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MEPIAHWH

‘Eva and ta emitedypara pe tn eyautepn emppor| otn Oewpia Npadnudtwv
urinpée xwpic apdiBolia n oelpd epyaciwv "EAAdaooova Mpagriuata" twv Neil
Robertson kai Paul D. Seymour, otnv ornoia, £€netta anod 23 epyacieg anod to
1983 €wg 10 2011, Katddepav va amodei€ouvv TNV elkacia tou Wagner. H
elkacia autr Agel OTL N KAAON TWV Un KAateuBuvopevwy ypadpnuaTwy, HEPIKWEG
dlatetaypevwyv Pe TN oxeon eAAacoovog ypadnuarog, anoteAei well-quasi-
olatagn n .wodivapua, yia Kabe kKAAon ypadpnudtwy 1o gival KAELOTH WG TTIPOG
eA\Adooova uTapxel €va oUVOAO arod anayopevpeva ypadnuata we eA\dooova.
Mropei va vrnootnpixBei oti, dev eival TO00 TO i6lI0 TO TEAIKO ATIOTEAEOUQ,
000 0AOKANPEN N Bewpia ov avamntuxbnke otnv TopEeia Tou €ixe, Kat cuveyiCel
va €xel, TEPACTIO AVTIKTUTIO TOGO OTn GUVOLACTIKI 000 Kal TNV AAYOPLOUIKA
Oewpia MNpadnudtwv. Mia amnod TIC KLPLOTEPEG GLVEICHOPES TOLG, N OToia
KATEXEL KAL KEVTPIKO pOAO atrn SOLAEIA TOUG, €ival N KATACKELI EVOG aAyopibuou
rou Auvel To ipoBAnua Twv AIAKEKPIMENQN MONOTTATIQN oe xpovo f(k) -
n3, 6rov k sival To MARBOG TWV SIAKEKPILEVWV HOVOTIATIWV TIOU pag {nTeitat
va Bpoupe. To Baciko cuotatiko TNG anodelfr|G TOUG ival N OVOUACTH TEXVIKT
NG AoXETNG KOPUPric (yia TNV ortoia ol TArpelG anodeifelc 660nkav oe emOuevo
MEPOG TNG OEIPAG) TIOL XPNOLUOTIONONKE ELPEWG TNV TToPEIq.

‘Oco omnoudaio Ki av arodeixbnke nwg eival To apandvw arnoTeAeouq, n
ouvaptnon f mou e€aptdrat and To k kal epdavifeTal otn XPOVIKN) TIOAUTIAOKO-
TNTAa TOL aAyopibuou, eival acGUAANTITA PEYAAN AKOUN KAl Yia TIOAD PIKPEG TIUEG
Tou k. lNa tov Adyo autdv, moANoi epeuvnTeG BEANCAV va BEATIWOOLY AQUTHY
TNV ApapeTpLKn €€ApTnon amnd To k, €iTe MPoonabwvTtag va armAoToI ooV TIG
TePIMAoKeC anodeielg Twv SoPIKWY BewpnUATWY yia TN YEVIKN TIEPITTTWON, €iTe
ETIKEVTPWVOVTAG TNV TIPOCOXN TOUG OE CUYKEKPIUEVEG KAACELG YPAPNHATWY
Twv OToiwv Ta douIKA XapaKTnploTika Ba odnyoloay, icwg, o anmAoVOTEPES
anodeielg Kat KAAUTEPN TTAPAPETPLKY £€ApTnon. 'Eva peydlo Briua 600\{) %cbopd
TNV nMPWTNn KarevBuvon (mapoAo mou to dpdypa yia 1o f(k) eival 92” . , TO
oroio eival, cadwg, akoun TepAcTio) £ylve anod Toug Ken-ichi Kawarabayashi
kat Paul Wollan oto [20]. ‘Eva amodactoTikd Bripa mpog tn devTtepn katevbuvan,
yla tTnv KAAon Twv erinedwv ypapnudtwy, €yive amo toug Isolde Adler, Stavros



G. Kolliopoulos, Philipp Klaus Krause, Daniel Lokshtanov, Saket Saurabh, kat
Dimitrios M. Thilikos oto [2], orou amnodeikvoouv eva ¢ppdyua yia 1o f(k) Tou
eival anAd ekBeTIkO w¢ TIPOG k.

Baoi{opevol oe autriv TNV TeAeuTtaia epyacia, JEAETAYE YIA ETIEKTACH TOU
npoPBAruatog Twv AIAKEKPIMENQN MONOIATIQN otnv KAGon Twv mowteloviwy-
SUIKWV ypapnudtwyv Kal XpnolUoTIoWVTAG TNV I6EA ACXETNG KOPUDNG, ATIOSEIK-
vOoupE €va GopIKO Bewpnua To oTtoio Aéel OTL av To SEVTPOTIAATOC TOL TIPWTEVOVTOG-
SuikoU ypadnpaTtog Pag ivat apkolVTwG PeYAAo, TOTE LTTAPXEL (KAl YTTopEi va
EVTOTIOTEI AAYOPIBUIKA) €va TPAKA TOL TO OTIOIO €ival ACXETO KAl TOU OTIOIOU N
adaipeon anod to ypadpnua odnyei oe €va anmAoLoTEPO Kal IoodUVAO OTIYHIOTUTIO
Tou mpoPAnuarog. Emiong, e€nyolpe we €vag aiyoplBuog yia to pdPAnua
Twv AIAKEKPIMENQN MONOITATIQN yia tnv KAAon Twv MpwTteLovTwv-Ouikwv
YPadpnUATWV PTIOPEL va XpnooTtonBei yia TNV KaTaokeur alyopibuwv yia mpo-
BAAuata oe evertineda ypadruata, Omou eival anapaitnto va Aaupdavetal uroynv
n TomoAoyia tng emninedng eppantiong nou divetal wg eicodog.






ABSTRACT

One of the most influential bodies of work in Graph Theory has, undoubtedly,
been the Graph Minor series of Neil Robertson and Paul D. Seymour, where,
after 23 papers during the years 1983-2011, they managed to prove Wagner's
conjecture. This conjecture states that undirected graphs, partially ordered by
the graph minor relationship, form a well-quasi-ordering, or, equivalently, every
family of graphs that is closed under minors can be defined by a finite set of
forbidden minors. One can argue that it is not just the final result itself, but
whole theory built during the procedure which had, and continues to have, a
huge impact in both combinatorial and algorithmic Graph Theory. One of their
main contributions, which also has a central role in their work, is constructing
an algorithm that solves the DisjoINT PaTHs problem in f(k) - n® steps, where
k is the number of disjoint paths that we are asked to find. The key ingredient
of their proof is the so called irrelevant-vertex technique (for which full proofs
only appeared in latter parts of the series), which has been used extensively
thereafter.

As great as this result was proved to be, the function f of k that appears in
the running time is immense even for very small values of k. Therefore, many
researchers tried to improve this parametric dependance on k, either by trying
to simplify the complicated proofs of the structural theorems for the general
case, or by restricting their attention to specific graph classes whose structural
characteristics would hopefully lead to simpler proofs and better parametric
dependance. A big step towards the first direction (although the bound of f (k)

522(F)

is 22 which is of course still huge) was made by Ken-ichi Kawarabayashi
and Paul Wollan in [20]. A decisive step to the second direction, for the class
of planar graphs, was made by Isolde Adler, Stavros G. Kolliopoulos, Philipp
Klaus Krause, Daniel Lokshtanov, Saket Saurabh, Dimitrios M. Thilikos in [2],
where their bound for f(k) is just single exponential on k.

Based on this latter work, we study an extension of the DisjoINT PATHS prob-
lem for the class of pd-graphs and, using on the idea of the irrelevant-vertex
technique, we prove a structural theorem which states that if the treewidth of
our pd-graph is sufficiently large, then there exists (and can be found algorith-



mically) a part of it which is irrelevant and whose removal leads to a simpler
and equivalent instance. We also illustrate how an algorithm for the DisjoiNT
PaTHs problem for the class of pd-graphs can be used to construct algorithms
for problems on plane graphs, where the it is essential to respect the topology
of the plane embedding given as an input.






MPOAOIOx

AuTr n SIMAWPATIKA €pyacia ekmovABnKe ata TAAiola TNG OAOKARPWONG Twv
ornoudwv pou oto Metartuxtako MNpdypappa Noyikri, AAyopiBuwv kat Oswpiag
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cHAPTER 1

INTRODUCTION

In this first section we describe the subject of this thesis, although some of
the notions used here are only defined later. The reader that is not familiar
with the basics of Computational Complexity and Graph Theory, is advised to
postpone the reading of this introduction until the end of Chapter 3. We first
present the DisjoINT PATHS problem, along with some important results, and
then we briefly discuss its connection with our subject.

1.1 The Disjoint Paths Problem

One of the most central problems in graph theory, from the algorithmic point
of view, is to efficiently decide whether two nodes v, u of a graph G belong to
the same connected component of G, i.e. if there exists some path of G with
endpoints v and u. To state it more formally:

REACHABILITY
Input: A graph G = (V, E), and two vertices v,u € V.
Question: Is there a path P with endpoints v and u in G?

It is widely known that the REACHABILITY problem admits polynomial time algo-
rithms (depth-first search, breadth first search). One can wonder though what
happens if we wish to determine whether there exist paths between multiple
pairs of vertices in a given graph G. Of course if we allow our paths to intersect
on edges, then an answer can be obtained in polynomial time using one of the
algorithms that we already now for solving REacHABILITY. But what happens
if we demand our paths to be edge-disjoint or even vertex-disjoint, meaning
that two or more paths cannot share an edge or vertex, respectively? In this
work we will focus on the vertex-disjoint version of the problem:



1.1. THE DISJOINT PATHS PROBLEM

DisJOINT PATHS (DP)

Input: An undirected graph G = (V, E), and aset P = {(s;,t;) | i =
1,...,k} of pairs of vertices of G.

Question: Do there exist paths Pi,..., P, of G which are mutually
vertex-disjoint and such that the endpoints of P; are s; and ¢;, for every
i€ [k]?

We will sometimes refer to the collection of pairs of vertices P, as the pat-
tern of the input and to the vertices of its pairs, as terminals.

DP was shown to be NP-complete by Karp in [16] and the same holds even
if the input graph is restricted to be planar as proven in [41]. NP-completeness
is also the case for the edge-disjoint and directed variants of DP, as indicated
by [25] and [22].

What happens if we are given a really large graph, i.e. n is very big, but
we are asked to find two disjoint paths connecting two given pairs of vertices?
The question translates to whether there exists some efficient (polynomial?)
algorithm for solving DP when % is fixed to be two and the answer was given in
1980 with the polynomial algorithms presented independently in [36], [37] and
[39].

But as almost always happens natural questions keep coming: What is
the best we can do if the number of pairs we want to join with a path is fixed,
meaning that it is not part of the input but is given as a parameter. Or, if we want
to express it in terms of Parameterized Complexity, what is the complexity of
the following parameterized problem?

p-DISJOINT PATHS (p-DP)
Input: An undirected graph G = (V, E).

Parameter: Positive integer k and aset P = {(s;,t;) | i =1,...,k} of
k pairs of vertices of G.
Question: Do there exist paths Pi,..., P, of G which are mutually

vertex-disjoint and such that the endpoints of P; are s; and ¢;, for every
i€ [k]?

The answer was given by Robertson and Seymour in the 13" part of their

Graph Minor series of papers, [31], as they presented an algorithm that solves
p-DP in f(k)-n? steps, where f is some computable function, thus classifying
p-DP in FPT (actually they considered the DP problem as the framework of
parameterized complexity was not explicit at that time). This algorithm has a
central role in their work, which ends up to proving the Wagner's conjecture
[82], which is considered to be one of the greatest and most influential achieve-
ments of graph theory in the last decades.
The algorithm in [31] is based on the irrelevant-vertex technique, which devel-
oped by Robertson and Seymour and used widely ever since in many combi-
natorial problems (see for example [7], [8], [13], [17], [18], [19] and, [14]) and is
based on the following idea when applied to a problem II on graphs:
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CHAPTER 1. INTRODUCTION

As long as the input graph G violates some specified structural conditions,
there exists (and can be found efficiently), a solution-irrelevant vertex, i.e. a ver-
tex of G whose deletion does not result to a different answer to the question
imposed in problem II. One then iteratively locates and removes such irrele-
vant vertices until the structural conditions are met, at which point the graph
has been simplified enough and the problem can be solved using known tools.

For the case of DP problem, an irrelevant vertex is a vertex of the input
graph G with the following property: Any collection of paths in G that certifies
a solution can be transformed into an equivalent one (meaning that it links the
same pairs of vertices) in G \ {v}, which roughly suggests that vertex v is not
necessary to link the given pairs of vertices and thus can be discarded. The
structural conditions used by the algorithm in [31] are the following two:

(i) G excludes a clique, of a certain size which depends on k, as a minor.

(i) The treewidth of G is bounded by a function, say g, of .

The most complicated part of their proof, on which the correction of their algo-
rithm heavily relies, and which was postponed until the later papers [33], [34],
was to show that when Condition (j) is met, i.e. graph G does not contain any
"big" clique-minors, if tw(G) > g(k), then there exists an irrelevant vertex. The
drawback of this algorithm is that the parametric dependance on k, expressed
by f(k), is huge due to the bounds that arise from the complicated proofs,
making it almost useless for practical purposes (and remember that one of the
main motivations of parameterized algorithms is to fight intractability through
fine-grained analysis and ultimately to be able to solve an NP-complete (or
harder) problem efficiently (in practical and terms) when some parameters are
bounded). Consequently, this need to greatly improve the parametric depen-
dance that emerges from the structural theorems in the Graph Minor series,
lead the researchers to either try to simplify parts of the proofs in the series (as

2(k)

in [20] where a 22° , still pretty huge, lower bound is achieved for f(k)) or
to restrict their attention to specific graph classes whose structural character-
istics will hopefully lead to simpler proofs and better parametric dependance.

1.2 About this thesis

In this thesis we study an extension of the DP problem in the class of pd-
graphs, which will be defined formally in the next section, thus working in the
context of the second direction as described previously.

We are based on the work of Adler et al. [2]. Actually some of our proofs
are similar to the ones given in [2], but we nevertheless present all proofs here
in order to provide a complete picture. The problem that they study is the
following:



1.2. ABOUT THIS THESIS

PLANAR DISJOINT PATHS (PDP)
Input: An undirected planar graph G = (V, E') and a set P={(s;,t;) | i =
1,...,k} of k pairs of vertices of G.

Question: Do there exist paths Pi,..., P, of G which are mutually
vertex-disjoint and such that the endpoints of P; are s; and ¢;, for every
i€ [k]?

The main results of their work are the followings:

Proposition 1.2.1. Every instance of PDP consisting of a planar graph G of
treewidth at least O(2*) and k pairs of terminals, contains a vertex v such that
every solution to PDP can be replaced by an equivalent one whose paths avoid
V.

This result has a structural essence and states that if a planar graph has
"big enough" treewidth then there certainly exists some vertex v of G that can
be avoided (actually they prove that not only there exists some solution that
avoids v, but any solution can be transformed into one that avoids v).

Proposition 1.2.2. There exists an algorithm that, given an instance (G, P) of
DP, where G is an n-vertex graph and |P| = k, either reports that (G,P) is a
NO-instance or outputs a solution of PDP for (G, P). This algorithm runs in
O(k) - n? steps.

Their second result is algorithmic and basically turns the irrelevant vertex
technique into an algorithm (as described briefly previously): If the treewidth of
the input graph is "big enough”, the algorithm finds an irrelevant vertex (which
is guaranteed to exist as the structural condition in this case is exactly the
treewidth being "big enough") and removes it. This is done iteratively until the
treewidth of the graph becomes sufficiently small and the problem is attacked
directly using already known algorithms.

Our problem. Before proceeding to the next chapter where we develop all
its needed in order to state our problem, we give a brief description. A pd-
graph can be though of as a plane graph and its dual graph considered as one
embedding where new vertices are introduced at each intersection of edges
of the initial graph and its dual (in order for our structure to be plane). Then,
the vertex set of our graph is naturally partitioned into three sets: the primal
vertices (which correspond to the vertices of the initial graph), the dual vertices
(which correspond to the vertices of the dual) and the crossing vertices (which
correspond to the vertices introduced at the intersections). See Figure 1.2 for
a simple example.

The reason why we are interested in this kind of embedded structures and
not just planar graphs as combinatorial structures (where an embedding is not
necessarily unique and therefore one cannot talk about the topology of a pla-
nar graph), is because we wish to study problems that are also related to the
topology of a plane graph. For example, someone could be interested in solv-
ing problems where the embedding I' of a planar graph, i.e. a planar graph, is

4



CHAPTER 1. INTRODUCTION

given and the task is to "find something inside (or outside) a face of I'". It is
clear that such kind of questions are not well defined in the context of planar
graphs. The notion of pd-graph is used to "translate" the topological proper-
ties of a plane graph into combinatorial ones in order to unlock the rich toolbox
of Combinatorial Graph Theory and address questions of topological nature.

Then, the variant of the DP problem that we study differs on the following
sense: Each pair of the collection P of the input is either a primal pair or a
dual pair and and if (s;,t;) € P is a primal (resp. dual) pair we demand that in
a solution the path with endpoints s; and ¢, does not contain any dual (resp.
primal) vertices. Having this problem in mind, we prove some structural results
leading to the existence of some irrelevant part of the input graph, given that
it satisfies some structural condition.

Figure 1.1: A plane graph at the left and a corresponding pd-graph at the right.
The black dots correspond to the primal vertices, the green squares to the dual
vertices, and the red squares to the crossing vertices.
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CHAPTER 2

BASIC NOTATION

This second chapter contains some basic notation used throughout this thesis
as well as some brief introduction to graphs (for a more detailed presentation
see [9]) and some width parameters on graphs.

2.1 Basics

N,Z,Q and R denote the sets of natural numbers, integer numbers, rational
numbers and real numbers, respectively. For every n € N, we define [n] to be
the set {1,2...,n}. Let S be a set, we denote by 2° the set of all subsets of
S and for every k € {0,1...,|S|} we denote by 2+ the set of all subsets of S
with exactly £ elements.

2.2 Graphs

Graphs. A (simple) graph G = (V, E) is a pair of sets, V and E, where E C
{{v,u} € 2V | u # v}. The elements of V and E are called the vertices and the
edges of the graph G, respectively. Given a graph G, we denote by V(G) and
E(G) the vertices and edges of G, respectively.

A structure G = (V, E) is called a multigraph if E is allowed to be a multiset
and can contain {v, v} for some v € V (such an element is called a loop).

A directed graph G = (V, A) is a pair of sets, V and A, where A =C {{v,u} €
V xV | u # v}. The elements of A are called arcs of G and given an arc
a = (u,v) € A, uwand v are called the head and the tail of a, respectively.

Operations on graphs. Let G = (V, E) be a graph and let v € V be a vertex
of G. We say that Ng(v) = {u € V : {v,u} € E} is the open neighborhood of
vin G and Ng(v) = {u € V : {v,u} € E} the closed neighborhood of v in G.
We define the graph obtained from G if we delete vertex v, as the graph whose
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vertex setis V' \ {v} and edge setis E'\ {{v,u} : u € Ng(v)} and denote this
graph by G \ {v} (or just G\ v). Let A C V, we denote by G \ A the graph
obtained by deleting all vertices in A from G.

We define the graph obtained from G if we delete edge e € FE, as the graph
whose vertex setis V' and edge set is E'\ {e¢} and denote this graph by G\ {e}
(orjust G\ ¢). Let F C E, we denote by G \ F the graph obtained by deleting
all edges in F' from G.

Subgraphs and induced subgraphs. Let G = (V, E) be a graph. We say
that a graph H is a subgraph of the graph G if H can be obtained from G after
a sequence of vertex and edge deletions (for an example see Figure [i.1).

Let A C V. We denote by G[A] the subgraph of G whose vertex set is A
and edge set is E(G[4]) = {e = {u,v} € E : {u,v} C A}. We call G[A] the
subgraph of G that is induced by the vertices in A C V' (for an example see

Figure P.9).

H

Figure 2.1: A graph G (at the left) and the subgraph H induced by the vertices
that are colored red in G (at the right).

Paths and cycles. Let G = (V, E) be agraph. Apath P in G is a subgraph of
G whose vertex set is some subset {vy,vs,...,v;} of V and whose edge set
is {{vi,vi41}:1<i<k—1}. If k=1 we say that P is a trivial path and when
k > 1 we define the length of P to be k — 1. The vertices v; and vy, are called
the endpoints of P.

Acycle C'in G is a subgraph of G whose vertex set is some subset {vy, va, ..., v}
of V and whose edge setis {{v;,v;41}: 1 <i <k —1}U{v,vp}. fFk=1we
say that C'is a trivial cycle and when k£ > 1 we define the length of C to be k.
We say that the graph G is connected if for every two vertices u,v € V, there
exists a path in G with endpoints v and u. Let k¥ € N, we say that the graph G

8
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is k-connected if for any A C V with |4| < k—1, the graph G\ A is connected.

G H

Figure 2.2: At the right: A path of length 3 in graph G (bold edges). A cycle of
length 3 (or a triangle) (dashed edges). At the left: The subgraph H that results
from G by deleting the vertices v; and vy and the edges e, e2 and es.

Minors. A graph H is a minor of a graph G, if there exists a function ¢ :
V(H) — 2V(¢) such that

1. For every u,v € V(H) with v # v, G[¢(u)] and G[é(v)] are two vertex-
disjoint connected subgraphs of G.

2. For every edge e = {u,v} € E(H), Gl¢(u) U ¢(v)] is a connected sub-
graph of G.

Topological minors. We say that a graph H is a topological minor of a graph
G if there exists an injective function ¢y : V(H) — V(G) and a function ¢; :
E(H) — P(G) such that

- for every edge {z,y} € E(H), ¢1({z,y}) is a path between ¢y(x) and
bo(y)-

« if two paths in ¢ (F(H)) have a common vertex, then this vertex should
be an endpoint of both paths.

Given the pair (¢9, ¢1), we say that H is a topological minor of G via (¢o, ¢1)-

Planar, plane, and outerplanar graphs. A graph G is called planar if it can
be embedded in the plane R? (or equivalently in the sphere S? = {(z,y,2) €
R® : z +y + 2z = 1}) in such a way that there are no two edges of it whose
embeddings intersect (they can meet only at their endpoints). Such an em-
bedding is called a planar embedding of G and we say that such it is a plane

9
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/

oy

H,

Figure 2.3: The graph H, is a topological minor of the graph G (certified by the
circled vertices of GG and the dashed edges of G) and the graph H, is a minor
of G (consider the function ¢ : V(H) — 2V(%) that sends a vertex of H, to the
subset of vertices of G of the same color and observe that each "color class"
in G induces a connected subgraph.

graph (observe that a planar graph can have more than one planar embeddings
that can also be different from a topological point of view). Given a plane graph
G we denote its faces by F'(G), i.e. F(G) is the set of the connected compo-
nents of R? \ G (in the operation R? \ G we treat G as the set of points of R?
corresponding to its vertices and its edges).

The dual, G*, of a plane (planar) graph G is also a plane (planar) graph and has
one vertex for each face of G. There is an edge between two vertices of G* if
and only if the boundaries of their corresponding faces share an edge (observe
that if a plane graph is not connected it can have, two or more, different (from
a topological point of view) dual graphs). For an example of a plane graph and
its corresponding dual graph see Figure p.2.

An outerplanar graph is a plane graph whose vertices are all incident to the
infinite face. If an edge of an outerplanar graph is incident to its infinite face
then we call it external, otherwise we call it internal. The weak dual of an out-
erplanar graph G is the graph obtained from the dual of G after removing the
vertex corresponding to the infinite face of the embedding. We call a face of
an outerplanar graph simplicial if it corresponds to a leaf of the graph's weak
dual. For an example see Figure p.a.

2.3 Width parameters

Treewidth. A tree decomposition of a graph G is a pair (T, x), consisting of
tree T and a mapping x: V(T) — 2V(%), such that for each v € V(G) there

10
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Figure 2.4: A plane graph (black) embedded in the plane along with its dual
graph (red). There is one dual vertex (red square) for every face of the plane
graph. Any edge of the black graph is on the boundary of exactly two of its
faces which are connected by an edge in the dual (red) graph.

exists t € V(T) with v € x(t), for each edge e € E(G) there exists a node
t € V(T) with e C x(t), and for each v € V(G) the set {t € V(T) | v € x(t)} is
connected in 7. (for an example see Figure P.3). The width of (T, x) is defined
as width(T',x) := max {|x(t)| =1 | ¢ € V(T)}. and the tree-width of G is
defined as

tw(G) := min {width(T x) | (T, ) is a tree decomposition of G}.

Grids. Let m,n > 1. The (m x n)-grid is the Cartesian product of a path of
length m — 1 and a path of length n — 1. In the case of a square grid where
m = n, we say that n is the size of the grid. Given that n,m > 2, the corners
of an (m x n)-grid are its vertices of degree 2. When we refer to a (m x n)-grid
we will always assume an orthogonal orientation of it that classifies its corners
to the upper left, upper right, down right, and down left corner of it.

Given that I" is an (m x n)-grid, we say that a vertex of G is one of its centers
if its distance from the set of its corners is the maximum possible. Observe that
a square grid of even size has exactly 4 centers. We also consider an (m x n)-
grid embedded in the plane so that, if it has more than 2 faces then the infinite
one is not a square. The outer cycle of an embedding of a (m xn)-grid is the one
that is the boundary of its infinite face. We also refer to the horizontal and the
vertical lines of a (m x n)-grid as its paths between vertices of degree smaller
than 4 that are traversing it either "horizontally'' or "vertically'' respectively.
We make the convention that an (m x n)-grid contains m vertical lines and n
horizontal lines. The lower horizontal line and the higher horizontal line of I are

11
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Figure 2.5: An outerplanar graph at the left and its weak dual at the right. Its
simplicial faces are f1, f> and f3, e; is an internal edge, and e, is an external
edge.

defined in the obvious way (for an example see Figure P.3).

Branchwidth. A branch decomposition of a graph G is a pair (T, 1), where
T is a tree with vertices of degree one or three and 7 is a bijection from E(G)
to the set of leaves of T. The order function w : E(T) — 2"(%) of a branch
decomposition maps every edge e of T' to a subset of vertices w(e) C V(G)
as follows. The set w(e) consists of all vertices v € V(G) such that there exist
edges f1, f» € E(G) withv € f1Nfs, and such that the leaves 7(f1), 7(f2) arein
different components of T'—{e}. The width of (T, 7) is equal to max.c g (r) |w(e)|
and the branchwidth of G is the minimum width over all branch decompositions
of G.

We will now state a proposition that follows directly by combining the next
two results:

Result 1.([15]) If G is a planar graph and bw(G) > 3k + 1, then G contains a
(k x k)-grid as a minor.

Result 2.([30)) If G is a graph, then bw(G) < tw(G) +1 < 2 - bw(G).

Proposition 2.3.1. If G is a planar graph and tw(G) > 4.5-k+1, then G contains
a (k x k)-grid as a minor.

12
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10

Figure 2.6: At the top there is a graph on 10 vertices and at the bottom a tree
decomposition of it with width 3. It is easy to confirm that any tree decomposi-
tion of this graph has width at least 3, thus the treewidth of the depicted graph
is 2.
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Figure 2.7: A (13 x 6)-grid is depicted. Its corners are the red vertices and its
centers are the two blue vertices. The outer cycle is the bold rectangle that
contains the corners of the grid.
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CHAPTER 3

FUNDAMENTALS OF ALGORITHMS AND
COMPLEXITY

3.1 Brief history of Theoretical Computer Science

In this section we attempt to present a brief overview of the history of Compu-
tational Complexity in order to define some complexity classes related to the
topic of this thesis.

An important question in Mathematics, that appeared throughout their his-

tory, is whether for a given problem there exists a way for solving it that can
be clearly formulated and consists of "simple" steps or computations. This
is what we think of a problem that can be solved "algorithmically". Some-
one could wonder whether there provably exist problems that do not have the
aforementioned property. Mathematicians studied these notions and devel-
oped a branch of Mathematics that is called Computability Theory and which
gave birth to Theoretical Computer Science as we know it today.
But what does "algorithmically" mean? In order to properly define this notion,
one needs to fix a model of computation which, intuitively, specifies the capa-
bilities of the "machine" that executes our algorithms. The most widely used
model, especially for theoretical purposes, is the Turing machine. As the topic
of computational models is out of the scope of this thesis, the reader is reffered
to [23] for an extensive introduction.

The birth of computers and the idea of "machines" being able to execute
long and complicated computations for us, introduced a new parameter in the
Theory of Computation:

Efficiency!
The notion of efficiency was central in the analysis of computational prob-
lems and initiated the research for algorithms that achieve better performance

than the existing ones. The two main measures of efficiency are space and
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time, and in this thesis we will focus on the latter. Given these new param-
eters, computational problems can be classified further in complexity classes
based on the efficiency of algorithms that solve them. Undoubtedly, the most
well known complexity classes are P and NP, where P contains the problems
that can be solved efficiently (there exist deterministic algorithms that solve
them in time that is bounded by a fixed polynomial on the size of the input) and
NP contains the problems which require nondeterminism in order to be solved
in polynomial time. It is widely believed that P # NP, which can be roughly
translated to the fact that there exist computational problems for which any al-
gorithm solving them needs exponential time. Consequently, most computer
scientists face at some point the following question when studying a compu-
tational problem:

Is there an efficient algorithm solving the problem of interest? If not, is it pos-
sible to provide some evidence that it cannot be solved efficiently?

The natural approach to address these questions is either trying to come up

with a polynomial time algorithm that solves the problem (which places it in P)
or proving that, assuming P # NP, it is in NP but not in P. This can be done by
reducing an NP-complete problem to the problem of interest. Roughly speak-
ing, NP-complete problems are the hardest in the class NP and the reduction
of such a problem to another problem suggests that the latter is at least as
hard, thus characterized as intractable. For more information about the theory
of NP-completeness we refer the reader to [12].
The construction of a polynomial time algorithm is usually the best outcome
one can hope for (recently this becomes more and more inaccurate as we need
to solve problems where the input is huge; the running time of a polynomial n*
algorithm when the input is the web network does not seem appealing at all! In
many cases even a linear algorithm can be practically useless and this means
that the desired algorithm does cannot access or store all of its input. For more
information on the subject we refer the reader to [35]. But what happens if we
prove that our problem is NP-complete? Is this the end of the story? Fortu-
nately, the answer is no and we briefly present the main side roads one can
choose from:

« Approximation: A very important class of problems is the one of opti-
mization problems where the task is to find the best solution from all feasi-
ble solutions. Unfortunately, many optimization problems have proved to
be NP-complete. When the need for an exact solution is not imperative, a
way to overcome this difficulty is trying to design efficient algorithms that
find a solution which is guaranteed to be"close" to the optimal. Of course
an analogue of intractability arises in this setting too and much work has
been done in the direction of proving innaproximability and lower bounds
results. Approximation algorithms have been developed rapidly in the
last decades and proved to be a very fruitful area. For an extensive in-
troduction we refer the reader to [42] and [40Q].

+ Use of randomness: Another tool that can be used to cope with an
NP-complete problem is randomness and the study of randomized al-
gorithms was spurred by the discovery of a randomized primality test
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[38]. The main idea of this approach is roughly the following: In order
to "prune" some of the branches of computation, which seem to be un-
avoidably exponential (under worst-case analysis) when trying to solve an
NP-complete problem, the randomized algorithm makes some random
choices and based on them, and probably other deterministic compu-
tation, produces an answer. One has to distinguish between algorithms
that use randomness in order to reduce the expected running time and
always terminate in bounded time producing the right answer (called Las
Vegas algorithms) and algorithms that terminate in polynomial time but
there is a chance that they produce a wrong answer or no answer at all
(called Monte Carlo algorithms). Having designed a randomized algo-
rithm for a problem, it is sometimes possible to produce a deterministic
algorithm solving the same problem. This procedure is known as deran-
domization and has attracted much attention recently. More information
about randomized algorithms can be found in [27] and [26] and for some
information about the complexity classes that arise from randomized al-
gorithms see [24] and [3].

Parameterization: When a problem is NP-complete, any exact deter-
ministic algorithm that solves it takes (in the worst case) exponential (or
at least superpolynomial) to n time, where n is the length of the input.
The parameterized complexity point of view examines whether this ex-
ponential explosion on the running time unavoidably "spreads" to a large
part of the input (meaning a part whose length depends on n) or there
are some particular parameters of the problem which cause the increase
on the running time. For some NP-complete problems that are of great
in importance in other areas, such as biology, there were algorithms that,
although being exponential in the worst case, worked efficiently in prac-
tice. Then a natural question arose:

Are there some parameters in these particular problems which happen to
be bounded and this way "soften" the intractability? Can theory formalize
this phenomenon and study it methodically?

Research has shown that such parameters exist for many, previously
classified as intractable, problems and when restricted to the case where
they are bounded, there exist algorithms that justify their placement into
the sphere of tractability. The related area, which has gained much at-
tention recently, is called Parameterized Complexity and the algorithms
designed in this setting are called parameterized (or multivariate) algo-
rithms.

As Parameterized Complexity is closely related to the topic discussed in
this thesis, we will give some formal definitions and references in follow-
ing subsection.

All the previously mentioned methods have been studied extensively in the

last decades and each one of them constitutes a wide research area in the
frame of Theoretical Computer Science. Of course ideas and techniques from
any of these areas "flow" between them and researches are always interested
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in combining notions from some of or all the fields, as, for example, indicated
(already in the title) by [28].

3.2 Parameterized Complexity and Algorithms

Let X be an alphabet (for example X can be the set {0, 1}) and let ©* (the Kleene
star of ) be the set of all finite sequences with elements from X.

Parameterized languages and problems. We will call every subset L of
¥* x N a parameterized language and for every element (z,k) € L C ¥* x N
we will say that & is the parameter and = the main input. For every k € N, we
call Ly = {(z,k) : (z,k) € L} the kth slice of L.

A decision problem 11 is called a parameterized problem if any instance of it is
encoded as a pair (z, k) C X* x k. We will say that (z, k) is a YES-instance for
ITif (z, k) encodes an instance for which the question imposed in problem Il is
answered positively, and will write (x, k) € II. Otherwise we will say that (z, k)
is a NO-instance for IT if (x, k) and will write (x, k) ¢ II. If Il is a parameterized
problem then it naturally defines the parameterized language

L= {(x,k) € * x k| (z,k) € 11}

Fixed-parameter tractability. We say that a parameterized problem II is
fixed parameter tractable if and only if there exists an algorithm A (or more
formally a deterministic Turing Machine), a constant ¢, and a computable func-
tion f such that, for all (z,k) € ¥ x k, A((z,k)) runs in time at most f(k)|z|®
(where |z| is the length of z) and

(z,k) € Ln <= A((z,k)) =1

The class of all fixed-parameter tractable problems is called class FPT and is
considered as the class of efficiently solvable problems in the world of Param-
eterized Complexity (can be thought of as the analog of P in terms of classical
complexity).

There are also complexity classes that represent the intractable parame-
terized problems (such as the W-hierarchy, the A-hierarchy and XP) but their
study is out of the scope of this thesis. For a nice introduction see [29] and for
more advanced topics see [[11], [10], and [B].
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CHAPTER 4

DEFINITIONS

4.1 Plane graphs and pd-graphs

All graphs we consider are loop-less and may have multiple edges. We say that
a graph is plane when it is embedded, without crossings between its edges,
in the sphere 5% = {(z,y,2) € R® | 2% + y* + 22 = 1}, and we treat it as its
embedding in S? or as the union of points that correspond to its vertices and
edges. We will use the term general graph to stress that a graph is treated
as a combinatorial structure and not as a topological (embedded) one. Let A
be a subset of R? (when we write R we refer to the plane with the standard
euclidean metric). We define int(A) to be the interior of A, cl(A) its closure
and bnd(4) = cl(A4) \ int(A4) its boundary.

We define a closed arc (resp. open arc) o to be a subset of R? that is
homeomorphic to [0, 1] (resp. (0, 1)), meaning that there exists a bicontinuous
function f : [0,1] — «(resp. f: (0,1) — a). We call £(0) and (1) the endpoints
of arc a. For a closed arc « (that corresponds to function f : [0,1] — o) we
define trim(«) as the corresponding open arc o/ = o\ {f(0), f(1)}. Observe
that the faces of a plane graph are open sets and its edges are (open) arcs.

We say that two paths, P; and P,, of a graph G are disjoint if none of the
internal vertices of the one is a vertex of the other. A path is non-trivial if it
contains at least two vertices. Given a graph G we denote by P(G) the set of
all the paths in G.

Topological isomorphism of plane graphs. Let G be a graph and T" be a
plane graph. We denote by C(G) the set of the connected components of G.
For every f € F(I') we denote by Br(f) the graph induced by the vertices and
edges of I' whose embeddings are subsets of bd( f).

We define a closed walk of a graph G to be a cyclic ordering w = (vy,...,v;,v1)
of vertices of V(G) such that for any two consecutive vertices, say v;, v;+1,
there is an edge between them in G, i.e., {v;,viy1} € E(G). Note here that
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there may exist two distinct indices ¢, j such that v;,v; € w and v; = v; (the
walk can revisit a vertex). We say that a walk w of a plane graph T is facial if
there exists f; € F/(I') and ©; € C(Br(f;)) such that the vertices of w are the
vertices of V(0;) and the cyclic ordering of w indicates the way these vertices
are met when making a closed walk along ©; while always keeping f; on the
same side of the walk.

Given that I is a plane graph and w = {w, ..., w,} is a non-empty set of
closed walks of I', we say that w is a facial mapping if there exists some face
f of I' such that C(Br(f)) = {©1,02,...,0,} and w; is a facial walk of ©;,
j € [p]. Given a plane graph I" and f € F(T'), we define w(f) as the facial
mapping of I" corresponding to f. Observe that for every face f € T'(F), its
facial mapping w( f) is unique (up to permutations).

LetI" and A be two plane graphs. We say that I" and A are topologically iso-
morphic if they are isomorphic via a bijection g : V(') — V(A) and there exists
a function h : F(T') — F(A), such that for every f € F(T"), g(w(f)) = w(h(f))
(where g(w(f)) is the result of applying g to every vertex of every closed walk
in w). We call the function o : V(I UF (") — V(A)UF(A) such that a = gUh,
a topological isomorphism between I' and A. Given two plane graphs G; and
G, we say that they are the same graph if they are topologically isomorphic
(and not just isomorphic).

Vertex dissolution. Let G be a graph and let v € V(G) such that deg(v) =
2 and Ng(v) = {z,y}. We say that G’ is the graph obtained from G after
dissolving vertex v, if V(G') = V(G) \ {v} and E(G') = (E(G) U {z,y}) \
({v, 2} U{v,y}). If G is plane and we dissolve a vertex v € V(G), we can just
remove the point that represents v in the embedding of G and join the two arcs
that correspond to the edges adjacent to v.

Primal-dual graphs. Let G be a plane graph. Observe that G does not nec-
essarily have a unique embedding. We denote by duals(G) the set of all differ-
ent duals of G (by "different' we mean mutually not topologically isomorphic).
Given a plane graph J € duals(G), we define pd(G, J) as the plane graph
obtained if we consider both embeddings of G and J such that in the result-
ing embedding, every edge e of E(G) intersects its dual edge e* in E(J) at
only one point. For each such intersection we introduce a new vertex, v, and
we embed it on the intersection point. We call pd(G, J) a primal-dual graph
or of G. The vertex set of pd(G, J) is naturally partitioned to the primal ver-
tices, i.e., the vertices of G, the dual vertices, i.e., the vertices of J, and the
crossing vertices in the set {v. | e € E(G)}. We denote these three sets by
Vo (Pd(G, J)), Va(pd(G, J)), and V.(pd(G, J)) respectively and we say that two
vertices of GG are of the same type if they belong to the same set of the partition
{V,(pd(G, J)), Va(pd(G, J)), Ve(pd(G, J))}. For an example see Figure [4.1.
Given a path P of pd(G, J), we call it a primal path (resp. dual path) if
V(P) C Vp(pd(G, J))UVe(pd(G, J)) (resp. V(P) € Va(pd(G, J))UV.(pd(G, J)))
and not both its endpoints are in V,(pd(G, J)). Notice that a primal path in
pd(G, J) may intersect with a dual path only in vertices in V.(pd(G, J)) and
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that the vertices of a primal (resp. dual) path alternate between primal (resp.
dual) type and crossing type. Given a cycle C in pd(G, J) we say that C is of
primal type or is a primal cycle (resp. dual type or is a dual cycle) if C is the
union of two primal (resp. dual) paths of G.

We also define the primal edges (resp. dual edges) of pd(G, J) to be the
set E,(pd(G, J)) = {{u,v} € E(pd(G, J)) | {u,v} N Va(pd(G, J)) = 0} (resp.
Eqy(pd(G,J)) = {{u,v} € B(pd(G, J)) | {u,v} N V,(pd(G,J)) = 0}). Clearly,
this is a partition of E(pd(G, J)), as any edge has exactly one endpoint in
V.(pd(G, J)). Given a two vertices s,t € V(pd(G, J)), we say that (s,t) is a
primal (resp. dual) pair of pd(G, J) if |{s,t} N V.(pd(G, J))| < 1 and {s,t} N
Va(pd(G, J)) = 0 (resp. {s,t} N V,(pd(G,.J)) = 0).

A plane graph is called pd-graph if it is the primal-dual graph pd(G, J) for
some plane graph G and some J € duals(G). Notice that if G is a connected
plane graph then duals(G) contains only one graph which we denote by G*
and therefore its pd-graph is also unique, the primal-dual graph pd(G, G*), and
we denote it by pd(G).

When we are given a pd-graph we will assume that the partition of its ver-
tices to primal, dual, and crossing is also given and we will denote by GP? (resp.
G the graph obtained if we dissolve all crossing vertices in G[V,(G)] (resp.
G[V4(@))). The plane graph G? (resp. G%) is the primal part (resp. dual part) of
G.

Figure 4.1: A plane (connected) graph on the left and the corresponding
(unique) pd-graph on the right. The black dots (resp. lines) represent the pri-
mal vertices (resp. edges), the red squares the crossing vertices and the green
squares (resp. lines) the dual vertices (resp. edges).

We are now in the position to formally define the problem of interest:
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PD-DISJOINT PATHS (PD-DP)

Input: A pd-graph G = (V, E), a collection P = {(s;,t;) € 2"2,i € {1,...,k}}
of k disjoint pairs of terminals of G and a mapping 7 : P — {p, d}.

Question: Are there k pairwise vertex-disjoint paths P, ..., P, in G such that
fori € {1,...,k}, P, has endpoints s; and ¢; and additionaly P; is a primal
path iff T((Si,ti)) =p?

Primal-dual contraction. Let G be a pd-graph. We call two vertices z; and
xo adjoined if they have as a common neighbor a vertex y € V.(G) and they
either are both in V,,(G) or are both in V,4(G). We then say that vertices x; and
2o are adjoined through vertex y. The operation of primal-dual contraction of
two adjoined vertices z; and x5 is defined as follows:

1. Delete vertices y, x1, z2 from G.

2. Add a new vertex z; 2 and the edges {{x12,v} | v € (Ng(z1) UNg(z2))\

{y}}-

The operation of the primal-dual removal of z; and z, is the operation of the
primal-dual contraction of the vertices in Ng(y) \ {z1, z2}.

Observe that the operation of the primal-dual contraction of the adjoined ver-
tices x1, x5 in G, results to a new pd-graph, which we denote by G(*1.72) | For
an example see Figure }4.1.

w w

Figure 4.2: An illustration of the primal-dual contraction of two adjoined ver-
tices x1 and x5. The pd-graph on the left is the one before the contraction and
the one on the right depicts the pd-graph obtained after the contraction.

Alternating cycles in pd-graphs. Let G be apd-graph andletC = {Cy,...,C,}
be a sequence of cycles in G. We say that the sequence of cycles C is alter-
nating, if the cycles in C have alternating types, e.g. C; is a primal cycle iff
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i = 0 (mod 2). If C; is primal (resp. dual) we also refer to it as C? (resp.
C?) to stress its type. We call {C € C | C = C? forsomei € {0,...k}} and
{CecC|C=Cfforsomeic{0,...k}} the primal subsequence and the dual
subsequence of C, respectively.

Tight concentric cycles. Let G be a plane graph and let D be a disk that is
the closed interior of some cycle C of G. We say that D is internally chordless
if there is no path in G whose endpoints are vertices of C' and all the others
belong in int(D).

Let C = {Cy,...,C.}, be a sequence of cycles in G. We denote by D, the
closed interior of C;,i € {0,...,r}, and we say that D = {D,,...,D,} is the
disc sequence of C. We call C concentric, if for all i € {0,...,r—1}, the cycle C;
is contained in the open interior of D, ;. We also define A(C) as the intersection
of the closed interior of C; and the closed exterior of .. The sequence C of
concentric cycles is tight in G, if, in addition,

* Dy is internally chordless,

« for every i € {0,...,r — 1}, there is no cycle of G that is contained in
D; ;1\ D; and whose closed interior D has the property D; C D C D;4;.

Let H be a pd-graph. We say that a sequence A of concentric cycles of the
same type in H is primal-tight (resp. dual-tight) if A is tight in H \ V;(H) (resp.
in H\ V,(H)).

Let C = {Cy,...,C.} be a sequence of primal-tight concentric cycles in H
and for every i € {0,...r — 1} there exists a dual cycle C} in H such that C C
D;+1\ D;. We say that the sequence C* = {C§, ..., C}_, } is tight with respect
to C, if for every i € {0,...r—1} there does not exist a cycle C of dual type in H
such that D} ¢ D C D,. We define the tightness of a sequence of primal cycles
with respect to a sequence of dual-tight concentric cycles in a symmetric way.
We say that an alternating sequence 2 = {ZV,74,..., 27 | 73} (if Z starts
with a cycle of dual type we again have a symmetric definition) of concentric
cycles in H is tight in H, if ZP = {ZV,ZY ..., ZF_,} is primal-tight in H and
zd={z4 7{... 7%} is tight with respect to ZP.

It is not hard to verify that, if C = {C},CY,...,C?_,,C%} is an alternating se-
quence of concentric cycles in H and C? = {C?,C%,...C?_,} is a primal-tight
sequence of concentric cycles in H, then there exist dual cycles €5, C'$,...C"¢
in H such that C; = {C’"%,C'%,...C""} is tight with respect to CP. We call
¢’ = {CP,C'3,...,C"_,,C'""} an alternating tight sequence of concentric cy-
cles that corresponds to C.

4.2 Linkages in pd-graphs
Linkages and pd-linkages. A linkage in a graph G is a subgraph L of G
whose connected components are all paths. The terminals of a linkage L are

the endpoints of the paths in P(L), and the pattern of L is the set of all tuples
(s,t), where s and t are distinct terminals such that there exists a path with
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endpoints s and ¢ in G (resp. in H). We say that two linkages are equivalent if
they have the same pattern.

Let H be a pd-graph. A primal-dual linkage or pd-linkage L of H is a collec-
tion of pairwise vertex disjoint, non-trivial paths of H, each of which is either
primal or dual. The definition of the paths and the terminals of L are the same
as in the case of a L being a linkage. The pattern of L is the set of all triples
(s,t,7st), Where s and t are distinct terminals such that there exists a path
with endpoints s and ¢ in L and 7, is the type of this path. We say that two
pd-linkages are equivalent if they have the same pattern. For a visualization of
these notions see Figure §.2.

Figure 4.3: A pd-linkage L of a pd-graph G, with pattern {(s;,¢;) : i € [4]} and
order 4. The terminals of L are sq,t1, s, t9, s3,t3, 54 and t4. The dashed and
dotted paths indicate the paths of the pd-linkage. Different lining corresponds
to different path, while the color black corresponds to primal paths and the
color green to dual paths of L.

Segments. Let G be a pd-graph and let C' be a cycle in G whose closed
interior is D. Given a path P in G we say that a subpath P, of P is a D-segment
of P, if Py is a non-empty (possibly edgeless) path obtained by intersecting P
with D. For a pd-linkage L of G we say that a path P, is a D-segment of L, if
Py is a D-segment of some path P in P(L).

CL-configurations. Given a pd-graph G, we say that a pair @ = (C,L) is a
CL-configuration of G of depth r if C = {Cy, ..., C..} is an alternating sequence
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of concentric cycles in G, L is a pd-linkage of G, and the intersection of the set
of terminals of L with D,. is empty. A segment of Q is any D,-segment of L.
The eccentricity of a segment P of Q is the minimum ¢ such that V' (C; N P) # 0.
A segment of Q is extremal if it is has eccentricity r, i.e., it is a subgraph of C,..
Given a cycle C; € C and a segment P of Q we define the i-chords of P as the
connected components of PNint(D;) (notice that i-chords are open sets). For
every i-chord X of P, we define the i-semichords of P as the connected com-
ponents of the set X \ D;_; (notice that i-semichords are open sets). Given
a segment P that does not have any 0-chord, we define its zone as the con-
nected component of D, \ P that does not contain the open interior of Dy (a
zone is an open set). A CL-configuration Q = (C, L) is called reduced if the
graph L NUC is edgeless.

Observe that if a primal path P € P(L) (the argument is the same for a dual
path) has common edges with some cycle, say C; € C, then C; is a primal cycle
(as P cannot contain any vertices in V;(G)) and every connected component
R = C; N P contains an even number of edges. That is because R is a path
with both endpoints, u, v, in V,,(G), as the neighbors of v and v in V(P) \ V(R)
are in V,(G) (because they are both vertices in the intersection of the primal
path P and some dual cycle).

Let © = (C,L) be a CL-configuration of G and let E* be the set of all
edges of the graph L NUC (remember that each edge in the pd-graph G has
exactly one endpoint in V.(G)). We then define G* as the graph obtained if we
apply primal-dual contractions (or removals) to all vertices in V(UC) that are
adjoined through a vertex ¢ € V, that is an endpoint of some edge in E°. The
previous observation explains why this can be done The sequence of cycles C
is modified into a sequence of cycles in G*, say C* and L is modified into a pd-
linkage in G*, say L*. Notice that 9* = (C*, L*) is a reduced CL-configuration
of G*. We call (Q*, G*) the reduced pair of G and Q.

Cheap pd-linkages. Let G be apd-graph and Q = (C, L) be a CL-configuration
of G of depth r. We define the function ¢ : {L | L is alinkage of G} — N so
that

oL)=E(W)\ |J E@)

1€{0,...,r}

A pd-linkage L of G is C-cheap, if there is no other CL-configuration Q' =
(C, L") such that ¢(L) > ¢(L'). Intuitively, the function ¢ penalizes every edge
of the linkage that does not lie on some cycle C;.

Observation 4.2.1. Let Q = (C, L) be a CL-configuration of some pd-graph G
and let (G*Q* = (C*, L*)) be the reduced pair of G and Q. Then

* |f L is C-cheap, then L* is C*-cheap.
e [fCis tight in G, then if C* is tight in G*.
Convex CL-configurations. Let G be a pd-graphandlet Q = (C, L) be a CL-

configuration of G. A segment P of Q is convex if the following three conditions
are satisfied:
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(i) it has no 0-chords and
(ii) foreveryi e {1,...,r}, the followings hold:

a. P has at most one i-chord
b. if P has an i-chord, then PN C;_y # 0.

c. Each i-chord of P has exactly two i-semichords.

(i) If P has eccentricity i« < r — 1, there is some other segment of @ with
eccentricity i + 2 inside the zone of P.

We say Q is convex if all its segments are convex.

Observation 4.2.2. Let Q = (C, L) be a CL-configuration and let (G*, Q* =
(C*, L*)) be the reduced pair of G and Q. Then Q is convex if and only Q* is
convex.

We will need the following topological lemma.

Lemma 4.2.1 (Lemma 2 of [2]). Let A1, A, be closed disks of R? where int(A;)N
int(A,) = () and such that A, U A, is also a closed disk. Let Az = R?\ int(A; U
As) andlet Y = bnd(A3) N Ay and @ = trim(A; N A,). P be a closed arc of
R? whose endpoints are not in Ay U A, and such that Y NP = and QN P # .
Then int(A;) N P has at least two connected components.

Proof. Let ¢ be some point in Q N P. Let Q' be an open arc that is a subset
of int(A;) and has the same endpoints as Y. Notice that ¢ and « belong to
different open disks defined by the cycle Q' UY. Therefore P should intersect
Q orY. AsY NP =40, Pintersects Q'. As Q' C int(A,), int(A;) N P has at
least one connected component.

Assume now thatint(A;)NP has exactly one connected component. Clearly,
this connected component will be an open arc I such that at least one of the
endpoints of I, say q, belongs to Q. Moreover, there is a subset P’ of P that
is a closed arc where P’ N I = () and whose endpoints are ¢ and one of x and
y, say y. As int(A;) N P has exactly one connected component, it holds that
P Nnint(A;) = (0. Let @’ be an open arc that is a subset of int(A;) and has
the same endpoints as Y. Notice that ¢ and y belong to different open disks
defined by the cycle Q' UY. Therefore P’ should intersect int(A;) or Y, a
contradictionas P C Pand Y N P = 0. O

Lemma 4.2.2. Let G be a pd-graph and let Q = (C, L) be a CL-configuration
of G where C is tight in G and L is C-cheap. Then Q is convex.

Proof. Let C = {C1,...,C,}. It suffices to prove that any primal segment is
convex, as the argument is identical for the dual case. Moreover, by and
we may assume that Q is reduced.

Condition (i) follows from the tightness of C (a 0-chord implies the existence of a
path in Dy with endpoints in Cp). Similarly for condition (ii).b, as the existence of
an i-chord that does not intersect C;_» contradicts the tightness of C (actually
contradicts the primal-tightness of the primal subsequence of C). Moreover,

26



CHAPTER 4. DEFINITIONS

condition (iii) follows from the hypothesis that L is C-cheap: Let P be a primal
segment with eccentricity . If there does not any segment with eccentricity i+2
then we contradict the cheapness of L by using C; 5 to reroute P, obtaining
an equivalent linkage.

Leti € {0,...,r} be the least index such that one of conditions (ii).a and (ji).c.
is violated and let W be a primal segment of Q containing an i-chord X that
violates one of the conditions. We distinguish two cases:

Case 1: Condition (ji).c is violated. From condition (ii).b, X \ D,;_; contains at
least three i-semichords of X. Let J; be the biconnected outerplanar graph
defined by the union of C;_; and those i-semichords of X that do not intersect
C;. By the minimality of i, J; has at least one internal edge and therefore at
least two simplicial faces, and there exist exactly two i-semichords of X, say
K, and K, that intersect C;, which belong to the same face, say Fi, of J;. We
define A, to be the closure of a simplicial face of .J; that is different from F3.

Case 2: Condition (ii).c holds while condition (ii).a is violated. Let J, be the
biconnected outerplanar graph defined by the union of C;_; and the connected
components of W \ D,_; that do not intersect C... Notice that the remaining
connected components of W \ D;_; are exactly two, say K; and K», and are
subsets of the same face, say F}, of Jo. Moreover, as there exist at least two
i-chords in W, J; contains at least one internal edge and therefore at least two
simplicial faces. We define A, to be the closure of a simplicial face of J, that
is different from Fj.

The remaining part of the proof works for both of the above cases: We set
Al =D;_4, Ag = RQ\Int(Al UAQ), Y = bnd(Ag)mAg, and Q = trlm(AlﬂAQ)
It is clear from the definition of Y that it is a subpath of W, thus Y C W.

Suppose that L N Q = §. Then consider W' as a path in W U Q such that
Q C W' and W’ has the same endpoints with W, and define L' = (L\W)UW".
Linkage L' is equivalent to L (they clearly have the same pattern) and ¢(L') <
¢(L) (as we got rid of at least one edge L that was not an edge of a cycle in C),
a contradiction to L being C-cheap. Thus, L N Q # () meaning that L contains
a segment P for which P N Q # (). We again distinguish two cases:
Case a: W # P. Then, W N P = () (the paths of a linkage are disjoint) and as
Y CW,YNP = . Clearly, P is a path whose endpoints are not in A; UA, and
Lemma can be applied. Thus, P Nint(A,) has at least two connected
components, therefore P has at least two (i — 1)-chords. If : = 1 then P has a
0-cord which violates condition (i) (which should hold for every segment), and
if i > 1 condition (ii).a is violated, which contradicts the minimality of i.
Case b: W = P. Let p; and p, be the endpoints of cl(Q). Then, there exists
two disjoint closed arcs Z; and Z, with endpoints p1, p} and p2, p}, respectively,
such that

+ Z; Ccl(@),i € {1,2}, and
- PN ZL = {pl}ﬂ/ € {172}

Consider also a closed arc Y that is a subset of int(Ay) U{p}, p5} that does
not intersect L and whose endpoints are p| and p). Let now A} = Ay, A}, be
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the closed disk defined by the cycle ¢l(Q \ (Z1 U Z3)) UY” that is a subset of
A,. Let also Ay = R?\ int(A} UA}) and Q' = trim(A} N A)). As Y’ does not
intersect L, we obtain Y'N P = (). Observe that Z;, Q’, Z, form a partition of Q.
AsQNP#Pand (Z;\ {p;}) NP =10,i € {1,2}, we conclude that Q' N P # {.

By applying Lemma §.2.1, int(A}) N P has at least two connected compo-
nents. Therefore P has at least two (i — 1)-chords and this yields a contradic-
tion, as in Case a. O
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OUTSIDE OF THE OUTER CYCLE

5.1 Bounding the number of extremal segments

In this section, following section 3.3 of [2], we prove that the number of ex-
tremal segments of a CL-configuration @ = (C, L) of a pd-graph, is at most a
linear function of the order of the pd-linkage L. The arguments in this part are
independent of G being a pd-graph or just a plane graph, thus we can argue
as if G was plane and the pd-linkages are linkages of G.

Out-segments, hairs, and flying hairs. Let G be a pd-graphand Q = (C, L)
be a CL-configuration of G of depth r. An out-segment of L is a subpath P’
of a path P € P(L) such that the endpoints of P’ are in C,. and the internal
vertices of P’ are not in D,.. A hair of L is a subpath P’ of a path in P(L) such
that one endpoint of P’ is in C,, the other is a terminal of L, and the internal
vertices of P’ are not in D,.. A flying hair of L is a path in P(L) that does not
intersect C,..

Given a pd-linkage L of G and a closed disk D of R?, we define outy (L) to
be the graph obtained from (L U bnd(D)) \ int(D) after dissolving all vertices
of degree two. For example outp (L) is a plane graph consisting of the out-
segments, the hairs, and the flying hairs of L and what remains from C, after
dissolving its vertices that do not belong in L. For an example see Figure B.1.

Let f be a face of outp (L) that is different from int(D,.). We say that f is
a cave of outp, (L) if the union of the out-segments and extremal segments in
the boundary of f form a connected set. Recall that a segment of Q is extremal
if it is has eccentricity r, i.e., it is a subpath of C,..

Given a plane graph G, we say that two edges e; and e; are cyclically adja-
cent if they have a common endpoint = and appear consecutively in the cyclic
ordering of the edges incident to z, as defined by the embedding of G. A sub-
set E of E(G) is cyclically connected if for every two edges e and ¢’ in E there
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hair

8] 1lt-—.‘-iL"g111 ent

flying hair

Figure 5.1: The interior of the black (primal) cycle corresponds to out,(L). The
black dots (edges) correspond to primal vertices (paths), the green squares
(edges) to dual vertices (paths), and the re squares to crossing vertices.

exists a sequence of edges e1,...,e. € E where e; = ¢, e, = ¢’ and for each
i€{l,...,r— 1} ¢; and e;; are cyclically adjacent.

Let O = (C, L) be a CL-configuration. We say that Q is touch-free if for
every path P in P(L), the number of the connected components of P N C,. is
not 1.

Lemma 5.1.1. Let G be a pd-graph and Q = (C,L) be a touch-free CL-
configuration of G where C is tight in G and L is C-cheap. The number of
extremal segments of Q is at most 2 - |P(L)| — 2.

Proof. The proof of this Lemma is similar to the one of Lemma 4 in [2] but we
include it for this sake of completeness.
Let (G*, Q* = (C*, L*)) be the reduced pair of G and Q. Notice that, by Obser-
vation 4.2.1], C* is tight in G and L* is C*-cheap. Moreover, it is easy to see that
Q* is touch-free and Q and Q* have the same number of extremal segments
which are just vertices of C,. in @*. Therefore, it is sufficient to prove that the
lemma holds for Q*. Let p be the number of extremal segments of Q*.

Let J = outp-(L*) and k = |P(L*)|. Notice that the number of extremal
segments of Q* is equal to the number of vertices of degree 4 in J. The termi-
nals of L* are partitioned in three families

« flying terminals, Ty: endpoints of flying hairs.

* invading terminals T;: these are endpoints of hairs whose non terminal
endpoint has degree 3 in .J

* bouncing terminals T5: these are endpoints of hairs whose non terminal
endpoint has degree 4 in J.
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A hair containing an invading and bouncing terminal is called invading and
bouncing hair respectively.

Recall that |To| + |T1| + [T = 2k.
Claim 1. The number of caves of J is at most the number of invading terminals.

Proof of claim 1. Clearly, a hair cannot be in the common boundary of two
caves as it can be in the interior of a unique face of J. Therefore it is enough
to prove that the boundary of every cave f contains at least one invading hair.
To see this, consider the open arc R obtained if we remove from bnd( f) all the
points that belong to out-segments. Clearly, R results from a subpath R+ of
Cr after removing its endpoints, i.e., R = trim(R™).

Notice that because f is a cave, R is a non-empty connected subset of C*.
Moreover, R N L* is non-empty, otherwise L* = (L* \ (bnd(f)) U R is also a
linkage with the same pattern as L* where ¢(L*) < ¢(L*), a contradiction to
the fact that L* is C*-cheap. Let Y be a connected component of RN L*. As
Q* is reduced, Y consists of a single vertex in the open set R. Notice that Y is
a subpath of a segment Y’ of Q*. We claim that Y’ is not extremal. Suppose
to the contrary that Y’ is extremal. Then Y/ = Y and Y is a subset of the
union of all extremal segments and out-segments in the boundary of f. This
contradicts the fact that Y C R.

By Lemma }.2.9, ©* is convex, thus one of the endpoints of Y’ is in Y and
therefore in R as well. Let P be the path of L* that contains Y’. Because all
endpoints of paths in P(L*) lie outside D}, the set P' = P N (bnd(f) \ D})
is non empty and therefore, its closure P’ is either a hair or an out-segment
of J. Assume that P'* is an out-segment. Then, again, Y is a subset of the
union of all extremal segments and out-segments in the boundary of f and this
contradicts the fact that Y C R. For the same reason, it cannot be a bouncing
hair and therefore it is an invading hair. This completes the proof of Claim 1.

Let J~ be the graph obtained from J by removing all hairs and notice that
J~ is a biconnected outerplanar graph. Let S be the set of vertices of J~
that have degree 4. Notice that, because Q* is touch-free, |S| is equal to the
number of vertices of J that have degree 4 (which is equal to the number of
extremal segments) minus the number of bouncing terminals, i.e., | S| = p—|T5|.
Therefore,

p=|Tz| +|S]. (5.1)

Notice that if we remove from J— all the edges of C;, the resulting graph is
a forest ¥ whose connected components are paths. Observe that none of
these paths is a trivial path because Q* is touch-free. We denote by x(¥) the
number of connected components of W. Let F' be the set of faces of J~ that
are different from D}. F is partitioned into the faces that are caves, namely F;
and the non-cave faces, namely Fj. By the Claim 1, |F1| < |T1].

To complete the proof, it is enough to show that

S| < |Ty|—2 (5.2)
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Indeed the truth of (6.9) along with (6.1), would imply that p is at most |T3|+|S| <
T+ Ty -2 < |T|—2=2k—2.

We now return to the proof of (6.2). For this, we need two more claims.

Claim 2: |Fy| < x(¥) — 1.
Proof. We use induction on «(¥). Let K1, ..., K, (y) be the connected compo-
nents of ¥. If x(¥) = 1 then all faces in F are caves, therefore | Fy| = 0 and we
are done. Assume now that ¥ contains at least two connected components.
We assert that there exists at least one connected component K; of ¥
with the property that only one non-cave face of J~ contains edges of K}, in
its boundary. To see this, consider the weak dual 7" of J~. Recall that, as J~ is
biconnected, T' is atree. Let K be the subtree of T' containing the duals of the
edges in E(Kj;), i € {1,...,x(¥)}, and observe that E(K7),..., E(K} ) isa
partition of E(T') into k() cyclically connected sets. We say that a vertex of T
is rich if it is incident with edges in more than one members of { K7, . .. ,K:(\P)},
otherwise it is called poor. Notice that a vertex of T is rich if and only if its dual
face in J~ is a non-cave. We call a subtree K peripheral if V(K ) contains
at most one rich vertex of T. Notice that the claimed property for a compo-
nentin {Ki,..., K, )} is equivalent to the existence of a peripheral subtree
in{Ky,..., K:(q,)}. To prove that such a peripheral subtree exists, consider a
path P in T intersecting the vertex sets of a maximum number of members of
{Ki,..., K]y} Lete” be the first edge of P and let K7, be the unique sub-
tree whose edge set contains e*. Because of the maximality of the choice of
P, V(K}) contains exactly one rich vertex vy, therefore K is peripheral and
the assertion follows. We denote by f;, the non-cave face of J~ that is the dual
of vy,.

Let H~ be the outerplanar graph obtained from J~ after removing the
edges of K,. Notice that this removal results in the unification of all faces that
are incident to the edges of K}, including f3, to a single face f*. By the induc-
tive hypothesis the number of non-cave faces of H~ is at most x(¥)—2. Adding
back the edges of K}, in J~ restores f;, as a distinct non-cave face of J—. If
fT was a non-cave of H~ then |Fy| is equal to the number of non-cave faces
of H—, else |F| is one more than this number. In any case, |Fy| < «(¥) — 1,
and the claim follows.

Claim 3: |[V(0)| < |Th|+2- k(T) — 2.

Proof. Let T be the weak dual of J~. Observe that |Fy|+|Fi| = |F| = |V(T)| =
|E(T)|+1=|E(P)|+1=|V(¥)|—k(P)+ 1. Therefore |V (V)| = |Fo| + | F1| +
k(¥) — 1. Recall that, by Claim 1, | F;| < |T3] and, taking into account Claim 2,
we conclude that |V (¥)| < |T1| + 2 - k(¥) — 2. Claim 3 follows.

Notice now that a vertex of J~— has degree 4 iff it is an internal vertex of
some path in ¥. Therefore, as all connected components of ¥ are non-trivial
paths, it holds that |V (U)| = |S| + |L(¥)| = |S| + 2 - k(¥), where L(¥) is the
set of leaves of ¥. By Claim 3,

S|+ 2 k(0) =|V(¥)| <|Th|+2 -6(T)—2=|S| < |Ty| —2.
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Therefore, (6.9) holds and this completes the proof of the lemma. O

5.2 Bounding the number and size of segment classes

In this section the goal is to prove the results of section 3.4 of [2] in our pd-
graph setting. We introduce the notion of segment class that partitions the
segments into classes of mutually "parallel" segments. Using the results of
the previous sections show that the number of these classes is again bounded
by a linear function of the order of the pd-linkage.

As in the previous section, the special structure of a pd-graph is not of great
importance for the proofs and when it is we will stretch it.

Classes of segments. Let G be a pd-graph and let Q = (C, L) be a convex
CL-configuration of G. Let S;, Sy be two segments of Q and let P and P’
be two paths that are subgraphs of C,., connect one endpoint of S; with an
endpoint of S,, and pass through no other endpoint of S; or S;. We say that
Sy and S, are parallel, and we write S; || Sa, if

(1) no segment of Q has both endpoints on P.
(2) no segment of Q has both endpoints on P’.

(3) the closed-interior of the cycle PU S, U P’ US> does not contain the disk
Dy.

A class of segment is an equivalence class of segments of Q under the relation
I

Given a pd-linkage L of G and a closed disk D of R?, we define inp(L)
to be the graph obtained from L N D after dissolving all vertices that do not
belong in L. Notice thatinp (L) is a biconnected outerplanar graph formed by
the segments of Q and what remains from C,. after dissolving all vertices that
do not belong in L. As Q is convex, one of the faces of inp, (L) contains the
interior of Dy and we call this face central face. We define the segment tree of
Q, denoted by T'(Q), as follows.

+ let T~ be the weak dual of inp,_ (L) rooted at the vertex that corresponds
to its central face.

+ Let @ be the set of leaves of T'~. For each vertex [ € @ do the following:
Notice first that [ is the dual of a face I* of inp,(L). Let W4,..., W, be
the extremal segments in the boundary of [* (notice that, by the convexity
of Q, for every [, p; > 1). Then, foreach i € {1,..., p;}, create a new leaf
w; corresponding to the extremal segment W, and make it adjacent to [.

The height of T'(Q) is the maximum distance from its root to its leaves. The
real height of T'(Q) is the maximum number of internal vertices of degree at
least 3 in a path from its root to its leaves plus one. The dilation of T'(Q) is the
maximum length of a path all whose internal vertices have degree 2 and are
different from the root. For an example see Figure 5.2.

33



5.2. BOUNDING THE NUMBER AND SIZE OF SEGMENT CLASSES

Figure 5.2: At the left the graph inp (L) for some convex CL-configuration
Q = (C,L) and at the right the corresponding segment tree 7(Q). The CL-
configuration Q has 11 extremal segments. There are 11 segment classes un-
der the || relation and internal edges of the same lining correspond to segments
of the same class, while black (resp. green) internal edges correspond to pri-
mal (resp. dual) paths of L. At the right, the black square corresponds to the
root of tree (Q) and the black dots to its leaves. The dilation of (Q) is 3, its
height is 6 and its real height is 3.

Observation 5.2.1. Let G be a pd-graph and let Q = (C, L) be a convex CL-
configuration of G. Then the height of T'(Q) is upper bounded by the dilation
of T(Q) multiplied by the real height of T'(Q).

The next lemma is a consequence of Lemma and the definition of a
segment tree. We demand L N C,. to be non-empty to ensure that L intersects
D,. and the segment tree T'(Q) can be defined.

Lemma 5.2.1. Let G be a pd-graph and Q = (C,L) be a touch-free CL-
configuration of G where C is tight in G, L is C-cheap, and LN C,. # (. Then Q
is convex and the real height of the segment tree T'(Q) is at most 2 - |P(L)| — 3.

Proof. The convexity of Q follows directly from Lemma l.2.3. We examine the
non-trivial case where T(Q) contains at least one edge. We first claim that
|P(L)| > 2. Assume to the contrary that L consists of a single path P. As Q
is convex and L N C,. # B, O has at least one extremal segment. Suppose
now that @ has more than one extremal segments, all of which are connected
components of C,. N P.

Let P, and P, be the closures of the connected components of L \ D,
that contain the terminals of P. Let p; € V(C,) be the endpoint of P; that is
not a terminal, i € {1,2}. Let also P’ be any path in C, between p; and p,.
Notice now that P, U P’ U P, a pd-linkage that is equivalent to L and cheaper, a
contradiction to the fact that L is C-cheap. Therefore we conclude that Q has
exactly one extremal segment, which contradicts the fact that Q is touch-free.
Thus, |P(L)| > 2 as claimed.
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Recall that by the construction of T'(Q) there is a 1--1 correspondence be-
tween the leaves of T(Q) and the extremal segments of Q. From Lemmap.1.1],
T(Q) has at most 2 - [P(L)| — 2 leaves. Also T(Q) has at least 2 leaves, be-
cause Q is touch-free. It is known that the number of internal vertices of degree
> 3in a tree with » > 2 leaves is at most r — 2. Therefore, T'(Q) has at most
2-|P(L)| — 4 internal vertices of degree > 3. Therefore the real height of 7'(Q)
isatmost 2- |P(L)| — 3. O

5.3 Tidy pd-grids in convex configurations

In this section we prove that if a class of a segment in a CL-configuration of
a pd-graph is "big" then there exists a "big" grid-like structure whose paths
alternate between primal and dual. This is the counterpart of section 3.5 of [2]
but here the primal-dual structure of a pd-graph and the types of the paths of
a pd-linkage play a crucial role.

pd-patterns. A triple (H,x,T) where H is a plane graph, ' C V(H), x :
V(H) — {p,d,c} is called a pd-pattern if for any edge e = {z,y} € E(H),
either {x(z),x(y)} = {p.c} or {x(z),x(v)} = {d,c}. ¥ T = 0 we will just
write (H, x) to refer to the pd-pattern (H, x,T). We will treat pd-patterns as
structures embedded in 52.

Given an edge e = {z,y} € E(H), we say that it is a primal edge (rep. dual
edge) of (H, x,T) if x({z,y}) \{c} = {p} (resp. x({z,y})\{c} = {d}) and given
a path P of G, we say that P is a primal (resp. dual) path of (H,x,T) if all the
edges of P are primal (resp. dual) edges.

Let G be a pd-graph. We say that G corresponds to the pd-pattern (G, vq, 0),
where ¢ : V(G) — {p,d, c} and for every ¢ € {p,d, c} and every v € V(G):

Ye(v)=¢ ifandonlyif ve V:(G)

Let X C V(G). We call the pair (G, X) a rooted pd-graph and we say that X is
its root. The rooted pd-graph (G, X), naturally corresponds to the pd-pattern
(G,Ya, X).

pd-topological minors. Let (G,v,T) and (H, x,Y) be two pd-patterns and
A Y — T be a bijection. We say that the pd-pattern (H,y,Y) is a A-pd-
topological minor of the pd-pattern (G, v, T') if there exists an injective function
¢o : V(H) = V(@) and a function ¢, : E(H) — P(G) such that

- forevery x € V(H), (¢o(z)) = x(z).
* A C go.

- for every edge e = {z,y} € E(H), ¢1({x,y}) is a primal (resp. dual) path
between ¢y (z) and ¢o(y) in (G, x, T) if and only if e is a primal (resp. dual)
edge of (H,¢,Y).
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« if two paths in ¢, (F(H)) have a common vertex, then this vertex should
be an endpoint of both paths.

Given the pair (¢g, ¢1), we say that (H, x,Y) is a A\-pd-topological minor of
(G,x,T) via (¢9,¢1) and we write (H,x,Y) <} (G, T). fY =T =
we will just say that (H, x) is a pd-topological minor of (G, x) and will write
(Hv X) <tm (G7 ¢)

Let G is a pd-graph and X C V(G). If a pd-pattern (H,x,Y) is a A-pd-
topological minor of the pd-pattern (G, v, X) (the pd-pattern that corresponds
to the rooted pd-graph (G, X)) via (¢, ¢1), we will also say that the pd-pattern
(H, x,Y) is a A\-pd-topological minor of the rooted pd-graph (G, X) via (¢o, ¢1)
and we will write (H,x,Y) <}, (G, X).

pd-grids. Let G be a plane graph, k, &’ be two integers, and I" be a (k x k')-
grid of G. Let also x : V(I') — {p, d, c} be a 3-coloring of the vertices of I". We
say that (T, x) is a (k x k')-pd-grid if the followings hold:

+ In any horizontal and vertical line of T', the colors of its vertices alternate
either between p and ¢ (we call such a line a primal line) or between d and
¢ (we call such a line a dual line).

« If the i-th horizontal (or horizontal) line of I" is a primal (resp. dual) line,
then its (i 4+ 1)-th horizontal (resp. vertical) line is a dual (resp. primal)
line.

Apath Pin (T, ) is called a primal (resp. dual) path of (T, x), if V(P)Nx~1(d) =
0 (resp. V(P) N x t(p) = 0). Acyclein (I,x) is called a primal (resp. dual)
cycle of (T, x) if it is the union of two primal (resp. dual) paths of (T, x)

For every pair of vertices (v1,v2) in V(T'), we say that (v, v2) is a primal (resp.
dual) pair if (X('Ul)’X(UQ)) € {(p7 C)v (Cvp)} (resp. (X(U1)7X(U2)) € {(dv C)v (Cv d)}
If (v1,v2) = (¢, ¢), then this pair can be considered to be either primal or dual.
If (v,u) is a primal (resp. dual) pair and {v,u} € E(I'), then we say that {v, u}
is a primal (resp. dual) edge of I (for an example of a pd-grid see Figure 5.3).
Let H be a pd-graph, I" be a (k x k') grid of H, and let xg : V(H) — {p,d, c}
be such that for any = € {p,d,c}, xg(v) = wifand only if v € V.(H). We say
that I' is a pd-grid of H if and only if (I', x) is a pd-grid. Sometimes we will
just use T to refer to the pd-grid (I, x ) if it is clear that y g is related to the
types of vertices in V(H).

Tilted pd-grids and L-tidy tilted pd-grids. Let G be pd-graph. A tilted pd-
gridof Gisapairid = (X, Z) where X = {Xy,..., X, }and Z ={Zy,...,Z,}
are collections of r primal and dual paths of G that are vertex-disjoint and such
that

* X1, X, and 7y, Z, are primal paths of G and the types of X5,..., X,. — 1
and 7, ..., Z,. — 1 alternate between dual and primal.

* Foreachi,j e {1,...,r} I, ; = X, N Z; is a (possibly edgeless) path of G
and I, ; can contain an edge only if X; and Z; are of the same type.
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Figure 5.3: A pd-grid (T, x) is depicted. The black dots correspond to the
set x~!(p), the green dots to the set xy~!(d), and the red squares to the set
x~!(c). Any path (or cycle) that contains only black dots (resp. green dots)
and red squares is a primal (resp. dual) path (or cycle) of the depicted pd-grid.
Any edge with endpoints a black dot (resp. green dots) and a red square is a
primal (resp. dual) edge of (T, ).

« fori e {1,...,r} thesubpaths I; 1, I; o, ..., I; , appear in this order in X;,.
« forj e {l,...,r}thesubpaths I, ;, I, ;,..., I, ;j appear in this orderin Z;.
* E(Il,l) = E(Il,'r’) = E(Ir,r) = E(Ir,l) - @,

* Let
Gu=( U xul U 2
ie{l,...,r} ie{l,...,r}
and let G;, be the graph taken from G, after applying primal-dual con-
traction to all pairs of vertices that are adjoined through some vertex in
V(G3,) NV,(G) (all the crossing vertices on the paths). Then G;, contains
an (r x r)-pd-grid (I", x) as a pd-topological minor.

We call the subgraph Gy, of G realization of the tilted pd-grid &/ and the graph
Gy, representation of U. We refer to the cardinality r of X’ (or Z) as the capacity
of U. The perimeter of Gy, is the (primal) cycle X; U Z; U X,. U Z,.. Given a
pd-graph G and a pd-linkage L of G, we say that a tilted pd-grid &/ = (X, Z)
of G is an L-tidy tilted pd-grid of G if Dy N L = UZ, where D, is the closed
interior of the perimeter of Gy,.

Lemma 5.3.1. Let G be a pd-graph and let Q = (C,L) be a convex CL-
configuration of G. Let also S be an equivalence class of the relation ||. Then G
contains a tilted pd-grid U = (X, Z) of capacity ["S‘T’Q] that is an L-tidy tilted
pd-grid of G.
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Proof. LetC = {Cy,...,C,}andletS = {51,...,Sn}. We assume that S; and
Sm are primal paths of G. For each i € {1,...,m}, let o; be the eccentricity of
S; and let o™ = max{o; | i € {1,...,m}}and ™" = min{o; | i € {1,...,m}}.
Convexity allows us to assume that S, ..., S,, are ordered in a way that

» The types of the paths in S alternate between primal and dual.
. 0o = Umin

¢ o = 0™ and

«forallie{l,...,m—1}, 0i41 =0; + L.

« forallie{l,...,m}, I, ,, = S; N C,, is a (possibly edgeless) subpath of
Cy,.

Let m' = [%] and let z, 2’ (resp. y, %) be the endpoints of the path S, (resp.
Sm) such that the one of the two (x, y)-paths (resp. («’,y’)-paths) in C,. con-
tains both 2/, vy’ (z,y) and the other, say P (resp. P’), contains none of them.
Let Dg be the closed-interior of the cycle S; U P’ U S, U P. Let also A¢
be the union of the intersection of G with D jma_(,,,—1) \ D mex and the cycles
Comax_(m/—1y @and Comax. Let A be any of the two connected components of
Dg N Ac. We now consider the graph

(LUUC) N A.

It is now easy to verify that the above graph is the realization Gy, of a tilted
pd-grid U = (X, Z) of capacity m’/, where the paths in X are the portions of
the cycles Cymax_(pyr—1y, - - -, Comax Cropped by A, while the paths in Z are the
portions of the paths in {S1,...,S,, } cropped by A. As S is an equivalence
class of ||, it follows that ¢/ is L-tidy.

At the beginning of the proof we assumed that S; and S,,, are primal paths. If
this is not the case we can discard them and repeat the same argument for S\
{81, S }. In any case, we obtain a tilted pd-grid of the required capacity. [
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INSIDE THE OUTER CYCLE

6.1 Replacing pd-linkages by cheaper ones

In this section we prove that a pd-linkage of order k can be rerouted to a
cheaper one, given the existence of an L-tidy tilted pd-grid of capacity greater
at least 2¥ + 1. In other words, the existence of a cheap pd-linkage L implies
an exponential (on the order of L) upper bound on the capacity of any L-tidy
tilted pd-grid.

Let G be a pd-graph and let L be a pd-linkage in G. Let also D be a closed
disk in the surface where G is embedded. We say that L crosses vertically D if
the outerplanar graph defined by the boundary of D and LN D has exactly two
simplicial faces. Hence, the vertices of bnd(D) N L are naturally partitioned
into the up and down ones.

We will need the following two main lemmas. The first one is exactly Lemma
2 from [{]] (the "reflection trick") and the proof of the second one is a variance
of the proof of a claim stated in page 11 of [[]], slightly transformed to fit in our
context. Lemma then follows easily and is crucial for the remaining part.

Lemma 6.1.1. Let X be an alphabet of size |X| = k, and let w € ¥* be a word
over ¥ of length |w| > 2*. Then, w contains an infix y such that every letter
occurring in y, occurs an even number of times.

Proof. LetY = {ay,...,a;} and letw = w; ... w, where n > 2k. We define the
vectors z; € {0,1}* for every i € {1,...,n}, and we let the jth entry of z; be 0
if and only if a; occurs an even number of times in the prefix w; ... w; of w and
1 otherwise. Since n > 2k, there exist two indices ,i" € {1,...,n} with i # ¢,
such that z; = z;. Let q; € X that appears in the infix w; 1w; 42 ... wy. Then,
as the /th coordinate of z; is the same as the ith coordinate of z;/, a; appears
iN w;11wiys ... w; an even number of times. Thus, the infix w;;jw;ys ... wy
satisfies the requirements of the statement.
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Lemma 6.1.2. Let G be a plane graph and let D be a closed disk and a linkage
L of G of order k that crosses D vertically. Let also L N D consist of r > 2F
lines. Then, there is a collection N of strictly less than » mutually non-crossing
lines in D each connecting two points of bnd(D) N L, such that there exists
some linkage R that is a subgraph of L \ int(D) such that R UUN is a linkage
of the graph (G \ D) UUN that is equivalent to L.

Proof. Let P(L) = {Py,...,P:}. Everylinein L N D is a subpath of exactly
one path in P(L). Let ¥ = {ay,aq,...,a;} be an alphabet of size k, where a;
corresponds to the path P;.

Then, as the lines cross D vertically, there is an ordering that indicates the way
that they consecutively appear in D. We can naturally map such an ordering
to a word, say w, over X by replacing every line I; in the ordering by a; if /; is a
subpath of P;.

Observe that lemma can be applied for © and w, therefore we obtain that
there is an infix y of w such that every letter occurring in it, occurs an even
number of times. This, "translated" back to lines, implies that there is a non-
empty subset A C L N D of lines that appear consecutively in D and for every
P, € P(L), the number of lines in A that are subpaths of P, is even (it can be
zero).

Let A = {l1,...,l,y}. Forevery path P, € P(L), we define Ap, = {l € A |
[ is a subpath of P;} and we know that |Ap,| is even. Therefore, for some n,; €
N, Ap, = {li,..., 15, } C A, forevery P; € P(L) for which Ap, # 0.

For every such i, we traverse P; from s; to t; and orient the lines of A in the
way that we meet them. For every odd number j € {1,...,2n;} we replace
the subpath of P; from tail(l}) to head(l}, ) by a new line f; which lies in D
avoiding crossings (for an example see Figure B.1)).

After having done these replacements we obtain a new path, P/, from s; to ¢,
that contains strictly less lines than P; in A, and as this operation only causes
changes in A, also in D.

Let B be the set containing the lines introduced from the replacement. Then,
if weset V' = ((LND)UB)\ Aitis easy to observe that there exists a linkage
R that is a subgraph of L \ int(D), such that R UUN meets the requirements
of the statement. O

Lemma 6.1.3. Let (G, x) be a pd-pattern, D be a closed disk, and L a pad-
linkage of order k in G that crosses D vertically. Let also L N D consist of
r > 2F lines. Then, there is a collection N of strictly less than r mutually non-
crossing lines in D each connecting two points of bnd(D) N L, such that there
exists some pd-linkage R that is a subgraph of L\ int(D) such that R UUN is
a pd-linkage of the graph (G \ D) UUN that is equivalent to L.

Proof. As L is a pd-linkage of the pd-graph G, every path P € P(L) is either
a primal or a dual path of G.

Let R be the linkage provided by Lemma B.1.3. Then, as R is a subgraph of
L\ int(D), every path of L that is also a path of R, preserves its type.

As for the lines in B that are introduced in D after the replacement, they inherit
their types from the lines that they replace. O
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Figure 6.1: A visualization of the proof of the "reflection trick" in Lemma

Lemma 6.1.4. Let k., k', p be integers such p < min{k,k’'}. Let (T, x) be a
pd-grid whose perimeter is a primal cycle, where T is a (k x k')-grid, and let
{vi®, ..., viP} (resp. {v§o"", ..., v9°""}) be vertices of the higher (resp. lower)
horizontal line arranged as they appear in it from left to right and such that
(vflp, vdoWn) s either a primal or a dual pair of (T', x) (we consider all pairs with
both vertices in x~!(c) to be dual), for every h € [p]. Then (T, x) contains p
pairwise disjoint paths Py, ..., P, such that, for every h € [p|, Py is a primal
(resp. dual) path with endpoints v;," and v3°"" iff (v;P v3°"") js a primal (resp.
dual) pair of (T, x).

Proof. We use induction on p. The statement trivially holds for p = 0. Let
(i,j) € [k]? such that vP (resp. vg°‘””) is the i-th (resp. j-th) vertex of the

higher (lower) horizontal line counting from left to right. We first consider the
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case where i > j. Let P, be the path created by starting from v;P, moving &' —
edges down (observe that the vertices we meet have the requwed color), and
then j — i edges to the left. For h € [p — 1] let P{%*" be the path created by
starting from v2°*" and moving one edge up (clearly, P\°**"’ consists of a sin-
gle edge). We also denote by +\°""" the other endpoint of P°*"’. We now
define I’ as the subgrid of T’ that occurs from I' after removing its lower hori-
zontal line and, for every h < [i, k], its h-th vertical line. It is clear that (TV, ') is
a pd-grid, where x’ is the restriction of y to the vertices of I'. Observe also that
for every h € [p—1], the pair (v)”, v§°"") is substituted by the pair (v;", v }(Ld"“’")’)
which we consider to be primal (resp. dual) iff (v;", v°"") is primal (in order to
maintain the initial requirements about the types of the paths). By construc-
tion, none of the edges or vertices of P, belongs to I'. Notice also that the
higher (resp. lower) horizontal line of T’ contains all vertices in {p}®, ... ,pp P}
(resp. {p\®" .. ,p;d_O\an)/}) and by the induction hypothesis, (I, ') contains
the p — 1 pairwise disjoint paths PJ,..., P/, that meet the conditions of the
statement.

It is now easy to verify that P U P{®"" P U P,E‘iolwn)’, P, is the required
collection of pairwise disjoint paths.

For the case where i < j, we can just think of grid I" being turned upside down
and repeat the same argument. O

Lemma 6.1.5. Let k be an odd integer and (T', x) be a pd-grid, where T is a
(k x 2k)-grid embedded in the plane and assume that the vertices of its outer
cycle, arranged in clockwise order, are
{,U?p Uzp ’Ugght ,U]':th Ugown U?own Ufﬂl ,Ulgeft ,U?P
RAR ) —1» A K —1r°* Y
Additionally, x(vi®) = p and for every v € V(I') \ {v{®} such that v' € V()
precedes v in the cyclic arrangement of V(T'), x(v) = cif x(v') = pand x(v) = p
otherwise.
Let also (H,v) be a pd-pattern. The vertices of H have degree 0 or 1 and can
be cyclically arranged in clockwise order as
{xlfp, B xzp’ 2own7 . down UD}
such that if we add to H the edges formed by pairs of consecutive vertices in
this cyclic ordering, the resulting graph H* is outerplanar and 1 (z}®) = x(v;®),

P(zoWn) = x (vioWn) for every i € {1,...,k}. Also, for every edge e = {v,u} €
E(H), either )(v) = ¥(u) = p (primal edges of H) or ¢(v) = ¥ (u) = ¢ (dual
edges of H). Let V! be the vertices of H that have degree 1 and let H' = H[V1].
Then (H',|y1) is a pd-topological minor of (T, x) via some pair (¢q, ¢1), sat-

isfying the following properties:
1. ¢o(xP) =v® ie {1,....k}nV?!
2. ¢o(xdoWm) = vg*OW”, ie{l,....k}nVL%L

Proof. LetU = {zi,...,z;P}NV'and D = {zoW" ... 2wt NV, Let ¢ be
as required. In the rest of the proof we provide the definition of ¢,. We partition
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the edges of H'! into three sets: the upper edges Ey; that connect vertices in
U, the down edges Ep that connect vertices in D, and the crosssing edges
E¢ that have one endpoint in U and one in D. As |V (H')| < 2k we have that
|E(H'Y)| < k and therefore |Ey |+ |Ep|+|Ec| = |E(HY)| < k. We set p = |E¢|.

We recursively define the depth of an edge e = {z;°, 2"} in Ey; as follows:

* If e is a dual (resp. primal) edge of H, then its depth is 0 (resp. 1) if there

is no edge of Eyy with an endpoint in {2;%,,..., 27" }.
+ If the maximum depth of an edge with an endpoint in {z%,,..., 2"} is

1 and this edge is primal, respectively dual, then the depth of e is i + 2,
respectively i + 1.

The depth of an edge ¢’ = {z{°"", z9°""} is defined analogously. It follows, by
the definition (observe that a worst case scenario is realized when Ey (resp.

Ep) is the set of all primal vertices in {2}, ..., 2"} (resp. {z§o"", ... zfov}))
that:

P = max{depth(e) |e € Ey} +1 < 2|Ey] (6.1)

q%°"" = max{depth(e) |e € Ep} +1 < 2|Ep| 6.2)

We now define ¢, : E(H) — P(T") as follows:
» For every edge e = {«;", 2"} in Ey; of depth I and such that i < j

- If ¢ (a}®) = ¢(«}®) = p, i.e. eis a primal edge, let ¢ (e) be the path
defined if we start in the grid I from v;®, move 2l steps down, then
j — i steps to the right, and finally 2 steps up to the vertex v;" (the
term "number of steps" refers to the number of edges traversed).
Observe that the obtained path is a primal path of I".

- if Y(2}®) = ¥(2}°) = ¢, i.e. eis a dual edge, let ¢, (e) be the path
defined if we start in the grid I' from v;®, move 2/ — 1 steps down,
then j — i steps to the right, and finally 2/ — 1 steps up to the vertex
v;°. Observe that in this case, the obtained path is a dual path of T".

» For every edge e = {z8°"", 29°*"} in E; of depth [ and such that i < j

- If ¢ (a}®) = ¢(2}®) = p, i.e. eis a primal edge, let ¢, (e) be the path
defined if we start in the grid T’ from v;*, move 2I steps up, then

j — i steps to the right, and finally 2/ steps down to the vertex v;".
Observe that the obtained path is again a primal path of I".

= if (28O = p(29°"") = ¢, i.e. eis adual edge, let ¢; (¢) be the path
defined if we start in the grid I" from v;‘p, move 2/ — 1 steps up, then

j — i steps to the right, and finally 2[ — 1 steps down to the vertex
v;”. Observe that the obtained path is again a dual path of I".

We have defined the value of ¢; for all edges in £y U Ep and it is easy to
confirm that all paths in ¢, (Fy U Ep) are mutually non-crossing. It remains to
define ¢1(e) for every e € E¢.
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Notice that the distance between ¢, (U) and some horizontal line of I that
contains edges of the images of the upper edges is 2-max{depth(e) | e € Ey}
that, from (B.1)), is equal to 2¢“P — 2. Symmetrically, using (6.2) instead of (6.1)),
the distance between ¢y (D) and the horizontal lines of I that contain edges of
the images of the down edges is equal to 2¢%"" — 2. As a consequence, the
graph

L =T\ {ze V(D) |distr(z,po(U)) < 2¢"° Vv distp(z, po(D)) < 2¢%°""}

is a (kxk')-grid, where k' > 2k —2(¢q"P+¢9°¥"), whose vertices do not appear in
any of the paths in ¢; (Ey UEp). Given a crossing edge e = {x}", z9°""} € E,
we define the path PP as the subpath of I" created if we start from 2 and then
go 2¢"P steps down. Similarly, we define P9°"" as the subpath of I" created if
we start from x?"‘”” and then go 2¢9°"" steps up. Notice that each of the paths
PP (resp. P2 share only one vertex, say pP (resp. p2°""), with I that is one
of their endpoints. We use the notation {p{", ..., pP} (resp. {pfo"", ..., pdown})
for the vertices of the set {p*P | e € E¢} (resp. {p®®" | e € E¢}) such that, for
every h € [p], there exists an e € E¢ such that p;® is an endpoint of P and
piev is an endpoint of PI"". We also agree that the vertices in {p}®, ..., piP
(resp. {pfo"",...,p3°""}) are ordered as they appear from left to right in the
upper (lower) horizontal line of I (this is possible because of the outeplanarity
of HT).

Notice that p = |E(H")| — (|Ev| + |Ep|) < k — (|Ev| + |Ep|) which by
and (6.2) implies that p < &'

As p < k' < k, we can now apply Lemma.1.4 on (T, Xy ) {P5°5 - PP}
and {pf°*",...,p%°""} and obtain a collection {P, | e € Ec} of p pairwise
disjoint paths in (fX|V(f)) between the vertices of {p® | ¢ € E¢} and the
vertices of {pd°"" | ¢ € E¢}, which respect the type of each pair. It is now easy
to verify that { PP UP.UPI"" | ¢ € Ec} is a collection of p vertex disjoint paths
between U and D. We can now complete the definition of ¢; for the crossing
edges of H by setting, for each e € E¢, ¢(e) = PP U P, U P%"", By the above
construction it is clear that the pd-pattern (H',v|},) is a pd-topological minor
of the pd-grid (T, x) via the pair of functions (¢1, ¢2). For a visualization of the
idea of the proof, see an example in Figure B.1. O

Lemma 6.1.6. Let G be a pd-graph, L be a pd-linkage of order k in G, and
U = (X, 2) be an L-tidy tilted pd-grid of G with capacity 2m. Let also A be
the closure of the perimeter of Gy,. If 2m > 2%*, then G contains a pd-linkage
L' such that

1. L and L' are equivalent,
2. '\ACL\A and
3. |[FUZNL)| < |EUZNL)|.

Proof. Let X = {X;,...,Xo} and 2 = {Z1,..., Zs5,,}. Let also Gy be the
realization of U/ in G and G* (resp. L*) be the pd-graph (resp. pd-linkage)
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obtained from G (resp. L) if we apply primal-dual contraction to all pair of
vertices that are adjoined through a vertex in V.(G) that belongs to some path
of U(i,j)e{l ..... )2 Ii7j1 where Ii,j = X;N Zj, 1,] € {17 . ,m}. We also define
X* and Z* by applying the same operation to their paths. Notice that &//* =
(X*, Z*) is an L*-tidy tilted pd-grid of G* with capacity 2m and that the lemma
follows if we find a linkage L’* such that the three conditions of the statement
are true for A*, L*, L'*, and Z*, where A* is the closed-interior of the perimeter
of Gj;.

Let G*~ = (G* \ A*) UUZ and apply lemma on G*=, A*, and L* (the
lemma can be applied as 2m > 2%¥ > 2F). Let N be a collection of strictly
less than 2m mutually non-crossing lines in D each connecting two points of
bnd(A*) N L* and a linkage R C L* \ int(A*) such that Lo = RUUN is a
pd-linkage of the graph (G* \ A*) UUA that is equivalent to L*. Let H =
(LoNA*)U (L* nbnd(A*)). Notice that in H, the set V(Ly N A*) contains the
vertices of H of degree 1 while the rest of the vertices of H have degree 0 and
all edges of H have their endpoints in V' (L, N A*). Recall that the (2m x 2m)-
pd-grid is a pd-topological minor of G}, and clearly the (m x 2m)-pd-grid is a
pd-topological minor of G};.

We can now apply Lemma for the (m x 2m)-grid T and H. We obtain
that H! = Lo N A* is a pd-topological minor of I" via some pair (¢o, ¢1). We
now define the graph

L= |J E(ie).

ecE(HY)

Notice that L is a subgraph of I". We also define the graph

Q= U o1(e)

ecE(L)

which, in turn, is a subgraph of G},. Observe that L'* = RUQ is a pd-linkage of
G* that is equivalent to L*. This proves Condition 1. Condition 2 follows from
the fact that R C L* \ int(A*). Notice now that, as |[V| < 2m, FUZ*NQ)isa
proper subset of E(UZ*). By construction of L', it holds that E(UZ N L™*) =
E(UZ N Q). Moreover, as U* = (X*, Z*) is an L*-tidy pd-tilted grid of G*, it
follows that E(UZ*) = E(UZ* N L*). Therefore, Condition 3 follows. O

6.2 Existence of an irrelevant crossing

We now bring together all results from previous sections in order to prove the
main theorem of this thesis, that roughly states that if in an instance for pp-DP
problem the treewidth of the pd-graph is sufficiently large, then there exists a
pair of vertices that are adjoined, say through a vertex v, such that by applying
primal-dual contraction to them we obtain an equivalent instance. This pair is
an analogue of an irrelevant vertex in our context, and we call vertex v (that
"connects" the vertices of the adjoined pair) an irrelevant crossing.

Lemma 6.2.1. Let G be a plane graph containing a (k x k)-grid T as a minor,
T C V(G), and J € duals(G). If k > (r + 1) - [\/|T| + 1], then the pd-graph
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pd(G, J) contains an alternating tight sequence of r concentric cycles H =
{Hy, ..., H,} such that none of the vertices in the closed interior of H, is in T.

Proof. We will first prove that G (and thus also pd(G, J)) contains a tight se-
quence of [%1 concentric cycles (primal cycles in pd(G, J)). From the defini-
tion of tightness,the existence of a tight sequence of [~}1] concentric cycles
in G follows if we just prove the existence of a sequence of [#1 concentric
cyclesin G. Itis clear that I contains |T'|+1 vertex disjoint (r+1) x (r+1)-grids
and thus G (and also pd(G, J)) contains a (r + 1) x (r 4+ 1)-grid I as a minor
and this is certified by a function ¢ : V(I') — 2V(G") where G is a subgraph
of G that does not contain vertices of T'. Notice that V(I'") can be partitioned
into sets {Vb, ..., Vizsy }, corresponding to [Z£1] concentric cycles of I that
are arranged from inside to outside, i.e., V; contains the centers of I'’. In each
G[¢(V;)], pick a cycle C; meeting the models of all vertices of V;. Because
G is a plane graph, it is easy to verify that {C1, ..., C’[%]} is a collection of
concentric cycles in G.

Fix now two consecutive cycles, say C; and C;;1 with i < (%}. Then, ob-
serve that, as I is a grid minor in G, there exist edges (that corresponds to
disjoint paths of G) with one endpoint in V(C;) and the other in V(C;1), that
partition D; \ D;;, to open sets, which correspond to faces, say fi,... fi, in
the subgraph of GG obtained after deleting all vertices of G in int(D; \ D;1).
The vertices in V4 (pd(G, J)) that correspond to these faces, induce a dual
cycle C; ;y1, such that D; C D;;41 C D;y1. Ifr =1 mod 2, then H =
{01’0172502""’C(%FH%WC[%ﬁ and if r = 0 mod 2 we get an extra
cycle. As we have previously observed, the dual cycles in H can be replaced
such that the obtained sequence #’ is an alternating tight sequence of con-
centric cycles in G. O

The next lemma follows from [21]]:

Lemma 6.2.2. Let G be a plane graph and let J € duals(G). Then, tw(pd(G, J)) <
2 -tw(G).

From the last two lemmas and proposition follows

Lemma 6.2.3. Let G be a pd-graph such that tw(G) > 9-(r+1)-[/|T| + 1] and
let T C V(G). Then G contains an alternating tight sequence of r concentric
cycles C = {C,...,C.} such that none of the vertices in the closed interior of
H.isinT.

Proof. Astw(G) > 9 (r +1) - [/|T] + 1], Lemma gives that tw(G?) >
4.5-(r+1)-[+/|T| + 1] (remember that G? is the primal part of the pd-graph G).
Moreover, Lemma implies that G contains a ((r + 1)[/|T] + 1]) x ((r +

1)[/IT| +17)-grid as a minor and as a result, by Lemma p.2.1, we get that G
contains an alternating tight sequence of r concentric cycles C = {C,...,C,}
such that none of the vertices in the closed interior of C'. isin T'. O]

We are finally in the position to state and prove our main theorem:
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Theorem 6.2.1. Let (G, P, 7) be an instance for pp-DP, where P = {(s;,1;) : i €
[k]}, for some positive integer k. Iftw(G) > 92k +1- (k- (22%*2 +4)+1) = h,
then there exists a pair (x,y) of adjoined vertices in G such that if we apply
primal-dual contraction (or removal) to them, then (G, P, 1) is a YES-instance
for pp-DP if and only if (G®¥) P, 1) is a YES-instance for pp-DP.

Proof. LetT = {s1,..., sk t1,...,tx} C V(G). We get from Lemma .2.3, that
G contains an alternating tight sequence of r = k- (22%*2 4+ 4) concentric cycles
C ={Ci,...,C,} such that all vertices in T are in the open exterior of C,..

We assume that G contains a pd-linkage whose pattern is P and let L be
a C-cheap one. It is enough to prove that V(L N C;) = 0 because we can
then choose two adjoined vertices =,y € V(C1) \ V.(G) and apply primal-dual
contraction to them while retaining the existence of L.

If & = 1, thenthe fact that L is C-cheap implies that LN D,_; = ( =
V(LN Cy) = and we are done. Therefore, we can assume that k& > 2.

Foreveryic {1,...,7}, we define Q) = (), L") whereCY) = {C},...,C;}
and L is the subgraph of L that is the the union of all connected compo-
nents of L that intersect D;. As r > k, there exists some i € [r] such that
01 is touch-free and we let Q' = (C’, L) = (C"), L") where h = max{i €
[r] : Q1 is a touch-free CL-configuration}. Clearly, C’ is tight in G and L’ is
C’-cheap. We set d = r — h and observe that the order of the pd-linkage L’ is
at most & — d while C’ has ' = r — d > 0 concentric cycles. Using the same
argument as previously, we can assume that £’ > 2, where £’ is the order of
L'. Additionaly, ¥’ < k — d, therefore 0 < d < k — 2.

As C' is tight in G and L’ is C’-cheap, by Lemma §.2.9, Q' is convex. To
prove that V(L N C;) = ( it is enough to show that all segments of Q have
positive eccentricity at least 2 which is equivalent to all segments of Q' having
eccentricity at least 2. Assume to the contrary that some segment P; of Q' has
eccentricity 1. Then, from the third condition in the definition of convexity we
can derive the existence of a sequence Py, ..., P.._1 of segments such that for
eachi € {1,...,7'}, P41 is inside the zone of P,.

This in turn implies the existence in T'(Q’) of a path of length ' from its
root to one of its leaves, therefore T(Q’) has height r’. Then, we get from
Lemma that the real height of 7/(Q’) is at most 2k’ — 3 and therefore, Ob-

servation gives that the dilation of 7(Q') is at least 57— > k'(22;:j;d4)_d >

% = 2261 4 9. Now, Lemma gives that G contains an L'-tidy
tilted grid i = (X, Z) of capacity at least 22 Finally, we get from Lemma
that G contains another pd-linkage L which is equivalent to L’ and such that
¢(L") < ¢(L'), which is a contradiction because L’ was chosen to be C’-cheap.
This concludes our proof. O
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Figure 6.2: An example of the proof of Lemma . At the right: A pd-grid
(T',x), where I is a (13 x 26)-pd-grid and the black dots correspond to x~!(p),
the green squares to x~!(d), and the red squares to x~!(c). The pd-grid en-
closed in the dashed rectangle is a pd-grid (I, x'), where I (as it is defined in
the proof) is a (13 x 18)-pd-grid and x’ = X|V(f‘)'
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LSKETCH OF AN ALGORITHM AND APPLICATIONS

7.1 Turning the result into an algorithm

We conclude by sketching a way to turn our result into an FPT-algorithm for
the pp-DP problem.

The main theorem of this thesis is Theorem which has a structural
essence and states that if the treewidth of our input pd-graph is sufficiently
large, then there exists some adjoined pair of vertices (in the central part of
some pd-grid) that are in some sense irrelevant for the problem pp-DP. Al-
though not stated explicitly here, this pair can be found algorithmically in time
that is polynomial to the size n of the pd-graph.

We claim that given an FPT-algorithm, say A, for solving pp-DP parame-
terized by the treewidth of the pd-graph in the input, one can construct an
FPT-algorithm for pp-DP parameterized by the order of the required linkage.
Such an algorithm, with input Z = (G, P, 7), works roughly as follows:

Step 1. Check if the treewidth of G is "large" (larger that the function of & that
appears in Theorem B.2.1)). If this is the case find an "irrelevant cross-
ing", apply primal-dual contraction and iterate on the new instance. If
the answer is no proceed to Step 2.

Step 2. At this point, an equivalent instance 7' = (G’, P, T) has been produced,
where the treewidth of G’ is bounded by a function of k. Employ algorithm
A to solve the problem on 7".

The "traditional" method for solving such kind of problems in graphs of
bounded treewidth is dynamic programming or expressing the problem in MSOL
(Monadic Second Order Logic) and invoking the celebrated (meta)theorem of
Courcelle. Before stating it we briefly describe MSOL.

Monadic Second Order Logic. The syntax of Monadic Second Order Logic
(MSOL) requires an infinite number of individual variables (we usually use letters
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x,y, z....) and infinite number of set variables (we usually use capital letters
X,Y,Z, ...). Monadic second-order formulas in the language of graphs are
built up from

« atomic formulas E(z,y) (adjacency between z and y), = y (equality),
X (x) (for some set variable X and individual variables x and means that
vertex x is in set X) by using negation (—), conjunction (A), disjunction
(V), logical implication (—), and bi-implication (+).

+ existential quantification 3z, 3X and universal quantification Vz, VX over
individual variables and set variables.

The semantics of MSOL are defined in the obvious way. Let 7 be a graph
property, G be a graph and G be the class of all graphs. If G has property = we
write 7(G). We say that 7 is expressible in MSOL if there exists some MSOL
formula ¢, such that

(VG €G)[G E ¢r & 7(G)]

Our statement of Courcelle's theorem, that follows, lacks formality but for more
details on MSOL and Courcelle's theorem we refer the reader to Chapter 13 of
[1Q].

Proposition 7.1.1 ([8)). If = is a graph property that is expressible in MSOL, then
there exists some computable function f such that = can be decided in linear
(to the size of the graph) time on the class of graphs of bounded treewidth.

In our case we face the problem of graphs being treated as topological
structures (embedded graphs) and not just as combinatorial ones. A way to
overcome this difficulty is to "encode" the topology of our plane graph G into
another graph G’ which is uniquely embeddable (3-connected for example),
and transform the property = that we want to decide into another property
«’ such that n’ is expressible in MSOL (hence, from Courcelle's theorem, we
automatically have a linear time algorithm for graphs of bounded treewidth)
and «(G) if and only if #'(G’). In order to achieve this we can try working an
even more enhanced version of the pd-graphs, either by considering the pd-
graph of the pd-graph of our plane graph G or using other modifications like
the radial graph (for a more detailed presentation of the previous idea, we refer
the reader to [4]). In any case, the goal is to increase the connectivity of our
initial plane graph and at some point force it to be uniquely embeddable and
thus being able to use our combinatorial toolkit.

7.2 Applications

In this section we describe some problems for which our approach can be
proved useful. For this we define a notion of critical minor containment.
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Plane minors. Given two plane graphs J and H we say that J critically con-
tains H as a plane minor, and we denote this by H <;,, J, if there exists some
injection ¢ : V(J) — V(H) such that

1. for every e = {z,y} € E(H), there exists a unique edge ¢’ in J with one
endpoint in ¢~ (x), and the other in ¢~!(y). We call each such edge ¢’ of
J bridge edge of J. We also say that e is the counterpart of ¢’ in H and
that ¢’ is the counterpart of e in J.

2. for every v € V(H), J[¢p~(v)] is a tree T, and each leaf of this tree is
incident to an bridge edge.

Notice that if H <?,, J, then there is a bijection A : F(H) — F(J) such that,
for every f € F(H), the counterparts of the edges incident to f are exactly
the bridge edges of J that are incident to A(f). We call this bijection face
correspondence between H and J.

Let G be a plane graph and let J be one of the subgraphs of G such that
H <3, J (observe that there might be several such subgraphs of G). We
denote by )\ ; the face correspondence between H and J.

We say that H is a plane minor of GG, and we denote this by H <, G, if
there exists a subgraph J of G such that H <, J.

We define two problems, which can be argued (as we see soon) to be quite
general:

MULTIWAY PLANE FACIAL SEPARATORS

Input: A plane graph G, a plane graph H where §(H) > 2,aset T C V(Q),
and a function 5 : T'— F(H).

Parameter: k = |T| + |V (H)|.

Question: Is there a subgraph J of G such that H <?,, J and for every | €
F(H), B7Yf) =T N A;(f)?

Let G be a plane graph, T C V(G). A cycle C of G is called T-avoiding if
V(C)NT = (. Given a T-avoiding cycle C bounding the open disks D; and
Dy, we define P(C) = {T'N Dy, TN Dy}, i.e., Pr(C) is a bipartition of T'.

PARTITIONING BY CYCLE SEPARATORS

Input: A plane graph G, aset T C V(G) with |T'| = r, and a collection P =
{P1,..., P} of bipartitions of T..

Parameter: k. = r +gq.

Question: Is there a collection C = {C1, ..., C,} of vertex-disjoint T-avoiding
cycles such that for each i € [q], P; = Pr(C;).

The following two problems are special cases of PARTITIONING BY CYCLE SEPA-
RATORS:
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CycLic MULTIWAY CUT

Input: A plane graph G, and a collection C = {11, ..., T, } of (possibly empty)
sets of terminals.

Parameter: & = |UC].

Question: Is there a collection of r open disks D1, ..., D, whose boundaries
are disjoint cycles of G and where T; = T'N D;, for each i € [r]?

MULTI-CYCLIC SEPARATOR

Input: A plane graph G, two disjoint sets of terminals T} and 75, and an integer
T.
Parameter: k = |T}| + |T5|.

Question: Is there a collection of cycles C1,--- , C, in G, such that, for each
C;, if D} and D? are the open disks bounded by C;, then T; = T'n D}, and
s :TQD?,WhereTZTluTQ?

All the previously defined problems share a common characteristic: They
ask for "vertices being inside cycles of faces" and as one can observe the input
graphs are always plane graphs in order for the notion of enclosure into a cycle
or into a face to be meaningful (which is not the case for graphs as combinato-
rial structures, which are just set and a binary relation on it and have nothing to
do with subsets of the plane). With some effort, which is not presented here,
all the questions for this problems can be translated to finding pd-linkages in
the pd-graphs that correspond to the input graphs and this is where our work
can contribute to.
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CONCLUSION

In this thesis we tried to shed some light, from the point of view of Computer
Science, to the area of plane graphs. We defined the notions of pd-graph and
pd-linkage and proved some structural results in this context, based on the
techniques of [2]. In the previous chapter we illustrated some "fertile ground"
where we believe that our results can be useful. It would also be interesting to
extend existing algorithmic results in the context of embedded graphs and we
think that the class of pd-graphs can be, for several cases, the in between step.
One first good candidate would be to construct an fpt-algorithm for checking if
a plane graph is a topological minor (or a minor) of another plane graph, while
respecting their topology. To conclude, it seems like the area of plane graphs
is unexplored, compared to the work that has been done in general in the area
of graph algorithms, and we think that is an area worth studying.
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