(x) = F0 and δ(y) = T0. However, the operator is not
continuous. Consider the set of all false values; δ(lub{F0, F1, . . . }) = δ(0) = T0 and
lub{δ(F0), δ(F1), . . . } = F0.

In order to give fixed-point semantics to PrefLog, we need to define a partial order relation
on the set of interpretations:

Definition 2.15. Let I, J be interpretations of a PrefLog program P. We write I ≤ J if
I(A) ≤ J(A) for all A ∈ BP.

It is not hard to see that the above relation ≤ on interpretations is a partial order (i.e., it
is reflexive, transitive and antisymmetric). Given a program P, we denote by IP the set
of all interpretations of P. It is easy to verify that IP is a complete lattice under the above
pointwise relation ≤.

Proposition 2.2. Let P be a PrefLog program. Then, (IP,≤) is a complete lattice. In
particular, for every X ⊆ IP and A ∈ BP, lub(X)(A) = lub{I(A) : I ∈ X}. Moreover, the
top (resp. bottom) element of the lattice is the interpretation that assigns the truth value
T0 (resp. F0) to every A ∈ BP.

Nowwe can proceed to the definition of the immediate consequence operator for PrefLog
programs. Recall that we have assumed that the programs we are studying are essen-
tially propositional (they are the ground instances of first-order preferential programs).
Therefore, in our definitions we do not need to refer to ground instances of program
rules.

Definition 2.16. Let I be an interpretation of a PrefLog program P. The operator TP :
IP → IP is defined as follows:

TP(I)(A) = lub{I(B) : (A← B) ∈ P}.

Notice that the TP operator of our language generalizes the TP operator that is used in
the fixed-point semantics of classical logic programming. Notice also that we use lub in
the definition of TP (instead of max) because there may exist an infinite number of ground
instances of rules of the form A← B in P.

The following two theorems generalize corresponding results that hold for classical logic
programs [50]. The proofs of the two theorems can be obtained as special cases of
abstract results obtained by Ésik and Rondogiannis [26]. More specifically, Ésik and
Rondogiannis developed a general theory for obtaining fixed points of functions that may
exhibit a controlled form of non-monotonicity. This class of potentially non-monotonic
functions that they considered in their theorem [26], contains as special cases the class of
monotonic and continuous functions considered in the semantics of PrefLog. Therefore,
in the proofs of the following theorems we use some material from their article.

Theorem 2.1. Let P be a PrefLog program. If all operators that are used in the bodies of
the rules of P are monotonic (resp. continuous), then the TP operator is also monotonic
(resp. continuous).

Proof. A special case of Lemma 7.12 of [26], in the case where the functions involved
are monotonic (resp. continuous).

A. Troumpoukis 44

Extensions of Logic Programming for Preference Representation

Theorem 2.2. Let P be a PrefLog program. If all operators used in the bodies of rules
of P are continuous, then TP has a least (with respect to ≤) fixed point MP which is the
least upper bound of the set {T n

P (∅) : n ∈ N}. Moreover, MP is the least (with respect to
≤) among all models of P.

Proof. As it is demonstrated in [26], Theorem 6.6 (and also Remark 6.5), since the oper-
ator TP is continuous, it has a least (with respect to≤) pre-fixed point which is also a least
fixed point; this pre-fixed point is equal to MP = {T n

P (∅) : n ∈ N}. It is easy to verify that
the set of pre-fixed points of TP coincides with the set of models of program P. Therefore,
MP is the least (with respect to ≤) among all models of P.

An example application of Theorem 2.2 in order to compute the minimum model of a
given PrefLog program, will be given in Subsection 2.4.1. Actually, as we are going to
see in the following chapter, we can use ideas that are based on Theorem 2.2 in order to
compute the meaning of a significant class of PrefLog programs in a bottom-up manner.

2.4 Continuous Preference Operators
We have shown that the usual fixed-point semantics and the minimum model property
of classical logic programming extends to PrefLog, provided that the preference oper-
ators that occur in the bodies of rules are monotonic and continuous. In this section,
we reconsider the preference operators ϵn, altn and optn, we demonstrate that they are
monotonic and continuous and we use them to define new preference operators. More-
over, we consider the use of these operators in the presence of recursion, which is the
main difference of PrefLog from the query system of Agarwal and Wadge [1, 2]. Finally,
we demonstrate that there exist simple continuous operators that cannot be defined using
the aforementioned ones.

2.4.1 The ϵ operator
The ϵ operator will prove to be the main building block for almost all the operators that
we will consider in the rest of the chapter. It is actually a direct task to verify that ϵ is
monotonic and continuous:

Proposition 2.3. The ϵ operator is monotonic and continuous.

Proof. The monotonicity of ϵ is immediate. To demonstrate continuity, let S = {xi : xi ∈
V, i ∈ N} such that xi ≤ xi+1 for every i ∈ N. It suffices to show that ∥ϵ∥(lub(S)) =
lub{∥ϵ∥(x) : x ∈ S}. We distinguish two cases for lub(S).

• Let lub(S) ∈ S. In this case we immediately have ∥ϵ∥(lub(S)) ≤ lub{∥ϵ∥(x) : x ∈ S}.
Moreover, since ϵ is monotonic, it holds that ∥ϵ∥(lub(S)) ≥ ∥ϵ∥(x), for all x ∈ S.
Therefore, ∥ϵ∥(lub(S)) is an upper bound of {∥ϵ∥(x) : x ∈ S} which implies that
∥ϵ∥(lub(S)) ≥ lub{∥ϵ∥(x) : x ∈ S}.

• Let lub(S) /∈ S. This implies that lub(S) = 0 and ∥ϵ∥(lub(S)) = 0. Moreover, for
all x ∈ S it holds x < 0 and there exists some x′ ∈ S such that x < x′. Since
∥ϵ∥(Fk) = Fk+1, for all x ∈ S it holds ∥ϵ∥(x) < 0 and for each x ∈ S there exists
some x′ ∈ S such that ∥ϵ∥(x) < ∥ϵ∥(x′). Consequently, lub{∥ϵ∥(x) : x ∈ S} = 0.

The above two cases imply that ϵ is continuous.

45 A. Troumpoukis

Extensions of Logic Programming for Preference Representation

Notice that it holds ϵn A =

n︷ ︸︸ ︷
ϵ ϵ · · · ϵ A. Since the composition of monotonic (resp. con-

tinuous) operators is monotonic (resp. continuous), it is immediate that for every n, the
operator ϵn is monotonic and continuous.

One noteworthy difference between the use of ϵ in PrefLog and in the framework of Agar-
wal and Wadge [1, 2] is that in the presence of recursion, the ϵ operator may lead to the
intermediate truth value 0, as the following simple example illustrates.

Example 2.4. Consider the following propositional program:

p ← ϵ p.

It is not hard to verify using the definition of the TP operator and Theorem 2.2, that the
approximations to the minimum model of the program are the following:

{(p, F0)}
{(p, F1)}

. . .
{(p, Fi)}

. . .

The minimum model of the program is, therefore, the least upper bound of these approx-
imations, namely the interpretation {(p, 0)}. Notice that despite the simplicity of the given
program, an infinite number of steps is required in order to obtain its minimum model.

Notice that in the context of the query system of Ararwal and Wadge [1, 2], the interme-
diate truth value 0 never arises (due to the lack of recursion).

2.4.2 The Operators opt and alt

It is also easy to see that the operators optn and altn are continuous (and therefore mono-
tonic) for all n ∈ N. If A is a formula then the following logical equivalences hold [1, 2]:

optnA ≡ (A ∨ ϵnA)

altnA ≡ (A ∧ ϵnA)

The above observation together with the fact that the operators ∧ and ∨ are easily seen
to be monotonic and continuous, leads to the following proposition:

Proposition 2.4. For every n ∈ N, the operators optn and altn are monotonic and con-
tinuous.

Table 2.1a and Table 2.1b describe the behavior of opt and alt for certain cases of inputs.
Since these expressions are quite common when we express many different levels of
preferences, we give the following proposition that captures the intuitive meaning of such
expressions.

Proposition 2.5. Let n ≥ 0 and v0, . . . , vn ∈ {F0, T0}. Then:

1.
∥∥∧∥∥n

i=0
∥opti∥(vi) = T0 ⇐⇒ vi = T0, for all 0 ≤ i ≤ n.

2.
∥∥∧∥∥n

i=0
∥opti∥(vi) = Fk ⇐⇒ vi = T0, for all 0 ≤ i < k and vk = F0.

A. Troumpoukis 46

Extensions of Logic Programming for Preference Representation

Table 2.1: Truth tables of simple PrefLog queries.

(a) A simple PrefLog query that uses the operators optn and ∧.

A B C A ∧ optB ∧ opt2C

F0 F0, T0 F0, T0 F0

T0 F0 F0, T0 F1

T0 T0 F0 F2

T0 T0 T0 T0

(b) A simple PrefLog query that uses the operators altn and ∨.

A B C A ∨ altB ∨ alt2C

F0 F0 F0 F0

F0 F0 T0 T2

F0 T0 F0, T0 T1

T0 F0, T0 F0, T0 T0

3.
∥∥∨∥∥n

i=0
∥alti∥(vi) = F0 ⇐⇒ vi = F0, for all 0 ≤ i ≤ n.

4.
∥∥∨∥∥n

i=0
∥alti∥(vi) = Tk ⇐⇒ vi = F0, for all 0 ≤ i < k and vk = T0.

Proof. We study the case of
∥∥∧∥∥n

i=0
∥opti∥(vi).

• To demonstrate (1), first notice that if
∥∥∧∥∥n

i=0
∥opti∥(vi) = T0, then ∥opti∥(vi) = T0

for all 0 ≤ i ≤ n and therefore vi = T0 for all 0 ≤ i ≤ n.
On the other hand, if vi = T0 for all 0 ≤ i ≤ n, we have that

∥∥∧∥∥n

i=0
∥opti∥(T0) = T0.

• To demonstrate (2), first assume that
∥∥∧∥∥n

i=0
∥opti∥(vi) = Fk. Then, for every 0 ≤

i < k, it must be vi = T0 because otherwise it would be
∥∥∧∥∥k−1

i=0
∥opti∥(vi) < Fk and

therefore
∥∥∧∥∥n

i=0
∥opti∥(vi) < Fk (contradiction).

Moreover, for every k < i ≤ n it holds that ∥opti∥(vi) > Fk. Therefore, vi = T0 for
all 0 ≤ i < k and vk = F0.
On the other hand, assume that vi = T0 for all 0 ≤ i < k and vk = F0. Then, it is
(
∥∥∧∥∥k−1

i=0
∥opti∥(T0)) ∥ ∧ ∥ (∥optk∥(F0)) = Fk.

Moreover,
∥∥∧∥∥n

i=k+1
∥opti∥(vi) > Fk and therefore

∥∥∧∥∥n

i=0
∥opti∥(vi) = Fk.

The proof for
∥∥∧∥∥n

i=0
∥alti∥(vi) is symmetric and thus will be omitted.

The above proposition has the following intuitive implications regarding a special form
of body formulas of PrefLog. Consider a formula of the form

∧n
i=0 opt

iAi, where each Ai

is an atom; this formula is essentially a conjunction of a primary (A0) and some optional
requirements (A1, . . . ,An), with a requirement Ai being more preferred than Aj if i < j.
Also, a formula of the form

∨n
i=0 alt

iAi corresponds to a disjunction of a primary (A0) and
some alternative options (A1, . . . ,An), with an option Ai being more preferred than Aj if
i < j. In the first case, if we know that the truth value of each Ai is either T0 or F0 and if
the result is equal to Fk, we immediately know that the atom Ak is the first atom that fails;
symmetrically, in the latter case, if the result is equal to Tk, the atom Ak is the first one
that succeeds.

47 A. Troumpoukis

Extensions of Logic Programming for Preference Representation

2.4.3 Preferences and Recursion
The combination of recursion with preferences gives interesting applications that could
not be tackled with the non-recursive query language of Agarwal andWadge [1, 2]. Three
such examples are given below. In particular, the first two examples show a preferential
version of the classical transitive closure logic program, while the third one offers a more
real-world example where the 0 value can occur in a program.

Example 2.5. Consider the graph of Figure 2.1, which represents a map of roads be-
tween villages in the countryside. Two villages can be connected by a two-lane road
(denoted by a double line), by a one-lane road (denoted by a single line), or by a dirt
road (denoted by a dashed line). This graph is denoted with the following set of facts:

e(a, b, two_lane).
e(a, c, one_lane).
e(b, c, two_lane).
e(c, d, one_lane).
e(a, d, dirt).
e(c, e, dirt).

A driver who wants to travel in this area prefers a two-lane road over a one-lane road
and a one-lane road over a dirt road. Given two villages in the map, we want to know if
there exists a path between them, and if any, we would like to know if the driver is forced
to drive through a road of smaller preference. The following program captures the above
situation:

ppath(X, Y) ← p(X, Y).
ppath(X, Y) ← p(X, Z) ∧ ppath(Z, Y).

p(X, Y) ← e(X, Y, two_lane) ∨
alt e(X, Y, one_lane) ∨
alt2 e(X, Y, dirt).

In order to travel from a to b or c the driver will only drive through two-lane roads (by using
the path through b), but in order to travel from a to d she has to pass through the single-
track road cd (but still can ignore the dirt road ad). Therefore, the queries← ppath(a, b),
← ppath(a, c) and ← ppath(a, d) will return T0, T0 and T1, respectively. However, the
driver can’t avoid to use a dirt road in order to reach the village e, therefore the query
← ppath(a, e) will yield the truth value T2.

a

b

d

c e

Figure 2.1: A graph that represents a map of roads.

A. Troumpoukis 48

Extensions of Logic Programming for Preference Representation

Example 2.6. Assume we would like to fly from a given city to another one, and we prefer
direct flights from non-direct ones. Moreover, the more stopovers a flight has the less
desirable it is to us. We can model such a situation as follows:
flight(X, Y) ← direct(X, Y) ∨

alt(direct(X, Z) ∧ flight(Z, Y)).
Assume we are also given the facts:
direct(athens, rome).
direct(rome, london).
direct(london, toronto).
Then, it can be easily checked that in the minimum Herbrand model of the program,
the destinations that can be reached from Athens correspond to different truth values,
depending on the number of stopovers that are needed in order to reach them; in partic-
ular, notice that the corresponding atoms flight(athens, rome), flight(athens, london)
and flight(athens, toronto) will have in the least model the truth values T0, T1 and T2,
respectively.
Example 2.7. The following program expresses a preference of the form “I may not like
this but it will be fine with me if you like it” is expressed by two persons:
likes(john, X) ← good_quality(X) ∧ opt likes(paul, X).
likes(paul, X) ← good_quality(X) ∧ opt likes(john, X).

good_quality(object).
Paul likes item item if it is of good quality and optionally if John likes it. Since John makes
a symmetrical statement, the atoms likes(john, item) and likes(paul, item) have the
value 0 in the minimum model. In other words, cycles that produce 0 can easily occur in
innocent-looking programs.

2.4.4 Defining New Operators
We now introduce an n-ary operator that counts the number of its arguments that suc-
ceed. The more arguments that succeed, the truer the output of the operator is. We
denote this operator by howTrue.
Definition 2.17. Let v1, . . . , vn ∈ V. We define the operator howTrue as follows:

∥howTrue∥(v1, . . . , vn) =
∥∥∥∧∥∥∥

π∈Πn

(∥∥∥∨∥∥∥n

i=1
∥alti∥(vπ(i))

)
where Πn is the set of permutations of the n-tuple (1, . . . , n).

For example, given any two formulas A and B, the binary howTrue operator is equivalent
to the formula:

howTrue(A,B) = (A ∨ altB) ∧ (B ∨ altA)
Moreover, given any three formulas A, B and C, the ternary howTrue operator is equiv-
alent to the formula:

howTrue(A,B,C) = (A ∨ altB ∨ alt2C) ∧
(A ∨ altC ∨ alt2B) ∧
(B ∨ altA ∨ alt2C) ∧
(B ∨ altC ∨ alt2A) ∧
(C ∨ altA ∨ alt2B) ∧
(C ∨ altB ∨ alt2A)

49 A. Troumpoukis

Extensions of Logic Programming for Preference Representation

Example 2.8. Consider the following program which motivates the use of howTrue.
Three friends want to decide what movie to watch, based on the majority of their prefer-
ences.

watch(X) ← howTrue (
likes(mary, X),
likes(bob, X),
likes(tom, X)

).

The genre preferences of the three friends are defined using the following facts:

likes(mary, drama).
likes(bob, action).
likes(tom, drama).

It can be verified (see also the discussion below) that in the least model of the above pro-
gram, the atom watch(drama) will have the truth value T1 while the atom watch(action)
will have (the smaller) truth value T2.

Example 2.9. Consider the following program which allows the user to express prefer-
ences regarding the paper she would like to review:

preferred_paper(P) ← howTrue (
databases(P),
logic_programming(P)

).

If a paper p belongs to both databases and logic programming, then the corresponding
atom preferred_paper(p) will have the value T0, if it belongs to one of the two areas then
it will have the value T1 and if its topic is outside the two preferred areas, it will have the
value F0.

Since the operators alt,∧,∨ are continuous, the operator howTrue is also continuous,
and as a result, we can add it to our language. Hence, the above definition allows us
to show that howTrue is a continuous operator. However, it does not give the fastest
way for calculating the value of howTrue. Alternatively, we can calculate the value of
∥howTrue∥(v1, . . . , vn) by computing ∥

∨
∥n−1
i=0 ∥alt

i∥ui where (u1, . . . , un) is a sorted per-
mutation in ascending order of the tuple (v1, . . . , vn).

Proposition 2.6. Let v1, . . . , vn ∈ V. Then:

∥howTrue∥(v1, . . . , vn) =
∥∥∥∨∥∥∥n

i=1
∥alti∥(ui)

where (u1, . . . , un) is a permutation of (v1, . . . , vn) such that ui ≤ ui+1 for all 1 ≤ i < n.

Proof. We use the notation δ(x1, . . . , xn) =
∥∥∨∥∥n

i=1
∥alti∥(xi).

Notice now that the value of ∥howTrue∥(v1, . . . , vn) can be obtained by finding a permu-
tation (u1, . . . , un) of (v1, . . . , vn) such that δ(u1, . . . , un) is minimum. In order to show that
if we sort (v1, . . . , vn) in ascending order we can have a sequence that minimizes δ, it

A. Troumpoukis 50

Extensions of Logic Programming for Preference Representation

Table 2.2: Truth table of a PrefLog query that uses the operator howTrue.

A B C howTrue(A,B,C)

F0 F0 F0 F0

F0 F0 T0 T2

F0 T0 F0 T2

T0 F0 F0 T2

F0 T0 T0 T1

T0 T0 F0 T1

T0 F0 T0 T1

T0 T0 T0 T0

suffices to show that if we swap two consecutive unsorted elements in the sequence the
value of δ lowers.

Let z = (z1, . . . , zn) be an unsorted permutation of the tuple (v1, . . . , vn). It must hold
zk > zk+1 for some 1 ≤ k < n. Therefore, it must hold:

∥altk∥(zk) ∨ ∥altk+1∥(zk+1) = ∥altk∥(zk)
∥altk∥(zk+1) ∨ ∥altk+1∥(zk) = ∥altk+1∥(zk)

and that should imply that:

∥altk∥(zk+1) ∨ ∥altk+1∥(zk) ≤ ∥altk∥(zk) ∨ ∥altk+1∥(zk+1)

Let z′ be a tuple obtained from z by swapping the zk, zk+1 elements. By the above, δ(z′) ≤
δ(z).

Suppose that we have a query where all arguments that are passed in howTrue are either
true or false. In Table 2.2 we see such a truth table for the ternary version of howTrue.
The following proposition captures this behavior of howTrue in a more general way.

Proposition 2.7. Let n ≥ 1 and let v = (v1, . . . , vn) where vi ∈ {F0, T0} for all 1 ≤ i ≤ n.
Moreover, let v ∥ v = {i : vi = v, 1 ≤ i ≤ n} Then:

1. howTrue(v1, . . . , vn) = F0 ⇐⇒
∣∣v ∥ F0

∣∣ = n and
∣∣v ∥ T0

∣∣ = 0.

2. howTrue(v1, . . . , vn) = Tk ⇐⇒
∣∣v ∥ F0

∣∣ = k and
∣∣v ∥ T0

∣∣ = n− k.

Proof. Let (u1, . . . , un) be a sorted permutation of v1, . . . , vn in ascending order. Since
vi ∈ {F0, T0} for all 1 ≤ i ≤ n, it holds

∣∣v ∥ F0

∣∣+ ∣∣v ∥ T0

∣∣ = n.

• Regarding (1):
∣∣v ∥ F0

∣∣ = n and
∣∣v ∥ T0

∣∣ = 0 ⇐⇒ ui = F0 for all 1 ≤ i ≤ n ⇐⇒
∥
∨
∥n−1
i=0 ∥alt

i∥ui = F0 ⇐⇒ ∥howTrue∥(v1, . . . , vn) = F0.

• Regarding (2):
∣∣v ∥ F0

∣∣ = k and
∣∣v ∥ T0

∣∣ = n− k ⇐⇒ ui = F0 for all 1 ≤ i ≤ k and
ui = T0 for all k < i ≤ n ⇐⇒ ∥

∨
∥n−1
i=0 ∥alt

i∥ui = Tk ⇐⇒ ∥howTrue∥(v1, . . . , vn) =
Tk.

51 A. Troumpoukis

Extensions of Logic Programming for Preference Representation

If we apply howTrue to a sequence of formulas, then we get a positive value if some of the
formulas succeeded. The result is equal to F0 if all formulas failed; the result is equal to
T0 if all formulas succeeded; the result is equal to some intermediate truth value if some
formulas succeeded and others failed, and a greater truth value of the result corresponds
to a greater number of true formulas.

2.4.5 Operators Non-Definable with ∧, ∨ and ϵ

One can easily observe that there exist many natural monotonic and continuous oper-
ators that are not definable solely with the use of ∧,∨ and ϵ. The following proposition
poses some straightforward restrictions on the operators that can be defined that way.

Proposition 2.8. Let ∥∇∥ : Vn → N be an operator that has been defined solely with the
use of ∧, ∨ and ϵ. Then:

1. For all v1, . . . , vn such that vi ≥ 0 for all 1 ≤ i ≤ n, it also holds ∥∇∥(v1, . . . , vn) ≥ 0.

2. For all v1, . . . , vn such that vi < 0 for all 1 ≤ i ≤ n, it also holds ∥∇∥(v1, . . . , vn) < 0.

3. For all v1, . . . , vn ∈ V, ord(∥∇∥(v1, . . . , vn)) ≥ min{ord(v1), . . . , ord(vn)}.

Proof. The conjunction/disjunction of truth values that are greater than or equal to 0 re-
turns a truth value that is greater than or equal to 0 (since the ϵ operator does not change
the polarity of a truth value). Similarly for negative truth values. The third statement holds
because ϵ increases the order of its argument.

In the following example, we illustrate the existence of operators that are non-definable
using ∧, ∨ and ϵ.

Example 2.10. Consider the following operator:

∥isClassicalTrue∥(v) =

{
F0, if v < T0

T0, if v = T0

The above function is monotonic and continuous. However, it is not definable solely with
∧, ∨ and ϵ, since for all truth values that are greater than or equal to 0 (except for T0), it
returns a negative truth value. Consider now the following function:

∥prev∥(v) =

F0, if v = F0

Fi−1, if F0 < v < 0

0, if v = 0

Ti−1, if 0 < v < T0

T0, if v = T0

Again, this function is alsomonotonic and continuous but it is not definable solely with∧, ∨
and ϵ, since the ϵ operator increases the order of its parameter (Case 3 of Proposition 2.8).

It is an interesting research direction to investigate formalisms that are easy to use and
that guarantee the definition of monotonic and continuous preference operators that are
beyond the class of those definable solely with ∧, ∨ and ϵ. We will discuss this possibility
in Chapter 8.

A. Troumpoukis 52

Extensions of Logic Programming for Preference Representation

2.5 Expressiveness of PrefLog Programs
In this section, we discuss the expressive power of our language. In PrefLog preferences
are expressed using preference operators, whose denotations are functions Vn → V,
where V is a totally ordered set such that a greater value corresponds to a greater de-
gree of interest or to a greater preference. Regarding the expressiveness of PrefLog, a
question that arises is whether there exist types of preferences that cannot be expressed
using PrefLog operators. To begin with, consider the following example:

Example 2.11. Consider a consumer that wants to rank hotels for summer vacations
based on their price per night and the distance from the sea. In addition, assume that
the consumer travels on a budget, therefore the former criterion is more important than
the latter. That is, cheap hotels will always be preferred over expensive ones, and if two
hotel rooms cost the same price, then the consumer will want the one which is closer to
the sea.

These types of preferences are known in the literature as lexicographic preferences.
The term lexicographic refers to the fact that these types of comparisons resemble the
comparison of two words in a dictionary; given two words, we compare their first letters,
and only if they are the same we continue to compare the next and so on. In the following
definition, we define the notion of lexicographic comparison. Without loss of generality,
we will focus on pairs.

Definition 2.18. Let V be a totally ordered set and (x1, x2), (y1, y2) ∈ V × V . We write
(x1, x2) >lex (y1, y2) iff either of the following propositions holds:

• x1 > y1 or

• x1 = y1 and x2 > y2.

A function that represents a lexicographic preference should have the following property.
Again, without loss of generality, we will focus on binary functions.

Definition 2.19. Let V be a totally ordered set, x,y ∈ V × V and f : V × V → V . We
say that f is a lexicographic function, if it holds x >lex y =⇒ f(x) > f(y).

A distinctive feature of lexicographic preferences is that they cannot be modeled using
a real-valued preference function [67]. For instance, a function that has the form of a
weighted summation cannot be used, because no matter how we try to increase the
weight of the first argument, an appropriately chosen second argument can reverse the
outcome. In the following, we show that this behavior is also transferred to the case of
PrefLog.

Lemma 2.1. Let V be a totally ordered set, and f : V × V → V be a lexicographic
function. Then, f is also a 1-1 function.

Proof. Suppose that f is not a 1-1 function. Therefore, there exist some x, y ∈ V × V
such that x ̸= y and f(x) = f(y). Notice that it must hold either x <lex y or x >lex y. Let
x <lex y. Then, by Definition 2.19 it must be f(x) < f(y). Let x >lex y. Again, using the
same definition it must be f(x) > f(y). We reached a contradiction, therefore f must be
a 1-1 function.

53 A. Troumpoukis

Extensions of Logic Programming for Preference Representation

Proposition 2.9. There does not exist any lexicographic function f : V× V→ V.

Proof. Suppose that there exists such a function. Then, according to the definition of V
and Definition 2.19 it holds

f(F0, u) < f(F1, F0) < f(T1, T0) < f(T0, v)

for all u, v ∈ V. We can distinguish the following cases:

• Suppose that f(F1, F0) < 0. Then, f(F1, F0) = Fk for some k ∈ N. Then, |{f(F0, u) :
u ∈ V}| = k. Since S = {(F0, u) : u ∈ V} is infinite we deduce that there exists
(at least) two elements x,y ∈ S such that f(x) = f(y) (Pigeonhole Principle).
Therefore, f is not a 1-1 function. Contradiction, due to Lemma 2.1.

• Suppose that f(F1, F0) ≥ 0. Then, f(T1, T0) = Tk for some k ∈ N. Then, |{f(T0, v) :
v ∈ V}| = k. Since S = {(T0, v) : v ∈ V} is infinite we deduce that there exists
(at least) two elements x,y ∈ S such that f(x) = f(y) (Pigeonhole Principle).
Therefore, f is not a 1-1 function. Contradiction, due to Lemma 2.1.

Therefore, there does not exist such a function f .

The above proposition suggests that PrefLog programs cannot capture the full power of
preference relations due to the form of the underlying set of truth values. More specifi-
cally, since there does not exist any lexicographic function f : V×V→ V, there does not
exist any lexicographic preference PrefLog operator as well. A future extension of Pre-
fLog that would support lexicographic preferences would possibly require an extension
of the set V. We will further discuss this prospect in Chapter 8.

2.6 Summary
In this chapter, we introduced PrefLog, an extension of classical logic programming that
supports preference operators. The semantics of these operators are functions Vn →
V, where n > 0 and V is an infinite set of truth values. This set contains infinite truth
values that are “less true” than standard truth, and infinite values that are “less false” than
standard falsity. These different levels of truth values correspond to different degrees of
preferences.

We demonstrated that if the denotations of the operators are continuous over this infinite-
valued underlying domain V, then the programs of the new language are guaranteed to
retain the desirable properties of classical logic programming — most notably the exis-
tence of a minimum Herbrand model. In addition, we equipped PrefLog with a set of
simple preference operators, including two special ones that have the intuitive meaning
“optionally” and “alternatively” respectively. We also described a simple approach for
building new continuous operators, and we illustrated the use of preferential operators in
various example programs.

Finally, we closed this chapter by discussing briefly the expressiveness of our language.
PrefLog programs can model quantitative preference functions over the set V. However,
since V does not support lexicographic functions, PrefLog cannot be used for expressing
lexicographic preferences.

A. Troumpoukis 54

Extensions of Logic Programming for Preference Representation

3. EVALUATION OF A FUNCTION-FREE CLASS OF PREFLOG
PROGRAMS

In this chapter, we introduce a terminating bottom-up evaluationmethod for a well-defined
class of function-free PrefLog programs. We demonstrate the correctness of this tech-
nique as well as the fact that the evaluation process terminates for any program that
belongs to this class. Ensuring termination is not a straightforward task, because the un-
derlying truth domain and the set of all possible interpretations of a function-free PrefLog
program are both infinite.

3.1 Overview

In the previous chapter, we introduced PrefLog, a first-order logic programming language
that uses an infinite set of truth values and a finite set of arbitrary continuous operators.
PrefLog programs include two “levels” of infinity; first, a PrefLog program P has an infinite
Herbrand base BP; and second, each atom of BP can receive a value taken from the
infinite set V. Due to this characteristic, the evaluation of PrefLog programs can cause
termination problems, a phenomenon that will be discussed thoroughly throughout the
chapter.

We reduce our focus in a class of PrefLog programs that do not contain any function
symbols. Roughly speaking, this fragment of PrefLog is the preferential analogue of Dat-
alog [75]. Unlike Prolog, the ground instantiation of a Datalog program is finite, therefore
a bottom-up evaluation of a Datalog program is guaranteed to terminate. However, ter-
mination cannot be ensured in the case of naive bottom-up evaluation for function-free
PrefLog programs; during the evaluation process, an atom may obtain an infinite set of
truth values, and this may result in non-termination. In this chapter, we propose a bottom-
up evaluation technique that exploits an important property of the PrefLog fragment of
our interest and as a result, this technique is guaranteed to terminate for every program
in this fragment.

The rest of the chapter is organized as follows: in Section 3.2, we define {ϵ,∧}-programs,
the function-free PrefLog fragment of our interest; in Section 3.3 we introduce our termi-
nating bottom-up proof procedure for {ϵ,∧}-programs; in Section 3.4 we make a brief
discussion of the implementations of the above techniques, and finally, we close with a
brief summary of the chapter.

3.2 The Class of {ϵ,∧}-programs

In this section, we define the class of {ϵ,∧}-programs, which is a subset of the class
of general PrefLog programs. We then demonstrate that every such program has the
property that its least model does not contain a gap. This property allows us to tackle
termination problems. For instance, in the next section, we will demonstrate that the least
fixed point of such gapless programs can be computed in a finite number of steps.

3.2.1 {ϵ,∧}-programs

Throughout the previous chapter, we have been studying the ground instantiation of Pre-
fLog programs. In this chapter, we additionally assume that the ground instantiation con-
sists of a finite number of rules. Intuitively, this means that the initial (first-order) PrefLog
program does not contain any function symbols (that would make the ground instantiation

55 A. Troumpoukis

Extensions of Logic Programming for Preference Representation

infinite). Moreover, apart from focusing on function-free PrefLog programs, we impose
yet another restriction; we reduce the set of preference operations to ϵ and ∧ only. As
we will discuss shortly, these restrictions are not quite severe, but on the contrary, this
class of programs actually serves as a normal-form of almost all programs of the previous
chapter. We formally define the exact class of programs in the following definition.

Definition 3.1. A {ϵ,∧}-program is a finite set of rules of one of the following forms:

1. A← true

2. A← A1 ∧ · · · ∧ An ∧ ϵB1 ∧ · · · ∧ ϵBm

where the A, Ai for all 1 ≤ i ≤ n and Bj for all 1 ≤ i ≤ m are ground atoms.

In the previous chapter, we discussed that there exist valid preference operators that
cannot be defined using ∧, ∨ and ϵ. However, the programs that we have used in the
examples of the previous chapter are all constructed using operators that have been
built using the three basic operators ∧, ∨ and ϵ. The following example illustrates that
the ground instantiation of every PrefLog program that we have examined so far, can be
transformed into an equivalent {ϵ,∧}-program through a preprocessing that introduces
new propositional atoms.

Example 3.1. Consider the following program that consists of a single rule:

p ← q ∨ alt r ∨ alt2 s

We first eliminate the alt and alt2 operators by using the equivalent formulas involving
conjunction and ϵ:

p ← q ∨ (r ∧ ϵ r) ∨ (s ∧ ϵ2 s)

We then eliminate the ϵ2 operator by using the equivalence ϵ2 s ≡ ϵ (ϵ s):

p ← q ∨ (r ∧ ϵ r) ∨ (s ∧ ϵ (ϵ s))

We now use multiple rules in order to eliminate disjunctions:

p ← q
p ← r ∧ ϵ r
p ← s ∧ ϵ (ϵ s)

We can now eliminate the remaining pairs of parentheses by introducing extra proposi-
tional symbols:

p ← q
p ← r ∧ ϵ r
p ← s ∧ ϵ w
w ← ϵ s

The above is a valid {ϵ,∧}-program.

Provided that a PrefLog program can be transformed into a finite propositional program
(this happens for instance in function-free PrefLog programs), and provided that every
preference operator that is used in the program can be rewritten into a finite formula
that uses only the operators ∧,∨ and ϵ, this program can be transformed into a finite
{ϵ,∧}-program using the procedure of Example 3.1.

A. Troumpoukis 56

Extensions of Logic Programming for Preference Representation

3.2.2 The Gapless Property of {ϵ,∧}-programs

In this subsection we will demonstrate a crucial property of {ϵ,∧}-programs regarding
their minimummodel, namely that every {ϵ,∧}-program is gapless. We begin by defining
the notion of a gap.

Definition 3.2. Let I be an interpretation of a {ϵ,∧}-program P. We say that I contains
a gap at order δ ∈ N if:

• For every 0 ≤ n < δ, there exists at least one atom A ∈ BP such that ord(I(A)) = n.

• There does not exist any atom A ∈ BP such that ord(I(A)) = δ.

• There exists an atom A ∈ BP such that δ < ord(I(A)) <∞.

For example, notice that the interpretations {(p, F0), (q, T1)}, {(p, 0)} and {(p, T0), (q, 0)}
do not contain a gap; on the other hand, notice that the interpretations {(p, T0), (q, T2)},
{(p, T1), (q, F1)} and {(p, F2), (q, 0)} contain a gap (at orders 1, 0 and 0 respectively).
We will refer to PrefLog programs that their minimum model does not contain a gap as
gapless programs.

In the following proposition, we show that every {ϵ,∧}-program is gapless.

Proposition 3.1. Let P be a {ϵ,∧}-program. Then, MP does not contain a gap.

Proof. Let M = MP be the least model of P and assume that it contains a gap at order
δ ∈ N. We establish a contradiction by constructing a modelM∗ of P such thatM∗ < M .
We define the following interpretation:

M∗(A) =

Tr+1, if M(A) = Tr, r > δ

Fr−1, if M(A) = Fr, r > δ

M(A), otherwise.

Obviously, M∗ < M (since in M∗ all values with finite order greater than δ have been
decreased). For the sake of contradiction, we have to show that M∗ is also a model of
P, i.e., that M∗ satisfies every rule of P.

First, notice that M∗ satisfies the rules of the form (A ← true) because, since M sat-
isfies such rules, it is M(A) = T0 and by the definition of M∗ it is also M∗(A) = T0.
Consider now a rule A ← A1, . . . ,An, ϵB1, . . . , ϵBk. Since M is a model of P, M(A) ≥
min

{
M(A1), . . . ,M(An), ∥ϵ∥M(B1), . . . , ∥ϵ∥M(Bk)

}
. We show that M∗ also satisfies the

above rule. We distinguish cases based on the value of M(A). We define:

v = min
{

M(A1), . . . , M(An), ∥ϵ∥M(B1), . . . , ∥ϵ∥M(Bk)
}
,

v∗ = min
{

M∗(A1), . . . , M
∗(An), ∥ϵ∥M∗(B1), . . . , ∥ϵ∥M∗(Bk)

}
The cases are as follows:

• M(A) = Fr with r < δ. Since M is a model of P, we have v ≤ Fr. By the definition
of M∗ we conclude that it also holds that v∗ ≤ Fr.

57 A. Troumpoukis

Extensions of Logic Programming for Preference Representation

1: procedure NaiveEvaluation(P)
2: I(A) ..= F0, for all A ∈ BP.
3: repeat
4: I ′ ..= I
5: I(A) ..= max{I(B) : (A← B) ∈ P}, for all A ∈ BP.
6: until I ′ = I
7: return I
8: end procedure

Figure 3.1: Naive evaluation strategy for {ϵ,∧}-programs.

• M(A) = Tr with r < δ or M(A) = 0. The proofs for these two cases are similar to
the one for the previous case.

• M(A) = Fr with r > δ. By the definition of M∗ we have that M∗(A) = Fr−1. Since
M is a model of P, we have v ≤ Fr. Now, if v = Fr, we have v∗ = Fr−1; if v < Fr

then v∗ < Fr. In every case, it holds that M∗(A) ≥ v∗ and therefore M∗ satisfies
this rule.

• M(A) = Tr with r > δ. By the definition of M∗ we have that M∗(A) = Tr+1. Since
M is a model of P, we have v ≤ Tr. Now, if v = Tr, we have v∗ ≤ Tr+1; if v < Tr

then v∗ < Tr. In every case, it holds that M∗(A) ≥ v∗ and therefore M∗ satisfies
this rule.

Since M∗ satisfies every rule of P, M∗ is also a model of P (contradiction). Therefore,
MP can not contain a gap.

The above proposition will play an important role in the evaluation of {ϵ,∧}-programs.
More specifically, the gapless property allows us to modify the usual naive bottom-up
evaluation such that the minimum model of a {ϵ,∧}-program can be computed in a finite
number of steps.

3.3 Bottom-up Evaluation

In this section, we focus on the bottom-up evaluation of PrefLog programs. We start
by discussing why the usual naive bottom-up evaluation is not adequate even for very
simple PrefLog programs. We then reduce our focus into {ϵ,∧}-programs and we derive
a terminating bottom-up procedure for their evaluation.

3.3.1 Inadequacy of Naive Evaluation

Consider PrefLog programs that consist of a finite number of ground rules. The most
direct way of evaluating the minimum model of a program P in a bottom-up manner is to
mimic the computation of the least fixed point of the TP operator of the program (cf. Fig-
ure 3.1). If the source program P was a classical Datalog one, the process of Figure 3.1
would terminate in a finite number of steps, since BP is finite (and in a finite number of
steps all the true atoms would be produced). In our case though, the Herbrand base is
also finite, but in contrast, the number of possible interpretations of a program is infinite
(since each atom can be assigned a truth value from the infinite set V).

A. Troumpoukis 58

Extensions of Logic Programming for Preference Representation

Example 3.2. Consider again the following program:

p ← ϵ p.

As we saw in Example 2.4, an infinite number of steps is required in order to compute
the least model of the above program. In addition, consider the program:

q ← opt r
r ← opt q

Again, the above program, which is derived from Example 2.7, behaves in a similar way.

The above example suggests that the naive bottom-up evaluation is not guaranteed to
converge in a finite number of steps for every function-free PrefLog program, due to the
infinity of the underlying truth domain. In order to devise a terminating bottom-up proce-
dure, we have to make two basic assumptions. First, we have to consider a fixed set of
preference operators with a known behavior; considering arbitrary continuous operators,
is far too general since their behavior can be arbitrarily complex. Second, we have to
simplify somehow the syntax of our source language. The class of {ϵ,∧}-programs that
was defined in the previous section satisfies these two requirements.

3.3.2 Terminating Bottom-up Evaluation of {ϵ,∧}-programs

In this subsection, we define a terminating bottom-up evaluation procedure for the class
of {ϵ,∧}-programs. The fact that these programs are gapless offers us a termination
criterion; this criterion is the appearance of a gap during the evaluation process.

An idea for computing the least fixed point of a {ϵ,∧}-program P in a finite number of
steps using the gapless property, is to iterate the TP operator until an interpretation that
contains a gap is produced. In such a case, all the atoms that have a value with an order
that is above the gap are set to the 0 truth value. Unfortunately, this simple procedure
does not work, as the following example illustrates.

Example 3.3. Consider the following program:

p ← ϵ p.
q ← r.
r ← s.
s ←.

The minimummodel of this program is constructed by iterating the TP operator as follows:

{(p, F0), (q, F0), (r, F0), (s, F0)}
{(p, F1), (q, F0), (r, F0), (s, T0)}
{(p, F2), (q, F0), (r, T0), (s, T0)}

Notice that the last interpretation above has a gap at order 1. However, it would be wrong
to stop the iterations at this point. Actually, one more iteration of the TP operator gives
the following interpretation:

{(p, F3), (q, T0), (r, T0), (s, T0)}

59 A. Troumpoukis

Extensions of Logic Programming for Preference Representation

1: procedure TerminatingEvaluation(P)
2: n ..= 0
3: S ..= BP
4: repeat
5: I(A) ..= Fn, for all A ∈ S
6: repeat
7: I ′ ..= I
8: I(A) ..= max{I(B) : (A← B) ∈ P}, for all A ∈ BP
9: until I ′(A) = I(A), for all A ∈ BP such that ord(I(A)) = n
10: S ′ ..= {A : A ∈ BP, ord(I(A)) = n}
11: if S ′ = {} then
12: I(A) ..= 0, for all A ∈ S
13: S ..= {}
14: else
15: S ..= S − S ′

16: end if
17: n ..= n+ 1
18: until S = {}
19: return I
20: end procedure

Figure 3.2: Terminating evaluation strategy for {ϵ,∧}-programs.

Further iterations of the TP will only affect the variable p which will eventually converge
to 0. In other words, the correct model for the above program is:

{(p, 0), (q, T0), (r, T0), (s, T0)}

Looking at the above steps, one understands that it is not correct to stop immediately
when a gap appears. Obviously, a more sophisticated approach needs to be followed.

Example 3.3 illustrates that the evaluation process should not be stopped unless the set
of all atoms that contain values of order 0 (namely F0, T0 stabilizes. By generalizing this
idea, we can come up with a proof procedure that guarantees the correct calculation of
the minimum model MP and at the same time termination in a finite number of steps.
This procedure can informally be described as follows. As a first approximation to MP,
we start with the interpretation that assigns to every atom of BP the value F0 (as already
mentioned, this interpretation is denoted by ∅). We start iterating the TP on ∅ until both the
set of atoms that have a F0 value and the set of atoms having a T0 value, stabilize (as we
are going to discuss below, this is guaranteed to happen in a finite number of steps). We
keep all these atoms whose values have stabilized and reset the values of all remaining
atoms to the next false value (namely F1). The procedure is repeated until the F1 and T1

values stabilize, and we reset the remaining atoms to a value equal to F2, and so on. As
we repeat this procedure, two possible outcomes can eventually happen: one possibility
is that, since the Herbrand Base of P is finite, the procedure will terminate after all atoms
have stabilized to some value different than 0; in this case, we have reached the desired
fixed point. The second possible outcome that can happen is that at the k-th stage of
the bottom-up evaluation, this process will not produce any new atoms having Fk or Tk

values. At this point, we stop the iterations and reset the truth value of all the atoms that

A. Troumpoukis 60

Extensions of Logic Programming for Preference Representation

have not yet received a value, to 0. We present this algorithm in a more compact way in
Figure 3.2.

Example 3.4. Continuing Example 3.3, after we have reached the interpretation:

{(p, F3), (q, T0), (r, T0), (s, T0)}

further iterations of the TP will not affect the values of order 0. In other words, we have
reached a fixed point with respect to the atoms that have values of order 0. We reset the
value of the variable p to F1 getting the interpretation:

{(p, F1), (q, T0), (r, T0), (s, T0)}

One further iteration of the TP operator gives:

{(p, F2), (q, T0), (r, T0), (s, T0)}

The above interpretation contains a gap at order 1. We stop the iterations and reset the
value of p to 0, getting:

{(p, 0), (q, T0), (r, T0), (s, T0)}

It can be easily seen that this is the least Herbrand model of the program.

Example 3.5. Consider the following more complex example:

r ← ϵ r.

q0 ← p0,0 ∧ p0,1 ∧ · · · ∧ p0,n.
q1 ← p1,0 ∧ p1,1 ∧ · · · ∧ p1,n.

· · ·
qn ← pn,0 ∧ pn,1 ∧ · · · ∧ pn,n.

p0,1 ← p0,0. p0,2 ← p0,1. · · · p0,n ← p0,n−1.
p1,1 ← p1,0. p1,2 ← p1,1. · · · p1,n ← p1,n−1.

· · · · · · · · ·
pn,1 ← pn,0. pn,2 ← pn,1. · · · pn,n ← pn,n−1.

p0,0.
p1,0 ← q0 ∧ ϵ q0.
p2,0 ← q1 ∧ ϵ q1.

· · ·
pn,0 ← qn−1 ∧ ϵ qn−1.

The evaluation process proceeds as follows. First, we begin with the interpretation ∅,
which assigns F0 to all atoms:{

(r, F0), (q0, F0), . . . , (qn, F0),
(p0,0, F0), . . . , (p0,n, F0), . . . , (pn,0, F0), . . . , (pn,n, F0),

}
In the first TP iteration, the atom p0,0 receives the value T0 (due to the existence of the
fact p0,0.); the i-th TP iteration (where 1 < i ≤ n) assigns T0 to p0,i (due to the existence
of the rule p0,i ← p0,i−1.); the (n + 1)-th TP iteration assigns T0 to q0 as well (due to the

61 A. Troumpoukis

Extensions of Logic Programming for Preference Representation

existence of the rule q0 ← p0,0 ∧ . . . ∧ p0,n.); and after that, the atoms that receive the
values F0 and T0 stabilize, therefore we get the following interpretation:

(r, Fn+2), (q0, T0), (q1, F0), . . . , (qn, F0),
(p0,0, T0), . . . , (p0,n, T0), (p1,0, T1), (p1,1, F0), . . . , (p1,n, F0),

(p2,0, F0), . . . , (p2,n, F0), . . . , (pn,0, F0), . . . , (pn,n, F0),

Now, we reset the atoms that contain values other than F0 and T0 (namely the atoms p1,0
and r) to the value F1. We iterate the TP as previously; at first, the atom p1,0 receives the
value T1 (due to the existence of the rule p1,0 ← q0 ∧ ϵ q0); then the atoms p1,0, . . . p1,n and
q1 receive the value T1 as previously; finally the values F1 and T1 stabilize and therefore
we result to the following interpretation:

(r, Fn+3), (q0, T0), (q1, T0), (q2, F0), . . . , (qn, F0),
(p0,0, T0), . . . , (p0,n, T0), (p1,0, T1), . . . , (p1,n, T1),

(p2,0, T2), (p2,1, F0), . . . , (p2,n, F0), . . . , (pn,0, F0), . . . , (pn,n, F0),

This process is repeated until all atoms of the form pi,j and qi, for all 0 ≤ i, j ≤ n receive
a positive truth value. In particular, in the step where the values of order i stabilize, the
atoms pi,0, . . . pi,n and qi receive the value T1. When the values Fn, Tn stabilize, we reach
to this interpretation:{

(r, F2n+2), (q0, T0), (q1, T1), . . . , (qn, Tn),
(p0,0, T0), . . . , (p0,n, T0), . . . , (pn,0, Tn), . . . , (pn,n, Tn),

}
If we repeat the process one more time, the resulting interpretation will contain a gap at
order n+ 1. As a result, we can set the value 0 in r:{

(r, 0), (q0, T0), (q1, T1), . . . , (qn, Tn),
(p0,0, T0), . . . , (p0,n, T0), . . . , (pn,0, Tn), . . . , (pn,n, Tn),

}
Notice that the final interpretation is the minimum model of the program.

As we illustrate in Proposition 3.2, the Bottom-up Evaluation of Figure 3.2 is a terminating
algorithm for {ϵ,∧}-programs. Moreover, we will discuss the correctness of this algorithm
in the next subsection.

Proposition 3.2. The algorithm of Figure 3.2 terminates in a finite number of steps for
any given {ϵ,∧}-program P.

Proof. Notice that the algorithm consists of two loops, that is the inner loop (lines 6-9)
and the outer loop (lines 4-18). In order to prove that the algorithm terminates, we have to
prove that both loops terminate. Suppose that the inner loop is infinite. Since BP is finite,
the set of atoms that will eventually receive truth values of order n is finite. Therefore,
there must be some atom A ∈ BP such that it receives Tn or Fn in an infinite number of
steps. Since the only available operators are the operators ϵ and ∧, we conclude P must
contain an infinite number of clauses (contradiction). Therefore, the inner loop is finite.
The outer loop is also finite because the inner loop is finite and the set S remains finite
(it is initialized with the elements of BP and it always decreases).

A. Troumpoukis 62

Extensions of Logic Programming for Preference Representation

3.3.3 Correctness of Terminating Bottom-up Evaluation
In this subsection, we provide a correctness proof for the terminating bottom-up evalua-
tion algorithm of Figure 3.2.

Theorem 3.1. The algorithm of Figure 3.2 correctly computes the least modelMP of any
given {ϵ,∧}-program P.

The intuition behind the proof can be described as follows. It can be demonstrated that
the TP operator of a {ϵ,∧}-program P has the property of being k-monotonic for all k ∈
N. The notion of k-monotonicity was initially described in order to formalize the model-
theoretic semantics of well-founded negation [64] and it was later extensively studied
in the case of a general fixed-point theorem for non-monotonic functions [26]. Roughly
speaking, the fact that TP is k-monotonic means that when given two interpretations I and
J that agree on the values of atoms of order less than k and I is “less than” J in the truth
values of level k, then TP(I) is “less than” TP(J) in the truth values of level k. Based on
this property we demonstrate that the above procedure produces at each inner step the
same truth values as those that exist inMP. Since the algorithm correctly computes each
level of truth values and since we know that the minimum model of any {ϵ,∧}-program
does not contain a gap, we realize that as soon as a gap is found by the above procedure,
this implies that the atoms that have a value above the gap, will have the value 0 in the
minimum model MP.

In order to establish Theorem 3.1 (i.e., in order to demonstrate the correctness of the
bottom-up procedure), we need some background material from [64] and [26]. In the
rest of this section, when we refer to “a program” we mean a “{ϵ,∧}-program”.

Definition 3.3. [64] Let P be a program, I an interpretation of P, v ∈ V and n ∈ N. We
define: I ∥ v = {A ∈ BP | I(A) = v}.

The following relations on interpretations are also needed:

Definition 3.4. [64] Let I and J be interpretations of a program P and n ∈ N. We write
I =n J , if for all k ≤ n, I ∥ Tk = J ∥ Tk and I ∥ Fk = J ∥ Fk.

Definition 3.5. [64] Let I and J be interpretations of a program P and n ∈ N. We write
I ⊏n J , if for all k < n, I =k J and either I ∥ Tn ⊂ J ∥ Tn and I ∥ Fn ⊇ J ∥ Fn, or
I ∥ Tn ⊆ J ∥ Tn and I ∥ Fn ⊃ J ∥ Fn. We write I ⊑n J if I =n J or I ⊏n J . We write
I ⊏ J , if there exists n ∈ N such that I ⊏n J . We write I ⊑ J if either I = J or I ⊏ J .

Recall that by IP we denote the set of infinite-valued interpretations of a program P. It is
easy to see [64] that the relation ⊑ on IP is a partial order (i.e., it is reflexive, transitive
and antisymmetric).

Definition 3.6. [26] Let P be a program and let n ∈ N. Let X ⊆ IP be a non-empty set
of interpretations of P and assume that for all I, J ∈ X it holds that I =k J for all k < n.
Let I be an arbitrary element of X . We define:

(
⊔
n

X)(A) =

I(A), if ord(I(A)) < n

Tn, if there exists J ∈ X with J(A) = Tn

Fn, if for all J ∈ X , J(A) = Fn

Fn+1, otherwise.

63 A. Troumpoukis

Extensions of Logic Programming for Preference Representation

Notice that the first case in the above definition is well-defined because all the elements
of X agree on the truth values of order less than n.

Definition 3.7. [26] Let P be a program and let n ∈ N. Then, TP is called n-monotonic
if for all I, J ∈ IP, if I ⊑n J then TP(I) ⊑n TP(J). Moreover, TP is called n-continuous if
it is n-monotonic and for all sequences (Ik)k≥0 of interpretations such that for all k ≥ 0,
Ik ⊑n Ik+1, it holds that TP(

⊔
n{Ik : k ≥ 0}) =n

⊔
n{TP(Ik) : k ≥ 0}.

Based on the above material, we can now prove the following proposition that concerns
{ϵ,∧}-programs:

Proposition 3.3. The TP operator of a {ϵ,∧}-program P is n-continuous for all n ∈ N.

Proof. By Corollary 7.8 and Lemma 7.12 of [26], if the TP operator of a program uses in
its body only operations that are n-continuous for all n ∈ N, then TP is also n-continuous
for all n ∈ N; the notion of n-continuity for operators is similar to that defined above for
TP (see Subsection 5.2 of [26] for the definition of the appropriate orderings on the set
V and Definition 6.3 of the same article for the definition of n-continuity of functions over
the set V). The operator ∧ is n-continuous for all n ∈ N (see [26][Lemma 7.10]) and it is
a straightforward task to establish that ϵ also has the same property. Therefore, the TP
operator of {ϵ,∧}-programs is n-continuous for all n ∈ N.

When the TP operator is n-continuous for all n ∈ N, we can find its least fixed point with
respect to ⊑ with a construction that first stabilizes the order 0 values, then the order
1, and so on. This procedure is formally expressed by a construction described by the
following theorem (which specializes to our setting the much more general Theorem 6.6
(see also Remark 6.5) of the article [26]). Actually, the limit of this construction is the
least (with respect to the relation ⊑) among all models of P (see Theorem 4 of [25]).

Theorem 3.2. [26] Let P be a {ϵ,∧}-program. Consider the following doubly indexed
sequence of interpretations of P:

I0,0 = ∅
In,m+1 = TP(In,m)
In,ω =

⊔
n{In,m : m ∈ N}

In+1,0 = In,ω

Define the following infinite-valued interpretation NP of P:

NP(A) =

Tn, if In,ω(A) = Tn

Fn, if In,ω(A) = Fn

0, otherwise

Then, NP is the least fixed point of TP with respect to ⊑. Moreover, NP is the least model
of P with respect to ⊑.

Notice that the construction of the interpretation NP in the above theorem is actually
identical to the construction performed by the bottom-up algorithm given in Figure 3.2.
What remains to be shown is that NP is exactly the same interpretation as MP:

A. Troumpoukis 64

Extensions of Logic Programming for Preference Representation

Lemma 3.1. Let P be a {ϵ,∧}-program and let MP and NP be the least fixed points of TP
with respect to ≤ and ⊑ respectively. Then, MP = NP.

Proof. By Theorem 2.2, it holds that MP ≤ M for all models M of P. Since by The-
orem 3.2 NP is also a model of P, we get that MP ≤ NP. However, this implies (see
Lemma 4.13 of [64]) that MP ⊑ NP. Since NP is the least model of P with respect to ⊑,
we also get that NP ⊑MP, and therefore NP = MP.

The above discussion together with the above lemma implies that Theorem 3.1 holds.

3.4 Implementation

An implementation of the bottom-up technique that we proposed in this chapter is avail-
able [82]. This implementation uses as its basis the bottom-up Datalog system IRIS2.
This implementation supports the preference operators ∧, ∨, ϵ, opt, and alt and imple-
ments a Terminating Naive Bottom-up evaluation strategy (similar to that of Figure 3.2)
and a Terminating Semi-Naive Bottom-up evaluation strategy, which extends the stan-
dard Semi-Naive evaluation of Datalog (cf. [82] for details).

Apart from the bottom-up implementation, we have implemented a transformation3 of the
PrefLog programs [72]. The basic idea of the transformation is to introduce an additional
argument in every atom of the original program. This additional argument corresponds to
the truth value thatMP assings in the original atom. For instance, in the context of {ϵ,∧}-
programs, for every propositional atom A we create a unary predicate A, such that the
query ← A(V) returns V = v if MP(A) = v. Roughly speaking, such a Prolog translation
consists of three main parts; first, a set of Prolog rules, obtained directly from the rules
of the original program, that is used to compute the corresponding truth value; second,
a set of Prolog rules that are used for obtaining the correct truth value for each atom
among all values computed by the rules of the first part; and finally, a set of Prolog rules
that correspond to the preference operators that are present in the original program. The
implementation of the transformation is approximately 350 lines of Prolog code and is
realized for the XSB system4.

3.5 Summary

In this chapter, we focused on an evaluation technique for PrefLog programs. Since gen-
eral PrefLog programs naturally introduce two levels of infinity (i.e., an infinite set of atoms
can obtain an infinite set of values) we reduced our focus in a large and well-behaved
subset of function-free fragment of PrefLog, denoted as “{ϵ,∧}-programs”, which is the
preferential analogue of Datalog.

We demonstrated that terminating bottom-up evaluation can be performed for a {ϵ,∧}-
programs. This result is not obvious: despite the fact that the Herbrand Base of the
programs we consider is finite, an atom may obtain an infinity of truth values during
bottom-up evaluation, resulting in possible non-termination. For this reason, we devised
a bottom-up execution strategy in which the atoms converge in levels until either the

2 cf. http://www.iris-reasoner.org/
3 cf. http://bitbucket.org/antru/preflog
4 cf. http://xsb.sourceforge.net/

65 A. Troumpoukis

http://www.iris-reasoner.org/
http://bitbucket.org/antru/preflog
http://xsb.sourceforge.net/

Extensions of Logic Programming for Preference Representation

atoms are exhausted or a “gap” in the produced set of atoms is found (which signals that
the iterations should stop). We demonstrated that the interpretation produced by this
procedure coincides with the least model of the program.

A. Troumpoukis 66

Extensions of Logic Programming for Preference Representation

4. EXPRESSING PREFERENCES USING HIGHER-ORDER LOGIC
PROGRAMMING

In this chapter, we propose the use of higher-order logic programming as a logical frame-
work for expressing qualitative preferences. Our approach extends a seminal work by
Chomicki [17, 80] and provides a uniform framework in which relations, preferences be-
tween tuples, preferences between sets of tuples and operations on preferences are
expressed in the same, higher-order logic programming language.

4.1 Overview

The starting point of our research is an influential proposal by J. Chomicki [17] for repre-
senting qualitative preferences in the context of relational database systems. Chomicki’s
approach is based on the following two ideas:

• Preferences between tuples of a database relation are specified using binary pref-
erence relations; these relations are defined using first-order formulas, called pref-
erence formulas.

• A new relational algebra operator is introduced. This operator is called winnow and
takes two parameters; a database relation and a preference formula. The winnow
operator selects from its input relation the most preferred tuples according to the
given preference formula.

The approach advocated by Chomicki, despite groundbreaking, has certain limitations
(some of which are recognized and discussed in his paper [17]). First of all, in this frame-
work, only intrinsic preference formulas can be defined, namely formulas that establish
the preference relation between two tuples solely on the basis of the values occurring in
these tuples. Second, the preference relations and the preference queries are expressed
in two different languages, namely, first-order logic and SQL extended with the winnow
operator, which makes the approach less uniform. Finally, there is no way to define di-
rectly other operators apart from winnow (such as, for example, an operator that returns
the second-best tuples from a given relation according to a preference formula).

In this chapter, we propose the use of higher-order logic programming as a logical frame-
work that remedies all the above deficiencies. The key idea behind our proposal is that
since preferences are relations, and since we need to define operators over relations
(such as winnow), and some times even preferences over sets, a higher-order language
can offer increased representation capabilities. In particular, we demonstrate that higher-
order logic programming can be used to express both intrinsic and extrinsic preference
formulas, it can represent both preference relations as-well-as queries, and it can be
used to define a variety of interesting alternative operators beyond winnow.

We argue that higher-order logic programming is a very expressive framework for rep-
resenting and manipulating qualitative preferences. A significant advantage of our ap-
proach is that preference formulas as-well-as operators that are parameterized with such
formulas can be expressed in the same language. Moreover, the seemingly more de-
manding case of preferences over sets [80] can be handled without extra notational
overhead because preferences over sets are essentially second-order relations and can,
therefore, be encoded easily in our higher-order language. Finally, we identify a new and

67 A. Troumpoukis

Extensions of Logic Programming for Preference Representation

significant (in our opinion) application area for higher-order logic programming. Higher-
order logic programming has been around for many years [15, 52, 77] and it has recently
been given a standard denotational and proof-theoretic semantics [10, 11, 12, 61]. We
feel that higher-order logic programming deserves to be further developed and used since
it extends in an elegant way the framework of classical logic programming.

The rest of the chapter is organized as follows: in Section 4.2 we present the main con-
cepts behind the work of J. Chomicki [17] and its extension for preferences between
sets [80]; in Section 4.3 we outline the basic notions regarding higher-order logic pro-
gramming; in Section 4.4 we demonstrate how higher-order logic programming can be
used to concisely represent and manipulate preferences and how it bypasses the main
shortcomings of the framework of Chomicki [17]; in Section 4.5 we demonstrate that the
proposed higher-order logic programming approach can also be used to elegantly rep-
resent preferences over sets of tuples; and finally, we close with a brief summary of the
chapter.

4.2 Qualitative Preferences and Databases

In this section, we focus on preference representation in a relational (SQL) database con-
text. We present the approach proposed in the seminal work of Chomicki [17]. Originally,
this framework allows expression of preferences between tuples, but later was extended
in order to express preferences over sets of tuples [80]. This brief presentation begins
with the tuple preferences case, continues with examples of common qualitative prefer-
ence compositions and closes with the set preferences extension of this framework.

4.2.1 Preferences over Tuples

In this subsection, we present the framework of Chomicki [17], which is used for ex-
pressing qualitative preferences between tuples in databases. This is done by extending
relational algebra with preference formulas and the winnow operator.

Qualitative preferences in a relational database context are defined using a binary pref-
erence relation among database tuples:

Definition 4.1. Given a relation schema R(A1, . . . , An) such that Ui, 1 ≤ i ≤ n, is the
domain of the attribute Ai, a relation ≻ is a preference relation over R if it is a subset of
(U1×· · ·×Un)×(U1×· · ·×Un). A tuple t1 is said to be preferred from t2, if it holds t2 ≻ t1.

In Chomicki’s framework [17] preference relations are defined using first-order preference
formulas. In the following definition, by “built-in predicates” we mean any standard SQL
predicate such as equality, inequality, arithmetic comparison operations, and so on.

Definition 4.2. Let t1, t2 denote tuples of a given database relation. A preference formula
C(t1, t2) is a first-order formula defining a preference relation ≻C in the standard sense,
namely t1 ≻C t2 ⇐⇒ C(t1, t2). An intrinsic preference formula (or ipf) is a preference
formula that uses only built-in predicates.

Intuitively, an intrinsic preference formula is one that establishes the preference relation
between two tuples solely on the basis of the values occurring in these tuples. Extrinsic
preference formulas may use not only built-in predicates, but also other constructs (such
as for example database relations, properties of the relations from which the tuples have

A. Troumpoukis 68

Extensions of Logic Programming for Preference Representation

Table 4.1: A simple movie relation.

ID Name Director Genre Runtime (min) Rating

m1 The Godfather F. F. Coppola drama 175 9.2
m2 The Green Mile F. Darabont drama 189 8.5
m3 Goodfellas M. Scorsese drama 146 8.7
m4 The Big Lebowski Coen Brothers comedy 117 8.2
m5 Forrest Gump R. Zemeckis comedy 142 8.8
m6 Inception C. Nolan sci-fi 148 8.8

been selected, and so on). For example, if we prefer every tuple of a given relation
r over every tuple of another relation s, then this is an extrinsic preference because it
depends also on the origin of the tuples and not only on their attributes. The framework
of Chomicki [17] focuses almost exclusively on intrinsic preference formulas.

Example 4.1. Consider the movie(ID,Name,Director,Genre,Runtime,Rating) relation
illustrated in Table 4.1. Now, suppose that we want to express the following preference:

“Prefer one movie over another iff their genres are the same and the rating of
the first is higher”.

This can be defined by the following ipf formula C1:

(i, n, d, g, t, r) ≻C1
(i′, n′, d′, g′, t′, r′) ≡ (g = g′) ∧ (r > r′)

The above preference means that, for example, “The Godfather” is preferred from “Good-
fellas” because they have the same genre but the former has a higher rating than the
latter. In addition, movies that are of different genre (e.g. “Forrest Gump” and ”Incep-
tion”) are incomparable. As another example of the same relation, consider the following
preference:

“Prefer a movie from another one if the former lasts for less than or equal to
150 minutes while the latter does not”.

The corresponding preference relation ≻C2
can be defined by the following ipf formula

C2:
(i, n, d, g, t, r) ≻C2

(i′, n′, d′, g′, t′, r′) ≡ (t ≤ 150) ∧ (t′ > 150)

According to the preference relation ≻C2
, every movie with a runtime that is less than

150 minutes is preferred, e.g. “Forrest Gump” is preferred from “The Godfather”. More-
over, all such movies are incomparable e.g. “The Big Lebowski“ is equally preferred to
“Inception”. As a final example, consider the following preference:

“Prefer drama movies over movies of all other genres”.

The corresponding preference relation ≻C3
can be defined by the following ipf formula

C3:
(i, n, d, g, t, r) ≻C3

(i′, n′, d′, g′, t′, r′) ≡ (g = ”drama”) ∧ (g′ ̸= ”drama”)
According to ≻C3

, the most preferred movies are “The Godfather”, “The Green Mile” and
“Goodfellas”.

69 A. Troumpoukis

Extensions of Logic Programming for Preference Representation

Table 4.2: Result sets of simple winnow queries.

(a) The result of the query wC1(movie) using the movie relation of Table 4.1.

ID Name Director Genre Runtime (min) Rating

m1 The Godfather F. F. Coppola drama 175 9.2
m5 Forrest Gump R. Zemeckis comedy 142 8.8
m6 Inception C. Nolan sci-fi 148 8.8

(b) The result of the query wC2(movie) using the movie relation of Table 4.1.

ID Name Director Genre Runtime (min) Rating

m3 Goodfellas M. Scorsese drama 146 8.7
m4 The Big Lebowski Coen Brothers comedy 117 8.2
m5 Forrest Gump R. Zemeckis comedy 142 8.8
m6 Inception C. Nolan sci-fi 148 8.8

(c) The result of the query wC3
(movie) using the movie relation of Table 4.1.

ID Name Director Genre Runtime (min) Rating

m1 The Godfather F. F. Coppola drama 175 9.2
m2 The Green Mile F. Darabont drama 189 8.5
m3 Goodfellas M. Scorsese drama 146 8.7

In the following, we discuss the winnow operator, the second basic component of the
framework of Chomicki [17]. In order to select the best (i.e., most preferred) tuples from
a given relation r based on a preference formula C, relational algebra can be enriched
with a new operator called winnow. The formal definition of this new preference operator
is the following:

Definition 4.3. Let r be a relation and letC be a preference formula defining a preference
relation ≻C. The winnow operator is defined as

wC(r) = {t ∈ r : ¬∃t′ ∈ r such that t′ ≻C t}

A preference query is defined as a relational query that contains at least one occurrence
of the winnow operator. In the following example, we illustrate three preference queries
that are parameterized using preference relations that were defined previously.

Example 4.2. Continuing Example 4.1, consider the simple preference querieswC1(movie),
wC2(movie) and wC3(movie). These queries will return the best tuples according to the
preference formulas that are being invoked.

Regarding wC1(movie), the winnow query should return one movie for every available
genre, and each genre should be “represented” with the movie with the highest rating.
Regarding wC2(movie), the winnow query should return all movies that their duration is
less than or equal to 150 minutes. Finally, regarding wC3(movie), the query should return
all drama movies.

The result sets are illustrated in Table 4.2a, Table 4.2b, and Table 4.2c respectively.

A. Troumpoukis 70

Extensions of Logic Programming for Preference Representation

In our framework, we are able to define alternative operators beyond winnow, and there-
fore our queries can be more general.

4.2.2 Composition of Preference Relations
In this subsection, we present some common preference compositions and we show how
these compositions can be expressed using Chomicki’s framework [17].

Preference relations can be combined in order to form more complex ones. Being binary
relations, preference relations can be composed in many ways; examples include the
use of standard set-theoretic operations. In the context of Chomicki [17], in order to
compose two preference relations we compose the corresponding formulas, creating in
this way more complicated ones. Three examples of such composition operations are
the following:

• The Boolean composition of two preference relations (such as union, intersection
and difference) can be captured by Boolean operations on the corresponding pref-
erence formulas. For example, the preference relation ≻C1∧C2

=≻C1
∩ ≻C2

is cap-
tured by the formula:

t1 ≻C1∧C2
t2 ≡ (t1 ≻C1

t2) ∧ (t1 ≻C2
t2).

• The Prioritized composition ≻C1▷C2
of two preference relations C1 and C2 has the

intuitive meaning of “prefer according to C2 unless C1 is applicable”, and can be
defined as follows:

t1 ≻C1▷C2
t2 ≡ (t1 ≻C1

t2) ∨ ((t1 ∼C1 t2) ∧ (t1 ≻C2
t2)),

where ∼C is the indifference relation of a preference relation ≻C defined by the
following formula:

t1 ∼C t2 ≡ ¬(t1 ≻C t2) ∧ ¬(t2 ≻C t1)

• The Pareto composition ≻C1⊗C2
of two preference relations C1 and C2 has the intu-

itive meaning of “prefer according to both C1 and C2 with equal importance”, and
can be defined as follows:

t1 ≻C1⊗C2
t2 ≡ ((t1 ≻C1

t2) ∧ (t2 ̸≻C2
t1)) ∨ ((t1 ≻C2

t2) ∧ (t2 ̸≻C1
t1)),

where t1 ̸≻C t2 ≡ ¬(t1 ≻C t2).

The following examples illustrate the use of such operators.

Example 4.3. Consider the movie relation of Example 4.1. In this example, we consider
the Prioritized composition.

Suppose that our preference for movies is the prioritized composition C2 ▷ C1 of C2 and
C1. This means that we have a primary preference for the movies that have a duration
that is less than or equal to 150 minutes, and a secondary preference for the high rating
(among the ones that have the same genre).

A process for discovering the best tuples according to ≻C2▷C1
begins by finding the best

tuples according to ≻C2
, i.e., all movies that have a duration less than or equal to 150

71 A. Troumpoukis

Extensions of Logic Programming for Preference Representation

minutes (cf. Table 4.2b). Now, among these incomparable tuples, we filter out all less
preferred tuples according to ≻C1

. That is, we remove m4 since there exists a comedy
movie (namely m5) which has a higher rating. Thus, the preference query wC2▷C1(movie)
returns the result set shown in Table 4.3a.

Compare now this result set with that of wC1(movie) (cf. Table 4.2a). Notice that our
primary preference for the duration of the movies has excluded some highly rated ones.

Example 4.4. Consider the movie relation of Example 4.1. In this example we consider
the Pareto composition.

Suppose that our preference for movies is the Pareto composition C2 ⊗C3 of C2 and C3.
This means that we prefer both movies that have a duration less than or equal to 150
minutes and dramas, but these preference criteria are now treated with equal importance.

Notice that the movie relation of Table 4.1 contains one movie that satisfies both crite-
ria; a drama movie with a runtime less than 150 minutes (i.e., the movie “Goodfellas”).
Therefore, the result set for the preference query wC2⊗C3(movie) returns only this movie
(cf. Table 4.3b).

Now, suppose that we remove them3 tuple (i.e., the movie “Goodfellas”) from the original
movie relation. Now, there does not exist any movie that satisfies both preference criteria.
Therefore, since we equally prefer drama movies and movies that have a duration less
than or equal to 150 minutes, the preference query wC2⊗C3(movie \ {m3}) returns all
movies that satisfy either C2 or C3 (cf. Table 4.3c).

Through higher-order logic programming, we can directly define generic composition op-
erators that can be applied to compose arbitrary preference relations (without the need
to manipulate preference formulas).

4.2.3 Preferences over Sets
In this subsection, we discuss how the framework of Chomicki [17] can be extended so
as to handle preferences between sets of tuples.

There exist many applications that require expressing preferences over sets of tuples.
This case, which is more demanding and general than the case of preferences over tu-
ples, was considered in a recent work by Zhang and Chomicki [80]. In this work, the
sets that are involved in preference queries are assumed to be of fixed cardinality, an as-
sumption which we will also adopt in our approach. The main ideas behind this proposal
can be illustrated by a simple example.

Example 4.5. Assume that I want to watch three movies, and I want to select them,
based on some given preferences, out of our usual movie table. My preferences are the
following:

• C1: Prefer that the sum of the ratings of the movies is maximized.

• C2: Prefer to watch at least one comedy.

• C3: Prioritize C2 over C1.

The above preferences are defined over three-element sets of movies and therefore a
new method seems to be required for their representation.

A. Troumpoukis 72

Extensions of Logic Programming for Preference Representation

Table 4.3: Result sets of composite winnow queries.

(a) The result of the query wC2▷C1(movie) using the movie relation of Table 4.1.

ID Name Director Genre Runtime (min) Rating

m3 Goodfellas M. Scorsese drama 146 8.7
m5 Forrest Gump R. Zemeckis comedy 142 8.8
m6 Inception C. Nolan sci-fi 148 8.8

(b) The result of the query wC2⊗C1(movie) using the movie relation of Table 4.1.

ID Name Director Genre Runtime (min) Rating

m3 Goodfellas M. Scorsese drama 146 8.7

(c) The result of the query wC2⊗C1(movie \ {m3}), i.e., using the movie relation of
Table 4.1 without the “Goodfellas” movie tuple.

ID Name Director Genre Runtime (min) Rating

m1 The Godfather F. F. Coppola drama 175 9.2
m2 The Green Mile F. Darabont drama 189 8.5
m4 The Big Lebowski Coen Brothers comedy 117 8.2
m5 Forrest Gump R. Zemeckis comedy 142 8.8
m6 Inception C. Nolan sci-fi 148 8.8

Zhang and Chomicki [80] define a specialized approach for treating preferences over
sets. First, they remark that for each preference there exist one or more “quantities of
interest”, which they call features. For example, for C1 the relevant feature is the sum
of the ratings of the movies, for C2 the relevant feature is the number of comedies, and
for C3 both previous features are relevant. Given a set, we can construct a vector of all
features based on the user preferences, i.e., the profile of the set. The “best sets” are
those that have the “best profiles”.

The representation of preferences in this approach [80] is performed as follows. For
each feature Fi, a function is defined that returns the result of an SQL query. Let $S be
a variable denoting any three-element subset of the movie relation. Then, the following
functions compute the total rating and the number of comedies in $S:

• F1($S): SELECT sum(rating) FROM $S;

• F2($S): SELECT count(genre) FROM $S WHERE genre='comedy';

Preferences over sets are defined by formulas over the above functions:

s1 ≻C1
s2 ≡ F1(s1) > F1(s2)

s1 ≻C2
s2 ≡ (F2(s1) ≥ 1) ∧ (F2(s2) = 0)

s1 ≻C3
s2 ≡ s1 ≻C2▷C1

s2

The winnow operator is then used in order to select the “best” among all three-element
subsets of the movie relation according to the above preference relations. In order for this
to be done, the most direct approach is to enumerate all fixed-size subsets and check

73 A. Troumpoukis

Extensions of Logic Programming for Preference Representation

them one by one. Notice that dealing with subsets of relations is, in general, an inherently
inefficient task. For this reason, certain optimizations are provided that can potentially
alleviate the inefficiency problem in specific cases.

The problem with the proposal of Zhang and Chomicki [80] is that the simple first-order
logic language for expressing tuple preferences has to adapt significantly in order to
accommodate set preferences, and the resulting formalism is more complicated. As a
general comment on the above ideas, we could say that the features pf their approach
are second-order predicates in disguise, and for this reason, they can be represented
directly and very elegantly in our framework.

4.2.4 Discussion

The framework for expressing qualitative preferences in relational databases proposed
by Chomicki [17] and its extension for fixed-cardinality sets [80], appears to have many
advantages and it is relatively simple. However, it has certain shortcomings which, if
resolved, could result in a more expressive formalism. In this subsection, we describe in
detail the main shortcomings of these techniques [17, 80]. In subsequent sections, we
demonstrate how these issues are resolved in our framework.

First of all, the framework of Chomicki [17] uses two different languages: the preference
relations are expressed using first-order logic while preference queries are expressed
using SQL extended with the winnow operator. Moreover, in the case of preferences
over sets, yet another formalism (namely that of features and profiles) is introduced. As
we argue in the coming sections, preference relations and queries can be expressed
in a single language, simplifying in this way the representation of preferences. The dif-
ferences in the conciseness of the representation are even more apparent in the case
of set preferences, where we avoid the concepts of features and profiles [80], and our
representation is a simple extension of the one used for tuple preferences.

A second characteristic of the framework of Chomicki [17] which we would like to avoid,
is the restriction to intrinsic preference formulas. There exist many natural preference
formulas that are extrinsic (see also the relevant discussion in [17][Section 7.3]). Some
extrinsic preferences can be simulated using intrinsic formulas, but this is not always
possible or convenient. Moreover, as we are going to see in Section 4.5, the use of
extrinsic preferences is very important in the case of set preferences.

A final issue of the framework of Chomicki [17] is the restriction of having a single pref-
erence manipulation operator, namely winnow. To be fair, a few more operators similar
to winnow are presented [17]. However, all these operators are defined in a language
that is different from both first-order logic and SQL (additional set-theoretic and relational
notations are used). In other words, new operators can only be “custom tailored” and
they cannot be defined nor implemented with the available linguistic resources. In our
framework, new operators can easily and naturally be defined as higher-order predicates.

4.3 Higher-Order Logic Programming

Higher-order logic programming [10, 15, 52] extends traditional first-order logic program-
ming with higher-order constructs. In this section, we define some common higher-order
logic programming concepts and some basic predicates that will be used throughout the
chapter. A basic familiarity with some form of higher-order programming (either logic or
functional) is assumed [10, 15, 27, 52].

A. Troumpoukis 74

Extensions of Logic Programming for Preference Representation

The most popular higher-order extension is to allow the programmer to define predicates
that accept other predicates as arguments, and variables to occur in places where pred-
icates typically occur. For example, the following program defines the transitive closure
of a given relation R:
tc(R,X,Y) :- R(X,Y).
tc(R,X,Y) :- R(X,Z), tc(R,Z,Y).

An advantage of predicates such as tc is that they can be used to achieve a generic style
of programming: to compute the transitive closures of different relations, we invoke tc
with different parameters (avoiding to write a transitive closure predicate for each different
relation). As an example, the query:
?- tc(parent,john,Y).

will return all the ancestors of john while the query:
?- tc(graph,v1,V).

will return all vertices that are reachable from vertex v1 of a given binary relation graph.

One interesting feature of higher-order languages is the use of partial applications, i.e.,
the ability to invoke a higher-order predicate with only some of its arguments. In order for
this to be achieved, the single-tuple notation of classical logic programming is extended
so as that a predicate can now have a sequence of tuples as successive parameters5.
Then, we can invoke a predicate with only some of the tuples in the sequence. In this
case we say that the predicate is partially applied. The partial application of a predicate
yields a new predicate that expects the rest of the arguments and behaves exactly like
a regular predicate. For example, we can write the tc predicate using a slightly different
syntax:
tc(R)(X,Y) :- R(X,Y).
tc(R)(X,Y) :- R(X,Z), tc(R)(Z,Y).

Now, tc(parent) is an expression representing the transitive closure of the relation
parent and can be used as an autonomous expression in the program and in queries.
The idea of “partial application” can be further illustrated with the definition of two higher-
order predicates that we will use in subsequent sections, namely the conjunction and
union predicates over binary relations:
conj(R,Q)(X,Y) :- R(X,Y), Q(X,Y).
union(R,Q)(X,Y) :- R(X,Y).
union(R,Q)(X,Y) :- Q(X,Y).

Now the expression union(tc(parent), tc(mother)) denotes the union of the two tran-
sitive closure relations while the expression conj(tc(graph1), tc(graph2)) is the set
of common edges that belong to the transitive closures of graph1 and graph2.

The rest of this section contains some easy definitions of other higher-order predicates
that we will use. Actually, some of them use a powerful feature of logic programming,
namely negation-as-failure. A predicate that checks if a relation is empty can be imple-
mented as follows:

5In the world of functional programming, this idea is called currying.

75 A. Troumpoukis

Extensions of Logic Programming for Preference Representation

nonempty(R) :- R(X).
empty(R) :- not nonempty(R).

The nonempty predicate succeeds if there exists an object that satisfies its argument.
The empty predicate succeeds if nonempty fails for the same parameter. Other useful
operators are the following:

minus(R,X)(Y) :- R(Y), not (X=Y).
diff(R,Q)(X) :- R(X), not Q(X).

The minus operator takes as a parameter a relation R and an object X and returns a
relation that contains all the objects in R except for X. In this sense minus removes X
from relation R. Similar to the minus operator is the diff operator that creates the set
difference of its given two relations. Given the above definitions, we can easily define
the cardinality of a finite relation as:

size(R,0) :- empty(R).
size(R,N) :- R(X), size(minus(R,X),M), N is M+1.

In higher-order logic programming languages, queries of the following form are usually
allowed:

?- tc(R)(john,mary).

The expected answer of such a query is not immediately obvious and this is actually a
thorny subject among the higher-order logic programming approaches. The extensional
approach [10] assumes that predicates denote sets and therefore two predicates that
hold for the same elements are considered equal. An expected answer in the extensional
approach is the substitution R = {(john, mary)}, namely the simplest set whose transitive
closure contains the pair {(john, mary)}. On the other hand, the intensional approach [15]
assumes that each predicate is represented by its name and therefore two predicates are
considered equal only if their names are the same. Under the intensional approach, the
answer to the aforementioned query depends on whether there exists a predicate defined
in the program that satisfies the goal. In the case that there is no such predicate in the
program, the goal fails. As we are going to see, we will need to evaluate queries involving
uninstantiated predicate variables (such as the above) in the case of preferences over
sets. The way that we handle such queries in our implementation will be described in the
following chapter.

4.4 Representing Preferences over Tuples in Higher-Order Logic Programming

In this section, we demonstrate how preference relations over tuples as-well-as operators
over preference relations, can be defined in higher-order logic programming. The lan-
guage that we will be using does not exploit the full power of higher-order logic program-
ming, because most of our examples will be written in “higher-order Datalog”, namely
higher-order logic programming without function symbols. There are only two exceptions
to this issue:

• Our language supports tuples (in a restricted form) because preference relations
are defined over tuples. In other words, we do not need arbitrary function symbols
but we need our language to be able to handle tuples.

A. Troumpoukis 76

Extensions of Logic Programming for Preference Representation

• In order to be able to define some operators over preference relations and some
aggregate operations, we will use recursion and the usual arithmetic operations
over the natural numbers. However, all the essential ideas from Chomicki [17]
can be implemented in our framework without ever using natural numbers or any
function symbols.

In conclusion, our framework is essentially a higher-order version of Datalog that sup-
ports tuples. In this respect, one can also view our proposal as a higher-order deductive
database framework for representing preferences.

4.4.1 Representing Database Relations
In this short subsection, we describe how database relations can be represented in our
framework. We follow the standard approach in deductive databases in which relations
are represented by logic programming facts.

We adopt the following notational convention: we assume that every predicate that rep-
resents a database relation, does not have many different attributes but instead a single
attribute that is a tuple. For example, in order to represent the movie relation of Table 4.1,
we do not use a predicate with 6 arguments, but a predicate that takes a single argument
that is a 6-ary tuple, namely movie((ID,Name,Director,Genre,Runtime,Rating)). The
above convention is a merely technical one since it allows us to write a single generic
version for every operator on preference relations. As we will see later, if we had not
done this, we would have to write a specific n-ary version of each operator in order to
support every possible n-ary database relation.

Apart from the above representation using logic programming facts, we can use logic
programming rules to express a database relation. For instance, we could express pref-
erences over database relations that are defined recursively:

Example 4.6. Consider the relation edge((X,Y,C)), which defines a weighted directed
graph, where C denotes the cost of edge (X,Y). Then, the following relation represents
the costs of all paths between every pair of nodes (X,Y).
path((X,Y,C)) :- edge((X,Y,C)).
path((X,Y,C)) :- edge((X,Z,C1)), path((Z,Y,C2)), C is C1+C2.

Then, if a path with a lower cost is preferred, then the most preferred path between
two nodes is the shortest path between these nodes. The program that represents this
formulation of the known shortest path problem will be presented in Subsection 4.4.5.

4.4.2 Representing Preference Relations
In this subsection, we describe how preference relations can be represented in our frame-
work. In short, preference relations can be represented using binary logic programming
predicates. This flexibility allows us to express both intrinsic and extrinsic preference
relations.

We can represent a preference relation ≻C between tuples of an n-ary relation using a
binary predicate c_pref with two arguments, each one of them being an n-ary tuple. That
is, the atom c_pref((X1,X2),(Y1,Y2)) corresponds to the formula (X1, X2) ≻C (Y1, Y2).
The preference formula C is encoded by the body of the rule defining c_pref. Notice that
for the representation of intrinsic preference relations, we do not use the higher-order
characteristics of our source language.

77 A. Troumpoukis

Extensions of Logic Programming for Preference Representation

Example 4.7. Consider the movie(ID,Name,Director,Genre,Runtime,Rating) relation.
We can represent the preference relations of Subsection 4.2.1 using predicates over
tuples. Assume we have the preference relation C1 of Example 4.1, namely: “prefer one
movie over another iff their genres are the same and the rating of the first is higher”. This
can be represented as follows:
c1_pref((I1,N1,D1,G,T1,R1),(I2,N2,D2,G,T2,R2)) :-

movie((I1,N1,D1,G,T1,R1)),
movie((I2,N2,D2,G,T2,R2)),
R1 > R2.

Consider the preference relation C2 from Example 4.1, namely “prefer a movie from an-
other one if the former lasts for less than or equal to 150 minutes while the latter does
not”. This can be represented by:
c2_pref((I1,N1,D1,G1,T1,R1),(I2,N2,D2,G2,T2,R2)) :-

movie((I1,N1,D1,G1,T1,R1)),
movie((I2,N2,D2,G2,T2,R2)),
T1 =< 150, T2 > 150.

Consider the preference relationC3 from Example 4.1, namely “prefer dramamovies over
movies of all other genres”. This can be represented as follows:
c3_pref((I1,N1,D1,drama,T1,R1),(I2,N2,D2,G,T2,R2)) :-

movie((I1,N1,D1,drama,T1,R1)),
movie((I2,N2,D2,G,T2,R2)),
not (G=drama).

In the above examples, we explicitly check that each tuple belongs to the movie relation,
something that cannot be expressed in the preference formulas of Chomicki [17] (which
only check the properties of individual elements of tuples).

The fact that we can check whether each tuple belongs to a specific relation gives an
advantage to our technique. In the above examples, we checked whether a specific
tuple is a movie tuple. Going one step further, we could check whether a tuple (or some
elements of a tuple) belongs to a relation other than the movie relation. As we are going
to see below, this allows us to express extrinsic preferences. In the remaining part of the
subsection, we present some examples of extrinsic preferences that are possible to be
defined in an elegant way in our approach.

Example 4.8. Assume we prefer any tuple from a relation r over any tuple from another
relation s. In the framework of Chomicki [17] such a requirement can only be simulated,
somewhat artificially, by adding an extra argument to each tuple that denotes the relation
name to which the tuple belongs. In our case this can simply be written as:
c_pref(T1,T2) :- r(T1), s(T2).

Notice that our assumption that database facts only take a single attribute that is a tuple,
allows us to use above only the variables T1 and T2 and to avoid listing all the attributes
of relations r and s.

Example 4.9. Continuing Example 4.1, assume that we prefer those movies that have
the most popular directors (namely directors who have filmed the maximum number of

A. Troumpoukis 78

Extensions of Logic Programming for Preference Representation

movies). This is an extrinsic preference because we cannot compare two movie tuples
based only on the information contained in the tuples. Given two movie tuples, the only
way to decide whether the one is preferred over the other is to access the entire movie
relation so as to discover the directors with the maximum number of movies. Such pref-
erences cannot be defined in Chomicki’s framework [17]. In order to solve this problem,
Chomicki follows a specialized approach which is based on the construction of separate
views through the use of SQL queries involving aggregate operators. In our case though,
this preference relation can be expressed as follows:
director_pref((I1,N1,D1,G1,T1,R1),(I2,N2,D2,G2,T2,R2)) :-

movie((I1,N1,D1,G1,T1,R1)),
movie((I2,N2,D2,G2,T2,R2)),
director(D1,K1),
director(D2,K2),
K1 > K2.

movies_of_director(D)(I) :- movie((I,_,D,_,_,_)).

director(D,K) :- movie((_,_,D,_,_,_)),
size(movies_of_director(D),K).

Notice that we use an aggregate operator, namely the predicate size which was defined
in Section 4.3. Moreover, we use for the first time a higher-order characteristic of our
language: the partially applied expression movies_of_director(D) is a relation that con-
tains all the different movie IDs that a director has filmed. A difference from Chomicki [17]
is that a unique language is used in order to express our preference relations.

Example 4.10. We give another example of a natural extrinsic preference relation which
can easily be encoded in our framework. Continuing Example 4.1, assume we “prefer
movies that have an above-average rating over those that have a below-average rating”.
This preference requires the calculation of the average rating of all movies, and therefore
it is an extrinsic one. It can be expressed in our setting as follows:
average_pref((I1,N1,D1,G1,T1,R1),(I2,N2,D2,G2,T2,R2)) :-

movie((I1,N1,D1,G1,T1,R1)),
movie((I2,N2,D2,G2,T2,R2)),
size(movie,K),
rating_sum(movie,S),
R1 >= S/K, R2 < S/K.

rating_sum(Rel,0) :- empty(Rel).
rating_sum(Rel,S) :- Rel((I,N,D,G,M,R)),

rating_sum(minus(Rel,(I,N,D,G,M,R)),S1),
S is S1+R.

The rating_sum predicate calculates the sum of ratings of all tuples in the movie relation;
dividing this sum by the size of the movie relation gives us the average rating of all movies.

4.4.3 Representing Composition Operators
In this subsection, we describe how preference compositions can be represented in our
framework. In short, instead of simply creating new composite clauses that express

79 A. Troumpoukis

Extensions of Logic Programming for Preference Representation

the composition of specific preference relations, we can benefit from the higher-order
characteristics of our approach. This fact offers us the ability to define generic preference
composition predicates.

A straightforward way to compose preference relations in our framework is to create new
clauses that use in their bodies the predicates of the initial relations. For example, in
order to obtain the logical conjunction of two preference relations c1_pref and c2_pref,
we can simply define:

c_pref(T1,T2) :- c1_pref(T1,T2), c2_pref(T1,T2).

However, in higher-order logic programming, we can do better than this since we can
have a generic conj operator, which is defined as follows:

conj(R,Q)(T1,T2) :- R(T1,T2), Q(T1,T2).

The advantage of the above approach is that in order to compose various preference
relations we do not need to create new clauses (or new formulas as in the framework of
Chomicki [17]), but we can specify the compositions in combinatory form. For example,
conj(c1_pref, union(c2_pref,c3_pref)) represents the conjunction of c1_pref with
the union of c2_pref and c3_pref.

The Prioritized and Pareto compositions of preference relations can be easily defined in
an analogous way using generic operators:

prioritized(C1,C2)(T1,T2) :- C1(T1,T2).
prioritized(C1,C2)(T1,T2) :- indifferent(C1)(T1,T2), C2(T1,T2).

indifferent(C)(T1,T2) :- not C(T1,T2), not C(T2,T1).

pareto(C1,C2)(T1,T2) :- C1(T1,T2), not C2(T2,T1).
pareto(C1,C2)(T1,T2) :- C2(T1,T2), not C1(T2,T1).

Another characteristic of our approach is that it allows us to define the transitive closure
on preference relations by using the tc predicate given in Section 4.3. The following
example motivates the need for this operator.

Example 4.11. Assume we have a set of available items together with their color:

item((a1,black)).
item((a4,green)).

Moreover, assume we prefer black over red, red over blue, blue over yellow and yellow
over green items. This can be expressed using the following facts:

color_pref((_,black), (_,red)).
color_pref((_,red), (_,blue)).
color_pref((_,blue), (_,yellow)).
color_pref((_,yellow), (_,green)).

Notice that the relation color_pref relation is not transitive, even though the intended
meaning of color_pref should express that e.g. the color red is preferred over the color
green. Therefore, instead of adding extra facts to the color_pref relation that would
express its transitivity, we can instead use in our queries the relation tc(color_pref).

A. Troumpoukis 80

Extensions of Logic Programming for Preference Representation

It should be noted that in the framework of Chomicki [17] the transitive closure of a relation
cannot be directly specified (due to the inability of first-order logic to define transitive
closure on finite structures). However, as shown in [17][Theorem 4.10], if a preference
relation is defined through an ipf, then its transitive closure can also be defined through an
ipf, which can be effectively constructed using a Datalog program. In our case though, no
special construction is required apart from the application of the tc predicate to the given
preference relation. Moreover, in our case, the transitive closure can also be applied to
extrinsic preference relations.

Finally, we illustrate how lexicographic preferences can be expressed using higher-order
logic programming. A lexicographic ordering (cf. Definition 2.18) can be expressed easily
with a simple preference composition:
lexicographic(C1,C2)((X1,X2),(Y1,Y2)) :- C1(X1,Y1).
lexicographic(C1,C2)((X1,X2),(Y1,Y2)) :- X1 = X2, C2(Y1,Y2).

The following example uses the above composition for expressing a lexicographic pref-
erence:

Example 4.12. Consider a room((ID,PricePerNight,DistanceFromTheSea)) relation.
Following Example 2.11, a lexicographic preference for hotel rooms that are cheap and
closer to the sea, but the first criterion is more important than the second, can be defined
as follows:
less(X,Y) :- X < Y.

room_pref((I1,P1,D1),(I2,P2,D2)) :-
room((I1,P1,D1)),
room((I2,P2,D2)),
lexicographic(less,less)((P1,D1),(P2,D2)).

Notice that the lexicographic preference composition is amulti-dimensional composition,
and it differs from the preference compositions that we presented previously. This is due
to the fact that the domain of the resulting preference relation is the Cartesian product
of the domains of the given preference relations and not the same domain as that of the
given preference relations. Moreover, in Proposition 2.9 we proved that lexicographic
preferences cannot be expressed using the language PrefLog due to the form of its un-
derlying set of truth values. The above example indicates that there exist (at least) one
family of preferences that can be expressed using higher-order logic programming but
not using PrefLog.

4.4.4 Representing Operators on Preference Relations
In this subsection, we describe how operations on preference relations can be repre-
sented in our framework. As previously, operations on preference relations are treated
the same way as preference compositions, namely as higher-order predicates. Apart
from the classical winnow operator, we can define additional preference operators.

An important characteristic of the proposed approach is its ability to define directly new
operators on preference relations. These operators are in fact higher-order predicates
that operate on database and preference relations. We start by recalling the winnow
operator:

wC(r) = {t ∈ r : ¬∃t′ ∈ r s.t. t′ ≻C t}

81 A. Troumpoukis

Extensions of Logic Programming for Preference Representation

The above definition can be directly transcribed in higher-order logic programming as
follows:
winnow(C,R)(T) :- R(T), not bypassed(C,R)(T).
bypassed(C,R)(T) :- R(T1), C(T1,T).

In the above definition observe that our assumption that database facts take a single
attribute that is a tuple, allows us to use only the variables T and T1 without caring about
how many arguments the relation R has. If our facts did not use the single-tuple notation
we would need to write a different winnow operator for each different tuple size. We can
now use this operator to formulate queries such as:
?- winnow(c1_pref,movie)(T).

that will succeed for all tuples T that belong to the relation movie and are most preferred
with respect to the relation c1_pref. Moreover, one can use the combinators defined in
Section 4.4.3 to create more complex queries:
?- winnow(prioritized(c1_pref,c2_pref),movie)(T).
?- winnow(tc(color_pref),item)(T).

In a similar manner, we can define other interesting operators. A simple variation of
winnow is the “iterated-winnow” which is defined in [17][Section 8] as follows:

w1
C(r) = wC(r)

wn+1
C (r) = wC(r −

∪n
i=1w

i
C(r))

The wn
C operator selects the “n”-best tuples. For example, w2

C(r) returns the second-best
tuples of r with respect to the preference relation C. In our framework wn

C can be easily
defined as a higher-order predicate:
w(C,R)(1)(T) :- winnow(C,R)(T).
w(C,R)(N)(T) :- N>1,M is N-1,

winnow(C,diff(R,gen_union(w(C,R)(M))))(T).

where the gen_union operation is a generalized union operator (over an indexed family
of sets) which can be defined as follows:
gen_union(R)(1)(X) :- R(1)(X).
gen_union(R)(N)(X) :- N>1,M is N-1,

union(gen_union(R)(M), R(N))(X).

Notice that the definition of w has a strong resemblance to the mathematical definition
given previously. Given the definition of w one can retrieve the second-best tuples of a
relation by posing the query:
?- w(c1_pref, movie)(2)(T).

Assume we want to return all the tuples up to a desired level. We can define the operator
wtnC(r) =

∪n
i=1w

i
C(r) that uses wn

C as follows:
wt(C,R)(N)(T) :- gen_union(w(C,R))(N)(T).

Finally, we can easily define the ranking operator [17], which ranks the elements of a
relation r with respect to a preference C:

ηC(r) = {(t, i) : t ∈ wi
C(r)}

A. Troumpoukis 82

Extensions of Logic Programming for Preference Representation

The operator η can naturally be defined as follows:

eta(C,R)(T,I) :- size(R,N), between(1,N,I), w(C,R)(I)(T).

where between is a (simple to define) predicate which is true if I is an integer between 1
and N.

4.4.5 Additional Complex Representations
In this subsection, we present additional, more complex preference representations that
are generally not is not generally possible in the approach of Chomicki [17]. Since base
relations, preference relations and preference operations are expressed in the same lan-
guage, we can have complex preference representations that mix all these elements in
a uniform way. In the following, we illustrate this using the shortest path problem as an
example.

As we have seen earlier, an important characteristic of our approach is that we can define
preference relations over database relations that are defined recursively (known as IDBs
in the deductive database literature); this is not generally possible in the approach of
Chomicki [17] (see the discussion in [17][Section 4.3, pages 439-440]).

Example 4.13. Consider the relation edge((X,Y,C)), which defines a weighted directed
graph, where C denotes the cost of edge (X,Y). We can formulate the shortest path
problem, in a somewhat naive way, as follows:
naive_shortest(X,Y,C) :- winnow(path_pref,path)((X,Y,C)).

path_pref((X,Y,C1),(X,Y,C2)) :- path((X,Y,C1)),
path((X,Y,C2)), C1 < C2.

path((X,Y,C)) :- edge((X,Y,C)).
path((X,Y,C)) :- edge((X,Z,C1)), path((Z,Y,C2)), C is C1+C2.

In other words, the most preferred path is the one that has the smallest cost.

The above program enumerates all paths from X to Y, and then uses winnow to select
the most preferable one(s). We can write a more efficient version by embedding win-
now inside the recursive definition of the path predicate. We believe that this is a nice
consequence of a single language for representing preferences and operators on them,
and gives another interesting application beyond the system described by Chomicki [17].
This enhanced path idea wasmotivated by the “optimal subproblem property” for shortest
distance, discussed by Govindarajan et al. [33][page 94].

Example 4.14. The following program finds the shortest path from X to Y by first finding
the optimal paths from every neighbor Z of X to Y.
enhanced_shortest(X,Y,C) :- winnow(path_pref,opt_path)((X,Y,C)).

path_pref((X,Y,C1),(X,Y,C2)) :- opt_path((X,Y,C1)),
opt_path((X,Y,C2)), C1 < C2.

opt_path((X,Y,C)) :- edge((X,Y,C)).
opt_path((X,Y,C)) :- edge((X,Z,C1)),

83 A. Troumpoukis

Extensions of Logic Programming for Preference Representation

winnow(path_pref,opt_path)((Z,Y,C2)),
C is C1+C2.

Notice the use of winnow inside the recursive definition of opt_path.

Both the naive and the optimized path predicates work correctly when the graph is
acyclic. In a graph that contains cycles, there may exist an infinite number of paths
that go from X to Y, because some paths can go around a cycle for an arbitrary number of
times. One can easily extend the above program to take an extra parameter that restricts
the length of the desired path to be less than or equal to the number of vertices in the
graph. This modified path predicate is shown in the following example.

Example 4.15. The following program finds the shortest path from X to Y that uses at
most N edges by first finding the optimal paths from every neighbor Z of X to Y that use at
most N-1 edges.
enhanced_shortest(X,Y,C,N) :- winnow(path_pref,opt_path)((X,Y,C,N)).

path_pref((X,Y,C1,N),(X,Y,C2,N)) :- opt_path((X,Y,C1,N)),
opt_path((X,Y,C2,N)), C1 < C2.

opt_path((X,Y,C,N)) :- N>0, edge((X,Y,C)).
opt_path((X,Y,C,N)) :- N>1, edge((X,Z,C1)), N1 is N-1,

winnow(path_pref,opt_path)((Z,Y,C2,N1)),
C is C1+C2.

Again, notice the use of winnow inside the recursive definition of opt_path.

4.5 Representing Preferences over Sets in Higher-Order Logic Programming
In this section, we illustrate how set preferences are expressed in our framework. The
approach we follow is a generalization of the techniques we have used in order to rep-
resent tuple preferences. More specifically, we now have to define preference relations
over sets. This does not require any changes in our notation: in higher-order logic pro-
gramming, predicates denote sets and therefore sets can be the parameters of other
predicates. As a result, the preference relations here are second-order since their argu-
ments are predicates themselves.

Example 4.16. Consider the movie relation that we have been using as our running ex-
ample. In the following, we demonstrate how the example preference relations discussed
in Subsection 4.2.3 can be represented in our framework.

1. I prefer the sum of the ratings of the movies to be the highest possible. This means
that a set S1 is preferable over a set S2 if the sum of the ratings of the elements of
S1 is greater than that of the set S2. The rating_sum predicate, defined in Exam-
ple 4.10, recursively calculates the cumulative rating of a given set by selecting an
element from the set, calculating the sum of the ratings of the remaining elements
and then adding the rating of the selected element.
rating_pref(S1,S2) :- rating_sum(S1,R1),

rating_sum(S2,R2),
R1 > R2.

A. Troumpoukis 84

Extensions of Logic Programming for Preference Representation

2. I prefer to watch at least one comedy. In other words, a set S1 is more preferred
than another set S2 if the former contains at least one comedy, while the latter does
not contain any comedies.

comedy_pref(S1,S2) :- S1((_,_,_,comedy,_,_)),
not S2((_,_,_,comedy,_,_)).

3. Prioritize (1) to (2). In other words, choose the set that has the least cumulative
rating, but if two sets have the same total rating, prefer the one that contains at
least one comedy movie.

ratingcomedy_pref(S1,S2) :- prioritized(rating_pref,comedy_pref)(S1,S2).

Notice that we can directly use the prioritized operator we defined in Subsection 4.4.3
for preference relations over tuples. More generally, defining preference relations over
sets in higher-order logic programming is an analogous task to that of defining preference
relations over tuples.

The use of the winnow operator is very similar to that for the tuple case. For example,
in order to find the “best” 3-element subsets of the movie relation with respect to the
preference relation rating_pref, we simply need to ask the query:

?- winnow(rating_pref, subsetof(movie,3))(S).

The execution of the above query returns as bindings for the variable S all the “best”
3-element subsets with respect to rating_pref. The variable S in the above query is
actually an uninstantiated predicate variable, i.e., it represents a set. The above query
assumes the existence of a predicate subsetof(R,K)(S), which qiven a relation R and
a natural number K, returns as bindings in the variable S all the subsets of R that are
of size K. As we have already mentioned, the treatment of such queries depends on
the higher-order language under consideration. This means that the subsetof predicate
can be implemented in various ways depending on the higher-order language adopted
and on the applications aimed at. The approach we have followed in order to treat such
variables in our actual implementation will be described in the next chapter.

An advantage of the higher-order logic programming approach to preference represen-
tation is the ability to express non-intrinsic preferences over sets:

Example 4.17. Consider a movie relation (different than that of our running example), de-
fined by the predicate movie((ID, Name, PID)), where ID uniquely identifies the movie
and PID refers to the id of the movie that this movie is a sequel of. We also have a
prequelOf predicate that identifies a movie tuple that is a prequel of another one:

movie((m01, the_Godfather, null)).
movie((m02, the_Godfather_Part_II, m01)).
movie((m03, the_Godfather_Part_III, m02)).
movie((m04, kill_Bill_Vol_1, null)).
movie((m05, kill_Bill_Vol_2, m04)).
movie((m06, the_Sting, null)).

prequelOf((Z,_,_),(_,_,Z)).

85 A. Troumpoukis

Extensions of Logic Programming for Preference Representation

Suppose that we prefer collections of movies that are complete, i.e., collections that
contain all parts of a movie. This can be expressed by the following preference relation
over sets of movies:
movie_pref(S1,S2):- not seriesMissing(S1), seriesMissing(S2).

seriesMissing(S) :- S(X), movie(Y), inseries(X,Y), not S(Y).

inseries(X,Y) :- prequelOf(X,Y) ; prequelOf(Y,X).

preferred_sets(N)(S) :- winnow(movie_pref,subsetof(movie,N))(S).

Consider the following five queries:
?- preferred_sets(1)(S), S(T).
?- preferred_sets(2)(S), S(T).
?- preferred_sets(3)(S), S(T).
?- preferred_sets(4)(S), S(T).
?- preferred_sets(5)(S), S(T).

The first query will return a singleton set S that contains as the only tuple T the one that
corresponds to “The Sting” movie. The second one will return the set S that contains
the two tuples of the “Kill Bill” series. The third one will return two solutions: one that
contains the three tuples concerning the “Godfather” series, and one that contains the
“Kill Bill” series together with “The Sting”. The fourth query will return a set containing
the “Godfather” series together with “The Sting”. Finally, the fifth query will return a set
containing the “Godfather” series together with the “Kill Bill” series.

Notice also that the relation movie_pref is extrinsic since it clearly depends on other
tuples that are outside the subsets we are comparing.

4.6 Summary
In this chapter, we proposed the use of higher-order logic programming for expressing
and manipulating preferences. The proposed framework can express both intrinsic and
extrinsic preference relations, it can be used to define a variety of interesting alternative
operators beyond winnow and it can also represent set preferences in a natural way.

Our framework extends the seminal work of Chomicki [17] which advocates the embed-
ding of first-order preference formulas into relational algebra through a winnow operator
that is parameterized by a database relation and a preference formula. Despite its ele-
gance, Chomicki’s proposal has certain shortcomings: only intrinsic preference formulas
are supported, the preference relations and the preference queries are expressed in two
different languages, and there is no direct way to define alternative operators beyond
winnow. Moreover, another formalism (namely that of features and profiles) needs to be
introduced for expressing preferences over sets [80].

We demonstrated that the use of higher-order logic programming as a logical framework
remedies the above deficiencies. We introduced examples of extrinsic preferences, ex-
amples of preference relation compositions that are defined using generic predicates,
and definitions of alternative preference operations beyond winnow. We showed that the
conciseness of the representation is also evident in the case of set preferences, where
we avoided the concepts of features and profiles, by providing a representation which is

A. Troumpoukis 86

Extensions of Logic Programming for Preference Representation

a simple extension of the one used for tuple preferences. By doing so, we proposed a
uniform framework in which relations, preferences between tuples, preferences between
sets of tuples and operations on preferences are expressed in the same language.

87 A. Troumpoukis

Extensions of Logic Programming for Preference Representation

5. OPTIMIZING PREFERENTIAL HIGHER-ORDER LOGIC
PROGRAMS

In this chapter, we undertake a HiLog implementation of our higher-order preferential
framework. Apart from a basic, unoptimized implementation, we consider optimization
techniques for enhancing its performance. The first family of optimizations targets HiLog
programs that express preferences over tuples, while the second targets HiLog programs
that express preferences over sets. Amongst the techniques that we use, we propose
Predicate Specialization, a novel transformation technique used for optimizing higher-
order logic programs that express preferences over tuples.

5.1 Overview
In order to assess the potential of higher-order logic programming for expressing qualita-
tive preferences, we undertook an implementation of our higher-order preferential frame-
work that we proposed in Chapter 4. The language of the implementation is the lan-
guage HiLog [15], a stable and well-known higher-order logic programming language.
Our implementation has been realized in the XSB system6 [70], a mature, goal-oriented,
top-down Prolog system that supports HiLog natively. We argue that higher-order logic
programming is not only a very expressive language for representing qualitative prefer-
ences, but it can offer an effective way of implementing them from a practical point of
view, as well.

Apart from providing a straightforward implementation of our ideas in HiLog, we focus on
techniques that can enhance higher-order logic programming so that it can better handle
and manipulate preferences. We propose Predicate Specialization, a novel technique
that transforms a higher-order program into a faster equivalent first-order program ac-
cording to a specific input query. Tuple-preference HiLog programs are optimized using
Predicate Specialization combined with classical Prolog optimizations such as tabling.
Set-preference HiLog programs are optimized using pruning techniques obtained from
Zhang and Chomicki [80] and adapted to our setting. These optimizations reduce the
program execution time by reducing the number of the generated candidate sets.

The rest of the chapter is organized as follows: in Section 5.2 we present a basic, unopti-
mized implementation of our higher-order preferential framework in HiLog; in Section 5.3
we present Predicate Specialization, a program transformation technique for optimizing
definitional higher-order logic programs by transforming them into equivalent first-order
programs; in Section 5.4 we optimize HiLog programs that express preferences over tu-
ples by using Predicate Specialization; in Section 5.5 we optimize HiLog programs that
express preferences over sets by using two simple pruning techniques adopted from [80];
and finally we close with a brief summary of the chapter.

5.2 A Naive Implementation
In this section, we propose a basic implementation7 of our proposed higher-order logic
programming framework in the logic programming language HiLog. A naive, unoptimized
implementation is relatively straightforward.

6 cf. http://xsb.sourceforge.net/
7 cf. http://bitbucket.org/antru/holppref

89 A. Troumpoukis

http://xsb.sourceforge.net/
http://bitbucket.org/antru/holppref

Extensions of Logic Programming for Preference Representation

Instead of developing a tailor-made higher-order language for executing the preferential
programs of Chapter 4, we thought that it would be more convenient to build upon an
existing language. As we stated in Section 4.3, existing higher-order logic programming
languages fall in two major categories; the itensional and the extensional ones. The
main difference between these two families of languages is the way how they handle the
free (or uninstantiated) predicate variables. Implementations of extensional higher-order
languages have not yet reached the same level of maturity as that of intensional ones.
As a result, we chose an intensional language (i.e., HiLog) for implementing our higher-
order preferential framework. HiLog [15] is a stable and well-known logic programming
language. Its syntax is embedded in the XSB system [70], a mature, goal-oriented, top-
down Prolog engine.

Programs for tuple preferences do not use uninstantiated predicate variables. Therefore,
regarding the choice of the language of the implementation, for the tuple-preference case
either an intensional or an extensional language would do. Indeed, the higher-order logic
programs that express preferences over tuples that we have considered in Section 4.4
are valid HiLog programs and can be compiled and executed by XSB directly. Even
though we could use various techiques for optimizing the program execution times, a ba-
sic, unoptimized implementation of our higher-order framework in HiLog is pretty straight-
forward.

The case of higher-order logic programs that express preferences over sets is more de-
manding than those that express preferences over tuples, and even their unoptimized
execution requires some nontrivial interventions from our side. Programs for set prefer-
ences make use of uninstantiated variables, but only in the higher-order predicate that
generates the candidate sets. Regarding the choice of the language of the implemen-
tation, it seems that an extensional language would suit better to our needs. This is
because in an extensional language, a query with an uninstantiated predicate variable
can produce a suitable relation that satisfies the query, while in an intensional language,
this query cannot produce a new relation, but it returns the name of the relation that sat-
isfies the query only if this query is already defined in the program. In other words, an
extensional language can produce all subset relations “on the fly”8, but in an intensional
language such as HiLog the subset relations must have been generated beforehand.
More specifically, when a HiLog query contains a variable denoting a set, the imple-
mentation searches to find whether there exists a predicate defined in the program that
could satisfy the given query. If there exists such a predicate, then its name is returned;
otherwise, the query fails.

Example 5.1. Consider the following HiLog program:
p(Q) :- Q(a),Q(b).
q(a).
q(b).

The query:
?- p(Q).

8 In Chapter 8, we give a hint of how subsetof could have been implemented in an extensional higher-
order logic programming language. Such a system is the logic programming language Hopes [10],
but the corresponding implementation is not as mature as that of HiLog. In Hopes, a query involving
uninstantiated predicate variables directly produces all the potential subsets.

A. Troumpoukis 90

Extensions of Logic Programming for Preference Representation

will return the answer Q = q. However, if there is no predicate q defined in the program,
the above query will fail in HiLog.

The reasons why the above handling of queries with uninstantiated predicate variables
is inconvenient, is clarified by the following example.

Example 5.2. Recall Example 4.17 and consider the following query:

?- preferred_sets(2)(S).

which amounts to the equivalent query:

?- winnow(movie_pref,subsetof(movie,2))(S).

In order for HiLog to answer properly the above query, there must exist explicitly de-
fined in the program predicates that denote three-element subsets of the movie relation
(because otherwise, the query will fail).

The above example suggests that in order for a query ?- winnow(c,subsetof(r,2))(S)
to function properly in an unoptimized implementation, all 2-element subsets of r must
have been generated beforehand as named predicates. This means that each subset
is associated with a predicate with a unique name and every such predicate is defined
with exactly 2 facts, which are the elements of the set. There are mainly two approaches
for solving this problem of set generation; in a static approach, the facts that correspond
to the candidate 2-element sets are generated using a preprocessing at compile time;
in a dynamic approach, the corresponding facts are asserted in the dynamic database
during the first time subsetof(r,2)(S) is called. In our implementation, we followed the
dynamic approach. This behavior of the subsetof predicate is illustrated in the following
example:

Example 5.3. Assume that we have defined a predicate r with these facts:

r(a).
r(b).
r(c).

and we have the goal clause:

?- subsetof(r,2)(S).

Then, the implementation proceeds as follows:

• Three new predicate names s1, s2 and s3 are introduced and corresponding facts
are asserted in the program. More specifically, predicate s1 consists of the facts
s1(a) and s1(b), predicate s2 consists of the facts s2(a) and s2(c) and predicate
s3 consists of the facts s3(b) and s3(c).

• The S variable gets the new predicate names s1, s2 and s3 as bindings.

In order to achieve the above behavior, unique symbol names for the dynamically gener-
ated predicates are first produced. Then, a systematic procedure is followed in order to
enumerate the elements of each subset, create the appropriate facts and assert them into
the knowledge-base. The procedure is implemented by a generate_relations predicate

91 A. Troumpoukis

Extensions of Logic Programming for Preference Representation

which produces a list of tuples and asserts each tuple as a fact under the newly gener-
ated predicate name. The generate_relations has been defined in an extensible way
that allows the incorporation of specialized pruning strategies and more sophisticated
optimizations, some of which will be discussed in Section 5.5.

5.3 Predicate Specialization: A technique for optimizing Definitional Higher-order
Logic Programs
In this section, we present Predicate Specialization, a novel program transformation tech-
nique, based on partial evaluation, that can be applied to a modest but useful class of
higher-order logic programs that includes tuple-preference higher-order programs. This
specialization technique transforms a definitional higher-order program into an equivalent
first-order programwithout introducing additional data structures. The resulting first-order
programs can be executed efficiently by conventional logic programming interpreters and
benefit from other optimizations that might be available. In our context, we can use this
technique for optimizing the program execution time of HiLog programs that express tuple
preferences.

5.3.1 Overview of the Technique
Higher-order logic programming has been long studied as an interesting extension of
traditional first-order logic programming and various approaches exist with different fea-
tures and semantics [10, 15, 52]. The support of higher-order features, however, usually
comes with a price, and the efficient implementation in either logic or functional program-
ming is a non-straightforward task.

The use of higher-order constructs is a standard feature in every functional language in
contrast to the logic programming languages. As a result, there exists a plethora of opti-
mizations that target specifically the efficient implementation of such features. A popular
direction is to remove higher-order structures altogether by transforming higher-order
programs into equivalent first-order ones, with the hope that the execution of the latter
will be muchmore efficient. Reynolds, in his seminal paper [60], proposed a defunctional-
ization algorithm that is complete, i.e., it succeeds to remove all higher-order parameters
from an arbitrary functional program. There is however a tradeoff; his algorithm requires
the introduction of data structures in order to compensate for the inherent loss of ex-
pressivity [39]. Other approaches [16, 53, 55] have been proposed that do not use data
structures but share the limitation that are not complete.

In the logic programming context there exist many transformation algorithms with the
purpose of creating more efficient programs. Partial evaluation algorithms [29, 51, 47],
for example, can be used to obtain a more efficient program by iteratively unfolding logic
clauses. Most of the proposals, however, focus on first-order logic programs. Proposals
that can be applied to higher-order programs are limited. The prominent technique that
targets higher-order logic programs [15, 79] is adopted from HiLog. It employs Reynolds’
defunctionalization adapted for logic programs. As a consequence it naturally suffers
from the same shortcomings as the original technique: the resulting programs are not
natural and the conventional logic programming interpreters fail to identify potential opti-
mizations without specialized tuning [65].

In this section, we propose a partial evaluation technique that can be applied to higher-
order logic programs. The technique propagates only higher-order arguments and avoids
to change the structure of the original program. Moreover, it differs from Reynolds’ style

A. Troumpoukis 92

Extensions of Logic Programming for Preference Representation

defunctionalization approaches as it does not rely on any type of data structures. As
a result, the technique will only guarantee to remove the higher-order arguments in a
well-defined subset of higher-order logic programs. We have identified a well-defined
fragment of higher-order logic programming for which the technique terminates and pro-
duces a logic program without higher-order arguments. This technique can be used in
optimizing the program execution time for the case of higher-order logic programs that
express preferences over tuples.

In the rest of this subsection, we present an introductory example so as to give an informal
description of our technique. We borrow an example of a simple winnow operation from
the previous chapter (ref. Subsection 4.4.4).

Example 5.4. Recall the definition of the winnow operator, which selects the most pre-
ferred tuples T out of a given unary relation R, based on a binary preference predicate C.
The preference predicate, given two tuples, succeeds if the first tuple is more preferred
than the second.

winnow(C,R)(T) :- R(T), not bypassed(C,R)(T).
bypassed(C,R)(T) :- R(Z), C(Z,T).

The program contains predicate variables (for example, the variable C and the variable R
on both rules of the program), that is variables that can occur in places where predicates
typically occur.

Assume that we have a unary predicate movie which corresponds to a relation of movies
and a binary predicate pref which given two movies succeeds if the first argument has
a higher rating than the second one. Now, suppose that we issue the query:

?- winnow(pref,movie)(T).

We expect as answers the most “preferred” movies, that is all movies with the highest
rating.

In the following, we will show how we can create a first-order version of the original pro-
gram specialized for this specific query. Notice that the atom winnow(pref,movie)(T),
that makes up our given query, does not contain any free predicate variables, but on the
contrary, all of its predicate variables are substituted with predicate names. Therefore,
we can specialize every program clause that defines winnow by substituting its predicate
variables with the corresponding predicate names. By doing so, we get a program where
our query yields the same results as to those in the original program:

winnow(pref,movie)(T) :- movie(T), not bypassed(pref,movie)(T).
bypassed(P,R)(T) :- R(Z), P(Z,T).

We can continue this specialization process by observing that in the body of this newly
constructed clause there exists the atom bypassed(pref,movie,T), in which all predicate
variables are again substituted with predicate names. Therefore, we can specialize the
second clause of the program accordingly:

winnow(pref,movie)(T) :- movie(T), not bypassed(pref,movie)(T).
bypassed(pref,movie)(T) :- movie(Z), pref(Z,T).

There are no more predicate specializations to be performed and the transformation
stops. Notice that the resulting program does not contain any predicate variables, but it

93 A. Troumpoukis

Extensions of Logic Programming for Preference Representation

is not a valid first-order one. Therefore, we have to perform a simple rewriting in order to
remove all unnecessary predicate names that appear as arguments.

winnow1(T) :- movie(T), not bypassed2(T).
bypassed2(T) :- movie(Z), pref(Z,T).

Due to this renaming process, instead of the initial query, the user now has to issue the
query ?- winnow1(T). Comparing the final first-order program with the original one it is
easy to observe that no additional data structures were introduced during the first-order
transformation, a characteristic that leads to significant performance improvement com-
paring to other transformation techniques that introduce data structures on the resulting
programs (cf. Chapter 6).

This technique, however, cannot be applied to every higher-order logic program. No-
tice that the resulting program of the previous example does not contain any predicate
variables. This holds due to the fact that in the original program, every predicate vari-
able that appears in the body of a clause also appears in the head of this clause. By
restricting ourselves to programs that have this property we ensure that the transfor-
mation outputs a first-order program. Moreover, the transformation in this example ter-
minates because the set of the specialization atoms (i.e., winnow(pref,movie)(T) and
bypassed(pref,movie)(T)) is finite, which is not the case in every higher-order logic
program. To solve this, we need to keep the set of specialization atoms finite. This is
achieved in two ways. Firstly, we ignore all first-order arguments in every specializa-
tion atom, meaning that in a query of the form ?- winnow(pref,movie)(m_001), we will
specialize the program with respect to the atom winnow(pref,movie)(T). Secondly, we
impose one more program restriction; we focus on programs where the higher-order ar-
guments are either variables or predicate names. Since the set of all predicate names
is finite and since we ignore all first-order values, the set of specialization atoms is also
finite and as a result, the algorithm is ensured to terminate.

The rest of the section is organized as follows; in Subsection 5.3.2 we formally define the
fragment of the higher-order logic programs we will use as an input; in Subsection 5.3.3
we describe the abstract framework of partial evaluation; in Subsection 5.3.4 we intro-
duce the details of our method; and finally, in Subsection 5.3.5 we discuss some details
of our implementation.

5.3.2 Definitional Higher-order Logic Programs

In this subsection, we define the higher-order language of our interest. We begin with
the syntax of the language H we use throughout the section. H is based on a simple
type system with two base types: o, the boolean domain, and ι, the domain of data
objects. The composite types are partitioned into three classes: functional (assigned to
function symbols), predicate (assigned to predicate symbols) and argument (assigned to
parameters of predicates).

Definition 5.1. A type can either be functional, argument, or predicate, denoted by σ, ρ
and π respectively and defined as:

σ ..= ι | (ι→ σ)
π ..= o | (ρ→ π)
ρ ..= ι | π

A. Troumpoukis 94

Extensions of Logic Programming for Preference Representation

Definition 5.2. The alphabet of the language H consists of the following:

1. Predicate variables of every predicate type π (denoted by capital letters such as
P,Q, R, . . .).

2. Individual variables of type ι (denoted by capital letters such as X,Y,Z, . . .).

3. Predicate constants of every predicate type π (denoted by lowercase letters such
as p, q, r, . . .).

4. Individual constants of type ι (denoted by lowercase letters such as a,b, c, . . .).

5. Function symbols of every functional type σ ̸= ι (denoted by lowercase letters such
as f,g,h, . . .).

6. The inverse implication constant ←, the negation constant ∼, the comma, the left
and right parentheses, and the equality constant ≈ for comparing terms of type ι.

The set consisting of the predicate variables and the individual variables of H will be
called the set of argument variables of H. Argument variables will be usually denoted by
V and its subscripted versions.

Definition 5.3. The set of expressions of H is defined as follows:

• Every predicate variable (resp. predicate constant) of type π is an expression of
type π; every individual variable (resp. individual constant) of type ι is an expression
of type ι;

• if f is an n-ary function symbol andE1, . . . ,En are expressions of type ι then (f E1 · · ·En)
is an expression of type ι;

• if P is a predicate variable or a predicate constant of type ρ1 → · · · → ρn → o and
Ei an expression of type ρi, 1 ≤ i ≤ n, then (P E1 · · · En) is an expression of type
o.

• if E1,E2 are expressions of type ι, then (E1 ≈ E2) is an expression of type o.

We will omit parentheses when no confusion arises. Expressions of type o will often be
referred to as atoms. We write vars(E) to denote the set of all variables in E. We say that
Ei is the i-th argument of an atom P E1 · · · En. A ground expression E is an expression
where vars(E) is the empty set.

Definition 5.4. A clause is a formula

p V1 · · ·Vn ← L1, . . . , Lm, ∼ Lm+1, . . . ,∼ Lm+k

where p is a predicate constant of type ρ1 → · · · → ρn → o, V1, . . . ,Vn are distinct
variables of types ρ1, . . . , ρn respectively, and L1, . . . , Lm+k are expressions of type o,
such that every predicate argument of Li, 1 ≤ i ≤ m + k, is either variable or ground. A
program P of the higher-order language H is a finite set of program clauses.

95 A. Troumpoukis

Extensions of Logic Programming for Preference Representation

The syntax of programs given in Definition 5.4 differs slightly from the usual HiLog syntax
that we have used in Chapter 4 and in Example 5.4. However, one can easily verify that
we can rewrite every program from the former syntax to the latter. For instance, we could
use the constant ≈ in order to eliminate individual constants that appear in the head of a
clause that uses the HiLog syntax.

Example 5.5. Consider the following program in HiLog syntax, in which we have three
predicate definitions, namely p : ι → o, q : ι → ι → o, and r : (ι → o) → (ι → o) → (ι →
ι)→ o.
p(a).
q(X,X).
r(P,Q,f(X)) :- P(X),Q(Y).

In our more formal notation, these clauses can be rewritten as:

p X ← (X ≈ a).
q X Y ← (X ≈ Y).
r P Q Z ← (Z ≈ f(X)), (P X), (Q Y).

Notice that all clauses are now valid H clauses.

Notice that in a H program, all arguments of predicate type are either variables or predi-
cate names, which as discussed in Subsection 5.3.1 leads to the termination of our tech-
nique. However, in a H program, all head predicate variables are required to be distinct.
That implies that checking for equality between predicates (higher-order unification) is
forbidden. In other words, the higher-order parameters can be used in ways similar to
functional programming, namely either invoked or passed as arguments. We decided
to impose this restriction because equality between predicates is treated differently in
various higher-order languages [10, 15, 52]. Moreover, in Subsection 5.3.1, we briefly
discussed that the reason why our technique can produce a first-order program is due to
the following property:

Definition 5.5. A clause is called definitional if every predicate variable that appears in
the body appears also as a formal parameter of the clause. A definitional program is a
finite set of definitional clauses.

Example 5.6. Consider the following program in HiLog syntax:
p(Q,Q) :- Q(a).
q(X) :- R(a,X).

This program does not belong to our fragment, because the first clause is a non-H clause
and the second clause is a non-definitional clause. Regarding the first clause, the predi-
cate variable Q appears twice in the head, therefore the formal parameters are not distinct.
Regarding the second clause, the predicate variable R that appears in the body, does not
appear in the head of the clause.

We extend the notion of substitution from classical logic programming to apply to H pro-
grams.

Definition 5.6. A substitution θ is a finite set {V1/E1, . . . ,Vn/En} where the Vi’s are dif-
ferent argument variables and each Ei is a term having the same type as Vi. We write
dom(θ) = {V1, . . . ,Vn} to denote the domain of θ.

A. Troumpoukis 96

Extensions of Logic Programming for Preference Representation

Definition 5.7. Let θ be a substitution and E be an expression of H. Then, Eθ is an
expression obtained from E as follows:

• Eθ = E if E is a predicate constant or individual constant;

• Vθ = θ(V) if V ∈ dom(θ); otherwise, Vθ = V;

• (f E1 · · ·En)θ = (f E1θ · · ·Enθ);

• (P E1 · · · En)θ = (Pθ E1θ · · · Enθ);

• (E1 ≈ E2)θ = (E1θ ≈ E2θ);

• (L1, . . . , Lm,∼ Lm+1, . . . ,∼ Ln)θ = (L1θ, . . . , Lmθ,∼ (Lm+1θ), . . . ,∼ (Lnθ)).

Definition 5.8. Let θ be a substitution and E be an expression. Then, Eθ is called an
instance of E.

5.3.3 Partial Evaluation of Logic Programs
In this subsection, we describe the abstract framework of partial evaluation. Our program
optimization techniquemakes heavy use of this framework, since predicate specialization
is an instance of partial evaluation for a specific type of higher-order logic programs.

Partial evaluation [40] is a program optimization that specializes a given program accord-
ing to a specific set of input data, such that the new program is more efficient than the
original and both programs behave in the same way according to the given data. In the
context of logic programming [29, 47, 51], a partial evaluation algorithm takes a program
P and a goal G and produces a new program Pspec such that P∪{G} and Pspec∪{G} are
semantically equivalent. In Figure 5.1 we illustrate a basic scheme that aims to describe
every partial evaluation algorithm in logic programming, which is based on similar ones in
the literature [29, 47]. This general algorithm depends on two operations, namely Unfold
and Abstract, which can be implemented differently in several partial evaluation systems.

Firstly, the algorithm uses an unfolding rule [68, 71] in order to construct a finite and
possibly incomplete proof tree for every atom in the set S and then creates a program
Pspec such that every clause of it is constructed from all root-to-leaf derivations of these
proof trees. This part of the process is referred to as the local control of partial evaluation.
There are many possible unfolding rules, some of which being more useful for a particular

1: Input: a program P and a goal G
2: Output: a specialized program Pspec
3: S ..= {A : A is an atom of G}
4: repeat
5: Sold

..= S
6: Pspec

..= Unfold(P,S)
7: S ..= S ∪ {A : A is an atom that appears in a body of a clause in Pspec}
8: S ..= Abstract(S)
9: until Sold = S (modulo variable renaming)
10: return Pspec

Figure 5.1: Basic algorithm for Partial Evaluation.

97 A. Troumpoukis

Extensions of Logic Programming for Preference Representation

application than others. There exist many types of unfolding strategies [29, 47]. In some
cases though, taking a simple approach which performs no unfolding at all, or in other
words by using one-step unfolding strategy, may result in useful program optimizations.
In such a case, Unfold exports a program that is constructed by finding the clauses that
unify with each atom in S and then by specializing these clauses accordingly, using simple
variable substitutions.

Secondly, the algorithm uses an Abstract operation, which calculates a finite abstraction
of the set S. We say that S′ is an abstraction of S if every atom of S is an instance of some
atom in S′, and there does not exist two atoms in S′ that have a common instance in S′.
This operation is used to keep the size of the set of atoms S finite, which will ensure the
termination of the algorithm. This part of the process is referred to as the global control of
partial evaluation. There exist many types of abstraction operators [47, 48]. An example
is to distinguish between static and dynamic arguments and then to generalize away all
dynamic arguments for every atom in S [48].

A partial evaluation algorithm should ensure termination in both levels of control. Firstly,
we have the local termination problem, which is the problem of the non-termination of
the unfolding rule, and the global termination problem which is the problem of the non-
termination of the iteration process (i.e., the repeat loop in the algorithm). As we stated
earlier, the global termination problem is solved by keeping the set S finite through a finite
abstraction operation. Regarding the local termination problem, one possible solution is
ensuring that all constructed proof trees are finite. The one-step unfolding rule is by
definition a strategy that can ensure local termination.

5.3.4 Predicate Specialization

In this subsection, we define our technique using the standard framework of partial evalu-
ation (ref. Subsection 5.3.3), by specifying its local and global control strategies (namely
Unfold and Abstract operations). In particular, we will use a one-step unfolding rule and
an abstraction operation which generalizes all individual (i.e., non-predicate) arguments
from all atoms of the partial evaluation.

Definition 5.9. Let P be a H program and S be a set of atoms. Then,

Unfold(P,S) =

p E1 · · ·En ← Bθ :
(p E1 · · ·En) ∈ S,
(p V1 · · ·Vn ← B) ∈ P,
θ = {V1/E1, . . . ,Vn/En}

Definition 5.10. Let S be a set of atoms. Then,

Abstract(S) =
{
p E′

1 · · ·E′
n : (p E1 · · ·En) ∈ S

}
where E′

i = Ei if Ei is of predicate type, otherwise E′
i = Vp,i, where Vp,i is a variable of

the same type as of Ei.

Example 5.7. Consider a H program P, encoded in the HiLog syntax, that contains the
predicate union : (ι→ o)→ (ι→ o)→ ι→ o with the following definition:

union(R,Q,X) :- R(X).
union(R,Q,X) :- Q(X)

A. Troumpoukis 98

Extensions of Logic Programming for Preference Representation

together with the definitions of three first-order binary predicates p : ι→ o, q : ι→ o and
r : ι→ o. Then,

Unfold
(
P,

{
union(p,q,X),
union(q,r,X)

})
=

union(p,q,X) :- p(X).
union(p,q,X) :- q(X).
union(q,r,X) :- q(X).
union(q,r,X) :- r(X).

Abstract

union(p,r,0),
union(p,r,s(0)),

union(p,r,s(s(0))),
union(p,r,s(s(s(0)))),

. . .

 =
{

union(p,r,V)
}
.

Notice that we use the variable name V instead of Vunion,3 for simplicity.

In the following lemma, wemake the assumption that all atoms of S are constructed using
predicate constants from a finite set C of predicate constants. We argue that it is safe
to make this assumption because during every stage of the algorithm of Figure 5.1 all
atoms of S are obtained either from initial goal G or from the rules of the input program
P, which both contain a finite set of predicate constants.

Lemma 5.1. Let P be a definitional program, C be a finite set of predicate constants, and
S be a (possibly infinite) set of atoms such that every predicate argument of every atom
in S is predicate constant from C. Then:

1. If S is finite, then Unfold(P,S) is finite.

2. Abstract(S) is a finite abstraction of S.

3. Every atom of Unfold(P,S) does not contain any predicate variables.

Proof. 1. Obvious from the construction of Unfold(P,S).

2. From the construction of Abstract(S) it is obvious that Abstract(S) is an abstraction
of S. Let A ∈ Abstract(S). Then, every predicate argument of A is a predicate con-
stant (taken from a finite set of prediate constants C) and every individual argument
of A is a unique individual variable. Therefore, Abstract(S) is finite.

3. Suppose that Unfold(P,S) contains an atom A that contains a predicate variable V.
If A appears in the head of a clause, then from the construction of Unfold(P,S), S
must contain A. If A appears in the body of a clause, then since P is definitional, V
also appears in the head of this clause. In any case, S must contain an atom that
contains the predicate variable V.

The first part of the lemma ensures local termination and the second part of the lemma
ensures global termination. The third part identifies that the transformation to first-order
succeeds, provided that the program belongs to our fragment and the initial goal does not
contain higher-order variables. In the following corollaries, by Φ we denote the algorithm
of Figure 5.1 combined with the operations in Definition 5.9 and Definition 5.10.

99 A. Troumpoukis

Extensions of Logic Programming for Preference Representation

Corollary 5.1. Let P be a definitional program and G a goal. Then, the computation of
Φ(P,G) terminates in a finite number of steps.

Corollary 5.2. Let P be a definitional program and G a goal that does not contain any
predicate variables. Then, the output ofΦ(P,G) does not contain any predicate variables.

The result of Φ is neither a valid H program since it contains predicate names as argu-
ments in the heads, nor a valid first-order program since some symbols appear both as
arguments and as predicate symbols. Therefore, we must apply a simple renaming [29,
Section 3] in order to construct a valid first-order output. In our case, at the end of the par-
tial evaluation algorithm, every atom p E1 · · ·En of S is renamed into p′ V1 · · ·Vm, where p′

is a fresh predicate symbol and {V1 · · ·Vm} = vars(p E1 · · ·En). Moreover, all instances
of every atom of S in the resulting program are renamed accordingly.

5.3.5 Implementation
We have developed a prototype implementation9 of our predicate specialization tech-
nique. The source language is HiLog and the target language is Prolog.

A feature that we need and is not supported in HiLog though, is the use of types. Our
algorithm needs types not only for deciding whether the input program belongs to our
fragment, but also for the abstraction operation in Definition 5.10. Since the process of
extending HiLog with types is outside the scope of this dissertation, we assume that the
input programs are well-typed and accompanied with type annotations for all predicates
that contain predicate arguments.

The implementation of our predicate specialization technique is approximately 700 lines
of Prolog code and is realized for the XSB system.

5.4 Predicate Specialization and Preferential Higher-order Logic Programs
In this section, we consider higher-order logic programs that express preferences over
tuples. Since these programs do not contain free predicate variables in the bodies of the
clauses, we can use Predicate Specialization in order to optimize their program execution
time. This technique can be used also for preference operators other than winnow, even
though in some cases (e.g., the operator w) the programs are not contained in the frag-
ment that is considered by Predicate Specialization. Transforming programs and queries
into first-order ones has important benefits from a practical point of view, as we will see
in the experiments of Chapter 6.

Most higher-order logic programs that express tuple preferences have a relatively simple
structure; they consist of a preference relation definition part (which usually is a first-order
program) and a query using winnow. Such programs can be successfully transformed
into first-order using Predicate Specialization. For instance, Example 5.4 produces a
first-order transformation of winnow according to the following query:

?- winnow(c1_pref,movie)(T).

However, not all preferential programs that we have considered in Section 4.4 belong to
the fragment that was discussed in Subsection 5.3.2, because in this fragment the only

9 cf. http://bitbucket.org/antru/firstify

A. Troumpoukis 100

http://bitbucket.org/antru/firstify

Extensions of Logic Programming for Preference Representation

elements that can appear as predicate arguments are variables and predicate constants.
Consider for example the following queries:

?- winnow(prioritized(c1_pref,c2_pref),movie)(T).
?- w(c1_pref,movie)(2)(T).

These examples use partial applications, which is a useful feature of most higher-order
languages (and HiLog among them). This feature is the ability to invoke a higher-order
predicate with only some of its arguments. In the first goal, notice that the first argu-
ment (which is a predicate argument) is not a predicate constant, but the partial appli-
cation prioritized(c1_pref,c2_pref). In the second goal, even though the predicate
arguments are predicate constants, several partial applications occur in the clauses that
define the w operator. Predicate Specialization can produce a first-order translation in
these cases, even though these examples do not belong in the class of definitional H
programs.

In the following, we present three examples of programs or queries that do not be-
long to the fragment of Subsection 5.3.2. In the first two cases the process of the
transformation terminates and provides a first-order translation, while in the third case
the transformation does not terminate. Moreover, in the following examples, by writing
{A1 ⇝ B1, . . . ,An ⇝ Bn} we mean that the input program was specialized according to
the set of specialization atoms {A1, . . . ,An} and every higher-order atom Ai is renamed
into Bi in the output program.

Example 5.8. Consider the c1_pref, c2_pref and movie relations from Section 4.4 and
the following clauses:

prioritized(C1,C2)(T1,T2) :- C1(T1,T2).
prioritized(C1,C2)(T1,T2) :- indifferent(C1)(T1,T2), C2(T1,T2).
indifferent(C)(T1,T2) :- not C(T1,T2), not C(T2,T1).
winnow(C,R)(T) :- R(T), not bypassed(C,R)(T).
bypassed(C,R)(T) :- R(Z), C(Z,T).

and the query:

?- winnow(prioritized(c1_pref,c2_pref),movie)(T).

By applying Predicate Specialization to the above program, we get the following program:

winnow1(T) :- movie(T), not bypassed2(T).
bypassed2(T) :- movie(Z), prioritized3(Z,T).
prioritized3(T1,T2) :- c1_pref(T1,T2).
prioritized3(T1,T2) :- indifferent4(T1,T2), c2_pref(T1,T2).
indifferent4(T1,T2) :- not c1_pref(T1,T2), not c1_pref(T2,T1).

with the following renamings:
winnow(prioritized(c1_pref,c2_pref),movie)(T) ⇝ winnow1(T)

bypassed(prioritized(c1_pref,c2_pref),movie)(T) ⇝ bypassed2(T)
prioritized(c1_pref,c2_pref)(T1,T2) ⇝ prioritized3(T1,T2)

indifferent(c1_pref)(T1,T2) ⇝ indifferent4(T1,T2)

The above query can now be stated as:

101 A. Troumpoukis

Extensions of Logic Programming for Preference Representation

?- winnow1(T).

Example 5.9. Consider a binary preference relation c and a unary base relation m and
the following clauses:

w(C,R)(1)(T) :- winnow(C,R)(T).
w(C,R)(N)(T) :- N>1,M is N-1,

winnow(C,diff(R,gen_union(w(C,R))(M)))(T).
winnow(C,R)(T) :- R(T), not bypassed(C,R)(T).
bypassed(C,R)(T) :- R(Z), C(Z,T).
gen_union(R)(1)(T) :- R(1)(T).
gen_union(R)(M)(T) :- M>1, K is M-1,

union(gen_union(R)(K), R(M))(T).
union(R,Q)(T) :- R(T).
union(R,Q)(T) :- Q(T).
diff(R,Q)(T) :- R(T), not Q(T).

and the query:

?- w(c,m)(2)(T).

By applying Predicate Specialization to the above program, we get the following program:

w1(1,T) :- winnow2(T).
w1(N,T) :- N > 1, M is N-1, winnow3(M,T).
winnow2(T) :- m(T), not bypassed4(T).
bypassed4(T) :- m(Z), c(Z,T).
winnow3(M,T) :- diff5(M,T), not bypassed6(M,T).
bypassed6(M,T) :- diff5(M,Z), c(Z,T).
gen_union7(1,T) :- w1(1,T).
gen_union7(M,T) :- M > 1, K is M-1, union8(K,M,T).
union8(K,M,T) :- gen_union7(K,T).
union8(K,M,T) :- w1(M,T).
diff5(M,T) :- m(T), not gen_union7(M,T).

with the following renamings:

w(c,m)(N)(T) ⇝ w1(N,T)
winnow(c,m)(T) ⇝ winnow2(T)

bypassed(c,m)(T) ⇝ bypassed4(T)
winnow(c,diff(m,gen_union((w(c,m)),M)))(T) ⇝ winnow3(M,T)

bypassed(c,diff(m,gen_union(w(c,m))(M)))(T) ⇝ bypassed6(M,T)
gen_union(w(c,m))(M)(T) ⇝ gen_union7(M,T)

union(gen_union(w(c,m))(K),w(c,m)(M))(T) ⇝ union8(K,M,T)
diff(m,gen_union(w(c,m))(M)))(T) ⇝ diff5(M,T)

The above query can now be stated as:

?- w1(2,T).

Example 5.10. Consider the director_pref, movie, winnow and bypassed predicates
from Section 4.4 and the query:

A. Troumpoukis 102

Extensions of Logic Programming for Preference Representation

?- winnow(director_pref,movie)(T).

Predicate Specialization in this case does not terminate. The non-termination occurs
during the attempt of specializing the predicate size. This predicate is defined using the
following clauses:
size(R,0) :- empty(R).
size(R,N) :- R(X), size(minus(R,X),M), N is M+1.

This behavior is happening due to the fact that the specialization of size according to
size(r,N) causes the specialization of size according to size(minus(r,X1),N1) which
causes the specialization of size according to size(minus(minus(r,X2),X1),N2) and
so on, which leads to non-termination.

The above examples illustrate that Predicate Specialization can be effective in the case of
programs that make limited use of complex predicate expressions. In particular, it seems
that the specialization of non-recursive programs (cf. Example 5.8) does not have termi-
nation problems, but the specialization of programs that combine higher-order features
together with recursion may terminate (cf. Example 5.9) or not (cf. Example 5.10). In
order to spot the crucial difference between the terminating and the non-terminating ex-
amples, consider the clauses that define the recursive predicates w, gen_union and size.
Notice that in the terminating example, the recursive calls w(C,R) and gen_union(R)(K)
that appear in the bodies of the clauses do not contain complex predicate expressions as
arguments. This is not the case for the recursive call size(minus(R,X),M), which is the
reason why the specialization process does not terminate. Intuitively speaking, Predicate
Specialization can be effective in HiLog programs that contain clauses of the form:

q(...) :- ... p(..., r(...), ...) ...

where a non-variable and non-constant predicate argument r(...) appears in the ex-
pression p(..., r(...), ...), only if the predicates p and q do not belong in the same
cycle in the predicate dependency graph10. The transformation, in this case, is ensured
to terminate (because due to the form of the program all predicate variables of a predicate
that depends on itself have to be specialized only with predicate names and therefore the
set of all possible specialization atoms will remain finite). It is worth mentioning though,
that this class of programs has the same expressive power as that of the fragment of
Subsection 5.3.2, and this extension can be viewed as a “syntactic sugar” of definitional
H programs11.

10 An edge from the predicate p to predicate q in the predicate dependency graph means that there exists
a clause that p appears in the head and q appears in the body of the same clause. Recursive definitions
create cycles in the predicate dependency graph of the program.

11 It is not hard to show that every program of this extended fragment can be translated into an equivalent
program that does not use partial applications. As a simple example, consider the following program:
conj3(P,Q,R)(X) :- conj2(P,conj2(Q,R))(X).
conj2(P,Q)(X) :- P(X), Q(X).
This program is equivalent to the following that does not use any partial applications:
conj3(P,Q,R,X) :- P(X), conj2(Q,R,X).
conj2(P,Q,X) :- P(X), Q(X).
Interestingly, we can use Predicate Specialization to convert a program of the extended fragment into its
equivalent HiLog programwithout partial applications. This can be done by initializing the transformation
process with a query that consists of the top predicate (here ?- conj3(P,Q,R)(X)).

103 A. Troumpoukis

Extensions of Logic Programming for Preference Representation

Regarding the optimization of the size predicate, which is the only predicate that cannot
be transformed into first-order by Predicate Specialization, we can use an alternative
implementation using second-order Prolog built-ins12. Even though this approach is not
technically a first-order one, it can be useful since it can be executed in almost every
practical Prolog system.

5.5 Optimization Strategies for Set Preferences

In this section, we present two optimization techniques for higher-order logic programs
that express preferences over sets. In particular, we give a relatively high-level descrip-
tion of two optimizations and of their implementation in our framework. For more details,
the interested reader should consult the detailed exposition of these optimizations in the
work of Zhang and Chomicki [80].

5.5.1 Overview of the Optimizations

As discussed in Section 5.2, HiLog’s approach for treating uninstantiated predicate vari-
ables in queries is to instantiate them with predicate names that are defined in the pro-
gram. By trying all possible instantiations for such variables we have a guarantee that if
there exists a predicate that satisfies the query, it will be eventually found by the system.
Therefore, it is evident that the performance of query execution in the case of prefer-
ences over sets heavily depends on the number of the predicate names that must be
substituted and checked, or equivalently the number of the sets that are generated by
the subsetof predicate (which was described in Section 5.2). This process is inherently
slow in the worst case because there exist applications where all the subsets of a spe-
cific size must be tested. Therefore, it would be beneficial to devise techniques that will
reduce the number of the subsets generated and at the same time will not compromise
the soundness of the implementation.

There exist many applications where optimizations may help to get a performance that
is acceptable in practice. In our HiLog implementation, we have experimented with the
two main optimization techniques that have been proposed by Zhang and Chomicki [80]
for speeding-up the subset generation process during query processing, namely super-
preference and M-relation. Each technique uses a mechanism for pruning the set of the
candidate k-subsets. Intuitively, superpreference removes tuples that will not contribute
to the production of any best k-subset, while the M-relation “groups together” tuples that
are exchangeable with respect to a given set preference. It should be noted that these
two optimizations will not work for every preference relation between sets, but it can be
applied only on preferences that are additive, a class that is quite common in practice.

In the following, we present the notion of additive preferences and we give a simple
example. Recall the definitions of profiles and features from Subsection 4.2.3. Suppose
that we are given a relation r. A feature F is a function that maps the subsets of r to a
numerical value, and the profile of a given set is a vector of all features of this set. We
say that a feature F is additive if there exists a function f such that (1) for every tuple
t ∈ r it holds F({t}) = f(t) and (2) for every subset s ⊆ r and for every tuple t ∈ r − s
it holds F(s ∪ {t}) = F(s) ∪ f(t). Finally, we say that a set preference is additive if all

12 A possible implementation would be the size(R,N) :- findall(X,R(X),L), length(L,N). which is
the implementation that we used in our experiments.

A. Troumpoukis 104

Extensions of Logic Programming for Preference Representation

Table 5.1: A simple, short movie relation.

ID Name Year Runtime Rating

m1 Raiders of the Lost Ark 1981 115 8.5
m2 The Terminator 1984 107 8.0
m3 Lethal Weapon 1987 109 7.5
m4 Die Hard 1988 132 8.0
m5 Terminator 2: Judgment Day 1991 137 8.5

Table 5.2: The profile relation of all 3-element subsets of the movie relation of Table 5.1.

Set F(·)

s1 = {m1,m2,m3} f(m1) + f(m2) + f(m3) = 8.5 + 8.0 + 7.5 = 24.0
s2 = {m1,m2,m4} f(m1) + f(m2) + f(m4) = 8.5 + 8.0 + 8.0 = 24.5
s3 = {m1,m2,m5} f(m1) + f(m2) + f(m5) = 8.5 + 8.0 + 8.5 = 25.0
s4 = {m1,m3,m4} f(m1) + f(m3) + f(m4) = 8.5 + 7.5 + 8.0 = 24.0
s5 = {m1,m3,m5} f(m1) + f(m3) + f(m5) = 8.5 + 7.5 + 8.5 = 24.5
s6 = {m1,m4,m5} f(m1) + f(m4) + f(m5) = 8.5 + 8.0 + 8.5 = 25.0
s7 = {m2,m3,m4} f(m2) + f(m3) + f(m4) = 8.0 + 7.5 + 8.0 = 23.5
s8 = {m2,m3,m5} f(m2) + f(m3) + f(m5) = 8.0 + 7.5 + 8.5 = 24.0
s9 = {m2,m4,m5} f(m2) + f(m4) + f(m5) = 8.0 + 8.0 + 8.5 = 24.5
s10 = {m3,m4,m5} f(m3) + f(m4) + f(m5) = 7.5 + 8.0 + 8.5 = 24.0

features of the profile of the set is an additive feature. The following example illustrates
a simple additive preference relation over sets of movies.

Example 5.11. Consider the movie((ID,Name,Runtime,Rating)) relation illustrated in
Table 5.1. Now, suppose that we want to watch three movies and we prefer that the sum
of the ratings of these movies to be as high as possible (he have already seen this set
preference relation in Example 4.5 and Example 4.16).

This set preference is additive since the profile of each set consists of of one feature F ,
and this feature is additive, since it holds F({t1, t2, t3}) = f(t1)+ f(t2)+ f(t3), where f(t)
is the rating of the movie t. A set s is preferred to s′ if it holds F(s) > F(s′). In Table 5.2
we illustrate the profile relation of all 3-element subsets of movie. As we have seen in
Section 4.5, the best sets are found using a winnow query on this profile relation, but this
table has to be constructed beforehand.

The higher-order predicate rating_pref that expresses this preference in our higher-
order framework can be found in Example 4.16.

5.5.2 Pruning Sets by Removing Unnecessary Tuples
In this subsection, we give a description of the superpreference optimization. This opti-
mization reduces the input tuples and the generated sets by filtering out tuples that do
not belong to any “best” k-subset.

The key idea behind the superpreference optimization is that in some cases, instead of
examining a preference relation between sets, we can examine a (so-called) superpref-
erence relation between tuples. Given a relation r and a preference relation ≻C between

105 A. Troumpoukis

Extensions of Logic Programming for Preference Representation

Table 5.3: Superpreference optimization for Example 5.11.

(a) Remaining tuples from the movie relation of Table 5.1 after the 1st Pruning condition.

ID Name Year Runtime Rating

m1 Raiders of the Lost Ark 1981 115 8.5
m2 The Terminator 1984 107 8.0
m4 Die Hard 1988 132 8.0
m5 Terminator 2: Judgment Day 1991 137 8.5

(b) The profile relation of all 3-element subsets of the relation of Table 5.4a.
The third column shows if the specific set was pruned according to the 2nd Pruning condition.

Set F(·) pruned?

{m1,m2,m4} 24.5 yes∗
{m2,m4,m5} 24.5 yes∗
{m1,m2,m5} 25.0 no†
{m1,m4,m5} 25.0 no†

∗ This set s is pruned because m5 (resp. m1) ≻+ m2 and m5 (resp. m1) /∈ s.
† This set s is not pruned because for every mi ∈ s it holds {m : m ≻+ mi} ⊇ s.

k-subsets of r, we say that ≻+
C is the corresponding superpreference relation between

tuples of r iff it holds t1 ≻+
C t2 ⇐⇒ {t1} ∪ s ≻C {t2} ∪ s, for every (k − 1)-subset s or

r − {t1, t2}.

Consider again the preference relation fromExample 5.11which is defined over 3-element
sets. It is not hard to see that this preference relation is closely connected to the following
superpreference relation among tuples. A movie tuple is “super-preferred” over another
if the rating of the former is higher than the rating of the latter:

rating_superpref((I1,N1,Y1,T1,R1), (I2,N2,Y2,T2,R2)) :-
movie((I1,N1,Y1,T1,R1)),
movie((I2,N2,Y2,T2,R2)),
R1 > R2.

Given a superpreference relation between tuples, the superpreference optimization ap-
plies two pruning conditions, which we outline below using our running movie example.
First, notice that the moviem3 has at least 3movies that are “super-preferred” from it (i.e.,
at least 3 movies with a higher rating). Therefore, m3 and can be filtered out before the
start of the subset generation process, because it is certain that it will not contribute to a
best set (1st Pruning condition). Secondly, notice that any subset that contains the movie
m2 (or m4) and does not contain both the movies m1 and m5 (i.e., it does not contain all
movies that are “super-preferred” from it) is not a best subset and can be pruned at the
subset generation step (2nd Pruning condition). Table 5.3 illustrates the superpreference
optimization for Example 5.11.

In our implementation we provide an optimized winnow operator, called winnowsuper,
which is enhanced according to the above two pruning conditions of the superpreference
optimization. In order to get the most preferred 3-element movie sets according to the
preference relation of Example 5.11, we can issue the following query:

A. Troumpoukis 106

Extensions of Logic Programming for Preference Representation

?- winnowsuper(rating_pref, rating_superpref, movie, 3)(S).

Omitting the details, this call begins by pruning the base relation movie according to
the 1st pruning condition, using the superpreference rating_superpref. Then, it gen-
erates all 3-subsets of the pruned movie relation, but it keeps only the appropriate sets
according to the 2nd pruning condition, again using rating_superpref. Finally, it ap-
plies a winnow operator over this pruned set of 3-element sets using the preference
relation rating_pref between sets (which was defined in Example 4.16) in order to get
the most preferred sets. Notice that, in order for the above query to function properly,
the rating_superpref must be the corresponding superpreference relation for the pref-
erence relation of rating_pref.

5.5.3 Pruning Sets by Grouping Exchangeable Tuples
In this subsection, we give a description of the M-relation optimization. This optimization
reduces the generated sets by grouping tuples that are exchangeable with respect to the
given set preference.

The key idea behind the M-relation optimization is that in some cases, an exchangeability
relation between tuples can lead us to indifference relation between sets, which can be
used as a pruning mechanism. Given a relation r and a preference relation ≻C between
k-subsets of r, we say that ≈C is the corresponding exchangeability relation between
tuples of r iff it holds t1 ≈C t2 ⇐⇒ {t1} ∪ s ∼C {t2} ∪ s for every (k − 1)-subset
s or r − {t1, t2}. By s1 ∼C s2 we denote that the sets s1, s2 are indifferent or equally
preferred (for the definition indifference relation of a given preference relation refer to
Subsection 4.2.2). Intuitively, two tuples are exchangeable if they contribute equally to
the profile value of a set.

Consider again the preference relation fromExample 5.11which is defined over 3-element
sets. The moviesm2 andm4 have the same rating, so the sets {m1,m2,m5} and {m1,m4,
m5} have the same sum of ratings and are equally preferred. So, if we could “group” the
tuplesm2 andm4 into onemeta-tuplem2,4, we would be able to “group” these two sets into
the meta-set {m1,m2,4,m5}, thus reducing the number of candidate sets that are of equal
importance, and avoiding unnecessary repetitions of sets that are equally preferred. At
the end, the most preferred sets are the sets that correspond to the most preferred meta-
set. The set of meta-tuples (called M-tuples) is constructed from the original tuples, by
keeping only the fields that are needed for the computation of the best subsets, leaving
out the fields that do not contribute in the computation of the preference relation. For
instance, in the preference relation of Example 5.11, all M-tuples (i.e., the tuples of the
M-relation) contain only one field, which is the rating of the specific movie. The transfor-
mation of a movie tuple into the corresponding single-field M-tuple can be encoded using
this rating_mrel predicate:
rating_mrel((I,N,Y,T,Rating), (Rating)) :- movie((I,N,D,G,M,Rating)).

The k-subsets are generated from the M-tuples and not from the original tuples (because
the number of M-tuples is smaller than the number of the original tuples). However, the
set generation process here differs from its unoptimized counterpart. Since one M-tuple
t corresponds to n ≥ 1 original tuples, we must allow up to n duplicates of t in the subset
generation step. This is needed because if we did not allow duplicates of the M-tuples,
the set {m1,m2,m5} which is one of the most preferred sets of Example 5.11 (which is an
instance of the multiset {m1,5,m1,5,m2,4}) could not be produced. On the other hand, if

107 A. Troumpoukis

Extensions of Logic Programming for Preference Representation

Table 5.5: M-relation optimization for Example 5.11.

(a) M-relation obtained from the movie
relation of Table 5.1.

ID Count Rating

m1,5 2 8.5
m2,4 2 8.0
m3 1 7.5

(b) The profile relation of all 3-multisets of
the M-relation of Table 5.5a.

MultiSet F(·)

{m1,5,m1,5,m2,4} 25.0
{m1,5,m1,5,m3} 24.5
{m1,5,m2,4,m2,4} 24.5
{m1,5,m2,4,m3} 24.0
{m2,4,m2,4,m3} 23.5

(c) The 3-subsets of the movie relation of Table 5.1 that correspond to
all 3-multisets of Table 5.5b.

MultiSet F(·) Corresponding Sets

{m1,5,m1,5,m2,4} 25.0 {m1,m2,m5}, {m1,m4,m5}
{m1,5,m1,5,m3} 24.5 {m1,m3,m5}
{m1,5,m2,4,m2,4} 24.5 {m1,m2,m4}, {m2,m4,m5}
{m1,5,m2,4,m3} 24.0 {m1,m2,m3}, {m1,m3,m4}, {m2,m3,m5}, {m3,m4,m5}
{m2,4,m2,4,m3} 23.5 {m2,m3,m4}

we allowed any arbitrary number of duplicates of M-tuples, the multiset {m1,5,m1,5,m1,5}
would also be produced, which does not correspond to a valid solution of the problem.
Table 5.5 illustrates the M-relation optimization for Example 5.11.

Moreover, in our implementation, we also provide another optimized winnow operator,
called winnowmrelation, which is enhanced with this optimization. In order to get the
most preferred 3-elementmovie sets according to the preference relation of Example 5.11,
we issue the following query:

?- winnowmrelation(rating_pref, rating_mrel, movie, 3)(S).

Omitting the details, this call begins by converting the original tuples into M-tuples using
the rating_mrel predicate and tags every M-tuple with the number of the corresponding
original tuples. Then, it generates all 3-multisubsets of the M-tuples, by allowing up
to the correct number of duplicates, and after the generation step, a winnow operator is
applied on thesemultisets, using the preference relation rating_pref. Notice though that
since this winnow operator operates on multisets of M-tuples, the rating_pref predicate
should be redefined in order to operate over multisets with M-tuples rather than sets of
original tuples. Finally, since the resulting sets are sets of M-tuples, it concludes with a
final procedure that transforms the 3-multisets with M-tuples back to 3-sets with original
ones, again using the rating_mrel predicate. Notice that, in order for the above query
to function properly, if any tuples from the movie relation are mapped by rating_mrel to
the same M-tuple, then these tuples must be exchangeable.

A. Troumpoukis 108

Extensions of Logic Programming for Preference Representation

5.5.4 Implementation
We have developed an implementation13 of the superpreference and M-relation opti-
mizations in the higher-order logic programming language HiLog. As we mentioned in
the previous subsections, for every optimization we have implemented an enhanced ver-
sion of winnow, namely winnowsuper and winnowmrelation. The implementation of these
predicates, together with the implementation of the unoptimized subsetof predicate) is
approximately 300 lines of HiLog code and is realized for the XSB system.

Notice that both enhanced versions of winnow require from the programmer to provide
an additional helper relation that is needed for the optimization to operate; that is the
superpreference relation for winnowsuper and a mapping from original tuples into M-
tuples for winnowmrelation. In order to help the programmer on the task of discovering
each helper relation, we implemented two predicates (namely valid_superpreference
and valid_mrelation) such that if the two queries of the following form
?- valid_superpreference(superpref,pref,r,k).
?- valid_mrelation(mrel,pref,r,k).

succeed, then it means that superpref is the superpreference relation of the preference
relation pref among k-element subsets of r and if any tuples from r are mapped by mrel
to the same M-tuple, then these tuples are exchangeable according to the preference
relation pref over k-element subsets of r14. Therefore, in such a case the winnowsuper
and winnowmrelation operators are ensured to function properly.

To sum up, the fact that these optimizations can be expressed concisely and implemented
efficiently in higher-order logic programming, highlights, one more time, the important
advantage of the higher-order logic programming approach; that is, the ability to express
preference relations, operators for processing preference relations, preference queries,
and even optimizations on preference operators in the same language.

5.6 Summary
In this chapter, we undertook an implementation of our higher-order preferential frame-
work. Instead of developing a tailor-made language only for preferential higher-order
logic programs, we chose instead to use the programming language HiLog, a stable and
mature logic programming language, which is integrated in the XSB system. Apart from a
basic, unoptimized implementation, we considered optimization techniques for enhanc-
ing its performance.

A simple, unoptimized implementation was almost straightforward, since almost all pref-
erential higher-order programs run directly into XSB. The only demanding part of the im-
plementation was the process of generating the candidate sets for set-preferences; the
reason is that the behavior of queries with uninstantiated predicate variables in HiLog
(which is an intensional higher-order language) is not convenient for our case. As a re-
sult, we provide a suitable implementation of a predicate that generates all subsets of a
given relation, that mimics the behavior of an extensional higher-order logic programming
language.

13 cf. http://bitbucket.org/antru/holppref
14 These predicates operate in a naive way, meaning that they check for the superpreference and ex-
changeability properties for the full relation r. In practice, instead of using the full relation r, the pro-
grammer could use a carefully chosen or random subset of r for the test.

109 A. Troumpoukis

http://bitbucket.org/antru/holppref

Extensions of Logic Programming for Preference Representation

For optimizing HiLog programs that express preferences over tuples, we proposed Pred-
icate Specialization, a program transformation technique based on partial evaluation.
This specialization technique transforms a definitional higher-order program into an equiv-
alent first-order program, which can be executed efficiently in conventional Prolog sys-
tems. Predicate Specialization cannot operate on every higher-order logic program, but
in a modest but well defined fragment, which includes HiLog programs that express pref-
erences over tuples that use various preference operators other than winnow.

Predicate Specialization cannot be used for programs that express preferences over sets
since these sets involve queries with uninstantiated predicate variables and such pro-
grams are not definitional. Hence, for optimizing programs that express set preferences,
we experimented with two optimization techniques by Zhang and Chomicki [80]. These
techniques optimize the program execution time by reducing the set of candidate subsets,
and can be used for additive set preferences, a class that is quite common in practice.

A. Troumpoukis 110

Extensions of Logic Programming for Preference Representation

6. EXPERIMENTS AND EVALUATION

In this chapter, we present experimental results that suggest the feasibility of the higher-
order logic programming framework for expressing preferences of Chapter 4. The frame-
work is implemented and optimized according to the techniques presented in Chapter 5,
combined with standard logic programming optimizations, such as tabling. For the eval-
uation of the experiments, we used the XSB system.

6.1 Overview
In this chapter, we conduct a series of experiments that highlight the feasibility of the
higher-order logic programming framework for expressing preferences. The implementa-
tion of this framework was enhanced with the techniques and the optimizations presented
in Chapter 5. We have built a test suite15 to measure the query running time for several
preference queries, and we carried out the following four different types of experiments:

• Winnow queries on tuple preferences.

• Queries of other preferential operators (besides winnow).

• Queries on recursively defined preference relations.

• Queries on set preferences.

The experimental evaluation of this chapter has two main purposes. The first purpose
is to identify the strengths and weaknesses of the logic programming approach to pref-
erence representation. Since (to our knowledge) there do not exist any other available
systems or implementations for representing preferences in a logic programming setting,
we can not provide a comparative assessment of our approach. For this reason, we fo-
cus on providing experimental results regarding the performance of our approach based
on increasing base relation sizes. The second purpose of this experimental evaluation is
to measure the effectiveness of the proposed optimizations of preferential higher-order
programs, especially when these techniques are combined with generic optimizations for
classical logic programs. For this reason, we are comparing the performance between
the unoptimized and optimized versions of every input program. In Table 6.1 we illustrate
the techniques that were used in the optimized version of each one of the experiments.

The most important generic optimization that we use in our experimental evaluation is
memoization. Memoization [27] is a well-known optimization for declarative program-
ming languages, which is based on the idea that we can store already computed results
of calls, which can later be retrieved and used directly when the same calls occur again.
In logic programming, memoization is usually referred as tabling. A re-evaluation of a
tabled predicate is avoided by memoizing (i.e., remembering) its answers. The XSB sys-
tem is known for its elaborate and efficient implementation of tabling for first-order logic
programs. For higher-order HiLog programs, however, XSB’s tabling mechanism may
not be as effective as it is for first-order ones. The reason is that in order to table any
HiLog predicate one has to table all HiLog code. This may lead to high memory consump-
tion and can be problematic for large-scale program development. As we are going to

15 cf. http://bitbucket.org/antru/holppref

111 A. Troumpoukis

http://bitbucket.org/antru/holppref

Extensions of Logic Programming for Preference Representation

Table 6.1: Optimizations used in the experiments.

Section Pref. Type Experiment Optimizations Used

Section 6.2 tuple winnow Predicate Specialization,
Prolog built-ins∗

Section 6.3 tuple
w(n) Predicate Specialization,

Tabled Execution

wt(n) Predicate Specialization,
Tabled Execution

Section 6.4 tuple
naive_shortest Predicate Specialization,

Tabled Execution

enhanced_shortest Predicate Specialization,
Tabled Execution

Section 6.5 set

winnowopt Prolog builtins∗

winnowsuper Superpreference Optimization

winnowmrel M-relation Optimization
∗ Implementation of size/2 and rating_sum/2 using second-order Prolog built-ins.

see, memoization offers significant benefits in the case of programs that use preference
operators beyond winnow and in programs that use extrinsic preference relations.

All experiments were performed on a Linux Desktop PC (Ubuntu 14.04 LTS) with Intel(R)
Core(TM) i7-4790 CPU, 8 GB RAM. The experiments were executed in XSB16. The exe-
cution time is measured using the standard time/1 predicate. All data has been artificially
generated.

The rest of the chapter is organized as follows: in Section 6.2 we experiment with winnow
queries that involve tuple preferences; in Section 6.3 we experiment with preference
queries that make use of preference operators other than winnow; in Section 6.4 we
experiment with recursively defined preference relations; in Section 6.5 we experiment
with preference queries that involve preferences over sets; and finally, in Section 6.6 we
provide an additional experiment17 in which evaluate the performance of higher-order
logic programs that are optimized only using Predicate Specialization (an optimization
tehcinque that we proposed in Section 5.3).

6.2 Experiments on Tuple Preferences
In the first series of experiments, we evaluate the performance of the winnow operator
over a randomly generated movie relation, using the preference relations defined in Sec-
tion 4.4. We compare the execution of the HiLog program of in Section 4.4 with the
execution of the equivalent Prolog program that is obtained using Predicate Specializa-
tion. In the case of director_pref, we implement the size predicate with second-order
Prolog built-ins.

16version 3.7, cf. http://xsb.sourceforge.net/
17 cf. http://bitbucket.org/antru/firstify

A. Troumpoukis 112

http://xsb.sourceforge.net/
http://bitbucket.org/antru/firstify

Extensions of Logic Programming for Preference Representation

We begin by generating a random relation of movies that contains n facts of the form
movie((ID,Name,Director,Genre,Runtime,Rating)), where the first two fields are unique,
the Director field is randomly selected from a set that contains n/5 director ids, the Genre
field is randomly selected from a set that contains 22 genres, and the remaining fields are
random integers, with Runtime ranging in [100, 260] and Rating ranging in [5, 95]. Then,
for every preference relation pref we issue in XSB the following queries:

?- winnow(pref,movie)(X), fail.
?- winnow_pref(X), fail.

which return all best tuples from movie with respect to the pref relation. The former goal
corresponds to the unoptimized higher-order winnow query, while the latter corresponds
to the optimized version. We use the intrinsic preference relations c1_pref, c2_pref,
c3_pref, the conjunction composition conj(c1_pref,c2_pref), the prioritized composi-
tion prioritized(c2_pref,c1_pref) and the extrinsic preference relation director_pref.
We evaluate the system for n = 100, 500, 1000, 2000, 4000, 8000, 10000 facts.

The results of this experiment are shown in Table 6.2. In the first column, we illustrate
the size of the movie relation, while in the remaining columns we illustrate the winnow
query execution times in seconds. For each preference, we show the query execution
time for both the naive and the optimized version of the query. Regarding the first five
intrinsic preferences, the program execution time of the optimized Prolog version is equal
to the 80% of that of the naive HiLog version. This happens due to the runtime overhead
that is introduced by XSB in order to execute HiLog code. However, a more extreme
time difference occurs in the execution times for the extrinsic preference director_pref.
This behavior is expected because in order to compare two movie tuples in this case,
one has to compute the size of the relation of movies that each of the two directors
has directed. The transformation to first-order and the more efficient implementation of
the size predicate with standard, second-order Prolog built-ins results to a significant
speedup, and therefore, the query execution times differ by an order of magnitude.

The query execution time obviously increases as the size of the relation increases, but
for similar base-relation sizes, the execution time clearly depends on the preference rela-
tion being evaluated. Since these queries return result sets of varying size, in Table 6.2c
we divide the query execution time of the winnow query for each preference relation with
the number of the returned results. This measurement shows how time-consuming is
to obtain a single result and this is clearly analogous to the difficulty of each preference
computation. For the extrinsic preference director_pref we show the different mea-
surements for each of the optimized and unoptimized cases, while in the intrinsic ones,
we display a mean value because the execution times are similar. For the simple intrinsic
preferences c1_pref, c2_pref, c3_pref the execution times per result are quite similar
and relatively low. The use of compositions of preferences though, leads to slower exe-
cution times per result, with the prioritized composition being the slowest of the two. This
is due to the fact that the prioritized composition of two preference relations requires a
more difficult computation than a simple conjunction. Finally, as we saw previously, the
most difficult preference computation is the extrinsic preference relation director_pref.
This fact is also highlighted in this table.

113 A. Troumpoukis

Extensions of Logic Programming for Preference Representation

Table 6.2: Program execution times for the winnow operator.

(a) Winnow execution times for tuple preferences.

winnow execution time (sec)

c1_pref c2_pref c3_pref
#facts unoptimized optimized unoptimized optimized unoptimized optimized

100 0.07 0.08 0.04 0.05 0.02 0.05
500 0.15 0.13 0.12 0.10 0.06 0.04

1,000 0.32 0.30 0.37 0.31 0.08 0.07
2,000 1.00 0.82 1.66 1.36 0.46 0.38
4,000 3.21 2.74 10.51 8.48 2.72 2.20
8,000 13.18 10.94 58.80 45.70 18.86 15.35
10,000 22.51 21.02 96.44 78.09 49.23 39.63

(b) Winnow execution times for tuple preferences (cont.).

winnow execution time (sec)

conj prioritized director_pref
#facts unoptimized optimized unoptimized optimized unoptimized optimized

100 0.05 0.05 0.05 0.05 0.16 0.07
500 0.21 0.16 0.15 0.10 4.72 0.58

1,000 0.91 0.68 0.40 0.31 12.75 1.36
2,000 5.39 4.10 1.57 1.27 99.89 10.84
4,000 30.48 24.27 6.96 5.50 547.88 61.13
8,000 154.49 123.18 29.22 23.37 923.22 94.40
10,000 254.49 204.69 44.23 35.68 1, 805.95 165.85

(c) Winnow execution times per result for tuple preferences.

winnow execution time (sec) / # results

#facts c1_pref c2_pref c3_pref conj prioritized director_pref
unoptimized optimized

100 0.004 0.001 0.004 0.001 0.002 0.015 0.006
500 0.006 0.001 0.002 0.001 0.005 0.236 0.029

1,000 0.011 0.004 0.002 0.002 0.015 1.063 0.113
2,000 0.025 0.010 0.005 0.011 0.065 4.162 0.452
4,000 0.056 0.035 0.015 0.046 0.260 11.414 1.273
8,000 0.140 0.097 0.053 0.164 1.052 65.944 6.743
10,000 0.198 0.124 0.096 0.224 1.480 120.397 11.057

A. Troumpoukis 114

Extensions of Logic Programming for Preference Representation

6.3 Experiments on Preference Operators

In the second series of experiments, we evaluate the performance of the operators wn
C

and wtnC that were introduced in Subsection 4.4.4. For each of the two operators, we
have also implemented an optimized version, as described in Section 5.4. The optimized
version is executed using tabled execution. The datasets we use are generated randomly
with the same manner as in the previous class of experiments. For the evaluation we
use the queries:

?- w(c1_pref,movie)(n)(X), fail.
?- wt(c1_pref,movie)(n)(X), fail.
?- wo(n,X), fail.
?- wto(n,X), fail.

where w and wt correspond to the unoptimized versions of wn
C and wtnC respectively,

and wo and wto are their optimized versions. We use only the c1_pref preference over
the movie relation, and n is the desired level n at which each operator is evaluated.
The results of this experiment are shown in Table 6.3. The empty entries in the table
correspond to query execution times over 2 hours (7200 seconds).

Obviously, the unoptimized implementations of the wn
C and wtnC operators are completely

impractical. Using the optimized versions of these operators makes the execution times
much more reasonable. Observe that while in the unoptimized versions the execution
times increase dramatically as n increases, the corresponding execution times for the
optimized versions exhibit a graceful increase. This behavior is due to the fact that for
each n the computations of wn

C(r) and wtnC(r) both require the recursive computations
w1

C(r), w
2
C(r), . . . , w

n−1
C (r), therefore the complexity of the overall computation is expo-

nential. However, by using the memoization of the individual calls we avoid redundant
computations. This explains both the huge time differences between the unoptimized
and the optimized implementations of wn

C and wtnC and the fact that the query execution
time increases smoothly with every increase in n and the size of the base relation.

6.4 Experiments on Path Preferences

In the third series of experiments, we evaluate the performance of our approach for the
path preferences as defined in Subsection 4.4.5. For each of the two operators, we have
also implemented an optimized version, as described in Section 5.4. As in the previous
experiments, the optimized version of every predicate is executed using tabled execution.

For each experiment we generate a directed acyclic graph of the form of Figure 6.1.
Every directed edge of the graph has a random weight ranging in [(k+m), 50 · (k+m)].
We generate several graphs with varying k and m parameters, and then we measure
the execution times of the following queries, which calculate the cost of the shortest path
from node a to node z:

?- naive_shortest(a,z,C),!.
?- enhanced_shortest(a,z,C),!.
?- naive_shortest_opt(a,z,C),!.
?- enhanced_shortest_opt(a,z,C),!.

As in the previous examples, the first two calls correspond exactly to the first two pro-
grams shown in Subsection 4.4.5. These programs are first, the naive implementation of

115 A. Troumpoukis

Extensions of Logic Programming for Preference Representation

Table 6.3: Program execution times for wn
C , wtnC operators.

w(n) execution time (sec) wt(n) execution time (sec)

#facts level unoptimized optimized unoptimized optimized

100

n = 1 0.08 0.06 0.03 0.03
n = 2 0.08 0.03 0.09 0.03
n = 3 1.69 0.04 1.74 0.04
n = 4 42.90 0.04 44.54 0.04

500

n = 1 0.13 0.16 0.05 0.08
n = 2 2.62 0.24 2.71 0.13
n = 3 219.96 0.18 217.63 0.18
n = 4 – 0.20 – 0.23

1,000

n = 1 0.33 0.36 0.16 0.22
n = 2 12.50 0.39 12.60 0.41
n = 3 1, 367.27 0.54 1, 373.70 0.54
n = 4 – 0.64 – 0.63

2,000

n = 1 0.95 1.02 0.54 0.77
n = 2 73.62 1.52 74.13 1.50
n = 3 – 1.93 – 1.78
n = 4 – 2.32 – 2.29

shortest path, in which a winnow operator is applied over a recursively defined path re-
lation and the enhanced implementation, which embeds the winnow operator inside the
definition of the shortest path relation itself (according to the optimal subproblem property
defined by Govindarajan et al. [33]). The remaining two calls correspond to the optimized
versions of the above predicates, which are derived using Predicate Specialization and
Memoization. The results of this experiment are displayed in Table 6.4. As in the pre-
vious experiment, the empty entries correspond to query execution times over 2 hours
(7200 seconds).

The results in Table 6.4 lead to the following two observations. First, as in the previous ex-
periments, we notice that the non-optimized versions of the path predicates are becoming
impractical for larger inputs and that this situation can be remedied by transforming the
corresponding queries to first-order and using memoization. Second, we notice that in
the non-optimized case, the version that applies a winnow over the recursive definition of
paths is faster than the version that uses winnow inside the definition of the shortest path.
In the optimized versions of these predicates though, we have the opposite behavior; the

a
u02

u01

. . .

u0m

v1

u12

u11

. . .

u1m

v2 . . . vk

uk2

uk1

. . .

ukm

z

Figure 6.1: Input graph for the Shortest Path experiment.

A. Troumpoukis 116

Extensions of Logic Programming for Preference Representation

Table 6.4: Program execution times for path preferences.

shortest execution time (sec)

unoptimized optimized

edges graph parameters naive enhanced naive enhanced

10 k = 1 m = 5 0.06 0.03 0.07 0.04
20 k = 1 m = 10 0.05 0.03 0.03 0.03
40 k = 1 m = 20 0.05 0.05 0.04 0.04
20 k = 2 m = 5 0.04 0.07 0.04 0.04
40 k = 2 m = 10 0.27 1.84 0.06 0.03
30 k = 3 m = 5 0.14 22.54 0.03 0.03
80 k = 2 m = 20 1.95 32.84 0.06 0.04
40 k = 4 m = 5 10.47 3, 242.15 0.08 0.05
60 k = 3 m = 10 13.22 2, 264.04 0.12 0.03
50 k = 5 m = 5 179.74 – 0.45 0.04
80 k = 4 m = 10 – – 1.08 0.03
100 k = 5 m = 10 – – 1.83 0.02
200 k = 10 m = 10 – – 20.64 0.07
400 k = 10 m = 20 – – 98.86 0.05

former method becomes much slower and uses a very large amount of memory (this fact
is not depicted in Table 6.4). Therefore, we argue that in order for an implementation
that exploits the minimum subproblem property (i.e., the latter in this case) to offer an
improvement in the program execution time, the solutions of the individual subproblems
must be memoized. Otherwise, the execution is much slower since, as in the case of the
operators w and wt, we have redundant computations of the individual subproblems. To
sum up, we see that optimization techniques such that memoization and the techniques
that we have developed in Section 5.4 combined with the flexibility of embedding the
winnow operator inside the base relations, as we have shown in Subsection 4.4.5, can
result to much better performance.

6.5 Experiments on Set Preferences
In this series of experiments, we evaluate the performance of our approach for set pref-
erences. We compare the unoptimized implementation for set preferences that we de-
scribed in Section 5.2 with the two optimizations for set preferences described in Sec-
tion 5.5. We use the rating_pref set preference of Section 4.5. Since the queries of
set preferences involve uninstantiated predicate variables, we could not use Predicate
Specialization here.

For each experiment, we first generate n facts of the movie relation as described in the
previous experiments. For each run of the experiments, we measure the execution times
of the following four queries:

?- winnow(rating_pref,subsetof(movie,k)(S), fail.
?- winnow(opt_rating_pref,subsetof(movie,k)(S), fail.
?- winnowsuper(rating_pref,rating_superpref,movie,k)(S), fail.
?- winnowmrelation(rating_pref,rating_mrel,movie,k)(S), fail.

117 A. Troumpoukis

Extensions of Logic Programming for Preference Representation

Table 6.5: Program execution times for set preferences.

(a) Program execution times for set preferences.

query execution time (sec)

#facts set size winnow winnowopt winnowsuper winnowmrel

10 k = 3 0.10 0.10 0.08 0.06
25 k = 3 0.93 0.28 0.15 0.21
50 k = 3 83.27 11.41 1.16 5.14
75 k = 3 217.62 41.47 3.59 7.90
100 k = 3 2, 089.67 350.43 33.02 34.53

25 k = 2 0.12 0.11 0.15 0.10
25 k = 3 0.93 0.28 0.15 0.21
25 k = 4 15.13 2.35 0.19 1.22
25 k = 5 179.18 32.51 0.22 9.55
25 k = 6 1, 434.29 274.41 0.23 54.15

(b) Number of generated sets for set preferences.

sets

#facts set size winnow winnowopt winnowsuper winnowmrel

10 k = 3 120 120 1 92
25 k = 3 2, 300 2, 300 1 1, 603
50 k = 3 19, 600 19, 600 1 8, 808
75 k = 3 67, 525 67, 525 1 18, 054
100 k = 3 161, 700 161, 700 3 37, 558

25 k = 2 300 300 1 234
25 k = 3 2, 300 2, 300 1 1, 603
25 k = 4 12, 650 12, 650 1 7, 948
25 k = 5 53, 130 53, 130 1 30, 384
25 k = 6 177, 100 177, 100 1 93, 139

The first two calls select the best k-sets of movies according to rating_pref in a naive
way, the third one is optimized using the “superpreference” technique, and the fourth
one is optimized using the M-relation technique. The difference between the first two
calls is that in the second one we use standard Prolog built-ins in order to construct an
efficient version of the rating_sum/2 predicate (which counts the sum of the ratings in a
set). We evaluate the queries for fixed subset size k = 3 and varying base-relation sizes
n = 10, 25, 50, 75, 100. Then, we perform again the evaluation for fixed base-relation size
n = 25 and varying subset size k = 2, 3, 4, 5, 6. For each run of the experiments, we
also measure the total number of sets that are generated for each approach. The query
execution times are displayed in Table 6.5a and the number of the generated sets for
each query are displayed in Table 6.5b.

As we can see from the results of Tables 6.5a and 6.5b, the superpreference and M-
relation optimizations are both performing very well in our case, due to the effective
pruning of the total number of subsets that need to be generated. Considering the naive

A. Troumpoukis 118

Extensions of Logic Programming for Preference Representation

evaluation, all
(
n
k

)
subsets have to be generated. However, since the second version of

the naive evaluation (winnowopt) uses a more efficient implementation of the preference
relation predicate we have a significant drop in the execution times which is roughly one
order of magnitude. Despite this decrease, the other two optimizations that focus on the
reduction of the number of the generated sets are performing even better. Considering
the superpreference optimization, notice that in our case only the movies that have the
highest ratings contribute to the best sets. Therefore, at the first step of the superpref-
erence optimization, all movie tuples from the base relation are removed, except for the
ones whose ratings belong to the k highest ones. This results in a radical pruning of the
set of the generated subsets, which results in a significant decrease of the query execu-
tion time. Considering the M-relation optimization, notice that we do not have as much
pruning here as in the superpreference optimization. However, theM -tuples contain only
the required information for the preference comparison, namely the rating of the movie,
and since these tuples are more compact than the original movie tuples, the generation
of all subsets is much faster, resulting to better performance.

6.6 Experiments on Predicate Specialization
Among the techniques that we used for optimizing preferential HiLog programs, we pro-
posed Predicate Specialization, a novel program transformation technique for translating
higher-order programs into first-order ones. In this series of experiments, we evaluate
the performance of this technique in general HiLog programs. The purpose of this set of
experiments is twofold; first, to measure the effectiveness of this transformation without
using any other optimization techniques; and second, to illustrate that Predicate Special-
ization can be used for improving the execution runtime not only for preferential higher-
order programs but for other types of higher-order logic programs as well.

We have tested our method with a set of benchmarks that include the computation of
the transitive closure of a chain of elements, a k-ary disjunction and k-ary conjunction
of k relations (for k = 5, 10). Regarding the k-ary operators, we used two programs for
the same computation. For instance, the first program for k-ary disjunction uses a non
recursive computation of the form ck = (. . . ((r(1)∪r(2))∪r(3)) · · ·∪r(k))while the second
one uses a recursive definition of the form c1 = r(1) ; ck = r(k) ∪ ck−1. The remaining
benchmarks are the winnow, w, wt, path_naive and path_enhanced that were presented
in the previous sections. As previously, the higher-order programs are expressed in
HiLog and executed using the HiLog module of XSB. We compare their execution with
the execution of the Prolog programs produced by Predicate Specialization. Apart from
XSB, we also consider the execution of the specialized program in other Prolog engines.
The Prolog engines that we use are SWI-Prolog18, and YAP19. Every program is executed
several times, each time with a predefined set of facts.

Table 6.6 summarizes the experimental results. In the first column, we show the average
execution time of the original, HiLog program and in the following columns, we show the
corresponding execution times for the Prolog programs for each engine. The execution
times are depicted in seconds. Table 6.6 also illustrates the number of the (non-fact)
clauses of the original higher-order program, the number of the (non-fact) clauses of the
resulting first-order program after the transformation, and the ranges of the number of the

18version 7.2.3, cf. http://www.swi-prolog.org/
19version 6.2.2, cf. http://www.dcc.fc.up.pt/~vsc/Yap/

119 A. Troumpoukis

http://www.swi-prolog.org/
http://www.dcc.fc.up.pt/~vsc/Yap/

Extensions of Logic Programming for Preference Representation

Table 6.6: Program execution times for Predicate Specialization.

Program execution time (sec) Program size

HiLog Prolog #rules
Program xsb xsb swi yap h.o. f.o. #facts

closure 1744.829 17.426 15.813 8.782 3 3 1000-8000
closure_1000 12.132 0.801 0.609 0.372 3 3 1000
closure_2000 91.284 2.884 2.644 1.332 3 3 2000
closure_4000 709.356 11.336 10.918 5.464 3 3 4000
closure_6000 2365.728 25.536 23.459 13.532 3 3 6000
closure_8000 5545.644 46.576 41.433 23.208 3 3 8000

conj5 9.887 1.090 0.026 0.010 3 6 1000-8000
genconj(5) 9.921 1.101 0.028 0.011 4 4 1000-8000
conj10 21.676 2.414 0.023 0.015 3 11 1000-8000
genconj(10) 21.580 2.415 0.039 0.013 4 4 1000-8000

union5 0.035 0.028 0.030 0.023 4 10 1000-8000
genunion(5) 0.034 0.030 0.025 0.021 5 5 1000-8000
union10 0.063 0.062 0.046 0.036 4 20 1000-8000
genunion(10) 0.062 0.079 0.054 0.035 5 5 1000-8000

path_enhanced 971.326 679.557 975.027 54.156 6 6 10-80
path_naive 5.725 4.248 6.661 0.407 6 6 10-80

winnow 0.147 0.130 0.117 0.039 3 3 1000-10000
w(2) 3.920 3.257 3.844 0.527 10 12 100-2000
w(3) 129.457 107.183 122.556 21.103 10 12 100-2000
wt(2) 4.146 3.288 3.857 0.530 11 13 100-2000
wt(3) 130.540 108.048 126.876 21.360 11 13 100-2000

corresponding facts. We do not show the runtime of each transformation from the higher-
order to first-order since the execution of the transformation process was negligible (e.g.
less than 0.01 seconds in all cases).

Firstly, we observe that the first-order programs are in general much faster than the
higher-order ones. Even in the context of XSB which offers native support of HiLog,
the Prolog code is in almost all cases faster than the HiLog code. Especially in the
transitive closure and the k-ary conjunction, we have an improvement by one or more
of orders of magnitude. In most programs in our experiment, we noticed that the ratio
between the execution time of Prolog code and the execution time of HiLog code does
not change much if we increase the number of facts, with the exception of the transitive
closure benchmark, in which the more we increase the number of facts, the more per-
formant is the equivalent Prolog program. Secondly, one of the important advantages
of executing standard Prolog code is that it allows us to choose from a wide range of
available Prolog engines. Notice that from the three Prolog engines that we used, YAP
is the most performant one. Therefore, as a second observation, we notice that we can
get a further decrease in execution times by simply choosing a different Prolog engine,
a fact that is not possible if we want to execute HiLog code directly.

A. Troumpoukis 120

Extensions of Logic Programming for Preference Representation

Finally, regarding the size of the transformed first-order transformations, consider the
programs that deal with the k-ary conjunction and disjunction, i.e. the pairs conj5 – gen-
conj(5), conj10 – genconj(10), union5 – genunion(5), and union10 – genunion(10). Both
programs of each of these pairs are making the same computation, with the former ex-
pressed in a non-recursive way and the latter in a recursive way. These programs differ
also in the size of their first order counterparts. The first-order form of the non-recursive
version has more clauses than the first-order form of the recursive version. We observe
that both the higher-order and the first-order versions of the same computation have
similar execution times, even though the first-order versions have different numbers of
clauses. As a result, this increase in the size of the resulting first-order output did not
produce any overhead in the overall program execution time.

121 A. Troumpoukis

Extensions of Logic Programming for Preference Representation

7. RELATED WORK

In this chapter, we discuss related work regarding preference representation formalisms
in the area of databases and logic programming. We discuss both quantitative and qual-
itative approaches and we compare them with our work; i.e., the infinite-valued logic
programming language PrefLog defined in Chapter 4 and the preferential higher-order
logic programming framework of Chapter 4. Moreover, we discuss related work regarding
Predicate Specialization, which is a proposed technique that we have used for optimizing
tuple-preference HiLog programs.

7.1 Overview

Preferences play an important role in knowledge representation and have many applica-
tions in diverse domains. In this chapter, we discuss related work regarding preference
representation formalisms that have been proposed in the areas of databases and logic
programming. As a general comment, we could say that our approaches are not very di-
rectly related to most of the existing ones, since, to the best of our knowledge, it is the first
time that the uses of an infinite-valued or a higher-order language are proposed as logic
programming frameworks for expressing preferences. However, in some cases there
exist some underlying connections between our approaches and certain of the already
proposed techniques, which we highlight in the rest of the chapter.

As already mentioned, formalisms for representing preferences can be divided [69] into
the qualitative and the quantitative ones. It has been argued that the quantitative ap-
proaches are less general than the qualitative ones: there exists a preference relation
that can not be expressed using a scoring function (see Example 1.2 in [17][page 428] and
the discussion in Subsection 7.1.2 of the same paper). This happens in our case as well;
as we have discussed in Subsection 4.4.3 there exist (at least) one type of preference
relation that can be expressed using our higher-order framework but not with PrefLog.
This is an expected phenomenon because PrefLog is a quantitative programming lan-
guage and the higher-order framework is designed to express qualitative preferences.
In order to draw a fair comparison between works in the literature and our approaches,
in the following sections, we will compare the quantitative approaches with PrefLog and
the qualitative approaches with our higher-order framework.

The process of executing and optimizing preferential programs opened up for us the
possibility of devising specialized transformations and other optimizations for enhanc-
ing their performance. Promising such techniques are given in Chapter 3 and Chap-
ter 5 and their efficiency is verified in Chapter 6. Among all the techniques discussed,
the most interesting one is Predicate Specialization, which was designed for optimizing
tuple-preference higher-order logic programs. This technique is based on partial evalu-
ation [40] and is related to several approaches in the program transformation literature,
especially in techniques that transform higher-order programs into first-order ones. We
include a discussion on how these approaches compare with Predicate Specialization
towards the end of this chapter.

The rest of the chapter is organized as follows: in Section 7.2, we start with a discus-
sion about quantitative and qualitative systems in the area of databases; in Section 7.3
we continue with a discussion about approaches that are used for expressing qualitative
preferences in logic programming; in Section 7.4 we continue with a discussion about
quantitative extensions of logic programming; in Section 7.5 we continue with a discus-

123 A. Troumpoukis

Extensions of Logic Programming for Preference Representation

sion about related work regarding Predicate Specialization; and finally, we close with a
brief summary of the chapter.

7.2 Preferences in Databases

Each one of our logic programming approaches is based on a relevant approach in the
database domain. In particular, our infinite-valued approach is based on the query sys-
tem of Agarwal and Wadge [1, 2], and our higher-order approach is based on the frame-
work of Chomicki [17, 80]. In this section, we present some related work in the field of re-
lational databases. We start with a discussion about quantitative approaches (which are
mostly related to our infinite-valued approach) and then we continue with a discussion
about qualitative approaches (which are mostly related to our higher-order approach).
For a detailed comparison between quantitative and qualitative formalisms in database
systems, refer to a detailed survey by Stefanidis et al [69].

7.2.1 Quantitative Preferences in Databases

In the quantitative approach, preferences are expressed by assigning numerical values
on tuples, such that one tuple is preferred over another if its preference score is higher.
Among themany approaches in the literature, two interesting quantitative approaches are
developed by Agrawal and Whimmers [3] and by Koutrika and Ioannidis [45]. In the first
approach [3], the preference score of a tuple can be obtained by a function which takes
a tuple and returns a numerical value (e.g., the preference function f(t) = 0.1 · t.rating
calculates a preference score for every movie according to its rating). In the second
approach [45], the score is obtained by specifying appropriate selection conditions (e.g.,
the preference (movie.genre = ‘drama′, 0.9) expresses a preference score of 0.9 on
drama movies). Both approaches offer preference combination mechanisms, in which
two (or more) preference scores are combined, by applying a combining function such
as weighted summation, maximum, minimum, average and so on.

We believe that the above quantitative systems [3, 45] are actually quite sophisticated and
they may prove to have interesting applications. However, when it comes to expressing
preferences at a high declarative level, we feel that expressing preferences directly using
preference scores has a disadvantage. As remarked by Domshlak et al. [24], “humans
are rarely willing to express their preferences directly in terms of a value function. [...] In-
stead of rating complete alternatives immediately, it is normally much easier and arguably
more natural to provide information about preferences in separate pieces, preferably in
a qualitative way”. In contrast, the preference values in PrefLog are not explicit but are
created using appropriate preference operators. This means that even though PrefLog
is a quantitative preference framework, it allows the user to express preferences in a
qualitative way and pushes the quantitative burden to the underlying semantics.

7.2.2 Qualitative Preferences in Databases

One of the earliest works in qualitative preference queries in databases is the approach
of Lacroix and Lavency [46]. The authors propose an extension of relational calculus in
which preferences for tuples satisfying given logical conditions can be expressed. For
example, one could say: pick the tuples of R satisfying Q∧P1 ∧P2; if the result is empty,
pick the tuples ofR satisfyingQ∧P1∧¬P2; if the result is again empty, pick the tuples ofR
satisfying Q ∧ ¬P1 ∧ P2. As discussed by Chomicki [17], this approach can be simulated

A. Troumpoukis 124

Extensions of Logic Programming for Preference Representation

by the techniques in his framework [17], and therefore also by our higher-order logic
programming framework.

The framework of Chomicki [17, 80] is one of the most simple and expressive ones in
the database literature regarding preference representation. Since (to our knowledge)
there does not exist any widely available implementation of this framework, it is not pos-
sible to directly compare this approach with our own in terms of efficiency (even though,
we presume that an implementation of this framework over a SQL system will probably
be more efficient and can have a broader impact and real-world applications than our
logic programming approach). A more detailed comparison between the framework of
Chomicki [17, 80] and our higher-order logic programming framework has been given
throughout Chapter 4.

Another influential work in the area of qualitative preferences in the database domain
is that of Kießling [42]. Contrary to the logical approach advocated by Chomicki[17]
Kießling takes an algebraic approach by using a language that offers preference con-
structors. Two basic preference constructors are, for example, the POS and NEG ones,
which are used to provide preferred and non-preferred values respectively. For instance,
a POS(genre, {comedy}) preference states that a comedy movie is preferred, while a
NEG(genre, {drama, scifi}) preference states that a movie is not preferred if it is either
a drama or a science fiction one. These preference constructors can be further com-
bined in order to express more complex preferences. Several preference combinators
are supported, such as Pareto, lexicographic, and so on. In addition, two versions of
this approach are provided, namely Preference XPATH [43] and Preference SQL [44].
Kießling’s framework has some common characteristics with that of Chomicki [17] (see
[17][Section 10.1] for a detailed comparison) andmany arguments we have used through-
out Chapter 4 in order to compare our higher-order approach with that of Chomicki [17],
can also be used in order to compare our framework against the work of Kießling [42].
For example, the framework of Kießling [42] does not allow having arbitrary constraints
in preference formulas and it allows only restricted use of extrinsic preference relations
and of the transitive closure operation.

7.3 Qualitative Preferences in Logic Programming
A number of different approaches have been proposed in the logic programming domain
with the purpose of supporting qualitative preferences. These approaches can be cate-
gorized into two main streams:

• those that use preferences in order to select the best solutions to a given problem
that has been expressed as a logic program.

• those that use preferences in order to resolve conflicts that appear in non-monotonic
extensions of logic programming (such as multiple minimal models).

To the best of our knowledge, there does not exist any works for expressing quantitative
preferences in the logic programming domain.

7.3.1 Preferences over Program Solutions
Closer to our qualitative higher-order approach are the approaches that fall in the first
category [19, 32, 33, 34, 36, 38]. In order to support preferences, it is common to use

125 A. Troumpoukis

Extensions of Logic Programming for Preference Representation

syntactically-extended logic programs. For example, Govindarajan et al. [32, 33, 34, 38]
study an extension of classical logic programs, called Preference Logic Programming (in
short PLP). These programs consist of two basic parts; the first part is a set of first-order
definite logic clauses while the second part is a set of optimization definitions expressed
as constraints on the atoms of the first part. The proposed semantics selects a preference
model of the program among the possible models, such that it optimizes the second part
of the program. The formalism of PLP programs does not support negation-as-failure.

Cui and Swift [19] in a later extension of PLP, identify this lack of negation and propose
a different technique in order to support logic programs with negation-as-failure. Their
proposed approach is to transform an extended PLP program into an equivalent logic
program with negation. They suggest that the well-founded model of the transformed
program is the intended model of the program with preferences. Moreover, if this pro-
gram is a standard PLP program, they prove that this well-founded model coincides with
that of Govidarajan et al. [32]. The program transformation encodes a behavior that is
similar to that of the winnow operator. Guo and Jayaraman [36] propose a logic program-
ming language, which is also closely related to PLP [32]. The proposed semantics uses
two meta-operators over the minimum model of the non-optimization part of the program
in order to remove the atoms that are not the most desired ones with respect to the pref-
erence definition. These operators, again, resemble the winnow operator that we are
using, but in this case the winnow operator is not hard-coded in the transformed program
(as in the case of Cui and Swift [19]) but in the evaluation of the preference model. PLP
and its extensions [19, 32, 33, 34, 36, 38] have been demonstrated to have many applica-
tions in resolving ambiguity in programming languages and natural language grammars,
in scheduling and optimization, as-well-as in database querying.

In the approaches in this category [19, 32, 36] the preference relations and the winnow
operator cannot appear as building blocks of queries (not can one define alternative op-
erators beyond winnow). The main difference between this line of research and our
own, is that the former uses a specialized formalism that requires the development of
novel model-theoretic techniques in order to express its semantics and also of special-
ized techniques in order to implement it. On the other hand, our approach does not use
any specialized technique outside the realm of higher-order logic programming, and can
be implemented using standard higher-order logic programming languages. However,
as an overall comment, the work reported in these papers [19, 32, 33, 34, 36, 38] is
based on quite interesting concepts, and the idea of the “optimal subproblem property”
discussed by Govindarajan et al. [33] has motivated our optimized path program given
in Subsection 4.4.5.

7.3.2 Preferences over Program Models

The second category of qualitative approaches in logic programming is applicable to logic
programming languages that are extended with non-monotonic features; such features
are disjunctions in the head, default and explicit negation, and so on. In short, non-
monotonicity plays a vital role in the approaches of this category. Many research works
fall into this category [6, 7, 8, 21, 23, 66, 78, 81] (see also the excellent literature review
given by Sakama and Inoue [66]). The key idea behind all these approaches can be de-
scribed as follows. A logic program that is extended with non-monotonic characteristics
usually has many minimal models. In order to choose the most appropriate models, we
add to the program preference information. Usually, this preference information is either

A. Troumpoukis 126

Extensions of Logic Programming for Preference Representation

given as an ordering of atoms, literals, or even rules of the program. We will concentrate
on the work of Sakama and Inoue [66] (and similar arguments can be given for the rest
of the cited works). Here, a priority relation, which is reflexive and transitive, is given
over the set of literals of the program. Then, the preferred answer-set semantics of the
program is defined, an approach that generalizes the classical stable model semantics
of Gelfond and Lifschitz [31], and aims to select a subset of preferred minimal models.

There aremany important differences between our higher-order framework and the works
in this category [6, 8, 66, 81]. First, our work can be applied both to positive programs
as-well-as to programs that use negation. On the other hand, the work of Sakama
and Inoue [66] (as-well-as other works in this category) is only meaningful when non-
monotonicity is present in the program (if a program is positive then it always has the
same model independently of the preference relation given [66]). Therefore it is not ob-
vious how the technique of Sakama and Inoue [66] (and all other related approaches)
can be applied to express preferences over simple database relations. The task of defin-
ing preferences over sets of tuples appears to be even more difficult. Another important
difference between our higher-order logic programming approach and many other ex-
isting approaches in the logic programming domain is the fact that it is not very hard to
implement and it can be used to directly run some interesting and non-trivial applications.

7.4 Quantitative Extensions of Logic Programming

As we mentioned in the previous section, there does not exist any works for expressing
quantitative preferences in the logic programming domain (to the best of our knowledge).
However, the quantitative language PrefLog is related to various quantitative extensions
of logic programming. In this section, we compare PrefLog with other infinite-valued
approaches in logic programming and with probabilistic extensions of logic programming.

7.4.1 Infinite-Valued Logic Programming

As we mentioned in Subsection 2.1, the programming language PrefLog is based on
infinite-valued logic, which was previously used in order to provide a purelymodel-theoretic
semantics for logic programming with negation-as-failure [64]. Consider the following
program that uses the negation-as-failure operator {p, q←∼ r}. Under the well-founded
semantics [30], both p and q receive the value true. However, Rondogiannis and Wadge
in their article [64] argue that in some sense p is “truer” than q; p is true because there is
a rule which says so, whereas q is true only because there is no evidence that r is true;
the same happens for false values. Therefore, their approach is to understand negation-
as-failure as combining ordinary negation with a weakening (which corresponds to the
operator ϵ). Since negations can be iterated, an infinite set of truth values is produced,
similar to the set V of our approach. A similar approach is followed to provide a purely
model-theoretic semantics for disjunctive logic programming with negation-as-failure [9].

From a syntactic point of view, logic programs with negation-as-failure can be viewed as
PrefLog programs with the following set of operators {∧,∨,∼}. Contrary to PrefLog oper-
ators though, the∼ operator is not monotonic, therefore cannot be used by PrefLog. Due
to the fact that ∼ is not monotonic, the minimum infinite-valued model for logic programs
with negation-as-failure [64] cannot be computed simply by iterating the TP operator until
a fixed point is reached (as this holds in our approach) but this involves a more complex

127 A. Troumpoukis

Extensions of Logic Programming for Preference Representation

computation that evaluates the minimum model of the program in stages20. The conti-
nuity property of TP for PrefLog programs guarantees that the fixed point is reachable
through this process in at most ω steps, a property that does not hold for logic programs
with negation-as-failure. The final difference from our approach is the size of the under-
lying set of truth values. Logic programs with negation-as-failure [64] require truth values
Tα and Fα for every countable ordinal α, while PrefLog programs require truth values Tn

and Fn for every n ∈ N.

7.4.2 Probabilistic Logic Programming
Quantitative approaches in logic programming can be found in certain many-valued or
probabilistic extensions of traditional logic programming [20, 54, 58, 76]. In probabilistic
extensions, the programmer is usually required to rank rules (or facts) with a certainty
factor or to use a special form of implication in rules that have attached a numerical at-
tenuation factor. These extensions of logic programming are usually not designed to
express preferences but have a flavor of preferential logic programming, since, for ex-
ample, facts that have different numerical factors can be considered to be of different
preferences. As in the quantitative approaches in the database domain, the probabilistic
approaches express the quantitative (propabilistic) scores directly with numerical values;
as we stated previously, expressing preferences directly using numerical values is not
as intuitive and desirable in most preference situations from a user’s point of view. In
contrast, preferences in PrefLog are expressed quantitatively with the use of preference
operators, and the quantitative preference score is inferred. Moreover, the operators
that are offered in these probabilistic extensions [20, 54, 58, 76] are perfectly suited to
the probabilistic domain but are not always suitable for expressing preferences. For in-
stance, the conjunction operator between atoms in ProbLog [58] multiplies the probability
values of these atoms, which is an expected behavior for probabilistic scenarios (since
the probability of a conjunction of events is equal to the product of the probabilities of
these events). However, for preference applications, it is not always the case that the
intended preference score of a conjunction of atoms must be equal to the product of
the individual preference scores. In PrefLog, the standard behavior for the conjunction
operator is the minimum operator. However, PrefLog gives the freedom to define new
preference operators, depending on the application at hand.

7.5 Related work on Predicate Specialization
In this section, we present some related work on Predicate Specialization, which is used
for optimizing preferential higher-order logic programs. This technique is proposed in
Section 5.3. In short, given a higher-order logic program and query that does not contain
any free predicate variables, it transforms the program into a first-order one, specialized
for this specific query.

7.5.1 Partial Evaluation
Predicate Specialization is closely connected with related work on partial evaluation of
logic programs [51, 29, 47]. More specifically, the proposed technique is a special form
of partial evaluation which targets higher-order arguments and uses a simple one-step

20 However, we have used a similar procedure to provide a terminating bottom-up strategy for function-free
PrefLog programs (c.f. Section 3.3).

A. Troumpoukis 128

Extensions of Logic Programming for Preference Representation

unfolding rule to propagate the constant higher-order arguments without changing the
structure of the original program. Consequently, first-order programs remain unchanged.
To the best of our knowledge, partial evaluation techniques have not been previously
applied directly to higher-order logic programming with the purpose to produce a simpler
first-order program.

7.5.2 Defunctionalization and its Extensions
Other techniques, however, have been proposed that focus on the removal of higher-
order parameters in logic programs. D. H. D.Warren, in one of the early papers that tackle
similar issues [79], proposed that simple higher-order structures are non-essential and
can be easily encoded as first-order logic programs. The key idea is that every higher-
order argument in the program can be encoded as a symbol utilizing its name and a spe-
cial apply predicate should be introduced to distinguish between different higher-order
calls. A very similar approach has been employed in HiLog [15]; a language that offers
a higher-order syntax with first-order semantics. A HiLog program is transformed into
an equivalent first-order one using a transformation similar to Warren’s technique [79].
Actually, these techniques are closely related to Reynolds’ defunctionalization [60] that
has been originally proposed to remove higher-order arguments in functional programs.
These techniques are designed to be applied to arbitrary programs in comparison to our
approach. In order to achieve this, they require data structures in the resulting program.
However, on a theoretical view, this imposes the requirement that the target language
should support data structures even if the source language does not support that. This is
apparent when considering Datalog; transforming a higher-order Datalog program will re-
sult in a first-order Prolog program. On a more practical point, the generic data structures
introduced during the defunctionalization render the efficient implementation of these pro-
grams challenging. The wrapping of the higher-order calls with the generic apply pred-
icate makes it cumbersome to utilize the optimizations in first-order programs such as
indexing and tabling. In comparison, our technique produces more natural programs
that do not suffer from this phenomenon. Moreover, it does not introduce any data struc-
tures and as a result, a higher-order Datalog program will be transformed into a first-order
one amenable to more efficient implementation.

In order to remedy the shortcomings of defunctionalization, there have been proposed
some techniques to improve the performance of the transformed programs. Sagonas and
Warren [65] proposed a compile-time optimization of the classical HiLog encoding that
eliminates some partial applications using a family of apply predicates thus increasing
the number of predicates in the encoded program, which leads to more efficient execu-
tion. The original first-order encoding of HiLog, as well as this optimization are included
in the XSB system [70]. In the context of functional-logic programming, there exist some
mixed approaches that consider defunctionalization together with partial evaluation for
functional-logic programs [4, 59], where a partial evaluation process is applied in a de-
functionalized functional-logic program. Even though these approaches can usually offer
a substantial performance improvement, the resulting programs still use a Reynolds-style
encoding; for instance, the performance gain of the optimizations offered by XSB is not
sufficient when compared to Predicate Specialization, as presented in Section 6.6.

7.5.3 Other Higher-order Removal Methods
The process of eliminating higher-order functions is being studied extensively in the func-
tional programming domain. Apart from defunctionalization, there exist some approaches

129 A. Troumpoukis

Extensions of Logic Programming for Preference Representation

that do not introduce additional data structures while removing higher-order functions.
These techniques include the higher-order removal method [16], the firstification tech-
nique [55] and the firstify algorithm [53]. The removal of higher-order values here is
achieved without introducing additional data structures, so the practical outcome is that
the resulting programs can be executed in a more efficient way than the original ones.
The basic operation of these transformation methods is function specialization, which
involves generating a new function in which the function-type arguments of the original
definition are eliminated.

A predicate specialization operation is also the core operation in our approach, so at this
point, these approaches are similar to ours. The remaining operations that can be found
in those approaches (e.g. simplification rules, inlining, eta-abstractions etc.), are either
inapplicable to our domain or not needed for our program transformation. Contrary to
Reynolds’ defunctionalization, these higher-order removal techniques [16, 53, 55] are not
complete, meaning that they do not remove all higher-order values from a functional pro-
gram, and therefore the resulting programs are not always first order. This phenomenon
would happen in our case as well if we considered the full power of higher-order program-
ming. However, because of the fact that we focus on a smaller but still useful class of
higher-order logic programs, we are sure that the output of our transformation technique
will produce a valid first-order program for every program that belongs to our fragment.

7.6 Summary
In this chapter, we compared our approaches with several works in the literature. To the
best of our knowledge, our approaches are not very directly related to most of the existing
ones, since it is the first time that the use of an infinite-valued or a higher-order language
are used for expressing preferences in the logic programming domain. The key advan-
tages of our approaches are the following: Regarding PrefLog, the main advantage is
that even though PrefLog is a quantitative extension of logic programming, the preference
scores are not denoted explicitly with numerical values but are expressed indirectly using
preference operators, making the extension more intuitive from a user point of view. Re-
garding higher-order logic programming, the main advantages are the following; firstly,
the fact that relations, preference relations, and operations on preferences are encoded
in the same language (an important benefit that we have heavily discussed in Chapter 4);
and secondly, the fact that the expressive power of higher-order logic programming al-
lows us to emulate all qualitative preference frameworks that we have discussed in this
chapter. Moreover, the use of higher-order logic programming opened up for us the pos-
sibility of designing specialized techniques for optimizing higher-order logic programs,
such as Predicate Specialization.

A. Troumpoukis 130

Extensions of Logic Programming for Preference Representation

8. CONCLUSIONS AND FUTURE WORK

In this chapter, we conclude the dissertation, beginning with a summary of our contribu-
tions and continuing with a discussion of possible future research directions.

8.1 Conclusions

The dissertation contributes to the area of preference representation and our results can
be perceived as logical frameworks for expressing and manipulating preferences. More
specifically, we propose two approaches for expressing preference using extensions of
logic programming:

• The first approach uses infinite-valued logic programming for expressing quantita-
tive preferences. This language is based on an infinite set of truth values in order
to support operators for expressing preferences.

• The second approach uses higher-order logic programming for expressing qualita-
tive preferences. In this approach, preference relations and operations on prefer-
ences are expressed in the same, higher-order language.

Our approaches attempt to overcome some shortcomings of existing approaches in the
domain of representation of quantitative and qualitative preferences.

We proposed the logic programming language PrefLog (cf. Chapter 2), which uses an
infinite-value domain for expressing quantitative preferences (cf. Section 2.2). The pref-
erence value is not defined directly but is expressed using preference operators. If all
preference operators used are monotonic and continuous over the set of truth values V,
then every such PrefLog program has a minimum infinite-valued model (cf. Section 2.3).
We defined some basic preference operators (such as opt and alt), we described a simple
approach for building new operators and we demonstrated their use in example programs
(cf. Section 2.4). Moreover, we proposed a method for evaluating PrefLog programs (cf.
Chapter 3), which is a terminating bottom-up evaluation (cf. Section 3.3) for a well defined
function-free fragment of PrefLog, namely {ϵ,∧}-programs (cf. Section 3.2). Ensuring
termination in this case is not a straightforward task because the underlying truth domain
and the set of all possible interpretations of a function-free PrefLog program are both
infinite.

We proposed the use of higher-order logic programming as a framework for represent-
ing and manipulating qualitative preferences (cf. Chapter 4). In this approach, base
and preference relations, operations on preference relations (cf. Section 4.4) and prefer-
ences over sets (cf. Section 4.5) are expressed in the same, higher-order language (cf.
Section 4.3). Moreover, we developed specialized optimizations (cf. Chapter 5) for en-
hancing the performance of this framework, since a basic, unoptimized implementation is
almost straightforward (cf. Section 5.2). We proposed Predicate Specialization (cf. Sec-
tion 5.3), a technique that reduces the program execution time of higher-order logic pro-
grams by transforming them into first-order ones. This optimization targets higher-order
logic programs that express preferences over tuples (cf. Section 5.4). Finally, for opti-
mizing programs that express preferences over sets, we used two pruning techniques,
namely superpreference and M-relation. These optimizations reduce the program exe-
cution time by reducing the number of the candidate sets (cf. Section 5.5).

131 A. Troumpoukis

Extensions of Logic Programming for Preference Representation

Weundertook an implementation of our higher-order approach for the XSB system (cf. Sec-
tion 5.2, Subsection 5.3.5, and Subsection 5.5.4). Moreover, we provided experimental
results that suggest the feasibility of our approach and the effectiveness of the proposed
optimization techniques (cf. Chapter 6). The source code of the implementations and
the experiments is publicly available21.

Finally, regarding the comparison between the two proposed approaches in terms of
expressivity, there exists a type of preferences (i.e., lexicographic preferences) that can
be expressed using our higher-order logic programming framework (cf. Subsection 4.4.3)
but not with PrefLog (cf. Section 2.5). This comes as no surprise, because PrefLog is
a quantitative programming language and our higher-order framework is designed to
express qualitative preferences and it is argued that the quantitative approaches are
more general than the quantitative ones [17][page 428].

8.2 Future Work
In this last section, we propose some potential directions for future research. We discuss
some interesting aspects in which the infinite-valued approach and the higher-order ap-
proach can both be extended in terms of expressivity and be enhanced in terms of us-
ability and performance.

8.2.1 Future Work on the Infinite-Valued approach
In this subsection, we reduce our focus on possible extensions of PrefLog. We discuss
some aspects for future investigation in terms of extending the representation capabilities
of our infinite-valued approach.

Possibly the most interesting such topic is the addition of negation-as-failure to PrefLog.
It has been demonstrated [64] that the meaning of negation can also be captured using
the infinite-valued domain V that we adopted for defining the semantics of PrefLog. It
would be interesting to investigate how the preference operators of PrefLog could co-
exist with negation in a unified framework. The following example motivates such an
investigation.

Example 8.1. Continuing Example 2.1, assume that we would now like to fly from Athens
to Boston, but (if possible) avoiding the “Delay Air” carrier. This suggests the use of some
form of negation:

desired_flight(F) ← from_to(athens, boston, F) ∧
opt ∼ carrier(F, delay_air).

In the above program, a flight from Athens to Boston with a carrier that is different than
“Delay Air” is expected to return a true result, a flight that does not go from Athens to
Boston will return a false result and a flight from Athens to Boston with “Delay Air” will
return some false truth value (different than absolute falsity).

It is unclear at the moment whether negation should operate on the same “dimension” of
truth values as the other preferential operators (like opt and alt) or whether a separate
dimension should be used.

21 cf. http://bitbucket.org/antru/holppref
http://bitbucket.org/antru/preflog
http://bitbucket.org/antru/firstify

A. Troumpoukis 132

http://bitbucket.org/antru/holppref
http://bitbucket.org/antru/preflog
http://bitbucket.org/antru/firstify

Extensions of Logic Programming for Preference Representation

The PrefLog language depends on a set of preference operators that must be monotonic
and continuous over the infinite-valued domain V. In Section 2.4 we described a simple
approach for building new operators; we used a set of three continuous operators (i.e.,
∧, ∨ and ϵ), and we built new operators by combining them. The resulting operators are
continuous since the composition of continuous operators is also continuous. However,
we showed that not all continuous operators over V can be defined using ∧, ∨ and ϵ. An
interesting aspect for future investigation would be to devise a metalanguage in which to
define new preference operators that are guaranteed to be monotonic and continuous.
One possible candidate for such a language would probably be a fragment of the lan-
guage Hopes [10], which allows the definition of predicates of various types (and even
predicates over boolean domains) that are guaranteed to be monotonic and continuous.

In Section 2.5, we showed that lexicographic preferences cannot be expressed using
PrefLog due to the form of the infinite set of truth values V. One interesting research
direction would be the extension of the underlying set of truth values such that PrefLog
to be able to support lexicographic preferences. Following similar preferential exten-
sions of the set of real numbers R [18, 35, 41], Papadimitriou [56] proposed lxpQL, a
query language which extends the query language of Agarwal and Wadge [1, 2] with a
lexicographic preference operator. Obviously, the underlying set of truth values in lx-
pQL is not the set V, but it consists of finite sequences of elements from V. Two such
sequences are compared in a lexicographic way, e.g., the sequence (T2, T1, F0) is pre-
ferred to (T2, T2, T0). At this moment, it is an open question whether the extended domain
and the operators of lxpQL can be used in a logic programming setting.

8.2.2 Future Work on the Higher-Order approach

In this subsection, we reduce our focus on possible future directions regarding evaluation
techniques and real-world applications of the qualitative preference higher-order logic
programming framework.

Chapter 4 suggests that a fragment of higher-order logic programming can be used as
a purely logical framework for expressing preferences. This fragment is essentially a
higher-order extension of Datalog that supports negation and tuples in a restricted way.
We have used natural numbers only in order to define operators over preference rela-
tions (cf. Subsection 4.4.4) and aggregate operators in the case of extrinsic (cf. Ex-
amples 4.9 and 4.10) and set-based preference relations (cf. Example 4.16). It seems
that this framework, apart from its preference representation capabilities, can benefit
from more effective evaluation techniques. A sign that would support this claim is, for
instance, the situation on first-order logic programming, in which bottom-up techniques
are more efficient than top-down ones when it comes to first-order Datalog programs. As
a result, we believe that it would be very interesting to study the properties of this higher-
order Datalog with tuples and negation, a language that generalizes classical first-order
Datalog. For example, it would be interesting to investigate bottom-up proof procedures
or other optimizations (such as a higher-order extension of magic-sets [5]).

For the implementation of our higher-order preferential framework, we have used the XSB
system which provides a mature and stable implementation of HiLog. Despite the fact
that we faced no problems in implementing preferences over tuples, the implementation
of queries over set preferences was not straightforward. The reason for the difficulties
we faced was the way that HiLog treats uninstantiated predicate variables: it searches
the program to find appropriate predicates that can be substituted; if no predicates are

133 A. Troumpoukis

Extensions of Logic Programming for Preference Representation

found, the query fails. This state of affairs is due to a well-known distinction between ex-
tensional and intensional semantics for higher-order logic programming [10]. We believe
that an extensional higher-order logic programming language would offer advantages
in the implementation of set preferences because the interpreter of the language would
automatically produce all the possible sets that should be substituted for the uninstanti-
ated predicate variables. One such language is the extensional higher-order language
Hopes [10]. Set preferences can be modeled in Hopes as follows:

Example 8.2. Recall Example 4.16, and the preference relation rating_pref in which a
set of movies is more preferred to another if the sum of the ratings of its movies is greater.
Moreover, consider the following clauses:

subsetof(R,N)(S) :- subset(S,R), size(S,N).
subset(S,R) :- not nonsubset(S,R).
nonsubset(S,R) :- S(X), not R(X).

Then, the most preferred 3-element sets of movies can be found using the following
query:

?- winnow(rating_pref, subsetof(movie,3))(S).

The definitions of the winnow, bypassed and size can be found in Chapter 4.

As we mentioned earlier though, implementations of extensional higher-order languages
(and Hopes among them) have not yet reached the same level of maturity as that of
intensional ones, especially when negation is considered. As a result, an important future
direction is to work on producing a stable and efficient version of Hopes that will support
negation [11], a concept that is very useful in the processing of set preferences.

In this last paragraph, we discuss future work regarding the proposed technique of Pred-
icate Specialization. In Subsection 5.4, we saw that Predicate Specialization can be
effective for a class of higher-order logic programs that make limited use of partial appli-
cations, in the case of predicates that do not belong in the same cycle in the predicate
dependency graph. From a syntactic point of view, this class is a broader class than
definitional programs; however, it seems that both fragments have the same expres-
sive power. An interesting open question that arises is whether Predicate Specialization
can be used as a first-order reduction method only for the fragment of definitional pro-
grams (or a fragment that has the same expressive power) or if it can be used for a
wider and more expressive class of higher-order programs. Until now, we have used
and evaluated Predicate Specialization only as an optimization method for performance
improvement. However, in the functional programming domain, such techniques have
been used in additional applications, such as program analysis [53] and implementation
of debuggers [57]. Therefore, an interesting aspect for future investigation would be the
search of similar or completely new applications of Predicate Specialization in the logic
programming domain.

A. Troumpoukis 134

Extensions of Logic Programming for Preference Representation

REFERENCES
[1] Ruchi Agarwal. A framework for expressing prioritized constraints using infinitesimal logic. Master’s

thesis, University of Victoria, Canada, 2005.
[2] Ruchi Agarwal and William W. Wadge. The lazy evaluation of infinitesimal logic expressions. In

Hamid R. Arabnia, editor, Proceedings of The 2005 International Conference on Programming Lan-
guages and Compilers, PLC 2005, Las Vegas, Nevada, USA, June 27-30, 2005, pages 3–7. CSREA
Press, 2005.

[3] Rakesh Agrawal and Edward L. Wimmers. A framework for expressing and combining preferences.
In Weidong Chen, Jeffrey F. Naughton, and Philip A. Bernstein, editors, Proceedings of the 2000 ACM
SIGMOD International Conference on Management of Data, May 16-18, 2000, Dallas, Texas, USA.,
pages 297–306. ACM, 2000.

[4] Elvira Albert, Michael Hanus, and Germán Vidal. A practical partial evaluation scheme for multi-
paradigm declarative languages. Journal of Functional and Logic Programming, 2002, 2002.

[5] François Bancilhon, David Maier, Yehoshua Sagiv, and Jeffrey D. Ullman. Magic sets and other
strange ways to implement logic programs. In Avi Silberschatz, editor, Proceedings of the Fifth ACM
SIGACT-SIGMOD Symposium on Principles of Database Systems, March 24-26, 1986, Cambridge,
Massachusetts, USA, pages 1–15. ACM, 1986.

[6] Gerhard Brewka. Well-founded semantics for extended logic programs with dynamic preferences. J.
Artif. Intell. Res., 4:19–36, 1996.

[7] Gerhard Brewka, James P. Delgrande, Javier Romero, and Torsten Schaub. asprin: Customizing
answer set preferences without a headache. In Blai Bonet and Sven Koenig, editors, Proceedings
of the Twenty-Ninth AAAI Conference on Artificial Intelligence, January 25-30, 2015, Austin, Texas,
USA., pages 1467–1474. AAAI Press, 2015.

[8] Gerhard Brewka and Thomas Eiter. Preferred answer sets for extended logic programs. Artif. Intell.,
109(1-2):297–356, 1999.

[9] Pedro Cabalar, David Pearce, Panos Rondogiannis, and William W. Wadge. A purely model-theoretic
semantics for disjunctive logic programs with negation. In Chitta Baral, Gerhard Brewka, and John S.
Schlipf, editors, Logic Programming and Nonmonotonic Reasoning, 9th International Conference, LP-
NMR 2007, Tempe, AZ, USA, May 15-17, 2007, Proceedings, volume 4483 of Lecture Notes in Com-
puter Science, pages 44–57. Springer, 2007.

[10] Angelos Charalambidis, Konstantinos Handjopoulos, Panagiotis Rondogiannis, and William W.
Wadge. Extensional higher-order logic programming. ACM Trans. Comput. Log., 14(3):21:1–21:40,
2013.

[11] Angelos Charalambidis and Panos Rondogiannis. Constructive negation in extensional higher-order
logic programming. In Chitta Baral, Giuseppe De Giacomo, and Thomas Eiter, editors, Principles of
Knowledge Representation and Reasoning: Proceedings of the Fourteenth International Conference,
KR 2014, Vienna, Austria, July 20-24, 2014. AAAI Press, 2014.

[12] Angelos Charalambidis, Panos Rondogiannis, and Ioanna Symeonidou. Approximation fixpoint theory
and the well-founded semantics of higher-order logic programs. TPLP, 18(3-4):421–437, 2018.

[13] Angelos Charalambidis, Panos Rondogiannis, and Antonis Troumpoukis. Higher-order logic program-
ming: an expressive language for representing qualitative preferences. In James Cheney and Germán
Vidal, editors, Proceedings of the 18th International Symposium on Principles and Practice of Declar-
ative Programming, Edinburgh, United Kingdom, September 5-7, 2016, pages 24–37. ACM, 2016.

[14] Angelos Charalambidis, Panos Rondogiannis, and Antonis Troumpoukis. Higher-order logic pro-
gramming: An expressive language for representing qualitative preferences. Sci. Comput. Program.,
155:173–197, 2018.

[15] Weidong Chen, Michael Kifer, and David Scott Warren. HILOG: A foundation for higher-order logic
programming. J. Log. Program., 15(3):187–230, 1993.

[16] Wei-Ngan Chin and John Darlington. A higher-order removal method. Lisp and Symbolic Computation,
9(4):287–322, 1996.

[17] Jan Chomicki. Preference formulas in relational queries. ACM Trans. Database Syst., 28(4):427–466,
2003.

[18] Maria Chowdhury, Alex Thomo, and William W. Wadge. Preferential infinitesimals for information
retrieval. In Lazaros S. Iliadis, Ilias Maglogiannis, Grigorios Tsoumakas, Ioannis P. Vlahavas, and
Max Bramer, editors, Artificial Intelligence Applications and Innovations III, Proceedings of the 5TH
IFIP Conference on Artificial Intelligence Applications and Innovations (AIAI’2009), April 23-25, 2009,

135 A. Troumpoukis

Extensions of Logic Programming for Preference Representation

Thessaloniki, Greece, volume 296 of IFIP Advances in Information and Communication Technology,
pages 113–125. Springer, 2009.

[19] Baoqiu Cui and Terrance Swift. Preference logic grammars: Fixed point semantics and application to
data standardization. Artif. Intell., 138(1-2):117–147, 2002.

[20] Evgeny Dantsin. Probabilistic logic programs and their semantics. In Andrei Voronkov, editor, Logic
Programming, First Russian Conference on Logic Programming, Irkutsk, Russia, September 14-18,
1990 - Second Russian Conference on Logic Programming, St. Petersburg, Russia, September 11-
16, 1991, Proceedings, volume 592 of Lecture Notes in Computer Science, pages 152–164. Springer,
1991.

[21] James P. Delgrande, Torsten Schaub, and Hans Tompits. Logic programs with compiled preferences.
In Werner Horn, editor, ECAI 2000, Proceedings of the 14th European Conference on Artificial Intelli-
gence, Berlin, Germany, August 20-25, 2000, pages 464–468. IOS Press, 2000.

[22] James P. Delgrande, Torsten Schaub, Hans Tompits, and Kewen Wang. A classification and survey of
preference handling approaches in nonmonotonic reasoning. Computational Intelligence, 20(2):308–
334, 2004.

[23] Pierangelo Dell’Acqua and Luís Moniz Pereira. Preferential theory revision. J. Applied Logic, 5(4):586–
601, 2007.

[24] Carmel Domshlak, Eyke Hüllermeier, Souhila Kaci, and Henri Prade. Preferences in AI: an overview.
Artif. Intell., 175(7-8):1037–1052, 2011.

[25] Zoltán Ésik and Panos Rondogiannis. Theorems on pre-fixed points of non-monotonic functions with
applications in logic programming and formal grammars. In Ulrich Kohlenbach, Pablo Barceló, and Ruy
J. G. B. de Queiroz, editors, Logic, Language, Information, and Computation - 21st International Work-
shop, WoLLIC 2014, Valparaíso, Chile, September 1-4, 2014. Proceedings, volume 8652 of Lecture
Notes in Computer Science, pages 166–180. Springer, 2014.

[26] Zoltán Ésik and Panos Rondogiannis. A fixed point theorem for non-monotonic functions. Theor.
Comput. Sci., 574:18–38, 2015.

[27] A. J. Field and Peter G. Harrison. Functional Programming. Addison-Wesley, 1988.
[28] Peter Fishburn. Preference structures and their numerical representations. Theoretical Computer

Science, 217(2):359–383, 1999.
[29] John P. Gallagher. Tutorial on specialisation of logic programs. In David A. Schmidt, editor, Proceedings

of the ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program Manipulation,
PEPM’93, Copenhagen, Denmark, June 14-16, 1993, pages 88–98. ACM, 1993.

[30] Allen Van Gelder, Kenneth A. Ross, and John S. Schlipf. The well-founded semantics for general logic
programs. J. ACM, 38(3):620–650, 1991.

[31] Michael Gelfond and Vladimir Lifschitz. The stablemodel semantics for logic programming. In Robert A.
Kowalski and Kenneth A. Bowen, editors, Logic Programming, Proceedings of the Fifth International
Conference and Symposium, Seattle, Washington, USA, August 15-19, 1988 (2 Volumes), pages
1070–1080. MIT Press, 1988.

[32] Kannan Govindarajan, Bharat Jayaraman, and Surya Mantha. Preference logic programming. In Leon
Sterling, editor, Logic Programming, Proceedings of the Twelfth International Conference on Logic
Programming, Tokyo, Japan, June 13-16, 1995, pages 731–745. MIT Press, 1995.

[33] Kannan Govindarajan, Bharat Jayaraman, and Surya Mantha. Optimization and relaxation in con-
straint logic languages. In Hans-Juergen Boehm and Guy L. Steele Jr., editors, Conference Record of
POPL’96: The 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
Papers Presented at the Symposium, St. Petersburg Beach, Florida, USA, January 21-24, 1996, pages
91–103. ACM Press, 1996.

[34] Kannan Govindarajan, Bharat Jayaraman, and Surya Mantha. Preference queries in deductive
databases. New Generation Comput., 19(1):57–86, 2000.

[35] Gösta Grahne, Alex Thomo, and William W. Wadge. Preferentially annotated regular path queries. In
Thomas Schwentick and Dan Suciu, editors, Database Theory - ICDT 2007, 11th International Con-
ference, Barcelona, Spain, January 10-12, 2007, Proceedings, volume 4353 of Lecture Notes in Com-
puter Science, pages 314–328. Springer, 2007.

[36] Hai-Feng Guo and Bharat Jayaraman. Logic programming with solution preferences. J. Log. Algebr.
Program., 78(1):1–21, 2008.

[37] Sven Ove Hansson. Preference logic. In Dov M. Gabbay and Franz Guenthner, editors, Handbook of
Philosophical Logic, vol 4, pages 319–393. Springer, Dordrecht, 2001.

[38] Bharat Jayaraman, Kannan Govindarajan, and Surya Mantha. Preference logic grammars. Comput.
Lang., 24(3):179–196, 1998.

A. Troumpoukis 136

Extensions of Logic Programming for Preference Representation

[39] Neil D. Jones. The expressive power of higher-order types or, life without CONS. J. Funct. Program.,
11(1):5–94, 2001.

[40] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial evaluation and automatic program gen-
eration. Prentice Hall international series in computer science. Prentice Hall, 1993.

[41] Maryam Khezrzadeh, Alex Thomo, and WilliamW. Wadge. Harnessing the power of “favorites” lists for
recommendation systems. In Lawrence D. Bergman, Alexander Tuzhilin, Robin D. Burke, Alexander
Felfernig, and Lars Schmidt-Thieme, editors, Proceedings of the 2009 ACM Conference on Recom-
mender Systems, RecSys 2009, New York, NY, USA, October 23-25, 2009, pages 289–292. ACM,
2009.

[42] Werner Kießling. Foundations of preferences in database systems. In VLDB 2002, Proceedings of
28th International Conference on Very Large Data Bases, August 20-23, 2002, Hong Kong, China,
pages 311–322. Morgan Kaufmann, 2002.

[43] Werner Kießling, Bernd Hafenrichter, Stefan Fischer, and Stefan Holland. Preference XPATH: A query
language for e-commerce. In Hans Ulrich Buhl, Andreas Huther, and Bernd Reitwiesner, editors,
Information Age Economy: 5. Internationale Tagung Wirtschaftsinformatik 2001, Augsburg, Germany,
page 32. Physica Verlag / Springer, 2001.

[44] Werner Kießling and Gerhard Köstler. Preference SQL - design, implementation, experiences. In
VLDB 2002, Proceedings of 28th International Conference on Very Large Data Bases, August 20-23,
2002, Hong Kong, China, pages 990–1001. Morgan Kaufmann, 2002.

[45] Georgia Koutrika and Yannis E. Ioannidis. Personalization of queries in database systems. In Z. Meral
Özsoyoglu and Stanley B. Zdonik, editors, Proceedings of the 20th International Conference on Data
Engineering, ICDE 2004, 30 March - 2 April 2004, Boston, MA, USA, pages 597–608. IEEE Computer
Society, 2004.

[46] M. Lacroix and Pierre Lavency. Preferences; putting more knowledge into queries. In Peter M. Stocker,
William Kent, and Peter Hammersley, editors, VLDB’87, Proceedings of 13th International Conference
on Very Large Data Bases, September 1-4, 1987, Brighton, England, pages 217–225. Morgan Kauf-
mann, 1987.

[47] Michael Leuschel. Logic program specialisation. In John Hatcliff, Torben Æ. Mogensen, and Peter
Thiemann, editors, Partial Evaluation - Practice and Theory, DIKU 1998 International Summer School,
Copenhagen, Denmark, June 29 - July 10, 1998, volume 1706 of Lecture Notes in Computer Science,
pages 155–188. Springer, 1998.

[48] Michael Leuschel and Germán Vidal. Fast offline partial evaluation of logic programs. Inf. Comput.,
235:70–97, 2014.

[49] Sarah Lichtenstein and Paul Slovic. The Construction of Preference. Cambridge University Press,
2006.

[50] John W. Lloyd. Foundations of Logic Programming. Springer Verlag, 2nd extended edition, 1993.
[51] John W. Lloyd and John C. Shepherdson. Partial evaluation in logic programming. J. Log. Program.,

11(3&4):217–242, 1991.
[52] Dale Miller and Gopalan Nadathur. Programming with Higher-Order Logic. Cambridge University

Press, 2012.
[53] Neil Mitchell and Colin Runciman. Losing functions without gaining data: another look at defunctional-

isation. In Stephanie Weirich, editor, Proceedings of the 2nd ACM SIGPLAN Symposium on Haskell,
Haskell 2009, Edinburgh, Scotland, UK, 3 September 2009, pages 13–24. ACM, 2009.

[54] Stephen Muggleton. Stochastic logic programs. Advances in inductive logic programming, 32:254–
264, 1996.

[55] George Nelan. Firstification. PhD thesis, Arizona State University, USA, 1991.
[56] Giorgos Papadimitriou. A query language for lexicographic preferences. Master’s thesis, University of

Athens, Athens, 2017.
[57] Bernard J. Pope and Lee Naish. Specialisation of higher-order functions for debugging. Electr. Notes

Theor. Comput. Sci., 64:277–291, 2002.
[58] Luc De Raedt, Angelika Kimmig, and Hannu Toivonen. Problog: A probabilistic prolog and its applica-

tion in link discovery. In Manuela M. Veloso, editor, IJCAI 2007, Proceedings of the 20th International
Joint Conference on Artificial Intelligence, Hyderabad, India, January 6-12, 2007, pages 2462–2467,
2007.

[59] J. Guadalupe Ramos, Josep Silva, and Germán Vidal. Fast narrowing-driven partial evaluation for
inductively sequential programs. In Olivier Danvy and Benjamin C. Pierce, editors, Proceedings of
the 10th ACM SIGPLAN International Conference on Functional Programming, ICFP 2005, Tallinn,
Estonia, September 26-28, 2005, pages 228–239. ACM, 2005.

137 A. Troumpoukis

Extensions of Logic Programming for Preference Representation

[60] John C. Reynolds. Definitional interpreters for higher-order programming languages. Higher-Order
and Symbolic Computation, 11(4):363–397, 1998.

[61] Panos Rondogiannis and Ioanna Symeonidou. Extensional semantics for higher-order logic programs
with negation. Logical Methods in Computer Science, 14(2), 2018.

[62] Panos Rondogiannis and Antonis Troumpoukis. The infinite-valued semantics: overview, recent results
and future directions. Journal of Applied Non-Classical Logics, 23(1-2):213–228, 2013.

[63] Panos Rondogiannis and Antonis Troumpoukis. Expressing preferences in logic programming using an
infinite-valued logic. In Moreno Falaschi and Elvira Albert, editors, Proceedings of the 17th International
Symposium on Principles and Practice of Declarative Programming, Siena, Italy, July 14-16, 2015,
pages 208–219. ACM, 2015.

[64] Panos Rondogiannis and William W. Wadge. Minimum model semantics for logic programs with
negation-as-failure. ACM Trans. Comput. Log., 6(2):441–467, 2005.

[65] Konstantinos Sagonas and David Scott Warren. Efficient execution of hilog in wam-based prolog
implementations. In Leon Sterling, editor, Logic Programming, Proceedings of the Twelfth International
Conference on Logic Programming, Tokyo, Japan, June 13-16, 1995, pages 349–363. MIT Press,
1995.

[66] Chiaki Sakama and Katsumi Inoue. Prioritized logic programming and its application to commonsense
reasoning. Artif. Intell., 123(1-2):185–222, 2000.

[67] Amartya Sen. Collective choice and social welfare. Harvard University Press, 1970.
[68] John C. Shepherdson. Unfold/fold transformations of logic programs. Mathematical Structures in

Computer Science, 2(2):143–157, 1992.
[69] Kostas Stefanidis, Georgia Koutrika, and Evaggelia Pitoura. A survey on representation, composition

and application of preferences in database systems. ACM Trans. Database Syst., 36(3):19:1–19:45,
2011.

[70] Terrance Swift and David Scott Warren. XSB: extending prolog with tabled logic programming. TPLP,
12(1-2):157–187, 2012.

[71] Hisao Tamaki and Taisuke Sato. Unfold/fold transformation of logic programs. In Sten-Åke Tärnlund,
editor, Proceedings of the Second International Logic Programming Conference, Uppsala University,
Uppsala, Sweden, July 2-6, 1984, pages 127–138. Uppsala University, 1984.

[72] Antonis Troumpoukis. A Prolog transformation of PrefLog programs. Unpublished Manuscript.
[73] Antonis Troumpoukis and Angelos Charalambidis. Predicate specialization for definitional higher-order

logic programs. In Fred Mesnard and Peter J. Stuckey, editors, Logic-Based Program Synthesis and
Transformation - 28th International Symposium, LOPSTR 2018, Frankfurt/Main, Germany, September
4-6, 2018, Revised Selected Papers, volume 11408 of Lecture Notes in Computer Science, pages
132–147. Springer, 2018.

[74] Antonis Troumpoukis, Stasinos Konstantopoulos, and Angelos Charalambidis. An extension of
SPARQL for expressing qualitative preferences. In Claudia d’Amato, Miriam Fernández, Valentina
A. M. Tamma, Freddy Lécué, Philippe Cudré-Mauroux, Juan F. Sequeda, Christoph Lange, and Jeff
Heflin, editors, The Semantic Web - ISWC 2017 - 16th International Semantic Web Conference, Vi-
enna, Austria, October 21-25, 2017, Proceedings, Part I, volume 10587 of Lecture Notes in Computer
Science, pages 711–727. Springer, 2017.

[75] Jeffrey D. Ullman. Principles of Database and Knowledge-Base Systems, Volume I, volume 14 of
Principles of computer science series. Computer Science Press, 1988.

[76] Maarten H. van Emden. Quantitative deduction and its fixpoint theory. J. Log. Program., 3(1):37–53,
1986.

[77] William W. Wadge. Higher-order horn logic programming. In Vijay A. Saraswat and Kazunori Ueda,
editors, Logic Programming, Proceedings of the 1991 International Symposium, San Diego, California,
USA, Oct. 28 - Nov 1, 1991, pages 289–303. MIT Press, 1991.

[78] KewenWang, Lizhu Zhou, and Fangzhen Lin. Alternating fixpoint theory for logic programs with priority.
In JohnW. Lloyd, Verónica Dahl, Ulrich Furbach, Manfred Kerber, Kung-Kiu Lau, Catuscia Palamidessi,
Luís Moniz Pereira, Yehoshua Sagiv, and Peter J. Stuckey, editors, Computational Logic - CL 2000,
First International Conference, London, UK, 24-28 July, 2000, Proceedings, volume 1861 of Lecture
Notes in Computer Science, pages 164–178. Springer, 2000.

[79] David H. D. Warren. Higher-order extensions to Prolog: Are they needed? In John E. Hayes, Donald
Michie, and Yih-Hsing Pao, editors, Machine Intelligence, volume 10, pages 441–454. Ellis Horwood,
1982.

[80] Xi Zhang and Jan Chomicki. Preference queries over sets. In Serge Abiteboul, Klemens Böhm,
Christoph Koch, and Kian-Lee Tan, editors, Proceedings of the 27th International Conference on Data

A. Troumpoukis 138

Extensions of Logic Programming for Preference Representation

Engineering, ICDE 2011, April 11-16, 2011, Hannover, Germany, pages 1019–1030. IEEE Computer
Society, 2011.

[81] Yan Zhang and Norman Y. Foo. Answer sets for prioritized logic programs. In Jan Maluszynski, editor,
Logic Programming, Proceedings of the 1997 International Symposium, Port Jefferson, Long Island,
NY, USA, October 13-16, 1997, pages 69–83. MIT Press, 1997.

[82] Lydia Zogmpi. Implementation of the logic programming language PrefLog. Bachelor’s thesis, Univer-
sity of Athens, Athens, 2016.

139 A. Troumpoukis

	CONTENTS
	PREFACE
	INTRODUCTION
	Motivation
	Our Approaches
	The infinite-valued approach
	The higher-order approach

	Contributions
	Outline

	EXPRESSING PREFERENCES USING INFINITE-VALUED LOGIC PROGRAMMING
	Overview
	The Logic Programming Language PrefLog
	Syntax
	Infinite-Valued Models
	Examples of PrefLog Operators

	The Fixed-Point Semantics of PrefLog
	Continuous Preference Operators
	The operator
	The Operators opt and alt
	Preferences and Recursion
	Defining New Operators
	Operators Non-Definable with , and

	Expressiveness of PrefLog Programs
	Summary

	EVALUATION OF A FUNCTION-FREE CLASS OF PREFLOG PROGRAMS
	Overview
	The Class of {,}-programs
	{,}-programs
	The Gapless Property of {,}-programs

	Bottom-up Evaluation
	Inadequacy of Naive Evaluation
	Terminating Bottom-up Evaluation of {,}-programs
	Correctness of Terminating Bottom-up Evaluation

	Implementation
	Summary

	EXPRESSING PREFERENCES USING HIGHER-ORDER LOGIC PROGRAMMING
	Overview
	Qualitative Preferences and Databases
	Preferences over Tuples
	Composition of Preference Relations
	Preferences over Sets
	Discussion

	Higher-Order Logic Programming
	Representing Preferences over Tuples in Higher-Order Logic Programming
	Representing Database Relations
	Representing Preference Relations
	Representing Composition Operators
	Representing Operators on Preference Relations
	Additional Complex Representations

	Representing Preferences over Sets in Higher-Order Logic Programming
	Summary

	OPTIMIZING PREFERENTIAL HIGHER-ORDER LOGIC PROGRAMS
	Overview
	A Naive Implementation
	Predicate Specialization: A technique for optimizing Definitional Higher-order Logic Programs
	Overview of the Technique
	Definitional Higher-order Logic Programs
	Partial Evaluation of Logic Programs
	Predicate Specialization
	Implementation

	Predicate Specialization and Preferential Higher-order Logic Programs
	Optimization Strategies for Set Preferences
	Overview of the Optimizations
	Pruning Sets by Removing Unnecessary Tuples
	Pruning Sets by Grouping Exchangeable Tuples
	Implementation

	Summary

	EXPERIMENTS AND EVALUATION
	Overview
	Experiments on Tuple Preferences
	Experiments on Preference Operators
	Experiments on Path Preferences
	Experiments on Set Preferences
	Experiments on Predicate Specialization

	RELATED WORK
	Overview
	Preferences in Databases
	Quantitative Preferences in Databases
	Qualitative Preferences in Databases

	Qualitative Preferences in Logic Programming
	Preferences over Program Solutions
	Preferences over Program Models

	Quantitative Extensions of Logic Programming
	Infinite-Valued Logic Programming
	Probabilistic Logic Programming

	Related work on Predicate Specialization
	Partial Evaluation
	Defunctionalization and its Extensions
	Other Higher-order Removal Methods

	Summary

	CONCLUSIONS AND FUTURE WORK
	Conclusions
	Future Work
	Future Work on the Infinite-Valued approach
	Future Work on the Higher-Order approach

	REFERENCES

