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ΠΕΡΙΛΗΨΗ

Ένα από τα επιτεύγματα με τη μεγαλύτερη επιρροή στη Θεωρία Γραφημάτων
υπήρξε χωρίς αμφιβολία η σειρά εργασιών "Ελλάσσονα
Γραφήματα" των Neil
Robertson και Paul D. Seymour, στην οποία, έπειτα από 23 εργασίες από το
1983 έως το 2011, κατάφεραν να αποδείξουν την εικασία του Wagner. Η
εικασία αυτή λέει ότι η κλάση των μη κατευθυνόμενων γραφημάτων, μερικώς
διατεταγμένων με τη σχέση ελλάσσονος γραφήματος, αποτελεί well-quasi-
διάταξη ή ισοδύναμα, για κάθε κλάση γραφημάτων που είναι κλειστή ως προς
ελλάσσονα υπάρχει ένα σύνολο από απαγορευμένα γραφήματα ως ελλάσσονα.
Μπορεί να υποστηριχθεί ότι, δεν είναι τόσο το ίδιο το τελικό αποτέλεσμα,
όσο ολόκληρη η θεωρία που αναπτύχθηκε στην πορεία που είχε, και συνεχίζει
να έχει, τεράστιο αντίκτυπο τόσο στη συνδυαστική όσο και στην αλγοριθμική
Θεωρία Γραφημάτων. Μία από τις κυριότερες συνεισφορές τους, η οποία
κατέχει και κεντρικό ρόλο στη δουλειά τους, είναι η κατασκευή ενός αλγορίθμου
που λύνει το πρόβλημα των ΔΙΑΚΕΚΡΙΜΕΝΩΝ ΜΟΝΟΠΑΤΙΩΝ σε χρόνο f(k) ·
n3, όπου k είναι το πλήθος των διακεκριμένων μονοπατιών που μας ζητείται
να βρούμε. Το βασικό συστατικό της απόδειξής τους είναι η ονομαστή τεχνική
της
άσχετης
κορυφής (για την οποία οι πλήρεις αποδείξεις δόθηκαν σε επόμενο
μέρος της σειράς) που χρησιμοποιήθηκε ευρέως στην πορεία.

Όσο σπουδαίο κι αν αποδείχθηκε πως είναι το παραπάνω αποτέλεσμα, η
συνάρτηση f που εξαρτάται από το k και εμφανίζεται στη χρονική πολυπλοκό-
τητα του αλγορίθμου, είναι ασύλληπτα μεγάλη ακόμη και για πολύ μικρές τιμές
του k. Για τον λόγο αυτόν, πολλοί ερευνητές θέλησαν να βελτιώσουν αυτήν
την παραμετρική εξάρτηση από το k, είτε προσπαθώντας να απλοποιήσουν τις
περίπλοκες αποδείξεις των δομικών θεωρημάτων για τη γενική περίπτωση, είτε
επικεντρώνοντας την προσοχή τους σε συγκεκριμένες κλάσεις γραφημάτων
των οποίων τα δομικά χαρακτηριστικά θα οδηγούσαν, ίσως, σε απλούστερες
αποδείξεις και καλύτερη παραμετρική εξάρτηση. Ένα μεγάλο βήμα όσον αφορά
την πρώτη κατεύθυνση (παρόλο που το φράγμα για το f(k) είναι 222
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, το
οποίο είναι, σαφώς, ακόμη τεράστιο) έγινε από τους Ken-ichi Kawarabayashi
και Paul Wollan στο [20]. Ένα αποφασιστικό βήμα προς τη δεύτερη κατεύθυνση,
για την κλάση των επίπεδων
γραφημάτων, έγινε από τους Isolde Adler, Stavros



G. Kolliopoulos, Philipp Klaus Krause, Daniel Lokshtanov, Saket Saurabh, και
Dimitrios M. Thilikos στο [2], όπου αποδεικνύουν ένα φράγμα για το f(k) που
είναι απλά εκθετικό ως προς k.

Βασιζόμενοι σε αυτήν την τελευταία εργασία, μελετάμε μια επέκταση του
προβλήματος των ΔΙΑΚΕΚΡΙΜΕΝΩΝ ΜΟΝΟΠΑΤΙΩΝ στην κλάση των πρωτεύοντων-
δυϊκών
γραφημάτων και χρησιμοποιώντας την ιδέα άσχετης κορυφής, αποδεικ-
νύουμε ένα δομικό θεώρημα το οποίο λέει ότι αν το δεντροπλάτος του πρωτεύοντος-
δυϊκού γραφήματος μας είναι αρκούντως μεγάλο, τότε υπάρχει (και μπορεί να
εντοπιστεί αλγοριθμικά) ένα τμήμα του το οποίο είναι άσχετο και του οποίου η
αφαίρεση από το γράφημα οδηγεί σε ένα απλούστερο και ισοδύναμο στιγμιότυπο
του προβλήματος. Επίσης, εξηγούμε πως ένας αλγόριθμος για το πρόβλημα
των ΔΙΑΚΕΚΡΙΜΕΝΩΝ ΜΟΝΟΠΑΤΙΩΝ για την κλάση των πρωτεύοντων-δυϊκών
γραφημάτων μπορεί να χρησιμοποιηθεί για την κατασκευή αλγορίθμων για προ-
βλήματα σε ενεπίπεδα γραφήματα, όπου είναι απαραίτητο να λαμβάνεται υπόψην
η τοπολογία της επίπεδης εμβάπτισης που δίνεται ως είσοδος.





ABSTRACT

One of the most influential bodies of work in Graph Theory has, undoubtedly,
been the Graph
Minor
series of Neil Robertson and Paul D. Seymour, where,
after 23 papers during the years 1983-2011, they managed to prove Wagner's
conjecture. This conjecture states that undirected graphs, partially ordered by
the graph minor relationship, form a well-quasi-ordering, or, equivalently, every
family of graphs that is closed under minors can be defined by a finite set of
forbidden minors. One can argue that it is not just the final result itself, but
whole theory built during the procedure which had, and continues to have, a
huge impact in both combinatorial and algorithmic Graph Theory. One of their
main contributions, which also has a central role in their work, is constructing
an algorithm that solves the Disjoint Paths problem in f(k) · n3 steps, where
k is the number of disjoint paths that we are asked to find. The key ingredient
of their proof is the so called irrelevant-vertex
technique (for which full proofs
only appeared in latter parts of the series), which has been used extensively
thereafter.

As great as this result was proved to be, the function f of k that appears in
the running time is immense even for very small values of k. Therefore, many
researchers tried to improve this parametric dependance on k, either by trying
to simplify the complicated proofs of the structural theorems for the general
case, or by restricting their attention to specific graph classes whose structural
characteristics would hopefully lead to simpler proofs and better parametric
dependance. A big step towards the first direction (although the bound of f(k)

is 22
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which is of course still huge) was made by Ken-ichi Kawarabayashi
and Paul Wollan in [20]. A decisive step to the second direction, for the class
of planar
graphs, was made by Isolde Adler, Stavros G. Kolliopoulos, Philipp
Klaus Krause, Daniel Lokshtanov, Saket Saurabh, Dimitrios M. Thilikos in [2],
where their bound for f(k) is just single exponential on k.

Based on this latter work, we study an extension of the Disjoint Paths prob-
lem for the class of pd-graphs and, using on the idea of the irrelevant-vertex
technique, we prove a structural theorem which states that if the treewidth of
our pd-graph is sufficiently large, then there exists (and can be found algorith-



mically) a part of it which is irrelevant and whose removal leads to a simpler
and equivalent instance. We also illustrate how an algorithm for the Disjoint
Paths problem for the class of pd-graphs can be used to construct algorithms
for problems on plane graphs, where the it is essential to respect the topology
of the plane embedding given as an input.
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CHAPTER1
INTRODUCTION

In this first section we describe the subject of this thesis, although some of
the notions used here are only defined later. The reader that is not familiar
with the basics of Computational Complexity and Graph Theory, is advised to
postpone the reading of this introduction until the end of Chapter 3. We first
present the Disjoint Paths problem, along with some important results, and
then we briefly discuss its connection with our subject.

1.1 The
Disjoint
Paths
Problem

One of the most central problems in graph theory, from the algorithmic point
of view, is to efficiently decide whether two nodes v, u of a graph G belong to
the same connected component of G, i.e. if there exists some path of G with
endpoints v and u. To state it more formally:

Reachability
Input: A graph G = (V,E), and two vertices v, u ∈ V .
Question: Is there a path P with endpoints v and u in G?

It is widely known that the Reachability problem admits polynomial time algo-
rithms (depth-first search, breadth first search). One can wonder though what
happens if we wish to determine whether there exist paths between multiple
pairs of vertices in a given graphG. Of course if we allow our paths to intersect
on edges, then an answer can be obtained in polynomial time using one of the
algorithms that we already now for solving Reachability. But what happens
if we demand our paths to be edge-disjoint or even vertex-disjoint, meaning
that two or more paths cannot share an edge or vertex, respectively? In this
work we will focus on the vertex-disjoint version of the problem:

1



1.1. THE DISJOINT PATHS PROBLEM

Disjoint Paths (DP)
Input: An undirected graph G = (V,E), and a set P = {(si, ti) | i =
1, . . . , k} of pairs of vertices of G.
Question: Do there exist paths P1, . . . , Pk of G which are mutually
vertex-disjoint and such that the endpoints of Pi are si and ti, for every
i ∈ [k]?

We will sometimes refer to the collection of pairs of vertices P, as the pat-
tern of the input and to the vertices of its pairs, as terminals.

DP was shown to be NP-complete by Karp in [16] and the same holds even
if the input graph is restricted to be planar as proven in [41]. NP-completeness
is also the case for the edge-disjoint and directed variants of DP, as indicated
by [25] and [22].

What happens if we are given a really large graph, i.e. n is very big, but
we are asked to find two disjoint paths connecting two given pairs of vertices?
The question translates to whether there exists some efficient (polynomial?)
algorithm for solving DP when k is fixed to be two and the answer was given in
1980 with the polynomial algorithms presented independently in [36], [37] and
[39].

But as almost always happens natural questions keep coming: What is
the best we can do if the number of pairs we want to join with a path is fixed,
meaning that it is not part of the input but is given as a parameter. Or, if we want
to express it in terms of Parameterized Complexity, what is the complexity of
the following parameterized problem?

p-Disjoint Paths (p-DP)
Input: An undirected graph G = (V,E).
Parameter: Positive integer k and a set P = {(si, ti) | i = 1, . . . , k} of
k pairs of vertices of G.
Question: Do there exist paths P1, . . . , Pk of G which are mutually
vertex-disjoint and such that the endpoints of Pi are si and ti, for every
i ∈ [k]?

The answer was given by Robertson and Seymour in the 13th part of their
Graph Minor series of papers, [31], as they presented an algorithm that solves
p-DP in f(k) ·n3 steps, where f is some computable function, thus classifying
p-DP in FPT (actually they considered the DP problem as the framework of
parameterized complexity was not explicit at that time). This algorithm has a
central role in their work, which ends up to proving the Wagner's conjecture
[32], which is considered to be one of the greatest and most influential achieve-
ments of graph theory in the last decades.
The algorithm in [31] is based on the irrelevant-vertex
technique, which devel-
oped by Robertson and Seymour and used widely ever since in many combi-
natorial problems (see for example [7], [8], [13], [17], [18], [19] and, [14]) and is
based on the following idea when applied to a problem Π on graphs:

2



CHAPTER
1. INTRODUCTION

As long as the input graph G violates some specified structural conditions,
there exists (and can be found efficiently), a solution-irrelevant vertex, i.e. a ver-
tex of G whose deletion does not result to a different answer to the question
imposed in problem Π. One then iteratively locates and removes such irrele-
vant vertices until the structural conditions are met, at which point the graph
has been simplified enough and the problem can be solved using known tools.

For the case of DP problem, an irrelevant vertex is a vertex of the input
graph G with the following property: Any collection of paths in G that certifies
a solution can be transformed into an equivalent one (meaning that it links the
same pairs of vertices) in G \ {v}, which roughly suggests that vertex v is not
necessary to link the given pairs of vertices and thus can be discarded. The
structural conditions used by the algorithm in [31] are the following two:

(i) G excludes a clique, of a certain size which depends on k, as a minor.

(ii) The treewidth of G is bounded by a function, say g, of k.

The most complicated part of their proof, on which the correction of their algo-
rithm heavily relies, and which was postponed until the later papers [33], [34],
was to show that when Condition (i) is met, i.e. graph G does not contain any
"big" clique-minors, if tw(G) ≥ g(k), then there exists an irrelevant vertex. The
drawback of this algorithm is that the parametric dependance on k, expressed
by f(k), is huge due to the bounds that arise from the complicated proofs,
making it almost useless for practical purposes (and remember that one of the
main motivations of parameterized algorithms is to fight intractability through
fine-grained analysis and ultimately to be able to solve an NP-complete (or
harder) problem efficiently (in practical and terms) when some parameters are
bounded). Consequently, this need to greatly improve the parametric depen-
dance that emerges from the structural theorems in the Graph Minor series,
lead the researchers to either try to simplify parts of the proofs in the series (as
in [20] where a 22

22
Ω(k)

, still pretty huge, lower bound is achieved for f(k)) or
to restrict their attention to specific graph classes whose structural character-
istics will hopefully lead to simpler proofs and better parametric dependance.

1.2 About
this
thesis

In this thesis we study an extension of the DP problem in the class of pd-
graphs, which will be defined formally in the next section, thus working in the
context of the second direction as described previously.

We are based on the work of Adler et al. [2]. Actually some of our proofs
are similar to the ones given in [2], but we nevertheless present all proofs here
in order to provide a complete picture. The problem that they study is the
following:

3



1.2. ABOUT THIS THESIS

Planar Disjoint Paths (PDP)
Input: An undirected planar graph G = (V,E) and a set P={(si, ti) | i =
1, . . . , k} of k pairs of vertices of G.
Question: Do there exist paths P1, . . . , Pk of G which are mutually
vertex-disjoint and such that the endpoints of Pi are si and ti, for every
i ∈ [k]?

The main results of their work are the followings:

Proposition 1.2.1. Every
 instance
of PDP consisting
of
a
planar
graph G of
treewidth
at
least O(2k) and k pairs
of
terminals, contains
a
vertex v such
that
every
solution
to
PDP can
be
replaced
by
an
equivalent
one
whose
paths
avoid
v.

This result has a structural essence and states that if a planar graph has
"big enough" treewidth then there certainly exists some vertex v of G that can
be avoided (actually they prove that not only there exists some solution that
avoids v, but any solution can be transformed into one that avoids v).

Proposition 1.2.2. There
exists
an
algorithm
that, given
an
instance (G,P) of
DP,
where G is
an n-vertex
graph
and |P| = k, either
reports
that (G,P) is
a
NO-instance
or
outputs
a
solution
of
PDP for (G,P). This
algorithm
runs
 in
O(k) · n2 steps.

Their second result is algorithmic and basically turns the irrelevant vertex
technique into an algorithm (as described briefly previously): If the treewidth of
the input graph is "big enough", the algorithm finds an irrelevant vertex (which
is guaranteed to exist as the structural condition in this case is exactly the
treewidth being "big enough") and removes it. This is done iteratively until the
treewidth of the graph becomes sufficiently small and the problem is attacked
directly using already known algorithms.

Our
problem. Before proceeding to the next chapter where we develop all
its needed in order to state our problem, we give a brief description. A pd-
graph can be though of as a plane graph and its dual graph considered as one
embedding where new vertices are introduced at each intersection of edges
of the initial graph and its dual (in order for our structure to be plane). Then,
the vertex set of our graph is naturally partitioned into three sets: the primal
vertices (which correspond to the vertices of the initial graph), the dual
vertices
(which correspond to the vertices of the dual) and the crossing
vertices (which
correspond to the vertices introduced at the intersections). See Figure 1.2 for
a simple example.

The reason why we are interested in this kind of embedded structures and
not just planar graphs as combinatorial structures (where an embedding is not
necessarily unique and therefore one cannot talk about the topology of a pla-
nar graph), is because we wish to study problems that are also related to the
topology of a plane graph. For example, someone could be interested in solv-
ing problems where the embedding Γ of a planar graph, i.e. a planar graph, is
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given and the task is to "find something inside (or outside) a face of Γ". It is
clear that such kind of questions are not well defined in the context of planar
graphs. The notion of pd-graph is used to "translate" the topological proper-
ties of a plane graph into combinatorial ones in order to unlock the rich toolbox
of Combinatorial Graph Theory and address questions of topological nature.

Then, the variant of the DP problem that we study differs on the following
sense: Each pair of the collection P of the input is either a primal
pair or a
dual
pair and and if (si, ti) ∈ P is a primal (resp. dual) pair we demand that in
a solution the path with endpoints si and ti does not contain any dual (resp.
primal) vertices. Having this problem in mind, we prove some structural results
leading to the existence of some irrelevant part of the input graph, given that
it satisfies some structural condition.

Figure 1.1: A plane graph at the left and a corresponding pd-graph at the right.
The black dots correspond to the primal vertices, the green squares to the dual
vertices, and the red squares to the crossing vertices.
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CHAPTER2
BASIC NOTATION

This second chapter contains some basic notation used throughout this thesis
as well as some brief introduction to graphs (for a more detailed presentation
see [9]) and some width parameters on graphs.

2.1 Basics
N,Z,Q and R denote the sets of natural numbers, integer numbers, rational
numbers and real numbers, respectively. For every n ∈ N , we define [n] to be
the set {1, 2 . . . , n}. Let S be a set, we denote by 2S the set of all subsets of
S and for every k ∈ {0, 1 . . . , |S|} we denote by 2Sk the set of all subsets of S
with exactly k elements.

2.2 Graphs
Graphs. A (simple) graph G = (V,E) is a pair of sets, V and E, where E ⊆
{{v, u} ∈ 2V | u ̸= v}. The elements of V and E are called the vertices and the
edges of the graph G, respectively. Given a graph G, we denote by V (G) and
E(G) the vertices and edges of G, respectively.
A structure G = (V,E) is called a multigraph if E is allowed to be a multiset
and can contain {v, v} for some v ∈ V (such an element is called a loop).
A directed
graph G = (V,A) is a pair of sets, V and A, where A =⊆ {{v, u} ∈
V × V | u ̸= v}. The elements of A are called arcs of G and given an arc
a = (u, v) ∈ A, u and v are called the head and the tail of a, respectively.

Operations
on
graphs. Let G = (V,E) be a graph and let v ∈ V be a vertex
of G. We say that NG(v) = {u ∈ V : {v, u} ∈ E} is the open
neighborhood of
v in G and NG(v) = {u ∈ V : {v, u} ∈ E} the closed
neighborhood of v in G.
We define the graph obtained from G if we delete vertex v, as the graph whose
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vertex set is V \ {v} and edge set is E \ {{v, u} : u ∈ NG(v)} and denote this
graph by G \ {v} (or just G \ v). Let A ⊂ V , we denote by G \ A the graph
obtained by deleting all vertices in A from G.
We define the graph obtained from G if we delete edge e ∈ E, as the graph
whose vertex set is V and edge set is E \ {e} and denote this graph by G \ {e}
(or just G \ e). Let F ⊂ E, we denote by G \ F the graph obtained by deleting
all edges in F from G.

Subgraphs
and
induced
subgraphs. Let G = (V,E) be a graph. We say
that a graph H is a subgraph of the graph G if H can be obtained from G after
a sequence of vertex and edge deletions (for an example see Figure 1.1).
Let A ⊆ V . We denote by G[A] the subgraph of G whose vertex set is A

and edge set is E(G[A]) = {e = {u, v} ∈ E : {u, v} ⊆ A}. We call G[A] the
subgraph of G that is induced by the vertices in A ⊆ V (for an example see
Figure 2.2).

Figure 2.1: A graph G (at the left) and the subgraph H induced by the vertices
that are colored red in G (at the right).

Paths
and
cycles. Let G = (V,E) be a graph. A path P in G is a subgraph of
G whose vertex set is some subset {v1, v2, . . . , vk} of V and whose edge set
is {{vi, vi+1} : 1 ≤ i ≤ k − 1}. If k = 1 we say that P is a trivial path and when
k ≥ 1 we define the length of P to be k − 1. The vertices v1 and vk are called
the endpoints of P .
A cycleC inG is a subgraph ofGwhose vertex set is some subset {v1, v2, . . . , vk}
of V and whose edge set is {{vi, vi+1} : 1 ≤ i ≤ k − 1} ∪ {v1, vk}. If k = 1 we
say that C is a trivial cycle and when k ≥ 1 we define the length of C to be k.
We say that the graph G is connected if for every two vertices u, v ∈ V , there
exists a path in G with endpoints v and u. Let k ∈ N, we say that the graph G
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is k-connected if for any A ⊂ V with |A| ≤ k−1, the graph G\A is connected.

Figure 2.2: At the right: A path of length 3 in graph G (bold edges). A cycle of
length 3 (or a triangle) (dashed edges). At the left: The subgraph H that results
from G by deleting the vertices v1 and v2 and the edges e1, e2 and e3.

Minors. A graph H is a minor of a graph G, if there exists a function ϕ :

V (H) → 2V (G) such that

1. For every u, v ∈ V (H) with u ̸= v, G[ϕ(u)] and G[ϕ(v)] are two vertex-
disjoint connected subgraphs of G.

2. For every edge e = {u, v} ∈ E(H), G[ϕ(u) ∪ ϕ(v)] is a connected sub-
graph of G.

Topological
minors. We say that a graph H is a topological
minor of a graph
G if there exists an injective function ϕ0 : V (H) → V (G) and a function ϕ1 :

E(H) → P(G) such that

• for every edge {x, y} ∈ E(H), ϕ1({x, y}) is a path between ϕ0(x) and
ϕ0(y).

• if two paths in ϕ1(E(H)) have a common vertex, then this vertex should
be an endpoint of both paths.

Given the pair (ϕ0, ϕ1), we say that H is a topological
minor
of G via (ϕ0, ϕ1).

Planar, plane, and
outerplanar
graphs. A graph G is called planar if it can
be embedded in the plane R2 (or equivalently in the sphere S2 = {(x, y, z) ∈
R3 : x + y + z = 1}) in such a way that there are no two edges of it whose
embeddings intersect (they can meet only at their endpoints). Such an em-
bedding is called a planar
embedding
of G and we say that such it is a plane

9
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Figure 2.3: The graph H1 is a topological minor of the graph G (certified by the
circled vertices of G and the dashed edges of G) and the graph H2 is a minor
of G (consider the function ϕ : V (H) → 2V (G) that sends a vertex of H2 to the
subset of vertices of G of the same color and observe that each "color class"
in G induces a connected subgraph.

graph (observe that a planar graph can have more than one planar embeddings
that can also be different from a topological point of view). Given a plane graph
G we denote its faces by F (G), i.e. F (G) is the set of the connected compo-
nents of R2 \ G (in the operation R2 \ G we treat G as the set of points of R2

corresponding to its vertices and its edges).
The dual, G∗, of a plane (planar) graph G is also a plane (planar) graph and has
one vertex for each face of G. There is an edge between two vertices of G∗ if
and only if the boundaries of their corresponding faces share an edge (observe
that if a plane graph is not connected it can have, two or more, different (from
a topological point of view) dual graphs). For an example of a plane graph and
its corresponding dual graph see Figure 2.2.
An outerplanar graph is a plane graph whose vertices are all incident to the
infinite face. If an edge of an outerplanar graph is incident to its infinite face
then we call it external, otherwise we call it internal. The weak
dual of an out-
erplanar graph G is the graph obtained from the dual of G after removing the
vertex corresponding to the infinite face of the embedding. We call a face of
an outerplanar graph simplicial if it corresponds to a leaf of the graph's weak
dual. For an example see Figure 2.2.

2.3 Width
parameters
Treewidth. A tree
decomposition of a graph G is a pair (T, χ), consisting of
tree T and a mapping χ : V (T ) → 2V (G), such that for each v ∈ V (G) there
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Figure 2.4: A plane graph (black) embedded in the plane along with its dual
graph (red). There is one dual vertex (red square) for every face of the plane
graph. Any edge of the black graph is on the boundary of exactly two of its
faces which are connected by an edge in the dual (red) graph.

exists t ∈ V (T ) with v ∈ χ(t), for each edge e ∈ E(G) there exists a node
t ∈ V (T ) with e ⊆ χ(t), and for each v ∈ V (G) the set {t ∈ V (T ) | v ∈ χ(t)} is
connected in T. (for an example see Figure 2.3). The width of (T, χ) is defined
as width(T, χ) := max

{
|χ(t)| − 1

∣∣ t ∈ V (T )
}
. and the tree-width
of G is

defined as

tw(G) := min
{
width(T, χ)

∣∣ (T, χ) is a tree decomposition of G
}
.

Grids. Let m,n ≥ 1. The (m × n)-grid is the Cartesian product of a path of
length m − 1 and a path of length n − 1. In the case of a square
grid where
m = n, we say that n is the size of the grid. Given that n,m ≥ 2, the corners
of an (m× n)-grid are its vertices of degree 2. When we refer to a (m× n)-grid
we will always assume an orthogonal orientation of it that classifies its corners
to the upper
left, upper
right, down
right, and down
left corner of it.

Given that Γ is an (m×n)-grid, we say that a vertex ofG is one of its centers
if its distance from the set of its corners is the maximum possible. Observe that
a square grid of even size has exactly 4 centers. We also consider an (m× n)-
grid embedded in the plane so that, if it has more than 2 faces then the infinite
one is not a square. The outer
cycle of an embedding of a (m×n)-grid is the one
that is the boundary of its infinite face. We also refer to the horizontal and the
vertical
lines of a (m× n)-grid as its paths between vertices of degree smaller
than 4 that are traversing it either "horizontally'' or "vertically'' respectively.
We make the convention that an (m × n)-grid contains m vertical lines and n

horizontal lines. The lower
horizontal
line and the higher
horizontal
line of Γ are

11
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Figure 2.5: An outerplanar graph at the left and its weak dual at the right. Its
simplicial faces are f1, f2 and f3, e1 is an internal edge, and e2 is an external
edge.

defined in the obvious way (for an example see Figure 2.3).

Branchwidth. A branch
decomposition of a graph G is a pair (T, τ), where
T is a tree with vertices of degree one or three and τ is a bijection from E(G)

to the set of leaves of T . The order
function ω : E(T ) → 2V (G) of a branch
decomposition maps every edge e of T to a subset of vertices ω(e) ⊆ V (G)

as follows. The set ω(e) consists of all vertices v ∈ V (G) such that there exist
edges f1, f2 ∈ E(G) with v ∈ f1∩f2, and such that the leaves τ(f1), τ(f2) are in
different components of T−{e}. Thewidth of (T, τ) is equal to maxe∈E(T ) |ω(e)|
and the branchwidth ofG is the minimum width over all branch decompositions
of G.

We will now state a proposition that follows directly by combining the next
two results:

Result
1.([15]) If G is a planar graph and bw(G) ≥ 3k + 1, then G contains a
(k × k)-grid as a minor.

Result
2.([30]) If G is a graph, then bw(G) ≤ tw(G) + 1 ≤ 3
2 · bw(G).

Proposition 2.3.1. If
G is
a
planar
graph
and tw(G) ≥ 4.5·k+1, thenG contains
a (k × k)-grid
as
a
minor.
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Figure 2.6: At the top there is a graph on 10 vertices and at the bottom a tree
decomposition of it with width 3. It is easy to confirm that any tree decomposi-
tion of this graph has width at least 3, thus the treewidth of the depicted graph
is 2.

Figure 2.7: A (13× 6)-grid is depicted. Its corners are the red vertices and its
centers are the two blue vertices. The outer cycle is the bold rectangle that
contains the corners of the grid.
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CHAPTER3
FUNDAMENTALS OF ALGORITHMS AND

COMPLEXITY

3.1 Brief
history
of
Theoretical
Computer
Science

In this section we attempt to present a brief overview of the history of Compu-
tational Complexity in order to define some complexity classes related to the
topic of this thesis.

An important question in Mathematics, that appeared throughout their his-
tory, is whether for a given problem there exists a way for solving it that can
be clearly formulated and consists of "simple" steps or computations. This
is what we think of a problem that can be solved "algorithmically". Some-
one could wonder whether there provably exist problems that do not have the
aforementioned property. Mathematicians studied these notions and devel-
oped a branch of Mathematics that is called Computability
Theory and which
gave birth to Theoretical
Computer
Science as we know it today.
But what does "algorithmically" mean? In order to properly define this notion,
one needs to fix a model
of
computation which, intuitively, specifies the capa-
bilities of the "machine" that executes our algorithms. The most widely used
model, especially for theoretical purposes, is the Turing
machine. As the topic
of computational models is out of the scope of this thesis, the reader is reffered
to [23] for an extensive introduction. `

The birth of computers and the idea of "machines" being able to execute
long and complicated computations for us, introduced a new parameter in the
Theory of Computation:

Efficiency!

The notion of efficiency was central in the analysis of computational prob-
lems and initiated the research for algorithms that achieve better performance
than the existing ones. The two main measures of efficiency are space and
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time, and in this thesis we will focus on the latter. Given these new param-
eters, computational problems can be classified further in complexity
classes
based on the efficiency of algorithms that solve them. Undoubtedly, the most
well known complexity classes are P and NP, where P contains the problems
that can be solved efficiently (there exist deterministic algorithms that solve
them in time that is bounded by a fixed polynomial on the size of the input) and
NP contains the problems which require nondeterminism in order to be solved
in polynomial time. It is widely believed that P ̸= NP, which can be roughly
translated to the fact that there exist computational problems for which any al-
gorithm solving them needs exponential time. Consequently, most computer
scientists face at some point the following question when studying a compu-
tational problem:
Is
there
an
efficient
algorithm
solving
the
problem
of
interest? If
not, is
it
pos-
sible
to
provide
some
evidence
that
it
cannot
be
solved
efficiently?

The natural approach to address these questions is either trying to come up
with a polynomial time algorithm that solves the problem (which places it in P)
or proving that, assuming P ̸= NP, it is in NP but not in P. This can be done by
reducing an NP-complete problem to the problem of interest. Roughly speak-
ing, NP-complete problems are the hardest in the class NP and the reduction
of such a problem to another problem suggests that the latter is at least as
hard, thus characterized as intractable. For more information about the theory
of NP-completeness we refer the reader to [12].
The construction of a polynomial time algorithm is usually the best outcome
one can hope for (recently this becomes more and more inaccurate as we need
to solve problems where the input is huge; the running time of a polynomial n4
algorithm when the input is the web network does not seem appealing at all! In
many cases even a linear algorithm can be practically useless and this means
that the desired algorithm does cannot access or store all of its input. For more
information on the subject we refer the reader to [35]. But what happens if we
prove that our problem is NP-complete? Is this the end of the story? Fortu-
nately, the answer is no and we briefly present the main side roads one can
choose from:

• Approximation: A very important class of problems is the one of opti-
mization
problemswhere the task is to find the best
solution from all feasi-
ble solutions. Unfortunately, many optimization problems have proved to
be NP-complete. When the need for an exact solution is not imperative, a
way to overcome this difficulty is trying to design efficient algorithms that
find a solution which is guaranteed to be"close" to the optimal. Of course
an analogue of intractability arises in this setting too and much work has
been done in the direction of proving innaproximability and lower
bounds
results. Approximation algorithms have been developed rapidly in the
last decades and proved to be a very fruitful area. For an extensive in-
troduction we refer the reader to [42] and [40].

• Use
of
 randomness: Another tool that can be used to cope with an
NP-complete problem is randomness and the study of randomized al-
gorithms was spurred by the discovery of a randomized primality test
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[38]. The main idea of this approach is roughly the following: In order
to "prune" some of the branches of computation, which seem to be un-
avoidably exponential (under worst-case analysis) when trying to solve an
NP-complete problem, the randomized algorithm makes some random
choices and based on them, and probably other deterministic compu-
tation, produces an answer. One has to distinguish between algorithms
that use randomness in order to reduce the expected running time and
always terminate in bounded time producing the right answer (called Las
Vegas
algorithms) and algorithms that terminate in polynomial time but
there is a chance that they produce a wrong answer or no answer at all
(called Monte
Carlo
algorithms). Having designed a randomized algo-
rithm for a problem, it is sometimes possible to produce a deterministic
algorithm solving the same problem. This procedure is known as deran-
domization and has attracted much attention recently. More information
about randomized algorithms can be found in [27] and [26] and for some
information about the complexity classes that arise from randomized al-
gorithms see [24] and [3].

• Parameterization: When a problem is NP-complete, any exact deter-
ministic algorithm that solves it takes (in the worst case) exponential (or
at least superpolynomial) to n time, where n is the length of the input.
The parameterized complexity point of view examines whether this ex-
ponential explosion on the running time unavoidably "spreads" to a large
part of the input (meaning a part whose length depends on n) or there
are some particular parameters of the problem which cause the increase
on the running time. For some NP-complete problems that are of great
in importance in other areas, such as biology, there were algorithms that,
although being exponential in the worst case, worked efficiently in prac-
tice. Then a natural question arose:

Are
there
some
parameters
in
these
particular
problems
which
happen
to
be
bounded
and
this
way
"soften"
the
intractability? Can
theory
formalize
this
phenomenon
and
study
it
methodically?

Research has shown that such parameters exist for many, previously
classified as intractable, problems and when restricted to the case where
they are bounded, there exist algorithms that justify their placement into
the sphere of tractability. The related area, which has gained much at-
tention recently, is called Parameterized
Complexity and the algorithms
designed in this setting are called parameterized (or multivariate) algo-
rithms.
As Parameterized Complexity is closely related to the topic discussed in
this thesis, we will give some formal definitions and references in follow-
ing subsection.

All the previously mentioned methods have been studied extensively in the
last decades and each one of them constitutes a wide research area in the
frame of Theoretical Computer Science. Of course ideas and techniques from
any of these areas "flow" between them and researches are always interested
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in combining notions from some of or all the fields, as, for example, indicated
(already in the title) by [28].

3.2 Parameterized
Complexity
and
Algorithms
Let Σ be an alphabet (for example Σ can be the set {0, 1}) and let Σ∗ (the Kleene
star of Σ) be the set of all finite sequences with elements from Σ.

Parameterized
 languages
and
problems. We will call every subset L of
Σ∗ × N a parameterized
language and for every element (x, k) ∈ L ⊆ Σ∗ × N
we will say that k is the parameter and x the main
input. For every k ∈ N, we
call Lk = {(x, k) : (x, k) ∈ L} the kth slice of L.
A decision problem Π is called a parameterized
problem if any instance of it is
encoded as a pair (x, k) ⊆ Σ∗ × k. We will say that (x, k) is a YES-instance for
Π if (x, k) encodes an instance for which the question imposed in problem Π is
answered positively, and will write (x, k) ∈ Π. Otherwise we will say that (x, k)
is a NO-instance for Π if (x, k) and will write (x, k) /∈ Π. If Π is a parameterized
problem then it naturally defines the parameterized language

LΠ =
{
(x, k) ∈ Σ∗ × k | (x, k) ∈ Π

}
Fixed-parameter
 tractability. We say that a parameterized problem Π is
fixed
parameter
 tractable if and only if there exists an algorithm A (or more
formally a deterministic Turing Machine), a constant c, and a computable func-
tion f such that, for all (x, k) ∈ Σ × k, A

(
(x, k)

)
runs in time at most f(k)|x|c

(where |x| is the length of x) and

(x, k) ∈ LΠ ⇐⇒ A
(
(x, k)

)
= 1

The class of all fixed-parameter tractable problems is called class FPT and is
considered as the class of efficiently solvable problems in the world of Param-
eterized Complexity (can be thought of as the analog of P in terms of classical
complexity).

There are also complexity classes that represent the intractable parame-
terized problems (such as the W-hierarchy, the A-hierarchy and XP) but their
study is out of the scope of this thesis. For a nice introduction see [29] and for
more advanced topics see [11], [10], and [6].

18



CHAPTER4
DEFINITIONS

4.1 Plane
graphs
and
pd-graphs

All graphs we consider are loop-less and may have multiple edges. We say that
a graph is plane when it is embedded, without crossings between its edges,
in the sphere S2 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1}, and we treat it as its
embedding in S2 or as the union of points that correspond to its vertices and
edges. We will use the term general
graph to stress that a graph is treated
as a combinatorial structure and not as a topological (embedded) one. Let A
be a subset of R2 (when we write R we refer to the plane with the standard
euclidean metric). We define int(A) to be the interior of A, cl(A) its closure
and bnd(A) = cl(A) \ int(A) its boundary.

We define a closed arc (resp. open arc) α to be a subset of R2 that is
homeomorphic to [0, 1] (resp. (0, 1)), meaning that there exists a bicontinuous
function f : [0, 1] → α (resp. f : (0, 1) → α). We call f(0) and f(1) the endpoints
of arc α. For a closed arc α (that corresponds to function f : [0, 1] → α) we
define trim(α) as the corresponding open arc α′ = α \ {f(0), f(1)}. Observe
that the faces of a plane graph are open sets and its edges are (open) arcs.

We say that two paths, P1 and P2, of a graph G are disjoint if none of the
internal vertices of the one is a vertex of the other. A path is non-trivial if it
contains at least two vertices. Given a graph G we denote by P(G) the set of
all the paths in G.

Topological
isomorphism
of
plane
graphs. Let G be a graph and Γ be a
plane graph. We denote by C(G) the set of the connected components of G.
For every f ∈ F (Γ) we denote by BΓ(f) the graph induced by the vertices and
edges of Γ whose embeddings are subsets of bd(f).

We define a closed
walk of a graphG to be a cyclic orderingw = (v1, . . . , vl, v1)

of vertices of V (G) such that for any two consecutive vertices, say vi, vi+1,
there is an edge between them in G, i.e., {vi, vi+1} ∈ E(G). Note here that
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there may exist two distinct indices i, j such that vi, vj ∈ w and vi = vj (the
walk can revisit a vertex). We say that a walk w of a plane graph Γ is facial if
there exists fi ∈ F (Γ) and Θj ∈ C(BΓ(fi)) such that the vertices of w are the
vertices of V (Θj) and the cyclic ordering of w indicates the way these vertices
are met when making a closed walk along Θj while always keeping fi on the
same side of the walk.

Given that Γ is a plane graph and w = {w1, . . . , wp} is a non-empty set of
closed walks of Γ, we say that w is a facial
mapping if there exists some face
f of Γ such that C(BΓ(f)) = {Θ1,Θ2, . . . ,Θp} and wj is a facial walk of Θj ,
j ∈ [p]. Given a plane graph Γ and f ∈ F (Γ), we define w(f) as the facial
mapping of Γ corresponding to f . Observe that for every face f ∈ Γ(F ), its
facial mapping w(f) is unique (up to permutations).

Let Γ and ∆ be two plane graphs. We say that Γ and ∆ are topologically
iso-
morphic if they are isomorphic via a bijection g : V (Γ) → V (∆) and there exists
a function h : F (Γ) → F (∆), such that for every f ∈ F (Γ), g(w(f)) = w(h(f))

(where g(w(f)) is the result of applying g to every vertex of every closed walk
in w). We call the function α : V (Γ)∪F (Γ) → V (∆)∪F (∆) such that α = g∪h,
a topological
isomorphism between Γ and ∆. Given two plane graphs G1 and
G2 we say that they are the same graph if they are topologically isomorphic
(and not just isomorphic).

Vertex
dissolution. Let G be a graph and let v ∈ V (G) such that degG(v) =

2 and NG(v) = {x, y}. We say that G′ is the graph obtained from G after
dissolving vertex v, if V (G′) = V (G) \ {v} and E(G′) = (E(G) ∪ {x, y}) \
({v, x} ∪ {v, y}). If G is plane and we dissolve a vertex v ∈ V (G), we can just
remove the point that represents v in the embedding of G and join the two arcs
that correspond to the edges adjacent to v.

Primal-dual
graphs. Let G be a plane graph. Observe that G does not nec-
essarily have a unique embedding. We denote by duals(G) the set of all differ-
ent duals of G (by "different'' we mean mutually not topologically isomorphic).
Given a plane graph J ∈ duals(G), we define pd(G, J) as the plane graph
obtained if we consider both embeddings of G and J such that in the result-
ing embedding, every edge e of E(G) intersects its dual edge e∗ in E(J) at
only one point. For each such intersection we introduce a new vertex, ve, and
we embed it on the intersection point. We call pd(G, J) a primal-dual
graph
or of G. The vertex set of pd(G, J) is naturally partitioned to the primal ver-
tices, i.e., the vertices of G, the dual vertices, i.e., the vertices of J , and the
crossing vertices in the set {ve | e ∈ E(G)}. We denote these three sets by
Vp(pd(G, J)), Vd(pd(G, J)), and Vc(pd(G, J)) respectively and we say that two
vertices ofG are of the same type if they belong to the same set of the partition
{Vp(pd(G, J)), Vd(pd(G, J)), Vc(pd(G, J))}. For an example see Figure 4.1.

Given a path P of pd(G, J), we call it a primal
path (resp. dual
path) if
V (P ) ⊆ Vp(pd(G, J))∪Vc(pd(G, J)) (resp. V (P ) ⊆ Vd(pd(G, J))∪Vc(pd(G, J)))
and not both its endpoints are in Vc(pd(G, J)). Notice that a primal path in
pd(G, J) may intersect with a dual path only in vertices in Vc(pd(G, J)) and
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that the vertices of a primal (resp. dual) path alternate between primal (resp.
dual) type and crossing type. Given a cycle C in pd(G, J) we say that C is of
primal
type or is a primal
cycle (resp. dual
type or is a dual
cycle) if C is the
union of two primal (resp. dual) paths of G.

We also define the primal
edges (resp. dual
edges) of pd(G, J) to be the
set Ep(pd(G, J)) =

{
{u, v} ∈ E(pd(G, J)) | {u, v} ∩ Vd(pd(G, J)) = ∅

}
(resp.

Ed(pd(G, J)) =
{
{u, v} ∈ E(pd(G, J)) | {u, v} ∩ Vp(pd(G, J)) = ∅

}
). Clearly,

this is a partition of E(pd(G, J)), as any edge has exactly one endpoint in
Vc(pd(G, J)). Given a two vertices s, t ∈ V (pd(G, J)), we say that (s, t) is a
primal (resp. dual) pair of pd(G, J) if |{s, t} ∩ Vc(pd(G, J))| ≤ 1 and {s, t} ∩
Vd(pd(G, J)) = ∅ (resp. {s, t} ∩ Vp(pd(G, J)) = ∅).

A plane graph is called pd-graph if it is the primal-dual graph pd(G, J) for
some plane graph G and some J ∈ duals(G). Notice that if G is a connected
plane graph then duals(G) contains only one graph which we denote by G∗

and therefore its pd-graph is also unique, the primal-dual graph pd(G,G∗), and
we denote it by pd(G).

When we are given a pd-graph we will assume that the partition of its ver-
tices to primal, dual, and crossing is also given and we will denote by Gp (resp.
Gd) the graph obtained if we dissolve all crossing vertices in G[Vp(G)] (resp.
G[Vd(G)]). The plane graph Gp (resp. Gd) is the primal
part (resp. dual
part) of
G.

Figure 4.1: A plane (connected) graph on the left and the corresponding
(unique) pd-graph on the right. The black dots (resp. lines) represent the pri-
mal vertices (resp. edges), the red squares the crossing vertices and the green
squares (resp. lines) the dual vertices (resp. edges).

We are now in the position to formally define the problem of interest:
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pd-Disjoint Paths (pd-DP)
Input: A pd-graph G = (V,E), a collection P = {(si, ti) ∈ 2V2 , i ∈ {1, . . . , k}}
of k disjoint pairs of terminals of G and a mapping τ : P → {p, d}.
Question: Are there k pairwise vertex-disjoint paths P1, . . . , Pk in G such that
for i ∈ {1, . . . , k}, Pi has endpoints si and ti and additionaly Pi is a primal
path iff τ

(
(si, ti)

)
= p?

Primal-dual
contraction. Let G be a pd-graph. We call two vertices x1 and
x2 adjoined if they have as a common neighbor a vertex y ∈ Vc(G) and they
either are both in Vp(G) or are both in Vd(G). We then say that vertices x1 and
x2 are adjoined
through vertex y. The operation of primal-dual
contraction of
two adjoined vertices x1 and x2 is defined as follows:

1. Delete vertices y, x1, x2 from G.

2. Add a new vertex x1,2 and the edges {{x1,2, v} | v ∈ (NG(x1)∪NG(x2))\
{y}}.

The operation of the primal-dual
removal of x1 and x2 is the operation of the
primal-dual
contraction of the vertices in NG(y) \ {x1, x2}.
Observe that the operation of the primal-dual contraction of the adjoined ver-
tices x1, x2 in G, results to a new pd-graph, which we denote by G(x1,x2) . For
an example see Figure 4.1.

Figure 4.2: An illustration of the primal-dual contraction of two adjoined ver-
tices x1 and x2. The pd-graph on the left is the one before the contraction and
the one on the right depicts the pd-graph obtained after the contraction.

Alternating
cycles
in
pd-graphs. LetG be a pd-graph and let C = {C0, . . . , Cr}
be a sequence of cycles in G. We say that the sequence of cycles C is alter-
nating, if the cycles in C have alternating types, e.g. Ci is a primal cycle iff
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i ≡ 0 (mod 2). If Ci is primal (resp. dual) we also refer to it as Cp
i (resp.

Cd
i ) to stress its type. We call {C ∈ C | C = Cp

i for some i ∈ {0, . . . k}} and
{C ∈ C | C = Cd

i for some i ∈ {0, . . . k}} the primal
subsequence and the dual
subsequence of C, respectively.

Tight
concentric
cycles. Let G be a plane graph and let D be a disk that is
the closed interior of some cycle C of G. We say that D is internally
chordless
if there is no path in G whose endpoints are vertices of C and all the others
belong in int(D).

Let C = {C0, . . . , Cr}, be a sequence of cycles in G. We denote by Di the
closed interior of Ci, i ∈ {0, . . . , r}, and we say that D = {D0, . . . , Dr} is the
disc
sequence of C.We call C concentric, if for all i ∈ {0, . . . , r−1}, the cycle Ci

is contained in the open interior ofDi+1.We also define∆(C) as the intersection
of the closed interior of C1 and the closed exterior of Cr. The sequence C of
concentric cycles is tight in G, if, in addition,

• D0 is internally
chordless,

• for every i ∈ {0, . . . , r − 1}, there is no cycle of G that is contained in
Di+1 \Di and whose closed interior D has the property Di ⊂ D ⊂ Di+1.

Let H be a pd-graph. We say that a sequence A of concentric cycles of the
same type in H is primal-tight (resp. dual-tight) if A is tight in H \ Vd(H) (resp.
in H \ Vp(H)).

Let C = {C0, . . . , Cr} be a sequence of primal-tight concentric cycles in H
and for every i ∈ {0, . . . r− 1} there exists a dual cycle C∗

i in H such that C∗
i ⊂

Di+1 \Di. We say that the sequence C∗ = {C∗
0 , . . . , C

∗
r−1} is tight
with
respect

to C, if for every i ∈ {0, . . . r−1} there does not exist a cycle C of dual type inH
such thatD∗

i ⊂ D ⊂ Di. We define the tightness of a sequence of primal cycles
with respect to a sequence of dual-tight concentric cycles in a symmetric way.
We say that an alternating sequence Z = {Zp

1 , Z
d
2 , . . . , Z

p
r−1, Z

d
r } (if Z starts

with a cycle of dual type we again have a symmetric definition) of concentric
cycles in H is tight in H, if Zp = {Zp

1 , Z
p
3 . . . , Z

p
r−1} is primal-tight in H and

Zd = {Zd
2 , Z

d
4 . . . , Z

d
r } is tight with respect to Zp.

It is not hard to verify that, if C = {Cp
1 , C

d
2 , . . . , C

p
r−1, C

d
r } is an alternating se-

quence of concentric cycles in H and Cp = {Cp
1 , C

p
3 , . . . C

p
r−1} is a primal-tight

sequence of concentric cycles inH, then there exist dual cyclesC ′d
2, C

′d
4, . . . C

′d
r

in H such that Cd = {C ′d
2, C

′d
4, . . . C

′d
r} is tight with respect to Cp. We call

C′ = {Cp
1 , C

′d
2, . . . , C

p
r−1, C

′d
r} an alternating
tight
sequence
of
concentric
cy-

cles
that
corresponds
to C.

4.2 Linkages
in
pd-graphs
Linkages
and
pd-linkages. A linkage in a graph G is a subgraph L of G
whose connected components are all paths. The terminals of a linkage L are
the endpoints of the paths in P(L), and the pattern of L is the set of all tuples
(s, t), where s and t are distinct terminals such that there exists a path with
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endpoints s and t in G (resp. in H). We say that two linkages are equivalent if
they have the same pattern.

LetH be a pd-graph. A primal-dual
linkage or pd-linkage L ofH is a collec-
tion of pairwise vertex disjoint, non-trivial paths of H, each of which is either
primal or dual. The definition of the paths and the terminals of L are the same
as in the case of a L being a linkage. The pattern of L is the set of all triples
(s, t, τs,t), where s and t are distinct terminals such that there exists a path
with endpoints s and t in L and τs,t is the type of this path. We say that two
pd-linkages are equivalent if they have the same pattern. For a visualization of
these notions see Figure 4.2.

Figure 4.3: A pd-linkage L of a pd-graph G, with pattern {(si, ti) : i ∈ [4]} and
order 4. The terminals of L are s1, t1, s2, t2, s3, t3, s4 and t4. The dashed and
dotted paths indicate the paths of the pd-linkage. Different lining corresponds
to different path, while the color black corresponds to primal paths and the
color green to dual paths of L.

Segments. Let G be a pd-graph and let C be a cycle in G whose closed
interior isD. Given a path P inGwe say that a subpath P0 of P is aD-segment
of P , if P0 is a non-empty (possibly edgeless) path obtained by intersecting P
with D. For a pd-linkage L of G we say that a path P0 is a D-segment of L, if
P0 is a D-segment of some path P in P(L).

CL-configurations. Given a pd-graph G, we say that a pair Q = (C, L) is a
CL-configuration ofG of depth r if C = {C0, . . . , Cr} is an alternating sequence
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of concentric cycles in G, L is a pd-linkage of G, and the intersection of the set
of terminals of L with Dr is empty. A segment of Q is any Dr-segment of L.
The eccentricity of a segment P of Q is the minimum i such that V (Ci∩P ) ̸= ∅.
A segment of Q is extremal if it is has eccentricity r, i.e., it is a subgraph of Cr.

Given a cycle Ci ∈ C and a segment P of Q we define the i-chords of P as the
connected components of P ∩ int(Di) (notice that i-chords are open sets). For
every i-chord X of P , we define the i-semichords of P as the connected com-
ponents of the set X \ Di−1 (notice that i-semichords are open sets). Given
a segment P that does not have any 0-chord, we define its zone as the con-
nected component of Dr \ P that does not contain the open interior of D0 (a
zone is an open set). A CL-configuration Q = (C, L) is called reduced if the
graph L ∩∪∪∪∪∪∪∪∪∪C is edgeless.

Observe that if a primal path P ∈ P(L) (the argument is the same for a dual
path) has common edges with some cycle, say Ci ∈ C, thenCi is a primal cycle
(as P cannot contain any vertices in Vd(G)) and every connected component
R = Ci ∩ P contains an even number of edges. That is because R is a path
with both endpoints, u, v, in Vp(G), as the neighbors of u and v in V (P ) \V (R)

are in Vc(G) (because they are both vertices in the intersection of the primal
path P and some dual cycle).

Let Q = (C, L) be a CL-configuration of G and let E• be the set of all
edges of the graph L ∩∪∪∪∪∪∪∪∪∪C (remember that each edge in the pd-graph G has
exactly one endpoint in Vc(G)). We then define G∗ as the graph obtained if we
apply primal-dual contractions (or removals) to all vertices in V (∪∪∪∪∪∪∪∪∪C) that are
adjoined through a vertex c ∈ Vc that is an endpoint of some edge in E•. The
previous observation explains why this can be done The sequence of cycles C
is modified into a sequence of cycles in G∗, say C∗ and L is modified into a pd-
linkage in G∗, say L∗. Notice that Q∗ = (C∗, L∗) is a reduced CL-configuration
of G∗. We call (Q∗, G∗) the reduced
pair of G and Q.

Cheap
pd-linkages. LetG be a pd-graph andQ = (C, L) be a CL-configuration
of G of depth r. We define the function c : {L | L is a linkage of G} → N so
that

c(L) = |E(L) \
∪

i∈{0,...,r}

E(Ci)|.

A pd-linkage L of G is C-cheap, if there is no other CL-configuration Q′ =

(C, L′) such that c(L) > c(L′). Intuitively, the function c penalizes every edge
of the linkage that does not lie on some cycle Ci.

Observation 4.2.1. Let Q = (C, L) be
a
CL-configuration
of
some
pd-graph G
and
let

(
G∗Q∗ = (C∗, L∗)

)
be
the
reduced
pair
of G and Q. Then

• If L is C-cheap, then L∗ is C∗-cheap.

• If C is
tight
in G, then
if C∗ is
tight
in G∗.

Convex
CL-configurations. LetG be a pd-graph and let Q = (C, L) be a CL-
configuration ofG. A segment P of Q is convex if the following three conditions
are satisfied:
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(i) it has no 0-chords and

(ii) for every i ∈ {1, . . . , r}, the followings hold:

a. P has at most one i-chord
b. if P has an i-chord, then P ∩ Ci−2 ̸= ∅.
c. Each i-chord of P has exactly two i-semichords.

(iii) If P has eccentricity i < r − 1, there is some other segment of Q with
eccentricity i+ 2 inside the zone of P .

We say Q is convex if all its segments are convex.

Observation 4.2.2. Let Q = (C, L) be
a
CL-configuration
and
let (G∗,Q∗ =

(C∗, L∗)) be
the
reduced
pair
of G and Q. Then Q is
convex
if
and
only Q∗ is
convex.

We will need the following topological lemma.

Lemma4.2.1 (Lemma 2 of [2]). Let∆1,∆2 be
closed
disks
ofR2 where int(∆1)∩
int(∆2) = ∅ and
such
that∆1∪∆2 is
also
a
closed
disk. Let∆3 = R2 \ int(∆1∪
∆2) and
let Y = bnd(∆3) ∩∆2 and Q = trim(∆1 ∩∆2). P be
a
closed
arc
of
R2 whose
endpoints
are
not
in∆1∪∆2 and
such
that Y ∩P = ∅ and Q∩P ̸= ∅.
Then int(∆1) ∩ P has
at
least
two
connected
components.

Proof. Let q be some point in Q ∩ P . Let Q′ be an open arc that is a subset
of int(∆1) and has the same endpoints as Y . Notice that q and x belong to
different open disks defined by the cycle Q′ ∪ Y . Therefore P should intersect
Q′ or Y . As Y ∩ P = ∅, P intersects Q′. As Q′ ⊆ int(∆1), int(∆1) ∩ P has at
least one connected component.

Assume now that int(∆1)∩P has exactly one connected component. Clearly,
this connected component will be an open arc I such that at least one of the
endpoints of I, say q, belongs to Q. Moreover, there is a subset P ′ of P that
is a closed arc where P ′ ∩ I = ∅ and whose endpoints are q and one of x and
y, say y. As int(∆1) ∩ P has exactly one connected component, it holds that
P ′ ∩ int(∆1) = ∅. Let Q′ be an open arc that is a subset of int(∆1) and has
the same endpoints as Y . Notice that q and y belong to different open disks
defined by the cycle Q′ ∪ Y . Therefore P ′ should intersect int(∆1) or Y , a
contradiction as P ′ ⊆ P and Y ∩ P = ∅.

Lemma 4.2.2. Let G be
a
pd-graph
and
let Q = (C, L) be
a
CL-configuration
of G where C is
tight
in G and L is C-cheap. Then Q is
convex.

Proof. Let C = {C1, . . . , Cr}. It suffices to prove that any primal segment is
convex, as the argument is identical for the dual case. Moreover, by 4.2.1 and
4.2.2 we may assume that Q is reduced.
Condition (i) follows from the tightness of C (a 0-chord implies the existence of a
path inD0 with endpoints inC0). Similarly for condition (ii).b, as the existence of
an i-chord that does not intersect Ci−2 contradicts the tightness of C (actually
contradicts the primal-tightness of the primal subsequence of C). Moreover,
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condition (iii) follows from the hypothesis that L is C-cheap: Let P be a primal
segment with eccentricity i. If there does not any segment with eccentricity i+2

then we contradict the cheapness of L by using Ci+2 to reroute P , obtaining
an equivalent linkage.
Let i ∈ {0, . . . , r} be the least index such that one of conditions (ii).a and (ii).c.
is violated and let W be a primal segment of Q containing an i-chord X that
violates one of the conditions. We distinguish two cases:
Case
1: Condition (ii).c is violated. From condition (ii).b, X \Di−1 contains at
least three i-semichords of X. Let J1 be the biconnected outerplanar graph
defined by the union of Ci−1 and those i-semichords ofX that do not intersect
Ci. By the minimality of i, J1 has at least one internal edge and therefore at
least two simplicial faces, and there exist exactly two i-semichords of X, say
K1 and K2, that intersect Ci, which belong to the same face, say F1, of J1. We
define ∆2 to be the closure of a simplicial face of J1 that is different from F1.
Case
2: Condition (ii).c holds while condition (ii).a is violated. Let J2 be the
biconnected outerplanar graph defined by the union ofCi−1 and the connected
components of W \ Di−1 that do not intersect Cr. Notice that the remaining
connected components of W \Di−1 are exactly two, say K1 and K2, and are
subsets of the same face, say F1, of J2. Moreover, as there exist at least two
i-chords in W , J2 contains at least one internal edge and therefore at least two
simplicial faces. We define ∆2 to be the closure of a simplicial face of J2 that
is different from F1.

The remaining part of the proof works for both of the above cases: We set
∆1 = Di−1, ∆3 = R2\int(∆1∪∆2), Y = bnd(∆3)∩∆2, andQ = trim(∆1∩∆2).
It is clear from the definition of Y that it is a subpath of W , thus Y ⊆W .

Suppose that L ∩ Q = ∅. Then consider W ′ as a path in W ∪ Q such that
Q ⊆W ′ andW ′ has the same endpoints withW , and define L′ = (L\W )∪W ′.
Linkage L′ is equivalent to L (they clearly have the same pattern) and c(L′) <

c(L) (as we got rid of at least one edge L that was not an edge of a cycle in C),
a contradiction to L being C-cheap. Thus, L ∩Q ̸= ∅ meaning that L contains
a segment P for which P ∩Q ̸= ∅. We again distinguish two cases:
Case
a: W ̸= P . Then, W ∩ P = ∅ (the paths of a linkage are disjoint) and as
Y ⊆W , Y ∩P = ∅. Clearly, P is a path whose endpoints are not in ∆1∪∆2 and
Lemma 4.2.1 can be applied. Thus, P ∩ int(∆1) has at least two connected
components, therefore P has at least two (i− 1)-chords. If i = 1 then P has a
0-cord which violates condition (i) (which should hold for every segment), and
if i > 1 condition (ii).a is violated, which contradicts the minimality of i.
Case
b: W = P . Let p1 and p2 be the endpoints of cl(Q). Then, there exists
two disjoint closed arcsZ1 andZ2 with endpoints p1, p′1 and p2, p′2, respectively,
such that

• Zi ⊆ cl(Q), i ∈ {1, 2}, and

• P ∩ Zi = {pi}, i ∈ {1, 2}.

Consider also a closed arc Y ′ that is a subset of int(∆2)∪{p′1, p′2} that does
not intersect L and whose endpoints are p′1 and p′2. Let now ∆′

1 = ∆1, ∆′
2 be
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the closed disk defined by the cycle cl(Q \ (Z1 ∪ Z2)) ∪ Y ′ that is a subset of
∆2. Let also ∆′

3 = R2 \ int(∆′
1 ∪∆′

2) and Q′ = trim(∆′
1 ∩∆′

2). As Y ′ does not
intersect L, we obtain Y ′∩P = ∅. Observe that Z1, Q

′, Z2 form a partition ofQ.
As Q ∩ P ̸= ∅ and (Zi \ {pi}) ∩ P = ∅, i ∈ {1, 2}, we conclude that Q′ ∩ P ̸= ∅.

By applying Lemma 4.2.1, int(∆′
1)∩P has at least two connected compo-

nents. Therefore P has at least two (i− 1)-chords and this yields a contradic-
tion, as in Case a.
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OUTSIDE OF THE OUTER CYCLE

5.1 Bounding
the
number
of
extremal
segments
In this section, following section 3.3 of [2], we prove that the number of ex-
tremal segments of a CL-configuration Q = (C, L) of a pd-graph, is at most a
linear function of the order of the pd-linkage L. The arguments in this part are
independent of G being a pd-graph or just a plane graph, thus we can argue
as if G was plane and the pd-linkages are linkages of G.

Out-segments, hairs, and
flying
hairs. Let G be a pd-graph and Q = (C, L)
be a CL-configuration of G of depth r. An out-segment of L is a subpath P ′

of a path P ∈ P(L) such that the endpoints of P ′ are in Cr and the internal
vertices of P ′ are not in Dr. A hair of L is a subpath P ′ of a path in P(L) such
that one endpoint of P ′ is in Cr, the other is a terminal of L, and the internal
vertices of P ′ are not in Dr. A flying
hair of L is a path in P(L) that does not
intersect Cr.

Given a pd-linkage L of G and a closed disk D of R2, we define outD(L) to
be the graph obtained from (L ∪ bnd(D)) \ int(D) after dissolving all vertices
of degree two. For example outDr (L) is a plane graph consisting of the out-
segments, the hairs, and the flying hairs of L and what remains from Cr after
dissolving its vertices that do not belong in L. For an example see Figure 5.1.

Let f be a face of outDr (L) that is different from int(Dr). We say that f is
a cave
of outDr (L) if the union of the out-segments and extremal segments in
the boundary of f form a connected set. Recall that a segment of Q is extremal
if it is has eccentricity r, i.e., it is a subpath of Cr.

Given a plane graph G, we say that two edges e1 and e1 are cyclically
adja-
cent if they have a common endpoint x and appear consecutively in the cyclic
ordering of the edges incident to x, as defined by the embedding of G. A sub-
set E of E(G) is cyclically
connected if for every two edges e and e′ in E there
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Figure 5.1: The interior of the black (primal) cycle corresponds to outD(L). The
black dots (edges) correspond to primal vertices (paths), the green squares
(edges) to dual vertices (paths), and the re squares to crossing vertices.

exists a sequence of edges e1, . . . , er ∈ E where e1 = e, er = e′ and for each
i ∈ {1, . . . , r − 1} ei and ei+1 are cyclically adjacent.

Let Q = (C, L) be a CL-configuration. We say that Q is touch-free if for
every path P in P(L), the number of the connected components of P ∩ Cr is
not 1.

Lemma 5.1.1. Let G be
 a
 pd-graph
 and Q = (C, L) be
 a
 touch-free
 CL-
configuration
of G where C is
 tight
 in G and L is C-cheap. The
number
of
extremal
segments
of Q is
at
most 2 · |P(L)| − 2.

Proof. The proof of this Lemma is similar to the one of Lemma 4 in [2] but we
include it for this sake of completeness.
Let (G∗,Q∗ = (C∗, L∗)) be the reduced pair of G and Q. Notice that, by Obser-
vation 4.2.1, C∗ is tight inG and L∗ is C∗-cheap. Moreover, it is easy to see that
Q∗ is touch-free and Q and Q∗ have the same number of extremal segments
which are just vertices of Cr in Q∗. Therefore, it is sufficient to prove that the
lemma holds for Q∗. Let ρ be the number of extremal segments of Q∗.

Let J = outD∗
r
(L∗) and k = |P(L∗)|. Notice that the number of extremal

segments of Q∗ is equal to the number of vertices of degree 4 in J . The termi-
nals of L∗ are partitioned in three families

• flying terminals, T0: endpoints of flying hairs.

• invading terminals T1: these are endpoints of hairs whose non terminal
endpoint has degree 3 in J

• bouncing terminals T2: these are endpoints of hairs whose non terminal
endpoint has degree 4 in J .
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A hair containing an invading and bouncing terminal is called invading and
bouncing
hair respectively.

Recall that |T0|+ |T1|+ |T2| = 2k.

Claim
1. The number of caves of J is at most the number of invading terminals.

Proof
of
claim
1. Clearly, a hair cannot be in the common boundary of two
caves as it can be in the interior of a unique face of J . Therefore it is enough
to prove that the boundary of every cave f contains at least one invading hair.
To see this, consider the open arc R obtained if we remove from bnd(f) all the
points that belong to out-segments. Clearly, R results from a subpath R+ of
C∗

r after removing its endpoints, i.e., R = trim(R+).
Notice that because f is a cave, R is a non-empty connected subset of C∗

r .
Moreover, R ∩ L∗ is non-empty, otherwise L∗′ = (L∗ \ (bnd(f)) ∪ R is also a
linkage with the same pattern as L∗ where c(L∗′) < c(L∗), a contradiction to
the fact that L∗ is C∗-cheap. Let Y be a connected component of R ∩ L∗. As
Q∗ is reduced, Y consists of a single vertex in the open set R. Notice that Y is
a subpath of a segment Y ′ of Q∗. We claim that Y ′ is not extremal. Suppose
to the contrary that Y ′ is extremal. Then Y ′ = Y and Y is a subset of the
union of all extremal segments and out-segments in the boundary of f . This
contradicts the fact that Y ⊆ R.

By Lemma 4.2.2, Q∗ is convex, thus one of the endpoints of Y ′ is in Y and
therefore in R as well. Let P be the path of L∗ that contains Y ′. Because all
endpoints of paths in P(L∗) lie outside D∗

r , the set P ′ = P ∩ (bnd(f) \ D∗
r)

is non empty and therefore, its closure P ′+ is either a hair or an out-segment
of J . Assume that P ′+ is an out-segment. Then, again, Y is a subset of the
union of all extremal segments and out-segments in the boundary of f and this
contradicts the fact that Y ⊆ R. For the same reason, it cannot be a bouncing
hair and therefore it is an invading hair. This completes the proof of Claim 1.

Let J− be the graph obtained from J by removing all hairs and notice that
J− is a biconnected outerplanar graph. Let S be the set of vertices of J−

that have degree 4. Notice that, because Q∗ is touch-free, |S| is equal to the
number of vertices of J that have degree 4 (which is equal to the number of
extremal segments) minus the number of bouncing terminals, i.e., |S| = ρ−|T2|.
Therefore,

ρ = |T2|+ |S|. (5.1)

Notice that if we remove from J− all the edges of C∗
r , the resulting graph is

a forest Ψ whose connected components are paths. Observe that none of
these paths is a trivial path because Q∗ is touch-free. We denote by κ(Ψ) the
number of connected components of Ψ. Let F be the set of faces of J− that
are different from D∗

r . F is partitioned into the faces that are caves, namely F1

and the non-cave faces, namely F0. By the Claim 1, |F1| ≤ |T1|.
To complete the proof, it is enough to show that

|S| ≤ |T1| − 2 (5.2)
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Indeed the truth of (5.2) along with (5.1), would imply that ρ is at most |T2|+|S| ≤
|T2|+ |T1| − 2 ≤ |T | − 2 = 2k − 2.

We now return to the proof of (5.2). For this, we need two more claims.

Claim
2: |F0| ≤ κ(Ψ)− 1.
Proof. We use induction on κ(Ψ). Let K1, . . . ,Kκ(Ψ) be the connected compo-
nents of Ψ. If κ(Ψ) = 1 then all faces in F are caves, therefore |F0| = 0 and we
are done. Assume now that Ψ contains at least two connected components.

We assert that there exists at least one connected component Kh of Ψ

with the property that only one non-cave face of J− contains edges of Kh in
its boundary. To see this, consider the weak dual T of J−. Recall that, as J− is
biconnected, T is a tree. LetK∗

i be the subtree of T containing the duals of the
edges in E(Ki), i ∈ {1, . . . , κ(Ψ)}, and observe that E(K∗

1 ), . . . , E(K∗
κ(Ψ)) is a

partition of E(T ) into κ(Ψ) cyclically connected sets. We say that a vertex of T
is rich if it is incident with edges in more than one members of {K∗

1 , . . . ,K
∗
κ(Ψ)},

otherwise it is called poor. Notice that a vertex of T is rich if and only if its dual
face in J− is a non-cave. We call a subtree K∗

i peripheral if V (K∗
i ) contains

at most one rich vertex of T . Notice that the claimed property for a compo-
nent in {K1, . . . ,Kκ(Ψ)} is equivalent to the existence of a peripheral subtree
in {K∗

1 , . . . ,K
∗
κ(Ψ)}. To prove that such a peripheral subtree exists, consider a

path P in T intersecting the vertex sets of a maximum number of members of
{K∗

1 , . . . ,K
∗
κ(Ψ)}. Let e∗ be the first edge of P and let K∗

h be the unique sub-
tree whose edge set contains e∗. Because of the maximality of the choice of
P , V (K∗

h) contains exactly one rich vertex vh, therefore K∗
h is peripheral and

the assertion follows. We denote by fh the non-cave face of J− that is the dual
of vh.

Let H− be the outerplanar graph obtained from J− after removing the
edges of Kh. Notice that this removal results in the unification of all faces that
are incident to the edges ofKh, including fh, to a single face f+. By the induc-
tive hypothesis the number of non-cave faces ofH− is at most κ(Ψ)−2. Adding
back the edges of Kh in J− restores fh as a distinct non-cave face of J−. If
f+ was a non-cave of H− then |F0| is equal to the number of non-cave faces
of H−, else |F0| is one more than this number. In any case, |F0| ≤ κ(Ψ) − 1,
and the claim follows.

Claim
3: |V (Ψ)| ≤ |T1|+ 2 · κ(Ψ)− 2.

Proof. Let T be the weak dual of J−. Observe that |F0|+ |F1| = |F | = |V (T )| =
|E(T )|+ 1 = |E(Ψ)|+ 1 = |V (Ψ)| − κ(Ψ) + 1. Therefore |V (Ψ)| = |F0|+ |F1|+
κ(Ψ)− 1. Recall that, by Claim 1, |F1| ≤ |T1| and, taking into account Claim 2,
we conclude that |V (Ψ)| ≤ |T1|+ 2 · κ(Ψ)− 2. Claim 3 follows.

Notice now that a vertex of J− has degree 4 iff it is an internal vertex of
some path in Ψ. Therefore, as all connected components of Ψ are non-trivial
paths, it holds that |V (Ψ)| = |S| + |L(Ψ)| = |S| + 2 · κ(Ψ), where L(Ψ) is the
set of leaves of Ψ. By Claim 3,

|S|+ 2 · κ(Ψ) = |V (Ψ)| ≤ |T1|+ 2 · κ(Ψ)− 2 ⇒ |S| ≤ |T1| − 2.
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Therefore, (5.2) holds and this completes the proof of the lemma.

5.2 Bounding
the
number
and
size
of
segment
classes
In this section the goal is to prove the results of section 3.4 of [2] in our pd-
graph setting. We introduce the notion of segment class that partitions the
segments into classes of mutually "parallel'' segments. Using the results of
the previous sections show that the number of these classes is again bounded
by a linear function of the order of the pd-linkage.
As in the previous section, the special structure of a pd-graph is not of great
importance for the proofs and when it is we will stretch it.

Classes
of
segments. Let G be a pd-graph and let Q = (C, L) be a convex
CL-configuration of G. Let S1, S2 be two segments of Q and let P and P ′

be two paths that are subgraphs of Cr, connect one endpoint of S1 with an
endpoint of S2, and pass through no other endpoint of S1 or S2. We say that
S1 and S2 are parallel, and we write S1 ∥ S2, if

(1) no segment of Q has both endpoints on P.

(2) no segment of Q has both endpoints on P ′.

(3) the closed-interior of the cycle P ∪S1 ∪P ′ ∪S2 does not contain the disk
D0.

A class
of
segment is an equivalence class of segments of Q under the relation
∥ .

Given a pd-linkage L of G and a closed disk D of R2, we define inD(L)

to be the graph obtained from L ∩ D after dissolving all vertices that do not
belong in L. Notice that inDr (L) is a biconnected outerplanar graph formed by
the segments of Q and what remains from Cr after dissolving all vertices that
do not belong in L. As Q is convex, one of the faces of inDr

(L) contains the
interior of D0 and we call this face central face. We define the segment
tree of
Q, denoted by T (Q), as follows.

• let T− be the weak dual of inDr (L) rooted at the vertex that corresponds
to its central face.

• Let Q be the set of leaves of T−. For each vertex l ∈ Q do the following:
Notice first that l is the dual of a face l∗ of inDr (L). Let W1, . . . ,Wρl

be
the extremal segments in the boundary of l∗ (notice that, by the convexity
of Q, for every l, ρl ≥ 1). Then, for each i ∈ {1, . . . , ρl}, create a new leaf
wi corresponding to the extremal segment Wi and make it adjacent to l.

The height of T (Q) is the maximum distance from its root to its leaves. The
real
height of T (Q) is the maximum number of internal vertices of degree at
least 3 in a path from its root to its leaves plus one. The dilation of T (Q) is the
maximum length of a path all whose internal vertices have degree 2 and are
different from the root. For an example see Figure 5.2.
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Figure 5.2: At the left the graph inDr (L) for some convex CL-configuration
Q = (C, L) and at the right the corresponding segment tree T (Q). The CL-
configuration Q has 11 extremal segments. There are 11 segment classes un-
der the || relation and internal edges of the same lining correspond to segments
of the same class, while black (resp. green) internal edges correspond to pri-
mal (resp. dual) paths of L. At the right, the black square corresponds to the
root of tree (Q) and the black dots to its leaves. The dilation of (Q) is 3, its
height is 6 and its real height is 3.

Observation 5.2.1. Let G be
a
pd-graph
and
let Q = (C, L) be
a
convex
CL-
configuration
of G. Then
the
height
of T (Q) is
upper
bounded
by
the
dilation
of T (Q) multiplied
by
the
real
height
of T (Q).

The next lemma is a consequence of Lemma 5.1.1 and the definition of a
segment tree. We demand L∩Cr to be non-empty to ensure that L intersects
Dr and the segment tree T (Q) can be defined.

Lemma 5.2.1. Let G be
 a
 pd-graph
 and Q = (C, L) be
 a
 touch-free
 CL-
configuration
of G where C is
tight
in G, L is C-cheap, and L∩Cr ̸= ∅. Then Q
is
convex
and
the
real
height
of
the
segment
tree T (Q) is
at
most 2 · |P(L)| − 3.

Proof. The convexity of Q follows directly from Lemma 4.2.2. We examine the
non-trivial case where T (Q) contains at least one edge. We first claim that
|P(L)| ≥ 2. Assume to the contrary that L consists of a single path P . As Q
is convex and L ∩ Cr ̸= ∅, Q has at least one extremal segment. Suppose
now that Q has more than one extremal segments, all of which are connected
components of Cr ∩ P .

Let P1 and P2 be the closures of the connected components of L \ Dr

that contain the terminals of P . Let pi ∈ V (Cr) be the endpoint of Pi that is
not a terminal, i ∈ {1, 2}. Let also P ′ be any path in Cr between p1 and p2.
Notice now that P1∪P ′∪P2 a pd-linkage that is equivalent to L and cheaper, a
contradiction to the fact that L is C-cheap. Therefore we conclude that Q has
exactly one extremal segment, which contradicts the fact that Q is touch-free.
Thus, |P(L)| ≥ 2 as claimed.
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Recall that by the construction of T (Q) there is a 1--1 correspondence be-
tween the leaves of T (Q) and the extremal segments of Q. From Lemma 5.1.1,
T (Q) has at most 2 · |P(L)| − 2 leaves. Also T (Q) has at least 2 leaves, be-
cause Q is touch-free. It is known that the number of internal vertices of degree
≥ 3 in a tree with r ≥ 2 leaves is at most r − 2. Therefore, T (Q) has at most
2 · |P(L)| − 4 internal vertices of degree ≥ 3. Therefore the real height of T (Q)

is at most 2 · |P(L)| − 3.

5.3 Tidy
pd-grids
in
convex
configurations
In this section we prove that if a class of a segment in a CL-configuration of
a pd-graph is "big" then there exists a "big" grid-like structure whose paths
alternate between primal and dual. This is the counterpart of section 3.5 of [2]
but here the primal-dual structure of a pd-graph and the types of the paths of
a pd-linkage play a crucial role.

pd-patterns. A triple (H,χ, T ) where H is a plane graph, T ⊆ V (H), χ :

V (H) → {p, d, c} is called a pd-pattern if for any edge e = {x, y} ∈ E(H),
either {χ(x), χ(y)} = {p, c} or {χ(x), χ(y)} = {d, c}. If T = ∅ we will just
write (H,χ) to refer to the pd-pattern (H,χ, T ). We will treat pd-patterns as
structures embedded in S2.
Given an edge e = {x, y} ∈ E(H), we say that it is a primal
edge (rep. dual
edge) of (H,χ, T ) if χ({x, y})\{c} = {p} (resp. χ({x, y})\{c} = {d}) and given
a path P of G, we say that P is a primal (resp. dual) path of (H,χ, T ) if all the
edges of P are primal (resp. dual) edges.
Let G be a pd-graph. We say that G corresponds to the pd-pattern (G,ψG, ∅),
where ψG : V (G) → {p, d, c} and for every ζ ∈ {p, d, c} and every v ∈ V (G):

ψG(v) = ζ if and only if v ∈ Vζ(G)

Let X ⊆ V (G). We call the pair (G,X) a rooted
pd-graph and we say that X is
its root. The rooted pd-graph (G,X), naturally corresponds to the pd-pattern
(G,ψG, X).

pd-topological
minors. Let (G,ψ, T ) and (H,χ, Y ) be two pd-patterns and
λ : Y → T be a bijection. We say that the pd-pattern (H,χ, Y ) is a λ-pd-
topological
minor of the pd-pattern (G,ψ, T ) if there exists an injective function
ϕ0 : V (H) → V (G) and a function ϕ1 : E(H) → P(G) such that

• for every x ∈ V (H), ψ(ϕ0(x)) = χ(x).

• λ ⊆ ϕ0.

• for every edge e = {x, y} ∈ E(H), ϕ1({x, y}) is a primal (resp. dual) path
between ϕ0(x) and ϕ0(y) in (G,χ, T ) if and only if e is a primal (resp. dual)
edge of (H,ψ, Y ).
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• if two paths in ϕ1(E(H)) have a common vertex, then this vertex should
be an endpoint of both paths.

Given the pair (ϕ0, ϕ1), we say that (H,χ, Y ) is a λ-pd-topological
minor
of
(G,χ, T ) via (ϕ0, ϕ1) and we write (H,χ, Y ) ≤λ

tm (G,ψ, T ). If Y = T = ∅
we will just say that (H,χ) is a pd-topological
minor of (G,χ) and will write
(H,χ) ≤tm (G,ψ).
Let G is a pd-graph and X ⊆ V (G). If a pd-pattern (H,χ, Y ) is a λ-pd-
topological minor of the pd-pattern (G,ψG, X) (the pd-pattern that corresponds
to the rooted pd-graph (G,X)) via (ϕ0, ϕ1), we will also say that the pd-pattern
(H,χ, Y ) is a λ-pd-topological minor of the rooted pd-graph (G,X) via (ϕ0, ϕ1)

and we will write (H,χ, Y ) ≤λ
tm (G,X).

pd-grids. Let G be a plane graph, k, k′ be two integers, and Γ be a (k × k′)-
grid of G. Let also χ : V (Γ) → {p, d, c} be a 3-coloring of the vertices of Γ. We
say that (Γ, χ) is a (k × k′)-pd-grid if the followings hold:

• In any horizontal and vertical line of Γ, the colors of its vertices alternate
either between p and c (we call such a line a primal
line) or between d and
c (we call such a line a dual
line).

• If the i-th horizontal (or horizontal) line of Γ is a primal (resp. dual) line,
then its (i + 1)-th horizontal (resp. vertical) line is a dual (resp. primal)
line.

A path P in (Γ, χ) is called a primal (resp. dual) path of (Γ, χ), if V (P )∩χ−1(d) =

∅ (resp. V (P ) ∩ χ−1(p) = ∅). A cycle in (Γ, χ) is called a primal (resp. dual)
cycle of (Γ, χ) if it is the union of two primal (resp. dual) paths of (Γ, χ)
For every pair of vertices (v1, v2) in V (Γ), we say that (v1, v2) is a primal (resp.
dual) pair if (χ(v1), χ(v2)) ∈ {(p, c), (c, p)} (resp. (χ(v1), χ(v2)) ∈ {(d, c), (c, d)}.
If (v1, v2) = (c, c), then this pair can be considered to be either primal or dual.
If (v, u) is a primal (resp. dual) pair and {v, u} ∈ E(Γ), then we say that {v, u}
is a primal (resp. dual) edge of Γ (for an example of a pd-grid see Figure 5.3).
Let H be a pd-graph, Γ be a (k × k′) grid of H, and let χH : V (H) → {p, d, c}
be such that for any π ∈ {p, d, c}, χH(v) = π if and only if v ∈ Vπ(H). We say
that Γ is a pd-grid
of H if and only if (Γ, χH) is a pd-grid. Sometimes we will
just use Γ to refer to the pd-grid (Γ, χH) if it is clear that χH is related to the
types of vertices in V (H).

Tilted
pd-grids
and L-tidy
tilted
pd-grids. Let G be pd-graph. A tilted
pd-
grid of G is a pair U = (X ,Z) where X = {X1, . . . , Xr} and Z = {Z1, . . . , Zr}
are collections of r primal and dual paths ofG that are vertex-disjoint and such
that

• X1, Xr and Z1, Zr are primal paths of G and the types of X2, . . . , Xr − 1

and Z2, . . . , Zr − 1 alternate between dual and primal.

• For each i, j ∈ {1, . . . , r} Ii,j = Xi ∩Zj is a (possibly edgeless) path of G
and Ii,j can contain an edge only if Xi and Zj are of the same type.
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Figure 5.3: A pd-grid (Γ, χ) is depicted. The black dots correspond to the
set χ−1(p), the green dots to the set χ−1(d), and the red squares to the set
χ−1(c). Any path (or cycle) that contains only black dots (resp. green dots)
and red squares is a primal (resp. dual) path (or cycle) of the depicted pd-grid.
Any edge with endpoints a black dot (resp. green dots) and a red square is a
primal (resp. dual) edge of (Γ, χ).

• for i ∈ {1, . . . , r} the subpaths Ii,1, Ii,2, . . . , Ii,r appear in this order in Xi.

• for j ∈ {1, . . . , r} the subpaths I1,j , I2,j , . . . , Ir,j appear in this order in Zj .

• E(I1,1) = E(I1,r) = E(Ir,r) = E(Ir,1) = ∅,

• Let
GU = (

∪
i∈{1,...,r}

Xi) ∪ (
∪

i∈{1,...,r}

Zi)

and let G∗
U be the graph taken from GU after applying primal-dual con-

traction to all pairs of vertices that are adjoined through some vertex in
V (G∗

U )∩Vc(G) (all the crossing vertices on the paths). Then G∗
U contains

an (r × r)-pd-grid (Γ, χ) as a pd-topological minor.

We call the subgraph GU of G realization of the tilted pd-grid U and the graph
G∗

U representation of U . We refer to the cardinality r of X (or Z ) as the capacity
of U . The perimeter of GU is the (primal) cycle X1 ∪ Z1 ∪ Xr ∪ Zr. Given a
pd-graph G and a pd-linkage L of G, we say that a tilted pd-grid U = (X ,Z)

of G is an L-tidy
tilted
pd-grid of G if DU ∩ L = ∪∪∪∪∪∪∪∪∪Z, where DU is the closed
interior of the perimeter of GU .

Lemma 5.3.1. Let G be
 a
 pd-graph
 and
 let Q = (C, L) be
 a
 convex
CL-
configuration
of G. Let
also S be
an
equivalence
class
of
the
relation ∥. Then G
contains
a
tilted
pd-grid U = (X ,Z) of
capacity ⌈ |S|−2

2 ⌉ that
is
an L-tidy
tilted
pd-grid
of G.
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Proof. Let C = {C0, . . . , Cr} and let S = {S1, . . . , Sm}. We assume that S1 and
Sm are primal paths of G. For each i ∈ {1, . . . ,m}, let σi be the eccentricity of
Si and let σmax = max{σi | i ∈ {1, . . . ,m}} and σmin = min{σi | i ∈ {1, . . . ,m}}.
Convexity allows us to assume that S1, . . . , Sm are ordered in a way that

• The types of the paths in S alternate between primal and dual.

• σ1 = σmin,

• σm = σmax, and

• for all i ∈ {1, . . . ,m− 1}, σi+1 = σi + 1.

• for all i ∈ {1, . . . ,m}, Ii,σi = Si ∩ Cσi is a (possibly edgeless) subpath of
Cσi

.

Let m′ = ⌈m
2 ⌉ and let x, x′ (resp. y, y′) be the endpoints of the path S1 (resp.

Sm′ ) such that the one of the two (x, y)-paths (resp. (x′, y′)-paths) in Cr con-
tains both x′, y′ (x, y) and the other, say P (resp. P ′), contains none of them.
Let DS be the closed-interior of the cycle S1 ∪ P ′ ∪ Sm′ ∪ P . Let also AC

be the union of the intersection of G with Dσmax−(m′−1) \Dσmax and the cycles
Cσmax−(m′−1) and Cσmax . Let ∆ be any of the two connected components of
DS ∩AC . We now consider the graph

(L ∪∪∪∪∪∪∪∪∪∪C) ∩∆.

It is now easy to verify that the above graph is the realization GU of a tilted
pd-grid U = (X ,Z) of capacity m′, where the paths in X are the portions of
the cycles Cσmax−(m′−1), . . . , Cσmax cropped by ∆, while the paths in Z are the
portions of the paths in {S1, . . . , Sm′} cropped by ∆. As S is an equivalence
class of ∥, it follows that U is L-tidy.
At the beginning of the proof we assumed that S1 and Sm are primal paths. If
this is not the case we can discard them and repeat the same argument for S ′\
{S1, Sm}. In any case, we obtain a tilted pd-grid of the required capacity.
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6.1 Replacing
pd-linkages
by
cheaper
ones

In this section we prove that a pd-linkage of order k can be rerouted to a
cheaper one, given the existence of an L-tidy tilted pd-grid of capacity greater
at least 2k + 1. In other words, the existence of a cheap pd-linkage L implies
an exponential (on the order of L) upper bound on the capacity of any L-tidy
tilted pd-grid.

Let G be a pd-graph and let L be a pd-linkage in G. Let also D be a closed
disk in the surface where G is embedded. We say that L crosses
vertically D if
the outerplanar graph defined by the boundary of D and L∩D has exactly two
simplicial faces. Hence, the vertices of bnd(D) ∩ L are naturally partitioned
into the up and down ones.

We will need the following two main lemmas. The first one is exactly Lemma
2 from [1] (the "reflection trick") and the proof of the second one is a variance
of the proof of a claim stated in page 11 of [1], slightly transformed to fit in our
context. Lemma 6.1.3 then follows easily and is crucial for the remaining part.

Lemma 6.1.1. Let Σ be
an
alphabet
of
size |Σ| = k, and
let w ∈ Σ∗ be
a
word
over Σ of
length |w| > 2k. Then, w contains
an
infix y such
that
every
letter
occurring
in y, occurs
an
even
number
of
times.

Proof. Let Σ = {a1, . . . , ak} and let w = w1 . . . wn where n > 2k. We define the
vectors zi ∈ {0, 1}k for every i ∈ {1, . . . , n}, and we let the jth entry of zi be 0

if and only if aj occurs an even number of times in the prefix w1 . . . wi of w and
1 otherwise. Since n > 2k, there exist two indices i, i′ ∈ {1, . . . , n} with i ̸= i′,
such that zi = zi′ . Let al ∈ Σ that appears in the infix wi+1wi+2 . . . wi′ . Then,
as the lth coordinate of zi is the same as the lth coordinate of zi′ , al appears
in wi+1wi+2 . . . wi′ an even number of times. Thus, the infix wi+1wi+2 . . . wi′

satisfies the requirements of the statement.

39



6.1. REPLACING PD-LINKAGES BY CHEAPER ONES

Lemma 6.1.2. Let G be
a
plane
graph
and
letD be
a
closed
disk
and
a
linkage
L of G of
order k that
crosses D vertically. Let
also L ∩ D consist
of r > 2k

lines. Then, there
is
a
collection N of
strictly
less
than r mutually
non-crossing
lines
in D each
connecting
two
points
of bnd(D) ∩ L, such
that
there
exists
some
linkage R that
is
a
subgraph
of L \ int(D) such
that R ∪∪∪∪∪∪∪∪∪∪N is
a
linkage
of
the
graph (G \D) ∪∪∪∪∪∪∪∪∪∪N that
is
equivalent
to L.

Proof. Let P(L) = {P1, . . . , Pk}. Every line in L ∩ D is a subpath of exactly
one path in P(L). Let Σ = {a1, a2, . . . , ak} be an alphabet of size k, where ai
corresponds to the path Pi.
Then, as the lines cross D vertically, there is an ordering that indicates the way
that they consecutively appear in D. We can naturally map such an ordering
to a word, say w, over Σ by replacing every line lj in the ordering by ai if li is a
subpath of Pi.
Observe that lemma 6.1.1 can be applied for Σ and w, therefore we obtain that
there is an infix y of w such that every letter occurring in it, occurs an even
number of times. This, "translated" back to lines, implies that there is a non-
empty subset A ⊆ L ∩D of lines that appear consecutively in D and for every
Pi ∈ P(L), the number of lines in A that are subpaths of Pi is even (it can be
zero).
Let A = {l1, . . . , l|y|}. For every path Pi ∈ P(L), we define APi = {l ∈ A |
l is a subpath of Pi} and we know that |APi | is even. Therefore, for some ni ∈
N, APi = {li1, . . . , li2ni

} ⊆ A, for every Pi ∈ P(L) for which APi ̸= ∅.
For every such i, we traverse Pi from si to ti and orient the lines of A in the
way that we meet them. For every odd number j ∈ {1, . . . , 2ni} we replace
the subpath of Pi from tail(lij) to head(lij+1) by a new line f ij which lies in D

avoiding crossings (for an example see Figure 6.1).
After having done these replacements we obtain a new path, P ′

i , from si to ti
that contains strictly less lines than Pi in A, and as this operation only causes
changes in A, also in D.
Let B be the set containing the lines introduced from the replacement. Then,
if we set N = ((L∩D)∪B) \A it is easy to observe that there exists a linkage
R that is a subgraph of L \ int(D), such that R ∪∪∪∪∪∪∪∪∪∪N meets the requirements
of the statement.

Lemma 6.1.3. Let (G,χ) be
a
pd-pattern, D be
a
closed
disk, and L a
pd-
linkage
of
order k in G that
crosses D vertically. Let
also L ∩ D consist
of
r > 2k lines. Then, there
is
a
collection N of
strictly
less
than r mutually
non-
crossing
lines
in D each
connecting
two
points
of bnd(D)∩L, such
that
there
exists
some
pd-linkage R that
is
a
subgraph
of L \ int(D) such
that R ∪∪∪∪∪∪∪∪∪∪N is
a
pd-linkage
of
the
graph (G \D) ∪∪∪∪∪∪∪∪∪∪N that
is
equivalent
to L.

Proof. As L is a pd-linkage of the pd-graph G, every path P ∈ P(L) is either
a primal or a dual path of G.
Let R be the linkage provided by Lemma 6.1.2. Then, as R is a subgraph of
L \ int(D), every path of L that is also a path of R, preserves its type.
As for the lines in B that are introduced in D after the replacement, they inherit
their types from the lines that they replace.
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Figure 6.1: A visualization of the proof of the "reflection trick" in Lemma 6.1.2

Lemma 6.1.4. Let k, k′, ρ be
 integers
such ρ ≤ min{k, k′}. Let (Γ, χ) be
a
pd-grid
whose
perimeter
is
a
primal
cycle, where Γ is
a (k × k′)-grid, and
let
{vup

1 , . . . , v
up
ρ } (resp. {vdown

1 , . . . , vdown
ρ })
be
vertices
of
the
higher
(resp. lower)

horizontal
 line
arranged
as
 they
appear
 in
 it
 from
 left
 to
 right
and
such
 that
(vup

h , v
down
h ) is
either
a
primal
or
a
dual
pair
of (Γ, χ) (we
consider
all
pairs
with

both
vertices
in χ−1(c) to
be
dual), for
every h ∈ [ρ]. Then (Γ, χ) contains ρ
pairwise
disjoint
paths P1, . . . , Pρ such
that, for
every h ∈ [ρ], Ph is
a
primal
(resp. dual)
path
with
endpoints vup

h and vdown
h iff (vup

h , v
down
h ) is
a
primal
(resp.

dual)
pair
of (Γ, χ).

Proof. We use induction on ρ. The statement trivially holds for ρ = 0. Let
(i, j) ∈ [k]2 such that vup

ρ (resp. vdown
ρ ) is the i-th (resp. j-th) vertex of the

higher (lower) horizontal line counting from left to right. We first consider the
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case where i ≥ j. Let Pρ be the path created by starting from vup
ρ ,moving k′−1

edges down (observe that the vertices we meet have the required color), and
then j − i edges to the left. For h ∈ [ρ− 1] let P (down)′

h be the path created by
starting from vdown

h and moving one edge up (clearly, P (down)′
h consists of a sin-

gle edge). We also denote by v(down)′
h the other endpoint of P (down)′

h . We now
define Γ′ as the subgrid of Γ that occurs from Γ after removing its lower hori-
zontal line and, for every h ∈ [i, k], its h-th vertical line. It is clear that (Γ′, χ′) is
a pd-grid, where χ′ is the restriction of χ to the vertices of Γ′. Observe also that
for every h ∈ [ρ−1], the pair (vup

h , v
down
h ) is substituted by the pair (vup

h , v
(down)′
h )

which we consider to be primal (resp. dual) iff (vup
h , v

down
h ) is primal (in order to

maintain the initial requirements about the types of the paths). By construc-
tion, none of the edges or vertices of Pρ belongs to Γ′. Notice also that the
higher (resp. lower) horizontal line of Γ′ contains all vertices in {pup

1 , . . . , p
up
ρ−1}

(resp. {p(down)′
1 , . . . , p

(down)′
ρ−1 }) and by the induction hypothesis, (Γ′, χ′) contains

the ρ − 1 pairwise disjoint paths P ′
1, . . . , P

′
ρ−1 that meet the conditions of the

statement.
It is now easy to verify that P ′

1 ∪P
(down)′
1 , . . . , P ′

ρ−1 ∪P
(down)′
ρ−1 , Pρ is the required

collection of pairwise disjoint paths.
For the case where i < j, we can just think of grid Γ being turned upside down
and repeat the same argument.

Lemma 6.1.5. Let k be
an
odd
integer
and (Γ, χ) be
a
pd-grid, where Γ is
a
(k × 2k)-grid
embedded
in
the
plane
and
assume
that
the
vertices
of
its
outer
cycle, arranged
in
clockwise
order, are

{vup
1 , . . . , v

up
k , v

right
2 , . . . , vright

k−1, v
down
k , . . . , vdown

1 , vleft
k−1, . . . , v

left
2 , vup

1 }

Additionally, χ(vup
1 ) = p and
for
every v ∈ V (Γ) \ {vup

1 } such
that v′ ∈ V (Γ)

precedes v in
the
cyclic
arrangement
of V (Γ), χ(v) = c if χ(v′) = p and χ(v) = p

otherwise.
Let
also (H,ψ) be
a
pd-pattern. The
vertices
of H have
degree 0 or 1 and
can
be
cyclically
arranged
in
clockwise
order
as

{xup
1 , . . . , x

up
k , x

down
k , . . . , xdown

1 , xup
1 }

such
that
if
we
add
to H the
edges
formed
by
pairs
of
consecutive
vertices
in
this
cyclic
ordering, the
resulting
graphH+ is
outerplanar
and ψ(xup

i ) = χ(vup
i ),

ψ(xdown
i ) = χ(vdown

i ) for
every i ∈ {1, . . . , k}. Also, for
every
edge e = {v, u} ∈
E(H), either ψ(v) = ψ(u) = p (primal
edges
of H )
or ψ(v) = ψ(u) = c (dual
edges
ofH ). Let V 1 be
the
vertices
ofH that
have
degree
1
and
letH1 = H[V 1].
Then (H1, ψ|V 1) is
a
pd-topological
minor
of (Γ, χ) via
some
pair (ϕ0, ϕ1), sat-
isfying
the
following
properties:

1. ϕ0(xup
i ) = vup

i , i ∈ {1, . . . , k} ∩ V 1

2. ϕ0(xdown
i ) = vdown

i , i ∈ {1, . . . , k} ∩ V 1.

Proof. Let U = {xup
1 , . . . , x

up
k }∩V 1 and D = {xdown

1 , . . . , xdown
k }∩V 1. Let ϕ0 be

as required. In the rest of the proof we provide the definition of ϕ1. We partition
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the edges of H1 into three sets: the upper
edges EU that connect vertices in
U , the down
edges ED that connect vertices in D, and the crosssing
edges
EC that have one endpoint in U and one in D. As |V (H1)| ≤ 2k we have that
|E(H1)| ≤ k and therefore |EU |+ |ED|+ |EC | = |E(H1)| ≤ k. We set ρ = |EC |.

We recursively define the depth of an edge e = {xup
i , x

up
j } in EU as follows:

• If e is a dual (resp. primal) edge of H, then its depth is 0 (resp. 1) if there
is no edge of EU with an endpoint in {xup

i+1, . . . , x
up
j−1}.

• If the maximum depth of an edge with an endpoint in {xup
i+1, . . . , x

up
j−1} is

i and this edge is primal, respectively dual, then the depth of e is i + 2,
respectively i+ 1.

The depth of an edge e′ = {xdown
i , xdown

j } is defined analogously. It follows, by
the definition (observe that a worst case scenario is realized when EU (resp.
ED) is the set of all primal vertices in {xup

1 , . . . , x
up
k } (resp. {xdown

1 , . . . , xdown
k }))

that:

qup = max{depth(e) | e ∈ EU}+ 1 ≤ 2|EU | (6.1)
qdown = max{depth(e) | e ∈ ED}+ 1 ≤ 2|ED| (6.2)

We now define ϕ1 : E(H) → P(Γ) as follows:

• For every edge e = {xup
i , x

up
j } in EU of depth l and such that i < j

– If ψ(xup
i ) = ψ(xup

j ) = p, i.e. e is a primal edge, let ϕ1(e) be the path
defined if we start in the grid Γ from vup

i , move 2l steps down, then
j − i steps to the right, and finally 2l steps up to the vertex vup

j (the
term "number of steps" refers to the number of edges traversed).
Observe that the obtained path is a primal path of Γ.

– if ψ(xup
i ) = ψ(xup

j ) = c, i.e. e is a dual edge, let ϕ1(e) be the path
defined if we start in the grid Γ from vup

i , move 2l − 1 steps down,
then j − i steps to the right, and finally 2l− 1 steps up to the vertex
vup
j . Observe that in this case, the obtained path is a dual path of Γ.

• For every edge e = {xdown
i , xdown

j } in ED of depth l and such that i < j

– If ψ(xup
i ) = ψ(xup

j ) = p, i.e. e is a primal edge, let ϕ1(e) be the path
defined if we start in the grid Γ from vup

i , move 2l steps up, then
j − i steps to the right, and finally 2l steps down to the vertex vup

j .
Observe that the obtained path is again a primal path of Γ.

– if ψ(xdown
i ) = ψ(xdown

j ) = c, i.e. e is a dual edge, let ϕ1(e) be the path
defined if we start in the grid Γ from vup

i , move 2l− 1 steps up, then
j − i steps to the right, and finally 2l − 1 steps down to the vertex
vup
j . Observe that the obtained path is again a dual path of Γ.

We have defined the value of ϕ1 for all edges in EU ∪ ED and it is easy to
confirm that all paths in ϕ1(EU ∪ED) are mutually non-crossing. It remains to
define ϕ1(e) for every e ∈ EC .
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Notice that the distance between ϕ0(U) and some horizontal line of Γ that
contains edges of the images of the upper edges is 2 ·max{depth(e) | e ∈ EU}
that, from (6.1), is equal to 2qup − 2. Symmetrically, using (6.2) instead of (6.1),
the distance between ϕ0(D) and the horizontal lines of Γ that contain edges of
the images of the down edges is equal to 2qdown − 2. As a consequence, the
graph

Γ̂ = Γ \ {x ∈ V (Γ) | distΓ(x, ϕ0(U)) < 2qup ∨ distΓ(x, ϕ0(D)) < 2qdown}

is a (k×k′)-grid, where k′ ≥ 2k−2(qup+qdown), whose vertices do not appear in
any of the paths in ϕ1(EU ∪ED). Given a crossing edge e = {xup

i , x
down
j } ∈ EC ,

we define the path P up
e as the subpath of Γ created if we start from xup

i and then
go 2qup steps down. Similarly, we define P down

e as the subpath of Γ created if
we start from xdown

j and then go 2qdown steps up. Notice that each of the paths
P up
e (resp. P down

e ) share only one vertex, say pup
e (resp. pdown

e ), with Γ′ that is one
of their endpoints. We use the notation {pup

1 , . . . , p
up
ρ } (resp. {pdown

1 , . . . , pdown
ρ })

for the vertices of the set {pup
e | e ∈ EC} (resp. {pdown

e | e ∈ EC}) such that, for
every h ∈ [ρ], there exists an e ∈ EC such that pup

h is an endpoint of P up
e and

pdown
h is an endpoint of P down

e . We also agree that the vertices in {pup
1 , . . . , p

up
ρ }

(resp. {pdown
1 , . . . , pdown

ρ }) are ordered as they appear from left to right in the
upper (lower) horizontal line of Γ̂ (this is possible because of the outeplanarity
of H+).

Notice that ρ = |E(H1)| − (|EU |+ |ED|) ≤ k− (|EU |+ |ED|) which by (6.1)
and (6.2) implies that ρ ≤ k′.

As ρ ≤ k′ ≤ k, we can now apply Lemma 6.1.4 on (Γ̂, χ|V (Γ̂)), {p
up
1 , . . . , p

up
ρ }

and {pdown
1 , . . . , pdown

ρ } and obtain a collection {Pe | e ∈ EC} of ρ pairwise
disjoint paths in (Γ̂χ|V (Γ̂)) between the vertices of {pup

e | e ∈ EC} and the
vertices of {pdown

e | e ∈ EC}, which respect the type of each pair. It is now easy
to verify that {P up

e ∪Pe∪P down
e | e ∈ EC} is a collection of ρ vertex disjoint paths

between U and D. We can now complete the definition of ϕ1 for the crossing
edges of H by setting, for each e ∈ EC , ϕ(e) = P up

e ∪Pe∪P down
e . By the above

construction it is clear that the pd-pattern (H1, ψ|1V ) is a pd-topological minor
of the pd-grid (Γ, χ) via the pair of functions (ϕ1, ϕ2). For a visualization of the
idea of the proof, see an example in Figure 6.1.

Lemma 6.1.6. Let G be
a
pd-graph, L be
a
pd-linkage
of
order k in G, and
U = (X ,Z) be
an L-tidy
tilted
pd-grid
of G with
capacity 2m. Let
also ∆ be
the
closure
of
the
perimeter
of GU . If 2m > 22k, then G contains
a
pd-linkage
L′ such
that

1. L and L′ are
equivalent,

2. L′ \∆ ⊆ L \∆, and

3. |E(∪∪∪∪∪∪∪∪∪Z ∩ L′)| < |E(∪∪∪∪∪∪∪∪∪Z ∩ L)|.

Proof. Let X = {X1, . . . , X2m} and Z = {Z1, . . . , Z2m}. Let also GU be the
realization of U in G and G∗ (resp. L∗) be the pd-graph (resp. pd-linkage)
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obtained from G (resp. L) if we apply primal-dual contraction to all pair of
vertices that are adjoined through a vertex in Vc(G) that belongs to some path
of

∪
(i,j)∈{1,...,r}2 Ii,j , where Ii,j = Xi ∩ Zj , i, j ∈ {1, . . . ,m}. We also define

X ∗ and Z∗ by applying the same operation to their paths. Notice that U∗ =

(X ∗,Z∗) is an L∗-tidy tilted pd-grid of G∗ with capacity 2m and that the lemma
follows if we find a linkage L′∗ such that the three conditions of the statement
are true for ∆∗, L∗, L′∗, and Z∗, where ∆∗ is the closed-interior of the perimeter
of G∗

U .
Let G∗− = (G∗ \∆∗)∪∪∪∪∪∪∪∪∪∪Z and apply lemma 6.1.2 on G∗−, ∆∗, and L∗ (the

lemma can be applied as 2m > 22k > 2k). Let N be a collection of strictly
less than 2m mutually non-crossing lines in D each connecting two points of
bnd(∆∗) ∩ L∗ and a linkage R ⊆ L∗ \ int(∆∗) such that L0 = R ∪ ∪∪∪∪∪∪∪∪∪N is a
pd-linkage of the graph (G∗ \ ∆∗) ∪ ∪∪∪∪∪∪∪∪∪N that is equivalent to L∗. Let H =

(L0 ∩∆∗)∪ (L∗ ∩ bnd(∆∗)). Notice that in H, the set V (L0 ∩∆∗) contains the
vertices of H of degree 1 while the rest of the vertices of H have degree 0 and
all edges of H have their endpoints in V (L0 ∩∆∗). Recall that the (2m× 2m)-
pd-grid is a pd-topological minor of G∗

U and clearly the (m× 2m)-pd-grid is a
pd-topological minor of G∗

U .
We can now apply Lemma 6.1.5 for the (m× 2m)-grid Γ and H. We obtain

that H1 = L0 ∩ ∆∗ is a pd-topological minor of Γ via some pair (ϕ0, ϕ1). We
now define the graph

L =
∪

e∈E(H1)

E(ϕ1(e)).

Notice that L is a subgraph of Γ. We also define the graph

Q =
∪

e∈E(L)

ϕ1(e)

which, in turn, is a subgraph ofG∗
U . Observe that L′∗ = R∪Q is a pd-linkage of

G∗ that is equivalent to L∗. This proves Condition 1. Condition 2 follows from
the fact that R ⊆ L∗ \ int(∆∗). Notice now that, as |N | < 2m, E(∪∪∪∪∪∪∪∪∪Z∗ ∩Q) is a
proper subset of E(∪∪∪∪∪∪∪∪∪Z∗). By construction of L′∗, it holds that E(∪∪∪∪∪∪∪∪∪Z ∩ L′∗) =

E(∪∪∪∪∪∪∪∪∪Z ∩ Q). Moreover, as U∗ = (X ∗,Z∗) is an L∗-tidy pd-tilted grid of G∗, it
follows that E(∪∪∪∪∪∪∪∪∪Z∗) = E(∪∪∪∪∪∪∪∪∪Z∗ ∩ L∗). Therefore, Condition 3 follows.

6.2 Existence
of
an
irrelevant
crossing
We now bring together all results from previous sections in order to prove the
main theorem of this thesis, that roughly states that if in an instance for pd-DP
problem the treewidth of the pd-graph is sufficiently large, then there exists a
pair of vertices that are adjoined, say through a vertex v, such that by applying
primal-dual contraction to them we obtain an equivalent instance. This pair is
an analogue of an irrelevant vertex in our context, and we call vertex v (that
"connects" the vertices of the adjoined pair) an irrelevant
crossing.

Lemma 6.2.1. Let G be
a
plane
graph
containing
a (k × k)-grid Γ as
a
minor,
T ⊆ V (G), and J ∈ duals(G). If k ≥ (r + 1) · ⌈

√
|T |+ 1⌉, then
the
pd-graph
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pd(G, J) contains
an
alternating
tight
sequence
of r concentric
cycles H =

{H1, . . . , Hr} such
that
none
of
the
vertices
in
the
closed
interior
of Hr is
in T .

Proof. We will first prove that G (and thus also pd(G, J)) contains a tight se-
quence of ⌈ r+1

2 ⌉ concentric cycles (primal cycles in pd(G, J)). From the defini-
tion of tightness,the existence of a tight sequence of ⌈ r+1

2 ⌉ concentric cycles
in G follows if we just prove the existence of a sequence of ⌈ r+1

2 ⌉ concentric
cycles inG. It is clear that Γ contains |T |+1 vertex disjoint (r+1)×(r+1)-grids
and thus G (and also pd(G, J)) contains a (r + 1)× (r + 1)-grid Γ′ as a minor
and this is certified by a function ϕ : V (Γ) → 2V (G′) where G′ is a subgraph
of G that does not contain vertices of T . Notice that V (Γ′) can be partitioned
into sets {V0, . . . , V⌈ r+1

2 ⌉}, corresponding to ⌈ r+1
2 ⌉ concentric cycles of Γ′ that

are arranged from inside to outside, i.e., V0 contains the centers of Γ′. In each
G[ϕ(Vi)], pick a cycle Ci meeting the models of all vertices of Vi. Because
G is a plane graph, it is easy to verify that {C1, . . . , C⌈ r+1

2 ⌉} is a collection of
concentric cycles in G.
Fix now two consecutive cycles, say Ci and Ci+1 with i ≤ ⌈ r+1

2 ⌉. Then, ob-
serve that, as Γ′ is a grid minor in G, there exist edges (that corresponds to
disjoint paths of G) with one endpoint in V (Ci) and the other in V (Ci+1), that
partition Di \ Di+1 to open sets, which correspond to faces, say f1, . . . fl, in
the subgraph of G obtained after deleting all vertices of G in int(Di \ Di+1).
The vertices in Vd(pd(G, J)) that correspond to these faces, induce a dual
cycle Ci,i+1, such that Di ⊂ Di,i+1 ⊂ Di+1. If r ≡ 1 mod 2, then H =

{C1, C1,2, C2, . . . , C⌈ r+1
2 ⌉−1,⌈ r+1

2 ⌉, C⌈ r+1
2 ⌉} and if r ≡ 0 mod 2 we get an extra

cycle. As we have previously observed, the dual cycles in H can be replaced
such that the obtained sequence H′ is an alternating tight sequence of con-
centric cycles in G.

The next lemma follows from [21]:

Lemma6.2.2. LetG be
a
plane
graph
and
let J ∈ duals(G). Then, tw(pd(G, J)) ≤
2 · tw(G).

From the last two lemmas and proposition 2.3.1 follows

Lemma 6.2.3. LetG be
a
pd-graph
such
that tw(G) ≥ 9·(r+1)·⌈
√
|T |+ 1⌉ and

let T ⊆ V (G). Then G contains
an
alternating
tight
sequence
of r concentric
cycles C = {C1, . . . , Cr} such
that
none
of
the
vertices
in
the
closed
interior
of
Hr is
in T .

Proof. As tw(G) ≥ 9 · (r + 1) · ⌈
√

|T |+ 1⌉, Lemma 6.2.2 gives that tw(Gp) ≥
4.5 ·(r+1) ·⌈

√
|T |+ 1⌉ (remember thatGp is the primal part of the pd-graphG).

Moreover, Lemma 2.3.1 implies that Gp contains a
(
(r+1)⌈

√
|T |+ 1⌉

)
×
(
(r+

1)⌈
√
|T |+ 1⌉

)
-grid as a minor and as a result, by Lemma 6.2.1, we get that G

contains an alternating tight sequence of r concentric cycles C = {C1, . . . , Cr}
such that none of the vertices in the closed interior of Cr is in T .

We are finally in the position to state and prove our main theorem:
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Theorem 6.2.1. Let (G,P, τ) be
an
instance
for pd-DP,
where P = {(si, ti) : i ∈
[k]}, for
some
positive
integer k. If tw(G) ≥ 9

√
2k + 1 · (k · (22k+2+4)+1) = h,

then
there
exists
a
pair (x, y) of
adjoined
vertices
in G such
that
 if
we
apply
primal-dual
contraction
(or
removal)
to
them, then (G,P, τ) is
a
YES-instance
for pd-DP if
and
only
if (G(x,y),P, τ) is
a
YES-instance
for pd-DP.

Proof. Let T = {s1, . . . , sk, t1, . . . , tk} ⊆ V (G). We get from Lemma 6.2.3, that
G contains an alternating tight sequence of r = k ·(22k+2+4) concentric cycles
C = {C1, . . . , Cr} such that all vertices in T are in the open exterior of Cr.

We assume that G contains a pd-linkage whose pattern is P and let L be
a C-cheap one. It is enough to prove that V (L ∩ C1) = ∅ because we can
then choose two adjoined vertices x, y ∈ V (C1) \ Vc(G) and apply primal-dual
contraction to them while retaining the existence of L.

If k = 1, thenthe fact that L is C-cheap implies that L ∩ Dr−1 = ∅ ⇒
V (L ∩ C1) = ∅ and we are done. Therefore, we can assume that k ≥ 2.

For every i ∈ {1, . . . , r}, we defineQ(i) = (C(i), L(i))where C(i) = {C1, . . . , Ci}
and L(i) is the subgraph of L that is the the union of all connected compo-
nents of L that intersect Di. As r > k, there exists some i ∈ [r] such that
Q(i) is touch-free and we let Q′ = (C′, L′) = (C(h), L(h)) where h = max{i ∈
[r] : Q(i) is a touch-free CL-configuration}. Clearly, C′ is tight in G and L′ is
C′-cheap. We set d = r − h and observe that the order of the pd-linkage L′ is
at most k − d while C′ has r′ = r − d > 0 concentric cycles. Using the same
argument as previously, we can assume that k′ ≥ 2, where k′ is the order of
L′. Additionaly, k′ ≤ k − d, therefore 0 ≤ d ≤ k − 2.

As C′ is tight in G and L′ is C′-cheap, by Lemma 4.2.2, Q′ is convex. To
prove that V (L ∩ C1) = ∅ it is enough to show that all segments of Q have
positive eccentricity at least 2 which is equivalent to all segments of Q′ having
eccentricity at least 2. Assume to the contrary that some segment P1 of Q′ has
eccentricity 1. Then, from the third condition in the definition of convexity we
can derive the existence of a sequence P1, . . . , Pr′−1 of segments such that for
each i ∈ {1, . . . , r′}, Pi+1 is inside the zone of Pi.

This in turn implies the existence in T (Q′) of a path of length r′ from its
root to one of its leaves, therefore T (Q′) has height r′. Then, we get from
Lemma 5.2.1 that the real height of T (Q′) is at most 2k′− 3 and therefore, Ob-
servation 5.2.1 gives that the dilation of T (Q′) is at least r′

2k′−3 ≥ k·(22k+2+4)−d
2k−2d >

k·(22k+2+4)
2k = 22k+1 + 2. Now, Lemma 5.3.1 gives that G contains an L′-tidy

tilted grid U = (X ,Z) of capacity at least 22k. Finally, we get from Lemma 6.1.6
that G contains another pd-linkage L′′ which is equivalent to L′ and such that
c(L′′) < c(L′), which is a contradiction because L′ was chosen to be C′-cheap.
This concludes our proof.
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6.2. EXISTENCE OF AN IRRELEVANT CROSSING

Figure 6.2: An example of the proof of Lemma 6.1.5. At the right: A pd-grid
(Γ, χ), where Γ is a (13×26)-pd-grid and the black dots correspond to χ−1(p),
the green squares to χ−1(d), and the red squares to χ−1(c). The pd-grid en-
closed in the dashed rectangle is a pd-grid (Γ̂, χ′), where Γ̂ (as it is defined in
the proof) is a (13× 18)-pd-grid and χ′ = χ|V (Γ̂).
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CHAPTER7
SKETCH OF AN ALGORITHM AND APPLICATIONS

7.1 Turning
the
result
into
an
algorithm
We conclude by sketching a way to turn our result into an FPT-algorithm for
the pd-DP problem.

The main theorem of this thesis is Theorem 6.2.1 which has a structural
essence and states that if the treewidth of our input pd-graph is sufficiently
large, then there exists some adjoined pair of vertices (in the central part of
some pd-grid) that are in some sense irrelevant for the problem pd-DP. Al-
though not stated explicitly here, this pair can be found algorithmically in time
that is polynomial to the size n of the pd-graph.

We claim that given an FPT-algorithm, say A, for solving pd-DP parame-
terized by the treewidth of the pd-graph in the input, one can construct an
FPT-algorithm for pd-DP parameterized by the order of the required linkage.
Such an algorithm, with input I = (G,P, τ), works roughly as follows:

Step 1. Check if the treewidth of G is "large" (larger that the function of k that
appears in Theorem 6.2.1). If this is the case find an "irrelevant cross-
ing", apply primal-dual contraction and iterate on the new instance. If
the answer is no proceed to Step 2.

Step 2. At this point, an equivalent instance I ′ = (G′,P, τ) has been produced,
where the treewidth ofG′ is bounded by a function of k. Employ algorithm
A to solve the problem on I ′.

The "traditional" method for solving such kind of problems in graphs of
bounded treewidth is dynamic programming or expressing the problem in MSOL
(Monadic Second Order Logic) and invoking the celebrated (meta)theorem of
Courcelle. Before stating it we briefly describe MSOL.

Monadic
Second
Order
Logic. The syntax of Monadic
Second
Order
Logic
(MSOL) requires an infinite number of individual variables (we usually use letters
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x, y, z. . . .) and infinite number of set variables (we usually use capital letters
X,Y, Z, . . .). Monadic second-order formulas in the language of graphs are
built up from

• atomic formulas E(x, y) (adjacency between x and y), x = y (equality),
X(x) (for some set variable X and individual variables x and means that
vertex x is in set X ) by using negation (¬), conjunction (∧), disjunction
(∨), logical implication (→), and bi-implication (↔).

• existential quantification ∃x, ∃X and universal quantification ∀x, ∀X over
individual variables and set variables.

The semantics of MSOL are defined in the obvious way. Let π be a graph
property, G be a graph and G be the class of all graphs. If G has property π we
write π(G). We say that π is expressible in MSOL if there exists some MSOL
formula ϕπ such that

(∀G ∈ G) [G |= ϕπ ⇔ π(G) ]

Our statement of Courcelle's theorem, that follows, lacks formality but for more
details on MSOL and Courcelle's theorem we refer the reader to Chapter 13 of
[10].

Proposition 7.1.1 ([5]). If π is
a
graph
property
that
is
expressible
in MSOL,
then
there
exists
some
computable
function f such
that π can
be
decided
in
linear
(to
the
size
of
the
graph)
time
on
the
class
of
graphs
of
bounded
treewidth.

In our case we face the problem of graphs being treated as topological
structures (embedded graphs) and not just as combinatorial ones. A way to
overcome this difficulty is to "encode" the topology of our plane graph G into
another graph G′ which is uniquely embeddable (3-connected for example),
and transform the property π that we want to decide into another property
π′ such that π′ is expressible in MSOL (hence, from Courcelle's theorem, we
automatically have a linear time algorithm for graphs of bounded treewidth)
and π(G) if and only if π′(G′). In order to achieve this we can try working an
even more enhanced version of the pd-graphs, either by considering the pd-
graph of the pd-graph of our plane graph G or using other modifications like
the radial
graph (for a more detailed presentation of the previous idea, we refer
the reader to [4]). In any case, the goal is to increase the connectivity of our
initial plane graph and at some point force it to be uniquely
embeddable and
thus being able to use our combinatorial toolkit.

7.2 Applications

In this section we describe some problems for which our approach can be
proved useful. For this we define a notion of critical minor containment.
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Plane
minors. Given two plane graphs J and H we say that J critically
con-
tains H as
a
plane
minor, and we denote this by H ≤•

mn J , if there exists some
injection ϕ : V (J) → V (H) such that

1. for every e = {x, y} ∈ E(H), there exists a unique edge e′ in J with one
endpoint in ϕ−1(x), and the other in ϕ−1(y). We call each such edge e′ of
J bridge
edge of J . We also say that e is the counterpart of e′ in H and
that e′ is the counterpart of e in J .

2. for every v ∈ V (H), J [ϕ−1(v)] is a tree Tv and each leaf of this tree is
incident to an bridge edge.

Notice that if H ≤•
mn J , then there is a bijection λ : F (H) → F (J) such that,

for every f ∈ F (H), the counterparts of the edges incident to f are exactly
the bridge edges of J that are incident to λ(f). We call this bijection face
correspondence between H and J .

Let G be a plane graph and let J be one of the subgraphs of G such that
H ≤•

mn J (observe that there might be several such subgraphs of G). We
denote by λJ the face
correspondence between H and J .

We say that H is a plane
minor of G, and we denote this by H ≤mn G, if
there exists a subgraph J of G such that H ≤•

mn J .

We define two problems, which can be argued (as we see soon) to be quite
general:

Multiway Plane Facial Separators
Input: A plane graph G, a plane graph H where δ(H) ≥ 2, a set T ⊆ V (G),
and a function β : T → F (H).
Parameter: k = |T |+ |V (H)|.
Question: Is there a subgraph J of G such that H ≤•

mn J and for every f ∈
F (H), β−1(f) = T ∩ λJ(f)?

Let G be a plane graph, T ⊆ V (G). A cycle C of G is called T -avoiding if
V (C) ∩ T = ∅. Given a T -avoiding cycle C bounding the open disks D1 and
D2, we define P(C) = {T ∩D1, T ∩D2}, i.e., PT (C) is a bipartition of T .

Partitioning by Cycle Separators
Input: A plane graph G, a set T ⊆ V (G) with |T | = r, and a collection P =

{P1, . . . ,Pq} of bipartitions of T .
Parameter: k = r + q.
Question: Is there a collection C = {C1, . . . , Cq} of vertex-disjoint T -avoiding
cycles such that for each i ∈ [q], Pi = PT (Ci).

The following two problems are special cases of Partitioning by Cycle Sepa-
rators:

51
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Cyclic Multiway Cut
Input: A plane graph G, and a collection C = {T1, . . . , Tr} of (possibly empty)
sets of terminals.
Parameter: k = |∪∪∪∪∪∪∪∪∪ C|.
Question: Is there a collection of r open disks D1, . . . , Dr whose boundaries
are disjoint cycles of G and where Ti = T ∩Di, for each i ∈ [r]?

Multi-Cyclic separator
Input: A plane graphG, two disjoint sets of terminals T1 and T2, and an integer
r.
Parameter: k = |T1|+ |T2|.
Question: Is there a collection of cycles C1, · · · , Cr in G, such that, for each
Ci, if D1

i and D2
i are the open disks bounded by Ci, then T1 = T ∩ D1

i , and
T2 = T ∩D2

i , where T = T1 ∪ T2?

All the previously defined problems share a common characteristic: They
ask for "vertices being inside cycles of faces" and as one can observe the input
graphs are always plane graphs in order for the notion of enclosure into a cycle
or into a face to be meaningful (which is not the case for graphs as combinato-
rial structures, which are just set and a binary relation on it and have nothing to
do with subsets of the plane). With some effort, which is not presented here,
all the questions for this problems can be translated to finding pd-linkages in
the pd-graphs that correspond to the input graphs and this is where our work
can contribute to.
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CONCLUSION

In this thesis we tried to shed some light, from the point of view of Computer
Science, to the area of plane graphs. We defined the notions of pd-graph and
pd-linkage and proved some structural results in this context, based on the
techniques of [2]. In the previous chapter we illustrated some "fertile ground"
where we believe that our results can be useful. It would also be interesting to
extend existing algorithmic results in the context of embedded graphs and we
think that the class of pd-graphs can be, for several cases, the in between step.
One first good candidate would be to construct an fpt-algorithm for checking if
a plane graph is a topological minor (or a minor) of another plane graph, while
respecting their topology. To conclude, it seems like the area of plane graphs
is unexplored, compared to the work that has been done in general in the area
of graph algorithms, and we think that is an area worth studying.
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