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INTRODUCTION

Transmitter localization via distributed sensor networks is an enabling tech-
nology for a large set of applications. In particular, radio-source localization
is viewed as an important element of upcoming cognitive radio networks [1].
Endowed with the capability to sense and process radio activity in the sur-
rounding environment, cognitive radios can efficiently plan, decide upon, and
execute their respective actions [2], [3].

In this thesis, sensing is based on simple received power. In radio jargon,
this is called Received Signal Strength (RSS) and it is popular due to its
simplicity as every radio measures power. The flip side of this simplicity is
that RSS-based localization tends to be less accurate than competing, more
complex schemes. This is because for RSS-based localization, deterministic
power-law is not a reliable reception model. More advanced probabilistic (log-
normal) propagation models include a shadow-fading random variable (rv)
to describe the variation around the mean provided by the aforementioned
power law. This is still not adequate, unless the spatial-correlation aspect
of propagation is included in the model. Proper modeling information can
be presumed available in modern networks endowed with databases, which
extract the information from past or training measurements and offer it for
future benefits.

This thesis experimentally examines the existence of spatial-correlation in
the shadow-fading component. In addition, we are interested in a theoreti-
cal investigation of the gain achieved if we take into account the existence of
shadow-fading spatial-correlation. As we will present in chapter 1, the knowl-
edge of spatial-correlation modifies our optimization problem, from minimiza-
tion of multi-variable independent Gaussians to a minimization of correlated
joint-Gaussian distribution. Additionally, the thesis incorporates this spatial-
correlation aspect and assesses its impact, in conjunction with the beneficial
effect of prior training measurements. We adopt the term conditioning mea-
surements (CM) to represent any such modeling enrichment or uncertainty
reduction brought about by the availability of training, pilot-based informa-
tion, past known results, or any other factor that will yield a conditional
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propagation density with better performance. Implicit in this conditioning is
the existence of a sensor network that provided these, a network viewed as
distinct from the one currently available used to collect the present measure-
ments. For the sake of conciseness, the terms prior and current will be used to
describe these two classes, although, in a general setting, time periods may not
be the only qualifier of the information. A probabilistic (Bayes) interpretation
of the respective terms yields a better understanding. In this work, we are in-
terested in the simple single-source scenario as well as in the more challenging
multi-source scenario.

Many models exist to describe spatial-correlation in shadow-fading envi-
ronments [4]. Experiments have also been performed to measure it [5], [6], and
various techniques have been proposed to take advantage of it in a solution [7].
Performance analysis and improvement of RSS-based localization in such an
environment has been performed in [8], [9]. In [10], [11], the CRLB for Corre-
lated Log-Normal (CLN) propagation was derived for different parameters.

We derive and present a new theoretical bound for the single-source lo-
calization problem that takes spatial-correlation as well as CM into account
and then uses it to assess performance. One of the main benefits of such
parametric performance quantification is the ability to address questions of
network scaling. In particular, we can address questions such as: (1) What
is the required density of RSS-based sensor networks (prior and current) for
achieving a given localization accuracy? (2) How can current required density
be reduced in light of the utilization of the prior network? (3) How are these
two network densities (prior and current) related in general for a given prop-
agation environment? Because the answers herein are based on rather simple
analytical models for the propagation environment and the spatial statistics,
another important question is (4) How close are these answers to the true per-
formance typically seen in practice? This last question is difficult to answer, in
general because any given trial represents a single realization of the underlying
stochastic experiment. There have been qualitative arguments [8] on the value
of exploiting spatial-correlation, but to provide hard, quantitative arguments
there needs to be more extensive measurement campaigns.

Furthermore, we present some theoretical results in the more challeng-
ing multi-source localization problem again for the case of correlated shadow-
fading environments. These results did not assume prior knowledge of condi-
tional measurements, but show how the localization performance scales with
respect to the number of sensors, the number of unknown sources, and the
correlation coefficient of the environment. For the sake of completeness, these
results should be extended also for the case of conditional measurements.

Two indoor experimental campaigns are included in this thesis, both of
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which used the OpenAirInterface (OAI) [12] platform. The main target of
the campaigns was 1) to verify the existence of shadow-fading in the indoor
environment and 2) to use ad-hoc techniques in our localization algorithms
in order achieve some gain from spatial correlation assuming knowledge of
conditional measurements.

The rest of this master’s thesis is organized as follows: following the intro-
duction, we present the state-of-the-art for the localization problem, mainly
focusing on RSS techniques. Chapter 1 presents the CRLB propagation model.
The statistics of RSS are derived with the inclusion of CM, since these are
needed for the derivation of the CRLB. Furthermore, this CRLB is derived
and is subsequently referred to in the semi-analytical performance assessment.
In order to draw specific performance conclusions, two scenarios are selected,
one indoor and one outdoor. Chapter 2 sets up and subsequently derives the
CRLB for the multi-source problem, also assuming a spatially-correlated en-
vironment. This chapter provides an initial performance analysis regarding
the number of sources, the number of sensors, and the de-correlation distance.
Chapter 3 presents the first experimental campaign that aims at characterizing
the shadow-fading. This campaign includes very dense measurements in order
to capture the statistics of the shadow-fading. Subsequently, these results are
used to examine the theoretical gain of different ad-hoc techniques. Finally,
Chapter 4 shows the results of the second experimental campaign, which cov-
ers a wider area than the first, but the measurements are more sparse. Results
of localization algorithms that used these measurements will also be presented.

State of the Art
RSS-based localization is not new [4], and it has been studied under vari-
ous modeling assumptions, always in accordance with the specificities of the
different applications at hand. The aspects in common of the related topics
encourage a review of the proposed solutions on a broader scale than any one
specific radio-based solution. For instance, there is a sizable body of work in
the literature for energy-based localization of acoustic (i.e., non-radio) sources.
The received-energy error-modeling assumption for such applications is typi-
cally Gaussian (i.e., additive Gaussian noise). This is not valid in the radio
context and yet there are commonalities in the formulation of an algorithmic
solution that are worth considering.

We review the SoA here from the standpoint of the different proposed
methodologies, not from the standpoint of the target application. However, we
will account for the modeling assumptions as they arise from the application.
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To facilitate things, we first introduce some abbreviations. Among the many
details that differentiate the modeling assumptions, the most important are:
a) The number of active sources, in combination with the degree of time-
frequency orthogonality for the case of more than one sources; and b) the
mathematical model for the energy measurement. For (a), we will use the letter
S for single source and M for multiple, followed by O whenever the sources
are orthogonal in the measurement domain. The orthogonality assumption
pertains to the nature of the measurement and not the type of application.
If the energy of each source can be measured separately from the energy of
others, then this is orthogonal modeling, whereas if the received energy is
a superposition (sum) of all source energies, the model is non-orthogonal.
For (b), we denote by L the log-normal propagation model, G for additive
Gaussian noise, and I for indefinite modeling (in most cases, I pertains to a
range estimate that is modeled as the true range plus Gaussian noise). So, for
example, M-O-L stands for multiple sources, orthogonal measurements and
log-normal propagation model.

We now move on to the categorization of the algorithmic design method-
ology. Here we can first identify two main categories which are in line with
the modeling assumptions, namely the probabilistic and the non-probabilistic
methods.

The non-probabilistic (geometric) methods either adopt an error-free mea-
surement model or a very simple one. Although not primarily interested in
this class, we review it since new hybrid methods can take advantage of it.
The main challenge here is to derive the source location from the measure-
ments, since the source location is related to the measurements in a highly
nonlinear manner. The linearization of the measurement description model,
the description of the noise under the selected model, and the algorithm for
solving the resulted system of equations are the main tools of these solutions.

A measurement set or functions of multiple measurements are used to de-
fine a locus of possible source positions, and the intersection of the multiple
loci defines the source position. Conventional approaches use measurement dif-
ferences (either range or time), each one defining a hyperbolic line of position
(LOP). The source position is found as the intersecting point of these hyperbo-
las [13], [14], [15]. In times past, this technique was viewed as computationally
complex and not given to easy error analysis. An alternative method was pro-
posed at [16], using a set of three sensors instead of two, resulting in straight
instead of hyperbolic LOPs. This results in a convenient linear system of
equations, but with a drawback of inconsistencies due to the use of redundant
information. A afferent formulation was followed in [17], [18] that removed the
redundancy, introducing however a non-linear term that required an inconve-
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nient non-linear treatment (iterative gradient algorithms).This non-linearity
was removed by a two-step procedure in [19], resulting in a closed-form ex-
pression for the source localization. These methods were proposed initially for
TDOA measurements, but variations can be also used for RSS measurements.
A similar but simpler method similar to [19] was proposed in [20] that allowed
a performance prediction analysis. The modeling assumption was S-I. In [21],
a constrained Weighted Least-Squares (WLS) approach was proposed for a
RSS based S-G model, using again a quasi-linear description. This method
was also applied for all types of measurements (TOA, TDOA, RSS, AOA) in
[22]. In [23], a WLS-based, algebraic, closed-form solution was proposed again
for S-G modeling, but now in 3-D space, and it proved that it reaches the
CRLB (spell) when SNR (spell) tends to infinity. A similar approach was also
provided in [24] for S-L modeling via TDOAs combined with gain ratios of ar-
rival. A WLS approach that takes into account all error factors such as noise,
shadowing plus modeling error in the path-loss exponent was proposed in [25]
for S-L modeling. A BLUE (spell) plus an improved version was proposed
in [26] by properly removing the bias that is introduced by the multiplicative
shadowing noise (S-L). All such geometric methods have been formulated for
the single-source case only. Multi-source cases have been proposed only for
the case of M-O model assumption (see, for example, [27]).

Regarding the probabilistic category, Maximum Likelihood (ML) is the
most popular estimation approach due to its asymptotic optimality. However,
the likelihood function in a Gaussian or log-normal propagation environment
typically possesses multiple minima, thus resulting in a non-convex optimiza-
tion problem [28]; this, then, is the most significant drawback of the ML
approach. Standard techniques for such non-convex optimization tend to be
complex. In addition, computation increases exponentially with the number
of sources. Various methods exist that try to maximize the likelihood function
or approximations thereof. For multiple sources, research has mostly focused
on the AWGN model, which is valid for acoustic sources. The same AWGN
model has been applied to radio applications, but it turns out to be an over-
simplification for log-normal shadowing environments.

We now review the SoA for this class. We define here as Direct these
ML approaches that try to directly maximize the likelihood function (or ap-
proximations of it whenever its form cannot be precisely derived) by the use
of any standard numerical technique. Usually performance bounds (such as
the CRLB) are also derived whenever the pdf of the received measurements
(parameterized by the position of the sources) can be obtained analytically.
In [29] the authors consider source location estimation when the sensors can
measure RSS (or TOA) between themselves and their neighboring sensors (M-
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O-L modeling). The scenario assumes that a small fraction of sensors in the
network have a known location (anchors), whereas the remaining sensor loca-
tions must be estimated. They derive the CRB and the maximum-likelihood
estimators (MLE) under log-normal models (Gaussian for the TOA case). A
distributed, RSS-based localization approach for S-L modeling is proposed in
[30]. The approach also accounts for inaccurate range measurements by model
fitting (calibration) from range measurements of known locations. A global
optimization approach for RSS-based M-G model is followed in [31] using a
particle swarm-based optimization technique. Spacel-based sensor clustering
is also used to generate initial location estimates (single source estimation per
sensor cluster), thereby increasing the likelihood that the particle-based opti-
mizer reaches the global minimum. For the same model, a dominant-source
based technique was proposed in [32]. The algorithm estimates iteratively the
current dominant source, then removes its energy from the sensors, and con-
tinue in order to estimate the next dominant source. Heuristics are used for
the clustering of the sensors that define the area of the dominant source. An
approximate ML algorithm and associated performance bounds was proposed
in [33] under S-L modeling for jointly estimating a transmitter’ s position,
orientation, beam-width, and transmit power, as well as the environment’s
path loss exponent, using RSS. A grid of possible positions is employed and
for each point the ML estimates of the Tx power and the model parameters
are computed. The space point with the maximum likelihood value is chosen
as the estimate. In [34] an improved downhill simplex-genetic multiple source
localization algorithm is proposed for M-G model. The only work that belongs
in this category and which addresses the M-L model is [35], where a Gaussian
approximation of the sum-log normal distribution is used for approximating
analytically the likelihood function and simulated annealing is invoked to solve
for the positions and powers of the sources. The unknown number of sources
was treated by using a grid of possible source locations, while at the end, only
the dominant sources are kept in heuristic fashion.

The next class includes approximate ML approaches. This is the most
important category and includes: framework-based likelihood approximation
such as Expectation Maximization (EM) or Space Alternating Generalized
EM (SAGE); framework-based likelihood transformations or approximations
such as convex feasibility or semi-definite programming (SDP) approaches. A
Maximum Variance Unfolding (MVU) SDP-type algorithm for an M-O-I model
was proposed in [36] along with upper and lower bounds on the reconstruction
error.

The problem of local minima for an S-G model was addressed via projec-
tion on convex sets (POCS) in [28]. The algorithm is of low complexity, robust
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to local minima, and possesses a distributable computation. The distance esti-
mates also employ RSS, but the algorithm can also be used for any positioning
method where sensor-source distance estimates are somehow available. The
method, named circular POCS, performs well when the (single) source node is
located inside the sensor convex hull, defined by the outer perimeter nodes in
the sensor network. When the Tx power of the source is unknown, measure-
ments ratios are used instead. A diffusion-based distributed protocol for the
same algorithm was provided in [37], [38] along with a theoretical analysis for
each convergence.

Another method for addressing the non-convexity of conventional ML is
the Semi-Definite Programming (SDP) relaxation technique mentioned above.
The idea here is to convert the non-convex quadratic-distance constraints into
linear constraints by introducing a relaxation that removes the quadratic term
in the formulation. An SDP-based algorithm to initialize the ML minimization
algorithm was proposed in [39], [40] for the S-L model which provides good
performance by avoiding local minima. The same approach was followed in [41]
for the S-G model. The extension of the method to M-O-L model was proposed
in [42] for non-cooperative and cooperative schemes. An SDP approach for the
S-L model with unknown source Tx power is given in [43] and extended for the
M-O-L model in [44]. An EM-based algorithm for the S-L model was proposed
in [45] treating the shadow-fading factors as the unobserved (missing) data.
An EM-like method for M-G modeling was proposed in [46]. Classic EM
approaches for the same model were proposed in [47], [48], [49]. The non-
analytical nature of the pdf for the sum of log-normal variables does not allow
a direct application of the EM framework. A quasi Expectation-Maximization
(EM) method was proposed in [50], [51] by using the sum of log-power errors
as a proxy objective function.

The aspect of the unknown number of sources was first addressed in [52],
using a methodology called compressed sensing (CS) that exploits the inherent
sparsity of the problem (small number of sources, large number of measure-
ments). Under the M-G model, (recovery from noisy measurements) the Basis
Pursuit Denoising (BPDN) [53] was employed along with a fixed point contin-
uation method [54] to solve the BPDN optimization efficiently. In [55] they
use Basis Pursuit (BP) [56], Basis Pursuit Denoising (BPDN), and Dantzig
Selector (DS) [57] for l1-minimization programs, and compare their perfor-
mance for location estimation in the M-L case. A pre-processing procedure
on the original measured data is introduced to induce incoherence needed in
the CS theory; and a post-processing procedure to compensate for the spa-
tial discretization caused by the grid assumption. A cooperative splines-based
spatial model approach was proposed in [58]. The model entails a basis expan-
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sion of the spectrum density (PSD) in frequency, weighted by unknown spatial
functions that are estimated from power measurements. A novel model esti-
mator is also developed using a least-squares (LS) criterion regularized with
a smoothing penalty. The parameters of the model incorporate the informa-
tion for the position of the sources. The framework fits better to an M-G
model, but can be used also in M-L. A non-convex l1-regularized least squares
scheme was also proposed in [59] for M-G. They decompose the difficult joint
multi-source localization and environment perception problem into two simple
sub-problems; one for multi-source localization and another is for environ-
ment perception. The two sub-problems were solved via the Gauss-Seidel [60],
[61] technique and via the gradient descent algorithm with varying step-size,
respectively. In [62] the authors continue their work in [58] and propose a
distributed approach by suitably modifying the least-absolute shrinkage and
selection operator (LASSO). The resulted novel cooperative sensing approach,
named D-Lasso, was designed to be implemented in an ad-hoc network where
the radios exchange information locally only with their one-hop neighbors,
eliminating the need for a fusion (solution) center, and with claimed guaran-
teed convergence to the globally optimum solution. A low-complexity source
location based on CS was proposed in [63].To speed up the algorithm, an ef-
fective construction of multi-resolution dictionary is introduced. Furthermore,
to improve the capacity of resolving two sources that are close to each other,
the adaptive dictionary refinement and the optimization of the redundant dic-
tionary arrangement (RDA) are utilized [64], [65]. In [66], the authors argue
that there is potential information within the cross-correlations of the received
signals at different access points of a wireless network, which is not exploited
in existing algorithms. To exploit this information, they proposed to construct
a new fingerprinting map to include these cross-correlations and have shown
that this new framework leads to obtaining an improved performance in terms
of accuracy and number of localizable targets.
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Chapter 1

Power-based localization in
correlated log-normal fading aided
by conditioning measurements

Parts of chapter 1 and chapter 3 included at: Arvanitakis, George; Kaltenberger, Florian;
Dagres, Ioannis; Polydoros, Andreas; Kliks, Adrian; "Power-based localization in correlated
log-normal fading aided by conditioning measurements" EUCNC 2015, European Confer-
ence on Networks and Communications, June 29-July 2, 2015, Paris, France

This chapter addresses the performance evaluation of power-based localization via the
Crammer-Rao Lower Bound (CRLB) of a source in spatially-correlated log-normal prop-
agation. The novel element is the inclusion and assessment of the impact of conditioning
measurements on such performance. The proposed model parameterizes performance by
both the sensor topology (density, positioning), resulting in the current measurements, as
well as by CM (essentially, prior or training data), which reduces the statistical uncertainty
in the model.

Propagation Model
RSS measurements are drawn either from a set of sensors in a prior network (which lead to
CM) or from a current network. The current scenario assumes known sensor positions plus
a single active emitter within an area of interest. This leads to three unknown parameters
under estimation: two flat-plane coordinates plus the transmit power of the emitter.

We adopt the classic log-normal propagation model

Ri = P tx − L0 − 10αlog(di/d0) + nsi + nfi , (1.1)

where Ri is the source power, measured by i-th sensor or RSS, di = ‖xi − s‖ is their
respective distance (xi,s are the coordinates of i-th sensor and source, respectively), P tx
is the emitter power, d0 is a reference distance and L0 is the power loss in that reference
distance, α is the path-loss exponent, nfi is the noise due to fast-fading, which is hereby
modeled as zero-mean Gaussian (in linear scale) and (nsi ) is the shadow-fading rv. We
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follow common practice and reduce the effect of fast-fading by averaging measurements
taken around the true location. This maybe seem unpractical (since we don’t know where
the source is), but the same effect can be had by moving the sensors around a bit instead
of the source. It follows the above log-normal distribution: a Gaussian rv in the log domain
with zero mean and variance σ2

s .

Typical power model in log-normal fading
The typical model used does not account for CM, plus the sensors are considered far apart
from each another, with zero spatial-correlation. Let mi(θ) = P tx − L0 − 10αlog(di/d0),
then, for θ = [P tx, L0, d0, α, x, y] as the unknown parameters under estimation, we have

Ri = mi(θ) + nsi , (1.2)

so, Ri follows Gaussian pdf

Pi(Ri|θ) =
1

(σs
√

2π)
e
−
(
Ri−mi(θ)

)2
2σ2s . (1.3)

Due to zero spatial-correlation, the joint pdf becomes

P (R|θ) =

N∏
i=1

Pi(Ri|θ) , (1.4)

for the vector measurement R = [R1, · · · , RN ].

Power model in log-normal fading under CM

The propagation model is the same as above. In addition, let R{t}i be the current mea-
surement rv of the i-th sensor from the source at a location t = (x, y) and let R{p}i be the
vector ofM CM (say, derived from a training source and a prior sensor network) at locations
p = [p1, . . . ,pM ]. The pdf for all measurements (in dB) is modeled as joint Gaussian:[

R
{t}
i

R
{p}
i

]
∼ N

([
µ
{t}
i

µ
{p}
i

]
,

[
σ
{t}
i C

{t×p}
i

C
{p×t}
i C

{p}
i

])
, (1.5)

where

µ
{t}
i = PT − 10αlog(d

{t}
i )

µ
{p}
i = PT − 10αlog(d

{t}
p )

σ
{t}
i = σ2

, (1.6)

C
{p}
i = σ2


ρ
{p1}
i · · · ρ

{p1×pM}
i

...
. . .

...
ρ
{pM×p1}
i · · · ρ

{pM}
i

 , (1.7)

and

17



C
{p×t}
i = C

{t×p}T
i = σ2


ρ
{p1×t}
i
...

ρ
{pM×t}
i

 . (1.8)

Here, PT = P tx − L0 − 10αlog(d0) is a simplifying parameter, which assumes that the
source(s) providing the CM and the current source have the same transmit power. d{t}i is
the unknown distance between the emitter and the i-th sensor and d

{p}
i is M × 1 vector

with the known distances between the i-th sensor and the positions of the CM (totally we
have M CM positions). Also, ρ{pk×pj}i = e−αcd

{p}
is the correlation factor and d{p} is the

distance between pk and pj pilot transmitters. The correlation constant is depicted as αc
and the de-correlation distance is defined as dc = 1/αc. It is also assumed that the standard
deviation of the shadow-fading is equal for all sensors, i.e. σ{p}i = σ. Finally ρ{pk×t}i is the
correlation factor between the pk pilot and the unknown transmitter.

Thus, the conditional pdf of R{t}i given R
{p}
i = r

{p}
i (r{p}i are the specific values of the

CM) is also Gaussian N
(
µ
{t|p}
i , σ

{t|p}2
i

)
with mean and variance given by

µ
{t|p}
i = E

{
R
{t}
i |R

{p}
i = r

{p}
i

}
= µ

{t}
i −C

{p×t}T
i C

{p}−1

i

(
µ
{p}
i − r

{p}
i

)
,

(1.9)

and

σ
{t|p}2
i = σ2 −C

{p×t}T
i C

{p}−1

i C
{p×t}
i . (1.10)

Therefore R{t} ∼ N (µ (θ) ,Cs (θ)), where

µ (θ) =
[
µ
{t|p}
1 , µ

{t|p}
2 , · · · , µ{t|p}N

]
, (1.11)

is the N × 1 mean vector and

Cs (θ) =


σ
{t|p}2
1 · · · 0
...

. . .
...

0 · · · σ
{t|p}2
N

 , (1.12)

is the N ×N covariance matrix between the sensors, already calculated. Both depend
on θ. In sum, the pdf of the received power is

P
(
R{t}; θ

)
=

1

(2π)
N
2 det [Cs (θ)]

1
2

exp

[
−1

2

(
R{t} − µ (θ)

)T
C−1
s (θ)

(
R{t} − µ

)]
.

(1.13)
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Cramer-Rao Lower Bound
The Fisher information matrix for Gaussian rv is (see [67]):

[I (θ)]kl =
1

2
tr

(
C−1
s (θ)

∂Cs (θ)

∂θk
C−1
s (θ)

∂Cs (θ)

∂θl

)
+
∂µ (θ)

T

∂θk
C−1
s (θ)

∂µ (θ)

∂θl
,

(1.14)

which tr() is the trace of the matrix. We thus need to calculate the partial derivatives

∂Cs (θ)

∂θk
=


σ
{t|p}2
1

∂θk
· · · 0

...
. . .

...

0 · · · σ
{t|p}2
N

∂θk

 , (1.15)

where

σ
{t|p}2
i

∂θk
= −2σ

{t|p}
i

[
∂C
{p×t}T
i

∂θk
C
{p}−1

i C
{p×t}
i

+ C
{p×t}T
i C

{p}−1

i

∂C
{p×t}
i

∂θk

]
,

(1.16)

and

∂C
{p×t}
i

∂θk
= −αce−αcd

{pj×t} ∂d{pj×t}

∂θk
. (1.17)

For θk = x{t}, (same for y{t})

∂C
{p×t}
i

∂x{t}
=
αc
(
x{p} − x{t}

)
d{pj×t}

ρ
{pj×t}
i . (1.18)

For the derivatives of the mean value we have

∂µ (θ)

∂θk
= −10α

∂ log10

(
d
{t}
i

)
∂θk

− ∂C
{p×t}T
i

∂θk
C
{p}−1

i(
PT1M − 10α log10

(
d
{p}
i − r

{p}
i

))
.

(1.19)

We are now able to compute the CRLB (inverse of the Fisher information matrix) for
given prior and current networks. To assess performance of a stochastic current network
under a stochastic prior network, a semi-analytic approach is adopted.

Performance Assessment
The adopted approach averages over the random positions of both stochastic networks. This
will be followed both without a prior network (sub-section A) as well as with (sub-section
B).
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1 Performance without CM
For the current network, under no preference for the source position, we place the latter in
the middle of a square and model the random positions of the sensors. One such possibility is
a two-dimensional Gaussian r.v. The means of all sensor positions will form a square grid of
points based on the target density, and variance relative to that density. In all simulations we
will assume that the transmitter lies at the center of this deployment, and the sensors capable
of measuring its power are determined by a coverage area, a circle around the emitter. The
radius of this coverage area is determined by the receive power sensitivity of the measurement
network, the transmit power of the emitter, and the propagation characteristics (path-loss
exponent).

The simulation process always begins with a very dense realization and gradually we
expand the distances of the sensors until the point where less than three sensors are within
the coverage area (we have three degrees of freedom (x, y, P ), so we need at least three
equations). The performance is measured for each step, averaged over different realizations.

Two different propagation scenarios will be examined, one called ’Indoor’ and the other
’Outdoor’, using respectively a parameterization that tries to reflect such scenarios, i.e.
small coverage, de-correlation distance, large path-loss exponent for the indoor scenario and
the opposite for the outdoor. The exact values used for those two scenarios are depicted in
Table 1.1.

Table 1.1: Parameterization of the propagation scenarios

Parameters Scenarios
Indor Outdoor

Path loss 2 3
Shadow-fading 8 8

correlation coefficient (dc) 2 (0.5m) 0.1 (10m)
Range (coverage) 30dB (3000m2) 80dB (0.6km2)

The semi-analytic performance assessment for these two scenarios is conducted by the
following way. For a given density of deployment network random realizations of such
networks are first produced, and then, based on the coverage, the active sensors are selected.
Based only on the active sensors, the CRLB is computed, and averaged over a large number
of network realizations. The results for the indoor scenario and for different levels of shadow-
fading variance (2 to 16) are depicted in Fig. 1.1. The root mean square error (RMSE) is
kept below 1 meter in most cases for a density of 1 sensor per 10 square meters, which is
considered very dense. For the case of 1 sensor per 100m2, which is a rather sparse for
indoor network, the error is bellow 4m, a value that has been measured experimentally by
our group in several measurement campaigns [68]. The coverage area of this example is
33m, so a 4m RMSE is consider unacceptable.

For very sparse networks the shadow-fading plays very important role, and only for very
small values localization can be feasible.

For the outdoor scenario, the respective assessment is depicted in Fig. 1.2. The coverage
radius in this scenario is 464 meters. The RMSE is small (bellow 6m) for a rather high
density network of 1 sensor per 1000m2 and bellow 20m for 1 per 10000m2. It is clear from
the performance results depicted so far that the RSS-based localization for CR applications
requires very high density sensor networks, if no CM are utilized.

20



0,001 0,01 0,1
0

2

4

6

8

10

12

Coverage Area= 3141m2

#Sensors/m2

R
M
S
E
(m

)

 

 

σ
2 = 16dB

σ
2 = 8dB

σ
2 = 6dB

σ
2 = 4dB

σ
2 = 2dB

Figure 1.1: Indoor scenario for different shadow-fading values
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Figure 1.2: Outdoor scenario for different shadow-fading values

2 Performance using CM
This is the most important part of our contribution, since we will examine how the CM can
reduce the error and/or the density of the needed measurement network. The process is the
same as in the previous section, but here we also have to average out the random positions of
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the CM. There exist many spatial models used for the positions of radios leading to different
performances. Here we model the position of the CM as a homogenous Poisson Point Process
(PPP) of a given density λ. The underline pilot density λ is the expected number of points
(CM) of the process per unit area (one square meter for indoor and one thousand for outdoor
scenario). The case without CM is also depicted (λ = 0). Starting from the ’indoor’ scenario,
the performance curves for various densities are provided. Fig. 1.3 depicts the case of indoor
scenario (correlation distance of 0.5m). Theory suggests huge improvement when having
dense measurements. For the case of λ = 5, i.e. the density of the PPP process is 5
sensors per square meter the error is negligible even for very sparse sensor networks. The
performance gain is negligible when the density falls below 1 measurement per 10m2. As we
can see, the expected theoretical gain is huge; enough to enable practical use of RSS-based
localization, as long as a dense measurement database of CM is available.
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Figure 1.3: Indoor scenario for various pilot placement cases and shadow-
fading equal to 8dB

The performance for the ’outdoor’ scenario is also depicted in Fig. 1.4.
Equivalent performance enhancement is displayed. When the density is higher than 1

per 100m2 the RMSE is bellow 10m2 even for very sparse sensor networks. The performance
gain is negligible when the density falls below 1 per 1000m2.

What we can see is that in theory, the potential of performance enhancement is large
when having access to CM with density at the order of the de-correlation distance. What the
theory does not say, is the method of getting such performance. The CRLB characterizes
the performance of the ML estimator, which is a non-convex optimization problem.
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Conclusions
In this chapter we have provided an assessment of the required network density of sensors for
RSS-based localization utilizing CM in a log-normal environment with spatial correlation.
We derive the CRLB for the aforementioned case and examine two different scenarios: the
first represents the indoor environment and the second the outdoor.

First, we examined the performance without spatial-correlation of the shadow-fading
component with respect to the shadow-fading variance, and next we examined the perfor-
mance of some of these shadow-fading values with respect to different values of deceleration
distance. The proper semi-analysis (of the expected accuracy with respect to sensor density)
shows that large performance gains are expected when the spatial-correlation is exploited by
the use of a CM database. The utilization of CM has been used very often in the literature,
but a semi-analytical approach that reveals the scaling of the required sensor network and
the maximum expected gain is introduced for the first time.
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Chapter 2

Multi Source Power-based
localization in correlated
log-normal-fading

Parts of this chapter included at: Arvanitakis, George; Dagres, Ioannis;Kaltenberger, Flo-
rian; Polydoros, Andreas; "Cramer Rao lower bound for multi-source localization in spatial-
correlated environment" EUCNC 2015, European Conference on Networks and Communi-
cations, June 29-July 2, 2015, Paris, France

This chapter provides the modeling approach and some indicative results on the expected
performance of received power-based, multiple-source localization in a spatially-correlated
log-normal propagation environment. By properly modeling the approximation of the re-
ceived signal strength, we are able to evaluate the Crammer-Rao Lower Bound (CRLB)
given the positions of the sources and sensors. Probabilistic models are used for both the
sensor network as well as the multiple sources, and a semi-analytical approach is taken to
compute the average performance of the lower bound. The results are indicative of the
expected localization accuracy in a multi-source localization scenario when the correlation
of the propagation environment is exploited.

Introduction
While the topic of source localization has been addressed extensively, multi-source localiza-
tion is less popular due to its inherent difficulty. This is because: There is a limited number
of scenarios where multiple non-orthogonal sources may overlap in the same band. For
multi-source scenario, the amount of requiring sensors should be at least equal to problem’s
degrees of freedom, thus, for each unknown transmitter, including power estimation, 3N
sensors are needed (xi, yi, Pi) and in order to make our estimation more resilient to noise
we have to use even more. Therefore, the cost of a large number of sensors, a condition
necessary for accurate localization, has been thus far prohibitive. However, the potential for
cognitive-radio applications (even in 5G), the decreasing cost of sensors, and the availability
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of databases with localized channel strength measurements are changing this picture.
Theoretical accuracy limits are valuable in order to design a localization system. The

most common theoretical bound for power-based localization (Received Signal Strength,
RSS) localization, is Crammer-Rao Lower Bound (CRLB) which gives closed form expression
about the minimum achievable variance of an estimator. There is extensive literature on the
CRLB for single in non-correlated and correlated environment [29] ,[10]. Approximate CRLB
and localization algorithms for the multi-source problem was derived in [68]. Our work herein
addresses the performance evaluation via the Crammer-Rao Lower Bound (CRLB) of multi-
source, power-based localization in spatially-correlated log-normal propagation environment.

The rest of the chapter is organized as follows, Section presents propagation model, basic
assumptions and generally clarify all necessary components of our model. Section presents
only some indicative results of the performance analysis and finally the conclusions.

Our Model
Power measurements are drawn either from a set of sensors. For each set of i-th sensor and
j-th transmitter we adopt the classic log-normal propagation model

Ri,j = Pj − L0 − 10αlog(di,j/d0)− nsi,j − n
f
i,j , (2.1)

where Ri,j is the j-th source power, measured by i-th sensor, di,j = ‖xi − sj‖ is their
respective distance (xi,sj are the coordinates of i-th sensor and j-th source, respectively),
Pj is j-th emitter power, d0 is a reference distance and L0 is the power loss in that reference
distance, α is the path-loss exponent, nfi,j is the noise due to fast-fading, which is hereby
modeled as zero-mean Gaussian (in linear scale) and (nsi,j) is the shadow-fading rv. We
follow common practice to assume that the fast-fading component can be averaged out and
the shadow-fading follows log-normal distribution: a Gaussian rv in the log domain with
zero mean and variance σ2

s .
The model for the correlation factor of Shadow Fading (autocorrelation) in respect to

distance is given in [4] :
ρ(∆x,∆y) = ρ(d) = e−

ln(2)d
dc , (2.2)

where dc is the de-correlation distance, meaning that, is the distance where the corre-
lation of tow variables became 0.5. In respect to the reciprocity of the propagation model,
we have two types of correlation. One between different sensors and same transmitter, and
one by different transmitters and the same sensor.

Due to the eq.2.1 the receiving power of i-th sensor from j-th source is following log-
normal distribution at the linear domain. So, the total received power of i-th sensor is
Ri =

∑N
j=0Ri,j , where N is the total number of transmitters. But the sum of log-normal

is not trivial and approximation needed. As we mention at previews paragraph the shadow
fading is spatially-correlated, so, in order to capture the correlation from transmitters side,
we use the correlated approximation for the sum of log-normal [69], which give as again a
log-normal distribution with mean and variance eq.2.4

µi =
1

c

ln

 N∑
j=0

ecmi,j

+
c2σ2

i

2
− c2σ̄2

2

 , (2.3)
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(
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)
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)2

 .

(2.4)
where c = ln(10)

10 is a constant which is originated from the transformations between
natural and log domains, ρtxi,j is the correlation factor between i-th and the j-th transmitter
and calculated from 2.2.

With given mean and variance for each sensor, the general Fisher Information matrix
for Gaussian rv is (see [67]):

[I (θ)]kl =
1

2
tr

(
C−1
s (θ)

∂Cs (θ)

∂θk
C−1
s (θ)

∂Cs (θ)

∂θl

)
+
∂µ (θ)

T

∂θk
C−1
s (θ)

∂µ (θ)

∂θl
,

(2.5)

where tr() is the trace of the matrix and with use of σi from eq.2.4 and ρsij correlation
factor between i-th and the j-th sensor again from eq.2.2 the covariance matrix of sensors

C =

 ρs11σ1σ1 · · · ρs1Nσ1σN
...

. . .
...

ρsN1σNσ1 · · · ρsNNσNσN

 . (2.6)

Results
Some indicative performance results are depicted in this section, mainly the results shows
how the localization performance is scaling w.r.t parameters of interest (number of unknown
sources, number of sensors, de-correlation distance).

Fig. 2.1 depicts the performance degradation on localizing a source when a second one
is at close distance as a function of the sensor network density. The performance for a single
source is also depicted for comparative reasons. The parameters used are: pathloss equal to
3, de-correlation distance equal to 5m and shadow fading variance equal to 8dB.

Fig. 2.2 depicts how the CRLB scales w.r.t sensors density, for different number of
surrounding sources and the same propagation environment. The number of sources is
chosen from a poison point process with a given number of sources density, NoS. Otherwise,
NoS parameter shows us the average number of sources within the coverage area of a source,
i.e. the expected area where a sensor can detect it is presence.

But, how the performance is scaling w.r.t the spatial correlation? We will answer this
question at the next subsection.

Critical Point
A very interesting observation is that the performance (CRLB) as a function of de-correlation
distance is not monotonic. Other words, there is not unique answer at the following question
"does the spatial-correlation of the shadow fading improve localization accuracy?". We
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observed that as the spatial-correlation was raising, the performance was improving until a
critical point, after that the performance begun to decrease. We can see it for both single
(fig. 2.3) and multiple sources (fig. 2.4). This effect depends heavily on the Geometry of the
sensors. In the above cases the source was always in the convex hull of the sensor network.

This behavior can be seen and understood more clear if we focus on a simple example
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Figure 2.4: Multi source performance w.r.t different de-correalation distance

with one source and two distant piles of sensors fig. 2.5. Red cycle corresponds to CRLB for
practically zero de-correlation distance (Environment without spatial-correlation), blue cycle
corresponds to de-correlation distance = 2m and black cycle corresponds to de-correlation
distance = 10m.
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Figure 2.5: A simple example for the critical point

Lets try to explain this phenomenon. Firstly, we assume uncorrelated environment,
thats means that each shadow fading component is independent with the others. This
shadow fading component adds an error at each pair sensor-source. If the shadow fading
component is grater than zero (ns > 0), then the sensor assumes that the source is closer
than it is at the reality, if the If the shadow fading component is less than zero (ns < 0),
then the sensor assumes that the source is farther than it is at the reality.

As the sources gets more uncorrelated, we can see a performance increase due to the
diversity gain. The performance is dropping, as expected, when the correlation increases
(we lose diversity). For the extreme case of highly correlated sources (large decorrelation
distance, nearly same shadow fading for all sensors), the performance increases again. That
is because the propagation model degenerates into a deterministic one (the common error
term does not affect the performance). This does not have any practical interest, but it can
be very confusing in simulation experiments.

But, as the de-correlation distance is becoming higher, all the sensors will have almost
the same shadow fading component, so our system will approaching more and more a de-
terministic model with just another unknown variable that has to be estimated, the shadow
fading variable that will be the same for all the sensors.
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Conclusions
This chapter present the initial results of the multi-source scenario in a spatially-correlated
environment. First, we set up the multi-source problem and the proper approximations
in order to derive the CRLB for this case. Next, we assumed the simplest multi-source
scenario, the one with two sources, and we then examined the performance with respect to
the distance between the sources. As expected, the performance is inversely proportional to
the distance of the sources: if the sources are close enough, the required number of sensors to
separate them scales exponentially. Additionally, we showed how the localization accuracy
scales with respect to the number of unknown sources and the sensor density. As previously
mentioned, the density of sensors in order to achieve a given accuracy scales quadratically
with the number of unknown sources.

Finally, we presented an interesting phenomenon on the performance with regards to
the de-correlation distance. This strange behavior has not any practical value, but has to
be mentioned in order save time from unnecessary debugging time.
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Chapter 3

Experimental Campaign I:
Characterization of Shadow
Fading

The experimental results of an indoor campaign will be presented in this chapter. The
measurements of this campaign are very dense in order to capture the statistics of the shadow
fading. We are interested in 1) verifying the spatial-correlation of the shadow fading in an
indoor environment and 2) obtaining the expected localization accuracy of different ad-hoc
techniques as well as identifying practical issues to be further addressed. One main concern
is the quantification of scaling on required sensor-network size for achieving a pre-specified
localization accuracy.

Experimental Setup
Using semi-analysis we were able to examine how the performance scales without the need
to set-up large costly experimental campaigns. How close this view to the reality depends
on the modeling assumptions. The simplicity of the adopted model does not allow us to
make any strong conclusion. Experimental campaigns are needed to verify, at least, the
tendencies. An experimental campaign at an indoor environment is presented herein in
order to practically assess the gains of the spatial-correlation.

The set-up was the following: for the sensor network we used one OAI platform, con-
trolling four antennas, each one acting as a different sensor (Rx) located far apart from each
other (with lengthy cables). A signal generator was used as a transmitter (Tx) to be local-
ized. The signal generator was tuned at the same central frequency (Fc) with the sensors.
Characteristics of Tx and Rx are shown at Table 3.1.

Tx was placed at totally 1846 different positions (grid with step 10cm), blue dots, as we
see at Fig. 4.1. Red dots depicts the positions of four Rxs. The total area for this experiment
was ≈ 130m2. The high density of the measurement campaign covers two purposes. The
first one is the need to average out the fast fading. The second one is the need to measure
the shadow fading correlation.
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Table 3.1: Transmitter / Receiver characteristics
Transmitting signal Receiver antennas

Random OFDM symbols Fc = 1.9076 GHz
0dBm power Gain = 20dB

Isotropic at (x-y) plate Isotropic at (x-y) plate
Bandwidth = 5 MHz

Figure 3.1: Set up of the experimental procedure, red dots indicate the Rxs
positions and blue dots the different Tx positions

Post Processing and results
For the fast-fading averaging, we used 9 neighbor points to produce one, like two dimensions
moving average. This reduced the grid density, from a 10cm step to 30cm. This 30cm is
the granularity of our measurement campaign for estimating the spatial-correlation. Having
eliminate the fast fading component with the averaging procedure, we estimated the constant
parameters of our propagation model eq.2.1 for each sensor. Our estimation criterion is the
least-squares and the results are shown at figs. 3.2 - 3.5. So now, easily we can obtain the
shadow fading component for each of our emitter positions nsi = P tx−L0−10αlog(di/d0)−
Ri.

A different processing procedure was followed in order to visualize this correlation by
using a two dimensional moving average filter directly on the dense measurements. The
results are depicted in Fig. 3.6 for Rxs 1 & 3, where the parameters of the propagation
model were estimated as previous. The correlation can be seen visually. Taking also into
account the positions of the Rxs, the existence of angular-correlation is also evident.

Another question that arises regarding the modeling relates to the Gaussianity of the
shadow fading. Fig. 3.7 shows the histogram of shadow fading variables for the second Rx
and the Gaussian fitting curve. The amount of points is not enough for a smooth result, but
the tendency on following a Gaussian distribution can be verified. The model parameters
(path-loss, shadow-fading variance) for each Rx is different as opposed to the theoretical
modeling assumptions where it was consider the same.

As next step we calculate the de-correlation distance of the environment. At Fig. 3.8
we depict the estimated correlation with respect to distance for all Rxs. The average de-

32



1 2 3 4 5 6 7 8
−100

−95

−90

−85

−80

−75

−70

−65

−60

R
ec
ei
ve
d
p
ow

er
(d
B
)

Distance

Propagation
Data

Figure 3.2: Data and estimated propa-
gation model for sensor 1
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Figure 3.3: Data and estimated propa-
gation model for sensor 2
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Figure 3.4: Data and estimated propa-
gation model for sensor 3
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Figure 3.5: Data and estimated propa-
gation model for sensor 4

correlation distance is dc ≈ 0.65m.The minimum de-correlation value is ≈ 0.3m, observed, as
expected, for the non-line of sight Rx (#4). We should mention that without the fast-fading
averaging, the de-correlation distance is less than 7cm.

Lastly: what is the performance gain when exploiting CM. We follow an assessment
based on the CRLB. More specifically a slight modification of it to support the different
propagation parameters per sensor (another deviation from the theoretical model). The key
parameter in this assessment is the estimated shadow fading variance (per sensor). Without
the CM the shadow fading is modeled as zero-mean. This is not the case with CM.

Using various interpolation techniques (for a given set of CM) we estimate the mean, and
then the shadow fading variance that best describes the measurements. The interpolation
techniques used for this scope are three deterministic (Linear, Voronoi regions, and Weighted
Voronoi [70]) and one probabilistic (Kriging [70]).
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Figure 3.6: Shadow Fading for Rx1 (up) and Rx3 (down)

Figure 3.7: Histogram of Shadow Fading

In theory, we choose PPP to model the random position of the CM. Here, we can
simulate the probabilistic nature of the CM positions by taking randomly a given portion
of the measurements and use them as CM. The process for computing the CRLB of each
point depicted in Fig. 4.9 is the following: For the given percentage X (x-axis) and for each
point P , we randomly choose X% of the measurements (also excluding the measurement on
point P ). Using these measurements as CM the new mean of the shadow-fading of point
P is estimated (by spatial interpolation), and by this the new shadow-fading error term.
This process is repeated many times and for each point P . By this process we are able to
estimate the new shadow fading variance, for each choice of interpolation method, and for
the given CM density.

Fig. 4.9 depicts the CRLB (Mean Square Error, MSE) for a reference point at the center
of the room, as a function of X%. As expected, the probabilistic interpolation (Kriging)
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method gives the best performance, which is gradually converges to the case with no CM.
The linear interpolation method provide better performance only for dense CM. The Voronoi
methods on the other hands provide a good trade-off between performance and complexity.
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Figure 3.9: Variance for each Interpolation Method

As a final comment, we can say that in practice, for indoor environments, same per-
formance gain is verified. Due to the small de-correlation distance, the density of our
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measurements did not allowed as to observe the huge gains promised by theory. This means
that for indoor environments extremely dense CM is need it.

Conclusions
This chapter presented the results of an experimental assessment using the OAI platform.
Using an indoor environment, we performed dense measurements in order to verify the
Gaussianity and the spatial-correlation of the shadow-fading component. After the training
of our propagation model, both of previous hypotheses were verified. Additionally, the
results showed the existence of an angular-correlation of the shadow-fading variable.

Furthermore, after the verification of the spatial-correlation of the shadow-fading com-
ponent, we investigated different ad-hoc techniques in order to achieve the maximum gain
with respect to the density of the CM. The advantage of utilizing past measurements was ex-
ploited and the best performance, independent of CM density, was the probabilistic method
named Kriging. As a final comment, the ad-hoc techniques that we used improved the
localization performance but not as much as the theoretical expectations.
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Chapter 4

Experimental Campaign II:
Exploiting the correlation of the
reverberant indoor environment

Parts of this chapter included at: Arvanitakis, George; Dagres, Ioannis; Kliks, Adrian;
Polydoros, Andreas; "RSS based localization: Theory and experimentation" EUCNC 2014,
European Conference on Networks and Communications, Special session, From Theory to
Practice: Experimental Research Activities in NEWCOM#’s EUWIN Labs, 26 June 2014,
Bologna, Italy

The experimental results of an indoor campaign will be presented in this chapter. The
measurements of this campaign get placed at a wide indoor area. Our goal is to obtain
accuracy gain by processing sparse past measurements with simple ad-Hoc techniques. The
semi-analysis is helping us to see the big picture, without the need to set-up large costly
experimental campaigns. What we were able to do and present it here is a small experiment
at an indoor environment in order to assess the gains of the spatial-correlation.

Experimental Setup
The set-up was the following: for the sensor network we used one OAI platform, controlling
four antennas, each one acting as a different sensor (Rx) located far apart from each other
(with lengthy cables). A second OAI platform was used as a transmitter (Tx) to be localized.
It was placed at totally 18 different positions as we see at Figure 4.1. At each position, we
took 5 measurements "around" this position to average out the fast fading. The total area
for this experiment was 337.5m2

After collecting the measurements, the offline processing procedure was the following:
Suppose that we want to localize the transmitter when placed at position Txi. As a first
step we are using all measurements to estimate the parameters of the propagation channel,
except the one from Txi. Then, based on this estimated channel we localize the source
using the measurements from Txi. A direct Maximum likelihood (ML) method is used for
the localization in all cases. The localization performance in this small scale experiment
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Figure 4.1: Set up of the experimental procedure

is actually a reflection of the suitability of the adopted propagation model. The exact
algorithm used for ML is not important.

1 Uncorrelated case
This is the modeling approach, where no spatial-correlation is assumed. The basic pa-
rameterization of the log-normal model (2.1) is estimated (through ML) using all other
measurements than the one we are interested in (Txi). Then based on that model and the
measurements from Txi we estimate the position. Repeating this procedure for all points,
we plot the results in Figure 4.2. We plot with ’x’ the estimated position

Figure 4.2: Performance results for the Uncorrelated case

2 Correlated Case
In this case we also need to model the spatial-correlation. In the previous sections, we
assumed an exponential based spatial-correlation. In reverberant environments, the expo-
nential model does not apply. Various interpolation techniques are used to estimate the
shadow-fading field. values that represent your one experimental setup. So, although it is
preferred to use the exponential model if you want to describe a large number of experiments
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in different places, this does not mean that it is the best model to use for a specific setup. In
such case, it is best to try estimating directly the shadow-fading field values. Two different
approaches will be followed to estimate the shadow fading field, one simplistic based on
Voronoi-sets, and one complex, based on interpolation.

Voronoi-set approach: In this simple approach, for each point in space we use the
closest pilot to describe the shadow fading field. So, the algorithm that searches for the ML
position is also searching for the closest measurement to model the shadow fading. A grid
approach is followed for this search. The results from this procedure are displayed in Figure
4.3.

Figure 4.3: Voronoi approach

Interpolation approach: In this approach we are using some selected base functions
to model the shadow fading field. Using a trial and error approach and some common sense,
we end up dividing the area of interest in different sub-areas as we see in Figure 4.4.

Figure 4.4: Sub-area division

Different interpolation function is used for each region (and for each antenna). Inside of
each area we are using only the pilots lying in that area. One dimensional constant, linear
and Quadratic interpolation functions are used herein, representing choices of low, medium
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and high degree of freedom respectively. The straight line orientation of the measurements
for each region enforced us to use these simple 1D interpolation functions for representing
the 2D field, by assuming independence from the other dimension. As an example of the
fitting we present at Figures 4.5 - 4.8 the results of the different interpolation options for the
Area 1 and the four antennas.
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The blue dot lines represent the measured shadow fading, the red is the linear interpo-
lation and the green the quadratic. We also display the zero-order interpolation.

For the computation of the interpolation parameters again all measurements except from
the point of interest are used each time. The term past measurements, used throughout this
work does not represent literally this procedure, but that was just a convenient description
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for systems that store past measurements. The results from using the linear interpolation
are displayed in Figure 4.9.

Figure 4.9: Linear Interpolation

The mean square error for all models is displayed in Table 4.1. It is clear, that the use of
past measurements improves the performance. The constant interpolation, although better
than the uncorrelated case, does not give the best performance, possibly due to under-fitting.
The simple Voronoi approach, provides a fairly good performance in comparison with the
two other interpolation methods (Linear and Quadratic). Lastly, we see that the Quadratic
model gives worse results than the Linear, something that could be accounted to overfitting.

Table 4.1: Mean Error for All Models
Uncorrelated
log-normal

Constant
inter-

polation

Linear
inter-

polation

Quadratic
inter-

polation
Voronoi

All points 4.16 2.95 2.02 2.55 2.15
Excluding
1 worst 3.6 2.68 1.8 2 2.06

Excluding
2 worst 3.1 2.48 1.64 1.88 1.97

Conclusions
In this chapter we have provided an assessment of the required network density of sen-
sors for RSS-based localization utilizing past measurements in a log-normal environment
with spatial-correlation. Also presented are the results of another experimental assessment
using the OAI platform, focusing on the practical utilization of the spatial shadow-fading
correlation.

During this campaign we had very sparse conditioning measurements of a large area,
and therefore simple ad-hoc techniques were used to estimate the shadow-fading component
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of interest by using CM and thereafter applying the maximum likelihood estimator in order
to locate the unknown source. This increase in performance by the use of CM is noticeable
but not as much as in theory.
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Chapter 5

Conclusions & Future Work

In this work, we investigated the spatial-correlation of the shadow-fading. First, we derived
the new CRLB for the single-source problem, assuming correlated log-normal fading and
knowledge of past measurements. These theoretical results were very promising regarding
correlation gain. Next, we provided the CRLB for the multi-source problem in a correlated
log-normal environment, but this time without knowledge of past measurements. Our results
show that there is not a clear-cut answer to the question, if the correlation of the shadow-
fading by itself improves the localization performance. The performance is dropping when
the correlation increases, until a critical point where for highly correlated sources (large the
performance increases again, because the propagation model degenerates into a deterministic
one. The topology of sensors and sources defines the specific value of the critical point.

Additionally, in this master’s thesis we performed two experimental campaigns. In
the first, we verified the spatial-correlation of the shadow fading in an indoor environment
and obtained the expected localization accuracy of different ad-hoc techniques. In the
second we estimated the shadow-fading component with different types of ad-hoc techniques
and subsequently applied the ML estimator in order to capture the gain of the correlated
environment and the CM. In both campaigns, we achieved some gain from the spatial-
correlation of the environment but not as much as predicted by the theory.

Currently, we continue our work by investigating the theoretical bounds of the multi-
source problem with CM. In addition, methods of verifying the adoption of the approximate
sum-log model are under investigation. In terms of the algorithms, we should expand the
existing steepest-decent algorithms to use the CRLB in order to converge faster. Except
the convergence speed, we should also investigate if we can improve the performance of
minimization algorithms by using CRLB in order to get stuck less on local minima. One of
the most important issues of localization algorithms.

Indoor localization has got a lot of attention in the last five years. Big tech players such
as Google, Apple and Nokia, are in a race to acquire the right technology in order to provide
a seamless indoor localization experience just like GPS in outdoor environment. Hundreds
of SME’s providing different solutions exists.
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The technology used for ranging include:

• Various protocols like WiFi, BLE, 802.4.15 (via ToA, TDOA, RSS, AoA)

• Inertial Measurement Units (IMU),(like Accelerometer, Gyro, Compass)

• Ultrasound (via ToA, TDOA)

• Magnetic resonators

• Custom RF (via TOA with Ultra Wideband pulses, or via Phase offset measurements)

• Signals of opportunity (e.g. FM, DVB)

• LEDs (Visible Light Communication)

• Micro-Electro-Mechanical Systems (MEMS)

• Video Camera!

In our work, we focused only on RSS ranging. A future goal is to extend the theoretical
performance analysis on ranging techniques that incorporates other technologies too, like
the ones mentioned above.

The provided solutions so far uses different mixtures of those technologies. The need for
a good Performance Evaluation platform was identified in 2012 Evarilos (FP7, Evaluation
of RF-based Indoor Localization, http://www.evarilos.eu/ ). Microsoft continued this effort
(2014, 2015) by issuing an open competition of different solutions. In 2015 23 solutions were
evaluated (out of 48 abstract submissions). The outcome, as reported in [71] was:

The Indoor Location Problem is NOT Solved!

• There does not seem to exist a technology or a combination of technologies that can
recreate the experience that GPS offers outdoors in the indoor environment

• Applications require much higher granularity of location information for solutions
based on WiFi Aps

• There does not seem to be a technology that can consistently provide the same
localization error across all evaluation points

• All systems exhibited large accuracy variations across different evaluation points
which raises concerns about the stability/reliability of current indoor location tech-
nologies.

• Deployment Overhead Remains High

• Changes in the Environment Impact Accuracy

The performance characterization of localization techniques plays a significant role as we
continue not to have a clear technology winner. Research projects as Evarilos and private
sector initiatives as [71] are one way to go, but, an accompany effort on the theoretical
front is equally important. The main problem in such effort is the modeling aspect. In our
work a simplistic log-normal model is adopted. There exist various efforts in the literature
that tries to accurately model the RSS in indoor environments using some basic geometrical
characteristics of the rooms. The extension of our work using more elaborate modeling
options is also one of our future goals
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