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Notational Conventions

True Denotes the notion of the logical truth.
False Denotes the notion of the logical falsity.
Yes It is used, instead of True, to denote the acceptance, of some

element, by some algorithm that produces the answer to
some decision problem.

No It is used, instead of False, to denote the rejection, of some
element, by some algorithm that produces the answer to
some decision problem.

¬P Expresses the negation of the logical proposition P, that is,
the assertion “it is not the case that P.”

P ∧Q Expresses the conjuction of the logical proposition P with the
logical proposition Q. It evaluates to True, whenever both P
and Q are evaluated to True. Else, it evaluates to False.

a ∈ A The object a belongs to the set A. The object a can be anything:
a number, a set, and so on.

{Ai}i∈B Denotes the collection of objects {Ai | i ∈ B}, where B is a
set of indices.∧

i Pi Expresses the conjuction of the set of propositions {Pi}i. It
evaluates to True, whenever all of the Pi are evaluated to
True. Else, it evaluates to False.

P ∨Q Expresses the disjunction of the logical proposition P with
the logical proposition Q. It evaluates to True, whenever
either P or Q is evaluated to True. Else, it evaluates to False.∨

i Pi Expresses the disjunction of the set of propositions {Pi}i. It
evaluates to True, whenever at least one of the Pi is evaluated
to True. Else, it evaluates to False.

P⊕Q Expresses the exclusive disjunction, that is, the XOR opera-
tion, of the proposition P with the proposition Q. It evaluates
to True whenever the logical values of P and Q are different.
Else, it evaluates to False.⊕

i Pi Expresses the disjunction of the set of propositions {Pi}i. It
evaluates to True, whenever there exist an odd number of
propositions

{
Pij

}
j

that evaluate to True. Else, it evaluates

to False.
P⇒ Q Expresses implication, that is, the “the logical proposition

P implies the logical proposition Q.” It evaluates to False,
whenever P evaluates to True and Q evaluates to False. Else,
it evaluates to True.
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P⇔ Q Expresses the equivalence of the logical proposition P with
the logical proposition Q. It evaluates to True, whenever
both P and Q are evaluated to the same logical value. Else, it
evaluates to False.

∃ Denotes the existential quantifier.
∃! Denotes the existential quantifier, in a uniqueness setting.
∀ Denotes the universal quantifier.
A ∪ B Denotes the union of the sets A and B.⋃

i Ai Denotes the union of the family of sets {Ai}i.
A ] B Denotes the disjoint union of the sets A and B.⊎

i Ai Denotes the disjoint union of the family of sets {Ai}i.
A ∩ B Denotes the intersection of the sets A and B.⋂

i Ai Denotes the intersection of the family of sets {Ai}i.
A \ B Denotes the difference of the set A from the set B.
A× B Denotes the Cartesian product of the sets A and B. That is, the

set of all pairs of the form (a, b), for a ∈ A and b ∈ B.
An For some n ∈N, denotes the expression

A× A× · · · × A︸ ︷︷ ︸
n

.

The set An contains all of the n-tuples that contain elements
from the set A. In the case of strings, the set An contains all
of the strings of length n, that are composed by objects, that
is, “letters,” drawn from the set A.

An×m Denotes the set of matrices, of size n × m, n rows and m
columns, such that their entries are drawn from the set A.

|s| Denotes the length of the string s. That is, the number of
symbols that s contains.

a ◦ b Denotes the concatenation of the two strings a and b. Often
abbreviated to ab.

ε Denotes the empty string. That is, for every string s, one has
that

s ◦ ε = ε ◦ s = s.

∞ Denotes a large-enough number, yet it is not a number! It is
rather an object which we place after the natural numbers. Is
it reachable?
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A∗ Denotes the quantity
∞⋃

i=1

Ai.

That is, it contains all of the finite-length strings made by
combining the elements of the set A. The set A∗ is called the
Kleene star.

A Denotes the complement of the set A. That is, the set

A = {x | x /∈ A} .

|A| Denotes the cardinality of the set A.
a + b Denotes the addition operation.
a− b Denotes the subtraction operation.
a/b Denotes the division operation, for b 6= 0.
a · b Denotes the multiplication operation. Often shortened to ab,

when it is clear what we mean. We can use it for matrices,
numbers, vectors, and such. In the case of vectors, it is called
a dot product. Often is written as ab.

ab Denotes the product

a · a · . . . · a︸ ︷︷ ︸
b

,

for b ∈N.
|z| For z = (a + bj) ∈ C, and j2 = −1, the number

|z| =
√

a2 + b2

denotes the magnitude of z, or the modulus of z.
A = B Denotes the relation “the set A is equal to the set B.”
A ⊆ B Denotes the relation “the set A is a subset of the set B.”
A ( B Denotes the relation “the set A is a proper subset of the set

B.”
∅ Denotes the empty set. That is, the set that contains no

elements.
N Denotes the set of natural numbers. That is, the set

{1, 2, . . . } .

[n] Denotes the finite set {1, 2, . . . , n} ⊆N.
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N0 Denotes the set of natural numbers, augmented with the
number zero. That is,

N0 = N∪ {0} = {0, 1, 2, . . . } .

−A Denotes the set that contains the negatives of the elements of
the set A. That is,

−A = {−x | x ∈ A} .

Z Denotes the set of integers. That is, the set

{. . . ,−2,−1, 0, 1, 2, . . . } = N0 ∪ (−N) .

Zeven Denotes the set of even integers.
Zodd Denotes the set of odd integers.
Q Denotes the set of rational numbers. That is, the set{

p
q
| p, q ∈N0 and q 6= 0

}
.

R Denotes the set of real numbers. That is, the points of an
infinitely-long, and continuous, straight line.

[a, b] Denotes the closed interval that is bound by the real numbers
a and b.

(a, b) Denotes the open interval that is bound by the real numbers
a and b.

[a, b) Denotes the semi-open interval that is bound by the real
numbers a and b.

π Denotes the ratio of the circumreference, of any circle, over
its diameter.

e Denotes Euler’s number.
C Denotes the set of complex numbers. That is, the points of an

infinitely-long, at its every direction, two-dimensional plane
on real axes. Equivalently, one can write that

C = R×R = R2.

a = b Expresses the relation “a is equal to b.” The objects a and b
can be anything: numbers, functions, matrices, sets, and so
on.
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a < b Expresses the arithmetic relation “the number a is less than
the number b.”

a� b Expresses the arithmetic relation “the number a is less than
the number b, by much.” But how much is much? This is
defined according to the current context.

a ≤ b Expresses the arithmetic relation “the number a is less than,
or equal to, the number b.”

a 6� b Expresses the logical negation “it is not the case that a � b.”
It is similar to ¬P, but different in the sense that is typeset
over relational or logical symbols �. For example, the log-
ical proposition “a 6= b” means “a is not equal to b.” If its
use is found to be confusing, one can use the more formal
symbolism ¬P, instead.

I Denotes the identity transformation.
Mi,j Denotes the (i, j) entry of the matrix M. Can be found as

M (i, j), too.
MT Denotes the transpose of the matrix M.
M∗ Denotes the complex-conjugate of the matrix M.
z∗ Denotes the complex-conjugate z∗ = a − bj, of the complex

number z = a + bj. Here, j2 = −1.
M† Denotes the conjugate transpose of the matrix M. That is,

M† = (M∗)T .

M−1 Denotes the inverse of the matrix M.
det (M) Denotes the determinant of the square matrix M.
Tr (M) Denotes the trace of the square matrix M. That is, the sum of

the main diagonal elements of M.
rank (M) Denotes the rank of the matrix M.
A⊗ B Denotes the Kronecker product of the matrices A and B. This

product contains all the possible products among the pairs of
numbers that are such that their first element is in the matrix
A, and their second element is in the matrix B. If one of the
matrices A and B is a vector, then it is called a tensor product.

log a Denotes the logarithm of a, taken to base two.
sin θ Denotes the sine function, for θ ∈ R.
cos θ Denotes the cosine function, for θ ∈ R.
∑c

i=b ai Denotes the finite sum ab + ab+1 + · · ·+ ac, for b, c ∈N.
∏c

i=b ai Denotes the finite product ab · ab+1 · . . . · ac, for b, c ∈N.
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[A, B]− Denotes the commutator. That is, the quantity AB− BA.
[A, B]+ Denotes the anti-commutator. That is, the quantity AB + BA.
|ψ〉 Denotes a “ket.” That is, a vector in Dirac notation. This

vector is considered to live in some complex vector spaceH.
〈ψ| Denotes a “bra.” That is, the dual, or conjugate transpose, of a

ket |ψ〉. One has that

(|ψ〉)† = 〈ψ| ,

and the vector 〈ψ| lives in the spaceH†, which denotes the
dual space ofH.

‖|ψ〉‖p For p ∈N, denotes the p-th norm of the ket |ψ〉.
H1 ⊗H2 Denotes the combined space that results from joining the two

vector spaces, namelyH1 andH2, into a common combined
space.

Prr∼µ [E (r)] Denotes the probability that the event E (r) occurs, over the
choices of r from the probability distribution µ.

Er∼µ [X (r)] Denotes the expectation of the random variable X (r), over
the choices of r from the probability distribution µ.

f : A→ B Denotes the total function f , with domain set A and range
set R ⊆ B.

(A→ B) Denotes the set of functions from A to B.
O ( f (n)) Denotes the set of functions g, such that there are positive

numbers c > 0, and n0 ∈N, according to which

∀n ≥ n0 : g (n) ≤ c f (n) .

o ( f (n)) Denotes the set of functions g, such that for all positive num-
bers c > 0, there exists some n0 ∈N, according to which

∀n ≥ n0 : g (n) < c f (n) .

Ω ( f (n)) Denotes the set of functions g, such that there are positive
numbers c > 0, and n0 ∈N, according to which

∀n ≥ n0 : g (n) ≥ c f (n) .
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ω ( f (n)) Denotes the set of functions g, such that for all positive num-
bers c > 0, there exists some n0 ∈N, according to which

∀n ≥ n0 : g (n) > c f (n) .

Θ ( f (n)) Denotes the set of functions g, such that g (n) ∈ O ( f (n)),
and g (n) ∈ Ω ( f (n)). That is,

Θ ( f (n)) = Ω ( f (n)) ∩O ( f (n)) .

δi,j Denotes the Kronecker delta function. That is,

δi,j = δ (i, j) =

{
1 if i = j,
0 if i 6= j.

CLASS Denotes some computational complexity class, namely
CLASS. Note the UPPERCASE sans serif font.

CLASSA Denotes some computational complexity class, namely
CLASS, that has access to some oracle A.

CLASSA[k(n)] Denotes some computational complexity class, namely
CLASS, that has access to some oracleA, for only k (|x|) ∈N

queries, nonetheless, where x is the input to some problem L
in the class CLASSA.

PROBLEM Denotes the computational problem PROBLEM. Note the UP-
PERCASE typewriter font.

SET Denotes a set with some special property, that is, a specific set
that contains some similar elements. For example, ORACLES

denotes the set of all oracles, be them classical or quantum
ones.
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Abstract

The complexity class QMA, defined by Watrous, in 2000, is the quantum
analogue of MA, defined by Babai, in 1985, which, in turn, is a generalization
of the class NP. The class MA generalizes the class NP in the sense that the
verification procedure of the purported proof, put forth by the prover, is
carried out by a probabilistic machine, rather than a deterministic one—as
the definition of the class NP demands.

In 2014, Grilo, Kerenidis, and Sikora, proved that the quantum proof, in
the setting of QMA, may always be replaced by, an appropriately defined,
quantum subset state—without any conceptual loss. That is, QMA ⊆ SQMA.
Grilo et al., named their new class SQMA, for subset-state quantum Merlin-
Arthur. Thus, one could write that SQMA = QMA, as the inclusion SQMA ⊆
QMA holds trivially.

After this result, by Grilo, Kerenidis, and Sikora, Fefferman and Kimmel, in
2015, used this new characterization of QMA, and further proved that there
exists some quantum oracle A—similar to that Aaronson and Kuperberg
introduced, and used, in 2006, to show that QMAA1 6⊆ QCMAA—which is
such that QMAA = SQMAA 6⊆ QCMAA. Here, QCMA is that version of QMA,
defined by Aharonov, and Naveh, in 2002, in which the purported proof
is purely-classical, that is, a bitstring, and QMA1 is the perfect completeness
version of QMA. In their separation, Fefferman and Kimmel introduced, and
used, an interesting template to obtain oracle separations against the class
QCMA.

Drawing upon this recent result, by Fefferman and Kimmel, we prove that
there exists some quantum oracle A, such that SQMAA1 6⊆ QCMAA. We
note that the class SQMA1 is the perfect completeness version of the class
SQMA. In our proof, we used the template of Fefferman and Kimmel, a
modified version of their basic quantum oracle construction, as well as
the basic decision problem, that they themselves used for their separation.
Note that our result implies that of Fefferman and Kimmel, as the inclusion
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SQMA1 ⊆ SQMA holds.

After we state and prove our result, we take a detour to explore a bit the
world of oracle separations, both in the classical and the quantum setting.
That is, we explore some results, and their underlying methods, about
classical and quantum oracles being employed for proving separations—
about classical, or quantum, complexity classes. Hence, we investigate
some gems pertaining to the, not few at all, nor uninteresting, privileged
relativized worlds.

Finally, we return, to the research setting, to approach the open question
of whether there exists some classical, or quantum, oracle A, such that
QMAA1 6⊆ SQMAA1 , or not. We record our efforts, and some of our first ideas,
thus far.

Keywords. Quantum computational complexity theory, computational com-

plexity theory, relativized worlds, oracle separations, oracles, QMA, QCMA,

SQMA, SQMA1, quantum states, quantum subset-states, quantum proofs, veri-

fication procedures, verification protocols, diagonalization, and query complexity.
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Chapter 1

Introduction

Please read this section carefully. Believe me, it will pay off.

— Leonard Susskind, and Art Friedman,
Quantum Mechanics (2014)

In this chapter, we introduce the reader to Quantum Computing Theory, and
to Quantum Computational Complexity Theory. We also point out what is to
come, next, in the subsequent chapters of this thesis.

1.1 Classical Computational Complexity Theory

Computational complexity theory is the field of computing that is concerned
about quantifying the efficiency of algorithms, and categorizing the com-
putational problems in classes, according to their computational hardness.
This field saw many changes in the past years, which led to the formation
of new theories and scientific branches. However, all of these new the-
ories are somewhat contained in our world: they are all classical, in the
sense that their whole mechanism can be explained within classical physics.
Thus, turning to quantum mechanics was a very refreshing, and promising,
perspective for this area.

1.2 Quantum Computational Complexity Theory

Quantum computing is what one gets if one mixes up computer science
and quantum mechanics. That is, we exploit some weird, and counter-
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intuitive, quantum-mechanical phenomena that, at the end, enable us two
devise algorithm that have no classical, until now, counterpart, in terms of
efficiency.

To understand what a quantum computer is, we will compare it to the
two classical paradigms of realistic, and physically realizable, computers,
namely the deterministic computers, and the probabilistic ones. Suppose
that we have a 16-register computer, in which each register assumes the
value of a bit. Clearly, this computer has 216 configurations, see Figure 1.1.

� � � � � � � � � � � � � � � �︸ ︷︷ ︸
16 registers

∀� : � ∈ {0, 1}

Figure 1.1: Our 16-bit computer, with 216 configurations.

Now, we ask the question “how many numbers are necessary for one to com-
municate the state of our 16-bit computer?” It depends. In the case that our
computer is deterministic, we clearly need to communicate 16 numbers: the
value of each bit, namely bi, for every i ∈ [16], see Figure 1.2.

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15 b16

∀i ∈ {1, 2, . . . , 16} : bi ∈ {0, 1}

Figure 1.2: Communicating a configuration of a deterministic 16-bit com-
puter.

However, in the case that we consider the computer configurations to be
lexicographically ordered, we need only communicate a number. That is,
the number that corresponds to the index of the configuration at hand. In
Figure 1.3a, we see that one needs to send 216 numbers, of which only one
is non-zero: the one that corresponds to the current configuration of our
computer.

What happens in the case that our computer is probabilistic? In this case, one
needs to communicate a probability distribution over all of the possible 216

configurations. Thus, in this case, one needs to communicate 216 numbers,
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in [0, 1], that sum to 1, see Figure 1.3b.

What happens in the case that our computer is quantum? In this case, one
needs to communicate 216 complex numbers! That is, we need one complex
number for each configuration of our computer. Our only demand, here, is
that these complex numbers are such that the sum of the squares of their
magnitudes sum to 1, see Figure 1.3c.

As one observes, probabilistic computers can be seen as a generalization of
deterministic computers, and, in turn, quantum computers can be seen as a
generalization of probabilistic ones.

In order to further explain what quantum computers are, we shall write a
few more words. Until now, we know that in order to communicate the
configuration of an n-qubit quantum computer, we need to transmit 2n

complex numbers: one for each of its configurations. If we create a basis
vector state for each of the configurations of our quantum machine, we get
that every state of a quantum computer can be sought as an exponentially
big vector, with complex entries, as the state of such a quantum machine is
the weighted sum of these basis vector states. The respective coefficients
are the 2n complex numbers we need to send to communicate its state. As
we are going to see, in Chapter 2, these complex vectors evolve in a unitary
fashion, that is, any two successive states, of a quantum computer, are such
that the later is obtained by applying a unitary transformation on the former.
In order to access them, we perform measurements, which, for a system of
dimension 2n, for some natural n ∈N, we get only n bits of information.

Quantum algorithms seem to be more efficient because they make use of
the feature of interference between the possible computational paths, in
order to destructively combine paths that lead to a wrong answer, and to
creatively combine the paths that lead to the right one. Note that interfer-
ence is only possible in the quantum setting, since, even in the probabilistic
setting, which is perhaps the most powerful, in a classical sense, all the
quantities that there emerge, as probabilities, are positive. This means that
these quantities, when combined, add up to bigger probabilities. In the
quantum setting, however, since we allow for negative complex amplitudes,
sometimes the mixing leads to mutual cancellation, or mutual strengthening,
of paths, and so on. Thus, we are able to destroy bad computational paths,
which lead to the wrong answer, and to strengthen the good computational
paths, which lead to the correct answer. Note that there exist bad computa-
tional paths, since we allow for our quantum computers to err, occasionally.
Allowing for errors is not a new feature: probabilistic computers do have
that feature, too. The whole point is to contain the error probability in some
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p1, p2, . . . , p216

∀i ∈
{

1, 2, . . . , 216
}

: pi ∈ {0, 1}

216

∑
i=1

pi = 1⇔ ∃!k ∈
{

1, 2, . . . , 216
}

: pk = 1

(a) Communicating a configuration of a deterministic 16-bit computer. Note
that we need to communicate only a number.

p1, p2, . . . , p216

∀i ∈
{

1, 2, . . . , 216
}

: pi ∈ [0, 1]

216

∑
i=1

pi = 1

(b) Communicating a configuration of a probabilistic 16-bit computer. Note
that we need to communicate 216 numbers.

c1, c2, . . . , c216

∀i ∈
{

1, 2, . . . , 216
}

: ci ∈ C

216

∑
i=1
|ci|2 = 1

(c) Communicating a configuration of a quantum 16-bit computer. Note that
we need to communicate 216 numbers.

Figure 1.3: A comparative treatment of deterministic, probabilistic, and
quantum, 16-register computers.
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reasonable range, thus leading to bouned-error computational complexity
classes like BPP and BQP.

1.3 Complexity Classes

Complexity classes, typeset as CLASS, are classes of sets, that is, classes of
languages. These languages encode the Yes-instances of various decision
problems, typeset as PROBLEMS, like REACHABILITY, which, more or less, asks
if there is a path between two given vertices of a given graph.

For example, we use P to denote the class of the decidable languages that
can be decided by polynomial-time deterministic classical computers, and
NP to denote the class of languages that can be decided by polynomial-time
non-deterministic computers. Many famous questions are expressed in this
context, like the P versus NP question, that is,

P
?
= NP. (1.1)

1.4 Relativized Worlds

Suppose that there is a fictional imaginary world where we can solve any
instance of, say, SAT in constant time. What would that imply? Many
interesting things, as we are going to see. These imaginary constructions are
called relativized worlds. The ability to solve a fixed problem in constant time,
by a hypothetical super-algorithm, which is called an oracle, enables us to
prove things inconceivable before.

In Figure 1.4, one can inspect these worlds. By W we denote our world, and,
by WA, the relativized one. Note that, in the general case, their intersection
is non-empty, while none is a superset of the other.

1.4.1 Oracle Collapses

By using oracles, one can make a big complexity class coincide with one of
its subsets.

Theorem 1.1 ([80]). There is some oracle, namely A, such that

PA = NPA. (1.2)
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W

WA

Figure 1.4: Our world, namely W, and a relativized world WA, induced
by calls to some oracle A. In this Venn diagram, we depict the relation-
ship between the corresponding sets that hold all of the truthful logical
propositions of each world.

Proof. Let A be the language that encodes all of the Yes-instances of the
problem QSAT, defined, below, in Table 1.1. Note that the problem QSAT is a
PSPACE-complete one [80, 87].

Table 1.1: The problem QSAT.

QUANTIFIED SATISFIABILITY (QSAT)

Input A quantified Boolean formula φ.
Output A Yes or a No reply, regarding whether the formula φ is

satisfiable, or not, respectively.

For

A = the language, or set, that encodes

all of the Yes-instances of QSAT, (1.3)

we have that

NPA ⊆(1) NPSPACE

⊆(2) PSPACE

⊆(3) PA. (1.4)

Thus, we get the inclusion NPA ⊆ PA. Since one has that PA ⊆ NPA, for
every possible oracle A, one has that PA = NPA. We will now prove each of
the three inclusions of the Equation (1.4), separately.

⊆(1): The languages of the class NPA can be decided in NPSPACE, by replac-
ing the oracle for QSAT by an open, white-box-natured, algorithm that
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requires polynomial space to provide us with a solution to any given
instance of QSAT. Such an algorithm exists, since QSAT is in PSPACE.

⊆(2): The languages of the class NPSPACE can decided by PSPACE-machines,
as a consequence of Savitch’s theorem [80, 87].

⊆(3): The class PA can decide all of the languages in the class PSPACE, since
the class PA has access to an oracle A, which is the PSPACE-complete
decision problem QSAT.

1.4.2 Oracle Separations

It turns out that there is a more intriguing use of oracles: the one that is
about separating classes from each other. While is almost trivial to impose
an oracle identification between any two complexity classes, it is a lot more
challenging and rewarding to devise an oracle separation between two given
classes of interest. A first original example of such a work is the brilliant
result by Baker, Gill, and Solovay [96]. According to this result, there is a
classical oracle A, relative to which

NPA 6⊆ PA. (1.5)

That is, they showed that there exists some language L, that is in NPA, yet
not in PA. While many may contend that these results are not that useful,
they constitute a very interesting conceptual mechanism for exploring some
aspects of computational complexity that are left untouched by the standard
separating techniques.

1.5 About this Thesis

In this thesis we seek to better our understanding about the relationship of
the class SQMA1, and some of its relative classes such as QMA1 and QCMA,
see the Subsection 2.4.2. In particular, by using a recent seminal result [27]
by Fefferman and Kimmel, we show that there exists a relativized world,
induced by calls to some appropriate oracle A, such that

SQMAA1 6⊆ QCMAA. (1.6)
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We also present some first attempts towards separating, with the use of
some oracle A, the class QMAA1 from SQMAA1 , that is, towards

QMAA1 6⊆ SQMAA. (1.7)

1.6 Thesis Structure

The rest of this thesis is organized as follows.

• In Chapter 2, we present the mathematical preliminaries that are nec-
essary for someone to grasp the, more advanced, concepts that follow
in the subsequent chapters.

• In Chapter 3, we survey the literature about oracle separations, both
in the classical and the quantum setting.

• In Chapter 4, we review the basic methods and paradigms, introduced
so far, in the oracle separation literature, and lie close to our results
from an epistemological point of view.

• In Chapter 5, we present our main results, along with detailed proofs.

• In Chapter 6, we discuss, with the reader, the consequences, as well as
the possible interpretations, of our results. Finally, we conclude this
thesis, review our contribution, and state some open problems, while
outlining some legitimate future work directions.
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Chapter 2

Preliminaries

We assume the reader has a strong background in elementary linear algebra.

— Phillip Kaye, Raymond Laflamme, and Michele Mosca,
An Introduction to Quantum Computing (2007)

In this chapter, we introduce the reader to the fundamental concepts that
form the conceptual background of this thesis.

2.1 Complex Analysis

We denote by C the set of complex numbers, that is, the points of an
infinitely-long, at its every direction, two-dimensional plane on real axes. A
typical form of a complex number, for real numbers a and b, and j2 = −1, is

c = a + bj. (2.1)

The form of the Equation (2.1), is called the Cartesian form of the complex
number c. Now, to complete our understanding about the complex numbers,
we need some more notions, portrayed in the Definitions 2.1, 2.2, and 2.3.

Definition 2.1 (The Complex-Conjugate of a Complex Number). Let j2 =

−1. Let, also, the quantity c = (a + bj) ∈ C be a complex number. We define
the complex-conjugate of c, namely c∗, to be the complex number

c∗ = a− bj. (2.2)
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Definition 2.2 (The Magnitude of a Complex Number). Let j2 = −1. Let,
also, the quantity c = (a + bj) ∈ C be a complex number. We define the
magnitude, or the modulus, of c, namely |c|, to be the real number

|c| =
√

a2 + b2

=
√

c∗c. (2.3)

That is,
|c|2 = c∗c = cc∗. (2.4)

Definition 2.3 (Polar Form of a Complex Number). Let j2 = −1. The polar
form of some complex number

c = a + bj ∈ C, (2.5)

is

c = r eφj, (2.6)

with

r = |z|

=
√

a2 + b2, (2.7)

and

φ = arctan
(

b
a

)
. (2.8)

Definition 2.4 (Phase Factors). A phase factor is a complex number with
magnitude equal to one. That is, the complex number c ∈ C is a phase factor
if, and only if, |c| = 1. Note that, if

c = a + bj ∈ C, (2.9)

then, for r = |c| = 1, we have that

c = r eφj

= eφj, (2.10)

with

φ = arctan
(

b
a

)
. (2.11)
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2.2 Linear Algebra

Quantum computing is largely based on linear algebra, so, in this section,
we will provide the reader with enough information about some important
notions and theorems drawn from this discipline.

What is a vector? Well, it is considered to be a collection of numbers, like an
ordered tuple, for example, usually drawn from a large set as C. That is,
vectors live in spaces like CN , where N denotes the number of the numbers
the afore-mentioned tuple contains, or, equivalently, the dimension of the
vectors that we consider. In this work, we will consider vector spaces of
exponentially-big, in n, dimension N = 2n, where n ∈ N is some natural
number. We assume that the reader is well-acquainted with the notion of a
vector space.

Since, in this work, we are interested in studying quantum computing, and
such, we are going to use the Dirac notation for vectors, and, other, similar
in flavor, objects.

Definition 2.5 (Kets and Bras). A ket, namely |ψ〉, is an alternative way to
represent a vector. That is,

|ψ〉 = ~ψ

= ψ

= a vector. (2.12)

A bra, namely 〈ψ|, is an alternative way to represent the dual, that is, the
conjugate transpose, of some vector, or ket, |ψ〉. That is,

〈ψ| =
(
~ψ
)†

= ψ†

= the conjugate transpose of some vector |ψ〉
= the dual of some vector |ψ〉
= (|ψ〉)† . (2.13)

Definition 2.6 (The Lp-norm). Let p, n ∈ N be natural numbers. We have
that the Lp-norm, of some vector

x = (x1, x2, . . . , xn) ∈ Cn, (2.14)

is given by the equation

Lp (x) = ‖x‖p
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=

(
n

∑
i=1
|xi|p

)1/p

. (2.15)

Note 2.7. Note that the L1-norm is just the sum of the magnitudes of the
components of the input vector x, that is,

L1 (x) = ‖x‖1

=
n

∑
i=1
|xi|

= |x1|+ |x2|+ · · ·+ |xn| . (2.16)

In a similar manner, one observes that the L2-norm is just the square root of
the sum of the squares of the magnitudes of the components of the input
vector x, that is,

L2 (x) = ‖x‖2

=

√
n

∑
i=1
|xi|2

=

√
|x1|2 + |x2|2 + · · ·+ |xn|2. (2.17)

Definition 2.8 (Linear Transformations [91]). A linear transformation on a
vector spaceH is a function

T : H → H, (2.18)

such that

∀ |ψ〉 , |φ〉 ∈ H : T (|ψ〉+ |φ〉) = T (|ψ〉) + T (|φ〉) , (2.19)

and

∀ |ψ〉 ∈ H, ∀α ∈ R : T (α |ψ〉) = αT (|ψ〉) . (2.20)

Definition 2.9 (Types of Linear Transformations). We say that a linear tr-
nasformation T is unitary, if T−1 = T†, that is, if the inverse T−1 is equal to
the transpose conjugate T†. A linear transformation is Hermitean, if A = A†.
Finally, a linear transformation is normal, if

AA† = A† A, (2.21)
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or, equivalently, [
A, A†

]
−
= 0. (2.22)

Theorem 2.10 (The Spectral Theorem). Any normal linear transformation
can be decomposed as a linear combination of some outer products, that
are created by appropriately combining its eigenvectors. The coefficients of
these linear combinations are the eigenvalues of the transformation.

To be more precise, for every linear transformation T, acting on a finite-
dimensional vector spaceH, there is an orthonormal basis ofH, consisting
of the eigenvectors |Ti〉, which correspond to the eigenvalues Ti, of T. This
implies that

T = ∑
i

Ti |Ti〉〈Ti| . (2.23)

Definition 2.11 (Linear Independence). Two objects, say, a and b, are linearly
independent, whenever, for λ1, λ2 ∈ R,

λ1a + λ2b = 0⇒ λ1 = λ2 = 0. (2.24)

Definition 2.12 (Rank of a Matrix). By rank of some matrix M, denoted as
rank (M), we mean the maximum number of linearly independent rows, or
columns, of M.

Definition 2.13 (Trace of a Matrix). The trace of some square matrix M,
of size n× n, for some n ∈ N, denoted as Tr (M), is the sum of its main
diagonal elements. That is,

Tr (M) =
n

∑
i=1

Mii. (2.25)

Note 2.14 (Cyclical Property of Trace). Note that, for two matrices, namely
M1 and M2, one has that

Tr (M1M2) = Tr (M2M1) . (2.26)
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Definition 2.15 (Kronecker Product of Matrices). For

A =

(
a b
c d

)
∈ C2×2, (2.27)

and

B =

(
p q
r s

)
∈ C2×2, (2.28)

we have that the Kronecker product of the matrices A and B is

A⊗ B =

(
aB bB
cB dB

)

=


a

(
p q
r s

)
b

(
p q
r s

)

c

(
p q
r s

)
d

(
p q
r s

)


=


ap aq bp bq
ar as br bs
cp cq dp dq
cr cs dr ds

 ∈ C4×4. (2.29)

Remark 2.16. Note that, for matrices A and B, that is, linear transformations
in matrix form, and states |ψ〉 and |φ〉, one gets

(A⊗ B) (|ψ〉 ⊗ |φ〉) = (A |ψ〉)⊗ (B |φ〉) . (2.30)

Definition 2.17 (Kronecker Product of Vector Spaces). For two vector spaces,
namely A and B, with bases {|ai〉}na

i=1 and
{∣∣bj

〉}nb
j=1, respectively, for natu-

rals na and nb, we have that

A⊗B =

{
∑

i∈[na]
∑

j∈[nb]

λij |ai〉 ⊗
∣∣bj
〉
| λij ∈ C

and ∑
i∈[na]

∑
j∈[nb]

∣∣λij
∣∣2 = 1

}
. (2.31)

That is, A ⊗ B contains all of the linear combinations of all the possible
Kronecker products of the bases of A and B.
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2.3 Quantum Mechanics

Quantum Mechanics is that part of Physics which accurately describes very
small physical systems. For example, quantum mechanics is able to describe
the state of systems consisting of sub-atomic particles, such as neutrons,
protons, or electrons. The need for the development of quantum mechanics
came from the inability of classical physics to accurately describe some
physical phenomena, as well as to predict their outcome. One of these
phenomena is described in Figure 2.1, below.

S1 M1

S2M2 O1

O2

L

Figure 2.1: The setting of the experiment that its outcome is not well-
described by classical physics. The symbol L denotes a light source. The
symbols S1 and S2 denote beam splitters. The symbols M1 and M2 denote
mirrors, and the symbols O1 and O2 denote observers.

What we see in Figure 2.1 is a light source L that is split in S1, and then there
emerge two light paths, namely

(L, S1, M2, S2, O1) = path 1,

and

(S1, M1, S2, O2) = path 2.

Now, we pose the question what are the probabilities that the observers O1 and
O2 observe photons? According to the framework of classical physics, one
has that each of the two observers, namely O1 and O2, receives light with
probability 50%. However, whenever this experiment is performed, we get
that

Pr [The light follows the path 1.] = 0, (2.32)

and

Pr [The light follows the path 2.] = 1. (2.33)
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Yet, this experiment has a simple quantum-mechanical explanation. Let

|0〉 =
(

1
0

)
, (2.34)

denote the possibility the light follows the path 1, and let

|1〉 =
(

0
1

)
. (2.35)

denote the possibility the light follows the path 2. If we perceive the splitter
S1 as a unitary

1√
2

(
1 j
j 1

)
, (2.36)

with j2 = −1, then, after the light passes through it, we are at the state

1√
2

(
1 j
j 1

)
|0〉 = 1√

2

(
1 j
j 1

)(
1
0

)

=
1√
2

(
1
j

)
, (2.37)

and, after the light passes through S2, which has the same unitary descrip-
tion as S1, we are at the state

1√
2

(
1 j
j 1

)
1√
2

(
1
j

)
=

(
0
j

)
. (2.38)

Note that the mirrors M1 and M2 do not affect the state of our quantum
system, as they only change the direction of the photon beam. Now, we ask
the question: what does the state(

0
j

)
= 0

(
1
0

)
+ j

(
0
1

)
= 0 · |0〉+ j · |1〉
= α0 · |0〉+ α1 · |1〉 (2.39)

imply? It implies that

Pr [The light follows the path 1.] = |α0|2
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= |0|2

= 0, (2.40)

and that

Pr [The light follows the path 2.] = |α1|2

= |j|2

= 1, (2.41)

for reasons that are a little blurry right now, see the Subsection 2.3.4. Thus,
our quantum modeling seems to be very good for predictions! This very
nice example of the power of quantum mechanics was drawn from the
wonderful textbook by Kaye, Laflamme, and Mosca [83].

From a mathematical point of view, quantum mechanics can be perceived
as a generalization of probability theory, see Table 2.1. That is, quantum
mechanics is centered around the preservation of the L2-norm, instead of
the L1-norm.

Table 2.1: Quantum mechanics can be viewed as a generalization of proba-
bility theory [8].

Probability Theory Quantum Mechanics

Real numbers in [0, 1] Complex numbers
Real numbers that sum to 1 Complex numbers that the

squares of their magnitudes sum
to 1

The sum is equal to 1 The Euclidean norm is equal to 1
The sum is preserved The Euclidean norm is preserved
The L1-norm is preserved The L2-norm is preserved
Use of stochastic matrices Use of unitary matrices

2.3.1 Pure States

Pure quantum states are divided into one-qubit and many-qubit quantum
states.

Pure One-Qubit States

A fundamental notion in quantum mechanics is that of the qubit. A qubit,
or a quantum-bit, is a two-state system that is different from the ordinary
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classical bit in the sense that the qubit can be in a quantum superposition of
some states |0〉 and |1〉, in contrast to the ordinary bit that either assumes
the value 0 or the value 1. That is, for complex numbers α1, α2 ∈ C, a qubit
can be found in states of the form

|ψ〉 = α1 |0〉+ α2 |1〉 , (2.42)

subject to the constraint

2

∑
i=1
|αi|2 = |α1|2 + |α2|2

= α∗1α1 + α∗2α2

= 1. (2.43)

The quantity |α1|2 denotes the probability that the qubit is found in state |1〉,
after a measurement, and the quantity |α0|2 denotes the probability that the
qubit is found in the state |0〉, after a measurement.

Remark 2.18. How many real numbers do we need to communicate the state of a
qubit? Well, at first this number seems to be four: two reals for each of the
complexes α1 and α2. However, due to the constraint of (2.43), and to the
fact that, for some reason not referred to, right now, we ignore overall phase
factors, we need only two real numbers. That is, if we write each of the α1

and α2 in their polar form, that is,

α1 = r1 eφ1 j, (2.44)

and

α2 = r2 eφ2 j, (2.45)

we can see that

α1 |0〉+ α2 |1〉 = r1 eφ1 j + r2 eφ2 j

= eφ1 j
(

r1 + r2 e(φ2−φ1)j
)

. (2.46)

Now, if we take into consideration the fact that we do not account for overall
phase factors, something that we will elaborate later on, in the Remark 2.46,
we get that

α1 |0〉+ α2 |1〉 = r1 + r2 e(φ2−φ1)j. (2.47)

Thus, if someone gives us the values of r1 and (φ2 − φ1) we have everything
we need to fully understand the state (2.47) of our qubit. Why? Because we
can use the equation

|α1|2 + |α2|2 = r2
1 + r2

2
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= 1, (2.48)

and the fact that r2 ≥ 0, to find the value of r2. Thus, we now have all the
information, that is necessary, to fully understand (2.47).

We define a particularly-simple orthonormal basis, for the representation of
qubits, in the Definition 2.19.

Definition 2.19 (The Computational Basis). We define the computational basis
to be the set {|0〉 , |1〉}, which consists of the kets

|0〉 =
(

1
0

)
, (2.49)

and

|1〉 =
(

0
1

)
. (2.50)

Note that an arbitrary ket,

|ψ〉 =
(

α

β

)
∈ C2, (2.51)

can be decomposed as

|ψ〉 = α

(
1
0

)
+ β

(
0
1

)
. (2.52)

Thus, the set {|0〉 , |1〉} is a basis, indeed, for one-qubit systems.

Remark 2.20 (Orthonormality of the Computational Basis). Note that

〈0| = (|0〉)†

=

(
1
0

)†

= (1 0) , (2.53)

and that

〈1| = (|1〉)†
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=

(
0
1

)
= (0 1) . (2.54)

Thus,

〈0|0〉 = (1 0)

(
1
0

)
= 1

= (0 1)

(
0
1

)
= 〈1|1〉, (2.55)

and

〈0|1〉 = (1 0)

(
0
1

)
= 0

= (0 1)

(
1
0

)
= 〈1|0〉. (2.56)

These observations imply that the computational basis {|0〉 , |1〉} is orthogo-
nal and normal, that is, it is orthonormal. Equivalently, for any two vectors,
or kets, |i〉 , |j〉 ∈ {|0〉 , |1〉}, one has that

〈i|j〉 = δi,j. (2.57)

This brings us to the Postulate 2.21.

Postulate 2.21 (State Space Postulate [83]). The state of a quantum system
can be described by a unit vector in a complex vector spaceH.

Postulate 2.21 is illustrated by the Example 2.22.

Example 2.22. Suppose that we have a one-qubit quantum system, in a state
described by the ket |ψ〉. Let

|ψ〉 = 1√
2
|0〉+ i√

2
|1〉
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=
1√
2

(
1
0

)
+

i√
2

(
0
1

)

=

(
1√
2

,
i√
2

)
∈ C2, (2.58)

be that ket, expressed as a linear combination of the elements of the compu-
tational basis {|0〉 , |1〉}. Observe that

‖|ψ〉‖2 =

√∣∣∣∣ 1√
2

∣∣∣∣2 + ∣∣∣∣ i√
2

∣∣∣∣2
=

√(
1√
2

)2

+

(
1√
2

)2

= 1, (2.59)

which translates to “|ψ〉 is a unit vector.”

Pure Many-Qubit States

By combining together many one-qubit systems, that, of course, their corre-
sponding state vectors are in C2, we can create bigger, many-qubit, systems.
The way we denote the bigger space Hbig, of such a bigger many-qubit
system, is the tensor product

Hbig =
n⊗

i=1

(Hsmall)

=
n⊗

i=1

(
Hone qubit

)
=

n⊗
i=1

(
C2)

= C2 ⊗C2 ⊗ · · · ⊗C2︸ ︷︷ ︸
n

=
(
C2)⊗n

= C2n
, (2.60)

for the case that this bigger system is a system on n qubits. This brings us to
Postulate 2.23.

Postulate 2.23 (Composite Systems Postulate [83]). When two quantum
systems, namely S1 and S2, with vector spacesH1 andH2, respectively, are
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treated as one combined system, the state space of the combined system is
the tensor productH1 ⊗H2 of the vector spaces of the component systems.
If the first system is in the state |ψ1〉 ∈ H1 and the second system is in the
state |ψ2〉 ∈ H2, then the composite system is in the state

|ψ1〉 ⊗ |ψ2〉 = |ψ1〉 |ψ2〉
= |ψ1ψ2〉 ∈ H1 ⊗H2. (2.61)

Remark 2.24. We now can derive (2.60), by repeatedly applying the under-
lying mechanism of the Postulate 2.23. That is, for

H1 = the space of a one-qubit system

= C2, (2.62)

and

H2 = the space of a one-qubit system

= C2, (2.63)

we get

H1 ⊗H2 = C2 ⊗C2

=
(
C2)⊗2

= C22

= C4

= H3. (2.64)

Thus, we created a two-qubit system. So, if we repeat this procedure for

H1 = H3, (2.65)

and

H2 = the space of a one-qubit system

= C2, (2.66)

we are able to build a three-qubit system, with underlying space

H4 = C23

= C8, (2.67)

and so on, until we reach the desired n-qubit quantum system.
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Definition 2.25 (The Computational Basis, Revisited). The computational
basis, for describing the basis state vectors, of quantum systems on n qubits,
is defined to be

B = {|y〉}y∈{0,1}n . (2.68)

That is, the computational basis encodes all of the possible strings, of length
equal to n, whose elements are drawn from the set {0, 1}. These elements,
correspond to all of the possible configurations of our n-qubit quantum
computer. We now set

|y〉 =



0
0
...
1
...
0




2n, (2.69)

where the “1” is in the y-th position, after we convert y ∈ B from binary to
decimal.

Note 2.26 (Orthonormality of the Computational Basis, Revisited). As one
observes, the computational basis, presented in the Definition 2.25, is or-
thonormal.

Example 2.27. Suppose that we have some system S1 in the state

|ψ1〉 =
1√
2
|0〉+ 1√

2
|1〉 , (2.70)

and some system S2 in the state

|ψ2〉 = |0〉 . (2.71)

Then, the combined system is in the state

|ψ1〉 ⊗ |ψ2〉 =
(

1√
2
|0〉+ 1√

2
|1〉
)
⊗ |0〉

=
1√
2
|0〉 ⊗ |0〉+ 1√

2
|1〉 ⊗ |0〉

=
1√
2
|0〉 |0〉+ 1√

2
|1〉 |0〉

=
1√
2
|00〉+ 1√

2
|10〉 . (2.72)
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Note that

‖|ψ1〉 ⊗ |ψ2〉‖2 =

√∣∣∣∣ 1√
2

∣∣∣∣2 + ∣∣∣∣ 1√
2

∣∣∣∣2
= 1, (2.73)

which means that the new composite vector is a unit-vector, and, thus, it
satisfies the Postulate 2.21.

Note 2.28 (Alternative Basis-Representation). Many times, we denote the
computational basis

B = {|y〉}y∈{0,1}n , (2.74)

as

D = {|i〉}i∈[2n] , (2.75)

by taking advantage of the fact that there is a one-to-one, and onto, function
between the elements of B and D, or, equivalently,

|B| = |D| = 2n. (2.76)

That is, every string in B is matched to a unique number in D, and vice-versa.
This correspondence is the representation of the binary “numbers,” of B, as
decimal numbers of D, and vice-versa. The elements of D are often called
“qudits,” that is, “quantum digits.”

Note 2.29. Suppose that we have a quantum system on n qubits. Then, its
state, say |ψ〉, may be written uniquely as a combination of the elements of
the computational basis, as

|ψ〉 = ∑
j∈B

αj |j〉

= ∑
j∈{0,1}n

αj |j〉 , (2.77)

or, equivalently,

|ψ〉 = ∑
i∈D

αi |i〉

=
2n

∑
i=1

αi |i〉 . (2.78)
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Remark 2.30 (Inner-Products). Suppose that we are given two vectors, or
kets, that live in C2n

, for some n ∈N, namely

|ψ〉 =
2n

∑
i=1

αi |i〉 (2.79)

and

|φ〉 =
2n

∑
i=1

βi |i〉 . (2.80)

Note that

〈ψ| = (|ψ〉)†

=
2n

∑
i=1

(αi |i〉)†

=
2n

∑
i=1

α†
i 〈i|

=
2n

∑
i=1

α∗i 〈i| . (2.81)

The inner-product, of |ψ〉 and |φ〉, is a function

I : H×H → C, (2.82)

such that

I (|ψ〉 , |φ〉) = |ψ〉† · |φ〉
= 〈ψ| |φ〉
= 〈ψ|φ〉

=

(
2n

∑
i=1

α∗i 〈i|
)(

2n

∑
i=1

βi |i〉
)

=
2n

∑
i=1

2n

∑
j=1

α∗i β j 〈i|j〉

=
2n

∑
i=1

2n

∑
j=1

α∗i β jδi,j

=
2n

∑
i=1

α∗i βi. (2.83)

Note that the second part of (2.83) is a number.
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Example 2.31. Suppose that we are given the vectors

|ψ〉 =
(

a
b

)
∈ C2, (2.84)

and

|φ〉 =
(

c
d

)
∈ C2. (2.85)

Then, one has that

I (|ψ〉 , |φ〉) = |ψ〉† · |φ〉
= 〈ψ| |φ〉
= 〈ψ|φ〉

= (a∗ b∗)

(
c
d

)
= a∗c + b∗d. (2.86)

Note 2.32. We have that

〈ψ|φ〉 = (〈φ|ψ〉)∗

= 〈φ|ψ〉∗. (2.87)

That is, by changing the order in an inner-product, we get the complex-
conjugate of the initial inner-product value. Alternatively, inner-products
constitute ordered operations.

Remark 2.33 (L2-Norms, Revisited). Note, for some ket |ψ〉, that

‖|ψ〉‖2 =
√
I (|ψ〉 , |ψ〉)

=

√
|ψ〉† · |ψ〉

=
√
〈ψ|ψ〉, (2.88)

or

‖|ψ〉‖2
2 = 〈ψ|ψ〉. (2.89)
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Remark 2.34 (Outer-Products). Suppose that we are given two vectors, or
kets, |ψ〉 and |φ〉, as in the Remark 2.30. The outer-product of the vectors |ψ〉
and |φ〉, that live in the vector space H, and have dimension 2n, for some
natural n, is a function

O : H×H → C2n×2n
, (2.90)

with

O (|ψ〉 , |φ〉) = |ψ〉〈φ|
= |ψ〉 · |φ〉†

= I
(
|ψ〉† , |φ〉†

)
= I

(
|ψ〉† , 〈φ|

)
=

(
2n

∑
i=1

αi |i〉
)(

2n

∑
i=1

β∗i 〈i|
)

=
2n

∑
i=1

2n

∑
j=1

αiβ
∗
j |i〉〈j| . (2.91)

Note that the second part of (2.91) is a 2n × 2n matrix.

Example 2.35. Suppose that we are given the vectors

|ψ〉 =
(

a
b

)
∈ C2, (2.92)

and

|φ〉 =
(

c
d

)
∈ C2. (2.93)

Then, one has that

O (|ψ〉 , |φ〉) = |ψ〉〈φ|
= |ψ〉 |φ〉†

=

(
a
b

)(
c
d

)†

=

(
a
b

)
(c∗ d∗)
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=

(
ac∗ ad∗

bc∗ bd∗

)

= ac∗
(

1 0
0 0

)
+ ad∗

(
0 1
0 0

)

+ bc∗
(

0 0
1 0

)
+ bd∗

(
0 0
0 1

)

= ac∗
(

1
0

)
(1 0) + ad∗

(
1
0

)
(0 1)

+ bc∗
(

0
1

)
(1 0) + bd∗

(
0
1

)
(0 1)

= ac∗ |0〉〈0|+ ad∗ |0〉〈1|+ bc∗ |1〉〈0|+ bd∗ |1〉〈1| . (2.94)

2.3.2 Mixed States

There are cases at which our quantum system is not described by a pure
state, but rather a mixed one.

Definition 2.36 (Mixed States). Let k ∈ N. A mixed state is a probability
distribution on some pure states, that is, it is the set of 2-tuples

{(pi, |ψi〉)}i∈[k] = {(p1, |ψ1〉) , (p2, |ψ2〉) , . . . , (pk, |ψk〉)} , (2.95)

with

k

∑
i=1

pi = 1. (2.96)

Remark 2.37 (Pure States as Mixed States). Every pure state is a mixed one.
That is, a pure state |ψ〉 can be sought as a distribution

{(pi, |ψi〉)}i∈[k] = {(p1, |ψ1〉) , (p2, |ψ2〉) , . . . , (pk, |ψk〉)}

= {(1, |ψ〉) , (0, |ψ〉) , . . . , (0, |ψ〉)} . (2.97)

We treat mixed states by using density matrices, see Definition 2.38.
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Definition 2.38 (Density Matrices). Let k ∈N. A mixed state

{(pi, |ψi〉)}i∈[k] = {(p1, |ψ1〉) , (p2, |ψ2〉) , . . . , (pk, |ψk〉)} , (2.98)

is described by a density matrix, namely ρ, that encodes all of the information
a mixed state carries. We have that

ρ =
k

∑
i=1

pi |ψi〉〈ψi| . (2.99)

Remark 2.39 (Density Matrices for Pure States). The density matrix of some
pure state |ψ〉 is

ρ =
k

∑
i=1

pi |ψi〉〈ψi|

= 1 · |ψ〉〈ψ|+ 0 · |ψ〉〈ψ|+ · · ·+ 0 · |ψ〉〈ψ|︸ ︷︷ ︸
k

= |ψ〉〈ψ| . (2.100)

2.3.3 Time-Evolution

As it turns out, quantum systems evolve in a unitary fashion. Unitary
evolution preserves the L2-norm.

Time-Evolution of Pure States

Postulate 2.40 (Time-Evolution Postulate [83]). The time-evolution of a
closed quantum system Q can be described by a unitary transformation
over the Hilbert space that holds the unit-vectors, that is, the kets, that
describe its state. That is, if the ket |ψ1〉 ∈ H denotes a state of a quantum
system Q, and the ket |ψ2〉 ∈ H denotes some later, in time, state, of the
same quantum systemQ, then there is some unitary transformation U, such
that

U |ψ1〉 = |ψ2〉 , (2.101)

and

〈ψ1|U† = (U |ψ1〉)†
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= |ψ2〉†

= 〈ψ2| . (2.102)

Postulate 2.40 is illustrated by the Example 2.41.

Example 2.41. Let

|ψ1〉 = |0〉

=

(
1
0

)
, (2.103)

be the initial state, and

|ψ2〉 =
1√
2
|0〉+ 1√

2
|1〉

=
1√
2

(
1
0

)
+

1√
2

(
0
1

)

=

(
1√
2

1√
2

)
(2.104)

be the final state. There is a unitary tranformation U which governs the
evolution of this one-qubit quantum system, or, in math terms,

U |ψ1〉 = |ψ2〉 . (2.105)

Here, the unitary U is such that

U =
1√
2

(
1 1
1 −1

)
. (2.106)

Note that U is, indeed, unitary, since if we take into consideration the fact
that

U† =
1√
2

(
1 1
1 −1

)
= UT, (2.107)

we get that

UU† =
1√
2

(
1 1
1 −1

)
1√
2

(
1 1
1 −1

)
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=

(
1 0
0 1

)
= I2, (2.108)

and

U†U =
1√
2

(
1 1
1 −1

)
1√
2

(
1 1
1 −1

)

=

(
1 0
0 1

)
= I2. (2.109)

In other words, we have U−1 = U†. Therefore U is unitary.

Time-Evolution of Mixed States

Remark 2.42 (Time-Evolution of a Mixed State [83]). As we saw earlier, pure
states evolve unitarily. So, one observes that

{(pi, |ψi〉)}i∈[k] = {(p1, |ψ1〉) , (p2, |ψ2〉) , . . . , (pk, |ψk〉)} , (2.110)

and, after the unitary transformation U is applied, we get

{(pi, U |ψi〉)}i∈[k] = {(p1, U |ψ1〉) , (p2, U |ψ2〉) , . . . , (pk, U |ψk〉)} , (2.111)

and, thus,

ρnew =
k

∑
i=1

pi (U |ψi〉)
(
〈ψi|U†

)
=

k

∑
i=1

piU |ψi〉〈ψi|U†

= U

(
k

∑
i=1

pi |ψi〉〈ψi|
)

U†

= UρU†. (2.112)

Definition 2.43 (CPTP maps [83]). There is yet another way of a mixed
state to evolve: a somewhat more generic way. A completely-positive trace-
preserving map, or a CPTP map, is a function that maps density matrices to
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density matrices, or

ρ 7→∑
i

AiρA†
i , (2.113)

with

∑
i

A†
i Ai = I. (2.114)

The set {Ai} holds the Kraus operators, which are linear operators satisfying
the Equation (2.114).

2.3.4 Measurements

In order to access the information that lives in some quantum system, we
need to measure the respective system. Measurements are total or partial,
and refer to pure or mixed states.

We begin by introducing measurements for pure quantum states, be them
on one or many qubits. First, we introduce the concept of projectors.

Definition 2.44 (Projectors). A projector, on a vector space H, is a linear
transformation P, such that

P2 = P, (2.115)

and, if it is an orthogonal projector,

P† = P. (2.116)

Using these projectors, one is able to define “projective measurements.” See
Postulate 2.45.

Postulate 2.45 (Measurement Postulate [83]). Let N ∈ N. For a given
orthonormal vector basis

B = {ϕi}i∈[N] , (2.117)

we can write any quantum state, while αi ∈ C, for every i ∈ [N], as

|ψ〉 =
N

∑
i=1

αi |ϕi〉 ,
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with

‖|ψ〉‖2
2 =

N

∑
i=1
|αi|2

= 1. (2.118)

Let {Pi}i∈[N] be a set of N orthogonal projectors, that is, one for each of
the N subspaces that, in turn, correspond, one to one, to the N possible
measurement outcomes. Note that, here,

N

∑
i=1

Pi = I. (2.119)

After we perform a measurement, and if we let M denote the measurement
outcome, we have that

Pr [The outcome is “i.”] = Pr [M = i]

= ‖Pi |ψ〉‖2
2

=

(√
I (Pi |ψ〉 , Pi |ψ〉)

)2

= I (Pi |ψ〉 , Pi |ψ〉)
= (Pi |ψ〉)† (Pi |ψ〉)
= |ψ〉† P†

i Pi |ψ〉
= 〈ψ|PiPi|ψ〉
= 〈ψ|P2

i |ψ〉
= 〈ψ|Pi|ψ〉, (2.120)

or

Pr [The outcome is “i.”] = 〈ψ|Pi|ψ〉
= Tr (〈ψ|Pi|ψ〉)
= Tr (Pi |ψ〉〈ψ|)
= Tr (Pi ρ) , (2.121)

for ρ being the density matrix that corresponds to the pure state |ψ〉. After
a measurement, the state of the quantum system collapses to the state
observed in the measurement. In particular, it collapses to the state

|φi〉 =
Pi |ψ〉
‖Pi |ψ〉‖2
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=
Pi |ψ〉√
〈ψ|Pi|ψ〉

=
Pi |ψ〉√
Tr (Pi ρ)

. (2.122)

Note that

‖|φi〉‖2
2 =
‖Pi |ψ〉‖2

2
Tr (Pi ρ)

=
Tr (Pi ρ)

Tr (Pi ρ)

= 1, (2.123)

which means that |φi〉 is a unit-vector.

Remark 2.46 (Neglecting Overall Phase Factors). Why do we neglect, in our
calculations, overall phase factors? The reason is that any phase factor does
change the outcome of any measurement made. Thus, since their effects are
not subject to identification, via measurements, we ignore them completely.
To be more precise, suppose that we have an n-qubit state

|θ〉 =
2n

∑
i=1

αi |i〉 , (2.124)

and an n-qubit state, for ϕ ∈ R, and j2 = −1,

|φ〉 = ejϕ |θ〉

= ejϕ
2n

∑
i=1

αi |i〉

=
2n

∑
i=1

ejϕαi |i〉 . (2.125)

Note now that

〈φ|Pi|φ〉 =
(
〈θ|
(

ejϕ
)∗)

Pi

(
ejϕ |θ〉

)
=
(
〈θ| e−jϕ

)
Pi

(
ejϕ |θ〉

)
= 〈θ|Pi|θ〉e−jϕejϕ

= 〈θ|Pi|θ〉. (2.126)

That is,

Probability to measure “i,” in state |θ〉
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= ‖Pi |θ〉‖2
2

= 〈θ|Pi|θ〉
= 〈φ|Pi|φ〉
= ‖Pi |φ〉‖2

2

= Probability to measure “i,” in state |φ〉. (2.127)

Remark 2.47 (Von Neumann Measurements). In the case that the projectors
are of rank one, then we have a Von Neumann measurement. A projector P
is of rank one, if there is some pure state, namely |ψ〉, with

‖|ψ〉‖2
2 =

(√
I (|ψ〉 , |ψ〉)

)2

= I (|ψ〉 , |ψ〉)
= |ψ〉† · |ψ〉
= 〈ψ| · |ψ〉
= 〈ψ|ψ〉
= 1, (2.128)

such that

P = |ψ〉〈ψ| . (2.129)

Observe that

P† = (|ψ〉〈ψ|)†

= 〈ψ|† |ψ〉†

= |ψ〉〈ψ|
= P, (2.130)

and that

P2 = |ψ〉〈ψ| |ψ〉〈ψ|
= |ψ〉 〈ψ|ψ〉 〈ψ|
= |ψ〉 · 1 · 〈ψ|
= |ψ〉〈ψ|
= P. (2.131)
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Example 2.48 (Von Neumann Measurements). Let {|0〉 , |1〉} denote the
computational basis, and let

|ψ〉 = 1√
2
|0〉+ 1√

2
|1〉

= α0 |0〉+ α1 |1〉 (2.132)

be the state of a quantum system on one qubit. Let, also,

P0 = |0〉〈0| (2.133)

and

P1 = |1〉〈1| (2.134)

be the elements of the set

{Pi}i∈{0,1} = {P0, P1} (2.135)

that contains the measurement projectors, each for a possible measurement
outcome. After we perform a Von Neumann measurement, we have that

Pr [The outcome is “0.”] = 〈ψ|P0|ψ〉
= 〈ψ||0〉〈0||ψ〉
= 〈ψ|0〉 〈0|ψ〉
= 〈ψ|0〉 〈ψ|0〉∗

= |〈ψ|0〉|2

=

∣∣∣∣( 1√
2
〈0|+ 1√

2
〈1|
)
|0〉
∣∣∣∣2

=

∣∣∣∣ 1√
2
〈0|0〉+ 1√

2
〈1|0〉

∣∣∣∣2
=

∣∣∣∣ 1√
2
· 1 + 1√

2
· 0
∣∣∣∣2

=

∣∣∣∣ 1√
2

∣∣∣∣2
= |α0|2

=
1
2

. (2.136)

After this measurement, the system is in the state

|φ0〉 =
P0 |ψ〉√
〈ψ|P0|ψ〉
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=
|0〉〈0|

(
1√
2
|0〉+ 1√

2
|1〉
)

1√
2

=

1√
2
|0〉

1√
2

= |0〉 . (2.137)

In a similar way, one can show that

Pr [The outcome is “1.”] =
1
2

, (2.138)

while the system is left in the state

|φ1〉 =
P1 |ψ〉√
〈ψ|P1|ψ〉

=
|1〉〈1|

(
1√
2
|0〉+ 1√

2
|1〉
)

1√
2

=

1√
2
|1〉

1√
2

= |1〉 . (2.139)

Remark 2.49 (Measurements and Mixed States). Suppose that, for k ∈ N,
we have a quantum system which is described by a mixed state

ρ =
k

∑
i=1

pi |ψi〉 . (2.140)

We have, for M being the random variable that denotes the outcome of
some measurement, and Pj being an orthogonal projector into the subspace
corresponding to the “j” measurement outcome, that

Pr [The outcome is “j.”] = Pr [M = j]

=
k

∑
i=1

pi
∥∥Pj |ψi〉

∥∥2
2

=
k

∑
i=1

pi

(√(
Pj |ψi〉

)† Pj |ψi〉
)2

=
k

∑
i=1

pi

(√
|ψi〉† P†

j Pj |ψi〉
)2
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=
k

∑
i=1

pi

(√
〈ψi| PjPj |ψi〉

)2

=
k

∑
i=1

pi

(√
〈ψi| P2

j |ψi〉
)2

=
k

∑
i=1

pi

(√
〈ψi| Pj |ψi〉

)2

=
k

∑
i=1

pi 〈ψi|Pj|ψi〉

=
k

∑
i=1

piTr
(
〈ψi|Pj|ψi〉

)
=

k

∑
i=1

piTr
(

Pj |ψi〉〈ψi|
)

=
k

∑
i=1

Tr
(

piPj |ψi〉〈ψi|
)

= Tr

(
k

∑
i=1

piPj |ψi〉〈ψi|
)

= Tr

(
Pj

k

∑
i=1

pi |ψi〉〈ψi|
)

= Tr
(

Pj ρ
)

. (2.141)

So, we can compute, in this way, the associated outcome probabilities for
mixed states. Now, what is the new mixed state, that our quantum system
collapses to, after the measurement? It is the mixed state with density matrix

ρafter =
PjρbeforeP†

j

Tr
(

Pj ρbefore
)

=
PjρP†

j

Tr
(

Pj ρ
)

=
PjρPj

Tr
(

Pj ρ
) . (2.142)

Remark 2.50 (Observables). An observable is an Hermitean matrix that is
somehow related to measurements. In quantum mechanics, measurable
quantities, like the position or the momentum of a particle, are represented
with Hermitean matrices, called observables. That is, the eigenvalues {λi}i
of the corresponding observable are the possible outcomes of the mea-
surement, and its eigenvectors {|λi〉}i are used to calculate the respective
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outcome-probabilities. We have, by the spectral theorem, that

A =
k

∑
i=1

λi |λi〉〈λi| . (2.143)

The probability that the outcome of the measurement is λi, for every i, is, if
we let M denote the random variable that corresponds to the outcome of
the measurement,

Pr [The outcome is “λi.”] = Pr [M = λi]

= ‖Πλi |ψ〉‖
2
2

= ‖|λi〉〈λi| |ψ〉‖2
2

=

(√
((|λi〉〈λi|) |ψ〉)† (|λi〉〈λi|) |ψ〉

)2

=

(√
|ψ〉† (|λi〉〈λi|)† (|λi〉〈λi|) |ψ〉

)2

= 〈ψ| (|λi〉〈λi|)† (|λi〉〈λi|) |ψ〉
= 〈ψ| (|λi〉〈λi|) (|λi〉〈λi|) |ψ〉
= 〈ψ| (|λi〉〈λi|)2 |ψ〉
= 〈ψ| |λi〉〈λi| |ψ〉
= 〈ψ|λi〉 〈λi|ψ〉
= 〈ψ|λi〉 〈ψ|λi〉∗

= |〈ψ|λi〉|2 . (2.144)

The expected value, that is, the expectation, of the observable A is equal to

〈A〉 =
k

∑
i=1

λi Pr [M = λi]

=
k

∑
i=1

λi |〈ψ|λi〉|2 . (2.145)

Definition 2.51 (Pauli Matrices). The Pauli matrices, namely σx, σy, and σz,
are, when expressed in the computational basis,

σx =

(
0 1
1 0

)

=

(
0 0
1 0

)
+

(
0 1
0 0

)
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=

(
0
1

)
(1 0) +

(
1
0

)
(0 1)

= |1〉〈0|+ |0〉〈1| , (2.146)

and

σy =

(
0 −j
j 0

)
= j |1〉〈0| − j |0〉〈1| , (2.147)

and

σz =

(
1 0
0 −1

)
= |0〉〈0| − |1〉〈1| , (2.148)

with j2 = −1.

Note 2.52. Note that there exist some alternative names for the Pauli matri-
ces, namely

σx = σ1 = X, (2.149)

σy = σ2 = Y, (2.150)

and

σz = σ3 = Z. (2.151)

Example 2.53. We consider the observable

σz =

(
1 0
0 −1

)
, (2.152)

which is the “third” Pauli matrix. To find its eigenvalues, we, at first, form
the matrix, for some λ,

σz − λI =

(
1− λ 0

0 −1− λ

)
(2.153)
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and, then, we compute the determinant

det (σz − λI) = det

(
1− λ 0

0 −1− λ

)
= (1− λ) (−1− λ)

= −
(
1− λ2)

= λ2 − 1. (2.154)

We now have that

det (σz − λI) = 0

⇒ λ2 − 1 = 0

⇒ λ = 1, or λ = −1. (2.155)

Thus, the eigenvalues of σz are λ1 = 1 and λ2 = −1. To find the eigenvectors
of σz, we devise the equations

σz |λ1〉 = λ1 |λ1〉 , (2.156)

and

σz |λ2〉 = λ2 |λ2〉 . (2.157)

Let

|λ1〉 =
(

a
b

)
. (2.158)

So, we have that (
1 0
0 −1

)(
a
b

)
=

(
a
b

)
, (2.159)

or (
a
−b

)
=

(
a
b

)
, (2.160)

or

−b = b, (2.161)

or

b = 0. (2.162)
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Thus, we now know that

|λ1〉 =
(

a
0

)
. (2.163)

To find a, we need to take into consideration the fact that

〈λ1|λ1〉 = 1, (2.164)

or

(a∗ 0)

(
a
0

)
= 1, (2.165)

or

a∗a = 1, (2.166)

or

|a|2 = 1. (2.167)

Clearly, a = ±1. We choose a = 1, and, thus, we have that

|λ1〉 =
(

1
0

)
= |0〉 . (2.168)

In a similar way, we find out that

|λ2〉 =
(

0
1

)
= |1〉 . (2.169)

We can now confirm, for Πλi being the orthogonal projector to the subspace
corresponding to the eigenvalue λi, that

σz =
2

∑
i=1

λiΠλi

=
2

∑
i=1

λi |λi〉〈λi|

= |0〉〈0| − |1〉〈1|
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=

(
1
0

)
(1 0)−

(
0
1

)
(0 1)

=

(
1 0
0 0

)
−
(

0 0
0 1

)

=

(
1 0
0 −1

)
. (2.170)

2.4 Computational Complexity Theory

Computational complexity theory is, perhaps, the most significant aspect
of theoretical computer science. It incorporates a large number of the basic
paradigms on which much of the other subdisciplines of theoretical com-
puter science rely on, and, also, contains a whealth of fundamental results
and open problems.

A decision problem is a problem whose answer is either a Yes, or a No. We
start by giving some definitions about some types of decision problems,
and functions, that we will encounter. We fix the set Σ = {0, 1} to be our
alphabet. Note that the set Σ∗ =

⋃∞
i Ai, is the set that contains all of the

finite strings that can be created by combining the elements of the set Σ.

Definition 2.54 (Promise Problems [103]). A promise problem is a pair A =(
Ayes, Ano

)
, where Ayes, Ano ⊆ Σ∗, such that Ayes ∩ Ano = ∅. The set Ayes

contains the yes-instances of the problem, that is, the instances that have
answer Yes, whereas the set Ano contains the no-instances of the problem,
that is, the instances that have answer No. Here, Ayes ∪ Ano ⊆ Σ∗.

Definition 2.55 (Language Problems [103]). A language problem is a special
case of a promise problem A =

(
Ayes, Ano

)
, in which Ayes ∪ Ano = Σ∗. That

is, in a language problem the union of the yes-instances and the no-instances
of the problem, forms a partition of Σ∗.

The following type of functions, will be useful, later, when we will be
defining some complexity classes.

Definition 2.56 (Polynomial-Bounded Functions [103]). A function of the
form p : N → N, is said to be polynomial-bounded function if, and only if,
there exists a polynomial-time deterministic Turing machine, that outputs
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1 f (n), on input 1n, for every n ∈ N. Such functions are upper-bounded by
some polynomial, and are efficiently computable.

2.4.1 Classical Computational Complexity Theory

Complexity theory, in the classical setting, spans nearly fifty years of inter-
esting results, regarding the exploration of the nature, and the paradigms,
of computation.

Computational Models

In the classical setting, problems are solved by variations of the Turing
machine, whose basic structure was discovered by Alan M. Turing in the
thirties.

Turing machines are abstract idealized machines that their basic functions
are similar to those of an actual computer. These machines, have access to
some one-dimensional tape, which is infinite at its one direction, and are able
to read, and write, symbols from, and on, this tape. Thus, by reading what
is written on the tape, and conditionally writing upon it, Turing machines
are able to do all of the stuff a modern computer can do. The processes of
reading and writing are carried out by a “head,” which is able to move right
and left on the tape. Finally, Turing machines are somehow able to alter
their internal state. This helps them distinguish among different phases of
the computation, at hand, that is being carried out.

Definition 2.57 (Deterministic Turing Machines [80]). Formally, a determin-
istic Turing machine is a quadruple

M = (K, Σ, δ, s) .

Here, K is a finite set of states, s ∈ K is the initial state, and Σ is a finite
set of symbols. We have that K ∩ Σ = ∅, and that t,B∈ Σ. We call t the
blank symbol, and B the first symbol, respectively. Finally, δ is a transition
function, or, in more formal terms,

δ : K× Σ→ (K ∪ {qh, qYes, qNo})× Σ× {←,→,−} . (2.171)

Note that qh is a halting state, qYes is an accepting state, and qNo is a rejecting
state. The symbols of the set {←,→,−} refer to the movement of the
read-write head of the machine. Also,

(K ∪ Σ) ∩ {←,→,−} = ∅.
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Definition 2.58 (Non-Deterministic Turing Machines [80]). Formally, a non-
deterministic Turing machine is a quadruple

M = (K, Σ, ∆, s) .

Here, K is a finite set of states, s ∈ K is the initial state, and Σ is a finite
set of symbols. We have that K ∩ Σ = ∅, and that t,B∈ Σ. We call t the
blank symbol, and B the first symbol, respectively. Finally, ∆ is a transition
relation, or, in more formal terms,

∆ ⊆ (K× Σ)× ((K ∪ {qh, qYes, qNo})× Σ× {←,→,−}) . (2.172)

Note that qh is a halting state, qYes is an accepting state, and qNo is a rejecting
state. The symbols of the set {←,→,−} refer to the movement of the
read-write head of the machine. Also,

(K ∪ Σ) ∩ {←,→,−} = ∅.

Definition 2.59 (Probabilistic Turing Machines [80, 87]). Formally, a proba-
bilistic Turing machine is a quintuple

M = (K, Σ, δ0, δ1, s) .

Here, K is a finite set of states, s ∈ K is the initial state, and Σ is a finite set
of symbols. We have that K ∩ Σ = ∅, and that t,B∈ Σ. We call t the blank
symbol, and B the first symbol, respectively. Finally, δi, for every i in {0, 1},
is a transition function, or, in more formal terms,

∀i ∈ {0, 1} : δi : K× Σ→ (K ∪ {qh, qYes, qNo})× Σ× {←,→,−} . (2.173)

Note that qh is a halting state, qYes is an accepting state, and qNo is a rejecting
state. The symbols of the set {←,→,−} refer to the movement of the
read-write head of the machine. Also,

(K ∪ Σ) ∩ {←,→,−} = ∅.

In each step, the machine flips a binary coin c. If c = i ∈ {0, 1}, then M uses
δi, as a transition function, for the current step of the computation, being
carried out.
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Note 2.60. The deterministic Turing machines are a special case of the
probabilistic Turing machines, since one can set

δ0 = δ1 = δ.

Also, probabilistic Turing machines are a special case of non-deterministic
Turing machines, since one can set

∆ = δ0 ∪ δ1,

if we perceive the functions δi : A → B as binary, input-output in nature,
relations δi ⊆ A× B, for every i in the set {0, 1}.

Fundamental Classical Complexity Classes

We present the classical computational complexity classes P, BPP, NP, MA,
MA1, BPPPATH, PP, PSPACE, NPSPACE, and EXP.

Definition 2.61 (The Complexity Class P [103]). A promise problem A =(
Ayes, Ano

)
is in P if, and only if, there exists a polynomial-time deterministic

machine M, such that the machine M accepts every string x ∈ Ayes, and
rejects every string x ∈ Ano.

Definition 2.62 (The Complexity Class BPP [103]). A promise problem
A =

(
Ayes, Ano

)
is in BPP if, and only if, there exists a polynomial-time

probabilistic Turing machine M, such that M accepts every string x ∈ Ayes,
with probability at least 2

3 , and accepts every string x ∈ Ano, with probability
at most 1

3 .

Definition 2.63 (The Complexity Class NP [103]). A promise problem A =(
Ayes, Ano

)
is in NP if, and only if, there exists a polynomial-bounded func-

tion p, and a polynomial-time deterministic Turing machine M, with the
following properties. For every string x ∈ Ayes, it holds that M accepts
(x, y), for some string y ∈ Σp(|x|), and for every string x ∈ Ano, it holds that
M rejects (x, y), for all strings y ∈ Σp(|x|).

Definition 2.64 (The Complexity Class MA [103]). A promise problem A =(
Ayes, Ano

)
is in MA if, and only if, there exists a polynomial-bounded

function p, and a polynomial-time Turing machine M, with the following
properties. For every string x ∈ Ayes, it holds that

Pr [The machine M accepts (x, y).] ≥ 2
3

,
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for some string y ∈ Σp(|x|), and, for every string x ∈ Ano, it holds that

Pr [The machine M accepts (x, y).] ≤ 1
3

,

for all strings y ∈ Σp(|x|).

Definition 2.65 (The Complexity Class MA1). A promise problem A =(
Ayes, Ano

)
is in MA1 if, and only if, there exists a polynomial-bounded

function p, and a polynomial-time Turing machine M, with the following
properties. For every string x ∈ Ayes, it holds that

Pr [The machine M accepts (x, y).] = 1,

for some string y ∈ Σp(|x|), and, for every string x ∈ Ano, it holds that

Pr [The machine M accepts (x, y).] ≤ 1
3

,

for all strings y ∈ Σp(|x|).

Definition 2.66 (The Complexity Class BPPPATH [57]). The class BPPPATH

is the class of language problems L ⊆ Σ∗, for which there exists a BPP-
machine M, such that M can either “succeed” or “fail,” and, conditioned on
succeeding, can either accept or reject. We have that, for all inputs x,

• Pr [The computation M (x) succeeds.] > 0,

• if x ∈ L, then

Pr [The computation M (x) accepts. | The computation M (x) succeeds.]

≥ 2
3

.

• and, if x /∈ L, then

Pr [The computation M (x) accepts. | The computation M (x) succeeds.]

≤ 1
3

.

Note 2.67. In the class BPPPATH, we have the ability to “post-select.” That
is, we can define our own notion of “success,” in order for it to be a desired,
for us, property to have, regarding our current problem at hand. Also, note
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that the symbol Pr [B | A] denotes “the probability that the event B occurs,
given that the event A occurs.” Note that

Pr [B | A] =
Pr [B ∩ A]

Pr [A]
. (2.174)

Definition 2.68 (The Complexity Class PP [103]). A promise problem A =(
Ayes, Ano

)
is in PP if, and only if, there exists a polynomial-time proba-

bilistic Turing machine M, such that M accepts every string x ∈ Ayes, with
probability strictly greater than 1

2 , and accepts every string x ∈ Ano, with
probability at most 1

2 .

Definition 2.69 (The Complexity Class PSPACE [103]). A promise problem
A =

(
Ayes, Ano

)
is in PSPACE if, and only if, there exists a deterministic

Turing machine M, running in polynomial space, such that M accepts every
string x ∈ Ayes, and rejects every string x ∈ Ano.

Definition 2.70 (The Complexity Class NPSPACE [80]). A promise prob-
lem A =

(
Ayes, Ano

)
is in NPSPACE if, and only if, there exists a non-

deterministic Turing machine M, running in polynomial space, such that M
accepts every string x ∈ Ayes, and rejects every string x ∈ Ano.

Definition 2.71 (The Complexity Class EXP [103]). A promise problem
A =

(
Ayes, Ano

)
is in EXP if, and only if, there exists a deterministic Turing

machine M, running in exponential time, that is, in time bounded by 2p,
where p is some polynomial-bounded function, such that M accepts every
string x ∈ Ayes, and rejects every string x ∈ Ano.

2.4.2 Quantum Computational Complexity Theory

The projection of complexity theory in quantum mechanics yields quantum
complexity theory.

Computational Models

In the quantum setting, problems are usually solved by quantum circuits.
Quantum circuits are a generalization of classical, Boolean, circuits. A
Boolean circuit can be inspected in Figure 2.2. Note that every Boolean
circuit, can be composed by NOT and AND gates only.
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a • • a

b • • a⊕ b
c • c

0 ab⊕ ac⊕ bc

Figure 2.2: A circuit implementation, of some algorithm that solves the
problem MAJORITY, which asks whether a given binary string, of length
three, here, has more ones than zeros. In this implementation, only classical
CNOT, and CCNOT, gates are used. That is, controlled-NOT and controlled-
controlled-NOT gates.

Definition 2.72 (Quantum Circuits). Quantum circuits are like ordinary
Boolean circuits, but, in contrast, they operate on qubits instead of bits.
Now, every quantum circuit can be composed by combining gates from the
set

{CNOT, H, T} ,

where

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , (2.175)

H =
1√
2

(
1 1
1 −1

)
, (2.176)

and

T =

(
1 0
0 ej π

4

)
, (2.177)

where j2 = −1. Note that CNOT acts on two qubits, while H and T act
on one qubit. Also, not that all the members of the set {CNOT, H, T} are
unitary transformations, that act on complex vector spaces, which contain
the vectors that hold the one-qubit, and two-qubit, quantum states.

An example of a quantum circuit, can be inspected in Figure 2.3.

Note 2.73 (Quantum Turing Machines). As it turns out, there is a quantum
version of the Turing machine computational model, as well. However, we
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|0〉 H
U f

H

|0〉−|1〉
2

Figure 2.3: A quantum circuit implementation, of some algorithm that solves
the DEUTSCH PROBLEM. In the DEUTSCH PROBLEM, we are given a Boolean
function f : {0, 1} → {0, 1}, and we are asked to compute f (0) ⊕ f (1).
Note that U f denotes the, unitary, in nature, oracle for computing the values
of f . The unitary U f acts like this: U f |x〉 |b〉 = |x〉 |y⊕ f (x)〉.

are not going to elaborate further on this model, here, as the quantum circuit
is adequate enough to define all of the quantum complexity classes that we
need in this work. For a reference, one can see the work by Bernstein and
Vazirani [43], or the work by Deutsch [36].

Fundamental Quantum Complexity Classes

We present the quantum computational complexity classes BQP, QMA,
QMA1, SQMA, SQMA1, QCMA, QCMA1, and QCMAEXP.

Definition 2.74 (The Complexity Class BQP [103]). Let A =
(

Ayes, Ano
)

be a
promise problem, and let a, b : N→ [0, 1] be functions. Then, A ∈ BQP (a, b)
if, and only if, there exists a polynomial-time generated family of quantum
circuits {Qn}n, where each circuit Qn takes n input qubits, and produces
one output qubit, that satisfies the following proprerties:

• if x ∈ Ayes, then Pr
[
The circuit Q|x| accepts.

]
≥ a (|x|), and

• if x ∈ Ano, then Pr
[
The circuit Q|x| accepts.

]
≤ b (|x|).

The class BQP is defined as BQP = BQP
( 2

3 , 1
3

)
.

Definition 2.75 (The Complexity Class QMA [103]). Let A =
(

Ayes, Ano
)

be a promise problem, let p (n) be a polynomial-bounded function, and
let a, b : N → [0, 1] be functions. Then, A ∈ QMAp (a, b) if, and only if,
there exists a polynomial-time generated family of quantum circuits {Qn}n,
where each circuit Qn takes n + p (n) input qubits, and produces one output
qubit, with the following properties.
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• Completeness. For all x ∈ Ayes, there exists a p (|x|)-qubit quantum
state |ψ〉, such that

Pr
[
The circuit Q|x| accepts (x, |ψ〉).

]
≥ a (|x|) .

• Soundness. For all x ∈ Ano, and all p (|x|)-qubit quantum states |ψ〉, it
is the case that

Pr
[
The circuit Q|x| accepts (x, |ψ〉).

]
≤ b (|x|) .

Also, define QMA =
⋃

p QMAp
( 2

3 , 1
3

)
, where the union is over all polynomial-

bounded functions p.

Definition 2.76 (The Complexity Class QMA1). Let A =
(

Ayes, Ano
)

be
a promise problem, let p (n) be a polynomial-bounded function, and let
a, b : N → [0, 1] be functions. Then, A ∈ QMAp (a, b) if, and only if, there
exists a polynomial-time generated family of quantum circuits {Qn}n, where
each circuit Qn takes n + p (n) input qubits, and produces one output qubit,
with the following properties.

• Completeness. For all x ∈ Ayes, there exists a p (|x|)-qubit quantum
state |ψ〉, such that

Pr
[
The circuit Q|x| accepts (x, |ψ〉).

]
≥ a (|x|) .

• Soundness. For all x ∈ Ano, and all p (|x|)-qubit quantum states |ψ〉, it
is the case that

Pr
[
The circuit Q|x| accepts (x, |ψ〉).

]
≤ b (|x|) .

Also, define QMA1 =
⋃

p QMAp
(
1, 1

3

)
, where the union is over all polynomial-

bounded functions p.

Definition 2.77 (Subset-States [55]). LetQ be a quantum system on n qubits.
Then, the dimension of the vector space H, which holds the vectors |ψ〉
that describe the state of Q, is 2n. For any subset S ⊆ [2n], we define the
quantum state

|S〉 = ∑
i∈S

1√
|S|
|i〉 (2.178)

to be a subset-state. Note that |S〉 is a uniform superposition over the ele-
ments of the computational basis that their binary labels, after converted to
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integers, belong to S. Note, also, that every subset-state is a just a special
case of a pure state, and that

‖|S〉‖2
2 =


√√√√ |S|

∑
i=1

∣∣∣∣∣ 1√
|S|

∣∣∣∣∣
2


2

=
|S|
|S|

= 1. (2.179)

Definition 2.78 (The Complexity Class SQMA). Let A =
(

Ayes, Ano
)

be
a promise problem, let p (n) be a polynomial-bounded function, and let
a, b : N→ [0, 1] be functions. Then, A ∈ SQMAp (a, b) if, and only if, there
exists a polynomial-time generated family of quantum circuits {Qn}n, where
each circuit Qn takes n + p (n) input qubits, and produces one output qubit,
with the following properties.

• Completeness. For all x ∈ Ayes, there exists a p (|x|)-qubit quantum

subset-state |S〉, with S ⊆
[
2p(|x|)

]
, such that

Pr
[
The circuit Q|x| accepts (x, |S〉).

]
≥ a (|x|) .

• Soundness. For all x ∈ Ano, and all p (|x|)-qubit quantum subset-states

|S〉, with S ⊆
[
2p(|x|)

]
, it is the case that

Pr
[
The circuit Q|x| accepts (x, |S〉).

]
≤ b (|x|) .

Also, define SQMA =
⋃

p SQMAp
( 2

3 , 1
3

)
, where the union is over all polynomial-

bounded functions p.

Definition 2.79 (The Complexity Class SQMA1). Let A =
(

Ayes, Ano
)

be
a promise problem, let p (n) be a polynomial-bounded function, and let
a, b : N→ [0, 1] be functions. Then, A ∈ SQMAp (a, b) if, and only if, there
exists a polynomial-time generated family of quantum circuits {Qn}n, where
each circuit Qn takes n + p (n) input qubits, and produces one output qubit,
with the following properties.

• Completeness. For all x ∈ Ayes, there exists a p (|x|)-qubit quantum

subset-state |S〉, with S ⊆
[
2p(|x|)

]
, such that

Pr
[
The circuit Q|x| accepts (x, |S〉).

]
≥ a (|x|) .
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• Soundness. For all x ∈ Ano, and all p (|x|)-qubit quantum subset-states

|S〉, with S ⊆
[
2p(|x|)

]
, it is the case that

Pr
[
The circuit Q|x| accepts (x, |S〉).

]
≤ b (|x|) .

Also, define SQMA1 =
⋃

p SQMAp
(
1, 1

3

)
, where the union is over all polynomial-

bounded functions p.

Definition 2.80 (The Complexity Class QCMA [103]). Let A =
(

Ayes, Ano
)

be a promise problem. Then, A ∈ QCMA if, and only if, there exists a
polynomial-bounded function p (n), and a polynomial-time generated fam-
ily of quantum circuits {Qn}n, where each circuit Qn takes n + p (n) input
qubits, and produces one output qubit, with the following properties. For
all of the inputs x ∈ Ayes, there is a string y ∈ Σp(n), such that

Pr
[
The circuit Q|x|+p(|x|) accepts (x, y).

]
≥ 2

3
,

and, for all of the inputs x ∈ Ano, and all of the strings y ∈ Σp(n),

Pr
[
The circuit Q|x|+p(|x|) accepts (x, y).

]
≤ 1

3
.

Note 2.81 (Names for QCMA). The class QCMA, defined by Aharonov and
Naveh in 2002 [17], can be also encountered as CMQA, or MQA [103].

Definition 2.82 (The Complexity Class QCMA1). Let A =
(

Ayes, Ano
)

be
a promise problem. Then, A ∈ QCMA1 if, and only if, there exists a
polynomial-bounded function p (n), and a polynomial-time generated fam-
ily of quantum circuits {Qn}n, where each circuit Qn takes n + p (n) input
qubits, and produces one output qubit, with the following properties. For
all of the inputs x ∈ Ayes, there is a string y ∈ Σp(n), such that

Pr
[
The circuit Q|x|+p(|x|) accepts (x, y).

]
= 1,

and, for all of the inputs x ∈ Ano, and all of the strings y ∈ Σp(n),

Pr
[
The circuit Q|x|+p(|x|) accepts (x, y).

]
≤ 1

3
.
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Definition 2.83 (The Complexity Class QCMAEXP [103]). Let A =
(

Ayes, Ano
)

be a promise problem. Then, A ∈ QCMAEXP if, and only if, there exists a
polynomial-bounded function p (n), and a exponential-time generated fam-
ily of quantum circuits {Qn}n, where each circuit Qn takes n + p (n) input
qubits, and produces one output qubit, with the following properties. For
all of the inputs x ∈ Ayes, there is a string y ∈ Σp(n), such that

Pr
[
The circuit Q|x|+p(|x|) accepts (x, y).

]
≥ 2

3
,

and, for all of the inputs x ∈ Ano, and all of the strings y ∈ Σp(n),

Pr
[
The circuit Q|x|+p(|x|) accepts (x, y).

]
≤ 1

3
.

2.4.3 Relativized Worlds

What is a relativized world? Well, it is a world induced by calls to some
oracle, be it a classical or a quantum one. In these worlds, we work with
oracle machines. Oracle machines are ordinary computational machines,
like Turing machines, say, which are equipped with a subroutine that, in
unit time-cost, solves a highly non-trivial, and “difficult,” problem. This
oracle is appropriately selected, in order for the desired separation to be
carried out effectively.

Definition 2.84 (Turing Machines with Oracles [80, 87]). Formally, a Turing
machine with an oracle A is a quadruple

MA = (K, Σ, δ, s) .

Here, K is a finite set of states, s ∈ K is the initial state, and Σ is a finite
set of symbols. We have that K ∩ Σ = ∅, and that t,B∈ Σ. We call t the
blank symbol, and B the first symbol, respectively. Finally, δ is a transition
function, or, in more formal terms,

δ : K× Σ→ (K ∪ {qh, qYes, qNo})× Σ× {←,→,−} . (2.180)

Note that qh is a halting state, qYes is an accepting state, and qNo is a rejecting
state. The symbols of the set {←,→,−} refer to the movement of the
read-write head of the machine. Also,

(K ∪ Σ) ∩ {←,→,−} = ∅.
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Finally, there are some special-purpose states qquery, qquery-Yes, qquery-No ∈ K.
There is an extra query tape, in which the machine can write a string x, of
which the membership in the set A wants to decide, and gets into the query
state qquery. Then, in one time-step, the machine enters the state qquery-Yes,
or qquery-No, regarding whether x ∈ A, or x /∈ A, respectively. The fact that
the machine MA decides the membership in the set A, in only one step, is a
magical imaginary, non-trivial, property of MA.

Note 2.85. Turing machines with oracles are defined in a similar manner,
when it comes to non-determinism, or probabilism.

Classical Oracles

Let n ∈ N. Classical oracles implement some Boolean function f which
is defined on strings drawn from the set {0, 1}n. That is, they implement
Boolean functions of the form

f : {0, 1}n → {0, 1} . (2.181)

Classical Oracles In a Classical Setting. Classical oracles, in a classical
setting, are functions U f such that

U f : x 7→ f (x) . (2.182)

Classical Oracles In a Quantum Setting. Classical oracles, in a quantum
setting, are unitary transformations U f such that, for b ∈ {0, 1},

U f : |x〉 |b〉 7→ |x〉 |b⊕ f (x)〉 , (2.183)

or

U f |x〉 |b〉 = |x〉 |b⊕ f (x)〉 . (2.184)

Equivalently, a classical oracle, in a quantum setting, can be sought as a
quantum transformation U f , such that

U f : |x〉 7→ (−1) f (x) |x〉 , (2.185)

or

U f |x〉 = (−1) f (x) |x〉 . (2.186)
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Another equivalent form, of the Equations (2.185) and (2.186), is to imple-
ment some Boolean function

f : {0, 1}n → {−1, 1} , (2.187)

as

U f : |x〉 7→ f (x) |x〉 , (2.188)

or

U f |x〉 |b〉 = f (x) |x〉 . (2.189)

The use of classical oracles. We can create families of classical oracles,
like

F = { f1, f2, . . . , fn, . . .}
=
{

fn | fn : {0, 1}n → {0, 1}
}

n∈N

= Fgood ∪ Fbad

= Fgood ] Fbad

=
{

fn | ∃x ∈ {0, 1}n : fn (x) = 1
}

n∈N

]
{

fn | ∀x ∈ {0, 1}n : fn (x) = 0
}

n∈N
. (2.190)

The problem put forth, here, is to decide whether a given function fk, for
some natural k ∈N, is either good or bad—as defined above.

Quantum Oracles

These oracles can be viewed either as unitaries, or CPTP maps.

Oracles as Unitaries. Quantum oracles, are unitary transformations that
implement an unknown unitary transformation, namely U. One example,
put forth [13], is the case of quantum oracles that are capable of identifying
an unknown state |ψ〉, that is,

U|ψ〉 : |ψ〉 7→ − |ψ〉 , (2.191)

or

U f |ψ〉 = − |ψ〉 , (2.192)
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but

U|ψ〉 : |φ〉 7→ |φ〉 , (2.193)

or

U f |ψ〉 = |ψ〉 , (2.194)

for every |φ〉, such that 〈φ|ψ〉 = 0. In this case, the application of the oracle
to some other state |ϕ〉, that is neither equal to |ψ〉 nor is it orthogonal to the
ket |ψ〉, is arbitrary.

Using these oracles, which conceal quantum states, we can create generic
oracle-sets of the form

U = {Ui}i∈N

=
{

Ui | Ui = U|ψ〉
}

i∈N
∪ {Ui | Ui = I}i∈N

=
{

Ui | Ui = U|ψ〉
}

i∈N
] {Ui | Ui = I}i∈N

= Ugood ] Ubad. (2.195)

That is, for every i, either Ui is good, or

Ui = U|ψ〉, (2.196)

for some state |ψ〉, or Ui is bad, or

Ui = I. (2.197)

In the case of unitary quantum oracles, the language problem associated
with the separation is this: given an index n ∈ N, as the unary 1n, and
some purported proof |ψ〉, decide whether Un ∈ Ugood, or Un ∈ Ubad. The
purported proof is about the claim that Un ∈ Ugood, put forth by the prover.

Oracles as CPTP Maps. Another case of quantum oracles, is when we
employ CPTP maps, rather than unitaries. In these cases, we have the family
of CPTP maps Ui

U = {Ui}i∈N

= {Ui | Ui is good}i∈N ∪ {Ui | Ui is bad}i∈N

= {Ui | Ui is good}i∈N ] {Ui | Ui is bad}i∈N

= Ugood ] Ubad, (2.198)
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where Ugood denotes the set of good CPTP maps, in an appropriate sense,
defined to be different every time, and Ubad denotes the set of the bad ones,
also defined differently each time.

In the cases of CPTP quantum oracles, the language problem associated
with the separation is this: given an index n ∈ N, as the unary 1n, and
some purported proof |ψ〉, decide whether Un ∈ Ugood, or Un ∈ Ubad. The
purported proof is about the claim that Un ∈ Ugood, put forth by the prover.

Note 2.86. Note that quantum oracles are meaningful only in a quantum
setting. The reason is that the invocation of some quantum oracle requires
quantum entities like quantum states to be applied on.

2.4.4 Fundamental Results

In this subsection we present some known inclusions about some complexity
classes of interest, be them classical or quantum.

Theorem 2.87. We have that

P ⊆(1) BPP

⊆(2) BQP

⊆(3a) QCMA =(3b) QCMA1

⊆(4) SQMA1

⊆(5) QMA1

⊆(6a) QMA =(6b) SQMA

⊆(7) PP

⊆(8a) PSPACE =(8b) NPSPACE

⊆(9) EXP,

P ⊆(10) NP

⊆(11a) MA =(11b) MA1

⊆(12) QCMA,

BPP ⊆(13) MA,

MA ⊆(14) BPPPATH,

BPPPATH ⊆(15) PP,

and

EXP ⊆(16) QCMAEXP.
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Proof. Below, we discuss each inclusion separately.

⊆(1): The class P is a subset of the class BPP, since every deterministic
algorithm can be sought as a special case of a probabilistic algorithm
that does not make use of its access to randomness.

⊆(2): The class BPP is a subset of the class BQP, since every probabilistic
algorithm can be sought as a special case of a quantum algorithm. The
reason is that quantum computers have access to randomness, so, they
can efficiently simulate any BPP-computer.

⊆(3a): The class BQP is a subset of the class QCMA, since one can give the
polynomial-time algorithm, that generates the members of the uniform
family of quantum circuits, for some BQP language, as a witness,
or proof, and, then, a quantum computer can run the appropriate
quantum circuit, after it generates it in polynomial time, and reply
according to the result of this circuit. Note that the length of the
classical witness, here, is polynomially big: every polynomial-time
algorithm has polynomially-big classical description.

=(3b): This result comes from the relevant work by Jordan, Kobayashi, Nagaj,
and Nishimura [63].

⊆(4): The class QCMA1 is a subset of the class SQMA1, since every classical
witness can be encoded as a subset state, which consists of only one ket:
the ket that corresponds to the binary representation of the classical
witness. This is always possible since every classical witness, that is,
every bit-string, can be matched to some element of the computational
basis.

⊆(5): The class SQMA1 is a subset of the class QMA1, since every subset-state
can be sought as a pure state. That is, every subset-state is a special
case of a pure state.

⊆(6a): The class QMA1 is a subset of the class QMA, since the property of per-
fect completeness is an extra, special, feature of the QMA verification
protocols.

=(6b): The class SQMA is equal to the class QMA, by the work of Grilo,
Kerenidis, and Sikora [55].

⊆(7): The class QMA is a subset of the class PP, by the work of Marriott, and
Watrous [74].
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⊆(8a): The class PP is a subset of the class PSPACE, since, in polynomial
space, one can count all of the Yes-paths of the Turing machine, at
hand, and, then, decide whether these paths are more than half of the
entire number of computational paths.

=(8b): We know that PSPACE is a subset of NPSPACE, by the definitions of
these classes. The fact that NPSPACE is a subset of PSPACE, comes
from Savitch’s theorem [80].

⊆(9): The class PSPACE is a subset of the class EXP, since, in exponential
time, one can fully simulate any PSPACE-machine. The reason is
that a PSPACE-machine can only have exponentially-many different
configurations.

⊆(10): The class P is a subset of the class NP, since every deterministic Turing
machine can be sought as a special case of a non-deterministic one.

⊆(11a): The class NP is a subset of the class MA, since the deterministic verifi-
cation of the purported proof, that arises in the class NP, is a special
case of a probabilistic verification. Probabilistic verifications, define
the class MA.

=(11b): The class MA is equal to the class MA1, from a result by Zachos and
Fürer [106].

⊆(12): The class MA is a subset of the class QCMA, since any probabilistic
verifier can be sought as a special case of some quantum verifier.

⊆(13): The class BPP is a subset of the class MA, since one can ignore the pur-
ported proof, of the MA setting, and just make use of the probabilistic
polynomial time to solve the BPP problem.

⊆(14): The class MA is a subset of the class BPPPATH, since one can post-
select on getting a valid proof, and then make use of the probabilistic
polynomial time to verify it.

⊆(15): The class BPPPATH is a subset of the class PP, from a result by Han,
Hemaspaandra, and Thierauf [57].

⊆(16): The class EXP is a subset of the class QCMAEXP, for the trivial reason
that every QCMAEXP-machine is allowed to run for exponentially-
many time-steps.
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The inclusions of Theorem 2.87, can alternatively be inspected in the Hassel
diagram, depicted in the Figure 2.4.

P

BPP NP

MA = MA1BQP

QCMA = QCMA1

SQMA1

QMA1

QMA = SQMA

PP

PSPACE = NPSPACE

EXP

QCMAEXP

BPPPATH

.

Figure 2.4: A Hasse diagram depicting the known inclusions among some of
the most frequently used complexity classes, in this work, be them classical
or quantum. Each arrow of the form A→ B illustrates the fact “A ⊆ B.”
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Chapter 3

Literature Review

That quantum mechanics should have implications to computational com-
plexity theory, however, is much less clear. It is only through the remarkable
discoveries and ideas of several researchers [. . . ] that this potential has become
evident.

— John Watrous,
Quantum Computational Complexity (2008)

We survey some of the most significant results about classical and quantum
computational complexity classes, in various relativized worlds, induced
by calls to classical or quantum oracles. We discriminate among three cases,
regarding whether we examine a classical or a quantum oracle application,
to the ground of classical or quantum complexity classes.

In the following sections we list, per section, a handful of somewhat influen-
tial, and important, results, according to the type of the oracle employed,
and the complexity classes involved. Note that, in the following, ORA-
CLES denotes the set of all oracles, that is, classical or quantum. Also, note
that many of the following results might imply some of the other results.
Nonetheless, we present them here as they were first published.

3.1 Classical Oracles in a Classical Setting

coNP is the class that contains the complements of the languages of NP. IP

stands for interactive proofs.
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1. ∃A ∈ ORACLES : NPA 6⊆ PA [96].

2. ∃A : PA 6= coNPA [31].

3. ∃A : IPA 6= PSPACEA [30].

3.2 Classical Oracles in a Quantum Setting

In the following, EQP stands for exact quantum polynomial-time, and RP

stands for randomized polynomial-time. coRP contains the complements of
the languages of RP. ZPP is zero-error probabilistic polynomial-time. BQEXP is
bounded-error quantum exponential-time. 2-EXP is doubly-exponential-time.

1. ∃A : NPA 6⊆ BQPA [25].

2. ∃A : (NP∩ coNP)A 6⊆ BQPA [25].

3. ∃A : BQPA 6⊆ BPPA [93].

4. ∃A : BQPA 6⊆ BPPAPATH [32].

5. ∃A : EQPA 6⊆ ZPPA [26].

6. ∃A : EQPA 6⊆ NPA [26].

7. ∃A : EQPA 6⊆ PA [26].

8. ∃A : BQEXPA 6⊆ 2-EXPA [26].

9. ∃A : EQPA 6⊆ NPA ∪ coNPA [26].

10. ∃A : EQPA 6⊆ RPA [26].

11. ∃A : EQPA 6⊆ coRPA [26].

3.3 Quantum Oracles in a Quantum Setting

1. ∃A : QMAA1 6⊆ QCMAA [13].

This implies that ∃A : QMAA 6⊆ QCMAA, as QMA1 ⊆ QMA.

2. ∃A : SQMAA 6⊆ QCMAA [27].

3. ∃A : BQPA 6⊆ QMAA1 [5].
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Chapter 4

Methods and Paradigms

And then there are the endless repetitions, the drudgery, the basic moves
practiced over and over again.

— George Leonard,
Mastery (1991)

In this chapter, we present an overview of the methods underlying our
results of Chapter 5. In particular, we present the low-level details of some
of the literature results, we surveyed in Chapter 3, in order to help us gain
valuable insights about the possible solutions to the problems we posed.

4.1 A Classical Oracle in a Classical Setting

We begin by recounting a classical, earth-shattering, result by Baker, Gill,
and Solovay [96].

Theorem 4.1. There is some oracle, namely A, such that

NPA 6⊆ PA. (4.1)

That is, there is some oracle A, such that there is some language L which is
in the class NPA, but it is not in the class PA.
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4.1.1 Preliminaries

At first, we point out the equivalence between perceiving oracles as sets and
as functions.

Remark 4.2. An oracle A, which, as we earlier saw, is defined as a set, can
be viewed as a function, too: the function that emerges when one maps to
the number 1 all of the elements of the set at hand, and to the number 0 all
of the rest possible alphabet strings. In particular, one has that

x ∈ Aset ⇔ Afunction (x) = 1, (4.2)

and

x /∈ Aset ⇔ Afunction (x) = 0. (4.3)

So, from now on, we are going to use Asets and Afunction, interchangeably,
by invoking the common symbol A.

The main method that we will employ, here, is diagonalization. In particular,
we will employ a sort of “slow diagonalization” over polynomial-time, and
deterministic, Turing machines [80].

Remark 4.3 (Diagonalization). The method of diagonalization is a method for
proving that a certain object of interest cannot exist. This object is a member
of some set A, that participates in some relation R ⊆ A× B, for B being a
set, too.

At first, we create a table M that has, as rows, the elements of A, and, as
columns, the elements of B. In the case that (x, y) ∈ R, one has that Mi,j = 1,
otherwise Mi,j = 0, where the number i is the row-number of x, and the
number j is the column-number of y. We then create an object D, such that

Di,i = something different than Mi,i. (4.4)

Now, we observe that the object D cannot emerge either as a row, or a
column, of the matrix M, since, for every i, D differs from the i-th row, as
well as the i-th column, at its i-th position.

The following example, somehow illustrates the concept of the diagonaliza-
tion method.
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Example 4.4. For the binary matrix

M =
(

Mi,j
)

i,j∈[4]

=

1 0 1 0
1 1 0 1
1 0 0 1
1 0 0 0

, (4.5)

we create the 4-tuple

t = (ti)i∈[4]

= (1−Mi,i)i∈[4]

= (0, 0, 1, 1) . (4.6)

Note that the vector t does not emerge either as a column, or a row, in the
matrix M.

We now proceed with the separation.

4.1.2 The Separation

We claim that the language needed, for our separation, is the unary language

L = {1n | ∃x ∈ A : |x| = n} . (4.7)

Note that this language L encodes, in unary strings, all of the lengths of the
members of the oracle A.

Part One: Something is in NPA

We prove the following lemma.

Lemma 4.5. It is the case that L ∈ NPA.

Proof. There is a polynomial non-deterministic algorithm, with access to
the oracle A, which establishes that fact: see Algorithm 1. What does this
algorithm do? The Algorithm 1, on input 1n, for n being a natural number,
guesses an appropriate x ∈ Σn, and, then, calls the oracleA to check whether
we have x ∈ A, or not.
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Algorithm 1 The procedure that decides L.

1: procedure MACHINE ONE(Σ, 1n,A)
Require: n ∈N

2: x ← MAKE A GUESS(Σ, n)
3: if A (x) = 1 then
4: return Yes

5: else
6: return No

7: end if
8: end procedure

But what is a guess? Guesses are fundamental entities in the non-deterministic
computing setting: see Algorithm 2.

Algorithm 2 The procedure that implements guesses.

1: procedure MAKE A GUESS(Σ, n)
Require: n ∈N

2: s← ε . The symbol ε denotes the empty string.
3: for i from 1 to n do
4: guess σ ∈ Σ . This is a magic! That is, the ability to select, in

one step, an appropriate element from the set Σ.
5: s← CONCATENATION (s, σ) . Note that, for two binary

strings, say, 0101 and 111100, their concatenation is 0101111100.
6: end for
7: return s
8: end procedure

The proof is complete.

Part Two: Something is not in PA

We prove the following lemma.

Lemma 4.6. It is the case that L /∈ PA.

Proof. As we already pointed out, in the Subsection 4.1.1, we are going to
employ the method of diagonalization to show that L /∈ PA.

We start by considering an enumeration over all polynomial-time determin-
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istic Turing machines, with oracle A, namely

MA1 , MA2 , . . . , MAi , . . . ,

and, then, we simulate each MAi , on input 1i, for at most ilog i steps, in
order to fully-define the oracle A in a way such that every polynomial-time
deterministic Turing machine fails to decide L, given that has access to the
oracle A. Note that each Turing machine appears infinitely many times in
the enumeration, since machines that differ only in unused states, or extra
alphabet symbols, are equivalent, in terms of the language that they decide.
Throughout the simulations, we mantain a set X, which will keep track of
all the strings x such that x /∈ A. At the beginning, we have that X = ∅.

To create the oracle A, we create, at first, a collection of oracles {Ai}i, one
for each length value i. At first, we set A0 = ∅. Finally, we have that

A =
∞⋃

i=0

Ai. (4.8)

During our simulations, how do we answer oracle queries of the form x
?
∈ A? Well,

for a given x, in the case that |x| < i, say, we use the oracle Ai. That is, we
reply with Yes, if Ai (x) = 1, and, otherwise, we reply with No. In the case
where we have |x| ≥ i, we reply with No, and put x into X. We now proceed
with the process of creating the oracle A.

1. In the case that MAi
(
1i) halts and rejects, we want to ensure that 1i ∈ L.

To do this, we set

Ai = Ai−1 ∪
{

x ∈ {0, 1}∗ | |x| = i and x /∈ X
}

. (4.9)

In this way, we make sure that there exists some x ∈ A, with |x| = i.
Thus, we get that 1i ∈ L. However, we need to show that{

x ∈ {0, 1}∗ | |x| = i and x /∈ X
}
6= ∅. (4.10)

Indeed, this is the case: The set X contains no more than

i

∑
j=1

jlog j (4.11)

elements of length i, since ∑i
j=1 jlog j is the total number of steps simu-

lated, so far, on all of these oracle machines MAi . Note that

i

∑
j=1

jlog j < 2i. (4.12)

69



Thus, there exists an element x, of length equal to i, that is not in X.
Wrapping it up, we immediately get that x ∈ Ai ⊆ A, therefore 1i ∈ L.
Thus, one has that L

(
MAi

)
6= L.

2. Now, in the case that MAi
(
1i) halts and accepts, we can ensure that

1i /∈ L by setting Ai = Ai−1. In this way, there are no strings of length
i in A. Yet again, one has that L

(
MAi

)
6= L.

3. In the final case, where MAi
(
1i) fails to halt in the amount of time

allotted, we again set Ai = Ai−1. But why? The reason is that, eventu-
ally, our Turing machine, at hand, namely MAi , will emerge again in
the enumeration as, say, MAk , for some natural k, and MAk will be such
that it halts in the time allotted. Thus, MAk is going to get taken care of,
according to the previous steps, namely 1 and 2.

The whole procedure, for creating the oracle A, can be found, in procedural
form, in the Algorithm 3.

The following remark, Remark 4.7, conveys some intuition about the result
of the Theorem 4.1.

Remark 4.7. Let

1N =
{

11, 12, . . . , 1n, . . .
}

= {1n}n∈N (4.13)

be the set that encodes, as unary strings, the natural numbers. Let M
be the set of all Turing machines such that they are deterministic, and of
polynomial-time complexity. We devise the table Σ that depicts the elements
of the relation σ ⊆ 1N ×MA, which encodes the pairs

(
1i, MAj

)
, such that

the machine MAj
(
1i) halts and accepts. That is, we get that

Σ
(

1i, MAj
)
=

{
MAi

(
1i) if MAi

(
1i) halts in time ilog i,

? otherwise,
(4.14)

where we use “?” for the case that
(

1i, MAj
)

fails to halt in the amount of
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time allotted. For example, the matrix Σ could be of the form

Σ =

MA1 MA2 . . . MAn . . .

11 1 0 . . . ? . . .
12 ? 0 . . . 1 . . .
...

...
...

. . .
...

1n 0 1 . . . ? . . .
...

...
...

...
. . .

. (4.15)

Now, we create a Turing machine D, with access to the oracle A, such that

DA (1n) =

{
1−MAn (1n) if MAi

(
1i) halts in time ilog i,

0 otherwise.
(4.16)

We are now going to prove that

L = {1n | ∃x ∈ A : |x| = n}

= L
(

DA
)

. (4.17)

For the proof, we will separately prove the involved inclusions L
(

DA
)
⊆ L,

and L ⊆ L
(

DA
)
.

For the first inclusion, let 1n ∈ L
(

DA
)
. This means that

DA (1n) = 1, (4.18)

or, equivalently, that

MAn (1n) = 0, (4.19)

or, by the above procedure, that

An = An−1 ∪
{

x ∈ {0, 1}∗ | |x| = i and x /∈ X
}︸ ︷︷ ︸

6= ∅

. (4.20)

Thus, there is some element of length n in A. Hence, we get that 1n ∈ L.

For the second inclusion, let 1n ∈ L. This means that there is some element
of length n in A, or, equivalently, that An 6= An−1. Thus, one happily has
that MAn (1n) = 0. We get that DA (1n) = 1, and, so, 1n ∈ L

(
DA
)
.

Finally, by invoking the diagonalization principle, see the Remark 4.3, we get
that the oracle machine DA cannot emerge as a column of the matrix Σ, of
the Equation (4.15), thus, we have that the machine DA is not a deterministic
polynomial-time one. This implies that L

(
DA
)

/∈ PA, or L /∈ PA.
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4.2 A Classical Oracle in a Quantum Setting

Classical oracles are very versatile: they can aso be used in a quantum
setting. We prove the following theorem, which can be found in the work
by Chen [32], who complements the work by Aaronson [6].

Theorem 4.8 ([32, 6]). There is some classical oracle, namely A, such that

BQPA 6⊆ BPPAPATH. (4.21)

That is, there is some oracle A, such that there is some language L which is
in the class BQPA, but is not in the class BPPAPATH.

4.2.1 Preliminaries

We start by introducing some basic machinery, in the following definitions.

Definition 4.9 (Various Definitions). Let M ∈N, and let

z = z1z2 . . . zM ∈ {0, 1}M

be a binary string. Then, a literal is of the form zi, or 1− zi. A k-term is a
product of k literals, each involving a different zi. This product is 1 if the
literals take on their prescribed values, and 0, otherwise. Finally, we denote
by U the uniform distribution over {0, 1}M.

Definition 4.10. A distribution D, over {0, 1}M, is ε-almost k-wise equiva-
lent to U , if, for every k-term C, we have that

1− ε ≤ PrD [C]
PrU [C]

≤ 1 + ε. (4.22)

Note 4.11. Note that
Pr
U
[C] =

1
2k , (4.23)

since U is the uniform distribution over {0, 1}M, and C consists of k literals.

Definition 4.12. Given two distributions, namely D1 and D2, over {0, 1}M,
we say that D1 ε-almost k-wise dominates D2, if, for every k-term C, one has
that

PrD1 [C]
PrD2 [C]

≥ 1− ε. (4.24)
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Also, we say that D1 and D2 are ε-almost k-wise equivalent if they ε-almost
k-wise dominate each other, that is, if, for every k-term C, we have that

1− ε ≤ PrD1 [C]
PrD2 [C]

≤ 1 + ε. (4.25)

4.2.2 The Separation

The problem, that we are going to use for our separation, draws upon the
Fourier transform and the concept of statistical correlation, that is, it is
named FORELLATION, and is described in the Table 4.1.

We are now going to introduce, and, in part, remind to the reader, some very
useful input distributions, namely F , F ′, U , and U ′.

Definition 4.13. A sample 〈 f , g〉 from the distribution F is generated as
follows. First, choose a random real vector

v = (vx)x∈{0,1}n ∈ RN = R2n
,

by drawing each entry independently from a Gaussian distribution with
mean value 0 and variance 1. Then, set

f (x) = sgn (vx) , (4.34)

and

g (x) = sgn (v̂x) , (4.35)

for all x. Here,

sgn (α) =

{
1 if α ≥ 0,
−1 otherwise,

(4.36)

and v̂y is the Fourier transform of vy, over Zn
2 , that is,

v̂y =
1√
N

∑
x∈{0,1}n

(−1)xy vx. (4.37)

In other words, the functions f and g individually are still uniformly ran-
dom, but they are no longer independent: now g is extremely correlated
with the Fourier transform of f . Hence, “forrelated.”
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Table 4.1: The problem FORRELATION.

FORELLATION (FORn)

Input Two Boolean functions

f : {0, 1}n → {−1, 1} , (4.26)

and
g : {0, 1}n → {−1, 1} , (4.27)

that map binary strings, of length n, to the set {−1, 1}.
Output For

Φ f ,g =
1

23n/2 ∑
x,y∈{0,1}n

f (x) (−1)xy g (y) (4.28)

decide whether it is the case that∣∣Φ f ,g
∣∣ ≤ 0.01, (4.29)

that is, the Yes case, or the case that∣∣Φ f ,g
∣∣ ≥ 0.07, (4.30)

that is, the No case. We note that∣∣Φ f ,g
∣∣ ≤ 1. (4.31)

We will use FORn to denote the FORRELATION problem, when
parameterized by n. That is,

FORn ( f , g) = 1⇔
∣∣Φ f ,g

∣∣ ≤ 0.01, (4.32)

and
FORn ( f , g) = 0⇔

∣∣Φ f ,g
∣∣ ≥ 0.07. (4.33)

Definition 4.14. The distributionF ′, is the conditional distribution obtained
by F conditioned on the event that∣∣Φ f ,g

∣∣ ≥ 0.07. (4.38)

That is, a sample 〈 f , g〉 from F ′ can be generated as follows: We draw a
sample 〈 f , g〉 from F , and compute

∣∣Φ f ,g
∣∣. If

∣∣Φ f ,g
∣∣ ≥ 0.07, then we return

〈 f , g〉, otherwise we discard 〈 f , g〉, and repeat the experiment until the
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terminating condition is met. In a similar way, we obtain the distribution U ′,
by the distribution U , conditioned on the event that∣∣Φ f ,g

∣∣ ≤ 0.01. (4.39)

Lemma 4.15. For any k = No(1), the distributions F ′ and U ′ are o (1)-almost
k-wise independent.

Theorem 4.16. For a subset D ⊆ {0, 1}M, fix a partial function

f : D → {0, 1} . (4.40)

Suppose that there are two distributions, namely D0 and D1, supported on
the 0-inputs and the 1-inputs, respectively, such that they are o (1)-almost
k-wise equivalent. Then, there are no BPPPATH-machines that can compute
the function f using at most k queries.

Proof. Let M be a BPPAPATH-machine that computes f . Then, let the probabil-
ity function a (x) be the success probability of M, that is, the probability of
something being postselected successfully, and let the probability function
s (x) be the successfully-accepting probability of M, that is, the probability
of something being both postselected successfully, and the relevant compu-
tation being accepting, respectively, on the input x. For some distribution,
namely D, over {0, 1}M, let

a (D) = Ex∼D [a (x)] , (4.41)

and

s (D) = Ex∼D [s (x)] . (4.42)

By the definition of the BPPPATH-machines, and the fact thatD0 is supported
on 0-inputs, and D1 is supported on 1-inputs, we have that

a (D0) ≤
1
3

s (D0) . (4.43)

and

a (D1) ≥
2
3

s (D1) , (4.44)
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Since M makes at most k queries, the probability a (x) can be written as

a (x) =
m

∑
i=1

aiCi (x) , (4.45)

where ai ≥ 0, m ∈N, and each Ci is a k′-term, for k′ ≤ k, for every i. There-
fore, by using the fact that D0 and D1 are o (1)-almost k-wise equivalent, we
have that

a (D1) =
m

∑
i=1

Ex∼D1 [aiCi]

≥ (1− o (1))
m

∑
i=1

Ex∼D0 [aiCi]

= (1− o (1)) a (D0) . (4.46)

Similarly, we have that

a (D0) ≥ (1− o (1)) a (D1) . (4.47)

Hence,

1− o (1) ≤ a (D0)

a (D1)
≤ 1 + o (1) , (4.48)

and, by a same, as above, argument,

1− o (1) ≤ a (D0)

a (D1)
≤ 1 + o (1) . (4.49)

Thus,

1− o (1) ≤ a (D1) /s (D1)

a (D0) /s (D0)
≤ 1 + o (1) , (4.50)

which contradicts the facts embodied in the Equations (4.43) and (4.44). This
completes the proof.

Part One: Something is in BQPA

We prove the following lemma.

Lemma 4.17. It is the case that FORn ∈ BQPA.

Proof. To show FORn ∈ BQPA we just need to present a BQPA-machine that
solves FORn.
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We start with the initial state

|ψ0〉 =
n⊗

i=1

|0〉

= |0〉 ⊗ |0〉 ⊗ · · · ⊗ |0〉︸ ︷︷ ︸
n

= |0〉⊗n , (4.51)

and, then, we apply a composite Hadamard transformation H⊗n, to the
vector |ψ0〉, to get

|ψ1〉 = H⊗n |ψ0〉
= H⊗n |0〉⊗n

= H |0〉 ⊗ H |0〉 ⊗ · · · ⊗ H |0〉︸ ︷︷ ︸
n

=

(
1√
2
|0〉+ 1√

2
|1〉
)⊗n

=

(
1√
2
|0〉+ 1√

2
|1〉
)
⊗
(

1√
2
|0〉+ 1√

2
|1〉
)
⊗ · · ·

· · · ⊗
(

1√
2
|0〉+ 1√

2
|1〉
)

=
1√
2n ∑

x∈{0,1}n
|x〉

=
1√
N

∑
x∈{0,1}n

|x〉 . (4.52)

Then, we query f , in superposition, to get

|ψ2〉 =
1√
N

∑
x∈{0,1}n

f (x) |x〉 , (4.53)

or, after we apply a composite Hadamard transformation H⊗n,

|ψ3〉 =
1
N ∑

x∈{0,1}n
∑

y∈{0,1}n
f (x) (−1)xy |y〉 , (4.54)

or, after we query g, in superposition, by invoking the oracle A,

|ψ4〉 =
1
N ∑

x∈{0,1}n
∑

y∈{0,1}n
f (x) (−1)xy g (y) |y〉 , (4.55)
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or, after we apply a composite Hadamard transformation H⊗n,

|ψ5〉 =
1

N3/2 ∑
x∈{0,1}n

∑
y∈{0,1}n

∑
z∈{0,1}n

f (x) (−1)xy g (y) (−1)yz |y〉

=
1

N3/2 ∑
s∈{0,1}n

αs |s〉 . (4.56)

Suppose, now, that we measure |ψ5〉, in the computational basis. Let the
symbol M denote the random variable which denotes the label of the result-
ing, after the measurement, basis state. We now observe that

Pr [M = 00 . . . 0] = |〈00 . . . 0|ψ5〉|2

= |α00...0|2

=

∣∣∣∣∣∣ 1
N3/2 ∑

x∈{0,1}n
∑

y∈{0,1}n
f (x) (−1)xy g (y)

∣∣∣∣∣∣
2

=

 1
N3/2 ∑

x∈{0,1}n
∑

y∈{0,1}n
f (x) (−1)xy g (y)

2

=
1

N3

 ∑
x∈{0,1}n

∑
y∈{0,1}n

f (x) (−1)xy g (y)

2

=
1

23n

 ∑
x∈{0,1}n

∑
y∈{0,1}n

f (x) (−1)xy g (y)

2

=
1

23n

 ∑
x,y∈{0,1}n

f (x) (−1)xy g (y)

2

= Φ2
f ,g. (4.57)

Equation (4.57) implies that, in order to compute
∣∣Φ f ,g

∣∣ = √Φ2
f ,g, we need

to somehow estimate the probability of observing 00 . . . 0, after performing
some measurement on the entire system. So, we measure our whole system,
in the computational basis, polynomially many times. Before each measure-
ment, we re-prepare it—as measurements destroy the quantumness of a
quantum system.

Part Two: Something is not in BPPAPATH

We prove the following lemma.
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Lemma 4.18. It is the case that FORn /∈ BPPAPATH.

Proof. We are going to prove that there are no BPPPATH-machines for decid-
ing the problem FORRELATION, when allotted polynomially many queries.

By the definition of F ′ and U ′, and Lemma 4.15, we can see that F ′ is
supported on the 1-inputs, of FORn, and, similarly, U′ is supported on the
0-inputs, of FORn. Also, they are both o (1)-almost No(1)-wise independent.
This means that they are also o (1)-almost No(1)-wise equivalent. Since we
have that No(1) ∈ poly (n), the result follows from Theorem 4.16. Finally, by
using a standard diagonalization argument, one can show that FORRELATION
is not in the class BPPAPATH, and the proof is complete.

4.3 A Quantum Oracle in a Quantum Setting

We state, and prove, the following theorem, namely Theorem 4.19. The
Theorem 4.19, and its proof, were drawn from the relevant work [5] by
Aaronson. However, the first, and original, example of an oracle separation
that uses quantum oracles, is due to some other paper [13] by Aaronson and
Kuperberg.

Theorem 4.19. There is some quantum oracle, namely A, such that

QMAA 6⊆ QMAA1 . (4.58)

That is, there is some oracle A, such that there is some language L which is
in the class QMAA, but it is not in the class QMAA1 .

4.3.1 Preliminaries

We will draw some lemmata from the relevant work by Aaronson [5]. All of
the proofs, to these lemmata, can, of course, be found in the afore-mentioned
work by Aaronson [5].

Lemma 4.20 ([5]). Let

p (θ) (x) = b0 (θ) + b1 (θ) x + b2 (θ) x2 + · · ·+ bN (θ) xN (4.59)

be a real polynomial, on the variable x, with all-real roots, parameterized by
the quantity θ ∈ R. Suppose that the coefficients

b0 (θ) , b1 (θ) , . . . , bN (θ)
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are all analytic functions on θ. Then, there exist real analytic functions

λ0 (θ) , λ1 (θ) , . . . , λN (θ)

such that
{λ0 (θ) , λ1 (θ) , . . . , λN (θ)}

is the set of all the roots of the polynomial p (θ) (x), for all θ ∈ R.

Lemma 4.21 ([5]). Let f : R→ R be a real analytic function. If there exists
some open interval (x, y) ( R, for real numbers x and y, on which f is
constant, then f is constant everywhere.

Lemma 4.22 ([5]). Let V be a quantum verifier that takes as input a quantum
witness on Q qubits, namely |φ〉, and that makes T queries to a quantum
oracle, that is described by a unitary matrix U. Also, let a (U) be the accep-
tance probability of VU , maximized over all possible witnesses |φ〉. Then,
there exists a 2Q × 2Q matrix, namely E (U), whose entries are all complex
numbers, and is such that

1. every entry of the matrix E (U) is polynomial in the entries of U, of
degree at most 2T,

2. the matrix E (U) is Hermitean, for all U, and

3. the acceptance probability a (U) equals the largest eigenvalue of the
matrix E (U), for all unitaries U.

We now proceed with the separation.

4.3.2 The Separation

We define the transformation

Uθ =

(
cos θ − sin θ

sin θ cos θ

)
, (4.60)

which is just a rotating function on θ. Now, using this, we can define a
family of oracles

A = {Uθn | θn ∈ [1, 2] ∪ {0}}
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= {Uθn}θn∈[1,2]∪{0}

= {Uθn}θn∈[1,2] ∪ {Uθn}θn∈{0}

= {Uθn}θn∈[1,2] ] {Uθn}θn∈{0}

= Agood ]Abad. (4.61)

To this point, we can encode the “good” oracles of the set

Agood = {Uθn}θn∈[1,2] , (4.62)

to form the unary language

L =
{

1n | Uθn ∈ Agood
}

= {1n | θn corresponds to some good Uθn}
= {1n | θn ∈ [1, 2]} . (4.63)

By using this language L, and the oracle A, we are going to prove our
separation.

Part One: Something is in QMAA

We prove the following lemma.

Lemma 4.23. It is the case that L ∈ QMAA.

Proof. We are going to prove something stronger, that is, that L ∈ BQPA.
Since BQP ⊆ QMA, for every world, that is, even for relativized ones, the
desired result follows.

The transformation

Uθ =

(
cos θ − sin θ

sin θ cos θ

)
, (4.64)

can be carried out in quantum polynomial time, with bounded error. Why
so? Note that what we only have to do is to prepare the basis ket

|0〉 =
(

1
0

)
,

and, then, apply Uθ , to |0〉, to get

|ψ〉 = Uθ |0〉
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=

(
cos θ − sin θ

sin θ cos θ

)(
1
0

)

=

(
cos θ

sin θ

)

= cos θ

(
1
0

)
+ sin θ

(
0
1

)
= cos θ |0〉+ sin θ |1〉 . (4.65)

We then measure in the computational basis, and we perceive the outcome
as a random variable M. The probability of getting “1,” as a measurement-
outcome, is

Pr [M = 1] = |〈ψ|1〉|2

= |(cos θ 〈0|+ sin θ 〈1|) |1〉|2

= |cos θ 〈0| |0〉+ sin θ 〈1| |1〉|2

= |cos θ 〈0|1〉+ sin θ 〈1|1〉|2

= |cos θ · 0 + sin θ · 1|2

= sin2 θ. (4.66)

In the Yes case, that is, in the case where θ ∈ [1, 2], we get that

Pr [M = 1] = sin2 θ

= 0 + ε, (4.67)

for ε > 0, and, in the No case, where θ = 0, we get that

Pr [M = 1] = sin2 (0)

= 0. (4.68)

What we observe, here, is that there is an ε-gap between the acceptance
probabilities in the Yes and the No cases. Thus, we can amplify this, by
using one of the standard amplifying procedures [80, 103], and get a BQP

acceptance schema. We now can conclude that L ∈ BQPA.

Part Two: Something is not in QMAA1

We prove the following lemma.
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Lemma 4.24 ([5]). For

L =
{

1n | Uθn ∈ Agood
}

= {1n | θn corresponds to some good Uθn}
= {1n | θn ∈ [1, 2]} , (4.69)

it is the case that L /∈ QMAA1 .

Proof. Let V be a quantum verifier, let T be the number of queries that the
verifier V makes to U, and let Q be the number of qubits of the quantum
witness, or proof, of the verifier V. Let a (U) be the acceptance probability
of V, assuming U = Uθ , maximized over all Q-qubit witnesses |ψ〉. By
invoking Lemma 4.22, we get a 2Q × 2Q matrix E (U), with complex entries,
that satisfies the three properties of Lemma 4.22. Now, let N = 2Q, and let

λ0 (θ) , λ1 (θ) , . . . , λN (θ)

be the eigenvalues of E (U). Then, these λi (θ) are the roots of some polyno-
mial p (θ) (x), of degree N, namely

p (θ) (x) = b0 (θ) + b1 (θ) x + b2 (θ) x2 + · · ·+ bN (θ) xN . (4.70)

Each of the coefficients bi (θ) is a polynomial in the entries of E (θ), of degree
at most N, and, hence, by the property 1, each of these coefficients is a
polynomial, in cos θ and sin θ, of degree at most 2TN. By the property 2, all
of the eigenvalues λi (θ) are real, and, thus, the coefficients bj (θ) must be
all real, as well, for every θ. Thus, each bj (θ) is a real analytic function on θ.
By Lemma 4.20, we can take every λi (θ) to be a real analytic function. By
the property 3, we have that

a (θ) = max
i∈{0,1,...,N}

λi (θ) . (4.71)

If V is a valid QMA1 verifier, then we must have

a (0) ≤ 1
2

, (4.72)

and

∀θ ∈ [1, 2] : a (θ) = 1. (4.73)

Since N is finite, there exists some i ∈ [N] such that

λi (0) ≤
1
2

, (4.74)
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and

∀θ ∈ (x, y) ( [1, 2] : λi (θ) = 1. (4.75)

However, this contradicts the analyticity of λi, by the Lemma 4.21. Thus,
there is a choice for θ such that V does not solve the problem correctly, when
given the unitary Uθ as oracle.

We now diagonalize, over all naturals n, to achieve the desired oracle sepa-
ration. We claim that L /∈ QMAA1 . Let

M1, M2, . . . , Mi, . . .

be an enumeration of all QMA1-machines. Then, for each i, we choose ni to
be so large, such that Uni cannot have been queried by any of the machines

M1, M2, . . . , Mi−1.

Finally, we set θni so that Mi fails on input 1ni . Now, we see that either
we have θn = 0, and there exists a witness |ψ〉 causing Mi to accept with
probability greater than 1/2, or, else, we have that θn ∈ [1, 2], and no witness
causes Mi to accept with probability 1. Hence, it is impossible for any of all
the QMA1-machines to decide L.
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Algorithm 3 The procedure that fully defines the classical oracle A, used
for the separation of NP from P.

1: procedure MAKE ORACLE

2: X ← ∅
3: A0 ← ∅
4: for all i ∈N = {1, 2, . . . } do
5: j← 1
6: simulate the first step of MAi−1

i

(
1i)

7: while MAi−1
i

(
1i) has not halted and j ≤ ilog i do

8: if the j-th step of MAi−1
i

(
1i) involves some oracle call then

9: if |x| < i then
10: if x ∈ Ai−1 then
11: answer “Yes” to the oracle call
12: else
13: answer “No” to the oracle call
14: end if
15: else
16: answer “No” to the oracle call . Answer “No” to the

unknown string.
17: X ← X ∪ {x}
18: end if
19: else
20: simulate the j-th step of MAi−1

i

(
1i)

21: end if
22: j← j + 1
23: end while
24: if MAi−1

i

(
1i) halted then

25: if MAi−1
i

(
1i) rejected then

26: S ←
{

x ∈ {0, 1}∗ | |x| = i and x /∈ X
}

27: Ai ← Ai−1 ∪ S . Note that the set S is always
non-empty.

28: else
29: Ai ← Ai−1

30: end if
31: else
32: Ai ← Ai−1

33: end if
34: end for
35: A ← ⋃∞

i=1Ai

36: return A
37: end procedure
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Chapter 5

Results

Every now and then I get the feeling I could do a good work. Yet what have I
done. What I have done, nonetheless, is quite good, some of it, and with work
I should do better. One indication: one story accepted.

— Sylvia Plath,
The Unabridged Journals of Sylvia Plath, 1950–1962 (2000)

In this chapter, we present our main, and in some sense novel, result. In
particular, we proved that there exists some quantum oracle A, such that
the class SQMAA1 is not a subset of the class QCMAA, or

∃A ∈ ORACLES : SQMAA1 6⊆ QCMAA, (5.1)

where “ORACLES” denotes the set of all oracles.

5.1 Oracle Separation of SQMA1 from QCMA

As it turns out, there is a relativized world, induced by calls to some quan-
tum oracleA, in which QCMA is unable to capture the computational power
of the subset-state version of QMA, namely SQMA, even when there exists a
perfect subset-state-flavored proof out there.

Note 5.1. In many parts, we follow the recent seminal work by Fefferman
and Kimmel [27]. Note that they call their main oracle structure “preimage-
correct,” while we use the related term “preimage-appropriate,” to name
our own main oracle structures.

87



5.1.1 Preliminaries

Let 2n, for n ∈N denote the length of the members, namely x, of exponen-
tially large, in n, sets S of some class of sets S. That is, x ∈ S ∈ S. We want
to examine some, not obvious, properties of these sets S. We have that

N = 2n = |S| . (5.2)

We now give some more definitions, in the Definitions 5.2, 5.4, and 5.6.

Definition 5.2. Following Fefferman and Kimmel [27], we define

σn = the set of permutations σ from
[
N2] to

[
N2], (5.3)

Spre (σ) = {j | σ (j) ∈ [N]} , (5.4)

σpre (S) =
{

σ | σ ∈ σn and Spre (σ) = S
}

, (5.5)

Sn
odd =

{
S | S ⊆

[
N2] and |S| = N and |S ∩Zodd| = N

}
, (5.6)

and

Sn
bal =

{
S | S ⊆

[
N2] and |S| = N and |S ∩Zodd| = N/2

}
. (5.7)

Remark 5.3. Note that “odd” stands for “all-odd,” and that “bal” stands
for “balanced.” The set Sn

odd contains all the subsets S of
[
N2], of size N,

that contain only odd elements, and the set Sn
bal contains all the subsets S of[

N2], of size N, that contain half-odd, and half-even, elements.

We are going to use those classes of sets, to draw sets that constitute the
preimages of permutations. These preimages, here, are about the first N
elements of

[
N2], or, equivalently, the elements of [N]. For every one of the

aforementioned permutations σ ∈ σn, one has that

σ : S→ [N] ⊆
[
N2] , (5.8)

where S ∈ Sn
odd ∪ Sn

bal.

Definition 5.4. Let σ ⊆ σn. Then, if ρ is a density matrix, and Pσ is a unitary
that applies the in-place permutation σ, that is,

Pσ |i〉 = |σ (i)〉 , (5.9)

then we have that

Pσ (ρ) =
1
|σ| ∑

σ∈σ

PσρP†
σ , (5.10)
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is a CPTP map, with

1
|σ| ∑

σ∈σ

P†
σPσ = I. (5.11)

Note 5.5. In many cases we are going to write Pσ (|ψ〉) = Pσ |ψ〉, but what
we will mean is Pσ |ψ〉, for some permutation σ ∈ σ. That is, we pick a,
uniformly at random, permutation to apply to |ψ〉.

In the Definition 5.6, we introduce the first important class of oracles that
we are going to use in this paper.

Definition 5.6 (Randomized-preimage-appropriate Oracles). Let A be a
countably-infinite set of quantum operators, that is, of Completely-Positive
Trace-Preserving (CPTP) maps, namely

A = {A1, A2, . . . } , (5.12)

where each An implements an operation on 2n qubits. We say that A is a
randomized-preimage-appropriate oracle, if, for every natural n, we have
that

An = Pσpre(S), (5.13)

for some S ∈ Sn
odd ∪ Sn

bal.

Finally, we state a useful lemma, Lemma 5.7, whose proof can be found in
the work by Fefferman and Kimmel [27].

Lemma 5.7 (Adversary Bound for Permutation Oracles). Let σ ⊆ ([V]→ [V])

be a set of permutations acting on the elements of the set [V]. Let f : σ →
{0, 1} be a function on permutations. Let σX ⊆ σ be a set such that if
σ ∈ σX, then f (σ) = 1. Let σY ⊆ σ be a set that if σ ∈ σY, then f (σ) = 0.
Let R ⊆ σX × σY be a relation such that

• for every σx ∈ σX, there exist at least m different permutations σy ∈ σY,
such that

(
σx, σy

)
∈ R.

• For every σy ∈ σY, there exist at least m′ different permutations σx ∈
σX, such that

(
σx, σy

)
∈ R.
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• Let lx,i be the number of σy ∈ σY such that
(
σx, σy

)
∈ R, and σx (i) 6=

σy (i). Let ly,i be the number of σx ∈ σX such that
(
σx, σy

)
∈ R, and

σx (i) 6= σy (i). Let, also,

lmax = max
(σx ,σy)∈R, i

lx,ily,i. (5.14)

Then, given an in-place permutation oracle Pσ, for σ ∈ σ, that acts as

Pσ |i〉 = |σ (i)〉 , (5.15)

any quantum algorithm that correctly evaluates f (σ), with probability at
least 1− ε, for every element σ of σX, or σY, must use at least

(
1− 2

√
ε (1− ε)

)√
mm′

lmax

queries to the oracle.

5.1.2 The Separation

We divide the separation into two parts.

Part One: Something is in SQMAA1

For every randomized-preimage-appropriate oracle A, we show that a
respective language LA is in SQMAA1 .

Theorem 5.8. For every randomized-preimage-appropriate language LA,
which contains those unary strings 1n such that

An = Pσpre(S), (5.16)

with S ∈ Sn
odd, we have that LA is in SQMAA1 .

Proof. At first, we present a SQMAA1 protocol, and then we prove the com-
pleteness and soundness parts of the corresponding verification procedure.
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The Protocol. Let |Σ (S)〉 denote the subset-state witness, put forth by the
prover, when the oracle at hand is Pσpre(S), for some S ∈ Sn

odd ∪ Sn
bal. The

verifier performs the following tests, each with probability 1/2:

Test 1. Apply Pσpre(S) to |Σ (S)〉, and then measure whether the resultant
state is

|Ψ〉 =
N

∑
i=1

1√
N
|i〉 . (5.17)

To do that, one can project in the subspace spanned by |Ψ〉, by employ-
ing the projector Π|Ψ〉 = |Ψ〉〈Ψ|. Finally, note that ‖|Ψ〉‖2 = 1.

Test 2. Measure |Σ (S)〉 in the computational basis. Let i∗ be the resulting
standard basis state. If i∗ is even, then output 0. Otherwise apply
Pσpre(S) to |i∗〉 and measure in the standard basis. If the state is in the
set [N], then output 1, else output 0.

Completeness. Here we have that 1n ∈ LA, that is, one gets An = Pσpre(S),
with S ∈ Sn

odd. Thus, we can use as a witness state the set S, that is,

|Σ (S)〉 = |S〉 . (5.18)

If Test 1 is implemented, then the verifier will output 1 with probability 1.
Why? The reason is that Pσpre(S) will transform |S〉 to |Ψ〉, as the Note 5.5
suggests. That is, the map Pσpre(S) applies a uniformly-at-random permuta-
tion σ : S→ [N].

If Test 2 is implemented, then the verifier will output 1 with probability
1. Why? The reason is that the measured basis state i∗ will be odd, and,
moreover, after we apply to it the map Pσpre(S), we get something in [N].
See the Note 5.5.

Averaging over both tests, we get that the verifier accepts with probability
equal to 1.

Soundness. Now suppose that 1n /∈ LA. That is, An = Pσpre(S), for some
set S ∈ Sn

bal.

We assume, for βi ∈ C, for every i, and ∑N2

i=1 |βi|2 = 1, that the witness is

|Σ (S)〉 =
N2

∑
i=1

βi |i〉

= |Σ〉 . (5.19)
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Before we proceed, with the acceptance probability computation, we note
that

〈i| P†
σ = 〈σ (i)|
= |σ (i)〉†

= (Pσ |i〉)† . (5.20)

Now, the probability that the verifier will output 1, after performing Test 1,
is

pi = Tr
(
Π|Ψ〉ρ

)
= Tr

(
Π|Ψ〉Pσpre(S) (|Σ〉〈Σ|)

)
= Tr

Π|Ψ〉
1∣∣σpre (S)

∣∣ ∑
σ∈σpre(S)

Pσ |Σ〉〈Σ| P†
σ


= Tr

Π|Ψ〉
1∣∣σpre (S)

∣∣ ∑
σ∈σpre(S)

Pσ |Σ〉〈Σ| P†
σ


= Tr

Π|Ψ〉
1∣∣σpre (S)

∣∣ ∑
σ∈σpre(S)

Pσ

(
N2

∑
i=1

βi |i〉
)(

N2

∑
j=1

β∗j 〈j|
)
P†

σ


= Tr

Π|Ψ〉
1∣∣σpre (S)

∣∣ ∑
σ∈σpre(S)

(
N2

∑
i=1

βi |σ (i)〉
)(

N2

∑
j=1

β∗j 〈σ (j)|
)

= Tr

Π|Ψ〉
1∣∣σpre (S)

∣∣ ∑
σ∈σpre(S)

N2

∑
i,j=1

βiβ
∗
j |σ (i)〉 〈σ (j)|


=

1∣∣σpre (S)
∣∣Tr

Π|Ψ〉 ∑
σ∈σpre(S)

N2

∑
i,j=1

βiβ
∗
j |σ (i)〉 〈σ (j)|


=

1∣∣σpre (S)
∣∣Tr

|Ψ〉〈Ψ| ∑
σ∈σpre(S)

N2

∑
i,j=1

βiβ
∗
j |σ (i)〉 〈σ (j)|


=

1∣∣σpre (S)
∣∣Tr

( N

∑
k=1

1√
N
|k〉
)(

N

∑
m=1

1√
N
〈m|
)

∑
σ∈σpre(S)

N2

∑
i,j=1

βiβ
∗
j |σ (i)〉 〈σ (j)|


=

1
N
∣∣σpre (S)

∣∣Tr

( N

∑
k=1
|k〉
)(

N

∑
m=1
〈m|
)

∑
σ∈σpre(S)

N2

∑
i,j=1

βiβ
∗
j |σ (i)〉 〈σ (j)|


=

1
N
∣∣σpre (S)

∣∣Tr

 N

∑
k=1
|k〉 ·

N

∑
m=1
〈m| · ∑

σ∈σpre(S)

N2

∑
i,j=1

βiβ
∗
j |σ (i)〉 〈σ (j)|


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=
1

N
∣∣σpre (S)

∣∣Tr

 N

∑
k,m=1

|k〉〈m| · ∑
σ∈σpre(S)

N2

∑
i,j=1

βiβ
∗
j |σ (i)〉 〈σ (j)|


=

1
N
∣∣σpre (S)

∣∣Tr

 N

∑
k,m=1

∑
σ∈σpre(S)

N2

∑
i,j=1
|k〉〈m| βiβ

∗
j |σ (i)〉 〈σ (j)|


=

1
N
∣∣σpre (S)

∣∣Tr

 N

∑
k,m=1

∑
σ∈σpre(S)

N2

∑
i,j=1

βiβ
∗
j |k〉〈m| |σ (i)〉 〈σ (j)|


=

1
N
∣∣σpre (S)

∣∣Tr

 N

∑
k,m=1

∑
σ∈σpre(S)

N2

∑
i,j=1

βiβ
∗
j |k〉 〈m|σ (i)〉 〈σ (j)|

 , (5.21)

where, in order to get 〈m|σ (i)〉 = 1, and not 〈m|σ (i)〉 = 0, we see that
m = σ (i), or i ∈ S, since m ∈ [N], and σ : S→ [N]. Next, for i ∈ S, we have
that

pi =
1

N
∣∣σpre (S)

∣∣Tr

 N

∑
k=1

∑
σ∈σpre(S)

∑
i∈S

βi

N2

∑
j=1

β∗j |k〉 〈σ (j)|


=

1
N
∣∣σpre (S)

∣∣ N

∑
k=1

∑
σ∈σpre(S)

∑
i∈S

βi

N2

∑
j=1

β∗j Tr (|k〉 〈σ (j)|)

=
1

N
∣∣σpre (S)

∣∣ N

∑
k=1

∑
σ∈σpre(S)

∑
i∈S

βi

N2

∑
j=1

β∗j 〈k|σ (j)〉, (5.22)

where, in order to get 〈k|σ (j)〉 = 1, and not 〈k|σ (j)〉 = 0, we see that
k = σ (j), or j ∈ S, since k ∈ [N], and σ : S → [N]. Finally, for j ∈ S, we
have that

pi =
1

N
∣∣σpre (S)

∣∣ ∑
σ∈σpre(S)

∑
i∈S

βi ∑
j∈S

β∗j

=
1

N
∣∣σpre (S)

∣∣ ∑
σ∈σpre(S)

∑
i,j∈S

βiβ
∗
j

=
1

N
∣∣σpre (S)

∣∣ ∣∣σpre (S)
∣∣ ∑

i,j∈S
βiβ
∗
j

=
1
N ∑

i,j∈S
βiβ
∗
j

=
1
N ∑

i∈S
βi ∑

j∈S
β∗j

=
1
N ∑

i∈S
βi

(
∑
j∈S

β j

)∗
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=
1
N

∣∣∣∣∣∑i∈S
βi

∣∣∣∣∣
2

. (5.23)

In the case that Test 2 is implemented, the probability that the verifier will
output 1 is

pii = ∑
i∈Zodd∩S

|βi|2 , (5.24)

because in order for the verifier to accept, it must, at first, measure an odd
basis state i, and, also, this state i has to be in S in order for the secret
permutation, of the CPTP map, to send it in the desired set [N]. Now,
calculations! We have that

1 = ∑
i∈S
|βi|2 + ∑

i/∈S
|βi|2

=
1√
2

∑
i∈Zeven∩S

|βi|2 +
√

2− 1√
2

∑
i∈Zeven∩S

|βi|2

+ ∑
i∈Zodd∩S

|βi|2 + ∑
i/∈S
|βi|2

=
1√
2

∑
i∈Zeven∩S

|βi|2 + ∑
i∈Zodd∩S

|βi|2

+

√
2− 1√

2
∑

i∈Zeven∩S
|βi|2 + ∑

i/∈S
|βi|2 . (5.25)

By applying the Cauchy-Schwarz inequality, we get that(
∑

i∈Zeven∩S
12

)(
∑

i∈Zeven∩S
|βi|2

)
≥
∣∣∣∣∣ ∑
i∈Zeven∩S

βi

∣∣∣∣∣
2

,

or

N
2 ∑

i∈Zeven∩S
|βi|2 ≥

∣∣∣∣∣ ∑
i∈Zeven∩S

βi

∣∣∣∣∣
2

,

or

∑
i∈Zeven∩S

|βi|2 ≥
2
N

∣∣∣∣∣ ∑
i∈Zeven∩S

βi

∣∣∣∣∣
2

,

or √
∑

i∈Zeven∩S
|βi|2 ≥

√
2
N

∣∣∣∣∣ ∑
i∈Zeven∩S

βi

∣∣∣∣∣ . (5.26)
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Of course,

∑
i∈Zeven∩S

|βi|2 ≥
√

∑
i∈Zeven∩S

|βi|2

≥
√

2
N

∣∣∣∣∣ ∑
i∈Zeven∩S

βi

∣∣∣∣∣ , (5.27)

and

∑
i∈Zodd∩S

|βi|2 ≥
√

∑
i∈Zodd∩S

|βi|2

≥
√

2
N

∣∣∣∣∣ ∑
i∈Zodd∩S

βi

∣∣∣∣∣ . (5.28)

So,

1 = ∑
i∈S
|βi|2 + ∑

i/∈S
|βi|2

=
1√
2

∑
i∈Zodd∩S

|βi|2 + ∑
i∈Zeven∩S

|βi|2

+

√
2− 1√

2
∑

i∈Zodd∩S
|βi|2 + ∑

i/∈S
|βi|2

≥
√

1
N

∣∣∣∣∣ ∑
i∈Zodd∩S

βi

∣∣∣∣∣+
√

2
N

∣∣∣∣∣ ∑
i∈Zeven∩S

βi

∣∣∣∣∣
+

√
2− 1√

2
∑

i∈Zodd∩S
|βi|2 + ∑

i/∈S
|βi|2

≥
√

1
N

∣∣∣∣∣∑i∈S
βi

∣∣∣∣∣+
√

2− 1√
2

∑
i∈Zodd∩S

|βi|2 + ∑
i/∈S
|βi|2

≥
√

1
N

∣∣∣∣∣∑i∈S
βi

∣∣∣∣∣+
√

2− 1√
2

∑
i∈Zodd∩S

|βi|2

=

√
1
N
√

Npi +

√
2− 1√

2
pii

=
√

pi +

√
2− 1√

2
pii, (5.29)

or, equivalently,

1 ≥ √pi +

√
2− 1√

2
pii,
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or

√
pi ≤ 1−

√
2− 1√

2
pii,

or

pi ≤
(

1−
√

2− 1√
2

pii

)2

. (5.30)

Thus, the average probability the verifier outputs 1 is

1
2
(pi + pii) ≤

1
2

(1−
√

2− 1√
2

pii

)2

+ pii

 . (5.31)

Taking the derivative of the right-hand side, we see that it is positive for
every pii ∈ [0, 1], and an ascending function on pii, so, in order to maximize
the right-hand side we take the value pii = 1. Thus, one is able to observe
that

1
2
(pi + pii) ≤

3
4
= 0.75. (5.32)

Now, we note that 0.75 � 1, which means that there is a gap between
the acceptance probabilities in the completeness and soundness parts of
the verification procedure. Thus, by employing standard error-reduction
techniques [80] we can put this problem in SQMAA1 .

Part Two: Something is not in QCMAA

In this subsection, we show that there exists some randomized-preimage-
appropriate oracle A, such that LA is not in QCMAA. We do this by first
reducing our problem to a simpler, yet in a sense equivalent, problem, which
is suitable for applying the template, about obtaining oracle separations
against QCMA, introduced by Fefferman and Kimmel.

Definition 5.9 (Preimage-appropriate Oracles). LetA be a countably-infinite
set of unitaries, that is,

A = {A1,A2, . . . } , (5.33)

where each An implements a unitary operation on 2n qubits. We say that
the oracle A is preimage-appropriate, if, for every natural n, one has that

An = Pσ, (5.34)

for some permutation σ such that Spre (σ) ∈ Sn
odd ∪ Sn

bal.
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Theorem 5.10. Given a randomized-preimage-appropriate oracle, namely
A, let 1n ∈ LA, if

An = Pσpre(S), (5.35)

for S ∈ Sn
odd. Given a preimage-appropriate oracle Ã, let 1n ∈ LA, if

An = Pσ, (5.36)

for σ such that Spre (σ) ∈ Sn
odd. Then, if there exists a QCMAA-machine,

namely M, that decides LA, for every randomized-preimage-appropriate
oracle A, then there is a QCMAÃEXP-machine, namely M̃, that decides LÃ, for
every preimage-appropriate oracle Ã, such that M̃ uses at most a polynomial
number of queries to Ã, and, on input 1n, M̃ takes as input a classical witness
w that depends only on the set Spre (σ).

For the proof of Theorem 5.10, see the work of Fefferman and Kimmel [27].
We will now show that LA /∈ QCMAAEXP, by using the template introduced
by Fefferman and Kimmel.

Lemma 5.11. There exists a preimage-appropriate oracle A, such that there
is no QCMAAEXP-machine that decides LA, using a polynomial number of
queries, where the classical witness, on input 1n, for n ∈N, depends only
on Spre (σ), for An = Pσ.

To prove Lemma 5.11, we use the aforementioned template which consists
of four criteria, that are presented, and subsequently proved, below.

Lemma 5.12 (Criterion 1). The oracle must be of the form

A = {A1,A2, . . . } (5.37)

where each An implements a p1 (n)-qubit unitary, for p1 (n) being a poly-
nomial in n ∈ N, and U ∈ Un = Un

X ∪Un
Y, where Un

X and Un
Y are disjoint

families of unitaries on p1 (n) qubits. To each unitary U in Un is associated
a (not necessarily unique) subset

SU (U ) ⊆
[
2p2(n)

]
, (5.38)

for p2 (n) a polynomial in n ∈N. We further require that

Sn
X = {S | S = SU (U ) and U ∈ Un

X} (5.39)

is disjoint from

Sn
Y = {S | S = SU (U ) and U ∈ Un

Y} . (5.40)
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Finally, the language LA must be such that 1n ∈ LA, if and only if An ∈ Un
X.

Proof. In our case, Criterion 1 is true for

p1 (n) = 2n, (5.41)

p2 (n) = 2n, (5.42)

Sn
X = Sn

odd, (5.43)

Sn
Y = Sn

bal, (5.44)

Un
X =

{
Pσ | Spre (σ) ∈ Sn

odd
}

, (5.45)

and

Un
Y =

{
Pσ | Spre (σ) ∈ Sn

bal
}

. (5.46)

Lemma 5.13 (Criterion 2). The optimal witness to a QCMAA machine, that
decides a language LA, as in Criterion 1, on input 1n, must depend only on
the set SU (U ), where U = An.

Proof. Here, we only consider witnesses that depend on the set Spre (σ),
which is the set SU (U ), for U = An = Pσ.

Before we present, and prove, Criterion 3, we need the Definition 5.14.

Definition 5.14 (Distributed Classes of Sets). We define a class of sets S to
be (β, S1)-distributed, if satisfies the following three conditions:

1. there exists a set Sfixed, such that Sfixed ⊆ S for all S ∈ S,

2. there exists a subclass S′ ⊆ S1, such that Sfixed ⊆ S for all S ∈ S′, and

3. for every element i, such that i ∈ (
⋃

S∈S S) \ Sfixed, we have that the
element i appears in at most a N−β-fraction of the sets S ∈ S.

Lemma 5.15 (Criterion 3). Let α ∈ (0, 1/2) be some constant, and let p (n) be
a polynomial function in n. Then, there exists a positive integer n∗ (p (n) , α),
such that for every n > n∗ (p (n) , α), and every subset S ⊆ Sn

odd, with

|S| ≥ |Sn
odd| 2−p(n), (5.47)

there is a subset S′ ⊆ S such that is
(
α, Sn

bal

)
-distributed.
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Proof. We construct the desired S′, by following the Fixing Procedure of
Fefferman and Kimmel [27]. The Fixing Procedure is illustrated, below, in
the Algorithm 4.

Algorithm 4 The Fixing Procedure.

1: procedure FIXINGPROCEDURE(S)
2: S′ ← S
3: Sfixed ← ∅
4: while ∃i ∈ ⋃S∈S′ S′ : i is odd do
5: v (i)← the number of sets S ∈ S′, such that i ∈ S
6: if |S′| > v (i) ≥ |S′|N−α then
7: S′ ← {S | S ∈ S′ and i ∈ S}
8: Sfixed ← Sfixed ∪ {i}
9: end if

10: end while
11: return S′

12: end procedure

By construction, S′ satisfies the conditions 1 and 3, of the Definition 5.14.
That is, the condition 1 is met because we explicitly create such a common
subset Sfixed, and the condition 2 is met because we fix all the odd elements
that appear in many sets, that is, in more than a specific portion of sets. We
now have to prove that S′ will also satisfy the condition 2.

We naturally expect that Sfixed has at most N/2 odd elements, since it is a
subset of every set S of some subclass of the class Sn

bal, because S′ is
(
α, Sn

bal

)
-

distributed, and, also, Sfixed is expected to have zero even elements, since it
is a subset of every set S in the class Sn

odd.

Okay, the truthfulness of the fact that Sfixed has zero even elements is clearly
visible from the Fixing Procedure, since we only fix odd elements.

Now, suppose that, at some point, we have N/2 odd elements in the com-
mon set Sfixed, and, simultaneously, an odd element i∗ appears in a greater
than a N−α-fraction of the sets in the class S′. What we want is to reach at
a contradiction. In this way we will show that this element i∗ is not going
to be chosen, as a member of the set Sfixed, by our Fixing Procedure. This
would imply the truthfulness of the desired property |Sfixed| ≤ N/2.

We now define the set

S′′ =
{

S | S ∈ S′ and i∗ ∈ S
}

. (5.48)

Since (Sfixed ∪ {i∗}) ⊆ S for all S ∈ S′′, there are N/2− 1 odd elements that
can be freely chosen from the remaining N2/2− N/2− 1 odd elements, for
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each set in S′′. Thus, we have that

∣∣S′′∣∣ ≤ (N2/2− N/2− 1
N/2− 1

)
. (5.49)

By our assumption, regarding the number of sets that contain i∗, we have
that ∣∣S′′∣∣ ≥ ∣∣S′∣∣N−α. (5.50)

So,

∣∣S′∣∣ ≤ (N2/2− N/2− 1
N/2− 1

)
Nα

≤
(

N2/2
N/2

)
Nα

≤
(

N2/2
N/2

e
)N/2

Nα

≤ (Ne)N/2 Nα

= 2N/2 log(Ne)+α log N

= 2O(N)+(N/2) log N . (5.51)

This is a bound on |S′|. It turns out that one can devise yet another bound
on this quantity. To do this, one takes into consideration the fact that∣∣S′∣∣ ≥ |Sn

odd| 2−p(n), (5.52)

straight from our lemma-hypothesis, and the fact that, in each cycle of the
Fixing Procedure, the size of the set |S′| is reduced at most by a factor equal
to N−α. So, if we take into consideration that the Fixing Procedure runs for
at most N/2 cycles, we have that∣∣S′∣∣ ≥ |Sn

odd| 2−p(n)N−αN/2

=

(
N2/2

N

)
2−p(n)N−αN/2

≥
(

N2/2
N

)N

2−p(n)N−αN/2

= (N/2)N 2−p(n)N−αN/2

= 2N log(N/2)−p(log N)−αN/2 log N

= 2−O(N)+N log(N)−αN/2 log N

= 2−O(N)+(N/2)(2−α) log N . (5.53)

100



We observe that the bound of (5.53) dominates that of (5.51), for every value
of the constant α ∈ (0, 1/2), and for large enough values of N, that is, for
values of N satisfying N > 2n∗ , where n∗ depends only on p (n) and α. This
is, of course, a contradiction, and so all odd elements out of Sfixed will be
contained in at most a N−α-fraction of S ∈ S′. Hence, at the next cycle of
the Fixing Procedure, this odd element i∗ will not be added to Sfixed, and the
number of odd elements in Sfixed will remain bounded by N/2. The same
logic can be of course reapplied to future cycles of the Fixing Procedure,
guaranteeing this desired property!

The condition 2 is now met, since the fact |Sfixed| ≤ N/2 implies that there
truly exists some subclass of Sn

bal, such that Sfixed is a subset of each of its
sets.

Lemma 5.16 (Criterion 4). Suppose that SX ⊆ Sn
odd is

(
δ, Sn

bal

)
-distributed,

for some positive δ. Then, for every quantum algorithm G, there exists
a permutation σx, such that Spre (σx) ∈ Sn

odd, and a permutation σy, such
that Spre

(
σy
)
∈ Sn

bal, such that given oracle access to either Pσx or Pσy , the
quantum algorithm G cannot distinguish them with probability at least ε,
without using at least (

1− 2
√

ε (1− ε)

)
Nδ/2

queries.

Proof. Since SX ⊆ Sn
odd is

(
δ, Sn

bal

)
-distributed, there exists a set Sfixed such

that Sfixed ⊆ S, for all S in SX. Thus, Sfixed contains at most N/2 odd
elements, since it is

(
δ, Sn

bal

)
-distributed and, therefore, there are some sets S

in Sn
bal that contain it as a subset, and, also, contains no even elements, since

it is contained in every S ∈ SX ⊆ Sn
odd.

We now define

SY = {S | S ∈ Sn
bal and Sfixed ⊆ S} , (5.54)

σX =
{

σ | Spre (σ) ∈ SX
}

=
⋃

Sx∈SX

σpre (Sx) , (5.55)

and

σY =
{

σ | Spre (σ) ∈ SY
}
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=
⋃

Sy∈SY

σpre
(
Sy
)

. (5.56)

We are now going to define a relation R ⊆ σX × σY, that we will later on
employ to apply our quantum adversary bound argument.

For every
(
Sx, Sy

)
∈ SX × SY, we will create a one-to-one matching in

the relation R between the elements of σpre (Sx) and σpre (Sx). We first
choose any permutation σ∗x ∈ σpre (Sx). Then, we seek for some desired
permutation σ∗y ∈ σpre

(
Sy
)

such that

1. ∀j ∈
(
Sx ∩ Sy

)
: σ∗x (j) = σ∗y (j),

2. ∀j ∈
[
N2] \ (Sx ∪ Sy

)
: σ∗x (j) = σ∗y (j), and

3. ∀j ∈ Sx \
(
Sx ∩ Sy

)
, ∃i ∈ Sy \

(
Sx ∩ Sy

)
: σ∗x (j) = σ∗y (i), and

σ∗x (i) = σ∗y (j) .

Since every permutation, with preimage Sy, is in σpre
(
Sy
)
, there will always

be a permutation σ∗y such that satisfies the above three criteria. We now let(
σ∗x , σ∗y

)
∈ R. (5.57)

For i ∈
[
N!
(

N2 − N
)
!
]
, let τn = {τi}i ⊆ σn be the set of all permutations,

from
[
N2] to

[
N2], such that they do not mix the first N elements with the

rest of the N2 − N elements.

Note 5.17. Note that we denote by (a ◦ b)� the permutation obtained by
first applying the permutation b and then the permutation a, on the “per-
mutable” object �.

Note 5.18. Note, also, that, for every pair of sets
(
Sx, Sy

)
∈ SX × SY, one

has that

σpre (Sx) = {τ ◦ σ∗x | τ ∈ τn} , (5.58)

and

σpre
(
Sy
)
=
{

τ ◦ σ∗y | τ ∈ τn
}

. (5.59)

The reason behind these equalities is that the permutations {τi ◦ σ}i do not
alter the preimage of the permutation σ.
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Given a permutation τ ∈ τn, we have that

1. ∀j ∈
(
Sx ∩ Sy

)
: τ ◦ σ∗x (j) = τ ◦ σ∗y (j),

2. ∀j ∈
[
N2] \ (Sx ∪ Sy

)
: τ ◦ σ∗x (j) = τ ◦ σ∗y (j), and

3. ∀j ∈ Sx \
(
Sx ∩ Sy

)
, ∃i ∈ Sy \

(
Sx ∩ Sy

)
: τ ◦ σ∗x (j) = τ ◦ σ∗y (i), and

τ ◦ σ∗x (i) = τ ◦ σ∗y (j) .

For every τ ∈ τn, we let (
τ ◦ σ∗x , τ ◦ σ∗y

)
∈ R. (5.60)

In this way, we are able to create a one-to-one matching between σpre (Sx)

and σpre
(
Sy
)
. We, then, repeat this process for every pair of sets

(
Sx, Sy

)
∈

SX × SY, and this is the relation R we want!

Now we analyze this relation R we created.

Notice that each σx ∈ σX is paired to exactly one element σy of σpre
(
Sy
)
, for

each set Sy ∈ SY. Thus, the number of the permutations σy matched to σx

is equal to m = |SY|. In a similar fashion, one has that the number of the
permutations σx ∈ σpre (Sx) matched to any σy ∈ σY is equal to m′ = |SX|,
since there is a unique σx matched to σy: one for every Sx ∈ SX.

We now consider a pair
(
σx, σy

)
∈ R. We, also, consider an element j such

that
σx (j) 6= σy (j) , (5.61)

and, then, we discriminate between two cases, regarding whether j is in Sx

or Sy.

Case where j ∈ Sx. We upper bound lx,j, that is, the number of the permu-
tations σy′ such that

(
σx, σy′

)
∈ R. Since σx is matched to exactly one σy′ , for

each Sy′ ∈ SY, we have that

lx,j ≤ |SY| . (5.62)

We now upper bound ly,j, that is, the number of permutations σx′ that are
such that

(
σx′ , σy

)
∈ R. By the construction of R, and (5.61), we get that

j /∈ Sy ⊇ Sfixed. Also, by the construction of R, we get that if j /∈ Sy, and
σx′ (j) 6= σy (j), then one has that j ∈ Sx′ . Since σy is paired to exactly one
σx′ , for every set Sx′ ∈ SX, the quantity ly,j is bounded above by the number
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of sets Sx′ ∈ SX which contain the number j. Since the set SX is
(
δ, Sn

bal

)
-

distributed, we get that at most a N−δ-fraction of the sets in SX can contain
j, since j /∈ Sfixed. So, we get that

ly,j ≤ |SX|N−δ. (5.63)

In total, we have that

lx,jly,j ≤ |SX| |SY|N−δ. (5.64)

Let us now look at the other case.

Case where j ∈ Sy. We upper bound ly,j, that is, the number of σx′ such
that

(
σx′ , σy

)
∈ R, and σx′ (j) 6= σy (j). Since σy is paired to exactly one

element σx′ , for each Sx′ ∈ SX, we have that

ly,j ≤ |SX| . (5.65)

We now upper bound lx,j, that is, the number of permutations σy′ that are
such that

(
σx, σy′

)
∈ R, and σx (j) 6= σy′ (j). By the construction of R, and

(5.61), we have that j /∈ Sx ⊇ Sfixed. Also, by the contruction of R, if j /∈ Sx,
and σx (j) 6= σy′ (j), then j ∈ Sy′ . Thus, since σx is paired to exactly one
element σy′ , for every Sy′ , we have that lx,j is upper bounded by the number
of the sets Sy′ ∈ SY that contain the number j /∈ Sfixed. Thus, if Sfixed has
kodd elements, and j is odd, we get that

lx,j =

(
N2/2− kodd − 1
N/2− kodd − 1

)(
N2/2
N/2

)
≤ N/2

N2/2− N/2

(
N2/2− kodd

N/2− kodd

)(
N2/2
N/2

)
=

N/2
N2/2− N/2

|SY| . (5.66)

In the case that j ∈ Sy′ is even, we get that

lx,j =

(
N2/2− kodd

N/2− kodd

)(
N2/2− 1
N/2− 1

)
≤ N/2

N2/2− N/2
|SY| . (5.67)

In the Equations (5.66) and (5.67), we used the fact that

|SY| =
(

N2/2− kodd

N/2− kodd

)(
N2/2
N/2

)
, (5.68)
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which holds since each S ∈ SY is a superset of Sfixed, which contains only
odd elements, and |Sfixed| = kodd. Also, the one half of the elements of S are
odd, and the other half of its elements are even. Therefore

lx,jly,j ≤
N/2

N2/2− N/2
|SX| |SY|

= |SX| |SY| O
(

N−1
)

. (5.69)

Resolution. Clearly, as one observes, the bound of (5.64) dominates the
bound of (5.69), since δ < 1, so we can write that√

mm′

lx,jly,j
≥

√
|SX| |SY|
|SX| |SY|N−δ

= Nδ/2. (5.70)

Thus, by employing Lemma 5.7, we get that for any quantum algorithm
which makes T queries to an oracle Pσx , where σx is promised to be either in
σX or σY, then there exist at least one element of σX and at least one element
of σY, such that, in order for the probability, that our quantum algorithm
effectively distinguishes between the corresponding oracles, to be at least
1− ε, for ε ≥ 0, one has that

T ≥
(

1− 2
√

ε (1− ε)

)√
mm′

lmax
≤
(

1− 2
√

ε (1− ε)

)√
mm′

lx,jly,j
(5.71)

since lmax ≥ lx,jly,j, or

T ∈ Ω
(

Nδ/2
)

, (5.72)

in the worst case. This is equivalent to saying that there exists one element
of σX and one element of σY such that in order for G to distinguish them,
with constant bias, G requires about T ∈ Ω

(
Nδ/2) queries.

We now present the theorem that we need to finish the separation. The proof
of this theorem, Theorem 5.19, can be found in the work by Fefferman and
Kimmel [27].

Theorem 5.19. Let A be a quantum oracle, and let LA be a language that
satisfies the Criteria 1, 2, 3, and 4. Then, the language LA requires exponen-
tially many queries, in order to be decided, for any QCMAA-machine. That
is, LA is hard for any verification—Merlin-Quantum-Arthur-style—setting,
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where the classical proof-Merlin is of polynomial size. We get LA /∈ QCMAA.
Equivalently, LA is hard for any efficient quantum algorithm, that verifies
short classical proofs, when it comes to query complexity.

Thus, since Theorem 5.19 applies, here, the language LA, for A being a
preimage-appropriate oracle, cannot be decided in the class QCMAA, by
any QCMAA-machine, by using only polynomially-many queries. Hence, the
language LA cannot be decided in QCMAAEXP, by any QCMAAEXP-machine,
by using only polynomially-many queries, again. We get that every QCMAAEXP-
machine is useless, given it uses at most polynomially-many queries to the
oracle. Finally, from Theorem 5.10, there is not any QCMAÃ-machine, for Ã
being a randomized-preimage-appropriate oracle, that decides LÃ. We are
done!

Note 5.20. The reason that Theorem 5.19 works well, here, is that the classes
QCMAA and QCMAAEXP are very similar, from a query complexity point of
view. Their differences are in their time bounds, not in their ability to extract
information from oracle queries.
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Chapter 6

Discussion and Conclusion

It is our hope that quantum computers will come into existence during our
lifetime and that they will be harnessed to computational tasks beyond the
reach of even the fastest possible classical computers.

— André Berthiaume, and Gilles Brassard,
Oracle Quantum Computing (1994)

Okay, so we proved a quantum-oracle separation. What does that imply?
What are the consequences? What does that mean for our world, and
computational complexity? Is this result any useful at all?

6.1 Relativized Worlds and Our Reality

Undoubtedtly, relativization brings to the table some weird consequences.
By employing, appropriate each time, oracles we are sometimes able to
prove things unattainable before, yet in cases disturbing, such as the result
where there exists some oracle A such that

IPA 6= PSPACEA, (6.1)

for IP denoting interactive proofs, although

IP = PSPACE. (6.2)

Similarly, the result

QMAA 6⊆ QMA1
A, (6.3)
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for some oracle A, implies that

BQPA 6⊆ ZQEXPA, (6.4)

for ZQEXP denoting zero-error quantum exponential-time, since

BQP ⊆ QMA, (6.5)

and

QMA1 ⊆ EXP

⊆ ZQEXP. (6.6)

However,
BQP ⊆ ZQEXP, (6.7)

and we get yet another alienating result.

From a methodological point of view, oracle results help us understand
better the power of complexity classes, since they shed light on the classes in
the realms of worlds where intriguing possibilities hold, like the existence of
polynomial-time deterministic algorithms for problems like VERTEX COVER,
or so.

6.2 About Our Result: What Have We Learned?

In this thesis, we studied some of the effects that relativized worlds exert on
the body of quantum complexity theory. In particular, we studied several
separations involving classical and quantum computational complexity
classes, in various relativized settings, induced by classical or quantum
oracles. At the end, we were able to prove a simple, yet novel, separation in
an appropriate relativized world.

To be more precise, we showed that there exists some quantum oracle A,
such that

SQMAA1 6⊆ QCMAA. (6.8)

In our proof, we thoroughly used the work by Fefferman and Kimmel [27],
in which they proved that

SQMAA 6⊆ QCMAA, (6.9)

by introducing a smart template for obtaining oracle separations against the
class QCMA. Note that

∃A : SQMAA1 6⊆ QCMAA ⇒ ∃A : SQMAA 6⊆ QCMAA, (6.10)

which means that our result is somewhat stronger.
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6.3 Future Work and Open Problems

This thesis, we also attempted to show that there exists some oracle U , such
that

QMAU1 6⊆ SQMAU1 . (6.11)

However, we were not able to prove it, yet.

6.3.1 First Idea

Our main intuition, about the truthfulness of the Equation (6.11), is the fact
that, for a quantum system on n qubits, there exist about

22n

subset states, since we can use, or not, any of the 2n possible basis states,
whereas there exist about

|C|2
n
� 22n

pure states, in total. It is obvious that there exist far more pure states than
subset-flavored ones. Thus, there must be some quantum cirquit-verifier
which is not perfectly convinced by any subset state, that is put forth, as a
purported proof, by any potential prover. But this is not a proof!

To formalize, a bit, our thoughts, we write the following about the closely re-
lated problem QMA

U [1]
1 6⊆ SQMA

U [1]
1 , that is, the problem where we allowed

to make only one query to the oracle U . Now, let, for some state |ψ〉, on n
qubits, U|ψ〉 be a quantum oracle [13] which somewhat conceals the state
|ψ〉, as follows:

U|ψ〉 |φ〉 =
{
− |ψ〉 if |φ〉 = |ψ〉, and
|φ〉 if 〈φ|ψ〉 = 0,

(6.12)

We now create a family of quantum oracles U , which is just a disjoint union
of “good” and “bad” oracles, namely

U = Ugood ] Ubad

= {Ur}r ]
{

Uq
}

q

= {Ui}i∈N , (6.13)

with, if we let I denote the identity transformation,

Ui =

{
U|ψ〉 for some |ψ〉, if the oracle Ui is good, and

I if the oracle Ui is bad.
(6.14)
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The problem is this: having an oracle Uk, and some purported proof |ψ〉,
about Uk ∈ Ugood, as an input, we want to decide whether Uk is a good, or
a bad, oracle, by making use of both the oracle Uk, and the proof |ψ〉. We
know that this problem is in QMA

U [1]
1 [13].

To show that this problem is not in SQMA
U [1]
1 , we are now looking for two

states, namely an acceptance and a rejection states, denoted by |φA〉 and |φR〉,
respectively, such that, if we let Πacc denote the projection to the acceptance
subspace, that is, the space that contains vectors which make our veifier
accept, we have

Pr [The verifier replies with Yes, in the Yes-case.]

= ‖Πacc |φA〉‖2
2

= 1, (6.15)

and

Pr [The verifier replies with Yes, in the No-case.]

= ‖Πacc |φR〉‖2
2

≤ ε, (6.16)

for some ε > 0. Note that the Equation (6.16) holds, by invoking some
error reduction technique [80, 103]. About these states one can write, while
letting the projector Π0 denote the projector that projects to the valid-inputs
subspace, letting V be some unitary transformation, and, finally, for some
unitary Ubad = I ∈ Ubad, that

|φR〉 = UbadVΠ0 |S〉
= IVΠ0 |S〉
= VΠ0 |S〉
=
∣∣θ′〉 (6.17)

or, if we decompose the ket |θ′〉 in the ket |θ〉, and the last register (γ0 |0〉+ γ1 |1〉),

|φR〉 = |θ〉 ⊗ (γ0 |0〉+ γ1 |1〉) (6.18)

or, if we decompose |θ〉 in the orthonormal
{
|ψ〉 ,

∣∣ψ⊥〉} basis, in which the
ket

∣∣ψ⊥〉 denotes a vector orthogonal to |ψ〉,

|φR〉 =
(

β0 |ψ〉+ β1

∣∣∣ψ⊥〉)⊗ (γ0 |0〉+ γ1 |1〉) (6.19)
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or, if we let αij = βi · γj, for every pair (i, j), we have that

|φR〉 = α00 |ψ〉 ⊗ |0〉+ α01 |ψ〉 ⊗ |1〉+ α10

∣∣∣ψ⊥〉⊗ |0〉+ α11

∣∣∣ψ⊥〉⊗ |1〉
= α00 |ψ〉 |0〉+ α01 |ψ〉 |1〉+ α10

∣∣∣ψ⊥〉 |0〉+ α11

∣∣∣ψ⊥〉 |1〉
= α00 |ψ, 0〉+ α01 |ψ, 1〉+ α10

∣∣∣ψ⊥, 0
〉
+ α11

∣∣∣ψ⊥, 1
〉

, (6.20)

with

‖|ψR〉‖2
2 = ∑

i∈{0,1}2

|αi|2

= 1, (6.21)

and, for Ugood = U|ψ〉 ∈ Ugood, for some |ψ〉,

|φA〉 = UgoodVΠ0 |S〉 (6.22)

= U|ψ〉VΠ0 |S〉 ,

or

= U|ψ〉 |φR〉

= U|ψ〉
(

α00 |ψ, 0〉+ α01 |ψ, 1〉+ α10

∣∣∣ψ⊥, 0
〉
+ α11

∣∣∣ψ⊥, 1
〉)

(6.23)

or, if we control the effect of the oracle U|ψ〉, according to the value of the
last register being one,

|φA〉 = α00 |ψ, 0〉 − α01 |ψ, 1〉+ α10

∣∣∣ψ⊥, 0
〉
+ α11

∣∣∣ψ⊥, 1
〉

, (6.24)

with

‖|ψA〉‖2
2 = ∑

i,j∈{0,1}

∣∣∣(−1)j(1−i) αij

∣∣∣2
= ∑

i,j∈{0,1}

∣∣αij
∣∣2

= 1. (6.25)

We now observe that

|φA〉 − |φR〉 = −2α01 |ψ, 1〉 ,
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or

|φA〉 = |φR〉 − 2α01 |ψ, 1〉 . (6.26)

That is, we get

‖Πa |φA〉‖2
2 = 1

‖Πa (|φR〉 − 2α01 |ψ, 1〉)‖2
2 = 1(√

I (Πa (|φR〉 − 2α01 |ψ, 1〉) , Πa (|φR〉 − 2α01 |ψ, 1〉))
)2

= 1(√
(Πa (|φR〉 − 2α01 |ψ, 1〉))† Πa (|φR〉 − 2α01 |ψ, 1〉)

)2

= 1(√
(|φR〉 − 2α01 |ψ, 1〉)† Π†

aΠa (|φR〉 − 2α01 |ψ, 1〉)
)2

= 1

(|φR〉 − 2α01 |ψ, 1〉)† Π†
aΠa (|φR〉 − 2α01 |ψ, 1〉) = 1

(|φR〉 − 2α01 |ψ, 1〉)† ΠaΠa (|φR〉 − 2α01 |ψ, 1〉) = 1

(|φR〉 − 2α01 |ψ, 1〉)† Π2
a (|φR〉 − 2α01 |ψ, 1〉) = 1

(|φR〉 − 2α01 |ψ, 1〉)† Πa (|φR〉 − 2α01 |ψ, 1〉) = 1

(〈φR| − 2α01 〈ψ, 1|)Πa (|φR〉 − 2α01 |ψ, 1〉) = 1, (6.27)

or

1 = 〈φR|Πa |φR〉 − 2α01 〈φR|Πa |ψ, 1〉
− 2α01 〈ψ, 1|Πa |φR〉+ 4α2

01 〈ψ, 1|Πa |ψ, 1〉 . (6.28)

From this point on, one can make some assumptions about the quantities
that emerge in the Equation (6.28), and then proceed with the necessary
calculations, that will, hopefully, helps us gain some informative insights
about the power of subset states. We decided that is of no good use, for the
reader, to provide him, or her, with extra information about what we tried
to show, since we are not sure about their soundness whatsoever.

6.3.2 Second Idea

As a second attempt, for n ∈N, we tried to sneak uncomputable amplitudes,
namely ui, into the quantum subset-state proof

|ψ〉 =
2n

∑
i=1

ui |i〉 , (6.29)
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with ∀i : ui ∈ C, and

2n

∑
i=1
|ui|2 = 1, (6.30)

in order to separate the class QMAU1 not only from the class SQMAU1 , but
from the even more powerful class QCMAUEXP,EXP,1 ⊇ SQMAU1 . Note that
the class QCMAUEXP,EXP,1 is that version of QCMAUEXP where we have both
perfect completeness, and the length of the classical witness-bitstring is
exponential, in size, as a function of the input size. Here, the employed
oracle, namely U , is the same with that of the Equation (6.13).

Now, let us back up a bit. Why is this approach “wrong?” It is, because
sneaking in uncomputable stuff, like complex numbers from the Mandelbrot
set [28], surely feels like cheating.

Alright, we now owe to the reader some justifications, about things we
wrote earlier. It is the case that

QCMAUEXP,EXP,1 ⊇ SQMAU1 , (6.31)

since an exponential-length classical witness can explicitly describe the
subset-state quantum proof |S〉. Also, the quantum machine, which does
the verification, is capable of reading the whole witness, since this machine
is allotted exponential computation time. We remind that

|S〉 = ∑
i∈S

1√
|S|
|i〉 , (6.32)

for some S ⊆
[
2p(n)

]
, where p (n) is a polynomial on n, and n is the number

of qubits on which our quantum system operates on.

Finally, we can construct a QMA1-like protocol [13] for the acceptance of the
state |ψ〉, yet it seems that every QCMAEXP,EXP,1-like protocol will not be able
to recognize that |ψ〉 is a good witness, because even with exponential time,
allotted for computation, we cannot compute, or even verify, uncomputable
objects.

Note 6.1. We highlight, about the Hadamard transformation, that

H |0〉 = 1√
2
|0〉+ 1√

2
|1〉 , (6.33)

and

H |1〉 = 1√
2
|0〉 − 1√

2
|1〉 . (6.34)
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Also, note the important fact that H = H−1, or H2 = I. Thus,

H
(

1√
2
|0〉+ 1√

2
|1〉
)
= |0〉 , (6.35)

and

H
(

1√
2
|0〉 − 1√

2
|1〉
)
= |1〉 . (6.36)

The QMA1 acceptance protocol is this: on input 1n, for some natural n, and
the state |ψ〉, on n qubits, as the purported proof that Un = U|ψ〉 ∈ Ugood,
we first prepare the state

|0〉 ⊗ |ψ〉 = |0〉 |ψ〉 , (6.37)

and, then, we apply (H ⊗ I⊗n) to get the state(
H ⊗ I⊗n) |0〉 |ψ〉 = (H ⊗ I⊗n) |0〉 ⊗ |ψ〉

= H |0〉 ⊗ I⊗n |ψ〉

=

(
1√
2
|0〉+ 1√

2
|1〉
)
|ψ〉

=
1√
2
|0〉 |ψ〉+ 1√

2
|1〉 |ψ〉

= |κ〉 (6.38)

or, after we apply the transformation Un ∈ U , conditioned on the first qubit
being 1, and assuming that Un = U|ψ〉 ∈ Ugood ⊆ U is true,

Un |κ〉 =
1√
2
|0〉 |ψ〉+ 1√

2
|1〉Un |ψ〉

=
1√
2
|0〉 |ψ〉+ 1√

2
|1〉 (− |ψ〉)

=
1√
2
|0〉 |ψ〉 − 1√

2
|1〉 |ψ〉

=
∣∣κ′〉 . (6.39)

Now, if we apply (H ⊗ I⊗n) to |κ′〉, we have

(
H ⊗ I⊗n) ∣∣κ′〉 = (H ⊗ I⊗n) ( 1√

2
|0〉 |ψ〉 − 1√

2
|1〉 |ψ〉

)
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=
(

H ⊗ I⊗n) (( 1√
2
|0〉 − 1√

2
|1〉
)
|ψ〉
)

=
(

H ⊗ I⊗n) (( 1√
2
|0〉 − 1√

2
|1〉
)
⊗ |ψ〉

)
= H

(
1√
2
|0〉 − 1√

2
|1〉
)
⊗ I⊗n |ψ〉

= |1〉 ⊗ |ψ〉
= |1〉 |ψ〉 . (6.40)

We observe that a measurement of the first register will yield 1, as a result,
with certainty. So, if we measure the first register and get 1, we accept,
else we reject. If Un ∈ Ugood, then we accept with certainty, as we wrote.
However, for every 1m, such that Um = I ∈ Ubad, we accept with probability
zero. This holds, because in the case where we are handed some |φ〉, on
m ∈N qubits, to support the false proposition Um ∈ Ugood, we have, for the,
respective to the state |κ′〉, quantum state

∣∣κ′2〉 = 1√
2
|0〉 |φ〉+ 1√

2
|1〉 |φ〉 ,

where Um |φ〉 = I |φ〉 = |φ〉, that

(
H ⊗ I⊗m) ∣∣κ′2〉 = (H ⊗ I⊗m) ( 1√

2
|0〉 |φ〉+ 1√

2
|1〉 |φ〉

)
=
(

H ⊗ I⊗m) (( 1√
2
|0〉+ 1√

2
|1〉
)
|φ〉
)

=
(

H ⊗ I⊗m) (( 1√
2
|0〉+ 1√

2
|1〉
)
⊗ |φ〉

)
= H

(
1√
2
|0〉+ 1√

2
|1〉
)
⊗ I⊗m |φ〉

= |0〉 ⊗ |φ〉
= |0〉 |φ〉 . (6.41)

That is, if we measure the first register, we are going to get the result 1 with
probability equal to zero! This is clearly a QMA1 protocol, for this problem.
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