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ABSTRACT 

 

The active hydrothermal vent field on the floor of the Kolumbo shallow-submarine 

arc-volcano, near Santorini, Hellenic volcanic arc features striking bulk enrichment of 

polymetallic spires in trace metals of economic and environmental importance: Sb, Tl, Hg, 

As, Au, Ag, Pb and Zn indicating a new hybrid seafloor analogue of epithermal-to-volcanic-

hosted-massive-sulfide deposits. Τhe Kolumbo submarine hydrothermal vent field marks an 

Hg and Ag geochemical anomaly compared to the only three reports of low Hg and Ag 

concentrations in the Hellenic Volcanic Arc. 

Sphalerite is an important host mineral for a wide range of minor and trace elements. 

We have used Environmental Scanning Electron Microscopy (ESEM) and electron 

microprobe analyses (EMPA) to investigate the distribution of Hg, Ag, Pb, Sb, As, Cd and Cu 

in samples from the active hydrothermal vent field of Kolumbo (Santorini) submarine 

volcano. The samples consist predominantly of pyrite/marcasite, barite, sphalerite, galena, 

unidentified Sb-Pb sulfosalts and opal. Additionally, rare stibnite and an unidentified non-

stoichiometric Zn-sulfide phase were also detected, for the first time. Mercurian (Hg) and 

argentiferous (Ag) sphalerite was detected for the first time in the Hellenic Volcanic Arc, in 

shallow seafloor (~500 mbsl) hydrothermal vent edifices (i.e. chimneys, mounds etc.) of the 

active hydrothermal vent system of Kolumbo shallow-submarine arc-volcano.  

The bulk trace metal enrichment of Hg and Ag in the chimneys is controlled by the 

modal abundance of sphalerite and its modifications that accompany the course of 

dissolution–reprecipitation processes during evolving hydrothermal activity and chimney 

growth. Kolumbo sphalerite occurs in three textural varieties, interpreted as a result of 

increasing maturity following dissolution–reprecipitation processes within the vent edifices 

during hydrothermal evolution of the chimney mineralogy. They are designated as Types 1 to 

3, and represent different generations which in order of increasing maturity are: i) Type1: 

microglobular and zoned colloform sphalerite, ii) Type 2: sphalerite with porous core and 

massive rim and iii) Type 3: inclusion-rich and compositionally zoned massive sphalerite.  

Mercury (Hg) correlates closely with Cd in sphalerite and the distribution of Hg in 

sphalerite is probably controlled by: (i) Direct substitutions of divalent cations as 

Zn
2+

↔(Hg
2+

, Cd
2+

) along systematic growth zones in primary colloform type 1 sphalerite, 

possibly due to variable solubility of Hg during sphalerite growth due to changes in the 
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physicochemical parameters of the discharging fluid phase; and, (ii) inclusions of sulfosalt 

micro-particles of Hg and Cd in sphalerite 3 following dissolution-reprecipitation 

mechanisms; these particles which are visible in BSE images, probably represent solid 

inclusions of the ZnS–HgS solid solution series incorporated in sphalerite. 

Silver (Ag) correlates with Cu-As-Sb-Pb. Its distribution is controlled by micro-, 

and/or nano-inclusions of galena–tetrahedrite–tennantite (galena–‘fahlore’) associations 

[PbS─(Cu,Ag)10(Fe,Zn)2(As,Sb)4S13]. Moreover, the strong co-variation between Ag and Sb 

along geochemical profiles in sphalerite 2 and 3 can also be explained by coupled substitution 

in the sphalerite lattice: 2Zn
2+

↔Ag
+
+Sb

3+
, alongside nano-scale inclusions of Ag–Sb-bearing 

tetrahedrite-tennantite.  

We conclude that fluid temperature variations, boiling subseafloor and during venting  

processes and possibly variable amounts of fluid-seawater mixing represent important 

variables controlling the distribution of Hg and Ag in the submarine hydrothermal systems 

and associated sulfide deposits. 
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1. Introduction 

 

Seafloor hydrothermal venting systems constitute the link between deep-seated processes 

(volcanism, tectonism) and the seafloor, are responsible for chemical and thermal exchanges 

that sustain ecosystems in extreme conditions, and have produced some of the most valuable 

metal deposits mined to date (Hannington et al. 2005, and references therein). Practically 

two-thirds of all known modern sea-floor hydrothermal systems, with associated mineral 

deposits and chemosynthetic microbial biomes, occur at intermediate and slow-spreading 

mid-ocean ridges (MORs). Several others occur in convergent plate margins: (i) along 

volcanic arcs that have a submarine component, and (ii) in intraoceanic back-arc basins and 

arc-related rifts at continental margins. The majority of these hydrothermal vents occur 

typically at water depths from 2,000 to 4,000 m, and it is only recently that hydrothermal 

research has been conducted to submarine arc volcanoes, where active hydrothermal vents are 

located at surprisingly  shallow water depth (95% at <1,600 m water depth) (de Ronde et al. 

2003). Research at shallow hydrothermal systems on arc volcanoes, e.g. Kolumbo (Santorini, 

Hellenic Volcanic Arc) (Kilias et al. 2013) and Palinuro (Aeolian island arc, Italy) (Petersen 

et al. 2014) has important consequences for the style of venting, the nature of associated 

mineral deposits (i.e. Volcanogenic Massive Sulfides (VMS)), the local biological 

communities, potential hazards (i.e. tsunamis, explosive eruptions) and identify sources of 

toxic metals (e.g. Sb, Hg, Tl) in the world’s oceans.  

The hydrothermal vent field located on the floor of the density-stratified acidic (pH ~ 5) 

crater of the Kolumbo shallow-submarine arc-volcano, near Santorini, Hellenic volcanic arc 

(HVA) (Sigurdsson et al. 2006, Carey et al. 2011, Kilias et al. 2013)  features considerable 

bulk enrichments of polymetallic spires in trace metals of economic and environmental  

importance: Sb, Tl, Hg, As, Au, Ag, Pb and Zn indicating a new hybrid seafloor analogue of 

epithermal-to-volcanic-hosted-massive-sulfide deposits (Kilias et al. 2013). The average and 

maximum bulk concentrations of Hg (397 ppm and 1070 ppm respectively) and Ag (871 ppm 

and 1910 ppm) are among the highest reported from modern seafloor hydrothermal systems 

worldwide (Fig. 1) (see Kilias et al. 2013), whereas there are only four reports for Hg and Ag 

in the HVA: Ag has been mentioned in Ag-rich sulphides in Vani Cape, Milos Island 

(Voudouris et al. 2014) and up to 10 ppm Ag in Mn-oxides in Vani Cape, Milos Island (Hein 

et al. 2000), whereas very low contents of Hg (80-179 ppb)  have exclusively been reported 

from hydrothermal sediments, Santorini (Smith & Cronan 1983) and a recent conference 
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abstract reports the occurrence of cinnabar in the submarine hydrothermal vents at 

Palaeochori Bay, Milos Island (Kati et al. 2015). However, these two metals together have 

not been detected neither in marine hydrothermal precipitates, hydrothermal fluids and  

associated hydrothermal sediments, nor the metamorphic basement, of the whole Hellenic 

Volcanic Arc (Varnavas and Cronan 1988; 1991; 2005, Valsami-Jones et al. 2005 ) (Fig. 

1, 2); Therefore, the Kolumbo submarine hydrothermal vent field marks an Hg and Ag 

geochemical anomaly compared to the rest of the HVA; it is worth mentioning that Ag from 

the hydrothermal vent field of Kolumbo is positively related to Au (Kilias et al. 2013) (Fig. 

3). The major Powder X-Ray Diffraction (PXRD)-crystalline phases comprising the Kolumbo 

hydrothermal precipitates are barite (BaSO4) together with galena (PbS), sphalerite (ZnS) and 

pyrite/marcasite (FeS2). Bulk trace element concentrations are controlled by the modal 

abundance of the various minerals present and by the trace metal enrichment within these 

mineral phases. Whereas it is known so far that Sb is present in pyrite/marcasite, it occurs as 

unidentified non-stoichiometric PbnSbmSp and ZnmSbnSp sulfosalts, and it is also associated 

with poorly crystalline ferrihydrite-like phases (Kilias et al. 2013, Gousgouni 2014), no Tl- , 

Au-, Ag- and Hg-bearing minerals have been detected; therefore the identification of mineral 

carriers for these metals constitutes a goal with important economic and environmental 

significance.    

 



Master Thesis                                                                                 Maria-Despoina Chrysafeni 

 

 

  
Page 22 

 
  

 

Figure 1. Geochemical spidergram comparing the Kolumbo vent samples with other seafloor hydrothermal deposits 

from various tectonic settings (modified after Kilias et al. 2013). Concentrations are normalized to Upper Continental 

Crust (UCC) (Rudnick & Gao 2003) for selected noble (Ag, Au), potentially life-essential (Cu, Zn) and potentially 

toxic (Sb, Hg, Cd, As, Tl) elements. The average and maximum concentrations of Tl (510 ppm and >1,000 ppm 

respectively) and Sb (8,333 ppm and 2.2 wt %, respectively) are among the highest reported from modern seafloor 

hydrothermal systems. Average Sunrise deposit (Iizasa et al. 1999), Sunrise Myojin knoll (Hannington et al. 2005), 

Sunrise Myojinsho (Hannington et al. 2005), Sunrise Sujo Seamount (Hannington et al. 2005),  Brothers (Hannington 

et al. 2005), Rumble II (Hannington et al. 2005),  Average JADE site (Glasby et al. 2008), Izena cauldron (Hannington 

et al. 2005),  Average JADE (Halbach et al. 1989), Franklin Seamount (Hannington et al. 2005), Tyrrhenian sea 

Palinuro (Hannington et al. 2005),   Tyrrhenian sea Palinuro mean (Dekov & Savelli 2004, Tufar 1991), Lake Taupo 

massive sulfides (de Ronde 2002),  Lake Taupo pseodochimney (de Ronde 2002) Lake Taupo red-yellow material (de 

Ronde 2002), Conical seamount-mineralized samples average (Petersen et al. 2002), Conical seamount gold-rich 

samples average (Petersen et al. 2002).  
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Figure 2. Upper Continental Crust (UCC)-normalized (according to Rudnick and Gao (2003)) spidergram of trace 

elements in marine hydrothermal precipitates of the Hellenic Volcanic Arc. Average values of Methana siliceous 

sediments (Huebner et al. 2004): red thick line and solid square; Average values of Methana carbonate sediments 

(Huebner et al. 2004): darker red-brown thick line and solid lozenges; Milos Island sediment (Cronan & Varnavas 

2001, Varnavas & Cronan 2005): blue thick line and plus symbol correspond to Voudia Bay samples, light blue thick 

line and asterisk in lighter blue background correspond to Palaeochori, dark blue thick line and cross correspond to 

Rivari, respectively; Yali Island (Yali Bay) sediments (Varnavas & Cronan 1991, 2005): gray thick line and open 

circle; Kos Island (Kephalos Bay) sediments (Rudnick & Gao 2003) gray thick line and closed circle; Average values 

of Santorini caldera metalliferous marine sediments (Varnavas & Cronan 1988): green thick line and open triangle 

correspond to Nea Kameni islet, light green thick line and closed triangle correspond to Palaea Kameni islet, yellow 

thick line and green triangles with yellow filling color correspond to Santorini “channel” situated between Palaea and 

Nea Kameni islets (Gamaletsos et al. 2013).   
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Figure 3. Log/log plot of Ag versus Au, showing a positive correlation (Kilias et al. 2013-Supplementary information).   

 

 

Except for pyrite (e.g. Keith et al. 2016, and references therein), sphalerite is a 

notoriously important host mineral for a wide range of minor and trace elements, such as Cd, 

Co, Ga, Ge, In, Mn, Sn, As, Tl, Hg, Sb, Cu, Ni, Ag, Mo, Pb, Se, Te, Bi, U, Au either as solid 

solution and/or as nanoparticles and micro-inclusions (Oftedahl 1940, Grammatikopoulos 

et al. 2006, Cook et al. 2009, Ye et al. 2011, Radosavljević et al. 2012, Keith et al. 2014, 

Wohlgemuth-Ueberwasser et al. 2015); this feature is the primary reason for the wide 

variety of colors with which sphalerite crystallizes, varying from red, orange (and pale brown 

varieties referred as honey blende) and green, to white (cleiophane variety) and black 

(marmatite variety) (Boyce et al. 2015). Consequently, spalerite is a major candidate to host 

the metals of interest (Hg and Ag) regarding the Kolumbo hydrothermal precipitates.  

Sphalerite, the most abundant primary ore mineral of Zn, it is found in a large variety 

of ore deposit types, but its greatest abundance is in Volcanogenic Massive Sulfide (VMS), 

Sedimentary Exhalative (SEDEX), or Mississippi-Valley-Type (MVT) deposits (Deer et al. 

1992, Hannington 2014, Wilkinson 2014). It crystallizes in the cubic crystal system and has 

a cubic unit cell of ~ 0.541 nm (5.41 Å) (Deer et al. 1992). Each S atom in the sphalerite 

structure is coordinated with four Zn atoms, forming a regular tetrahedron, with the Zn atoms 

surrounded by S in a similar manner (Fig. 4A). The crystal habit of sphalerite is generally 

hextetrahedral, resulting primarily in the development of {111} crystal faces (Barrie et al. 

2009). Apart from sphalerite, wurtzite is the high-temperature polymorph of ZnS that 

crystallizes in the hexagonal crystal system with a similar arrangement of the Zn and S atoms 
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(Fig. 4B) and it commonly occurs in modern ocean-ridge hydrothermal vent systems rather 

than in ore deposits (Herzig & Hannington 1995, Boyce et al. 2015).  

Sphalerite’s capacity to incorporate a variety of trace elements can reach high levels 

posing either an economic resource for rare metals such as Ga, Cd, In and Ge, or an 

environmental hazard, as deleterious elements like Cd, Hg, As, etc., may appear in significant 

concentrations (Boyce et al. 2015). Therefore, spalerite is a major candidate mineral to host 

the metals of interest regarding the Kolumbo hydrothermal precipitates.  

 

 

 

Figure 4: Crystal structures of the two main forms of ZnS, showing the tetrahedral relationship between Zn and S 

atoms. A. Cubic structure of sphalerite. B. Hexagonal structure of wurtzite. (Images reproduced from Wikipedia). 
 

 

Many elements enter the sphalerite structure via simple substitution of similar-sized 

ions (Zn
2+

↔ Fe
2+

, Cd
2+

, Mn
2+

, Co
2+

 or S
2−

↔ Se
2−

), by coupled substitution (e.g., 2Zn
2+

 ↔ 

Cu
+ 

+ In
3+

) (Ye et al. 2011) or they may be incorporated as mineral nanoparticles in sphalerite 

(Ciobanu et al. 2011) (e.g. As and Sb may be tetrahedrite–tennantite micro-inclusion 

controlled in galena–“fahlore” associations (Cook et al. 2009, Maslennikov et al. 2009, 

Wohlgemuth-Ueberwasser et al. 2015)). 

In this thesis, we describe mercury (Hg)─ and silver (Ag)─rich sphalerite  

mineralization associated with the shallow-submarine hydrothermal vent field of the Kolumbo 

volcano, Santorini, Greece. The Kolumbo sphalerite is unique in as much that it constitutes 

the first report of sphalerite notably enriched in either or both Hg and Ag, that is associated 

with polymetallic deposits found in modern ocean-floor hydrothermal systems, the recent 

analogues of ancient volcanogenic massive sulfide (VMS) deposits and an important resource 

of e.g. Zn, Cu, Pb, Ag, and Au (Wohlgemuth-Ueberwasser et al. 2015, Keith et al. 2014, 
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Petersen et al. 2014). This thesis describes sampled sphalerites, their textural, chemical and 

paragenetic characteristics, presents analyses of various trace metals with special emphasis to 

Hg and Ag, proposes a genetic model, and discusses the environmental implications of the 

release of these potentially toxic metals to the Aegean Sea. 

2. Scope of thesis 

 

This study aims to contribute to a better understanding of the concentration, distribution, 

and geochemical/geological controls of trace and minor metals in natural sphalerite samples 

from the modern shallow seafloor, with special emphasis on Hg and Ag, using Kolumbo 

hydrothermal field (KHF) as an example; furthermore, to discuss the possible sphalerite 

forming mechanisms, and relevant ore processing and environmental implications. 

Additionally, it is essential to probe the role of Kolumbo submarine hydrothermal activity as a 

possible source of toxic metals in modern seafloor which may affect both microbial 

metabolism and, through the food chain, humans into a high-touristic area. Ag is not only 

toxic, but also a precious metal, consequently the study of sphalerite will give important 

information about submarine mineralization and accumulation of Ag. 

Towards this scope, the main objectives are: 

 Define the main textural variations (types) of sphalerite; determine the concentrations of 

trace and minor metals, and especially Hg and Ag in the various sphalerite types as 

determined by ESEM-WDS. 

 Define trace element distribution and correlation trends and discuss trace metal substitution 

mechanisms in sphalerite. 

 Investigate the distribution and redistribution of trace elements among sphalerites of 

differing textures, and further discuss the mobility of trace metals during the course of 

hydrothermal diagenesis and maturity. 

 Propose a genetic model for Hg- and Ag-rich sphalerite in polymetallic hydrothermal 

modern seafloor mineralization (i.e. source of metals, deposition mechanism etc.). 

 Discuss ore processing and environmental implications. 
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3. Previous work 

3.1 Sphalerite as a carrier of Hg and Ag  

 

Mercurian (Hg) sphalerite and/or argentiferous (Ag) sphalerite have been reported 

from a few localities worldwide in association with various geological settings. In some 

deposits, sphalerite may be the dominant Hg-carrier. Exceptionally high contents of 0.08–

16.35 wt % Hg are reported in sphalerite from the Eskay Creek VMS deposit (Canada) 

(Grammatikopoulos et al. 2006). Further, sphalerite with low contents of Hg (up to 149 

ppm) has been reported from the Broken Hill SEDEX deposit (Australia) (Ryall 1979), the 

Linares intrusion-related gold deposit (Spain) (Di Benedetto et al. 2005) (mean Hg value: 

707 ppm), and the Akoluk epithermal deposit (Turkey) (max.: 4.815 wt % Hg) (Ҫiftҫi 2009). 

The main characteristic of Hg-bearing sphalerite in these deposits is its association with Hg 

minerals (e.g. cinnabar/metacinnabar (HgS), schwatzite (Cu,Hg)12Sb4S13)), while in the 

Akoluk epithermal gold deposit, it is associated with stibnite and Sb–Pb sulfosalts without Hg 

minerals. Radosavljević et al. (2012) report variable Hg content in sphalerite between 0.30 

and 6.47 wt % in the Rujevac polymetallic [Sb(As)–Pb–Zn] vein-type ore deposit in Serbia. 

Jonasson & Sangster (1974) conducted a study on the distribution of Hg in sphalerite from a 

number of Canadian VMS deposits and they determined the highest Hg concentrations in the 

most Zn-rich ores occur in the presence of Ag-Pb-bearing sulfosalts, which typically represent 

minor components of the ore. Similar trends were also observed at the Woodlawn VMS 

deposit in eastern Australia by Ryall (1979). Roth (2002) reports the average Hg content of 

the low-Hg sphalerite group of the Eskay Creek VMS deposit (BC, Canada) (0.62 wt % Hg), 

which is one order of magnitude higher than the maximum detected by Jonasson & Sangster 

(1974; 0.045 wt % Hg), two orders of magnitude higher than the maximum at Woodlawn (18 

ppm; Ryall 1979), and two to three orders of magnitude greater than typical values (10
-3

 to 

10
-4

 wt % Hg) for sphalerite found in most polymetallic deposits (Tauson & Abramovich 

1980). Metamorphosed VMS and SEDEX sulfide deposits may contain sphalerite with 

measurable and relatively consistent concentrations of Hg, i.e.  ≤300 ppm difference between 

the lowest and highest mean values. Well defined negative correlations between Hg and Zn, 

as well as the relatively consistent Hg concentrations and generally low standard deviations 

relative to the means, indicate that Hg is most likely lattice-bound (Zn
2+

↔ Hg
2+

) in sphalerite 

(Grammatikopoulos et al. 2006; Radosavljević et al. 2012; Lockington et al. 2014).  
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Several authors have suggested that significant amounts of silver may be incorporated 

in sphalerite (e.g., Taylor & Radtke 1969). Although sometimes regarded as an Ag-carrier, 

practice indicates that in fact higher concentrations are almost always related to microscopic 

or submicroscopic inclusions of discrete Ag-minerals (e.g. tetrahedrite-tennantite) (Cook et 

al. 2009). Despite that, concentrations up to 100 ppm, rarely higher, are reported for a small 

number of ore deposits (e.g., Red Dog, Alaska (SEDimentary EXhalative deposit) (SEDEX) 

(Kelley et al. 2004). Cabri et al. (1985) reported values from 12 ppm to 308 ppm from Kidd 

Creek VMS deposit (Ontario, Canada); an exception to the generally low Ag contents is 650–

700 ppm obtained by the same authors for sphalerite from the Nanisivik, N.W.T., Mississippi-

Valley-Type deposit (MVT). Huston et al. (1995; 1996) report low levels of Ag (below 30 

ppm) in the sphalerite lattice of Australian ores, and values between 30–110 ppm from the 

Agincourt VMS deposit. Using ion microprobe techniques, Chryssoulis & Surges (1988) 

illustrated that ppm levels of Ag within sphalerite make it a minor Ag-carrier in mill circuits 

of VMS deposit at New Brunswick, NB, Canada. Microanalysis of sphalerite often reveals 

heterogeneous distributions within individual datasets reflecting the significance of 

(micro)inclusions of Ag-minerals (Cook et al. 2009). According to Ye et al. (2011) Ag 

concentrations from Bainiuchang and Dabaoshan SEDEX deposits (South China) reach up to 

188 – 198 ppm, respectively.  

Moreover, Ag-rich sphalerite has been reported from: (1) Carbonate-hosted 

Mississippi-Valley Type (MVT) deposits and vein-type deposits (0.40-0.82 ppm), Germany 

(Pfaff et al. 2011); incorporation mechanisms may include most likely the presence of nano- 

or micro-inclusions of Ag-hosting phases, and to a lesser extent substitution of Ag into the 

crystal lattice of the host sphalerite (Pfaff et al. 2011); (2) Vein and replacement-type Sn-

polymetallic-Zn deposits ( (≤0.95-1.05 wt %) (Murakami & Ishihara 2013). The highest Ag 

content has been interpreted as a result of the presence of sub-micron-scale inclusions of Ag- 

and Pb-Sb-bearing sulfides, rather than the coupled substitutions such as (2Zn
2+

)↔(Cu
+
 or 

Ag
+
, In

3+
); (3) Vein-type Zn–Ge–Ag–(Pb–Cd) deposit (≤ 1,000 ppm) (Belissont et al. 2014). 

Crystallographic controls on the incorporation of Ag and other trace elements (e.g. Ge, Sb, 

and As) have been suggested, i.e. coupled substitution mechanisms (3Zn
2+

 ↔Ge
4+

+2Ag
+
); (4) 

Epithermal Au–Cu–Zn–Pb–Ag deposit (max 0.03-0.05 wt %) (Dill et al., 2013); (5) 

Metamorphosed VMS and SEDEX sulfide deposits (Lockington et al. 2014) where 

concentrations of Ag are typically a few ppm in all samples except for those from Mt. Isa, 

where means of 23 and 66 ppm have been measured. In lower-temperature deposits such as 

SEDEX, sphalerite is likely to be an important Ag carrier but such Ag will be remobilised to 
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form discrete Ag minerals during metamorphism (Lockington et al. 2014); (6) Skarn, 

syngenetic massive sulfide, MVT deposits in China which contain sphalerite with measurable 

quantities of Ag (Ye et al. 2011); the highest Ag concentrations are observed in Bainiuchang 

(max: 188 ppm) and Dabaoshan deposit (SEDEX) (max: 198 ppm) (means 64 and 35 ppm, 

respectively). Interestingly, the two skarns have the lowest deposit means in the dataset (6.0 

and 8.3 ppm for Luziyuan and Hetaoping, respectively). The dataset expands the 

understanding of sphalerite mineral chemistry by also indicating that elements, whose ability 

to enter the crystal structure of sphalerite has been previously debated (Ag, Sn, Tl, Sb), may 

also be in solid solution (Ye et al. 2011). Maslennikov et al. (2009) reported that the 

majority of sphalerite in hydrothermal chimneys from the Silurian Yaman-Kasy VMS deposit 

in the Southern Urals is characterized by high concentrations of Ag (338 ppm) as well as Co, 

Sn, Cd, Mn, Ag, Au, Pb, As, and Sb. Silver is likely to reside in sulfosalts (Ag-rich enargite, 

tennantite, and tetrahedrite) which are common inclusions in sphalerite. 

3.1.1 Mercury(Hg)- and Silver(Ag)-rich sphalerite from the modern ocean-floor  

  

Studies of mercurian and argentiferous sphalerite from the modern ocean-floor are 

extremely scarce; in the mainstream literature there is a single recent relevant report. This 

sphalerite has been derived from a drilled  subseafloor massive sulfide deposit that occurs in 

shallow waters at the Palinuro volcanic complex, Tyrrhenian Sea, Italy (Italy) (Petersen et al. 

2014).   Sphalerite hosts Hg (<0.1–7.4 wt %, average 0.8 wt %), Ag (<0.1– 0.22 wt %, 

average 0.02 wt %) along with a large variety of other trace metals, such Pb, As, Cd, Sb,; Hg 

is likely present in solid solution (Petersen et al. 2014).  Further recent studies of trace 

elements in hydrothermal black smoker sulfides (Wohlgemuth-Ueberwasser et al. 2015; 

Keith et al. 2016) do not report either Hg-bearing and/or Ag-bearing sphalerite, but only they 

report high bulk Hg contents (PACMANUS) and pyrites that have highly variable 

concentrations of elements like Au, Co, Cu, Se, Mo, Ag and Sb that are most likely related to 

fluid evolution and changes in fluid composition.   

Wohlgemuth-Ueberwasser et al. (2015) studied sphalerite from 27 black smoker 

samples from active and inactive vents derived from three different seafloor hydrothermal 

fields: the ultramafic-hosted Logatchev hydrothermal field and the basaltic-hosted Turtle Pits 

field on the Mid-Atlantic Ridge, and the felsic-hosted PACMANUS field in the Manus basin 

(Papua New Guinea). Sphalerite from these fields hosts a large variety of trace elements such 

as Fe, As, Sb, Au, Pb, and Cu but no Hg or Ag. Keith et al. (2014) report major and minor 
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element concentrations in pyrite from submarine hydrothermal vents at mid-ocean ridges, 

back-arc spreading centers, and island arc volcanoes hosted in sedimentary and magmatic 

rocks of variable composition. The conclusion according to the same authors is that sphalerite 

from sediment-covered and sediment-starved vents can be distinguished by higher Fe/Zn 

ratios and elevated sulfur contents of the former. This study does not report anything about 

sphalerite content in trace elements, consequently not also about Hg and Ag.  

3.2 Hg in the geoenvironment: what we know and what we don’t know 

Unless otherwise noted, the following synthesis is based on Selin (2009), Barkay & 

Wagner-Döbler (2005), Colaço et al. (2006), Taylor et al. (2001), Belzile et al. (2008). 

Hazen et al. (2012) and Gaffney & Marley (2014). 

3.2.1 The international scene: Health concerns and related Hg-reduction policies 

Mercury (Hg) is a naturally occurring toxic heavy metal that is found everywhere 

throughout the environment. Hg occurs in three common valence states: 0, 1+, and 2+: Hg
0
 

[Hg 0](elemental Hg), Hg2
2+ 

[Hg I] (mercurous Hg), and Hg
2+

 [Hg II] (mercuric Hg). Hg(I), 

rapidly and reversibly disproportionates to give elemental Hg and mercuric Hg, as:  

Hg2 
2+

 ↔ Hg
0 

+ Hg
2+

 

Hg exists naturally in many minerals, including cinnabar (HgS), corderoite 

(Hg3S2Cl2), and livingstonite (HgSb4S8) (see below Section 3.2.3.1 “Hg minerals”). 

Cinnabar, the most common Hg ore, is usually found associated with recent volcanic activity 

and alkaline hot springs; however, Hg also occurs as an impurity in nonferrous metals and 

fossil fuels, coal in particular. It is transported throughout the global environment after being 

released from these geological reservoirs by either natural or anthropogenic processes. After 

release, it cycles between the atmosphere, land, and surface waters through a complex web of 

physical and chemical transformations that have a dramatic effect on its chemical properties, 

environmental impacts, and biological toxicity.  

Human activities have increased the amount of Hg-concentrations in the atmosphere, 

ocean, and terrestrial systems (Mason & Sheu 2002). Although all forms of Hg are toxic, 

they differ in their degree of toxicity and in their biological effects. Exposure to elemental Hg 

occurs primarily through inhalation of the Hg-vapor. Atmospheric concentrations are 

sufficiently low that acute toxicity exposures happen only when there is an Hg-spill or at 
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highly contaminated sites. However, increased levels in the atmosphere may have long-term 

chronic effects. Approximately 80% of inhaled elemental Hg is absorbed, in contrast with less 

than 1% absorption after dermal exposure, and almost none (0.1%) after ingestion (Bernhoft 

2012, Broussard et al. 2002). The half-life of elemental Hg in the body is reported to be 

approximately 60 days (Broussard et al. 2002). 

The toxicity and biological effects for both Hg2
2+

 and Hg
2+

 compounds are reported 

together under the generic term “inorganic Hg”. Exposure to inorganic Hg can occur both 

through ingestion of inorganic Hg salts or inhalation of the aerosols, with absorption rates of 

about 10% for both ingested and inhaled inorganic Hg compounds (Bull 2011). Inorganic Hg 

compounds have low lipid solubility and therefore do not easily cross biological membranes. 

The half-life of inorganic Hg compounds in the body is reported to be approximately 40 days 

(Broussard et al. 2002). 

Hg
2+

can be converted to methylmercury (CH3Hg
2+

X, where “X” is a ligand, typically 

Cl
-
 or OH

-
) by microorganisms in the intestinal tract (Rowland et al. 1984). Methylmercury 

is the most common organometallic Hg
2+

compound in environmental systems. Τhe major 

source of human exposure to methylmercury is ingestion of contaminated fish (Bernhoft 

2012, Mergler et al. 2007). Methylmercury is produced biochemically by microorganisms 

and is taken up by aquatic plants and animals and is biomagnified through the aquatic food 

chain, with the highest concentrations found in the top predators. It is highly lipid-soluble, 

thus it is readily transported across membranes. Methylmercury is slowly broken down to 

Hg(II) by demethylation, presumably by microflora in the intestines, which leads to increased 

elimination. The half-life of methylmercury in the body is reported to be 70–80 days 

(Clarkson et al. 1984). 

The disease of human poisoning by methylmercury is known as “minamata” named 

after Minamata City (SW Japan) where it was diagnosed for the first time in 1956, when 

human ingested fish and shellfish contaminated by methylmercury discharged in waste water 

from a chemical factory (Chisso Co. Ltd). Humans exposed to methylmercury suffer from 

neurological damages such as visual, auditory, and sensory disturbances, numbness, and 

difficulty in walking (Harada 1995). The effects on embryos were more serious, like mental 

retardation, cerebral palsy, deafness, and blindness (Comm. Toxicol. Eff. Methylmercury 

2000, Harada 1995). One single incident of bread made with grain treated with a Hg-

containing fungicide occurred in Iraq in the 1970s and the associated health effects included 

numbness, problems with vision, speech, and hearing, as well as deaths in adults and more 

serious neurological effects in the offsprings of exposed pregnant women (Comm. Toxicol. 
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Eff. Methylmercury 2000, Marsh et al. 1987). According to recent epidemiological studies 

exposure to methylmercury in pregnant women contributes to neurological and developmental 

effects in their offspring.  

The Environmental Protection Agency (EPA) set the reference dose (RfD) for Hg at 

0.1 µg kg body weight
−1

 day
−1

 (US Environ. Prot. Agency (EPA) 2001). Estimations from 

studies analysis from Faroe Islands, New Zealand and Seychelles revealed that offspring lose 

0.18 IQ-points for each part per million increase in maternal hair Hg (Axelrad et al. 2007).  

Wildlife health is also affected by methylmercury when exposed to high levels 

through their diet. Some health effects are behavioral, neurochemical, hormonal, and 

reproductive (Wolfe 1998, Scheuhammer 1987). Methylmercury occurs in both marine and 

freshwater fish. 

3.2.2 Emissions of Hg to the atmosphere 

Hg is emitted to the atmosphere by both natural processes and human activities. The 

latter release larger amounts of Hg compared to the natural flux of Hg derived from primary 

geological sources.  

The sources of Hg emissions can be grouped into three major categories (United 

Nations Environmental Program 2013): 1) natural sources or releases due to the natural 

mobilization of geological Hg from the earth’s crust, 2) current anthropogenic sources 

including both release of Hg from raw materials as well as release of Hg used intentionally in 

products and processes and 3) historic anthropogenic sources that result from remobilization 

of Hg previously deposited from the atmosphere to soil, water and vegetation. 

Natural, geological sources and land and ocean surfaces release Hg in its elemental 

form Hg
0
. Apart from Hg

0
, anthropogenic sources can also emit both divalent Hg

2+
 and 

particulate-matter-associated Hg [Hg(P)].  

The global Hg assessment issued by the United Nations Environment Program in 2013 

estimated that 5,500 to 8,900 tonnes (1 tonne =1 Mg) of Hg are emitted directly to the 

atmosphere each year, and of this, approximately 10% is from natural sources, 30% is from 

current anthropological sources, and 60% is from re-emission of historical anthropogenic Hg 

deposits (United Nations Environmental Program 2013). 

  



Master Thesis                                                                                 Maria-Despoina Chrysafeni 

 

 

  
Page 33 

 
  

3.2.3.1 Natural sources 

Natural sources of Hg emissions to the atmosphere are those that arise from totally 

natural processes without any anthropogenic intervention. There are: geothermal activities, 

volcanic eruptions, natural volatilization from the ocean surfaces, and weathering of Hg-

containing minerals. Natural emissions of Hg to the atmosphere are low compared with the 

total global Hg emissions with an estimated total amount of 643 tonnes annually (Pirrone et 

al. 2010, Pacyna et al. 2010). The current estimate for the global emission of Hg to the 

atmosphere from geothermal activity is 60 tonnes annually, which is 9% of the total 

atmospheric emissions from natural sources (Fig. 5) (Varekamp & Buseck 1986). 

  

 

Figure 5: Relative contributions of estimated Hg emissions to the atmosphere from natural sources (Varekamp & 

Buseck 1986). 

 

 

3.2.3.2 Current anthropogenic sources 

 

According to the 2013 United Nations Environment Program, global Hg assessment, 

the relative contributions of major current anthropogenic sources to atmospheric Hg emissions 

are shown in Figure 6 (Varekamp & Buseck 1986). 

The current anthropogenic sources of Hg emission to the environment are divided in 

two major categories. The first category includes processes where release of Hg takes place 

because it is present in fuels or raw materials as an impurity. For these emissions, the terms 

“unintentional” or “byproduct” emissions are used. The main sources of atmospheric Hg in 

this category are coal burning releasing about 647 tonnes to the atmosphere each year (33% of 
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the total current anthropogenic emissions) (Varekamp & Buseck 1986) and mining and 

smelting activities (22%), with minor contributions from combustion of oil and natural gas 

(1%) and oil refining (1%). The second category includes releases from products or processes 

where Hg is used intentionally. The largest source of atmospheric Hg in this category is 

small-scale gold mining (37%), followed by disposal or processing of waste from consumer 

products (5%). Other intentional sources of Hg emissions arise from its use in the chloro-

alkali industry (1%) and release from dental fillings during human cremation (<1%).  

The largest amount of current anthropogenic atmospheric Hg emissions (specifically 

from coal combustion) is from Asia, with a total of 931 tonnes per year, representing 47.6% 

of total global Hg emissions (Figure 7). Emissions from Asia are increasing due to increased 

demands for energy. Approximately 75% of Asian emissions come from the People’s 

Republic of China (Varekamp & Buseck 1986).  

 

 

Figure 6: Relative contributions of estimated Hg emissions to the atmosphere from current anthropogenic sources 

(Varekamp & Buseck 1986). 

 



Master Thesis                                                                                 Maria-Despoina Chrysafeni 

 

 

  
Page 35 

 
  

 

Figure 7: Spatial distribution of anthropogenic Hg emissions to the atmosphere for the year 2000. (Pacyna et al. 2005, 

Selin et al. 2009).  

 

3.2.3.3 Historical anthropogenic sources 

 

Hg from historical anthropogenic emissions that has been previously deposited from 

the atmosphere to soil, water, and vegetation surfaces can be re-emitted back into the 

atmosphere. For this to occur, stable inorganic and organic Hg compounds in terrestrial and 

aqueous reservoirs must be converted into volatile Hg species, principally elemental Hg. After 

this occurs, re-emission is then generally dependent on temperature, with higher re-emission 

rates occurring at higher temperatures and lower re-emissions at lower temperatures. The 

amount of Hg deposited to soil, water, and vegetation surfaces is a mixture of natural, recently 

deposited current anthropogenic, and cycled anthropogenic Hg. However, according to Amos 

et al. (2013) only 10% of Hg deposited from the atmosphere to surfaces is estimated to be of 

natural origin, and the levels of atmospheric Hg have increased by 70% since the beginning of 

the industrial era. 

One major pathway of Hg re-emission is through biomass burning; from 1997 to 2006 

the average global re-emission of Hg due to biomass burning has been estimated at 

approximately 675 tonnes per year, accounting for 14% of total historical anthropogenic 

emissions (Fig. 8) (Friedli et al. 2009). Hg is deposited from the atmosphere onto plant 

surfaces by dry and wet deposition where it is assimilated into plant tissues by stomatal 

uptake. The major source of historical Hg emissions to the atmosphere is ocean basins. It is 
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generally assumed that elemental Hg is the major Hg species emitted to the atmosphere from 

surface waters. 

 

Figure 8: Relative contributions of estimated Hg emissions to the atmosphere from historical anthropogenic sources 

(Friedli et al. 2009). 

 

3.2.3 Hg in terrestrial ore deposits  

The rare element Hg is present in Earth’s upper, middle, and lower crust at 

concentrations of ~0.05, 0.0079, and 0.014 ppm, respectively (Rudnick & Gao 2004). 

Hg is commonly distributed in most mineral deposit types that contain Zn. Zinc occurs 

mainly as independent minerals in nature and is typically closely associated with sphalerite 

(Ozerova et al. 1975).  

A review of the largest and/or best described Hg deposits of the world conducted by 

Fein et al. (1977) revealed that Hg deposits typically form at low temperature, commonly in 

epithermal environments and in most cases have close association with hydrocarbons or 

organic matter. 

According to Phelps & Buseck (1980) and Varekamp & Buseck (1984) Hg ores are 

typically formed at shallow depths and relatively low temperatures between 100° and 200°C. 

The requirements for their deposition from a hydrothermal system are (i) a source rock 

enriched in Hg, (ii) high Hg solubility in a wide range of temperatures and fluid compositions 

and (iii) low Hg solubility in a restricted range of conditions. Deposition of Hg is usually 

correlated with active geothermal systems. Hg enrichments are found in hot spring halos and 

around sulfide ore bodies. Hg concentrations in hot springs can reach several tens of ppm. The 
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main factors for Hg deposition in dilute hydrothermal systems are cooling, increase of pO2 

and decrease in pH.  

The principal geochemical mechanism for the concentration and precipitation of Hg 

minerals is hydrothermal reworking of marine black shales (White 1981, Barnes 1997). The 

form of the Hg in black shales may be bound to organic matter, incorporated into pyrite, or 

present as a distinct Hg mineral such as cinnabar (Hazen et al. 2012). Marine black shales are 

typically enriched in Hg compared to other sedimentary rocks (Lehmann et al. 2004, 

Parsons & Percival 2005a, Sanei et al. 2012), probably as a consequence of the affinity of 

Hg for organic matter, notably through binding with organic thiols (Xia et al. 1999, 

Hesterberg et al. 2001, Haitzer et al. 2002, Rytuba 2005). 

For example, in China, Zn mineralization mainly occurs in four ore types, namely: 

sedimentary-exhalative deposits (SEDEX), Mississippi Valley-Type (MVT), volcanic hosted 

massive sulfides (VMS) and intrusion related (IR) types (Dai et al., 2005). From these, 

SEDEX deposits have the highest Hg content ranging from 27 to 1198 ppm Hg (Schwartz 

1997). The reason may be due possibly to the relative higher Hg background in sediments 

providing the ore-forming fluid (Yin et al. 2012). VMS and MVT deposits have moderate Hg 

concentrations. In VMS deposits Hg minerals are generally not present and Hg is primarily 

present in solid solution within sphalerite, which can contain up to 41.1 wt % Hg in its 

structure (Tauson & Abramovich 1980). VMS deposits probably received Hg from a mantle 

source (Yin et al. 2012). The mean Hg content from the major MVT deposits in China is 10.1 

ppm. The source of Hg in MVTs may be the low-temperature hydrothermal solutions formed 

by diagenetic recrystallization of the carbonates. Generally, Hg exhibits a widespread 

association with organic material. Hg–bitumen deposits are among the largest Hg producers 

(Peabody 1993). Hg deposits have certain features in common with MVT deposits: (i) the 

deposits formed at shallow depths (ii) the ore-forming fluids had low temperatures (usually 

<200 ˚C) and (iii) hydrothermal aquifers composed of sedimentary rocks played a major role 

in the ore- forming process. Finally, IRs have the lowest content of Hg (2.4 ppm Hg), possibly 

because of the high temperature in the fluid phase during Zn mineralization (Yin et al 2012). 

3.2.3.1 Hg-minerals 

The Commission on New Minerals, Nomenclature and Classification (CNMNC) of 

the International Mineralogical Association (IMA) has approved eighty‒eight (88) minerals, 

plus two (2) minerals published but not yet approved by CNMNC, in which Hg is an essential 

or important constituent (Table 1). These species include native metals and intermetallic 
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alloys, halides, sulfides, arsenides, selenides, antimonides, tellurides, sulfosalts, oxides, 

carbonates, and sulfates, and occur in various magmatic, hydrothermal, evaporitic, and 

surface weathering environments (Tunell 1968, White 1981, Barnes 1997, Parsons & 

Percival 2005a; 2005b, Hazen et al. 2012). 

 

3.2.3.2 Hg in marine/submarine hydrothermal vents  

 

Hg is very particle reactive and therefore has a short residence time in ocean water of 

about 350 yr (Gill & Fitzgerald 1988). Hg in oceans occurs in the elemental form Hg
0
, 

divalent form Hg
2+

, methylmercury (CH3Hg
2+

), dimethylmercury  [(CH3)2Hg
0
] and particulate 

and colloidal Hg (Mason & Fitzgerald 1993, Morel et al. 1998). In its elemental form, Hg is 

present in the oceans at concentrations <5 × 10
−7

ppm (Emsley 1991, Li & Schoonmaker 

2004). However, Hg concentrations differ among global oceans: According to Lamborg et al. 

(2002) the average Hg concentration in oceans is about 1.5 picomolar (pM), while in contrast 

measurements from the Mediterranean (Cossa et al. 1997) and North Atlantic (Mason et al. 

1998) are higher (2.5 pM and 2.4 pM, respectively). On the other hand, in the Pacific Ocean 

lower concentrations are reported (1.2 pM) (Laurier et al. 2004, Sunderland & Mason 

2007). Generally, Hg concentrations of ocean water below the thermocline are low and vary 

over only a small range (about 1–5 pM kg
-1

) (Gill & Fitzgerald 1988).  

Stoffers et al. (1999) were the first who reported the occurrence of elemental Hg
0
 on 

the seafloor from submarine hydrothermal vents from paralic hot springs in the Bay of Plenty, 

active geothermal area of Taupo volcanic zone in New Zealand. The abundance of Hg may be 

due to an enriched source in the underlying basement rocks or in volatiles rising from a 

subvolcanic magma. Liquid hydrocarbons and Hg are closely associated and this may be 

evidence for a common origin in the sedimentary basement, remobilized by hydrothermal 

fluids. Miedaner et al. (2005) conducted experiments proving that hydrocarbons could play a 

significant role in transporting Hg in natural systems, which may explain the high 

concentrations of metallic Hg in some crude oils, as well as the common occurrence of 

petroleum in epithermal Hg deposits. 

Hydrothermal vents form in volcanically active areas, often on mid-ocean ridges; 

hydrothermal fluids in these vents can reach temperatures as high as 400°C under the high 

pressures of the ocean floor. As in terrestrial geothermal systems, high temperatures and   
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Table 1. IMA recognized Hg-minerals (Hazen et al. 2012). 

 
Name Formula  Name Formula 

Cinnabar HgS  Belendorffite Cu7Hg6 

Hg  Hg  Capgaronnite AgHgClS 

Hyperchinnabar HgS  Coccinite  [Hg2+]I2 

Metachinnabar HgS  Hakite Cu10Hg2Sb4Se13 

Eglestonite [Hg1+]6 O(OH)Cl3  Tischendorfite  Pd8Hg3Se9 

Temagamite Pd3HgTe3  Chursinite  [Hg1+]3[AsO4] 

Potarite PdHg  Velikite Cu2HgSnS4 

Coloradoite HgTe  Gruzdevite Cu6[Hg2+]3Sb4S12 

Vaughanite Tl[Hg1+]Sb4S7  Laffittite Ag[Hg2+]AsS3 

Aktashite* Cu6[Hg2+]3As4S12  Marrucciite  [Hg2+]3Pb16Sb18S46 

Galkhaite (Cs,Tl)(Hg,Cu,Zn)6(As,Sb)4S12  Rouxelite Cu2HgPb22Sb28S64(O,S)2 

Routheirite TlCu[Hg2+]2As2S6  Christite Tl[Hg2+]AsS3 

Tvalchrelidzeite  [Hg2+]3SbAsS3  Tillmannsite Ag3[Hg1+]VO4 

Atheneite Pd2(As0.75Hg0.25)  Iltisite  [Hg2+]S∙AgCl 

Tiemannite HgSe  Kelyanite  [Hg1+]12(SbO6)BrCl2 

Eugenite Ag11Hg2  Stalderite TlCu(Zn,Fe,Hg2+)2As2S6 

Paraschachnerite Ag1.2Hg0.8  Kolymite Cu7Hg6 

Schachnerite Ag1.1Hg0.9  Donharrisite Ni8Hg3S9 

Luanheite Ag3Hg  Fettelite Ag24[Hg1+]As5S20 

Moschellandsbergite Ag2Hg3  Kenhsuite  [Hg2+]3Cl2S2 

Imiterite Ag2HgS2  Danielsite  (Cu,Ag)14HgS8 

Perroudite 5HgS·Ag4I2Cl2  Magnolite  [Hg1+]2TeO3 

Balkanite Cu9Ag5HgS8  Polhemusite  (Zn,Hg)S 

Calomel HgCl  Comancheite  [Hg2+]13O9(Cl,Br)8 

Schuetteite Hg3O2(SO4)  Pinchite  [Hg2+]5Cl2O4 

Petrovicite Cu3HgPbBiSe5  Terlinguacreekite  [Hg2+]3Cl2O2 

Terlinguaite  [Hg1+][Hg2+]OCl  Gianellaite  [Hg2+]4SO4N2 

Weishanite  (Au,Ag)1.2Hg0.8  Mosesite {[Hg2+]2N}(Cl,SO4,MoO4,CO3).]2H2O 

Gortdrumite Cu18FeHg6S16  Mazzettiite Ag3[Hg2+]PbSbTe5 

Leadamalgam Hg0.3Pb0.7  Daliranite Pb[Hg2+]As2S6 

Arzakite*  [Hg2+]3[(Br,Cl)2S2]  Grumiplucite HgBi2S4 

Grechishchevite  [Hg2+]3S2BrCl0.5I0.5  Simonite Tl[Hg2+]As3S6 

Kadyrelite  [Hg1+]6Br3O1.5  Brodtkorbite Cu2HgSe2 

Lavrentievite  [Hg2+]3[Cl2S2]  Radtkeite [Hg2+]3[ClIS2] 

Kuznetsovite  [Hg1+]2[Hg2+][(AsO4)Cl]  Aurivilliusite  [Hg1+][Hg2+]OI 

Kuzminite  [Hg1+]2(Br,Cl)2  Clearcreekite  [Hg1+]3(OH)(CO3)∙2H2O 

Poyarkovite  [Hg1+]3OCl  Deansmithite  [Hg1+]2[Hg2+]3(CrO4)OS2 

Corderoite  [Hg2+]3Cl2S2  Edoylerite  [Hg2+]3(CrO4)S2 

Montroydite HgO  Hanawaltite  [Hg1+]6[Hg2+][O3Cl2] 

Artsmithite  [Hg1+ ]4Al(PO4)1.74(OH)0.26  Peterbaylissite  [Hg1+]3[(OH)(CO3)]∙2H2O 

Livingstonite HgSb4S8  Szymańskiite  [Hg1+]16Ni6(CO3)12(OH)12(H3O)8 ∙3H2O 

Edgarbaileyite  [Hg1+]6[Si2O7]  Tedhadleyite  [Hg1+]10[Hg2+]O4I2(Cl,Br)2 

Moschelite  [Hg1+]2I2  Vasilyevite  [Hg1+]20[O6I3Br2Cl(CO3)] 

Shakhovite  [Hg1+]4SbO3(OH)3  Wattersite  [Hg1+]4[Hg2+][(CrO4)O2] 

Kleinite  [Hg2+]2N(Cl,SO4)∙nH2O  Vrbaite Tl4[Hg2+]3Sb2As8S20 

* Aktashite and arzakite are inadequately described species not yet IMA approved. 
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reducing conditions can leach elemental Hg from Hg-enriched substrate. Concentrations of 

Hg in hydrothermal fluids are found to be 1,000 times higher than that in ambient seawater 

(Vetriani et al. 2005). As these geothermal fluids mix with cold, oxidized seawater, Hg
2+

 is 

formed, resulting in precipitation of cinnabar on the sea floor, enhancing Hg concentrations in 

the vicinity of the hydrothermal vents. This particulate Hg
2+ 

can also be re-reduced to 

elemental Hg, releasing it back into the water column. It has been shown that thermophilic 

bacteria surrounding these hydrothermal vents are capable of reducing Hg
2+

 to elemental Hg
0
, 

thus detoxifying the local environment while releasing the volatile elemental Hg into the open 

ocean where it can be carried to surface waters (Vetriani et al. 2005). 

Hein et al. (2005) report ferromanganese oxide crusts rich in Hg (up to 10 ppm) at 

water depths of 1,750 to 1,300 m from La Victoria knoll, California. Discrete Hg minerals or 

discrete minerals with high Hg content were not found. Hg was derived from leaching of 

organic matter-rich sediments from neighboring basins by hydrothermal fluids, and, to a 

lesser extent, from underlying continental basement rocks. The main fluid transport pathway 

was faults, and hydrothermal circulation was driven by high heat flow associated with thinned 

crust. 

In New Zealand, substantial amounts of Hg metal, in the form of cinnabar, deposited 

in a shallow submarine geothermal environment, closely associated with liquid hydrocarbons 

may be evidence for a common origin from the sedimentary rocks of the basement. The 

presence of liquid hydrocarbons implies strongly reducing conditions that would allow for the 

transport of aqueous Hg in the reduced state, and the formation of liquid Hg droplets suggests 

that the submarine vents are close to saturation with Hg
0

(aq) Stoffers et al. (1999). 

 

3.2.4 Hg bioaccumulation in the marine environment  

 

Marine shallow-water hydrothermal discharges frequently precipitate large amounts of 

Fe and Mn oxide and sulfide minerals enriched in several trace elements, i.e. Fe, Zn, Ba, Pb 

(Dando et al. 1999, Marani et al. 1997). However, some quantity of potentially toxic 

elements might remain dissolved in the surrounding seawater. This can contribute to the 

emergence of environmentally stressful conditions for biota near coastal hydrothermal venting 

sites, which can be potentially hazardous for the local human population (Price & Pichler 

2005, Francesconi & Edmonds 1993). It is known that for microbial communities thriving 

near shallow-water hydrothermal vents, hydrothermal fluids may serve as a source of 

bioessential metals (i.e. Cu, Zn, Mo, Mn, Fe etc) and nutrients (o, H, P, N, C) (Tarasov et al. 
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2005); marine life, such as seaweeds, are capable of accumulating high concentrations of 

potentially toxic elements and may subsequently transfer them up to higher levels in the food 

chain (Rahman et al. 2012, Philips 1994, Jayasekera & Rossbach 1996).  

Microbial communities are known to convert Hg
2+

 to methylmercury (CH3Hg
2+

) and 

dimethylmercury [(CH3)2Hg
0
], which significantly affects the near-surface geochemical 

cycling of Hg (Compeau & Bartha 1985, Choi et al. 1994, Morel et al. 1998, King et al. 

2000, Goulding et al. 2002, Gray et al. 2004, Krabbenhoft et al. 2005, Kritee et al. 2008; 

2009). In both aquatic and coastal sediments, microbes and sulfate-reducing bacteria 

respectively, are the main agents controlling methylmercury production (Gilmour et al. 1992, 

Compeau & Bartha 1985, King et al. 1999). The timing of this microbial innovation of Hg 

methylation is as yet unknown. Living organisms accumulate methylmercury which is 

biomagnified through the food chain. By this is meant that the Hg amounts predators obtain 

by eating contaminated preys are higher than those contained in their food (Monteiro et al. 

1996). Microbes also may have a significant effect on Hg mineralization through their 

metabolic byproducts.  

Leal-Acosta et al. (2013) studied the seaweed contamination by Hg in the shallow-

water marine ecosystem of Concepcion Bay in the western Gulf of California, which was at a 

moderate level, constituting an anomaly in the sediments neighboring the vent. 

There is very little information on the methylmercury levels of hydrothermal vent 

fauna; Martins et al. (2001) reported that the methylmercury in hydrothermal mussels (B. 

azoricus) was under the detection limit (<6 ng g
-1

) and the methylmercury concentration in 

hydrothermal mollusks from Tonga Arc (Pacific Ocean) was extremely low (Lee et al. 2015). 

One explanation for this could be the low Hg methylation in the hydrothermal vent 

environments. The role of endosymbiotic bacteria in mussels and snails cannot be excluded as 

an explanation for the low methylmercury accumulation, particularly in gills and digestive 

glands that show lower % methylmercury than other organs, in general. Hg could be reduced 

to a less toxic form of Hg
0
 by mercuric reductase, a prominent detoxifying enzyme in the 

bacterial kingdom (Colaço et al. 2006, Lee et al. 2015).  

 

3.3 Silver in the geoenvironment: what we know and what we don’t know 

 

Silver (Ag) is the 47
th

 element in the periodic table having an atomic weight of 107.8. 

It also has two isotopes: 106.90 Ag and 108.90 Ag in 52% and 48% abundance, respectively 
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(Panyala et al. 2008). Silver occurs naturally in the earth’s crust, usually in quite low 

concentrations (Janes & Playle 1995, Urcell & Eters 1998) (average concentration around 

0.1 mg kg
-1

 (Etris 1997, Renner 1993, Lockhart 1983)). Silver occurs in the environment in 

four oxidation states: 0, 1+, 2+ and 3+. Oxidation states 0 and 1+ are the most common, while 

2+ and 3+ are present only naturally in the environment (Etris 1997, Urcell & Eters 1998). 

It is proven that silver is one of the most toxic, easily accumulated trace metals, 

coming next after Hg (Luoma et al. 1995, Ratte 1995, Reinfelder & Chang 1999, Barriada 

et al. 2007, Gallon & Flegal 2014). The extent of silver toxicity ranges, depending on silver 

species or compound (Cooper & Jolly 1970, LeBlanc et al. 1984, Janes & Playle 1995, 

Urcell & Eters 1998). Silver is listed in the 1977 US EPA (Environmental Protection 

Agency) priority pollutant list and in the EEC 1976 Dangerous Substance Directive List II 

(76/464/EEC), so silver discharges are under regulation (Fabrega et al. 2011). Despite 

silver’s significance, there is a scarcity of data for its global biogeochemical cycle, so a brief 

summary of studies concerning silver is following. 

 

3.3.1 Health effects caused by silver 

 

Even though silver was thought to be harmless, high exposure to silver compounds 

may cause “argiria”, an irreversible condition which results is deep-blue/grey skin 

discoloration by Ag deposition in body tissues (Hill 1941, Rosenman et al. 1979, Panyala et 

al. 2008, Fabrega et al. 2011, Reidy et al. 2013). Another possible effect of silver is 

affecting the population size of specific bacteria species living in gut microflora (Sawosz et 

al. 2007, Fabrega et al. 2011). 

 Apart from health effects in humans, dissolved silver ions are highly toxic to 

prokaryotes, marine invertebrates and fish (Bianchini et al. 2002, Erickson et al. 1998, 

Fisher & Wang 1998, Hogstrand & Wood 1998, Fabrega et al. 2011). 

  

3.3.2. Silver in marine/submarine hydrothermal systems 

 

Silver-rich submarine hydrothermal systems are not common. Iizasa et al. (2004) 

report a Ag-rich active dacite-hosted submarine hydrothermal field associated with sulfide 

chimneys less than 10 m high in the Bayonaise Knoll caldera which is located in a nascent rift 

zone west of the Izu-Ogasawara (Bonin) volcanic arc, Japan. The main hydrothermal field is 
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500m×700m across and is located at a water depth of 820 to 680m. The deposit contains on 

average 37.2% Zn, 3.1% Pb, 1% Cu, 5.6% Ba, 6 ppm Au, 692 ppm Ag, 1310 ppm As and 14 

ppm Hg (Glasby et al. 2008). 

Low-temperature Zn-rich chimneys (~122 °C) of the hydrothermal system at Brothers 

volcano, Kermadec intraoceanic arc (New Zealand) contain a suite of elements seen in 

epithermal environments, including Ag, Sb and Ga (up to ~1000 ppm), As (up to ~1 wt %), 

Pb (up to ~1.2 wt %) and Hg (up to ~102 ppm)  (De Ronde et al. 2011). 

 

3.3.3 Silver occurrence in the environment 

 

Apart from mineral deposits, silver is found on land, in areas where silver has been 

deposited because of human activity, in the atmosphere as a result of coal mining activities 

and smelting, or in aquatic environments as the results of erosion, mining and industrial 

waste, or in sewage treatment plants (Lockhart 1983, The Silver Institute 1995, CPM 

Group 1995, Scow et al. 1995, Urcell & Eters 1998). According to Scow et al. (1995) 

estimations of Ag disposal in 1978, were 4% to the air, 39% to water and 68% to land. 

Industrial silver releases to the environment are shown in Figure 9. 

The majority of studies on silver concern its occurrence in aquatic (Fabrega et al. 

2011) and especially marine environments after anthropogenic inputs (Barriada et al 2007, 

Morford et al. 2008, Gallon & Flegal 2014, Reidy et al. 2013). Concentrations of Ag in 

surface oceanic waters are controlled by riverine, atmospheric and anthropogenic contribution 

(Klein & Mulvey 1978, Ndung’u et al. 2001, Zhang et al. 2001, Ranville & Flegal 2005, 

Morford et al. 2008).  

 The monovalent ion is usually found in surface waters in the form of sulfide, 

bicarbonate, sulfate salts, or absorbed in organic or inorganic materials (Urcell & Eters 

1998). 

 Silver accumulation in marine sediments is controlled by Ag flux to sediments and 

sediment conditions which may or may not help authigenic accumulation to occur (Morford 

et al. 2008). 

 In soils, silver occurs as sulfides, associated with iron, lead or tellurides and 

sometimes is found with gold (Urcell & Eters 1998). 
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Figure 9: Silver input to the environment from industrial applications. The arrow sizes indicate the total amount of 

silver flowing to each environmental receiver (Urcell & Eters 1998). 

 

 

3.3.4 Transport of silver in magmatic-hydrothermal systems 

 

The ore fluid in many magmatic-hydrothermal systems may be composed in 

significant part and even predominantly by a hydrothermal vapor (Henley & McNabb 1978, 

Heinrich et al. 2004, Williams-Jones & Heinrich 2005, Mavrogenes et al. 2010). Water 

vapor can dissolve weakly volatile metallic compounds in concentrations that are orders of 

magnitude greater than predicted by their volatility (Galobardes et al. 1981, Bischoff et al. 

1986, Armellini & Tester 1993, Williams-Jones et al. 2002). This ability of water vapor to 

dissolve metals may be attributed to its highly non-ideal behavior, which allows it to form 

gaseous hydrogen-bonded H2O clusters (e.g., AgCl:(H2O)n ) in which n is the hydration 

number, i.e., the number of molecules in the hydration shell (Galobardes et al. 1981, 

Armellini & Tester 1993, Migdisov et al. 1999; Archibald et al. 2001; 2002).  

Vapor-rich fluids are capable of transporting tens of ppm of Ag (Audetat et al. 1998, 

Ulrich et al. 1999). Hydration numbers do not change significantly with pressure and at any 

given temperature, the compound of interest can be described by the presence of one 

predominant H2O cluster (Migdisov et al. 1999, Archibald et al. 2001). The ability of water 

vapor to transport metals increases with the hydration number. Silver reaches its highest 

concentration (86.06 ppm) in chlorine-bearing water vapor in the temperature range 400–
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550˚C. This would therefore be the optimum temperature range for the transport of silver as 

AgCl–water clusters in low density hydrothermal fluids. However, deposition of silver from 

such fluids would also occur at lower temperature. Significantly, in a number of silver-bearing 

ore deposits, a low density hydrothermal fluid is interpreted to have transported or deposited 

Ag at temperatures similar to those referred above (e.g. fluid inclusion data from Mole 

Granite, Australia contained up to 108 ppm Ag at temperatures between 400 and 530˚C  

(Audetat et al. 2000a;b). The solubility of silver chloride in low-density aqueous fluids can 

be explained by the formation of hydrated clusters AgCl:(H2O)n. The data also suggest that 

the hydration number of the predominant cluster increases systematically with increasing 

pressure, and that each of the gaseous solutions contains a mixture of different clusters that 

predominate at different pressures (Migdisov & Williams-Jones 2013). 

 

3.3.5 Silver bioaccumulation 

 

Silver ions have such chemical properties that can be bioconcentrated in organisms 

(bacteria, fungi and plants), passing through their cell walls and reaching the plasma 

membrane (Luoma 2008, Fabrega et al. 2011). The production of diatoms and dinoflagellate 

remove Ag from surface waters by adsorption or incorporation as being developed (Fisher & 

Wente 1993, Morford et al. 2008). Although silver nanoparticles contained in consumer 

products do not have any proven negative direct effects to humans, they may be 

bioaccumulated indirectly, after being released in the environment (Benn & Westerhoff 

2008, Geranio et al. 2009, Gottschalk et al. 2009, Woodrow 2009, Fabrega et al. 2011).  

Luoma & Rainbow (2005) stated that both bioavailability and bioaccumulation of Ag 

nanoparticles are dependent on the combination of (i) their concentration, (ii) their nature, (iii) 

the environment’s nature, (iv) the route of exposure, (v) the biology and functional ecology of 

the involved organism(s). Navarro et al. (2008) added that the bioavailability and 

bioaccumulation of Ag nanoparticles by every organism depend on the size, shape, chemical 

composition, charge, surface structure and area, solubility and aggregation state of the particle 

or material. The same authors also noted that the aggregation or stabilization of Ag 

nanoparticles is affected by the interaction of pH, ionic strength, composition, temperature, 

nanoparticle composition and natural organic macromolecules. 
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4. Hg and silver in the unique shallow–submarine volcano, Kolumbo 

(Santorini), Hellenic Volcanic Arc (HVA) 

 

4.1 Geodynamic and geological setting of the HVA 

 

The Santorini-Kolumbo volcanic-tectonic field forms part of the central HVA (Fig. 

11). The 5 Ma-to-present Hellenic Volcanic Arc (HVA) belongs to the Hellenic orogenic arc, 

which is located along the convergent plate boundary of the northwards subducting African 

plate underneath the active margin of the European plate (Angelier 1979, Dewey et al. 1973, 

Le Pichon & Angelier 1979, McKenzie 1972, Ninkovich & Hays 1972, Nomikou et al. 

2013). Τhe HVA exemplifies a unique case of volcanism and hydrothermal activity occurring 

on thinned continental crust in a setting of convergent boundaries: the Hellenic Subduction 

System (HSS) (Fig. 10) (Kilias et al. 2013). Specifically, the HSS represents a totally 

different situation from the typical Pacific geodynamic setting (Kearey et al. 2009) because 

the Cretan basin separates the Hellenic Sedimentary Arc (HSA) (Peloponnesus, Crete, 

Rhodes) from the HVA (Methana, Milos, Santorini, Nisyros) (Fig. 11) (Kilias et al. 2013). 

Cretan basin is a “back-arc” mollasic basin (Middle-Late Miocene – Quaternary age) which is 

the result of extension north of Crete, while in contrast the Hellenic trench and fore arc basin 

of the HSS south of Crete is dominated by compression (Le Pichon & Angelier 1979). 

The volcanic activity along the main volcanic centers of the HVA (Methana-Poros, 

Milos, Santorini, Kos, Nisyros) lasted from Pleistocene until the Holocene (Fytikas et al. 

1984). Apart from the onshore volcanoes (Soussaki, Methana, Aegina, Milos, Santorini, 

Nisyros, Kos), submarine ones occupy a significant area in the active HVA either in the form 

of independent features or as an offshore continuation of the volcanic islands. Some of the 

studied submarine volcanoes and hydrothermal vents of the HVA are: i) Paphsanias 

submarine volcano in the Methana group, ii) three volcanic domes to the east of Antimilos 

Volcano and hydrothermal activity in southeast Milos in the Milos group, iii) three volcanic 

domes east of Christiana and a chain of about twenty volcanic domes and craters in the 

Kolumbo zone northeast of Santorini in the Santorini group and iv) several volcanic domes 

and a volcanic caldera together with very deep slopes of several volcanic islands in the 

Nisyros group (Nomikou et al. 2013). 
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Figure 10: Location of study area in the center of the Aegean Volcanic Arc. The modern Aegean volcanic arc is 

developed behind the Hellenic Arc, the Peloponnese–Crete island arc and the Cretan back-arc basin. Τhe African 

plate to the south subducts beneath the Eurasian plate to the north along the red lines just to the south of Crete. 

Yellow arrows indicate the GPS rates (approximately 40 mm/y) of the Aegean towards the African plate (considered 

stable) (modified after Nomikou et al. 2013). 
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Figure 11: Geodynamic setting of the Santorini - Kolumbo volcanic field. (a–d): Schematic cartoons of different 

geodynamic environments where seafloor hydrothermal vents occur. (a) Mid-Ocean Ridges along divergent plates. (b) 

Intra-Oceanic Arcs within convergent boundaries (e.g. Philippines). (c) Marginal back-arc basins and island arcs 

along active continental margins with oceanic subduction (e.g. Japan). (d) ‘‘Hellenic Subduction System’’. The 

‘‘Hellenic Volcanic Arc’’, within active continental margin, developed behind the molassic back-arc basin, hosted 

over thinned continental crust. (e) Swath bathymetry map of Santorini-Kolumbo volcanic field (modified after ref. 5-

permission to publish the original map was provided by Elsevier Science) and location of the geological transect (red 

line). (f) Schematic cartoon depicting the geological cross section through the Hellenic Volcanic Arc, from the molassic 

back-arc Cretan Basin to the Cycladic island of Ios in the back-arc area (Kilias et al. 2013). 
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4.2 The Kolumbo submarine volcano and hydrothermal system 

 

The Santorini-Kolumbo volcanic group comprises three distinct volcanic structures 

occurring along a NE–SW direction. Christiana form the southwestern part of the group, 

Santorini occupies the middle part and Kolumbo extends towards the northeastern part (Fig. 

12). Kolumbo volcanism, tectonism and hydrothermal activity occurred along the 

aforementioned NE-SW tectonic zone named as Christianna-Santorini-Kolumbo (CSK) line 

(Nomikou et al. 2013).  

 

 

Figure 12: Swath bathymetry map of Christianna-Santorini-Kolumbo volcanic field (CSK) and tectonic zone (red 

line) (Nomikou et al. 2013). 

 

4.2.1 Kolumbo volcanic field 

Kolumbo underwater volcano is located 7 km north-east of Thera, the main island of 

Santorini volcanic group, in the southern Aegean Sea (Figs. 10, 12, 13). According to 

Nomikou et al. (2013) more than 20 volcanic cones are present north-east of Kolumbo, which 
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appear to be aligned along two distinct linear trends (N 29°E and N42°E) that converge at the 

point of the Kolumbo crater. Cones of the northerly trend are generally larger, but vary in size 

towards the northeast, whereas cones in the easterly trend are smaller and more uniform in 

size. In addition, the size and the height of the volcanic domes generally decrease toward the 

northeast, indicating that the volcanic activity diminishes as the distance from Kolumbo 

increases (Nomikou et al. 2013). The diameter of the approximately 500-m-deep Kolumbo’s 

crater is 1700 m, with the shallowest part of its rim lying just 18 m below sea level 

(Perissoratis 1995, Sigurdsson et al. 2006, Nomikou et al. 2013).  

Kolumbo’s crater walls expose stratified pumiceous deposits at a depth of 270-250 m 

which continues to 150 m, above which the deposits are obscured by loose talus and bacterial 

overgrowths (Carey et al. 2011, Kilias et al. 2013). The entire crater floor of Kolumbo is 

covered by orange to brown smooth sediment with a few-cm-thickness (Carey et al. 2010) 

consisting of Fe-encrusted flocculent microbial mats and amorphous Fe-oxyhydroxide 

deposits (Kilias et al. 2013). Temperature in the Fe-rich sediment ranges between 16.2°C and 

17°C. Small pockmark-like craters from the Fe microbial mat release clear, low-temperature 

fluids (≤70°C) and CO2 gases (Kilias et al. 2013). 

Kolumbo erupted in 1650 CE following one year of strong earthquake activity 

(Fouque 1879). Seismic profiles provide evidence that Kolumbo was shaped due to at least 

four eruptive cycles (Fig. 14) (Hübscher et al. 2015). The lower part of the present Kolumbo 

cone is formed by layered or massive lava flows. The upper part of the cone is composed of 

tephra deposits produced during the 1650 eruptive phase. This interpretation has been verified 

by repetitive ROV dives in the Kolumbo crater and at different sites of the inner crater walls 

(Nomikou et al. 2013). 

The eruption of 1650 was an explosive eruption of gas-rich magma. The eruption 

column of ash and pumice raised high above the volcano and created pyroclastic flows and 

pyroclastic surges that passed over the sea surface, spreading several kilometers distance over 

the ocean in all directions. At least fifty people and over a thousand livestock died from 

asphyxiation on Santorini at NE areas near the volcano (Fouque 1879). Some people went to 

the coast out of curiosity to see the eruption, but they were greatly affected by gas clouds and 

as a consequence some died. The Kolumbo pyroclastic surges passed over the sea reaching 

the north-east coast of Santorini, about 7 km away, as very dilute but still hot, lethal and gas-

rich clouds of ash (Nomikou et al. 2013).The explosive eruption was followed by one year of 

strong earthquake activity (Fouque 1879). The resulting tsunami caused significant 
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destruction on the east coast of Santorini and adjacent islands (Dominey–Howes et al. 2000, 

Nomikou et al. 2013). 

 

Figure 13: Swath bathymetry of Kolumbo volcano (modified after Nomikou et al. 2013). (The red square is the area of 

which a detailed bathymetric map of Kolumbo hydrothermal vent field is given in Figure 16). 

 

 
 

Figure 14: SW-NE striking multi-channel reflection seismic profile across Kolumbo. Upper part shows seismic data, 

lower part shows interpretation. Grey shaded area smark pyroclastic flows or mass-transport deposit. K1-K5: the five 

circular stratigraphic units labeled bottom-up. SK3 and SK4 refer to intercalated units. VC: Volcanic Cone. VC 

numbers according to Nomikou et al. (2013). (Hübscher et al. 2015).  
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4.2.2 Kolumbo hydrothermal field   

In 2006, Remotely Operated Vehicle explorations in the northern part of Kolumbo’s 

crater floor revealed an extensive ‘‘diffuse-flow’’-style hydrothermal vent field, Kolumbo 

Hydrothermal Field (KHF), between 492 and 504 m depth (Fig. 13) (Sigurdsson et al. 2006). 

According to Sigurdsson et al. (2006) and Kilias et al. (2013), the seafloor expressions of the 

KHF, consist of active and inactive sulfide-sulfate structures such as mounds, flanges, vertical 

spires and pinnacles that lie along a NE-SW trend, sub-parallel to the Christiana-Santorini-

Kolumbo (CSK) tectonic zone. These vents (Fig. 15) are surrounded by sites of low-

temperature (≤70˚C) diffuse venting from the Fe-mats. “Politeia Vent Complex” is a typical 

example of a spire-type vent extending over an area of 5×5 m, in the western part of the 

Kolumbo hydrothermal field. “Politeia Vent Complex” consists of short (≤3 m tall), slender, 

intermediate-temperature diffusely-venting, isolated and/or merged, sulfide-sulfate spires or 

“diffusers” (Fig. 15a) (Kilias et. al 2013). These spires usually decrease gradually on their 

top and rise up from a hydrothermal mound, growing directly on the sediment and Fe-mat-

covered seafloor. “Diffuser” spires release clear, almost free-of-particles fluids, from which 

sulfide minerals have precipitated prior to discharge (Fig. 15b) (Hannington et al. 2005, 

Kilias et al. 2013). Almost the same vents have been observed at shallow-water boiling vents 

on the Tonga arc, SW Pacific, the Juan de Fuca Ridge, and the Mid-Atlantic Ridge near 

Iceland (Hannington et al. 2001, Kilias et al. 2013). Grayish suspended filamentous 

microbial biofilms (streamers) cover the exterior of the “Politeia” spires (Kilias et al. 2013).  

In the central part of the vent field smooth-sided sulfide-sulfate mounds are located: 

the “Champagne Vent Complex” (Fig. 15b) and the “Diffuser II Vent Complex” (Fig. 15c), 

which are covered by orange to brown Fe-rich microbial mats and consist of a basal mound 

without spire structures. Typically, bubble streams (mainly CO2) are emitted from small holes 

and cracks on their sides and bases. Carbon dioxide gas dissolution causes accumulation of 

density-stratified water enriched in CO2, and acidic seawater (pH≈5), for ~ 10‒15m above the 

vents (Carey et al. 2013, Kilias et al. 2013). In 2010 the highest vent fluid temperature was 

measured, reaching 210˚C. At the northern crater slope, the largest hydrothermal chimney 

(height ~4 m) covered by Fe microbial mat (“Poet’s Candle”) was observed (Fig. 15d) (Kilias 

et al. 2013). 

Additionally to the previous explorations, more Remotely Operated Vehicle 

explorations conducted in 2013, by collecting chimneys around the Champagne Vent 
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Complex area (Figs. 15e, f, g, h). Most of these chimneys discharge gases and fluids, which 

are the typical features of Champagne Vent Complex. 

 

Figure 15: a. “Politeia Vent Complex”: Field of multiple inactive and active sulfide/sulfate, spires up to 2 m high on 

top of a hydrothermal mound with spire fragments draped by Fe-bearing bacterial mats. Clear fluids vent from active 

spires (not visible). b. “Champagne Vent Complex”: Active high-temperature (220°C) vent discharging both gases 

(>99 % CO2) and fluids. c. “Diffuser II Vent Complex”: Vent with bacterial covering and gas bubbling. d. “Poet’s 

Candle”: The largest observed (height ~ 4 m) inactive vent with bacterial covering (Kilias et al. 2013). e. 

Sulfide/sulfate spire on the top of a hydrothermal mound from the vent V16b. f. Vent with slight gas discharging from 

V08.  g. Vent displaying gas bubbling from V59(2).  h. Active vent discharging gases and fluids from the vent V65 (for 

vent location see Figure 16).  

5. Materials and methods 

   

 The samples studied in this thesis were collected on the 3
rd

 of September 2013 during 

the EU-funded oceanographic expedition “2-BIOTECH SAMPLING EVENT” of the 

“SeaBioTech” EU-FP7 project (Grant Number 311932) 

{http://spider.science.strath.ac.uk/seabiotech/index.php}. The expedition took place from 2 to 

10 September 2013. The chief scientist of the expedition was Dr Paraskevi Polymenakou of 
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the Hellenic Centre Marine Research (HCMR). The survey was conducted with the Remotely 

Operated Vehicle (ROV) Max Rover onboard oceanographic vessel Aegaeo of the HCMR.  

 

5.1 Sampling 
 

Sampling campaign and methods are detailed in HCMR’s “SeaBioTech Report 2013”, 

and, vent and sample location and recovered samples are shown in Figures 15 e-h, 16, 17, 18, 

19, 20, 21. The studied samples are characterized by four mineralogical zones according to 

the classification of Kilias et al. (2013): (a) a thick porous “inner sulfide-sulfate core” (ISSC), 

(b) an earthy thin orange-yellow outer As-sulfide-dominated layer (OAsL), (c) an orange to 

brown Fe-(hydrated)-oxyhydroxide-dominated microbial surface Fe crust (SFeC) and (d) 

interior hydrothermal conduit networks are lined by unidentified Sb-Zn-S phases (IPCN).  

 
 

Figure 16: Detailed bathymetric map of Kolumbo hydrothermal vent field located in the northern part of the crater 

floor (red square in Figure 13) (modified after Kilias et al. 2013), with the locations of hydrothermal vents, Politeia, 

Champagne and Diffuser II, and the samples studied in this MSc thesis along with ex situ photographs immediately 

after recovery from the sea.   
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Figure 17: Ex-situ photographs of broken off and/or sectioned parts (SB-3-D, SB-3-E, SB-3-F) of sample SB-3 with 

marked bottom-up growth orientation. (a) Samples SB-3-D and SB-3-E represent the ISSC zone. (b) Sample SB-3-F is 

the top part of this hydrothermal chimney. (c) Individual samples assembled together to represent original positions 

in chimney sample SB-3. The brown exterior surface of the samples represents the OAsL zone. 

 

 
 

Figure 18: Ex-situ photograph of sectioned chimney sample SB-7-A representing the ISSC zone. 
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Figure 19: Ex-situ photographs of the hydrothermal spire sample No. SB-9 showing (a) the whole sample which is 

covered by the OAsL zone (i) while its interior represents the ISSC zone (ii); (b) its massive sulfide (ISSC)-dominated  

basal part of spire.  

 

  

Figure 20: Ex-situ photographs of the hydrothermal chimney sample SB-10-A showing (a) the whole sample in which 

the zone ISSC (i) dominates and (b) its base with a thin orange rim of the OAsL zone (ii).  

 

 

 Figure 21: Ex-situ photographs of the hydrothermal chimney sample SB-12-A showing (a),(b) different aspects from 

the whole sample coated by the OAsL zone (i) while its interior consists of massive sulfide core (ISSC zone) (ii) and (c) 

its massive sulfide base (ISSC zone) (ii) with open-space filling barite crystals (Ba). 

 

ii 
ii 

Ba 
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5.2 Sample preparation 

 

 Two (2) of the five (5) hydrothermal structures studied in this M.Sc. thesis (Figs. 

17‒21) were cut in several cross sections in order to obtain representative parts of the various 

zones, i.e., ISSC, OAsL etc. Specifically, the sample SB-3 (Fig. 17) was divided in six (6) 

subsamples (SB-3-A, SB-3-B, SB-3-C, SB-3-D, SB-3-E, SB-3-F) and the sample SB-9 (Fig. 

19) in three (3) subsamples (SB-9-A, SB-9-B, SB-9-C). The remaining two samples (SB-7-A, 

SB-10-A and SB-12-A) were studied intact (Table 2). All the aforementioned samples 

encapsulate both the ISSC and the surrounding OAsL zone. 

Ten (10) polished thin sections and seven (7) polished blocks were prepared from the 

aforementioned samples for mineralogical characterization under transmitted and reflected 

light (Table 2). Unfortunately, the samples were extremely brittle making impossible to 

obtain sections or blocks of the yellow-orange rims of the OAsL zone, so in this study only 

the ISSC zone was examined. 

 In an effort to examine the outer OAsL zone of the samples or to verify some ESEM 

results, ten (10) PXRD analyses were conducted in four (4) samples (Table 2). A very small 

amount of rock powder was obtained by scrapping the sectioned sample left from the thin 

section preparation in order to perform the PXRD analysis. 

 

5.3 Analytical methods 

 

 The present M.Sc. thesis is based on mineralogical analysis using Optical Microscopy 

(OM) in reflected and transmitted light and Environmental Scanning Electron Microscopy 

(ESEM) and electron microprobe analyses (EMPA), for mineral identification, textural 

description and major, minor and trace element/metal analysis. Some analyses were 

performed using Powder X-Ray Diffraction (PXDRD) and Raman Spectroscopy (RS) for 

mineral identification.  

 

Optical microscopy & Environmental scanning electron microscopy 

All the prepared polished thin sections and blocks were made in the labs of Institute of 

Geology and Mineral Exploration (I.G.M.E.), Attiki, Greece. The optical microscope used is 
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housed in the Department of Geology and Geoenvironment at the National and Kapodistrian 

University of Athens (N.K.U.A.).  

The environmental scanning electron microscopy was used to assist with mineral 

identification in cases when such identification was uncertain by petrographic techniques. 

Environmental scanning electron microscopy (ESEM) coupled with energy dispersive 

spectrometer (EDS), and a wavelength dispersive spectrometer (WDS) investigation of gold-

coated polished surfaces was performed using an ESEM Field Emission Gun (FEI) QUANTA 

FEG 650 (Oxford Instruments, UK). For the EDS analyses an Oxford T-Max 80 detector was 

used, while for WDS analyses an Oxford Wave Instrument was used. Element mapping and 

peak analyses were performed using Aztec software, and WDS data processing was done 

using INCA Suite 4.11 software. The ESEM was housed in the Department of Geological 

Sciences at Stockholm University, Sweden. Calibration of the beam current was performed 

daily using a cobalt standard manufactured by Oxford. The standards for each element were 

included in the software, so the instrument was calibrated automatically to the standard during 

the EDS procedure. The Hg-standard for WDS was a sphalerite also manufactured by Oxford, 

but it was imported manually in the instrument. The detection limits for EDS is 0.1% and for 

WDS 0.01%.  

 

Powder X-Ray Diffraction 

A few supplementary PXRD analyses were conducted to verify the ESEM results by 

identifying the atomic and molecular crystal structure. The PXRD method performed by using 

a PANalytical X’pert PRO automated diffractometer, located at the Swedish Museum of 

Natural History in Stockholm. The estimated detection limit for phase identification is  

1‒3 wt %. 

 

Raman spectroscopy 

In order to verify and define some ESEM results, four (4) supplementary Raman 

spectroscopy analyses were conducted. 

Raman spectra were recorded at the Department of Geological Sciences, Stockholm 

University, using a laser Raman confocal spectrometer (Horiba instrument LabRAM HR 800) 

and equipped with a multichannel air cooled CCD detector. An Ar-ion laser (λ = 514 nm) was 

used as the excitation source with an output power at the sample of 8 mW. The instrument 

was integrated with an Olympus microscope and the laser beam was focused to a spot of 1 μm 

https://www.google.gr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CCIQFjAAahUKEwiLq6L4vp7HAhWBESwKHSbRDgI&url=http%3A%2F%2Fserc.carleton.edu%2Fresearch_education%2Fgeochemsheets%2Fwds.html&ei=wJXIVYvLHoGjsAGmorsQ&usg=AFQjCNEg_gM5p44X8HkTzzHIXCSfv7W1BA&bvm=bv.99804247,d.bGg
https://en.wikipedia.org/wiki/Crystal
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with a 100x objective. The spectral resolution is about 0.3 cm
-1

. The instrument was calibrated 

using a neon lamp and the Raman line (520.7 cm
-1

) of a silicon wafer. Instrument control and 

data acquisition was made with LabSpec 5 software. 

 

Table 2: List of samples used for mineralogical study in this M.Sc. thesis. 

Vent Sample 

Polished 

Thin 

Sections 

Polished 

Blocks* 

Number of 

PXRD 

analyses 

Number of 

Raman 

analyses 

V59(2) 

SB-3-A  - 
SB-3-A1 - - 

SB-3-A2 - - 

SB-3-B - SB-3-B - - 

SB-3-C - SB-3-C - - 

SB-3-D 

SB-3-D1 - - 2 

SB-3-D2 - 5 - 

SB-3-E 

SB-3-E1 - - 2 

SB-3-E2 - - - 

SB-3-F SB-3-F - 1 - 

V08 SB-7-A 

SB-7-A1 - - - 

SB-7-A2 - 2 - 

- SB-7-3A - - 

V65 

SB-9-A - SB-9-A - - 

SB-9-B - SB-9-B - - 

SB-9-C SB-9-C - - - 

V67 SB-10-A SB-10-A - 3 - 

V16(b) SB-12-A SB-12-A - - - 

 

*The mineralogical study of polished blocks was made only by using the optical microscope, because during the 

ESEM procedure their gold-coated surface was charging, making their analysis by the electron microscope 

impossible. 
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6. Results 

 

 The mineral identification and textural description and interpretation were conducted 

on both polished thin sections and polished blocks first by Optical Microscopy and secondly 

confirmed by Environmental Scanning Electron Microscopy (ESEM).  

In the case of Environmental Scanning Electron Microscopy (ESEM) analysis, only 

the polished thin sections could be examined by energy dispersive spectrometry (EDS) and 

wavelength dispersive spectrometry (WDS), because the gold-coated surface of the polished 

blocks was charging during the procedure, making their analysis impossible. 

The studied hydrothermal spires are typically layered (Figs. 17-21), comprising an 

inner sulfide sulfate zone consisting of PXRD-crystalline barite together with galena, 

sphalerite and pyrite/marcasite, and rare opal (‘ISSC’ of Kilias et al. 2013), an intermediate 

‘‘outer As-sulfide layer’’ dominated by PXRD-amorphous disseminated As-rich sulfides 

(OAsL of Kilias et al. 2013) and an outer zone of gelatinous orange to brown Fe-rich 

microbial mat designated as ‘‘surface Fe-rich crust’’ (SFeC) (Kilias et al. 2013). The studied 

sphalerite belongs only to the “inner sulfide-sulfate core” (ISSC).  

 

6.1. Mineralogy and sphalerite textures of the ‘Inner Sulfide-Sulfate Core’ (ISSC) 

 

Optical Microscopy in reflected and transmitted light, and Environmental Electron 

Scanning Microscopy (ESEM) aided by PXRD and Raman Spectroscopy analysis revealed 

three main sulfide phases within a barite matrix, and rare opal: pyrite/marcasite, sphalerite, 

galena; rare stibnite (Sb2S3), unidentified Sb-Pb-sulfosalts and a sphalerite-like phase 

containing Zn, S, Fe and Sb (Table 3), were also detected.  

Barite (BaSO4) occurs as blades, acicular clusters, fibrous crystals and rarely as 

dendritic crystals and it usually forms the matrix of disseminated sulfides, sphalerite and 

mainly colloform pyrite/marcasite (Fig. 22a, b, c). Moreover, barite blades are found with As-

sulfide overgrowths along their edges (Fig. 22d). 
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Figure 22:  Photomicrographs of commonly seen textures in the inner sulfide-sulfate core (ISSC). Transmitted light 

microphotograph (TLP) of (a) barite (Ba) laths and rosettes forming the substrate for disseminated colloform zoned 

sphalerite (Sph) (oil lens and // Nichols). (b) pyrite/marcasite (Py) microglobules and colloform zoned sphalerite (Sph) 

overlaying barite (Ba) matrix (oil lens and // Nichols). (c) Reflected light microphotograph (RLP) of anhedral Sb-Pb-

sulfosalt inclusions in concentrically laminated pyrite/marcasite (Py), mantled by barite laths (Ba) and anhedral 

sphalerite (Sph) with scattered Sb-Pb-sulfosalts inclusions (oil lens and // Nichols). (d) Reflected light 

microphotograph (RLP) of As-sulfides (As-S) overgrowing barite (Ba) blades along their edges (oil lens and crossed 

Nichols). 

 

Pyrite/marcasite occurs in many textures such as compact, concentrically laminated 

spheroids (Fig. 23a, b) intricate closely-packed aggregates of rounded and bulbous laminated 

pyrite/marcasite displaying microstromatolitic structures (Fig. 23c), as radial rim encircling 

concentrically banded, radial, spheroidal masses of pyrite/marcasite (Fig. 23d).  Additionally, 

pyrite/marcasite is found as anhedral porous, spongy rims around concentrically laminated 

pyrite/marcasite; the thickness of these rims is around 25-50 μm (Fig. 23e). 

Galena (PbS) occurs anhedral, up to 10μm across (Fig. 24a, d), as rims encircling 

concentrically laminated spheroids of pyrite/marcasite (Fig. 24b) or as inclusions in sphalerite 

grains (Fig. 24c). 

Rare stibnite (Sb2S3) is found a) as fibers in open space (Fig. 25a, b, c) or b) in the 

form of anhedral or subhedral grains in open space (Fig. 25c). 

Anhedral Sb-Pb-sulfosalts (Figs. 22c, 23a, b, 24) are found as inclusions into 

colloform banded pyrite/marcasite, colloform sphalerite or as rims encircling concentrically 

laminated spheroids of pyrite/marcasite. 
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Figure 23: Photomicrographs of commonly seen textures in the inner sulfide-sulfate core (ISSC).  Reflected light 

microphotograph (RLP) of (a) finely concentrically laminated spheroids of pyrite/marcasite (Py) mantled by anhedral 

to subhedral intergrowths of Sb-Pb-sulfosalts and sphalerite (Sph) (oil lens and // Nichols). (b)  Concentrically 

laminated spheres of pyrite/marcasite (Py) surrounded by sphalerite (Sph) with inclusions of Sb-Pb-sulfosalts (oil lens 

and // Nichols). (c) Finely laminated pyrite-marcasite fabric with (micro)stromatolitic morphology (oil lens and // 

Nichols). (d) Radial rim of pyrite/marcasite encircling concentrically banded, radial, spheroidal masses of 

pyrite/marcasite (oil lens and // Nichols). (e) Anhedral porous, pyrite/marcasite spongy rims around concentrically 

laminated pyrite/marcasite (oil lens and // Nichols). 
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Figure 24: ESEM photographs of (a) anhedral galena (Gn) with anhedral sphalerite (Sph) and intricate closely 

packed, colloform banded pyrite/marcasite (Py) fabric. (b) Galena rim (Gn) encircling concentrically laminated 

spheroid of pyrite/marcasite (Py). (c) Anhedral inclusions of galena (Gn) into anhedral sphalerite (Sph). (d) ESEM 

backscatter image showing anhedral galena (points 7a213 and 7a216), with spherical pyrite (point 7a215) and barite 

blades (point 7a214). 

 

 

 

Figure 25: ESEM backscatter images of (a), (b) stibnite fibers (noted green points) with barite blades (Βa). (c) 

anhedral to subhedral and fibrous stibnite in open space.  
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Figure 26: ESEM backscatter image showing anhedral Sb-Pb-sulfosalts inclusions (marked green) into laminated 

concentric spheres of pyrite/marcasite. 

 

 

An unidentified non-stoichiometric Zn-sulfide phase was found in a texture of parallel 

bundles (Fig. 27). This phase consists of zinc (Zn), sulfur (S), iron (Fe) and antimony (Sb) in 

average concentrations of 87.49, 10.29, 1.24 and 0.98 wt %, respectively (Table 3). 

 

 
 

Figure 27: ESEM photograph of biomorphous bundles of unidentified non-stoichiometric Zn-sulfide phase.  

 

 

Table 3: Single EPMA analyses showing the concentrations (wt %) of the elements contained in the non-

stoichiometric  Zn- sulfide phase.  Spots of EPMA analyses are represented by crosses accompanied by “Spectrum 

+number X” designation (Fig. 27).  

Spectrum 
S  

(wt %) 

Zn 

(wt %) 

Fe 

(wt %) 

Sb 

(wt %) 

414 9.88 86.77 1.14 0.56 

415 10.69 88.21 1.35 1.41 
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Sphalerite in the ISSC displays complex textures which can be classified into three (3) 

varieties designated as Type 1 to Type 3:  

 Type 1: Microglobular and colloform zoned sphalerite 

 Type 2: Zoned sphalerite with porous core and massive rim  

 Type 3: Inclusion-rich and compositionally zoned massive sphalerite 

6.1.1. Type 1: Microglobular and colloform zoned sphalerite 

6.1.1.1 Mineralogical and textural description of sphalerite type 1 

 

During the ESEM-EDS analysis of samples SB-9-C and SB-12-A, microglobular 

sphalerite was defined. The second form of this sphalerite type occurs as independent 

microglobules within massive sphalerite or in open space (Fig. 28, 29).  

Raman analyses were conducted in the dark red and yellow zones of sphalerite type 1, 

as shown in Figure 30. Compared with Raman spectra of (a) pure sphalerite 

(http://rruff.info), (b) Cd-rich sphalerite (Kharbish 2007) and (c) sphalerite containing Fe 

(http://rruff.info), the spectra from the dark red areas of the microglobular and colloform 

zoned sphalerite match with the Cd-rich sphalerite, while the yellow areas match with the Fe-

rich sphalerite.  

 

   
Figure 28: ESEM photograph of (a) massive sphalerite (Sph) with voids (dark) containing numerous circular to ovoid 

microglobules (~2 μm) (Type 1); microglobules’ cores are separated from their rims by a thin gap (b) sphalerite (Sph) 

colloform microglobules (Type 1). 

 

 
Figure 29: Transmitted light microphotograph (TLP) of colloform zoned sphalerite (Type 1) (oil lens and //Nichols). 

Py 

Py 

Py 

Sph 

(a) (b) 
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Figure 30: Raman analyses of the dark red (1) and yellow zones (2) of microglobular and colloform zoned sphalerite, 

compared with Raman spectra of (a) pure sphalerite (http://rruff.info), (b) Cd-rich sphalerite (Kharbish 2007) and (c) 

sphalerite containing Fe (http://rruff.info). 

 

 

6.1.2.2. Quantitative EPMA analysis, compositional mapping, element distribution and 

correlation trends of sphalerite type 1 

 

The absolute concentrations, normalized to 100%, for Fe and Sb in type 1 sphalerite 

are summarized as histograms in Figures 31 and 32. Whereas more trace elements (Cu, Cd, 

As and Ag) were also detected during electron microprobe (EPMA) analyses, their quantity 

was not enough to be displayed in histograms.  

A total of 12 EPMA analyses were carried out on sphalerite type 1. Concentrations of 

eight elements (S, Zn, Fe, Cu, Cd, Sb, As and Ag) were determined using EDS mode. 

Electron probe microanalyses (EPMA-EDS) of samples SB-9-C and SB-12-A for major, 

minor and trace elements with number of analyses (n), means, standard deviations (1σ SD), 

maxima, minima and limits of detection (LOD) are listed in Table 4. Complete EPMA 

datasets can be found in the Appendix. 

 

                   N=12 mean=1.93 wt %      S.D.=0.58 wt % 

 
 

Figure 31: Histogram showing the variation in Fe in sphalerite type 1 from Kolumbo hydrothermal precipitates. 
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             N=10 mean=3.00 wt %         S.D. =1.69 wt % 

 
 

Figure 32: Histogram showing the variation in Sb in sphalerite type 1 from Kolumbo hydrothermal precipitates 

 

 
Table 4: EPMA main results from the microglobular and colloform zoned sphalerite (type 1). Minimum, maximum, 

mean, corresponding standard deviation (1σ SD), and limit of detection (LOD) are presented. 

 

 Type 1 S 

(wt %) 

Fe 

(wt %) 

Zn 

(wt %) 

Sb  

(wt %) 

Cu 

(wt %) 

Cd  

(wt %) 

As  

(wt %) 

Ag  

(wt %) 

n^ 12 12 12 10 4 3 3 3 

Min. 32.42 0.99 56.86 0.706 0.850 0.973 0.218 1.103 

Max. 35.45 2.94 64.40 5.757 1.024 1.025 0.779 1.647 

Mean 34.05 1.92 60.49 3.004 0.949 0.999 0.433 1.429 

1σ SD 1.04 0.58 2.77 1.692 0.076 0.026 0.303 0.287 

LOD 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

^ n: number of measurements with higher contents than the limit of detection. 

 

 

For sphalerite type 1 the Zn content ranges from 56.86 to 64.40 wt % and averages 

60.49 wt % (Table 4). The Fe content ranges from 0.99 to 2.94 wt % and averages 1.92 wt %. 

Sphalerite also shows significant variation in the content of Sb (0.71 to 5.76 wt %), Cu (up to 

1.02 wt %), As (up to 0.78 wt %) and Cd (up to 1.02 wt %). 

In order to examine potential chemical variations within the type 1 of sphalerite, trace 

element mapping was carried out by ΕSEM-EDS (Fig. 33). This procedure reveals a 

concentric rhythmic zoning from the sphalerite core towards their rim. The core seems to be 

enriched in Hg and Cd; a Sb-rich band succeeds and finally another concentric rhythmic zone 

of Hg and Cd followed by a Sb-Cu-rich zone ends up to the trace element-depleted rim. 
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Figure 33: Energy dispersive spectroscopy map of colloform zoned sphalerite (Sph) of type 1 for Hg, Cd, Sb, Fe, S, 

Cu, Zn, proving a rhythmic zonation. 

 

In Figure 34 the correlation between Zn and the other detected trace elements (Fe, Sb, 

Cu, Cd, As and Ag) in sphalerite type 1 is illustrated. Whereas there is a good correlation 
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between Zn and Fe (Fig. 34a) and Zn and Sb (Fig. 34b), it is not possible to come to any 

conclusion for the correlation of Zn with Cu, Cd, As and Ag (Figs. 34 c, d, e, f) because of 

the scarcity of analyses number for the aforementioned trace metals. 

 

   

   

   

Figure 34: Binary correlation plots of (a) Zn vs. Fe, (b) Zn vs. Sb, (c) Zn vs. Cu, (d) Zn vs. Cd, (e) Zn vs. As, (f) Zn vs. 

Ag, in microglobular and colloform zoned sphalerite (Type 1). 
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6.1.2. Type 2: Zoned sphalerite with porous core and massive rim 

6.1.2.1 Mineralogical and textural description of sphalerite type 2 

 

Sphalerite of type 3 are characterized by texturally and/or chemically zoned anhedral 

sphalerite having porous core and massive rim of variable thickness, associated with barite, 

pyrite/marcasite, galena and opal (Figs. 35, 36, 37, 38, 39). Commonly, porous core is devoid 

of optically detectable galena, whereas anhedral galena inclusions of various sizes and shapes 

occur either randomly distributed within the massive rims (Fig. 35, 36) or they outline the 

interface between porous and massive zones of sphalerite 2 (Figs. 37, 38). 

 

 
 

Figure 35: ESEM photograph of type 2 sphalerite with porous core (pSph) and massive rim (mSph) with voids (dark). 

The latter contains randomly distributed galena (Gn) inclusions.  

 

 
 

Figure 36: ESEM photograph showing the association between sphalerite type 2 and pyrite (Py), galena (Gn) and opal 

(Opl).  

(a) 
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Figure 37: BSE-ESEM photograph of type 2 sphalerite exhibiting textural and chemical zoning, consisting of 

sphalerite with porous core (pSph) which contains pyrite (Py) microglobules and is surrounded by massive sphalerite 

(mSph). Galena (Gn) inclusions appear into massive sphalerite. These inclusions mainly separate porous from massive 

sphalerite.  

 

 
 

Figure 38: ESEM photograph of closely packed anhedral type 2 sphalerite consisting of porous cores (pSph) and 

massive rims (mSph) with voids (dark). Sphalerites contain inclusions of anhedral (i), skeletal assemblages (ii), and 

filaments and or needles (iii) of galena (Gn).  

 

 
Figure 39: XRD spectra showing the association of barite and sphalerite. The pie chart shows how well the spectra for 

each mineral match the XRD-diagram. 



Master Thesis                                                                                 Maria-Despoina Chrysafeni 

 

 

  
Page 73 

 
  

6.1.2.2. Quantitative EPMA analysis, compositional mapping, element distribution and 

correlation trends of sphalerite type 2 

 

The absolute concentrations, normalized to 100%, for Fe and Sb in type 2 sphalerite 

are summarized as histograms in Figures 40 and 41. Whereas more trace elements (Cu, Cd, 

As and Ag) were also detected during electron microprobe (EPMA) analyses, their quantity 

was not enough to be displayed in histograms.  

A total of 28 EPMA analyses were carried out on sphalerite type 2. Concentrations of 

eight elements (S, Zn, Fe, Cu, Cd, Sb, As and Ag) were determined using EDS mode. 

Electron probe microanalyses (EPMA-EDS) of samples SB-3-D1, SB-3-E2 and SB-9-C for 

major, minor and trace elements with number of analyses (n), means, standard deviations (1σ 

SD), maxima, minima and limits of detection (LOD) are listed in Table 5. Complete EPMA 

datasets can be found in the Appendix. 

 

       N=27 mean=1.25 wt %        S.D. =0.44 wt % 

 
 

Figure 40: Histogram showing the variation of Fe in sphalerite type 2 from Kolumbo hydrothermal precipitates. 

 

  

        N=19 mean=2.69 wt %       S.D. =1.53 wt % 

 
 

Figure 41: Histogram showing the variation of Sb in sphalerite type 2 from Kolumbo hydrothermal precipitates. 
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Table 5: EPMA main results for zoned sphalerite with porous core and massive rim (Type 2). Minimum, maximum, 

mean, corresponding standard deviation (1σ SD), and limit of detection (LOD) are presented. 

 

Type 2 
S 

(wt %) 

Fe 

(wt %) 

Zn 

(wt %) 

Sb  

(wt %) 

Cu 

(wt %) 

Cd  

(wt %) 

As  

(wt %) 

Ag  

(wt %) 

Porous 

core 

n^ 12 12 12 12 2 1 3 1 

Min. 33.80 0.54 56.63 0.98 0.58 * 0.52 ** 

Max. 39.40 1.49 63.52 5.94 1.22 * 1.07 ** 

Mean 34.56 1.01 60.56 3.40 0.90 * 0.76 ** 

1σ SD 1.55 0.33 1.95 1.45 0.45 * 0.28 ** 

LOD 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

Massive 

rim 

n 16 16 16 7 3 3 - - 

Min. 33.77 0.69 57.89 0.90 0.59 0.49 - - 

Max. 39.85 2.02 65.37 2.79 1.67 0.81 - - 

Mean 35.06 1.41 62.56 1.47     1.10 0.68 - - 

1σ SD 1.82 0.45 1.95 0.65 0.54 0.17 - - 

LOD 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

^ n: number of measurements with higher contents than the limit of detection. 
* One single analysis of 1.30 wt % Cd. 

** One single analysis of 1.19 wt % Ag. 

- Concentrations below the detection limit. 

 

 

The EPMA analyses for Kolumbo type 2 sphalerites are grouped in (i) 12 analyses 

from the porous core and (ii) 16 from the massive rim (Table 5). Sphalerite core is composed 

of 56.63 to 63.52 wt % Zn (60.56±1.95 wt %) and 33.80 to 39.40 wt % S (34.56±1.55 wt %). 

Fe and Sb are ubiquitous components of all analyzed sphalerite 2 cores, with contents varying 

between 0.54 and 1.49 wt % (mean 1.01±0.33 wt %), and 0.98 to 5.94 wt % (mean 3.40±1.45 

wt %), respectively; in sphalerite 2 cores Cu (up to 1.22 wt %) and As (up to 1.07 wt %) were 

also detected but only in a few number of analyses. Cd in 1.30 wt % and Ag in 1.19 wt % 

were also found just in one analysis. Sphalerite rim is composed of 57.89 to 65.37 wt % Zn 

(62.56±1.95 wt %) and 33.77 to 39.85 wt % (35.86±1.82 wt %) S. Fe is detected in all 

analyzed sphalerite 2 rims, with contents varying between 0.69 and 2.02 wt % (mean 

1.41±0.45 wt %). Sb concentrations range between 0.90 and 2.79 wt % (mean 1.47±0.65 wt 

%) in sphalerite 2 rims whereas Cu (up to 1.67 wt %) and Cd (up to 0.81 wt %) were also 

detected but only in a few number of analyses. As and Ag were below the detection limit of 

the instrument. 

In order to examine potential chemical variations between porous and massive type 2 

sphalerite, systematic trace element concentration profiles were carried out by ESEM-EDS, as 

shown in Figure 42. Systematic trace metal variations between porous core and massive rim 

(a) 
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can be observed: depletion of Sb, Ag and Cu, and enrichment of Fe and Cd towards the outer 

massive rim.  

 

 

 
 
Figure 42: Geochemical profile across a zoned type 2 sphalerite crystal with porous core and massive rim. (a) Spots of 

EPMA analyses are represented by crosses accompanied by “Spectrum +number X” designation, including 

“Spectrum 170, 171, and 172” for the porous core, and all the rest “Spectrum number X” designations for the massive 

rim. (b) Enrichment of Ag, Sb, Cu towards the outer massive parts of the sphalerite crystal. 

 

In Figures 43, 44, 45, 46 and 47 the correlation between Zn and the other detected 

trace elements (Fe, Sb, Cu, Cd and As) in both porous and massive sphalerite of type 2 is 

illustrated. It is not possible to come to any conclusion for the correlation of Zn with Cu, Cd, 

and As (Figs. 45, 46, 47) because of the limited number of analyses for the aforementioned 

trace metals. 
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Figure 43: Binary correlation plot of Zn vs. Sb in zoned sphalerite with porous core and massive rim (Type 2). 

 

 

 

 

Figure 44: Binary correlation plot of Zn vs. Fe in zoned sphalerite with porous core and massive rim (Type 2). 
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Figure 45: Binary correlation plot of Zn vs. Cu in zoned sphalerite with porous core and massive rim (Type 2). 

 

 

 

 

Figure 46: Binary correlation plot of Zn vs. Cd in zoned sphalerite with porous core and massive rim (Type 2). 
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Figure 47: Binary correlation plot of Zn vs. As in zoned sphalerite with porous core and massive rim (Type 2). 

 

6.1.3. Type 3: Inclusion-rich and compositionally zoned massive sphalerite  

 

 Reflected light microscopy and backscattered electron imaging revealed that the most 

commonly encountered sphalerite texture is massive sphalerite, comprising the third type of 

Kolumbo sphalerite (Figs. 48, 49, 50, 51). Sphalerite type 3 is found either rich in randomly 

(Fig. 48) or linear (Fig. 49) distributed inclusions, inclusion-free (Fig. 50) or compositionally 

zoned (Fig. 51).  The latter displays a chemical zoning expressed by trace metal poor cores 

and trace metal-rich rims, as well as growth and sector zones < 1 μm thick enriched with Sb, 

Cu and Ag (Table 6). Among the various inclusions found in sphalerite type 3, inclusions of 

Hg-Cd sulfosalts (Fig. 52) were also analyzed (Table 7). 

 

   

Figure 48: ESEM photograph of (a) inclusion-rich, massive sphalerite (type 3) with randomly dispersed inclusions, in 

association with barite (Ba). (b) galena (Gn) inclusions and symplectites of Pb–Sb-Hg bearing phases in inclusion-rich, 

massive sphalerite of Type 3. 

(a) (b) 
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Figure 49: ESEM-BSE photograph of inclusion-rich, massive sphalerite (type 3) containing ubiquitous galena (Gn) 

inclusions arranged mainly in thick linear patterns.   
 

 
 

Figure 50: ESEM photograph showing the association between massive sphalerite of type 3 and colloform pyrite (Py), 

and barite (Ba) blades. 

 

 

 

   

 

Figure 51: BSE-ESEM image of (a) type 3 massive, zoned sphalerite (Sph) grain with core separated from rim by a 

thin sectorial zone (type 3). (b) Type 3 massive, zoned sphalerite (Sph) grain with core separated from rim by a thin 

sectorial zone (type 3), galena (Gn) inclusions and pyrite (Py).  

 

(a) (b) 
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Figure 52: ESEM photograph of Hg-Cd sulfosalt inclusions in inclusion-rich, massive sphalerite (type 3) (a) in the 

form of “star-like” inclusions (b) in the form of “star-like” inclusion encircled in Hg-Cd-rich rim. 

 

6.2. Quantitative EPMA analysis, compositional mapping and element distribution and 

correlation trends of sphalerite type 3 

 

The absolute concentrations, normalized to 100%, for Fe, Sb and Cd in massive and 

compositionally zoned massive sphalerite of type 3 are summarized as histograms in Figures 

53, 54, 55, 56, 57, and 58. Whereas more trace elements (Cu, As, Ag, Hg and Pb) in massive 

sphalerite of type 3 and Cu and Ag in compositionally zoned massive sphalerite were also 

detected during electron microprobe (EPMA) analyses, their quantity was not enough to be 

displayed in histograms.  

 

           N=171  mean=1.59 wt %          S.D. =0.76 wt % 

 
 

Figure 53: Histogram showing the variation in Fe in massive sphalerite of type 3 from Kolumbo hydrothermal 

precipitates. 
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N=84  mean=1.68 wt %         S.D. =1.29 wt %

 

Figure 54: Histogram showing the variation in Sb in massive sphalerite of type 3 from Kolumbo hydrothermal 

precipitates. 

 

 

           N=46  mean=0.98 wt %          S.D. =0.30 wt % 

 

Figure 55: Histogram showing the variation in Cd in massive sphalerite of type 3 from Kolumbo hydrothermal 

precipitates. 

 
 

        

 N=64  mean=1.74 wt %           S.D. =0.67 wt % 

 

Figure 56: Histogram showing the variation in Fe in compositionally zoned, massive sphalerite of type 3 from 

Kolumbo hydrothermal precipitates. 
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  N=51  mean=1.65 wt %          S.D. =0.47 wt % 

 

Figure 57: Histogram showing the variation in Sb in compositionally zoned, massive sphalerite of type 3 from 

Kolumbo hydrothermal precipitates. 

 

      

 

    N=21  mean=0.94 wt %          S.D. =0.29wt % 

 

Figure 58: Histogram showing the variation in Cd in compositionally zoned, massive sphalerite of type 3 from 

Kolumbo hydrothermal precipitates. 

 

 

A total of 235 EPMA analyses were carried out on sphalerite type 3. EPMA analyses 

conducted massive sphalerite of type 3 in which concentrations of ten elements (S, Zn, Fe, 

Cu, Cd, Sb, As, Ag, Hg and Pb) were determined using EDS mode. Electron probe 

microanalyses (EPMA-EDS) of samples SB-3-D, SB-3-E1,SB-7-A, SB-9-C, SB-10-A and 

SB-12-A for major, minor and trace elements with number of analyses (n), means, standard 

deviations (1σ SD), maxima, minima and limits of detection (LOD) are listed in Table 6. 

Additionally, for the compositionally zoned, massive sphalerite of type 3, concentrations of 

seven elements (S, Zn, Fe, Sb, Cu, Cd and Ag) were determined using EDS mode. Electron 

probe microanalyses (EPMA-EDS) of samples SB-3-D2, SB-3-E2, SB-10-A and SB-12-A A 

for major, minor and trace elements with number of analyses (n), means, standard deviations 
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(1σ SD), maxima, minima and limits of detection (LOD) are listed in Table 6. Complete 

EPMA datasets of sphalerite type3 can be found in the Appendix. 

The EPMA analyses for Kolumbo type 3 sphalerites are grouped in (i) 171 analyses 

from the massive sphalerite of type 3 and (ii) 64 from the compositionally zoned, massive 

sphalerite of type 3 (Table 6). Massive sphalerite is composed of 50.53 to 70.18 wt % Zn 

(61.55±2.87 wt %) and 28.22 to 45.87 wt % S (35.55±2.54 wt %). Fe is ubiquitous in massive 

sphalerite 3, with contents varying between 0.37 and 6.08 wt % (mean 1.59±0.76 wt %); Cd 

concentrations range between 0.56 and 1.86 wt %. Additionally, Cu (up to 2.55 wt %), As (up 

to 0.78 wt % and Ag (up to 1.15 wt %), were also detected but only in a few number of 

analyses. Hg (2.77 and 3.10 wt %) and Pb (5.43 and 6.79 wt %) were also found just in two 

analysis. Compositionally zoned, massive sphalerite of type 3 is composed of 37.86 to 63.66 

wt % Zn (60.47±4.10 wt %) and 33.97 to 56.04 wt % (35.84±3.80 wt %) S. Fe is detected in 

all compositionally zoned, massive sphalerite of type 3 analyzed, with contents varying 

between 0.66 to 3.35 wt % (mean 1.74±0.67 wt %). Sb concentrations range between 0.47 and 

4.20 wt % (mean 1.65±0.85 wt %) and Cd from 0.59 to 1.54 wt % (mean 0.94±0.29 wt %), 

whereas Cu (up to 2.39 wt %) and Ag (up to 1.48 wt %) were also detected but only in a few 

number of analyses. Concentrations of As were below the detection limit of the instrument. 

 

Table 6: EMPA main results from the massive sphalerite and the compositionally zoned massive sphalerite (type 3). 

Minimum, maximum, mean, corresponding standard deviation (1σ SD), and limit of detection (LOD) are presented. 

 

 Type 3 S 

(wt %) 

Fe 

 (wt %) 

Zn  

(wt %) 

Sb 

(wt %) 

Cu 

(wt %) 

Cd 

(wt %) 

As  

(wt %) 

Ag 

(wt %) 

Hg 

(wt %) 

Pb 

(wt %) 

M
a

ss
iv

e
 

n^ 171 171 171 84 8 46 7 6 2 2 

Min. 28.22 0.37 50.53 0.55 0.70 0.56 0.16 0.54 2.77 5.43 

Max. 45.88 6.08 70.18 7.03 2.55 1.86 0.78 1.15 3.1 6.79 

Mean 35.55 1.59 61.55 1.68 1.15 0.98 0.35 0.78 2.94 6.11 

1σ SD 2.54 0.76 2.87 1.29 0.64 0.30 0.26 0.21 0.23 0.97 

C
o

m
p

o
si

ti
o

n
a

ll
y

 

Z
o

n
ed

 

n^ 64 64 64 51 9 21 - 7 - - 

Min. 33.97 0.66 37.86 0.47 0.63 0.59 - 0.63 - - 

Max. 56.04 3.35 63.66 4.21 2.39 1.54 - 1.48 - - 

Mean 35.84 1.74 60.47 1.65 1.41 0.94 - 1.03 - - 

1σ SD 3.80 0.67 4.10 0.85 0.68 0.29 - 0.29 - - 

LOD 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

^ n: number of measurements with higher contents than the limit of detection. 
- Concentrations below the detection limit. 

 

 

 Massive sphalerite is the type which contains large amount of inclusions, among other 

galena, Sb-Pb- and Hg-Cd- sulfosalts (Figs. 48, 49, 52). For that reason, 125 EMPA-WDS 
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analyses were conducted in order to measure Hg concentrations in the Hg-Cd sulfosalt 

inclusions of massive sphalerites in samples SB-3-E and SB-7-A. Electron microprobe 

(EMPA - WDS) analyses of samples SB-3-E, SB-7-A and the mean of both samples analyses  

for Hg with number of analyses (n) means, standard deviations (1σ SD), maxima, minima and 

limits of detection (LOD) are listed in Table 7. 

For massive sphalerite of type 3, Hg content in Hg-Cd sulfosalts varies from 3.81 to 

47.17 wt % (mean 18.28±13.50 wt %) in sample SB-3-E1, from 4.99 to 24.96 wt % (mean 

13.45±4.84 wt %) in sample SB-3-E2 and from 1.19 to 9.17 wt % (mean 5.76±1.55 wt %) in 

sample SB-7-A (Table 7).  

 

Table 7: EMPA-WDS main results of Hg from the Hg-Cd sulfosalt inclusions of massive sphalerite (type 3) in samples 

SB-3-E, SB-7-A and the mean of both samples analyses. Minimum, maximum, mean, corresponding standard 

deviation (1σ SD), and limit of detection (LOD) are presented. 

 

 
SB-3-E1 (wt %) SB-3-E2 (wt %) SB-7-A (wt %) Total 

n 52 27 46 125 

Min. 3.81 4.99 1.19 1.19 

Max. 47.17 24.96 9.17 47.17 

Mean 18.28 13.45 5.755 12.63 

1σ SD 13.50 4.84 1.55 10.57 

LOD 0.01 0.01 0.01 0.01 

 

  

In order to examine potential chemical variations across massive sphalerite grains of 

type 3, systematic trace element concentration profiles were carried out by ESEM-EDS, as 

shown in Figure 59. Random trace metal distribution is observed, thus, systematic trace metal 

variations cannot be observed. 

Respectively, in order to examine the possibility of chemical variation between the 

core, sector and rim of zoned massive sphalerite of type 3, Table 8 was created, showing the 

single EPMA analyses of a such crystal, and  systematic trace element concentration profiles 

were carried out by ESEM-EDS, as shown in Figure 60. Sphalerite core is separated from rim 

by a thin sectorial zone. The core contains Cd, Fe and Sb (analyses 1-4), the sector contains 

Ag, Cd, Fe, Sb and Cu (analyses 5-8) and the rim contains Sb and Fe (analyses 9-11).  
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Figure 59: Geochemical profile across a massive type 3 sphalerite crystal. (a) Spots of EPMA analyses are represented 

by crosses accompanied by “Spectrum +number X” designation. (b) Random trace metal distribution is observed. 

 

Table 8: Single EPMA analyses showing the element concentrations (wt %) of the core, sector and rim of zoned, 

massive type 3 sphalerite.  The points of analysis are shown in Figure 60a. 

 

Point of 

analysis 

S  

(wt %) 

Fe 

(wt %) 

Zn 

(wt %) 

Sb 

(wt %) 

Cu 

(wt %) 

Cd 

(wt %) 

Ag 

(wt %) 

Total 

(wt %) 

core 

 

1 35.25 2.30 62.45 0.00 0.00 0.00 0.00 100.00 

2 35.40 2.78 61.18 0.00 0.00 0.64 0.00 100.00 

3 35.07 1.81 61.75 0.77 0.00 0.61 0.00 100.00 

4 35.16 2.18 61.95 0.00 0.00 0.71 0.00 100.00 

sector 

 

5 34.65 1.18 61.28 1.51 0.00 0.75 0.63 100.00 

6 36.13 1.15 60.66 2.06 0.00 0.00 0.00 100.00 

7 34.30 2.26 60.92 1.26 0.00 1.26 0.00 100.00 

8 34.58 1.51 60.60 2.32 0.99 0.00 0.00 100.00 

rim 

 

9 34.08 2.36 63.56 0.00 0.00 0.00 0.00 100.00 

10 34.27 1.87 62.87 1.00 0.00 0.00 0.00 100.00 

11 35.03 1.29 62.54 1.14 0.00 0.00 0.00 100.00 
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Figure 60: Geochemical profile across a zoned, massive type 3 sphalerite crystal. Analyses 1-4 refer to the core, 5-8 to 

the sector and 9-11 are from the rim of zoned, massive sphalerite crystal. (a) Spots of EPMA analyses are represented 

by the orange numbers. (b) The core contains Cd, Fe and Sb (analyses 1-4), the sector contains Ag, Cd, Fe, Sb and Cu 

(analyses 5-8) and the rim contains Sb and Fe (analyses 9-11). 

 

 

In order to examine potential chemical variations within the inclusion-rich massive 

sphalerite of type 3, trace element mapping was carried out by ΕSEM-EDS (Figs. 61, 62, 63). 

The anhedral inclusions in Figure 61 seem to contain Pb and Fe, while the symplectites are 

consisted of Sb, Pb and Hg. EDS elemental maps of Hg-Cd sulfosalt inclusions are shown in 

Figure 62 and 63. In Figure 63 the Hg-Cd sulfosalt inclusions are found into a Sb-rich 

sphalerite area. 
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Figure 61: EDS elemental map of the inclusion-rich massive sphalerite of Figure 48b for S, Fe, Zn, Sb, Hg and Pb. The 

anhedral inclusions contain Fe and Pb, while the symplectites consist of Sb and Pb. 

(b) 
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Figure 62: EDS elemental map of a Hg-Cd inclusion in massive type 3 sphalerite for S, Zn, Hg, Fe and Cd. 
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Figure 63: EDS elemental map for S, Zn, Hg, Fe, Sb and Cd depicting of a Hg-Cd inclusion into a Sb-rich area of 

massive type 3 sphalerite  
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In Figures 64, 65 66, the correlation between Zn and the other detected trace elements 

(Fe, Sb and Cd) in massive sphalerite of type 3 is illustrated. It is not possible to come to any 

conclusion for the correlation of Zn with As, Ag and Cu (Fig. 67) because of the limited 

number of analyses for the aforementioned trace metals. Respectively, the correlation between 

Zn and the other trace elements (Fe, Sb and Cd) in zoned, massive sphalerite of type 3 is 

depicted in Figures 68, 69, 70, while for the correlation between Zn with Cu and Ag it is not 

possible to come to any conclusion because of the scarcity in the number of analyses for them 

(Figs. 71, 72).  

 

 

Figure 64: Binary correlation plot of Zn vs. Fe in massive sphalerite (Type 3). 

 

 

Figure 65: Binary correlation plot of Zn vs. Sb in massive sphalerite (Type 3). 
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Figure 66: Binary correlation plot of Zn vs. Cd in massive sphalerite (Type 3). 

 

  

Figure 67: Binary correlation plot of (a) Zn vs. As, (b) Zn vs. Ag and (c) Zn vs. Cu in massive sphalerite (Type 3). 

 

 
Figure 68: Binary correlation plot of Zn vs. Fe in zoned, massive sphalerite (Type 3). 
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Figure 69: Binary correlation plot of Zn vs. Sb in zoned, massive sphalerite (Type 3). 

 

 

 

 
Figure 70: Binary correlation plot of Zn vs. Cd in zoned, massive sphalerite (Type 3). 
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Figure 71: Binary correlation plot of Zn vs. Cu in zoned, massive sphalerite (Type 3). 

 

 

 
Figure 72: Binary correlation plot of Zn vs. Ag in zoned, massive sphalerite (Type 3). 
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7. Discussion 

 7.1 Structural and chemical variation of sphalerite crystals and control of trace 

element distribution 

 

Recent work by Wohlgemuth-Ueberwasser et al. (2015) has shown that the factors 

that control the distribution of trace metals (i.e. As, Sb, Au) in seafloor chimney sulfide 

minerals may be: (1) the nature of the rocks hosting the hydrothermal vent system, (2) the 

physicochemical conditions of sulfide precipitation (i.e.  fluid chemistry, oxidation state, and 

fluid temperature) within seafloor chimneys, (3) the amounts of co-precipitated sulfides and 

whether they constitute equilibrium/disequilibrium assemblages, and (4) the extent of 

modification of trace metal distribution in chimney sulfides due to dissolution–reprecipitation 

processes within the hydrothermal vent precipitates during later stage hydrothermal activity.   

The results of this thesis have shown that bulk trace metal concentrations of Hg and 

Ag are controlled by the modal abundance of sphalerite and its modifications during the 

course of dissolution–reprecipitation processes during chimney growth and evolving 

hydrothermal activity. For seafloor hydrothermal vent precipitates, mineral texture is accepted 

as a measure of these modifications, i.e. variability of mineral textures is associated with 

initial crystallization as well as subsequent recrystallization, which also influence the mobility 

and redistribution of trace metals among the various minerals present and textural variants of 

the same phase (Wohlgemuth-Ueberwasser et al. 2015). Colloform textures are known to 

indicate primary seafloor precipitation textures formed directly from hydrothermal fluids via 

rapid crystallization due to mixing of hot hydrothermal fluids with ambient seawater, most 

likely during the early stages of chimney growth (Xu & Scott 2005, Berkenbosch et al. 

2012, Keith et al. 2016); more compact but still porous textures represent an intermediate 

stage of the modification of primary precipitates (i.e. colloform textures), and the final stage 

of replacement and recrystallization is represented by well-defined, massive textures 

consisting of interlocking, subhedral to euhedral minerals (Keith et al. 2016, Wohlgemuth-

Ueberwasser et al. 2015, Hannington et al. 1998, Maslennikov et al. 2009). 

On the above basis, the three sphalerite textural varieties that have been distinguished 

in the Kolumbo samples are interpreted to be associated with initial crystallization as well as 

subsequent transformation/recrystallization. Specifically, the most immature primary textures 

are colloform zoned sphalerite (Type 1) which highly likely formed directly from 

hydrothermal fluids (Fig. 73a, b). Zoned sphalerite with porous core and massive rim (Type 
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2; Fig. 73c, d) represent the intermediate stage of the modification of primary colloform 

precipitates (Type 1) to fully massive texture (Type 3; Fig. 73e, f), as porosity is reduced 

during replacement and recrystallization processes (Hannington et al. 1995); the textural 

relationship of subhedral massive sphalerite embracing earlier formed colloform sphalerite 

shows that these two sphalerite generations can be locally observed (Fig. 28a). The final stage 

of replacement and recrystallization is represented by samples with well-defined anhedral to 

subhedral sphalerite textures characterized by random anhedral mineral inclusions and/or 

chemical zoning (Type 3). 

The trace metal mobility, and consequent chemical progression, during the sphalerite 

textural evolution is demonstrated by: (1) The change from systematic trace metal variation in 

microglobular sphalerite (type 1) where Hg, Cd, and Sb are distributed in concentric sectorial 

growth zones (Fig. 33), to random, and/or systematic, redistribution of these metals in 

sphalerite types 2 and 3 chiefly in mineral inclusions, or different sectors, respectively (see 

Figs. 42, 59, 60, 61, 62, 63, 74; see also below); it should be noted that type 1 sphalerite 

contains also trace Ag, Cu, and As concentrations which were detected in these growth zones 

during spot analysis (Appendix Table 1). The above change in trace metal distribution, 

combined with the associated textural modification, suggests that trace metals were expelled 

from sphalerite 1 during dissolution–reprecipitation processes, and were fractionated in 

sphalerite 2 and 3 mostly as independent micro-, and possibly nano-particulate, phases (see 

below). Moreover, subhedral and anhedral sphalerites of type 2 and 3 are chemically 

indistinguishable in most trace elements, which support our conclusion that these different 

textures are due to dissolution processes (c.f. Keith et al. 2016) (Fig. 74a-d); (2)   Systematic 

trace element variations between different sectoral zones of sphalerite 2. For Sb, Ag and Cu 

the highest concentrations were observed in the porous innermost cores of the sphalerite 

crystals (Fig. 42, Table 5). This can be explained by variable fluid conditions during 

sphalerite growth from porous to massive and/or fractionation of the studied trace metals due 

to physicochemical changes in the parental fluids during sphalerite 2 precipitation (Keith et 

al. 2016; Wohlgemuth-Ueberwasser et al. 2015). More specifically, these variations in trace 

element chemistry probably reflect a decreasing solubility of Sb, Ag and Cu, and increasing 

solubility of Fe and Cd, during sphalerite growth due to changes in the physicochemical 

parameters of the discharging fluids (c.f. Maslennikov et al. 2009, Revan et al. 2014, 

Wohlgemuth-Ueberwasser et al. 2015, Keith et al. 2016); (3) the fractionation and 

concentration of Hg, Cd, Pb and Sb into discrete Hg-Cd sulfosalts and Sb-Pb symplectites 

within type 3 sphalerite (see EDS elemental maps in Figures 61, 62, 63); and, (4) Variations 
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in trace metal chemistry between the central and outer parts of zoned type 3 sphalerite (Fig. 

60); depletion of Cd towards the outer parts of sphalerite crystals, which  are separated from 

the central part by a thin sectorial zone rich in trace Ag, Cd, Fe, Sb, and Cu (see geochemical 

profile of Figure 60).  

 
Figure 73: The three sphalerite textural varieties arranged in order of maturity. a) Transmitted light 

microphotograph (TLP) of colloform zoned sphalerite (Type 1) (oil lens and //Nichols). b) ESEM photograph of 

sphalerite (Sph) colloform microglobules (Type 1). c) Reflected light microphotograph (RLP) of zoned sphalerite with 

porous core and massive rim (Sph) (Type 2), having inclusions of colloform pyrite/marcasite (Py) and being in 

association with blades of barite (Ba) (oil lens and // Nichols). d) ESEM photograph of sphalerite with porous core 

(pSph) and massive rim (mSph) (Type 2) with voids (dark) and galena (Gn) inclusions. g) Reflected light 

microphotograph (RLP) of inclusion-rich and compositionally zoned massive sphalerite (Sph) (Type 3) with inclusions 

of closely-packed pyrite globules (Py) and anhedral Sb-Pb-sulfosalts (oil lens and // Nichols). h) ESEM photograph of 

compositionally zoned massive sphalerite (Sph) (Type 3) containing galena inclusions (Gn) and barite (Ba) blades.  
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Figure 74. Box-whisker plot showing the concentration of (a)Fe, (b) Zn, (c) Sb, (d) Cu in each sphalerite type. Boxes 

represent the 25th and 75th data percentiles, whiskers represent the 10th and 90th percentiles, and symbols represent 

outliers (outside the 10th and 90th percentiles). The horizontal line in each box represents the median.   

(a) (b) 

(c) (d) 
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7.2. Trace elements in sphalerite: element substitution versus micro-, and/or 

nano-inclusions 

 

The spatial distribution of trace metals within sulfide host phases may result from the 

presence of nano- or micro inclusions of phases hosting specific trace metals (Deditius et al. 

2011), and/or, stoichiometric or non-stoichiometric substitution of trace metals into the host 

sphalerite (see Wohlgemuth-Ueberwasser et al. 2015, and references therein; 

Maslennikov et al. 2009).  

Figure 75 shows a dendrogram that is based on statistical correlation of all the EDS 

data (Appendix, Tables 1-6) obtained from Kolumbo sphalerites; the dendrogram was 

constructed in order to investigate the clustering of elements into groups according to 

similarity levels. The elements are clustered into two main groups, group 1 and group 2 

(similarity level >54%). Group 1 is subdivided into 2 subgroups: subgroup 1 includes Fe and 

Zn with similarity level 62 % and subgroup 2 includes Cd and Hg with similarity level 74 %. 

The second group includes Sb, Pb, Cu, Ag and As with similarity level ≥60%. These 

relationships suggest distinctive processes of element incorporation in the various sphalerite 

phases:  

(1) The association of Zn with Fe coupled by variable and erratic relationships in 

binary plots (Figs. 34a, 44, 64, 68) may imply an influence from the established substitution 

mechanism (Zn
2+

)↔(Fe
2+

) (e.g. Cook et al. 2009), as well as  complex relationships between 

other trace metals (e.g. Sb, Cd, Cu, and Ag) and Zn) (see Figs. 69, 70, 71, 72).  

(2) The association of Hg with Cd is difficult to interpret with the available analytical 

resolution. However, this association combined with elemental EDS mapping which reveals a 

strong and systematic co-variation of Hg and Cd along different growth zones of type 1 

sphalerite (Fig. 33), and in micron-scale particulate inclusions within type 3 sphalerite that are 

visible in BSE images (Fig. 63, 67), may be interpreted as follows: (i) Direct substitutions of 

divalent cations as Zn
2+

↔(Hg
2+

, Cd
2+

) (c.f. Grammatikopoulos et al. 2006, Cook et al. 

2009) along certain growth zones that are intercalating more Zn enriched zones, in primary 

colloform type 1 sphalerite (Fig. 33); these variations in trace element chemistry probably 

reflect variable solubility of Hg and Cd, during primary type 1 sphalerite growth due to 

changes in the physicochemical parameters of the discharging parental fluid phase (cf. 

Maslennikov et al. 2009, Revan et al. 2014, Wohlgemuth-Ueberwasser et al. 2015, Keith 

et al. 2016). Homogeneous distribution of sulfosalt nanoparticles of Hg and Cd in type 1 
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sphalerite is less possible; and (ii) incorporation of sulfosalt micro-particles of Hg and Cd in 

sphalerite 3 following dissolution-reprecipitation mechanisms. Concerning Hg-Cd sulfosalts, 

these are very rare in nature (Vasil’ev, 2011); all the varieties are complex isomorphous 

mixtures of the ZnS–HgS solid solution series in the natural system Zn–Hg–Cd–S. We 

speculate that if the Hg-Cd correlation and covariation shown in Figures 33, 62, 63, 75 is 

originated by Hg-Cd sulfosalts, they may be part of this natural series (Vasil’ev 2011).  

(3) The Cu-Ag-As-Sb-Pb association (Fig. 74) may be interpreted as an expression of 

the incorporation of these elements in crystalline type 2 and 3 sphalerite as micro-, and/or 

nano-inclusions of galena–tetrahedrite–tennantite (galena–‘fahlore’) associations 

[PbS─(Cu,Ag)10(Fe,Zn)2(As,Sb)4S13] (Cook et al. 2009, Maslennikov et al. 2009, Pfaff et 

al. 2011); galena inclusions visible in BSE images are widespread (Fig. 73 d, h). Such 

galena–‘fahlore’associations are not evident in BSE elemental maps of type 1 sphalerite (Fig. 

33). This explanation is verified by the spiky fluctuating concentration patterns of Cu, Sb, As 

and Ag, coupled by the strong covariation of these elements, displayed in geochemical profile 

across a subhedral type 3 sphalerite crystal (Fig. 59) (Wohlgemuth-Ueberwasser et al. 2015, 

Keith et al. 2016).   The above interpretations are in agreement with the work of Cook et al. 

(2009) who found elevated As and Sb concentrations in sphalerite from different ore deposits, 

and Pfaff et al. (2011) who found positively correlated As+Sb+Cu+Ag in sphalerite, which 

they attributed to micro-inclusions of tetrahedrite–tennantite. Moreover, these interpretations 

conform to Taylor & Radtke (1969) and Kelley et al. (2004) who presume that certain trace 

element contents like Ag, Cu, Pb, and Sb are present as submicroscopic inclusions of galena, 

chalcopyrite and/or tetrahedrite in sphalerite. Alternatively, the statistically significant Pb-As-

Sb association of Figure 75, combined with a strong co-variation of Pb and Sb in micron-

scale particulate inclusions in sphalerite 3 (Fig. 61), may be interpreted as a mark of 

inclusions of the jordanite–geocronite (Pb14(As,Sb)6S23) solid solution series (Pfaff et al. 

2011).    

With special reference to Ag that this thesis puts emphasis on, recent work has shown 

that Ag exhibits a dual character, either as microscopic Ag-bearing mineral inclusions (i.e. 

tetrahedrite-tennantite) in sphalerite as well as substituted in the lattice (as Ag
+
) (Cook et al. 

2009, Ciobanu et al. 2011, Murakami & Ishihara 2013). Consequently, the strong co-

variation between Ag and Sb along geochemical profiles in sphalerite 2 and 3 (Figs. 42, 59, 

60) can also be explained by coupled substitution in the sphalerite lattice: 2Zn
2+

↔Ag
+
+Sb

3+
, 

alongside nano-scale inclusions of Ag–Sb-bearing tetrahedrite-tennantite. This is supported 

by Cook et al. (2009) who remarked that a general coupled substitution mechanism would 
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result in monovalent cation enrichment (i.e. Ag
+
) in sphalerite, with respective tri- and 

tetravalent cation enrichments (e.g., Sb
3+

, Ga
3+

, In
3+

, As
3+

, and Ge
4+ 

).  
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Figure 75: Dendrogram based on statistical correlation of the elements contained in Kolumbo sphalerite samples 

clustered into two main groups with similarity level >54%. The first group is subdivided into 2 subgroups: subgroup 1 

includes Fe and Zn (similarity 62 %) and subgroup 2 includes Cd and Hg (similarity level 74 %). The second group 

includes Sb, Pb, Cu, Ag and As with similarity level 60%. 

 

7.3 Genetic considerations 

 

The composition and character of massive sulfides forming in the submarine 

environment is controlled by a complex array of factors and processes (Herzig et al. 1993, 

Tivey 1995, Saunders & Brueseke 2012, Monecke et al. 2014, Wohlgemuth-Ueberwasser 

et al. 2015, Maslennikov et al. 2009, Keith et al. 2016):  

(1) The character of the host rocks to the hydrothermal vent system and the geological setting;  

(2) Water depth of sulfide formation, and subseafloor boiling, a process influencing the 

composition and metal transport capacity of hydrothermal fluids;  

(3) Fluid–seawater mixing within the chimney wall and during fluid discharge that causes 

significant variations in metal solubility due to changes in temperature, pH, redox conditions, 

salinity and ligand availability within the parental fluid phase that may enhance metal and 

trace element solubilities in the fluid phase;  
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(4) Input of magmatic volatiles (CO2); magmatic volatiles may provide an important metal 

source for submarine hydrothermal systems and elements such as Au, As, Sb, Hg, Ag, Tl, Ag 

can be transported by such a volatile phase; 

(5) The nature and physicochemical conditions of sulfide precipitation within seafloor 

hydrothermal edifices (i.e. chimneys etc); 

(6) The proportions of coexisting minerals which control of trace element incorporation; and 

(7) The extent of modification of trace metal distribution in chimney sulfides due to 

dissolution–reprecipitation processes within the vent edifices during later stage hydrothermal 

activity. 

7.3.1. Mechanisms of sphalerite precipitation 

Unless otherwise noted the following synthesis stems from Boyce et al. (2015). 

Mechanisms of deposition of sphalerite depend largely on the nature of the complexation: 

chloride complexation (ZnCl
+
, ZnCl2

0
, ZnCl3

-
, and ZnCl4

2-
; 400ºC to 25 ºC) and bisulfide 

complexation (Zn(HS)2
0
, Zn(HS)3

-
, Zn(HS)4

2-
, and Zn(OH)(HS)

0
; 25 and 350°C depending on 

fluid composition and temperature). The species ZnCl
+
 and ZnCl2

0
 are considered to be the 

most important at elevated temperatures, whereas for temperatures and pH relevant to 

hydrothermal systems, the two most important bisulfide species are Zn(HS)2
0
 and Zn(HS)3

─
; 

the prevalence boundary for these two species increases from a pH of 4.6 at 100°C to 8.1 at 

350°C. 

Precipitation mechanisms can be expressed in terms of the following two generalized 

reactions: 

           ZnCln
x
 + H2S

-
 = ZnS + 2H

+
 + nCl

-
        (1) 

Zn(HS)n
x
 + (-x)H

+
 = ZnS + (n-1)H2S    (2) 

where x = 2-n. 

The precipitation of sphalerite could result from a variety of mechanisms depending 

on the Zn speciation. The latter is largely governed by four things: (1) Cl
-
 and (2) ΣS 

concentrations in the fluid, (3) fluid pH, and (4) fluid temperature.  

(1) For chloride complexes (higher mCl
- 

and lower mΣS and pH), sphalerite precipitation 

could result from an increase in pH (Reaction 1, Fig. 76),  and/or an increase in the 

concentration of reduced sulphur (HS
-
), potentially due to fluid mixing or dissolution of 

sulfur from rocks, could also lead to sphalerite precipitation (see below) (Fig. 76). In 

many hydrothermal systems, pH values are less than neutral, favoring Reaction 1. 
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(2) For bisulfide complexes, oxidation of reduced sulfur to sulfate would drive Reaction 2 to 

the right and result in sphalerite precipitation. Moreover, decrease in pH would lead to 

sphalerite precipitation at low pH. 

(3) Cooling may also cause sphalerite precipitation (Fig. 76). Based on Figure 76 at a pH of 

4, the solubility of sphalerite decreases from ~650 ppm to ~10 ppm over the temperature 

interval 300 to 150°C in a fluid with a salinity of 12 wt % and mΣS = 0.05 (i.e., 98.5 % of 

the Zn in solution would be precipitated). 

 

 

Figure 76. The solubility of sphalerite as a function of pH for 1 and 12 wt % NaCl fluids at 150 and 300°C and mΣS = 

0.05. The thin vertical lines represent the boundary between the predominance of chloride species (to the left of the 

lines) and bisulphide species. It is clear from this figure that sphalerite solubility is significantly higher at low pH, 

where chloride species predominate. If Zn is transported under such conditions, it can be seen that its solubility will 

significantly decrease if the fluid undergoes a decrease in temperature or increase in pH, potentially resulting in 

precipitation of sphalerite. After Tagirov & Seward (2010). 

 

7.3.2 Effects of phase separation and metal complexation on sphalerite composition 

As it has already been stated, water depth is one of the main controls on the metal 

content of sulfide precipitates in modern seafloor hydrothermal systems in arc-related settings 

(Monecke et al. 2014). Kolumbo hosts one of the shallowest hydrothermal systems in 

subduction-related settings that are hosted by active arc volcanoes (c.f. Monecke et al. 2014) 

where modern seafloor Hg- and Ag-bearing sphalerite formation occurs at ~500 mbsl along 

with other sulfides. Consequently, phase separation of CO2-rich hydrothermal fluids occurs in 

the Kolumbo subseafloor (see Kilias et al. 2013) because the ambient hydrostatic pressure is 

insufficient to prevent boiling of the mineralizing fluids, during their ascent to the seafloor 



Master Thesis                                                                                 Maria-Despoina Chrysafeni 

 

 

  
Page 103 

 
  

and during seafloor venting. Thus, subseafloor boiling of the hydrothermal fluids is a key 

process for sphalerite deposition and trace metal enrichment, because it may control the 

maximum fluid temperature, influence fluid chemistry (pH) and metal-transport capacity 

(e.g., Monecke et al. 2014, and references therein).  

(1) Because decompression of boiling fluids during fluid ascent to the seafloor is 

accompanied by significant cooling, boiling will affect sphalerite solubility and hence 

deposition. Despite the fact that high Zn (and Pb) grades are found at a wide range of water 

depths, it is generally assumed that in the case of shallow marine vent sites these high grades 

are explained in part by deposition at lower temperatures (e.g., 150°−250°C: Large 1992, 

Hannington et al. 1995). 

(2)  In addition to temperature, the aqueous solubility of Zn and other base and precious 

metals is influenced by the concentrations of complexing ligands (chloride complexes or 

bisulfide complexes) and fluid acidity, both of which change during boiling as dissolved gases 

partition into the vapor phase, thus causing sphalerite deposition (Fig. 76) (Drummond & 

Ohmoto 1985, Bischoff & Rosenbauer 1987, Foustoukos & Seyfried 2007). 

(3)  We believe that the enrichment of primary colloform type 1 sphalerite in Hg (and by 

inference Ag, Sb) is also due to subseafloor boiling that contributes to a relative enrichment of 

the epithermal suite of elements (ESE) (Hg, Ag, Au, As, Sb, Tl, Ag, and Sb) in lower 

temperature sulfides forming in shallow marine vents (cf. Hannington et al. 1999). Such a 

process is supported by recent work that suggests ESE enrichment to result from their similar 

volatile behaviour in subduction systems (Saunders & Brueseke 2012); previous studies 

revealed that subduction zonemagmas are volatile rich and oxidized compared to mid-ocean 

ridge magmas (Huston et al. 2011, de Ronde et al. 2007) and degassing of such magmas 

releases significant amounts of metals (Williams-Jones & Heinrich 2005, Simon & Ripley 

2011, Scher et al. 2013). In addition, the results of Wohlgemuth-Ueberwasser et al. (2015) 

and Monecke et al. (2014) also indicate that the composition of hydrothermal sulfides is 

affected by sub-seafloor phase separation.  

(4)  The involvement of fluid-seawater mixing on sphalerite precipitation is supported by 

colloform textures that indicate disequilibrium conditions that are interpreted to be the result 

of rapid crystallization due to mixing between hydrothermal fluid and ambient seawater (Xu 

& Scott 2005, Berkenbosch et al. 2012, Keith et al. 2016).  

In agreement with previous studies we conclude that fluid temperature variations, 

phase separating processes and possibly variable amounts of fluid-seawater mixing represent 

important variables controlling the distribution of Hg and Ag (and by inference Au, As, Sb, 
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Tl, Ag, and Sb) in Kolumbo’s sphalerite and associated sulfides deposits (Maslennikov et al. 

2009, Revan et al. 2014, Wohlgemuth-Ueberwasser et al. 2015, Keith et al. 2016) and  the 

observed variations in the crystallization sequence and texture of sphalerite can be attributed 

to fluid–seawater mixing within the chimney wall and during fluid discharge that causes 

significant variations in metal solubility due to changes in temperature, pH and redox 

conditions within the parental fluid phase (Herzig et al., 1993, Tivey 1995). Systematic trace 

element variations along growth zones within sphalerite crystals (Fig. 33) probably resemble 

such variations in a geochemical way (Wohlgemuth-Ueberwasser et al. 2015). 

 

7.4 Environmental considerations 

 

Enrichments of polymetallic hydrothermal chimneys in Hg and Ag ( As, Sb, Pb, Cd, 

Cu, Zn, Fe), among the biggest ever reported from the world’ oceans, have been discovered in 

the hydrothermal vent field located on the floor of the density-stratified acidic (pH~ 5) crater 

of the Kolumbo shallow-submarine arc-volcano, near Santorini (Kilias et al. 2013). These 

results indicate that volcanic CO2-rich fluids venting onto Kolumbo’s of shallow (<2 km 

water depth) crater seabed cause local seawater acidification, and contain high concentrations 

of bioessential trace metals (i.e. Fe, Cu, Zn) and trace metal and metalloid emergent global 

pollutants such as Hg, Ag as well as As, Sb, and Tl. The observed metal enrichment have 

significant implications for toxic metal (i.e. Tl, Sb, As, Hg, Ag) transport and biogeochemical 

cycling in seafloor hydrothermal systems, and underscores the importance of Kolumbo’s 

submarine volcanic and geothermal activity as a potential source of toxic metals to: (1) 

microbial metabolism, (2) marine phytoplankton cell growth and marine food webs, and, (3) 

in areas exploited by fishing such that Kolumbo ~12 miles NE of Santorini. It is not known 

how common the type of polymetallic Hg-Ag-rich deposit studied here may be in the 

submarine volcanoes of the Kolumbo line, along the CSK tectonic line (Nomikou et al. 

2012). Given the significant role that the Christianna-Santorini-Kolumbo (CSK) tectonic line 

plays for the region’s morphology, volcanism, hydrothermal activity, and seismicity, the 

hazardous release of potentially toxic metals into the water column may be tied to the 

earthquake cycle in that highly touristic Santorini island.  

Formation of methylmercury (CH3Hg
2+

) and dimethylmercury [(CH3)2Hg
0
]would be 

favored by high concentrations of dissolved C, which is a likely scenario for Kolumbo given 

the high organic matter content of the chimneys (Kilias et al. 2013), as in aquatic 
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environments microbes are the main agents controlling methylmercury production (Gilmour 

et al. 1992, Compeau & Bartha 1985, King et al. 1999). If this would happen, living 

organisms would accumulate methylmercury which is biomagnified through the food chain 

(Monteiro et al. 1996). 

8. Conclusions 

 

1. Mercurian (Hg) and argentiferous (Ag) sphalerite was detected for the first time in the 

Hellenic Volcanic Arc, in shallow seafloor (~500 mbsl) hydrothermal vent edifices (i.e. 

chimneys, mounds etc.) of the active hydrothermal vent system of Kolumbo shallow-

submarine arc-volcano. Rare stibnite and an unidentified non-stoichiometric Zn-sulfide 

phase were also detected, for the first time. 

2. The bulk trace metal enrichment of Hg and Ag in the chimneys is controlled by the modal 

abundance of sphalerite and its modifications that accompany the course of dissolution–

reprecipitation processes during evolving hydrothermal activity and chimney growth.  

3. Kolumbo sphalerite occurs in three textural varieties, interpreted as a result of increasing 

maturity following dissolution–reprecipitation processes within the vent edifices during 

hydrothermal evolution of the chimney mineralogy. They are designated as Types 1 to 3, 

and represent different generations which in order of increasing maturity are: i) Type1: 

microglobular and zoned colloform sphalerite, ii) Type 2: sphalerite with porous core and 

massive rim and iii) Type 3: inclusion-rich and compositionally zoned massive sphalerite.  

4. Mercury (Hg) correlates closely with Cd in sphalerite and the distribution of Hg in 

sphalerite is probably controlled by: (i) Direct substitutions of divalent cations as 

Zn
2+

↔(Hg
2+

, Cd
2+

) along systematic growth zones in primary colloform type 1 

sphalerite, possibly due to variable solubility of Hg during sphalerite growth due to 

changes in the physicochemical parameters of the discharging fluid phase; and, (ii) 

inclusions of sulfosalt micro-particles of Hg and Cd in sphalerite 3 following dissolution-

reprecipitation mechanisms; these particles which are visible in BSE images, probably 

represent solid inclusions of the ZnS–HgS solid solution series incorporated in sphalerite. 

5.   Silver (Ag) correlates with Cu-As-Sb-Pb. Its distribution is controlled by micro-, and/or 

nano-inclusions of galena–tetrahedrite–tennantite (galena–‘fahlore’) associations 

[PbS─(Cu,Ag)10(Fe,Zn)2(As,Sb)4S13]. Moreover, the strong co-variation between Ag and 

Sb along geochemical profiles in sphalerite 2 and 3 can also be explained by coupled 
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substitution in the sphalerite lattice: 2Zn
2+

↔Ag
+
+Sb

3+
, alongside nano-scale inclusions of 

Ag–Sb-bearing tetrahedrite-tennantite.  

6.  We conclude that fluid temperature variations, boiling subseafloor and during venting  

processes and possibly variable amounts of fluid-seawater mixing represent important 

variables controlling the distribution of Hg and Ag in the submarine hydrothermal 

systems and associated sulfide deposits. 
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