
NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

POSTGRADUATE STUDIES
“COMPUTING SYSTEMS: SOFTWARE AND HARDWARE”

MASTER THESIS

Exploring Character Pattern Recognition Techniques: A
case study for Greek Polytonic Machine-Printed

Characters

Rizart A. Dona

Supervisors: Sergios Theodoridis, Professor NKUA
Basilis G. Gatos, Researcher NCSR ”Demokritos”

ATHENS

JULY 2019

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ
“ΥΠΟΛΟΓΙΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ: ΛΟΓΙΣΜΙΚΟ ΚΑΙ ΥΛΙΚΟ”

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Εξερευνώντας Τεχνικές Αναγνώρισης Προτύπων για
Χαρακτήρες: Μια μελέτη περίπτωσης για Ελληνικούς

Πολυτονικούς Τυπωμένους Χαρακτήρες

Ριζάρτ A. Ντόνα

Επιβλέποντες: Σέργιος Θεοδωρίδης, Καθηγητής ΕΚΠΑ
Βασίλης Γ. Γάτος, Ερευνητής ΕΚΕΦΕ ”Δημόκριτος”

ΑΘΗΝΑ

ΙΟΥΛΙΟΣ 2019

MASTER THESIS

Exploring Character Pattern Recognition Techniques: A case study for Greek Polytonic
Machine-Printed Characters

Rizart A. Dona
S.N.: M1528

SUPERVISORS: Sergios Theodoridis, Professor NKUA
Basilis G. Gatos, Researcher NCSR ”Demokritos”

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Εξερευνώντας Τεχνικές Αναγνώρισης Προτύπων για Χαρακτήρες: Μια μελέτη
περίπτωσης για Ελληνικούς Πολυτονικούς Τυπωμένους Χαρακτήρες

Ριζάρτ A. Ντόνα
Α.Μ.: M1528

ΕΠΙΒΛΕΠΟΝΤΕΣ: Σέργιος Θεοδωρίδης, Καθηγητής ΕΚΠΑ
Βασίλης Γ. Γάτος, Ερευνητής ΕΚΕΦΕ ”Δημόκριτος”

ABSTRACT

In this thesis we explore various character pattern recognition techniques and we present
a case study for Greek polytonic machine-printed characters where those techniques are
applicable. We implement and describe statistical feature engineering techniques such as
character zoning, adaptive character zoning, extraction of horizontal and vertical projec-
tion histograms as well as a feature extraction technique based on recursive subdivisions
of the character. We also implement and discuss two classification techniques, one based
on the template matching model and the other one based on artificial neural networks.
Additionally, the python-based open source library that implements those functionalities is
presented along with a how-to-use section. Finally, we evaluate the aforementioned tech-
niques on two separate datasets that contain Greek polytonic characters and we present
our results on the performance of our methods.

SUBJECT AREA: Character Pattern Recognition

KEYWORDS: Optical Character Recognition, Pattern Recognition, Feature Extraction,
Character Classification, Artificial Neural Networks, Greek Polytonic Characters

ΠΕΡΙΛΗΨΗ

Σε αυτη την διπλωματική εργασία εξερευνούμε διάφορες τεχνικές αναγνώρισης προτύπων
για χαρακτήρες και παρουσιάζουμε μια μελέτη περίπτωσης για Ελληνικούς πολυτονικούς
τυπωμένους χαρακτήρες όπου οι τεχνικές αυτές είναι εφαρμόσιμες. Υλοποιούμε και πε-
ριγράφουμε στατιστικές τεχνικές μηχανικής χαρακτηριστικών (feature engineering) όπως
είναι ο διαχωρισμός του χαρακτήρα σε ζώνες, ο διαχωρισμός του χαρακτήρα σε προσαρ-
μοστικές ζώνες, η εξαγωγή ιστογραμμάτων κάθετων και οριζόντιων προβολών καθώς και
μια τεχνική εξαγωγής χαρακτηριστικών που βασίζεται σε αναδρομικές υποδιαιρέσεις του
χαρακτήρα. Επιπλέον, υλοποιούμε και συζητάμε δύο τεχνικές κατηγοριοποίησης, η μια βα-
σίζεται στο μοντέλο του ταιριάσματος προτύπου (template matching) και η άλλη βασίζεται
στα τεχνητά νευρωνικά δίκτυα. Επιπρόσθετα, παρουσιάζουμε την υλοποιημένη σε python
βιβλιοθήκη ανοικτού κώδικα που διεκπεραιώνει αυτές τις λειτουργίες μαζί με μια ενότητα
για το πώς να την χρησιμοποιήσει κάποιος. Τέλος, αξιολογούμε τις προαναφερθείσες τε-
χνικές σε δύο διαφορετικά σύνολα δεδομένων που περιέχουν Ελληνικούς πολυτονικούς
χαρακτήρες και παρουσιάζουμε τα αποτελέσματα μας για όσον αφορά την απόδοση των
μεθόδων μας.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Αναγώριση Προτύπων για Χαρακτήρες

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Οπτική Αναγνώριση Χαρακτήρων, Αναγνώριση Προτύπων, Εξαγωγή
Χαρακτηριστικών, Κατηγοριοποίηση Χαρακτήρων, Τεχνητά Νευρωνικά Δίκτυα, Ελληνικοί
Πολυτονικοί Χαρακτήρες

ACKNOWLEDGEMENTS

I would like to thank researcher Dr. Basilis Gatos for our excellent collaboration and PhD
candidate Panagiotis Kaddas for his contribution and his helpful reviews. I would also
like to thank professor Sergios Theodoridis for giving me the chance to participate on this
project.

July 2019

CONTENTS

1. INTRODUCTION . 12
1.1 Background . 12

1.2 Motivation . 15

1.3 Overview . 15

2. METHODOLOGY . 16
2.1 Feature Engineering . 16

2.1.1 Projection Histograms . 16

2.1.2 Zones . 16

2.1.3 Recursive Subdivisions . 18

2.2 Classifiers . 20

2.2.1 Template Matching . 20

2.2.2 Artificial Neural Networks . 21

3. IMPLEMENTATION . 25
3.1 The Python Library . 25

3.2 How To Use . 25

4. EXPERIMENTAL RESULTS . 27
4.1 Experimental Setup . 27

4.2 Results for Dataset 1 . 28

4.3 Results for Dataset 2 . 30

5. RELATED WORK . 32

6. FUTURE WORK . 33

7. CONCLUSIONS . 34

ABBREVIATIONS - ACRONYMS . 35

REFERENCES . 37

LIST OF FIGURES

1.1 The components of an OCR system . 14

2.1 Horizontal and vertical projection histograms of a character 16

2.2 Character zoning . 17

2.3 Extraction of coordinates for the subdivision procedure 19

2.4 Recursive subdivisions of a character . 19

2.5 Division points (center of masses) of a character 19

2.6 Calculation of nij values for template matching 20

2.7 An example ANN (MLP) . 21

2.8 Activation functions . 22

2.9 A dropout example . 24

3.1 Classification code example . 26

3.2 Feature extraction code example . 26

4.1 Data Description . 27

4.2 Two characters that are mispredicted in Dataset 1 29

4.3 Two characters that are mispredicted in Dataset 2 31

LIST OF TABLES

4.1 Accuracy for zone features - Dataset 1 . 28

4.2 Accuracy for projection features - Dataset 1 28

4.3 Accuracy for subdivision features - Dataset 1 28

4.4 Accuracy for classifiers - Dataset 1 . 29

4.5 Five characters with the worst performance - Dataset 1 29

4.6 Accuracy for zone features - Dataset 2 . 30

4.7 Accuracy for projection features - Dataset 2 30

4.8 Accuracy for subdivision features - Dataset 2 30

4.9 Accuracy for classifiers - Dataset 2 . 30

4.10 5 characters with worst performance - Dataset 2 31

PREFACE

This Master thesis is a research project that took place in Athens, Greece by postgraduate
student Rizart Dona under the supervision of researcher Basilis Gatos, in the context of
the CIL [7] research interests.

Exploring Character Pattern Recognition Techniques: A case study for Greek Polytonic Machine-Printed Characters

1. INTRODUCTION

1.1 Background

Optical character recognition (OCR) is the process of classification of optical patterns con-
tained in a digital image corresponding to alphanumeric or other characters (machine-
printed or handwritten). The character recognition is achieved through important steps of
segmentation, feature extraction and classification. OCR technology enables us to con-
vert different types of documents such as scanned paper documents, PDF files or images
captured by a digital camera into editable and searchable data.

Each OCR system has a basic architecture that determines the steps that are needed in
order to recognize and classify the desired characters. The typical OCR system architec-
ture is illustrated in Figure 1.1. Some of the steps follow:

Optical Scanning: This is the first step of the workflow, here through a scanning
process the digital image of the original document is captured. The scanner consists
of a transport mechanism and a sensing device that converts light intensity into grey
levels, thus giving us a digital representation of the input document.

Location Segmentation: Location segmentation determines constituents of an im-
age. It is necessary to locate regions of a document which have printed data and are
distinguished from figures and graphics. Those constituents could be lines of text,
words in those lines and finally the segmentation of individual characters. Some prob-
lems that may arise in this process are distinguishing noise from text or misinterpreting
graphics and geometry with text and vice versa.

Preprocessing: The raw data depending on the data acquisition type is subjected to
a number of preliminary processing steps to make it usable in the descriptive stages
of character analysis. Some preprocessing steps include:

Binarization - Thresholding: This is a very common step that is needed in order
to remove noise from the characters and speedup the classification process in the
future steps. What happens here essentially is that the grey-level document is trans-
formed into a black-white image (containing only 0 and 1 as pixel values, 0 for back-
ground and 1 for foreground content) through a process that is called thresholding.
The simplest thresholding methods traverse each pixel value in the grey-level docu-
ment and given a threshold they check whether the given value is over or under the
threshold, if it is found to be bellow the threshold then it is assigned the background
content pixel value (0) and respectively if it is found to be above the threshold then
it is assigned the foreground content pixel value (1).

Noise reduction: The noise introduced by the optical scanning device or the writ-
ing instrument causes disconnected line segments, bumps and gaps in lines, filled
loops, etc. The distortion including local variations, rounding of corners, dilation and
erosion is a potential problem. It is necessary to eliminate these imperfections prior
to actual processing the data.

Slant normalization: In the case of handwritten documents, one of the measurable
factors of different handwriting styles is the slant angle between longest stroke in a
word and the vertical direction. Slant normalization is used to normalize all charac-
ters to a standard form.

R. Dona 12

Exploring Character Pattern Recognition Techniques: A case study for Greek Polytonic Machine-Printed Characters

Skew normalization and baseline extraction: Due to inaccuracies in the scanning
process and writing style (for handwritten input) the writing may be slightly tilted or
curved within the image. This can hurt the effectiveness of the algorithms and thus
should be detected and corrected. Additionally, some characters are distinguished
according to the relative position with respect to the baseline, such as 9 and g.
The methods of baseline extraction include using the projection profile of the image,
nearest neighbor clustering and the cross correlation method between lines and the
Hough transform. After skew detection the character or word is translated to the
origin, rotated or stretched until the baseline is horizontal and retranslated back into
the display screen space.

Size Normalization: This step is used to adjust the character size to a certain stand-
ard. The OCR methods may apply for both horizontal and vertical size normaliza-
tions. This process is essential for the future training and recognition of the charac-
ters because most of the recognition techniques require a standard size in order to
function properly.

Representation - Feature Extraction: The image representation plays one of the
most important roles in any recognition system. In the simplest case, gray level or
binary images are fed to a recognizer. However, in most of the recognition systems
in order to avoid extra complexity and to increase the accuracy of the algorithms, a
more compact and characteristic representation is required. For this purpose, a set of
features is extracted for each class that helps distinguish it from other classes while
remaining invariant to characteristic differences within the class. This step is one of the
two main subjects of this thesis concerning pattern recognition techniques and several
examples are presented in section 2.1.

Training and Recognition: OCR systems extensively use the methodologies of pat-
tern recognition which assigns an unknown sample into a predefined class. In this step
an OCR system can employ several approaches for training the labeled characters1
and for predicting new unlabeled characters2 which the model has never seen before.
This step is the second main subject of this thesis concerning pattern recognition tech-
niques and two approaches are presented in section 2.2.

A more comprehensive description and analysis of the components of an OCR system
can be found in [6].

1 characters which their class is known
2 characters which their class is unknown

R. Dona 13

Exploring Character Pattern Recognition Techniques: A case study for Greek Polytonic Machine-Printed Characters

Input Text

Optical Scanning

Location Segmentation

Preprocessing

Representation

Feature Extraction

Training and Recognition

Output Text

Figure 1.1: The components of an OCR system

R. Dona 14

Exploring Character Pattern Recognition Techniques: A case study for Greek Polytonic Machine-Printed Characters

1.2 Motivation

As we saw in the previous section, OCR systems contain multiple components that facil-
itate the character pattern recognition process. The motivation for this thesis is to survey
feature extraction techniques and pattern recognition techniques that can help us get good
results in our recognition tasks.

Our case study for Greek polytonic machine-printed characters is another challenge due
to the large number of existing character classes which cannot be handled sufficiently
by current OCR technologies. Taking into account that the Greek polytonic system was
used from the late antiquity until recently, a large amount of scanned Greek documents
still remains without full text search capabilities. This project also aims at progressing the
research in that direction.

1.3 Overview

The rest of this thesis is organized as follows: In chapter 2 the feature extraction tech-
niques are described along with the pattern recognition algorithms. In chapter 3 the im-
plementation of those techniques is presented, namely the python library and a how-to-use
section about it. In chapter 4 we discuss the experimental results on the performance of
our techniques on two sets of data that contain Greek polytonic machine-printed charac-
ters. Some related work is mentioned in chapter 5 and some future work is discussed in
chapter 6. Finally, we conclude in chapter 7.

R. Dona 15

Exploring Character Pattern Recognition Techniques: A case study for Greek Polytonic Machine-Printed Characters

2. METHODOLOGY

2.1 Feature Engineering

In this section we describe and analyze three feature extraction techniques that can be
used to extract feature vectors from a character.

2.1.1 Projection Histograms

Projection histograms have been used in OCR systems since 1956 [11]. This idea is
also known as histogram projection count and can be represented as Hi =

∑
j f(i, j) for

a horizontal projection where f(i, j) is the pixel value of ith row and jth column of the
image. Here, the background pixel is considered to be 0 and the foreground pixel to be
1. Similarly, a vertical projection histogram can be calculated as Hj =

∑
i f(i, j). We

basically calculate the pixel density for each projection.

We can see an example in Figure 2.1, here the vertical and horizontal projection histo-
grams of the character ”5” have been calculated. The feature vector of a given character
combines both vertical and horizontal values.

In this method, we can select the number of projections that we want to extract from our
character. For example, if we choose 5 projections we will have 5 vertical and 5 horizontal
values for our feature vector, 10 values in total. Our character will be divided in 5 equal
horizontal and vertical sections and for each section the pixel density will be calculated. In
the same example, if our character dimension is 10x10 it will indicate that each projection
will consist of 2 rows and 2 columns.

Figure 2.1: Horizontal and vertical projection histograms of a character

2.1.2 Zones

The commercial OCR system named Calera which is reported in [5] was developed based
on a zonal feature extraction method. In order to extract this feature, an image is divided
into same-size non overlapping zones and then the number of foreground pixels is counted
for each of those zones. In that manner the pixel density is computed for each zone.

In Figure 2.2a we can see an example. Our character is divided into zones that each has
dimensions of 10x10. For each zone we calculate the pixel density and thus the feature

R. Dona 16

Exploring Character Pattern Recognition Techniques: A case study for Greek Polytonic Machine-Printed Characters

vector consists of those counts (36 values in this case, since we have 6x6 number of
zones).

Adaptive Zones
One alternative technique that involves zoning is reported in [9], namely adaptive zones.
Adaptive zoning features are extracted after adjusting the position of every zone based
on local pattern information. This adjustment is performed by moving every zone towards
the pattern body and is based on the maximization of the local pixel density around each
zone.

In more detail, given a character C where C(i, j) is the pixel value of ith row and jth
column, and coordinates zx0 , zx1 , zy0 , zy1 for a particular zone z, and parameters λx, λy, we
reallocate that zone by computing the offsets as follows:

(dx, dy) = arg maxx∈[−λx...λx],y∈[−λy ...λy]

zx1∑
i=zx0

zy1∑
j=zy0

C(x+ i, y + j) (2.1)

Parameters λx and λy define the horizontal and vertical range for adjusting the position of
the zones. Since large values for parameters λx and λy can affect the computational time
needed for feature extraction, we propose that these parameters have to range between
1 and 3. Finally, the new coordinates for zone z are:

zx
′
0 = zx0 + dx

zx
′
1 = zx1 + dx

zy
′
0 = zy0 + dy

zy
′
1 = zy1 + dy

(2.2)

So, once we find the new coordinates for each zone we calculate the pixel density like in
the typical zoning case and we extract our features like before. One example is shown on
Figure 2.2b where the zones from 2.2a have been adjusted.

(a) Non overlapping zones for a
character

(b) Overlapping adjusted zones for
a character

Figure 2.2: Character zoning

R. Dona 17

Exploring Character Pattern Recognition Techniques: A case study for Greek Polytonic Machine-Printed Characters

2.1.3 Recursive Subdivisions

This feature extraction method [18] [19] relies on a technique based on recursive subdivi-
sions of the image as well as on calculation of the centre of masses of each sub-image with
sub-pixel accuracy. It is based on structural features extracted directly from the character,
that provide a good representation of the character at different levels of granularity.

More specifically, let C(x, y) be the character image array having 1s for foreground and
0s for background pixels and xmax and ymax be the width and the height of the character
image. This method relies on recursive sub-divisions of the character image based on
the centre of mass of each sub-image, so, we initially calculate the co-ordinates (x0, y0)
of the centre of mass of the initial character image. The vertical co-ordinate x0 is found
according to the following procedure:

1. Let V0 be the vertical projection histogram array of the initial character image with
size xmax.

2. Create V1 array from V0 as follows:
for x := 1 to 2 ∗ xmax do
if x mod 2 = 1 then

V1[x] = 0
else

V1[x] = V0[x div 2]
end if

end for

3. Find xq from V1 using the following equation:

xq = argmin
xt

{
x=xi−1∑
x=1

V1(x)−
x=2∗xmax∑
x=xt+1

V1(x)

}
(2.3)

4. The vertical co-ordinate x0 is then estimated as:

x0 = xq div 2 (2.4)

As already mentioned, in order to improve the precision, the centre of mass for each of the
following sub-images is calculated with sub-pixel accuracy. That is, the initial image is di-
vided vertically into two rectangular sub-images depending on the value of xq (Eq. 2.3). If
xq mod 2 = 0 then the vertex co-ordinates of these two sub-images are: {(1, 1), (x0, ymax)}
and {(x0, 1), (xmax, ymax)}. Otherwise, if xq mod 2 = 1, then the vertex co-ordinates are:
{(1, 1), (x0, ymax)} and {(x0 + 1, 1), (xmax, ymax)}. An example of the aforementioned pro-
cedure is shown on Figure 2.3.

R. Dona 18

Exploring Character Pattern Recognition Techniques: A case study for Greek Polytonic Machine-Printed Characters

Figure 2.3: Extraction of coordinates for the subdivision procedure

Likewise, the horizontal co-ordinate y0 is calculated thus resulting to the division of the
initial image into four rectangular sub-images. The whole procedure is applied recursively
for every sub-image (Figure 2.4).

Figure 2.4: Recursive subdivisions of a character

Let L be the current level of the granularity. At this level the number of the sub-images
is 4L+1, for example, when L = 0 the number of sub-images is 4. The number of the
center of masses at level L equals to 4L. At level L, the co-ordinates (x, y) of all the centre
of masses become the features of the character. So, for every L a 2 × 4L - dimensional
feature vector is extracted. As Figure 2.5 shows, the larger the L the better representation
of the character is obtained.

Figure 2.5: Division points (center of masses) of a character

R. Dona 19

Exploring Character Pattern Recognition Techniques: A case study for Greek Polytonic Machine-Printed Characters

2.2 Classifiers

In this section, we present two pattern recognition models that can be trained and used to
predict the class of previously unseen characters.

2.2.1 Template Matching

This pattern recognition technique considers the character body as the feature vector of
the character [14]. If we want to compare two same-sized characters C1 and C2 (C1 is
the template character and C2 is the character that we want to predict) that consist of n
pixels each, then the count of points nij where character C1 has value i and character C2
has value j, with i, j ε {0, 1}, is given by the following equation:

nij =
n∑

m=1

δm(i, j) (2.5)

where:

δm(i, j) =

{
1, if (xm = i) ∧ (ym = j)
0, otherwise (2.6)

and xm, ym are the mth pixels that are compared in characters C1 and C2. We can see
an example of those computations in Figure 2.6.

Figure 2.6: Calculation of nij values for template matching

Given those values, we need a distance function that can indicate the similarity of the two
characters. Two well known distances are mentioned in [17], namely Jaccard distance
and Yule distance. Their equations follow:

dJ =
n11

n11 + n10 + n01

(2.7)

dY =
n11n00 − n10n01

n11n00 + n10n01

(2.8)

R. Dona 20

Exploring Character Pattern Recognition Techniques: A case study for Greek Polytonic Machine-Printed Characters

For a given pair of characters, the proximity of those distances to 1 indicates the proximity
between the characters. Basically, for each unlabeled character that we want to predict it’s
class we need to compute one of those distances with each labeled character and keep
the closest one as the candidate class.

2.2.2 Artificial Neural Networks

Artificial neural networks (ANNs) are inspired by the biological neural networks that consti-
tute animal brains. They are learning systems that perform tasks by considering examples,
generally without being programmed with any task-specific rules [20]. An ANN is based
on a collection of connected units or nodes called artificial neurons. Each connection, like
the synapses in a biological brain, can transmit a signal from one artificial neuron to an-
other. An artificial neuron that receives a signal can process it and then signal additional
artificial neurons connected to it.

There are different types of ANNs such as Multilayer Perceptrons (MLPs) [25], Convolu-
tional Neural Networks (CNNs) [21], Recurrent Neural Networks (RNNs) [26], and others.
In the context of this thesis we present a typical MLP that performs the pattern recognition
task. An example of a MLP is shown in Figure 2.7

Figure 2.7: An example ANN (MLP)

Before we present our model we first need to mention some of the basics of ANNs:

Neuron: Just like a neuron forms the basic element of our brain, a neuron forms the
basic structure of a neural network. Like when we get the information, we process
it and then we generate an output, similarly, in case of a neural network, a neuron
receives an input, processes it and generates an output which is either sent to other
neurons for further processing or it is the final output.

Input / Output / Hidden Layer: As the name suggests the input layer is the one which
receives the input and is essentially the first layer of the network. The output layer is
the one which generates the output or is the final layer of the network. The processing
layers are the hidden layers within the network. These hidden layers are the ones
which perform specific tasks on the incoming data and pass on the output generated
by them to the next layer. The input and output layers are the ones visible to us, while
the intermediate layers are hidden. We already saw this structure in Figure 2.7.

R. Dona 21

Exploring Character Pattern Recognition Techniques: A case study for Greek Polytonic Machine-Printed Characters

Weights: When input enters the neuron, it is multiplied by a weight. For example, if
a neuron has two inputs, then each input will have has an associated weight assigned
to it. We initialize the weights randomly and these weights are updated during the
model training process. The neural network after training assigns a higher weight to
the input it considers more important as compared to the ones which are considered
less important. A weight of zero denotes that the particular feature is insignificant. If
we assume the input to be a, and the weight associated to be w1, then after passing
through the node the input becomes a× w1.

Bias: In addition to the weights, another linear component is applied to the input, called
as the bias. It is added to the result of weight multiplication to the input. The bias is
basically added to change the range of the weight multiplied input. After adding the
bias, the result would look like (a×w1) + bias. This is the final linear component of the
input transformation.

Activation Function: Once the linear component is applied to the input, a non-linear
function is applied to it. This is done by applying the activation function to the linear
combination.The activation function translates the input signals to output signals. The
output after application of the activation function would look something like f((a×w1)+
bias) where f() is the activation function.

For example, in Figure 2.8a we have n inputs given as X1 to Xn and corresponding
weights Wk1 to Wkn. We have a bias given as bk. The weights are first multiplied to
its corresponding input and are then added together along with the bias and we have
the value u computed as u =

∑
((w × x) + b). The activation function is applied to u

i.e. f(u) and we receive the final output from the neuron as yk = f(u). In our case,
the activation function is the Rectified Linear Units (ReLU) function that is defined as
f(x) = max(x, 0) and is shown in Figure 2.8b.

(a) Activation function output (b) ReLU function

Figure 2.8: Activation functions

For our output layer we use the Softmax activation function [27]. This function makes it
easy to assign values to each class which can be easily interpreted as probabilities. For
example, if we need to classify elements that belong to 5 categories, this function will
output a probability for each category and we will select the category with the highest
probability.

Forward Propagation: Forward Propagation refers to the movement of the input
through the hidden layers to the output layers. In forward propagation, the information
travels in a single direction forward. The input layer supplies the input to the hidden
layers and then the output is generated. There is no backward movement.

R. Dona 22

Exploring Character Pattern Recognition Techniques: A case study for Greek Polytonic Machine-Printed Characters

Cost Function: When we build a network, the network tries to predict the output as
close as possible to the actual value. We measure this accuracy of the network using
the cost/loss function. The cost or loss function tries to penalize the network when it
makes errors. Our objective while running the network is to increase our prediction
accuracy and to reduce the error, hence minimizing the cost function. The most op-
timized output is the one with least value of the cost or loss function. In our case,
the categorical crossentropy (Eq. 2.9) loss function is used where N is the number
of observations and pmodel[yi ∈ Cc] is the probability predicted by the model for the ith
observation to belong to the cth category.

− 1

N

N∑
i=1

log pmodel [yi ∈ Cyi] (2.9)

Gradient Descent: Gradient descent [22] is an optimization algorithm for minimizing
the cost. To find a local minimum of a function using gradient descent, one takes steps
proportional to the negative of the gradient (or approximate gradient) of the function at
the current point. If, instead, one takes steps proportional to the positive of the gradient,
one approaches a local maximum of that function; the procedure is then known as
gradient ascent. We use this algorithm to minimize the loss function.

Learning Rate: The learning rate is defined as the amount of minimization in the cost
function in each iteration. In simple terms, the rate at which we descend towards the
minima of the cost function is the learning rate. We should choose the learning rate
very carefully since it should neither be very large that the optimal solution is missed
and nor should be very low that it takes forever for the network to converge.

Back-propagation: When we define a neural network, we assign random weights and
bias values to our nodes. Once we have received the output for a single iteration, we
can calculate the error of the network. This error is then fed back to the network along
with the gradient of the cost function to update the weights of the network. These
weights are then updated so that the errors in the subsequent iterations is reduced.
This updating of weights using the gradient of the cost function is known as back-
propagation. In back-propagation the movement of the network is backwards, the error
along with the gradient flows back from the out layer through the hidden layers and the
weights are updated.

Batches While training a neural network, instead of sending the entire input in one
go, we divide in input into several chunks of equal size randomly. Training the data on
batches makes the model more generalized as compared to the model built when the
entire data set is fed to the network in one go.

Epochs An epoch is defined as a single training iteration of all batches in both forward
and back propagation. This means 1 epoch is a single forward and backward pass of
the entire input data. It’s highly likely that more number of epochs would show higher
accuracy of the network, however, it would also take longer for the network to converge.
Also, if the number of epochs is too high, then the network might over-fit the training
data.

R. Dona 23

Exploring Character Pattern Recognition Techniques: A case study for Greek Polytonic Machine-Printed Characters

Dropout Dropout is a regularization technique which prevents over-fitting of the net-
work. As the name suggests, during training a certain number of neurons in the hidden
layer is randomly dropped. This means that the training happens on several architec-
tures of the neural network on different combinations of the neurons. We can think of
dropout as an ensemble technique, where the output of multiple networks is then used
to produce the final output. An example can be seen in Figure 2.9

Figure 2.9: A dropout example

Now that we described the basics of ANNs we can present our model setup. The layers
of our model follow:

• 1st Layer (Input Layer): This is the input layer, here a 2-d image is flatten and we
end up with a 1-d array that contains the character pixel values.

• 2nd Layer (1st Hidden): This layer consists of 784 neurons and it uses ReLU as
the activation function. This layer is densely connected, meaning that each neuron
receives input from all the neurons in the previous layer (in this case the input layer).

• 3rd Layer (2nd Hidden): This layer is a dropout layer that randomly drops 20% of
the previous layer’s neurons.

• 4th Layer (3rd Hidden): This layer consists of 2000 neurons and it uses ReLU as
the activation function. This layer is also densely connected.

• 5th Layer (4th Hidden): This layer is a dropout layer that randomly drops 50% of
the previous layer’s neurons.

• 6th Layer (5th Hidden): This layer consists of 2000 neurons and it uses ReLU as
the activation function. This layer is also densely connected.

• 7th Layer (6th Hidden): This layer is a dropout layer that randomly drops 50% of
the previous layer’s neurons.

• 8th Layer (Output Layer): This layer consists of neurons that are as many as the
number of categories that we need to predict and it uses Softmax as the activa-
tion function. This layer is also densely connected. This is the final layer that will
eventually produce the predictions for our characters.

Beyond this fixed model setup we need to choose the number of epochs, the number of
batches as well as a learning rate value in order to perform the recognition task.

R. Dona 24

Exploring Character Pattern Recognition Techniques: A case study for Greek Polytonic Machine-Printed Characters

3. IMPLEMENTATION

In this chapter we describe the implementation of the techniques that we saw in chapter
2. We present the python library design that implements those functionalities and a how-
to-use section is included for researchers/developers who want to use it.

3.1 The Python Library

The developed library (mlchr) is open source [15] and was designed in the context of
the NumPy [1], SciPy [3] and scikit-learn [2] ecosystem. For the ANN implementation
TensorFlow [4] was used. Themlchr package has 4modules that structure it’s capabilities.
Those are:

• The feature_extraction module: This module contains the feature extraction tech-
niques that we presented in section 2.1.

• The classifiers module: This module contains the pattern recognition techniques
that we presented in section 2.2.

• The normalization module: This module contains a character image size normal-
izer.

• The utilsmodule: This module contains various utilities for reading images, extract-
ing statistics, etc.

Essentially, the core functionalities are in the first two modules. In the next section we are
going to see how a user is able to use those modules in order to perform character pattern
recognition tasks.

3.2 How To Use

The library facilitates simple imports with a scikit-like abstraction paradigm and the user
can use it with very few lines of code. We can see two examples in Figure 3.1 and in
Figure 3.2. In the first case, we use the two pattern recognition techniques, via the Tem-
plateMatchingClassifier instance and the ANNClassifier instance. In the second case, we
show how feature extraction is performed and how one can train and use for prediction a
scikit-learn classifier with that extracted data.

R. Dona 25

Exploring Character Pattern Recognition Techniques: A case study for Greek Polytonic Machine-Printed Characters

Figure 3.1: Classification code example

Figure 3.2: Feature extraction code example

R. Dona 26

Exploring Character Pattern Recognition Techniques: A case study for Greek Polytonic Machine-Printed Characters

4. EXPERIMENTAL RESULTS

In this chapter we present the experimental results for our methods on two sets of data
that contain Greek polytonic machine-printed characters. In section 4.1, we describe the
data and experimental setup that is used and in sections 4.2, 4.3 we present the results
for each set of data.

4.1 Experimental Setup

Our evaluation data comes from two sources. The first set of data (from now on set1)
comes from 21 separate book pages that contain Greek polytonic machine-printed char-
acters. The second set of data (from now on set2) comes from GROPOLY-DB [10], a
publicly available old Greek polytonic database with the same characteristics as set1.
The Greek polytonic language contains more than 270 character classes as can be seen
in Figure 4.1a. A sample page that illustrates the quality of our characters can be seen
in Figure 4.1b. All characters, in both sets, are already binarized meaning that they have
pixel values of 0 (for background content) and 1 f(or foreground content).

(a) Greek polytonic character classes (b) Page example from where the
characters are extracted

Figure 4.1: Data Description

From each set, we keep only the characters that have at least 10 samples per each class.
This brings the total count of characters in set1 to 21.209 for 89 distinct classes and in
set2 to 164.772 for 123 distinct classes.

Our evaluation strategy goes as follows: Before we run our experiments, we normalize

R. Dona 27

Exploring Character Pattern Recognition Techniques: A case study for Greek Polytonic Machine-Printed Characters

the character size to dimensions of 30×30. Our strategy involves a stratified1 5-fold cross
validation process [23] (except in the case of ANNs where only one fold is performed with
80% train data and 20% test data, due to limited computing resources). We evaluate the
feature extraction methods that we implemented and the recognition methods as well. In
the case of feature extraction, the feature vectors are combined with a k-NN classifier [24]
with k = 1. This classifier is chosen as a simple case so we can evaluate better the extrac-
tion methods per se, without having a complex model that can shadow the performance.
In the case of classification, since our models work only with the character pixels as input
values, no additional component is needed.

As the evaluation metric for our methods, the accuracy is used. This metric is defined as
follows:

Accuracy =
Number of correct predictions

Total number of predictions made
(4.1)

Since in our case we perform 5-fold cross validation, we present the average accuracy of
those 5 folds.

4.2 Results for Dataset 1

In the following tables, we can see the performance of our methods for the first set of
data. Table 4.1 combines both the simple zones extraction as well as the adaptive zones
extraction. If we set λx = λy = 0 in Equation 2.1 we can see that we get the standard
zones that we saw in subsection 2.1.2.

Table 4.1: Accuracy for zone features - Dataset 1

Standard Zones Adaptive Zones
Dimension of Zones λx = λy = 0 λx = λy = 1 λx = λy = 2 λx = λy = 3

Zones 2x2 98.25 98.29 97.23 94.17
Zones 3x3 98.23 98.24 97.24 94.8
Zones 5x5 98.01 97.85 96.96 94.66

Table 4.2: Accuracy for projection features -
Dataset 1

Projections Accuracy
3 67.94
5 82.28
10 85.14
15 85.35
30 85.55

Table 4.3: Accuracy for subdivision features -
Dataset 1

Level of Granularity L Accuracy
L = 0 26.5
L = 1 84.11
L = 2 95.11
L = 3 91.83
L = 4 77.38

1 stratified means that each class keeps it’s equal representation across the partitions of the folds

R. Dona 28

Exploring Character Pattern Recognition Techniques: A case study for Greek Polytonic Machine-Printed Characters

Table 4.4: Accuracy for classifiers - Dataset 1

Method Accuracy
Template Matching - Jaccard 98.02
Template Matching - Yule 95.96

ANN [epochs = 25, batch_size = 16, learning_rate = 0.01] 98.18

As we can see in Table 4.1, out of all cases, we perform the best in the adaptive zones
case for zones of dimensions 2× 2 and λx = λy = 1. The performance in the projections
extraction is rather poor while the performance in the subdivisions extraction is promising
for L = 2, considering the speed of the method at that granularity. Finally, we see in
Table 4.4 that our ANN performs better than the other two classification models, but still, it
doesn’t surpass the accuracy of the adaptive zones that are mentioned in the beginning of
this paragraph. Overall, we see promising results with the best classification combination
reaching an accuracy of 98.29%.

Considering the best result (adaptive zones with λx = λy = 1), we now present a subset
of the confusion matrix with the 5 classes that we have the worst performance. This is a
way to see which character classes are mostly mispredicted as another character. This
sample comes from the last fold of the evaluation process. We can see that information
in Table 4.5.

Table 4.5: Five characters with the worst performance - Dataset 1

Character Class Count Accuracy Falsely Predicted As Percentage of False Prediction

GREEK SMALL LETTER EPSILON WITH DASIA AND OXIA 2 50% GREEK SMALL LETTER EPSILON WITH PSILI AND OXIA 50%

GREEK SMALL LETTER ETA WITH PSILI 2 50% GREEK SMALL LETTER ETA WITH OXIA 50%

GREEK SMALL LETTER UPSILON WITH DASIA AND OXIA 2 50% GREEK SMALL LETTER UPSILON WITH PSILI AND OXIA 50%

GREEK SMALL LETTER IOTA WITH DASIA 9 44.44% GREEK SMALL LETTER IOTA WITH OXIA 22.22%

GREEK SMALL LETTER EPSILON 11.11%

GREEK SMALL LETTER IOTA WITH PSILI AND PERISPOMENI 11.11%

GREEK SMALL LETTER IOTA WITH VARIA 11.11%

GREEK SMALL LETTER OMICRON WITH PSILI 5 40% GREEK SMALL LETTER OMICRON WITH VARIA 40%

GREEK SMALL LETTER OMICRON WITH DASIA 20%

As we observe, most character classes in this table have a small sample of testing data,
meaning also a small sample of training data since for each fold the testing data consists
of 20% the data sample. Even so, we see that characters that are mainly mispredicted are
characters from the same Greek character but with difference diacritic marks (e.g. ”eta
with psili” and ”eta with oxia”). We can see such an example in Figure 4.2.

(a) ”Eta with psili”
character sample

(b) ”Eta with oxia”
character sample

Figure 4.2: Two characters that are mispredicted in Dataset 1

R. Dona 29

Exploring Character Pattern Recognition Techniques: A case study for Greek Polytonic Machine-Printed Characters

4.3 Results for Dataset 2

Like in the previous section, here we can see the performance of our methods for the
second set of data. We present the same tables as in set1.

Table 4.6: Accuracy for zone features - Dataset 2

Standard Zones Adaptive Zones
Dimension of Zones λx = λy = 0 λx = λy = 1 λx = λy = 2 λx = λy = 3

Zones 2x2 96.53 96.94 95.84 93
Zones 3x3 96.6 96.8 95.97 94.01
Zones 5x5 95.87 96.09 95.26 93.26

Table 4.7: Accuracy for projection features -
Dataset 2

Projections Accuracy
3 49.78
5 75.29
10 81.2
15 81.62
30 81.75

Table 4.8: Accuracy for subdivision features -
Dataset 2

Level of Granularity L Accuracy
L = 0 13.9
L = 1 76.98
L = 2 91.81
L = 3 86.46
L = 4 66.06

Table 4.9: Accuracy for classifiers - Dataset 2

Method Accuracy
Template Matching - Jaccard −
Template Matching - Yule −

ANN [epochs = 25, batch_size = 16, learning_rate = 0.01] 97.64

As we can see in Table 4.9, out of all cases, we perform the best in the ANN case. The
performance in the projections extraction here is also poor while the performance in the
subdivisions extraction has the same pattern as in set1. In this set, Table 4.9 shows only
the results for the ANN model. That is because set2 is much bigger than set1 and the two
template matching models would take weeks to train and evaluate (making them useless
in practice for that many points of data). Compared to the results from set1, here the best
accuracy score is by a small margin lower, namely 97.64% (vs 98.29% in set1). Still, we
can see that with ANNs we can get very good results even for big sets of data with many
categories to predict from.

Considering the best result (ANN), like before, we present a subset of the confusion matrix
with the 5 classes that we have the worst performance. We can see that information in
Table 4.10.

R. Dona 30

Exploring Character Pattern Recognition Techniques: A case study for Greek Polytonic Machine-Printed Characters

Table 4.10: 5 characters with worst performance - Dataset 2

Character Class Count Accuracy Falsely Predicted As Percentage of False Prediction

GREEK SMALL LETTER UPSILON WITH DASIA AND PERISPOMENI 4 50% GREEK SMALL LETTER TAU 25%

GREEK SMALL LETTER UPSILON WITH DASIA 25%

GREEK SMALL LETTER ETA WITH DASIA AND OXIA 5 40% GREEK SMALL LETTER ETA WITH DASIA 20%

GREEK SMALL LETTER ETA WITH PSILI AND VARIA 20%

GREEK SMALL LETTER THETA 20%

GREEK SMALL LETTER UPSILON WITH PSILI AND PERISPOMENI 5 40% GREEK SMALL LETTER UPSILON WITH DASIA AND OXIA 20%

GREEK SMALL LETTER UPSILON WITH DASIA AND PERISPOMENI 20%

GREEK SMALL LETTER UPSILON WITH PERISPOMENI 20%

GREEK CAPITAL LETTER OMICRON WITH DASIA 9 33.33% GREEK CAPITAL LETTER OMICRON WITH PSILI 33.33%

GREEK SMALL LETTER OMICRON 22.22%

GREEK CAPITAL LETTER OMICRON WITH DASIA AND OXIA 11.11%

GREEK SMALL LETTER ALPHA WITH DASIA 7 28.57% GREEK SMALL LETTER ALPHA WITH PSILI 57.14%

GREEK SMALL LETTER ALPHA WITH TONOS 14.28%

As we also observe here, most character classes have a small sample of testing data. We
see that characters that are mainly mispredicted are also characters from the same Greek
character but with difference diacritic marks (e.g. ”alpha with dasia” and ”alpha with psili”).
We can see that example in Figure 4.3.

(a) ”Alpha with
dasia” character

sample

(b) ”Alpha with
psili” character

sample

Figure 4.3: Two characters that are mispredicted in Dataset 2

R. Dona 31

Exploring Character Pattern Recognition Techniques: A case study for Greek Polytonic Machine-Printed Characters

5. RELATED WORK

In this chapter we are referencing some related work that has to do with character feature
extraction techniques and generally with OCR technologies.

Many feature extraction techniques are mentioned in [16] for binary images. Those in-
clude geometric moment invariants, unitary image transforms, spline curve approximation,
Fourier transforms, and other. This paper provides a useful overview of many feature ex-
traction methods, including some that are presented in this thesis. Additionally, in [12] we
see a probabilistic neural network that is used as a pattern recognition model along with
feature extraction methods such as celled projections and crossings.

Concerning OCR in Greek characters, [13] and [8] provide some interesting approaches
to character pattern recognition. The first publication uses Hidden Markov Models in order
to recognize and predict Greek polytonic degraded texts while the second one proposes
a OCR framework for the recognition of machine-printed Greek polytonic documents that
is based on combining different recognition modules in order to have a small number of
classes in each module.

R. Dona 32

Exploring Character Pattern Recognition Techniques: A case study for Greek Polytonic Machine-Printed Characters

6. FUTURE WORK

In this chapter we are proposing some future work that can advance the scope of this
thesis.

One important step is to implement and build more feature extraction and pattern recog-
nition techniques for the mlchr library that was presented in Chapter 3. This will enable
an enhanced integrated library that can be used both in research as in applications.

Another future endeavor would be to try to get more precise predictions by using the
context of the characters that were extraced from the book pages. For example, GRPOLY-
DB that we saw in Chapter 4 has also information about the lines and paragraphs where
those characters belong. We could use that information to extract statistical properties
that would boost the model’s accuracy.

Finally, more experiments have to be done on other sets of data in order to evaluate the
implemented methods and compare the performance across other use cases.

R. Dona 33

Exploring Character Pattern Recognition Techniques: A case study for Greek Polytonic Machine-Printed Characters

7. CONCLUSIONS

In this thesis we explored character pattern recognition techniques that were used to re-
cognize Greek polytonic machine-printed characters from two different sets of data. We
presented feature extraction methods and character classification models and we imple-
mented a python library that performs those functionalities in a simple and intuitive way.
Finally, we tested our methods and we saw promising results in terms of performance for
both our sets of data.

R. Dona 34

Exploring Character Pattern Recognition Techniques: A case study for Greek Polytonic Machine-Printed Characters

ABBREVIATIONS - ACRONYMS

OCR Optical Character Recognition

PDF Portable Document Format

ANN Artificial Neural Network

MLP Multilayer Perceptron

CNN Convolutional Neural Network

RNN Recurrent Neural Network

ReLU Rectified Linear Units

R. Dona 35

Exploring Character Pattern Recognition Techniques: A case study for Greek Polytonic Machine-Printed Characters

BIBLIOGRAPHY

[1] Numpy. https://www.numpy.org/, 2019. [Online; accessed July-2019].

[2] scikit-learn. https://scikit-learn.org/stable/, 2019. [Online; accessed July-2019].

[3] Scipy. https://www.scipy.org/, 2019. [Online; accessed July-2019].

[4] Tensorflow. https://www.tensorflow.org/, 2019. [Online; accessed July-2019].

[5] M. Bokser. Omnidocument technologies. Proceedings of the IEEE, 80(7):1066–1078, 1992.

[6] A. Chaudhuri, K. Mandaviya, P. Badelia, and S.K. Ghosh. Optical Character Recognition Systems for
Different Languages with Soft Computing. Studies in Fuzziness and Soft Computing. Springer Interna-
tional Publishing, 2016.

[7] CIL. Computational intelligence laboratory. https://www.iit.demokritos.gr/cil/, 2019. [Online;
accessed July-2019].

[8] B. Gatos, G. Louloudis, and N. Stamatopoulos. Greek polytonic ocr based on efficient character class
number reduction. In 2011 International Conference on Document Analysis and Recognition, pages
1155–1159, Sep. 2011.

[9] Basilios Gatos, Anastasios L. Kesidis, and A. Papandreou. Adaptive zoning features for character and
word recognition. 2011 International Conference on Document Analysis and Recognition, pages 1160–
1164, 2011.

[10] Basilis Gatos, Nikos Stamatopoulos, Giorgos Sfikas, George Rekatsinas, Vassilis Papavassiliou, Fotini
Simistira, and Vassilis Katsouros. Grpoly-db: An old Greek polytonic document image database. pages
646–650. ICDAR, 2015.

[11] MH Glauberman. Character recognition for business machines. Electronics, 29(2):132–136, 1956.

[12] M Zahid Hossain, M Ashraful Amin, and Hong Yan. Rapid feature extraction for optical character
recognition. arXiv preprint arXiv:1206.0238, 2012.

[13] V. Katsouros, V. Papavassiliou, F. Simistira, and B. Gatos. Recognition of greek polytonic on historical
degraded texts using hmms. In 2016 12th IAPR Workshop on Document Analysis Systems (DAS),
pages 346–351, 2016.

[14] William K. Pratt. Digital image processing. John Wiley & Sons, 2nd edition, 1991.

[15] Rizart Dona. mlchr. https://github.com/rizart/mlchr, 2019. [Online; accessed July-2019].

[16] Øivind Due Trier, Anil K. Jain, and Torfinn Taxt. Feature extraction methods for character recognition-a
survey. Pattern Recognition, 29:641–662, 1996.

[17] J. D. Tubbs. A note on binary template matching. Pattern Recognition, 22(4):359–366, 1989.

[18] Georgios Vamvakas, Basilis Gatos, and Stavros J Perantonis. A novel feature extraction and classi-
fication methodology for the recognition of historical documents. In 2009 10th International Conference
on Document Analysis and Recognition, pages 491–495. IEEE, 2009.

[19] Georgios Vamvakas, Basilis Gatos, and Stavros J. Perantonis. Handwritten character recognition
through two-stage foreground sub-sampling. Pattern Recognition, 43(8):2807 – 2816, 2010.

[20] Wikipedia. Artificial neural networks. https://en.wikipedia.org/wiki/Artificial_neural_
network, 2019. [Online; accessed July-2019].

[21] Wikipedia. Convolutional neural networks. https://en.wikipedia.org/wiki/Convolutional_
neural_network, 2019. [Online; accessed July-2019].

R. Dona 36

https://www.numpy.org/
https://scikit-learn.org/stable/
https://www.scipy.org/
https://www.tensorflow.org/
https://www.iit.demokritos.gr/cil/
https://github.com/rizart/mlchr
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Convolutional_neural_network
https://en.wikipedia.org/wiki/Convolutional_neural_network

Exploring Character Pattern Recognition Techniques: A case study for Greek Polytonic Machine-Printed Characters

[22] Wikipedia. Gradient descent. https://en.wikipedia.org/wiki/Gradient_descent, 2019. [Online;
accessed July-2019].

[23] Wikipedia. K-fold cross validation. https://en.wikipedia.org/wiki/Cross-validation_
(statistics)#k-fold_cross-validation, 2019. [Online; accessed July-2019].

[24] Wikipedia. K-nearest neighbors algorithm. https://en.wikipedia.org/wiki/K-nearest_
neighbors_algorithm, 2019. [Online; accessed July-2019].

[25] Wikipedia. Multilayer perceptrons. https://en.wikipedia.org/wiki/Multilayer_perceptron,
2019. [Online; accessed July-2019].

[26] Wikipedia. Recurrent neural networks. https://en.wikipedia.org/wiki/Recurrent_neural_
network, 2019. [Online; accessed July-2019].

[27] Wikipedia. Softmax actication function. https://en.wikipedia.org/wiki/Softmax_function, 2019.
[Online; accessed July-2019].

R. Dona 37

https://en.wikipedia.org/wiki/Gradient_descent
https://en.wikipedia.org/wiki/Cross-validation_(statistics)#k-fold_cross-validation
https://en.wikipedia.org/wiki/Cross-validation_(statistics)#k-fold_cross-validation
https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
https://en.wikipedia.org/wiki/Multilayer_perceptron
https://en.wikipedia.org/wiki/Recurrent_neural_network
https://en.wikipedia.org/wiki/Recurrent_neural_network
https://en.wikipedia.org/wiki/Softmax_function

	CONTENTS
	INTRODUCTION
	Background
	Motivation
	Overview

	METHODOLOGY
	Feature Engineering
	Projection Histograms
	Zones
	Recursive Subdivisions

	Classifiers
	Template Matching
	Artificial Neural Networks

	IMPLEMENTATION
	The Python Library
	How To Use

	EXPERIMENTAL RESULTS
	Experimental Setup
	Results for Dataset 1
	Results for Dataset 2

	RELATED WORK
	FUTURE WORK
	CONCLUSIONS
	ABBREVIATIONS - ACRONYMS
	REFERENCES

