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ABSTRACT

During the last decade, social media platforms such as Twitter have grown and matured to
a point where enormous amounts of data are being generated in real-time fashion. Users
of these networks are constantly uploading information about the current state of their
surroundings. This wealth of information can be exploited in order to provide meaningful
real-time feedback about ongoing events for a wide range of applications.

In this thesis, we test two targeted domain, event detection systems; one that is supervised
and one that is not. These event detection systems, process a collection of time-indexed
data and perform the detection procedure as a pipeline of three discrete steps, a filtering
phase, a spatial clustering phase, and a scoring phase. In the filtering phase, the tweets
get processed, and they are divided into two categories, those that are related to the tar-
geted domain and those that are not. The next step of the process is the spatial clustering,
which aggregates the related tweets into areas of interest. As the last part of the process,
the regions that were extracted by the clustering phase, are sorted, by ranking higher
those regions that were mostly affected by the event. More specifically, the supervised
system, requires human labor and a simple algorithm for filtering the tweets. By contrast,
the unsupervised system employs an unsupervised algorithm for this process. Both sys-
tems cluster the related tweets, either with the k-Means algorithm, or with a modularity
based graph clustering algorithm. Finally these systems rank the resulting clusters with
the help of several ranking schemes. During our experiments, it became clear that the un-
supervised system provides worse results than the supervised approach, but it does not
require time for labeling the data, and thus it provides a good trade-off between human
labor and accuracy of the results.

SUBJECT AREA: Data Mining

KEYWORDS: event, detection, spatial, clustering, k-Means, modularity, supervised, un-
supervised



ΠΕΡΙΛΗΨΗ

Κατά την διάρκεια της τελευταίας δεκαετίας, οι πλατφόρμες κοινωνικής δικτύωσης όπως
το Twitter έχουν αναπτυχθεί και ωριμάσει, με αποτέλεσμα τεράστιο πλήθος δεδομένων να
δημιουργείται σε πραγματικό χρόνο. Οι χρήστες αυτών των δικτύων, μεταφορτώνουν συ-
νεχώς δεδομένα σχετικά με την κατάσταση του περιβάλλον τους. Αυτή η πλούσια συλλογή
δεδομένων μπορεί να χρησιμοποιηθεί για να προσφέρει ανάδραση πραγματικού χρόνου
για ενεργά γεγονότα, η οποία μπορεί να αξιοποιηθεί με ποικίλους τρόπους.

Σε αυτήν την πτυχιακή εργασία, δοκιμάζουμε δύο συστήματα, ανίχνευσης γεγονότων στο-
χευμένου τομέα, ένα εκ των οποίων είναι με επίβλεψη, και το άλλο είναι χωρίς. Αυτά τα
συστήματα ανίχνευσης γεγονότων, επεξεργάζονται μια συλλογή από χρονικά ταξινομη-
μένα δεδομένα και εκτελούν την διαδικασία της ανίχνευσης γεγονότων ως μια σωλήνωση
τριών διακριτών βημάτων, αυτό του φιλτραρίσματος, της χωρικής συσταδοποίησης και της
βαθμολόγησης. Στο βήμα του φιλτραρίσματος, τα tweets, έπειτα από επεξεργασία, χωρί-
ζονται σε δύο κατηγορίες, αυτά που είναι συναφή με τον τομέα, και αυτά που δεν είναι. Το
επόμενο βήμα της διαδικασίας είναι η χωρική συσταδοποίηση των συναφών tweets σε συ-
ναφής περιοχές. Στο τελικό στάδιο της διαδικασίας, οι περιοχές οι οποίες είχαν εξορυχθεί
κατά την διαδικασία της χωρικής συσταδοποίησης, ταξινομούνται με τέτοιο τρόπο, ώστε
οι περιοχές οι οποίες είχαν επηρεαστεί περισσότερο από το γεγονός, να βαθμολογού-
νται υψηλότερα. Πιο συγκεκριμένα, το σύστημα με επίβλεψη, απαιτεί ανθρώπινη εργασία
και έναν απλό αλγόριθμο για το φιλτράρισμα των tweets. Σε αντίθεση, το σύστημα χωρίς
επίβλεψη υιοθετεί έναν αλγόριθμο χωρίς επίβλεψη για αυτήν την διαδικασία. Και τα δύο
συστήματα συσταδοποιούν τα συναφή tweets, είτε με τον αλγόριθμο k-Means, είτε με έναν
αλγόριθμο συσταδοποίησης γράφων με την χρήση της μετρικής modularity. Τέλος, αυτά τα
συστήματα ταξινομούν τις συστάδες με βάση κάποιες στρατηγικές βαθμολόγησης. Κατά
την διάρκεια των πειραμάτων μας, κατέστη σαφές πως το σύστημα χωρίς επίβλεψη, είχε
χειρότερα αποτελέσματα από το σύστημα με επίβλεψη, αλλά δεν απαιτεί χρόνο για τον
χαρακτηρισμό των δεδομένων, και με αυτόν τον τρόπο προσφέρει έναν καλό συμβιβασμό
μεταξύ ανθρώπινης εργασίας και ακρίβειας των αποτελεσμάτων.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Εξόρυξη Δεδομένων

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: γεγονότα, ανίχνευση, χωρική, συσταδοποίηση, k-Means, modularity,
επίβλεψη
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Spatial Event Detection in Twitter: A Comparison of State-of-the-Art Techniques

1. INTRODUCTION

1.1 Background

Microblogging platforms like Twitter have experienced a significant growth in usage in the
past years and they have accumulated millions of users. These users are constantly up-
loading short messages called “tweets” which are often enriched with links, media files,
and tagging of other users, with content coming from a wide range of topics. The topics
discussed in Twitter due to its more informal and personal tone, are similar to the ones dis-
cussed from person to person and thus they can vary greatly in significance to the material
world. For example they can range from things that are purely abstract (e.g. discussing
about movies and music) to more concrete events, either extreme (e.g. earthquakes,
floods) or less so (e.g. strikes, elections). This wealth of real-time information can be ex-
ploited in order to provide meaningful real-time feedback about ongoing events for a wide
range of applications.

Table 1.1: Example of flood related tweets

And its still raining. Dinghy to get us home. http://t.co/ma3uE6AIiT
@GSpellchecker @humanistdalek @AtheistBlobfish Help! It’s been raining for what
seems like 40 days and nights! Should I build a big boat?
Walking home in the rain is so not fun
I hate the rain -_-. Had to cycle in the bloody rain. I really do hate the rain -_-
I’m sick of this cold weather! Will summer hurry up

The extraction of such events falls under the more general field of event detection. In
general, the event detection domain varies greatly, in the way the problems are described,
which are their goals-objectives and eventually their proposed solutions. For the purpose
of this thesis we will define an event e as a real-world phenomenon that occurred at some
specific time t and tied to a location l.

Figure 1.1: Example of an event (floods) as described by BBC

Unfortunately, automatically analyzing tweets to identify real-life events is a quite difficult
task. This is due to the fact that:

V. Papavasileiou 13
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1. The enormous amount of data that need to be processed in real-time fashion.

2. Not all tweets have their precise location tied to them, so techniques for extracting
location indirectly are needed [20].

3. Tweets are often written in a very informal way, have a lot typos, unstructured lan-
guage, slangs and acronyms. They also have a very high amount of spam content
[7], and in general they can prove to be a very noisy source of information [5].

1.2 Related Work

In general most of the existing work done in event detection on microblogging platforms
can be classified into two categories.

In the first category, the aim is to detect general-interest events as they appear without
having any prior knowledge about their existence. Usually methods under this category
apply unsupervised techniques such as topic modeling [22], burst detection [8, 9] and
online clustering [1, 2, 13]. For example, Zhijun Yin et al. [22] created a framework which
combines geographical clustering and topic modeling for geographical topic comparison.
Jon Kleinberg [8] presented an approach for modeling the stream using an infinite-state
automaton, in which, bursts appear naturally as state transitions. By following a different
approach, Lappas et al. [9] explored several methods for detecting spatiotemporal term
burstiness which can be used for trend identification and document extraction. Alvanaki
et al. [1] proposed an online system which detects unusual shifts in correlations of various
statistics, specific to tags and tag-pairs of Twitter data, caused by real-world events. In
addition, Becker et al. [2], analyzed and compared various document similarity metrics
which take in account both textual and non-textual features, to enable online clustering
of media to events. Finally, Mathioudakis et al. [13] developed an online system which
identifies and groups bursty keywords on Twitter, in order to identify trends. Of course
other novel approaches exist, like relying on the emotional classification of the tweets
combined with spatiotemporal information to identify events [21].

In the second category, the aim is to detect events within a particular domain (e.g. earth-
quakes [16], floods [17], civil unrest [23], diseases [19], crimes [10]). This kind of approach,
usually requires supervised techniques in order to filter the relevant tweets to that partic-
ular domain and then apply clustering techniques to identify the locations of the events.
It becomes immediately clear, that for the supervised methods to work successfully, a lot
of human effort is required to label the training data. For example, Sakaki et al. [16],
proposed a system which focuses on earthquakes and its main objective is to accurately
extract the location of an earthquake by extracting earthquake related tweets with the help
of a manually crafted lexicon, and by using a model that incorporates Kalman and particle
filtering. In a similar way, Saravanou et al. [17] proposed a system which, with the help of
a manually crafted lexicon and clustering techniques, identifies the areas that were mostly
affected by floods. Contrary to the most approaches, Zhao et al. [23] developed a sys-
tem which adopted an unsupervised algorithm to filter relevant tweets, and then applies
a clustering algorithm which takes in account both semantic and geographical data, for
detecting civil unrest events. Signori et al. [19] deployed an SVM classifier, along with
other models, for tracking disease activity, while Li et al. [10] proposed an online system
consisting of a trained classifier to extract crime related tweets and a ranking model for
sorting the tweets by their importance in order to detect crime events.

V. Papavasileiou 14
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The two approaches discussed above have different goals in mind, that serve different
needs. On the one hand, general-interest event detection provides a way to detect events
that we can’t use descriptive terms like #hashtags (i.e., user generated topic labels) or
keywords (e.g. ”protest”, ”demonstration”) to identify. On the other hand targeted-domain
event detection provides a way to monitor only specific events that are of our interest. In
addition, the latter approach allows for greater understanding of the event and better ways
to quantify and interpret the data in hand.

1.3 Our Objective

The main objective of this thesis is to analyze and compare approaches that fall under
the targeted domain event detection. More specifically, we will focus on two different
approaches, one that is supervised [17] and one that isn’t [23]. These two methods share
a common structure. At first a bag of keywords is used in order to filter the relevant tweets.
Then the relevant tweets are clustered into geospatial regions for further analysis. The
main difference in these two approaches is how the bag of words is extracted. On the
supervised approach the bag of keywords was extracted manually by the authors. In
contrast, the unsupervised approach, applies an algorithm that is responsible for extracting
the bag of words, given a very small seed query.

This key difference allows the unsupervised method to work on various domains with very
little effort, since the only thing that needs to be altered is the seed query. This can be
proved to be especially useful on extreme situations, where the timing is critical. Our
intuition is that, this approach will result in worse results than the hand picked keyword
approach since there is no human oversight. Therefore, we want to test the unsupervised
approach on the same dataset (floods in UK [17]) as the supervised one, and compare the
results. The above comparison will reveal, how well the unsupervised approach will per-
form against an optimal approach for the given dataset, and what is the trade off between
performance and human intervention.

V. Papavasileiou 15
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2. SYSTEMS OVERVIEW

In the following section we will provide an overview of the two different systems that were
discussed above.

2.1 Supervised Approach

The supervised approach consists of several sequential steps. At first the data (tweets) is
filtered based on the lexicon that was compiled by the authors, in order to keep the tweets
that are relevant to that particular domain (extreme weather - floods in the UK in early
2014). After that, the whole collection of tweets, including those that are irrelevant to the
domain, are used to create sub-regions in the geographical area of study with the help of
clustering. Finally, for each of these sub-regions, various metrics are applied in order to
quantify which of these regions endure the most extreme effects and therefore need the
most assistance.

2.1.1 Filtering

In the filtering phase, the first step is to compile a custom lexicon. A small seed set of
related tokens (13 in total) is created (e.g. rain, flood, weather). These related tokens
are used in order to search and store keywords in tweets that contain them as sub-strings
(excluding mentions, i.e. @username). As a result, a new set of words is extracted.
Unfortunately, this approach yields a lot of false positives, and thus, careful review of the
tokens is needed. After the review of the tokens, the custom lexicon is complete.

Figure 2.1: Overview of the filtering process of the supervised approach

As a second step, each tweet is processed again, and converted into an unordered set of
words-tokens. Then, if any of these words-tokens match the custom lexicon, the tweet is
classified as relevant and ready to be used for further analysis. It should also be noted
that due to limitations and challenges in location extraction, all the tweets that don’t have
a geographical signature are omitted.

V. Papavasileiou 16
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2.1.2 Clustering

As a result of the filtering process, each tweet has a location tied to it. Given that the goal
is to identify regions that are affected, a need for aggregating the GPS coordinates of the
tweets, becomes apparent. For this reason all the tweets of the dataset, including the
unrelated ones, are clustered by their geographic location with the help of the k-Means
clustering. The use of the whole dataset for geographical clustering, instead of using
only the related ones, provides a better representation of the underlying population, since
there are a lot more tweets. Before the clustering takes place, the GPS coordinates are
first converted to Cartesian ones, using Mercatorian map projections. This step is neces-
sary, because the k-Means clustering uses the Euclidean distance which works only on
Cartesian systems.

2.1.3 Identifying Affected Areas

The next challenge after clustering, is to identify which regions were mostly affected, by
the event. Depending on the number of clusters that is chosen, a high number of sub-
regions may arise. For this reason the authors of the paper proposed several prioritization
schemes, which sort the areas, by returning the most affected regions first, and the less
affected regions afterwards. The prioritization schemes that were proposed and tested,
are the following:

1. The number of tweets: This metric serves as a baseline. Essentially the regions
are sorted by the number of tweets they have in a descending order, regardless if
the tweets are related to the event or not.

2. The number of related tweets: The areas are sorted in a descending order, by the
number of related tweets they have.

3. SNR: The areas are sorted in a descending order, by the ratio of related tweets that
each region has. For example, in location r the ratio is:

number of related tweets in r

number of tweets in r

2.2 Unsupervised Approach

The unsupervised system retains a similar structure as the supervised one. The main
difference is that, at first, an algorithm is responsible for transforming a small seed query
to one that is more extensive, without any supervision. Then every tweet that matches
the extended query is regarded as a related one, and is stored for the next step of the
process. At last, a clustering phase takes place, which in contrast to the unsupervised
implementation, it takes in consideration both the geographical locations and the semantic
similarities of the tweets.

2.2.1 Filtering

As part of the initialization of the filtering process a graph representation of the data is
built. This is in contrast to the bag of words representation of the other implementation.

V. Papavasileiou 17
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More specifically, an undirected graph G = (V , E ,W ,S) is created, where V = T ∪ F .
T refers to a set of tweet nodes, and F to a set of feature nodes. The tweet nodes
are essentially identifiers of the tweets, while the feature nodes are nodes that represent
other attributes of the tweets such as the words that the tweets are made of, hashtags,
hyperlinks, users etc. The edges E refer to the various relationships between the nodes.
These relationships reveal information about the author of a tweet (edge between a user
node and a tweet node), the keywords a tweet contains (edge between a term node and
a tweet node), the replying relationship between tweets (edge between two tweet nodes)
and more. The W denotes the weights of the nodes of the graph. Finally S refers to the
set of GPS locations of the tweets. At the same time as the graph generation takes place,
the tweets get sanitized by removing stop words [12] (i.e. words that are common and
don’t offer any semantic value, e.g. ”The”, ”is”) and lemmatization [12] (i.e. a process
for removing inflectional endings and returning the base or dictionary form of a word, e.g.
”cars” ⇒ ”car”). Moreover, a method for detecting near duplicate documents efficiently,
known as simhash [11] is used for identifying and removing tweets that are very similar,
as a preprocessing step.

The next task of the filtering process is to get a small seed query Q0 and generate an ex-
panded one Qp. This task is handled by the Dynamic Query Expansion (DQE) algorithm.
The DQE algorithm takes advantage of the heterogeneous relationships between the vari-
ous entities of the tweets in order to calculate the weights of the nodes. The higher the
weight a node has, the more relevant is to the targeted domain. For example terms like
”#UCLfinal” or ”Liverpool” are surely more related to the sport domain than a keyword like
”#EUElections2019”. In a similar way, a replying tweet is more likely to share the same
domain as the tweet that is replying to. As a result the more relevant nodes get a higher
weight since they are connected with other highly weighted nodes. By formalizing the
above observation we have the following:

Algorithm 1: Dynamic Query Expansion (DQE)
Data: Seed Query Q0 = {(vi, w(vi)(0))

M

i=1}
Result: Expanded Query Qp

1 Initialize T, F, T0
r and w(T);

2 k = 0;
3 repeat
4 repeat
5 Swap(min(w(Tk

r)
(k)), max(w(T − Tk

r)
(k)));

6 σ = min(w(Tk
r)

(k)) − max(w(T − Tk
r)

(k));
7 until σ ≥ 0;
8 w(F)(k) = DF · AF,T · w(T)(k−1);
9 w(T)(k) = Φ(A’F,T · w(F)(k) + βAT · w(T)(k−1));
10 σ = max(w(T − Tk

r)
(k)) − min(w(Tk

r)
(k));

11 k = k + 1;
12 until σ ≤ 0;
13 w(Fr) = {(w(vi)(k)) ∈ w(F)(k) | vi ∈ Fr ⊆ F};
14 Qp = {(vi, w(vi)) | vi ∈ Fr, w(vi) ∈ w(Fr)};

Figure 2.2: The Dynamic Query Expansion algorithm in pseudocode

The DQE Algorithm: Given a seed query Q0 with its appropriate weight (1.0 for every
word), all the tweets that match it are marked as related T0

r. All the feature nodes F ⊆ F
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that match the related tweets T0
r are stored. In a similar way the tweet nodes T ⊆ T

that match the F are kept for possibly being related to the domain (Line 1). After that a
repetitive process begins. The tweets that are marked to be related Tk

r in the k-th repetition
are compared to the ones that are not related T − Tk

r . If any of the tweets that belong
to the set T − Tk

r have a higher weight than tweets in the related set Tk
r , then they get

swapped until all the related tweets have a higher weight (Lines 4-7). The following step
is to update the weights of the features F and the tweets T. This is done via the equation
on the Line 8 of the algorithm w(F)(k) = DF · AF,T · w(T)(k−1), where DF is the inverse
document frequency (IDF) matrix of F and AF,T is the adjacency matrix between F and T.
At a similar way Line’s 9 equation w(T)(k) = Φ(A’F,T · w(F)(k) + βAT · w(T)(k−1)) updates
the weights of the features F with the help of the recently calculated weights of w(F)(k).
A’F,T is the transpose of the adjacency matrix between F and T. AT is the adjacency matrix
between tweets and it represents the replying relationship between them. β is a constant
for choosing the balance between the influences of the various features and the replying
relationships of the tweets. Φ is a function that normalizes the resulting matrix by column.
Afterwards, the algorithm checks if there is a need for swapping the tweets between the
related set and the non-related set as described above, and if the need arises, the loop
begins again (Lines 3-12). Otherwise the algorithm comes to an end. As a result, a set
of feature nodes that match the related tweet nodes are returned. This set of words is the
resulting lexicon Qp that will be used to extract the related tweets TQp.

2.2.2 Clustering

In a similar way as the supervised approach, a clusteringmethod is in place for aggregating
the various tweets locations into areas. For this reason a clustering algorithm that is based
on the work of Liang Zhao et al. [23] is used. Unfortunately since the implementation of
the algorithm could not be disclosed by the authors, due to intelligence property issues,
we had to improvise and come up with a simpler algorithm, that we call: Spatial Modularity
Clustering Algorithm (SMC).

Before exploring the SMC algorithm any further, we will define modularity for graphs based
on the work of Newman et al. [14]. Following is a intuitive and simple definition of mod-
ularity provided by Shiokawa et al. [18]. The main idea of modularity algorithms is to
find groups of vertices that have a lot of inner-group edges and few inter-group edges .
Modularity Q is defined as follows:

Let euv be the total number of edges between cluster u and v; au be the total number of
edges that are attached to vertices in cluster u; andm be the total number of edges in the
whole graph. The following equation gives the modularity score of the clustering result.

Q =
∑

u{
euu
2m − ( au

2m)
2}

In the definition above, au
2m

is the expected fraction of edges of u, which can be obtained
when we assume the graph to be a random graph. Therefore, well clustered graphs will
obtain high modularity scores, since the value of euu is highly different from the random
graph.

The SMC Algorithm: Before using the algorithm we need to construct a new undirected
graph G0 = (V0, E0,W0,S0). In this case V0 = TQp which are the related tweets that were
calculated with the help of the DQE algorithm. E0 represents a set of undirected edges
between all the related tweets. W0 is essentially the weight set w(E0), and it represents
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Figure 2.3: Example of a clustering structure that a modularity algorithm would generate

Algorithm 2: Spatial Modularity Clustering Algorithm
Data: G0 = (V0, E0,W0,S0)
Result: Ω = {G(Vi)}K(i=1), where Vi ⊆ V0

1 Initialize Ω = ∅;
2 for s ∈ S0 do
3 Vs = {v | v ∈ V0, l(v) ∈ Ss};
4 Cluster Vs while maximizing the modularity score;
5 Add the above Clusters to Ω;
6 if overlapping Clusters in Ω then
7 Keep the Clusters with the highest modularity score;

Figure 2.4: The Spatial Modularity Clustering algorithm in pseudocode

semantic similarities between the tweets of the graph. Semantic similar tweets are tweets
that share expanded query terms Fr. The expanded query terms Fr are the whole set
of features that are part of the TQp tweets. A more formal explanation of the weight set
w(E0) is that, if A is the adjacency matrix between TQp and Fr, then w(E0) = A · A′. The
S0 represents the GPS locations of the tweets.

The general idea behind this algorithm, is to find regions that have at the same time,
proximate and semantically similar tweets. The SMC algorithm consists of a repetitive
procedure (Lines 2-7), where a location s is chosen as a center (Line 2). Consequently,
all the locations that are in range r from the center s are aggregated to the set Ss. Then
every tweet v that shares a location l(v) with the set Ss is combined to a subgraph Vs ⊆
V0 (Line 3). Immediately after that, the subgraph Vs gets clustered with the help of a
modularity clustering algorithm [4] which takes into account the weights w(Es) (Line 4).
The new clusters are added to the set of clusters (Line 5). If any of the new clusters have
overlapping tweets with the clusters that were done in previous iterations, then the ones
that have better modularity score are kept and the other ones, are discarded (Lines 6-7).
As a result we get a set of non-overlapping clusters. This means that each cluster has
distinct tweets, but this doesn’t imply that clusters can’t overlap geographically or in other
words, share GPS locations.

For example, given the graph in the figure 2.5, we pick the node 0 as its center. Every node
that is in range r from the center (inside the red circle) is considered for the clustering. All
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the other nodes are pruned. In the next figure 2.6, the clustering takes place, which results
in 3 clusters (red, blue and green) and a score representing the quality of the clustering.
These 3 clusters are added to the set Ω. If there are conflicts (e.g. clusters share the same
nodes), the clusters with the highest score are kept in the set Ω. This process begins again
with a different center, until all the nodes are considered.
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Figure 2.5: Graph representation of the tweets before the clustering
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Figure 2.6: Graph representation of the tweets after the clustering

2.2.3 Identifying Affected Areas

In the original paper of Liang Zhao et al. [23], simple metrics like accuracy, recall and F-
score were used to evaluate the performance of the system, but no prioritization schemes
for the generated clusters were presented. In our case, since we want to compare the
performance of this approach, with the work of Saravanou et al. [17], we adopt several
prioritization schemes:

1. The number of related tweets: The areas are sorted in a descending order, by the
number of related tweets they have.

2. Modularity score: The areas are sorted in a descending order, by the modularity
score of their clustering.
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In contrast to the previous system, we don’t apply the ”SNR” and ”number of tweets”
prioritization schemes. That is, because both schemes, use the total number of tweets per
area (related tweets + not related tweets), which apart from being inefficient to calculate in
the unsupervised system, they can’t possibly take into account geographically overlapping
clusters.
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3. EXPERIMENTAL RESULTS

In this section we explore the dataset that is used for the experiments, and elaborate on
the experimental evaluation of the performance, of the two systems that were discussed
above.

3.1 Dataset Description

The dataset used for the evaluation of the two systems, consists of tweets collected in
the whole area of the United Kingdom (UK), from January 13, 2014 to January 17, 2014.
In this 5-day period, floods took place in the UK and more than 2.3 million geotagged
tweets were collected, amounting to 469.9 MiB of data. The first and last days contain
about half of the number of tweets than the rest. Each tweet of the dataset comes with
several columns of data including a unique ID, a date, the text of the tweet and its GPS
coordinates. Unfortunately the dataset doesn’t include the replying relationship between
the tweets, and for this reason we had to tune our DQE implementation in order to work
without them.

Table 3.1: Dataset Statistics

Period Total number of Tweets Flood Related Tweets
January 13 351140 2728
January 14 577151 4973
January 15 569108 4159
January 16 578553 4994
January 17 275358 3490
Total 2351310 20344

Figure 3.1: One day heatmap

In order to evaluate the results of the two systems, two independent sources are used
for providing ground truth information. The first source is the ”Hydrological Summary for
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the United Kingdom” [3], published by Centre for Ecology & Hydrology, of the Natural
Environment Research Council in the UK. The second source was published by the ”Met
Office” [15], UK’s National Weather Service, as a response to the storms and floods that
hit the UK, at the same period as our dataset.

3.2 Evaluation of the Parameters

In the following section, we will provide the results, of the evaluation, of the parameters,
of the two systems that were studied in this thesis.

3.2.1 Supervised Approach

During the filtering phase of the supervised system, a small seed set of 13 related tokens,
was used to extract other tokens, that contain them as substrings and are possibly re-
lated to the event we monitor (e.g. floods and storms in the UK). This approach yielded
1456 distinct keywords. After the time consuming process of labelling, the authors of the
supervised approach, concluded that, from these keywords, only the 456 were related to
the event. This resulting lexicon, could be possibly used for other similar events in the
future, but we can’t deny, that expression in tweets constantly evolves and this method
may not work as well as intended, for time sensitive events that can’t be easily described
by general keywords, like elections, sport events etc.

Table 3.2: Lexicon Keywords

Original Lexicon Flood Lexicon
Rank Keyword Occurrences Keyword Occurrences
1 rain 11235 rain 11235
2 train 6499 weather 3331
3 training 4593 snow 1006
4 weather 3331 raining 997
5 brain 1747 rainbow 419
6 trains 1251 storm 333
7 snow 1006 showers 273
8 raining 997 rainy 249
9 trainers 813 flooding 215
10 drained 435 flooded 214

As the next step of the system, the k-means clustering method, was used for aggregating
the tweets into areas. One drawback of using the k-means, is the need to find the most
appropriate number of clusters. For this reason, several numbers of k were used for
experimentation (k = 10, 100, 500, 1000). Even though, the selection of k’s is relatively
small, other clustering approaches, would require even more experimentation due to the
overwhelming number of parameters that need to be tuned (e.g. DBScan [6]).

By observing the generated clusters, it becomes clear, that the higher the k is, the more
splits are generated in densely populated areas. In contrast, more rural and sparsely
populated areas get less splits. This analysis could be interpreted as a kind of hierarchical
clustering, by cutting the hierarchical dendrogram at different levels.
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Figure 3.2: Spatial clusters generated by k-Means clustering

3.2.2 Unsupervised Approach

Our DQE implementation has several variables that can be fine-tuned. At first, the number
of the seed query terms can vary in size. Given the throughout analysis carried out by the
original authors of the paper of the DQE algorithm [23], we will use the proposed size of
5 keywords, as our seed query. As we can see from the following figure, coming from the
civil unrest domain, for the most cases, the F-Measure is getting considerably higher as
N increases from 1 to 3, but for values, from 5 and up, the F-Measure becomes stable.

Figure 3.3: F-measure score in relation to the number of seed terms

In our case, we will use the top 5 most popular keywords (rain, weather, snow, raining,
storm), that were extracted by the compiled lexicon of the supervised approach, as a best
case scenario, excluding the word ”rainbow” since its not so relevant to the experiment’s
domain.

As we have mentioned before, the DQE algorithm, has a variable β for choosing the bal-
ance between the influences of the various features and the replying relationships of the
tweets. However, due to, limitations coming from our dataset, we will have to set β to 0,
which means that the replying relationships won’t get considered.

The original DQE algorithm doesn’t have a way to limit the number of iterations, since it
relies on the property of the algorithm, which is that, it always converges after a small
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number of iterations. In support of this property, the authors of the DQE algorithm, ob-
served in their experiments, that the algorithm itself, would stop after very few iterations
and would provide good results. In our experiments, even though the algorithm would
indeed stop at 6 to 12 iterations at most, the results of our analysis indicated that more
than 1-2 iterations would result in very mediocre results. After a manual inspection of the
dataset’s related tweets, we noticed that, they shared very few features (e.g. hashtags
and keywords), and were very diverse in their expression and content. This, in combina-
tion with the incomplete dataset (lack of replying relationships and authorship) may have
contributed to the fact, that only very few iterations of the DQE are useful. This comes in
contrast to the results that the original authors got, when they deployed the algorithm on
a civil unrest dataset, in which the top extracted keywords contained a lot of hashtags.

Table 3.3: Results of the DQE algorithm, January 14

Iterations Top 5 keywords
1 rain weather snow c wind
2 rain today c like wind
3 like get day today good
7 (last one) get like day one good

In addition to the previous observations, during our testing, we noticed that a lot of similar
tweets were appearing in the filtering process of the system. Since the DQE algorithm
was set to identify weather related tweets, the majority of these similar tweets fell under
the category of automated weather reports. Since these reports don’t add any value to
our system, and in a sense they could be perceived as false positives, we deployed an
extra preprocessing step for removing them. For this reason we used the simhash [11]
algorithm, which provides an efficient way to identify similar documents. As a result, this
kind of tweets were reduced by up to 86%.

Table 3.4: Example of similar tweets in the DQE algorithm

05:57 GMT: Temperature: 2.4°C, Wind: NNW, 3 mph (ave), 8 mph (gust), Humidity:
78%, Rain (hourly) 0.0 mm, Pressure: 1007 hPa, rising slowly
11:57 GMT: Temperature: 5.5°C, Wind: NNW, 2 mph (ave), 8 mph (gust), Humidity:
72%, Rain (hourly) 0.0 mm, Pressure: 1010 hPa, rising slowly
11:58 GMT: Temperature: 5.5°C, Wind: NNW, 2 mph (ave), 8 mph (gust), Humidity:
72%, Rain (hourly) 0.0 mm, Pressure: 1010 hPa, rising slowly
05:27 GMT: Temperature: 2.5°C, Wind: N, 2 mph (ave), 8 mph (gust), Humidity: 78%,
Rain (hourly) 0.0 mm, Pressure: 1007 hPa, rising slowly
05:32 GMT: Temperature: 2.5°C, Wind: N, 2 mph (ave), 8 mph (gust), Humidity: 78%,
Rain (hourly) 0.0 mm, Pressure: 1007 hPa, rising slowly

By testing our DQE implementation with the floods dataset, we observed that the algorithm
is efficient in runtime, regardless of the dataset’s input size. For example in the table 3.5,
we noticed that for the 10% of the dataset (approximately 35k tweets), the runtime was
below 2 seconds and for the 100% of the same datase, the runtime didn’t exceed the 1
minute mark.

In the clustering phase of the unsupervised system, the expanded query, previously cal-
culated by the DQE algorithm, is used to create a graph, which the SMC algorithm will
cluster. The resulting expanded query gets cut-down in size, since a lot of the words in
the expanded query are irrelevant to the domain, which is evident by the very low score
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Table 3.5: DQE runtimes in seconds for various parameters, January 13

Iterations 10% of the dataset 100% of the dataset
1 0.1555 1.8984
2 0.3017 6.0543
3 0.6134 28.0743
7 (last iter. for the 10%) 1.1700 39.7210
10 (last iter. for the 100%) - 43.1971

that most of these keywords have. For this reason, we keep only the top 10-15 keywords,
for further analysis. All the tweets that contain at least one of these keywords are used
for the clustering. As we can see below, in the table 3.6, by increasing the number of
keywords from 10 to 15, we get an almost 10-fold increase in the number of tweets that
are used for the clustering. As a result, the clustering runtime increases exponentially,
partly due to the inefficient calculation of the distances between all the locations (O(n2)).
More efficient data structures, targeted specifically for spatial data, could help mitigate this
problem, but they are not in the current scope of this thesis.

Table 3.6: SMC statistics for various parameters, January 13

Runtime Memory Tweets
Keywords 10% 100% 10% 100% 10% 100%
5 4 s 63 s 218.6 MiB 739.8 MiB 92 771
10 56 s 443 s 255.5 MiB 997.6 MiB 758 1916
15 960 s 100 h > 760.3 MiB 5.8 GiB 2387 13629

The SMC algorithm, has only one parameter which can be altered directly. This parameter
is the distance r; the maximum radius that each cluster should maintain from its center.
By altering this value, we can control the surface area of the clusters to our preference. In
the following section, we will study how the radius, among other things, affects the quality
and the quantity of the clusters.

Figure 3.4: One cluster with 100 km radius
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3.3 Comparing the two Systems

After processing the twitter data, both systems, return a set of clusters, containing tweets
related to the domain that wemonitor. In order to evaluate the clusters produced by the two
systems, we follow several steps. At first, for both systems, we select the top-n clusters
(n = 100 in our case), as they were ordered by the prioritization schemes of each system.
Then we manually inspect all the ordered clusters (top-n), for each system, and we com-
pare them against the ground truth information. More specifically, we score each cluster
with the help of a Likert scale from 1 to 5, which represents how much these areas were
affected by the floods, with ”1” meaning not at all affected and ”5” representing completely
flooded areas. Finally, we compute the running average of the scores up to the i-th ranked
cluster, with the following formula:

valuei =
∑i

j=1
likert_score(j)

5

i

During the evaluation of the two systems, the entire collection of tweets (2.3M) is used.
However, in order to keep the runtime of the unsupervised system within practical limits,
we had to make an exception and use only the 10% of the whole collection as its input.

By applying the evaluation procedure as it was described above, the authors of the super-
vised system, compared the various prioritization schemes that they proposed.

The results of this evaluation are given in the figure 3.5. The three schemes that were
compared were: the number of tweets per area (All), the number of flood-related tweets
(Flood) and the Signal-to-Noise Ration (SNR). We can clearly observe that for the 100
clusters generated by the k-means, the schemes All and Flood behaved in a similar way,
while SNR has slightly better results than the other two schemes, at least for the first 30-40
areas. However, these differences blur after the first 50 areas. For k=500 and k=1000,
the SNR clearly outperforms the two other schemes, especially on the first 30 areas. The
Flood scheme catches up with SNR, after the first 30 areas, in contrast to the All scheme,
which stays at considerably lower levels than the rest. Saravanou et al. [17] concluded,
that the number of social media activity on an area, is not a reliable way to measure the
impact of an event. The number of related events is a better indicator, but SNR performs
even better, since it takes in account the number of users in that area. SNR, maintains an
average of 0.9 for the top-100 areas, and never drops below 0.85.

The same evaluation was applied to the unsupervised system. In this case, two schemes
are compared: the number of flood-related tweets (Flood) and the modularity score (Mod-
ularity). Contrary to the supervised system, the unsupervised approach doesn’t have a
direct control to the number of clusters that will be generated. The only way to influence
the number of clusters, is by altering the maximum radius, that each cluster should main-
tain. For this reason, we experimented with three different values of radii (r= 50km, 100km,
150km) as shown in the figure 3.6.

The results of the experimentation, clearly indicate that the Flood scheme is superior to
the Modularity one, across all cluster sizes. By setting the radius r to 50km, we observe
a heavy difference between the two schemes for the first top 50 areas, until they blur to-
gether. The divide is even greater for r=100km, 150km, where the Modularity scheme
stays consistently below the Flood one, in almost all the top-n areas. There is clear evid-
ence, that the Modularity scheme is inconsistent and not suitable for evaluating the impact
of an event. This means, that even if a clustering is well scored, the subsequent clusters,
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are not more relevant to the event than those that belong to a lesser scored clustering. On
the other hand, the number of related tweets, provides an acceptable running average of
0.7 and never drops below 0.57. Moreover, we notice that the Flood scheme, performs
similarly in the three different values of r that we tested. At first, the running average is
around 0.80 and then it drops gradually to around 0.60 - 0.65. Another thing to note here,
is that by increasing the maximum radius of each cluster, we get less clusters as a result.
After evaluating the produced clusters, we have the insight, that at least for this dataset,
the results for r=50km and r=100km are more useful than those of r=150km. For r=150km,
the clusters are too wide to actually provide a meaningful representation of the affected
areas.

As we expected, the supervised system performed considerably better than the unsuper-
vised one. With the best prioritization scheme for each system, we had a running average
of 0.9 for the supervised and 0.7 for the unsupervised one. This comes to no surprise,
since the supervised approach, takes advantage of an extensive handpicked lexicon, de-
riving from the same dataset as the one that was used during the evaluation. In addition,
several limitations and properties of the floods dataset, such as the lack of replying rela-
tionships, the wide variety in expression and limited use of common features (e.g. hasht-
ags) in the the related tweets, lead to a non-ideal environment for the filtering algorithm
of the unsupervised system, which has admittedly hindered its performance. Moreover,
we had to improvise and implement a simpler algorithm for the clustering phase of the
unsupervised system, which may have affected the system’s performance too.

By analyzing the current literature, we have the intuition, that the supervised approach
could be used for similar events in the future (floods), or be adopted in domains where a
static historical dataset could still be utilized for classifying tweets. However, in dynamic-
ally evolving domains, the static datasets are of limited use, and this is an area where the
unsupervised system could be deployed and provide useful results.
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Figure 3.5: Running average of the normalized Likert scores, supervised system
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Figure 3.6: Running average of the normalized Likert scores, unsupervised system
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4. CONCLUSIONS AND FUTURE WORK

In this thesis, we compared two different approaches, on spatial event detection in Twit-
ter. More specifically, we implemented an unsupervised system which was based on the
work of Zhao et al. and we compared it against a supervised system designed by Sara-
vanou et al. We utilized a tweet dataset, extracted during a 5-day period, in which floods
took place in the United Kingdom, for testing purposes. The goal of both systems was
to detect areas which were hit by the floods, and at the same time prioritize the most af-
fected ones. Both systems, apply a three stage pipeline in which, they filter the Twitter
data, they cluster the filtered data and then finally rank the resulting clusters. In all of the
above steps, we analyzed the performance of the two systems while taking into account
the various parameters of each system. We came to the conclusion, that by altering the
parameters we could greatly influence the performance of the two systems, especially the
unsupervised one. Moreover, we observed that the supervised system was superior to the
unsupervised one, which was to be expected, since the former was taking advantage of an
extensive handpicked lexicon which was extracted by the evaluation dataset. At the same
time, several limitations of our dataset and implementation, degraded the performance of
the unsupervised approach, which further increased the performance gap between the
two systems. Even though the performance of the unsupervised system was lesser com-
pared to the supervised one, it employs several advantages, such as being easy to target
different domains with minimal effort and being able to work efficiently on ever-changing
domains. On the other hand, the supervised approach, is more suited for domains, where
static datasets are successful at filtering relevant data (e.g. floods, earthquakes).

In our future work, we would like to address some of the shortcomings of our unsuper-
vised system implementation. More specifically, we want to apply better data structures
in the clustering phase of the unsupervised system, in order to speed up its computations.
Furthermore, we would like to experiment with different graph clustering techniques and
evaluate their performance. In addition, it would be crucial to deploy and test the system
on different domains, with complete datasets and develop online or streaming capabilities.
Finally, more prioritization schemes could be assessed for better ranking performance.
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TABLE OF TERMINOLOGY

Ξενόγλωσσος όρος Ελληνικός Όρος
Adjacency Γειτνίαση
Αutomaton Αυτόματο
Cluster Συστάδα
Geotag Γεωγραφική Ετικέτα
Lemmatization Λημματοποίηση
Modeling Μοντελοποίηση
Pipeline Σωλήνωση
Preprocessing Προεπεξεργασία
Real-time Σε Πραγματικό Χρόνο
Recall Ανάκτηση
Spatial Χωρικός
Spatiotemporal Χωροχρονικός
Stream Ροή
Supervised Με Επίβλεψη
Unsupervised Χωρίς Επίβλεψη
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ABBREVIATIONS - ACRONYMS

BBC British Broadcasting Corporation
DQE Dynamic Query Expansion
GPS Global Positioning System
ID Identification
IDF Inverse Document Frequency
SMC Spatial Modularity Clustering
SNR Signal-to-Noise Ratio
SVM Support Vector Machines
UK United Kingdom
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