
ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ
“ΔΙΑΧΕΙΡΙΣΗ ΠΛΗΡΟΦΟΡΙΑΣ ΚΑΙ ΔΕΔΟΜΕΝΩΝ”

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

BigSQLTraj: A SQL-extended framework for storing &
querying big mobility data

Πέτρος Θ. Πέτρου

Επιβλέπων: Μανόλης Κουμπαράκης, Καθηγητής

ΑΘΗΝΑ

ΜΑΙΟΣ 2019

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

BigSQLTraj: A SQL-extended framework for storing & querying big mobility data

Πέτρος Θ. Πέτρου

Α.Μ.: 1424

ΕΠΙΒΛΕΠΩΝ: Μανόλης Κουμπαράκης, Καθηγητής

ΕΞΕΤΑΣΤΙΚΗ ΕΠΙΤΡΟΠΗ: Δημήτριος Γουνόπουλος, Καθηγητής

Μάιος 2019

ΠΕΡΙΛΗΨΗ

Τα τελευταία χρόνια, λόγω της ευρείας χρήση αισθητήρων και έξυπνων συσκευών,
παρατηρείται μια εκθετική παραγωγή δεδομένων κίνησης, που εντάσσονται στην
κατηγορία δεδομένα μεγάλης κλίμακας (big data). Για παράδειγμα εφαρμογές
δρομολόγησης, παρακολούθηση κυκλοφοριακής ροής, έλεγχος στόλου ακόμη και
προβλέψεις ή αποφυγή κινδύνων βασίζονται στην επεξεργασία χωρικών και
χωροχρονικών δεδομένων. Τα δεδομένα αυτά πρέπει να αποθηκεύονται και να
επεξεργάζονται κατάλληλα ώστε στη συνέχεια να αποτελέσουν γνώση για τους
οργανισμούς. Προφανώς η διαδικασία αυτή απαιτεί συστήματα και τεχνολογίες
κατάλληλες για τον μεγάλο όγκο δεδομένων εισόδου. Στην παρούσα διπλωματική
εργασία χρησιμοποιήσαμε δεδομένων από κινήσεις πλοίων και πιο συγκεκριμένα
δεδομένα που παράγονται από το automatic identification system (AIS).

Για τους σκοπούς της συγκεκριμένης διπλωματικής εργασίας αναπτύχθηκε το σύστημα
BigSQLTraj: Ένα πλαίσιο βασισμένο σε SQL για την αποθήκευση και επερώτηση
μεγάλων δεδομένων από κινούμενα αντικείμενα. Οι εφαρμογές μεγάλων δεδομένων
περιλαμβάνουν τα επίπεδα διαχείρισης, επεξεργασίας, αναλυτικές και οπτικοποίησης
δεδομένων από ετερογενής πηγές ή σε ιστορικά δεδομένα ή σε δεδομένα ροών. Στην
παρούσα διπλωματική εργασία εξετάζουμε τα επίπεδα διαχείρισης και επεξεργασίας
μεγάλων ιστορικών δεδομένων. Στόχος του συστήματος είναι να παρέχει την
δυνατότητα σε χρήστες να αποθηκεύουν και να επεξεργάζονται με αποδοτικό τρόπο
μεγάλα γεωχωρικά και χωροχρονικά δεδομένα πάνω από ένα κατανεμημένο σύστημα
επεκτείνοντας ή αναπαράγοντας μεθόδους και αλγορίθμους από ήδη υπάρχοντα
συστήματα. Πρώτος στόχος της εργασίας είναι να επιλεχθούν εργαλεία που θα
μπορούν να επικοινωνούν μεταξύ τους και θα παρουσιάζουν μια ενιαία εικόνα στους
εξωτερικούς χρήστες. Οι καινοτομίες που παρέχει το σύστημα είναι η δημιουργία
μεθόδων για ισοκατανεμημένη, αλλά ταυτόχρονα βασισμένη στην ομοιότητα, διαμέριση
των δεδομένων στους κόμβους της συστάδας υπολογιστών, η δημιουργία μιας SQL
διεπαφής στο κατανεμημένο σύστημα που θα παρέχει εξελιγμένες μεθόδους για την
επεξεργασία των αποθηκευμένων δεδομένων και θα επιτρέπει σε συστήματα που ήδη
αλληλεπιδρούν με συστήματα βασισμένα σε SQL να μεταφερθούν σε τεχνολογίες
μεγάλων δεδομένων με τις ελάχιστες δυνατές αλλαγές.

Πρώτος στόχος της παρούσας διπλωματικής εργασίας είναι η ενσωμάτωση (integration)
διάφορων τεχνολογιών. Η υλοποίηση της παρούσας διπλωματικής βασίζεται σε
βιβλιοθήκες ανοιχτού κώδικα για επεξεργασία μεγάλων δεδομένων. Οι βιβλιοθήκες
αυτές είναι: Apache Hadoop, Apache Spark, Apache Hive και Apache Tez. Οι
βασικότερες λειτουργίες που παρέχει η βιβλιοθήκη Apache Hadoop είναι το
κατανεμημένο σύστημα αρχείων (Hadoop Distributed File System) που γράφονται και
διαβάζονται τα δεδομένα. Επιπλέον ο διαχειριστής πόρων του Apache Hadoop (Yarn -
resource manager) που ελέγχει το φόρτο εργασίας των υπολογιστών της συστάδας και
αναθέτει τις διεργασίες που πρέπει να εκτελεστούν. Τα δύο αυτά εργαλεία είναι
αποτελούν τον πυλώνα τις ενσωμάτωσης μεταξύ των υπολογιστών της συστάδας αλλά
και των βιβλιοθηκών που τρέχουν στη συστάδα. Η βιβλιοθήκη Apache Spark, μέσω του
προγραμματιστικού πλαισίου MapReduce, παρέχει την λειτουργία την επεξεργασίας είτε
σε ιστορικά δεδομένα είτε σε ροές δεδομένων και την αποθήκευσή τους στο
κατανεμημένο σύστημα αρχείων του Hadoop. Στη συνέχεια το Apache Hive μας δίνει
την δυνατότητα για εκτέλεση ερωτημάτων σε αρχεία που βρίσκονται στο κατανεμημένο
σύστημα αρχείων του Hadoop μέσω της HiveQL γλώσσας που είναι ισοδύναμη με της
παραδοσιακή SQL, ενώ οι βιβλιοθήκες Apache Spark και Apache Tez αποτελούν την

μηχανή εκτέλεσης (execution engine) ενός HiveQL ερωτήματος και μεταφράζουν την
επερώτηση σε MapReduce διαδικασία.
Κανένα από τα παραπάνω συστήματα δεν έχει την δυνατότητα επεξεργασίας
γεωχωρικών ή δεδομένων κίνησης στην βασική του εκδοχή. Οι προθήκες που έγιναν
περιλαμβάνουν:

 Δημιουργία συναρτήσεων για τον καθαρισμό χωροχρονικών σημείων και
δημιουργία τροχιών κινούμενων αντικειμένων από τα σημεία αυτά με την
βιβλιοθήκη Apache Spark

 Χωροχρονικός καταμερισμός των τροχιών στους υπολογιστές της συστάδας,
δημιουργία ευρετηρίων. Τα ευρετήρια περιλαμβάνουν την χωροχρονική έκταση
της διαμοιρασμένης πληροφορίας και μια κωδικοποίηση βασισμένη σε
τρισδιάστατα τοπικά ευρετήρια βάσει της πληροφορίας που έχει κάθε
υπολογιστής με χρήση των βιβλιοθηκών Apache Spark και Apache Hadoop.

 Δημιουργία κατάλληλων μεθόδων, για την αξιοποίηση της αποθήκευσης τους
προηγούμενου βήματος, για επερωτήσεις διαστήματος (range queries) και
επερωτήσεων ομοιότητας (kNN queries).

H σύγκριση που πραγματοποιήσαμε αφορά τη χρονική απόδοση των επερωτήσεων
διαστήματος (range queries) και επερωτήσεων ομοιότητας (kNN queries), βάσει του
τρόπου αποθήκευσης των δεδομένων όπως αναφέρθηκε προηγουμένως. Σε πρώτη
φάση συγκρίναμε την χρονική διάρκεια ολοκλήρωσης των παραπάνω ερωτημάτων για
τους διαθέσιμους τρόπους αποθήκευσης και για τους διαθέσιμους μηχανισμούς
εκτέλεσης συναρτήσει του αριθμού των υπολογιστών που τρέχουν στο κατανεμημένο
σύστημα (scalability). Στη συνέχεια συγκρίναμε την χρονική διάρκεια ολοκλήρωσης των
παραπάνω ερωτημάτων για τους διαθέσιμους τρόπους αποθήκευσης και για τους
διαθέσιμους μηχανισμούς εκτέλεσης συναρτήσει του όγκου δεδομένων (speed-up),
αυξάνοντας σε κάθε βήμα των όγκο δεδομένων. Τα αποτελέσματα μας έδειξαν ότι ο πιο
αποδοτικός τρόπος εκτέλεσης των ερωτημάτων με τη χρήση ενός ευρετηρίου για την
διαμοιρασμένη πληροφορία και στην συνέχεια η χρήση μιας κωδικοποίησης βασισμένη
σε τοπικά ευρετήρια για την ανάκτηση του τελικού αποτελέσματος με μηχανισμό
εκτέλεσης τη βιβλιοθήκη Apache Spark.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Βελτιστοποίηση Επερωτήσεων

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Διαχείριση Δεδομένων, Χωροχρονικά Δεδομένα, Μεγάλα Δεδομένα,

Ευρετήρια, Κατανεμημένα Συστήματα

ABSTRACT

Last decades, the need for performing advanced queries over massively produced data,
such as mobility traces, in efficient and scalable ways is particularly important. This
thesis describes BigSQLTraj a framework that supports efficient storing, partitioning,
indexing and querying on spatial and spatio-temporal (i.e. mobility) data over a
distributed engine. Every big data end-to-end application consists of four layers, data
management, data processing, data analytics and data visualization for heterogeneous
data sources for batch or streaming data. This thesis focuses on data management and
data processing for historical data.
The first goal is finding systems that offers ready-to-use integration pipelines to take
advantage of the best operation of each tool. For our implementation we chose open
source big data frameworks such as Apache Hadoop, Apache Spark, Apache Hive and
Apache Tez. Apache Hadoop and especially its distributed file system (HDFS) allowed
all the other libraries to have a common read and write layer. On the other hand,
Hadoop’s Resource Manager (Yarn) exploits the all the available computer resource.
BigSQLTraj extending the functionality of existing spatial or spatio-temporal systems,
centralized or distributed, to create two core and independent components. The first
component is responsible for storing, spatiotemporal partitioning and indexing the data
into a distributed file system and it is implemented on-top of Apache Spark. Many
spatio-temporal partitioners and a 3D-STRtree index are implemented to support a
collection of operators apart from existing partitioners and indexing methods that inherit
from state-of-the-art distributed spatial and spatiotemporal systems.
The second component is a distributed sql engine. We extend the functionality of
HiveQL in order to achieve rapid access in such kind of data (i.e. geospatial and
mobility data) and storing. Our final goal is optimizing Hive’s join procedure that is
required for both query types using the data structures from the first toolbox. We
demonstrate the functionality of our approach and we conduct an extensive
experimental study based on state-of-the-art benchmarks for mobility data. Our
benchmark focuses on the total execution time of range queries and kNN queries based
on the data storing model. At first we compare the temporal performance of different
storing alternatives and execution engines for the entire dataset and vary the number of
workers in order to review the systems scalability. Furthermore, we vary the size of our
dataset and measure the execution time of the queries. To study the effect of dataset
size, we split the original dataset into 5 chunks (20%, 40%, 60%, 80%, 100%). Βased
on the results we come to the conclusion that the best workflow includes a global index
structure for workers metadata and a local index-based encoding for storing the entire
trajectories of a partition into a single column and the execution time seems to follow
linear behaviour.

SUBJECT AREA: Query Prcessing

KEYWORDS: Data Management, Mobility Data, Big Data, Indexing, Distributed

Systems

To my beloved mother - Sophia

ACKNOWLEDGEMENTS

I would like to thank Konstantina Bereta and Manolis Koubarakis for their understanding
and supervision during the writing of my thesis. I would also like to thank Datastories
Lab from University of Piraeus for providing computer resources for clustering setup.
Last but not least, I would like to thank Nancy Koukouri, my family and my friends for all
their support and understanding. Finally, my acknowledgements to IMIS Hellas
(www.imishellas.gr) for kindly providing the AIS dataset which allowed me to test and
demonstrate my work.

CONTENTS

PREFACE..12

1. INTRODUCTION..13

2. BACKGROUND...16

2.1 Apache Hadoop.. 16
2.1.1 Apache Hadoop Yarn...16
2.1.2 Apache Hadoop HDFS...17

2.2 Apache Hive.. 18

2.3 Apache Spark.. 19

2.4 Apache Tez.. 20

2.5 Apache ORC.. 21

2.6 AIS Messages.. 23

3. RELATED WORK..24

4. THE BIGSQLTRAJ ARCHITECTURE PRINCIPLES..29

5. PREPROCESSING..32

6. IMPLEMENTATION...35

6.1 Partitioning and Indexing Mechanism..35
6.1.1 Spatio-temporal Partitioners...35
6.1.2 Spatio-temporal Index..40

6.2 Mobility Queries Toolbox...42
6.2.1 Extension of Hive with trajectory operators...43
6.2.2 BigSQLTraj supported queries:..44

7. EXPERIMENTAL EVALUATION...48

7.1 Experimental Setup.. 48

7.2 Results... 49

8. CONCLUSION & FUTURE WORK..52

 REFERENCES...53

LIST OF FIGURES

Figure 1: A trajectory as a sequence of time-stamped locations of a moving object......13

Figure 2: Piraeus & Brest AIS station location and are coverage...................................14

 Figure 3: Incoming messages rate...14

 Figure 4: Hadoop Architecture..16

 Figure 5: Yarn Workflow...17

Figure 6: HDFS Architecture..18

Figure 7: Hive Architecture..19

Figure 8: MR vs Tez data flow...21

Figure 9: ORC file structure...22

Figure 10: Hermes architecture and supported datatypes..25

Figure 11: GeoSpark frameworks architecture..26

Figure 12: UlTraMan architecture..27

Figure 13: TrajSpark architecture..28

Figure 14: Big Data Value Reference Model (source: www.bdva.eu).............................29

Figure 15: Spark SpatioTemporal Component..30

Figure 16: HiveQL SpatioTemporal Component...31

Figure 17: Preprocessing & Storage Workflow...32

Figure 18: IMIS dataset Statistics..33

Figure 19: Trajectory Partition...37

Figure 20: IMIS 3 Days Spatiotemporal Partitioner Running Example...........................38

Figure 21: IMIS Dataset Spatiotemporal Partition Results..39

Figure 22: BigSQLTraj Execution Plans..45

Figure 23: BigSQLTraj Scalability Experiments..50

Figure 24: BigSQLTraj Speed up Experiments...51

LIST OF TABLES

Table 1: Systems Architecture..28

Table 2: Data Types...28

Table 3: Query Language...28

Table 4: Dataset Description..34

Table 5: Hive tables..42

Table 6: Range Queries...46

Table 7: kNN Queries...47

Table 8: Experimental setup parameters...49

LIST OF ALGORITHMS

Algorithm 1: Repartition Algorithm...36

Algorithm 2: Octree Algorithm...36

Algorithm 3: Index Range Query Algorithm...40

Algorithm 4: Index NN Query Algorithm..41

PREFACE

Nowadays data is growing with remarkable speed, and this vast amount data must be
processed properly if we want to have control over it, transform it to information and
gain knowledge. GPS-equipped devices are everywhere and tracking positions. This
leads in a imperative need for developing new techniques, technologies and services for
these kind of data and their producers. Sometimes hardware resources they are not
enough in itself. Last decades, management and processing algorithms have been
proposed in the literature. Location-based services, object’s future position, traffic
prediction, safety and privacy are only some example of mobility data applications in the
real world. All these applications are based on some primitive spatiotemporal queries.
This thesis aims to conduct an empirical evaluation and benchmarking of the state-of-
the-art techniques over big processing systems under different setups.

BigSQLTraj: A SQL-extended framework for storing & querying big mobility data

1. INTRODUCTION

The continuous and significant growth of data together with improved access to data
and the availability of powerful Information and Communication Technologies (ICT)
systems have led to intensified activities around Big Data Value. Powerful data
techniques and tools allow collecting, storing, analysing, processing and visualising vast
amounts of data. Open data initiatives are gaining momentum, providing broad access
to data from the public sector, business and science. The exploitation of Big Data in
various sectors has a potential socio-economic impact far beyond the specific Big Data
market. Therefore, it is essential to embrace new technology, applications, use cases
and business models within and across various sectors and domains. This will ensure
the rapid adoption of Big Data by organisations and individuals, and provide major
returns in terms of growth and competitiveness. In particular, the efficiency gains made
possible by Big Data will also have a profound societal impact. The issue for
organizations is not storing or retrieving data, but finding useful pieces. Information is
power, and those who can distinguish between raw data (garbage) and knowledge can
create extra profits.

Lately, there is an explosion in the usage of smart devices (smartphones, smart stations
(weather, transportation), internet of things, etc.) in every moment in our life. Humans
are used to publishish their location (with text or images) via social media in daily base,
transportation companies (i.e. shipping companies) and generally moving entities must
publish their positions for security or other reasons. Spatial and spatiotemporal data is a
special category of data sources. Every human, car, even vessels and airplanes can
register their position in customized databases. Data types from the above use cases
are more complicated and there is a need for non-traditional database application such
as location-based services, WWW repositories. Location-based services are IT services
for providing information based on the current state of the object (current or recent
spatial(-temporal) history) [5]. For example, by using the information about the location
it is possible to fetch relevant information such as hot paths, nearby points of
interests(POIs) and available services (e.g. traffic management, carpooling,
navigational services) [10]. At this point it is important to clarify two different, but with
common features, concepts. Spatiotemporal data in general and spatiotemporal
trajectories (or mobility data) are two different data types, which both combine the
space and time.

Koubarakis et al. [2] was one of the earliest efforts to study STDB, from modeling to
implementation aspects, as the final result of the pioneering ‘‘ChoroChronos” EU
funded research project. Partially resulted by the same project, Güting & Schneider [8]
was the first (and still remains a ‘‘must-read”) monograph in the field of MOD. A short
introduction to the concept of spatio-temporal (trajectory) data is presented in [20].

Figure 1: A trajectory as a sequence of time-stamped locations of a moving object

Π. Πέτρου 13

BigSQLTraj: A SQL-extended framework for storing & querying big mobility data

The next question is whether the mobility data and its applications in real life could be
characterized as big data and follow the 4V. MarineTraffic1 is an organization that
collects mobility message from 3971 stations. Its station cover radius is almost 30km.
The two figures below show examples of two such stations and their input messages
rate.

(a) (b)

Figure 2: Piraeus & Brest AIS station location and are coverage

(a)

(b)

Figure 3: Incoming messages rate

1 www.marinetraffic.com

Π. Πέτρου 14

http://www.marinetraffic.com/

BigSQLTraj: A SQL-extended framework for storing & querying big mobility data

Figure 3 shows that each station receives 100 messages per minute. This means
397100 per minute for all station around the world and 23826000 messages per hour!
In better of our knowledge it would impossible for a system to handle and execute query
over this amount of data only with the resources of the memory. Systems that can give
rapid disk access would be necessary, in order to give the ability to end-users to handle
such data and join them with points of interest.

In this thesis we proposed BigSQLTraj a framework for managing querying and
indexing spatial and spatiotemporal (mobility) data over a distributed (file) system. Our
implementation consists of two components. The first toolbox extends or reproduces
current state of the art Spatial(-Temporal) Big Data Engine that adds spatial &
spatiotemporal support (partitioning, indexing and storing). The second one is an
extension of HiveQL that adds spatial and spatiotemporal functions (UDFs) to the Hive
Language, thus we can take advantage of the data management pipeline from the first
toolbox.

This document contains eight chapters. At first, we begin with giving generic definitions,
such as data types, the purpose of this master thesis, and the algorithms we have
implemented to achieve the final results. In the following section, we provide the
necessary background knowledge about the technologies we have used. All of them
are big data frameworks. Later on, in the third section, a reader can find previous works
related to our research area. We have briefly represented benchmark, indices and
systems that dealing with problems related to modility data. In Section 4, we have
described the proposed systems architecture principles and compare it with a typical
big data architecture. In Section 5, we describe the data managent workflow. We
discuss problems about the data quality, filters that cleansed data and how our
proposed partitioner framework works. In Section 6, we describe the query processing
framework. We present the implement UDFs for mobility data that improve system’s
performance and we give example with full queries examples. Finally, we conclude the
achieved results, gains and the aim of this master thesis, and add some words about
future works can be done in the related area.

Π. Πέτρου 15

BigSQLTraj: A SQL-extended framework for storing & querying big mobility data

2. BACKGROUND

In this section we introduce the state-of-the-art big data engines and their components
that are used to implement this thesis. Moreover, we briefly present vessel messages’
structure because part of these messages are our data source.

2.1 Apache Hadoop

Hadoop2 [33] is an open source distributed processing framework that administers data
processing and storage for big data applications running in computer cluster. It is the
first open source framework that provides MapReduce API, with a resource manager
and a distributed storage layer. It is a unified platform that is the core element of a
growing ecosystem of massive management and processing technologies. Hadoop is
more flexible than traditional database systems and data warehouses, enabling users to
gather, process, analyze structure and (especially) unstructured data more flexibly.

Hadoop runs on clustered computers and can horizontal scale up in order to support
new nodes and massive amounts of data. It uses a distributed file system (a.k.a. HDFS)
that’s designed to provide quick access over distributed data, plus fault-tolerant
capabilities so applications can handle individual failures.

 Figure 4: Hadoop Architecture

2.1.1 Apache Hadoop Yarn

YARN’s basic idea is to divide resource management and job scheduling/monitoring
functionalities into separate daemons. The idea is to have a global ApplicationMaster
(AM) and ResourceManager (RM). A submitted application is either a single job or a job
DAG.

2 http://hadoop.apache.org/

Π. Πέτρου 16

http://hadoop.apache.org/

BigSQLTraj: A SQL-extended framework for storing & querying big mobility data

The data-computation framework is formed by ResourceManager and NodeManager.
ResourceManager is the ultimate authority that arbitrates resources across all of the
system’s applications. NodeManager is the per-machine framework agent responsible
for containers, supervision their use of resources (cpu, memory, disk, network) and
reporting to ResourceManager / Scheduler the same thing.
The per-application ApplicationMaster is, in effect, a framework specific library and is
tasked with negotiating resources from the ResourceManager and working with the
NodeManager(s) to execute and monitor the tasks.

 Figure 5: Yarn Workflow

The ResourceManager has two main components: Scheduler and
ApplicationsManager.

The Scheduler is responsible for allocating resources to the different running
applications subject to familiar capacity constraints, queues etc. Scheduler is pure
planner in the sense that it does not monitor or track the application status. Moreover, it
cannot guarantee the restart of failed tasks either due to application or hardware
failures. The Scheduler performs its scheduling function depend on the application’s
resource requirements; it does so based on the abstract notion of a resource container
that incorporates elements such as memory, cpu, disk, network etc. The Scheduler has
a pluggable policy that is liable for splitting the cluster computing power among the
various queues, applications etc.

The ApplicationsManager is responsible for accepting job-submissions, negotiating the
first container for executing the application specific ApplicationMaster and provides the
service for restarting the ApplicationMaster container on failure. The per-application
ApplicationMaster has the responsibility of negotiating appropriate resource containers
from the Scheduler, tracking their status and monitoring for progress.

2.1.2 Apache Hadoop HDFS

HDFS has a master/slave architecture. An HDFS cluster consists of a single
NameNode, a master server that manages the file system namespace and regulates
access to files by clients. In addition, there are a number of DataNodes, usually one per
node in the cluster, which manage storage attached to the nodes that they run on.

Π. Πέτρου 17

BigSQLTraj: A SQL-extended framework for storing & querying big mobility data

HDFS exposes a file system namespace and allows user data to be stored in files.
Internally, a file is split into one or more blocks and these blocks are stored in a set of
DataNodes. The NameNode executes file system namespace operations like opening,
closing, and renaming files and directories. It also determines the mapping of blocks to
DataNodes. The DataNodes are responsible for serving read and write requests from
the file system’s clients. The DataNodes also perform block creation, deletion, and
replication upon instruction from the NameNode.

Figure 6: HDFS Architecture

The NameNode and DataNode are pieces of software designed to run on commodity
machines. These machines typically run a GNU/Linux operating system (OS). HDFS is
built using the Java language; any machine that supports Java can run the NameNode
or the DataNode software. Usage of the highly portable Java language means that
HDFS can be deployed on a wide range of machines. A typical deployment has a
dedicated machine that runs only the NameNode software. Each of the other machines
in the cluster runs one instance of the DataNode software. The architecture does not
preclude running multiple DataNodes on the same machine but in a real deployment
that is rarely the case.

The existence of a single NameNode in a cluster greatly simplifies the architecture of
the system. The NameNode is the arbitrator and repository for all HDFS metadata. The
system is designed in such a way that user data never flows through the NameNode.

2.2 Apache Hive

HiveQ3 [34] provides users with a SQL-like declarative language that is the core
contribution of Hive system. HiveQL compiles queries into map-reduce jobs executed
on Hadoop ecosystem framework such as Spark or Tez. In addition, HiveQL supports
custom mapreduce scripts to be plugged into queries.

3 https://hive.apache.org/

Π. Πέτρου 18

https://hive.apache.org/

BigSQLTraj: A SQL-extended framework for storing & querying big mobility data

The Hive query language (HiveQL) follows most of the SQL standard capabilities and
some extensions that we have found useful. Traditional SQL features like from clause
sub-queries, various types of joins – inner, left outer, right outer and outer joins,
cartesian products, group bys and aggregations, union all, create table as select and
many useful functions on primitive and complex types make the language very SQL
like. In fact, for many of the constructs mentioned before it is exactly like SQL. This
enables anyone familiar with SQL to start a hive cli (command line interface) and begin
querying the system right away. Useful metadata browsing capabilities like show tables
and describe are also present and so are explain plan capabilities to inspect query
plans (though the plans look very different from what you would see in a traditional
RDBMS).

Figure 7: Hive Architecture

2.3 Apache Spark

Spark4 [35] is one of the biggest alternatives to Hadoop. On its website [9], developers
claim that sometimes it is 100 times faster than Hadoop’s MapReduce regarding
memory processes. This lets us say that users can use Hadoop (HDFS) as storage of
old data but processing them via Spark will be easier and faster. The key point of Spark
programming is Resilient Distributed Dataset (RDD). RDDs are lazily evaluated, and it
lets Spark to find an efficient plan for computations. Since results of RDD operations
are RDDs too, these transformations are not computed immediately. Instead, when an
action is being performed, Spark checks all the transformations introduced and creates
an optimized execution plan which sometimes builds up better modularity than the
programmer thought of. The execution is performed only once for the whole graph of
transformations. It is worthy to emphasize that RDDs shares the data amongst
computation nodes and they are only called when there is an action taking place.

Spark SQL is a new module in Apache Spark that integrates relational processing with
Spark’s functional programming API. Spark SQL is compatible with Hive and lets Spark
programmers leverage the benefits of relational processing (e.g., Declarative queries,

4https://spark.apache.org/

Π. Πέτρου 19

https://spark.apache.org/

BigSQLTraj: A SQL-extended framework for storing & querying big mobility data

optimized storage, creating UDFs), and lets SQL users execute map-reduce tasks via
SQL. Spark SQL makes two main additions. First, it offers much tighter integration
between relational and procedural processing, through a declarative DataFrame API
that integrates with procedural Spark code. Second, it includes a highly extensible
optimizer, Catalyst, built using features of the Scala programming language, that makes
it easy to add composable rules, control code generation, and define extension points.
Using Catalyst, we have built a variety of features (e.g., schema inference for JSON,
machine learning types, and query federation to external databases) tailored for the
complex needs of modern data analysis. We see Spark SQL as an evolution of both
SQL-on-Spark and of Spark itself, offering richer APIs and optimizations while keeping
the benefits of the Spark programming model.

2.4 Apache Tez

Tez5 [36] is a framework for YARN-based, Data Processing Applications in Hadoop.
Apache Tez is an extensible framework for building high performance batch and
interactive data processing applications, coordinated by YARN in Apache Hadoop. Tez
improves the MapReduce paradigm by dramatically improving its speed, while
maintaining MapReduce’s ability to scale to petabytes of data. Important Hadoop
ecosystem projects like Apache Hive and Apache Pig use Apache Tez, as do a growing
number of third party data access applications developed for the broader Hadoop
ecosystem.

Apache Tez provides a developer API and framework to write native YARN applications
that bridge the spectrum of interactive and batch workloads. It allows those data access
applications to work with petabytes of data over thousands nodes. The Apache Tez
component library allows developers to create Hadoop applications that integrate
natively with Apache Hadoop YARN and perform well within mixed workload clusters.

Since Tez is extensible and embeddable, it provides the fit-to-purpose freedom to
express highly optimized data processing applications, giving them an advantage over
end-userfacing engines such as MapReduce and Apache Spark. Tez also offers a
customizable execution architecture that allows users to express complex computations
as dataflow graphs, permitting dynamic performance optimizations based on real
information about the data and the resources required to process it.

 Execution Performance

 Performance gains over Map Reduce

 Optimal resource management

 Plan reconfiguration at runtime

 Dynamic physical data flow decisions

By allowing projects like Apache Hive and Apache Pig to run a complex DAG of tasks,
Tez can be used to process data, that earlier took multiple MR jobs, now in a single Tez
job as shown below.

5 https://tez.apache.org/

Π. Πέτρου 20

https://tez.apache.org/

BigSQLTraj: A SQL-extended framework for storing & querying big mobility data

Figure 8: MR vs Tez data flow

2.5 Apache ORC

The Optimized Row Columnar (ORC)6 [37] file format provides a highly efficient way to
store Hive data. It was designed to overcome limitations of the other Hive file formats.
Using ORC files improves performance when Hive is reading, writing, and processing
data.

ORC files as part of the initiative to massively speed up Apache Hive and improve the
storage efficiency of data stored in Apache Hadoop. The focus was on enabling high-
speed processing and reducing file sizes.

ORC is a self-describing type-aware columnar file format designed for Hadoop
workloads. It is optimized for large streaming reads, but with integrated support for
finding required rows quickly. Storing data in a columnar format lets the reader read,
decompress, and process only the values that are required for the current query.
Because ORC files are type-aware, the writer chooses the most appropriate encoding
for the type and builds an internal index as the file is written. ORC supports the
complete set of types in Hive, including the complex types: structs, lists, maps, and
unions.

ORC files are divided into stripes that are roughly 64MB by default. The stripes in a file
are independent of each other and form the natural unit of distributed work. Within each
stripe, the columns are separated from each other so the reader can read just the
columns that are required. An ORC file contains groups of row data called stripes, along
with auxiliary information in a file footer.

This diagram illustrates the ORC file structure:

6 https://orc.apache.org/

Π. Πέτρου 21

https://orc.apache.org/

BigSQLTraj: A SQL-extended framework for storing & querying big mobility data

Figure 9: ORC file structure

As shown in the diagram, each stripe in an ORC file holds index data, row data, and a
stripe footer. The stripe footer contains a directory of stream locations. Row data is used
in table scans. Index data includes min and max values for each column and the row
positions within each column. Row index entries provide offsets that enable seeking to
the right compression block and byte within a decompressed block. Note that ORC
indexes are used only for the selection of stripes and row groups and not for answering
queries.

Π. Πέτρου 22

BigSQLTraj: A SQL-extended framework for storing & querying big mobility data

2.6 AIS Messages

The Automatic Identification system (AIS) [1] is an automatic tracking system that uses
transponders on ships and is used by vessel traffic services (VTS). When satellites are used
to detect AIS signatures, the term Satellite-AIS (S-AIS) is used. AIS information supplements
marine radar, which continues to be the primary method of collision avoidance for water
transport.

Information provided by AIS equipment, such as unique identification, position, course, and
speed, can be displayed on a screen or an ECDIS. AIS is intended to assist a vessel’s
watchstanding officers and allow maritime authorities to track and monitor vessel
movements. AIS integrates a standardized VHF transceiver with a positioning system such
as a GPS receiver, with other electronic navigation sensors, such as a gyrocompass or rate
of turn indicator. Vessels fitted with AIS transceivers can be tracked by AIS base stations
located along coastlines or, when out of range of terrestrial networks, through a growing
number of satellites that are fitted with special AIS receivers which are capable of
deconfliction a large number of signatures.

The information contained in each AIS-data packet (or message) can be divided into the
following two main categories:

 Dynamic Information, transmitted every 2 to 10 seconds depending on the vessel’s
speed and course while underway and every 6 minutes while anchored. A dynamic AIS
messages includes:

 Maritime Mobile Service Identity number (MMSI) - a unique identification
number for each vessel station
 AIS Navigational Status (e.g. 1=at anchor, 7=engaged in fishing, etc.)
 Rate of Turn - right or left (0 to 720 degrees per minute)
 Speed over Ground - 0 to 102 knots (0.1-knot resolution)
 Position Coordinates (latitude/longitude - up to 0.0001 minutes accuracy)
 Course over Ground - up to 0.1° relative to true north
 Heading - 0 to 359 degrees
 Bearing at own position - 0 to 359 degrees
 UTC seconds - the seconds field of the UTC time when the subject data-
packet was generated.

 Static & Voyage related Information is provided by the subject vessel’s crew and is
transmitted every 6 minutes regardless of the vessel’s movement status:

 International Maritime Organization number (IMO) - note that this number
remains the same upon transfer of the subject vessel’s registration to another
country (flag)
 Call Sign - international radio call sign assigned to the vessel by her country
of registry
 Name
 Type (or cargo type) - the AIS ID of the subject vessel’s ship type
 Dimensions - approximated to the nearest metre (based on the position of
the AIS Station on the vessel)
 Location of the positioning system’s antenna on board the vessel
 Type of positioning system (e.g., GPS)
 Draught - 0.1 to 25.5 meters
 Destination
 Estimated time of arrival - UTC month/date hours:minutes

Π. Πέτρου 23

BigSQLTraj: A SQL-extended framework for storing & querying big mobility data

3. RELATED WORK

In this section we are going to briefly describe other techniques or systems that are related to
our work and explain their similarities and differences. We present indices for mobility data
which is the basic structure for optimizing query performance, benchmarks that introduces
the evaluation and functionalities of mobility databases and the principles of systems in big
spatial(-temporal) era.

The quadtree [38] is a data structure appropriate for storing information to be retrieved on
composite keys. We discuss the specific case of two-dimensional retrieval, although the
structure is easily generalized to arbitrary dimensions. Algorithms are given both for
straightforward insertion and for a type of balanced insertion into quad trees. Empirical
analyses show that the average time for insertion is logarithmic with the tree size. An
algorithm for retrieval within regions is presented along with data from empirical studies
which imply that searching is reasonably efficient. We define an optimized tree and present
an algorithm to accomplish optimization in n log n time. Searching is guaranteed to be fast in
optimized trees. Remaining problems include those of deletion from quad trees and merging
of quad trees, which seem to be inherently difficult operations.

R-tree [39] is the most efficient balanced index in spatial databases like PostGIS [40]. The 3D
R-tree is a straightforward extension of the R-tree, treats time as an extra “spatial” dimension
and it is the earliest method for indexing trajectories of moving objects. The default
insertation of entire trajectories could lead to excessive dead space, most common solution
for this issue is inserting segments of a trajectory in the index.

TB-tree [12] (Trajectory Bundle tree) maintains the ‘trajectory’ concept. TB-tree is a
heightbalanced tree with the index records in its leaf nodes; leaf nodes are of the form
(MBB , Orientation), where MBB is the 3-dimensional bounding box of the 3-dimensional
line segment belonging to an object’s trajectory, a leaf node contains entries of a single
trajectory only and Orientation is a flag used to reconstruct the actual 3-dimensional line
segment inside the MBB among four different alternatives that could exist. Since, by
definition, each leaf node contains entries of a single trajectory, the object identifier (id) needs
to be stored only once, in the leaf node header. Like R-tree, internal and leaf node MBBs
belonging to the same tree level are allowed to overlap. Each internal or leaf node in the tree
corresponds to a physical disk page (or disk block, which is the fundamental element on
which the actual disk storage is organized) and contains between m and M entries (M is the
node capacity—fanout—and m in the case of TB-tree is set to 1). For each trajectory, a
double linked list connects leaf nodes together to reconstruct the entire trajectory.

In [5], Theodoridis proposes a database schema and a set of ten benchmark database
queries (current & past positions of moving objects) regarding the support of location-based
services (LBS). No benchmark data or an experimental study is presented. The focus is on
requirements of databases for location-based services and mobility data. The benchmark
includes point and range selection queries on stationary and moving reference objects
distance, k-NN, similarity-based queries and join queries. Benchmarks’s queries can be
divided in three categories:

 Queries on stationary reference objects

 Queries on moving reference objects

 Join queries

Π. Πέτρου 24

BigSQLTraj: A SQL-extended framework for storing & querying big mobility data

On the other hand, BerlinMOD [30] is more realistic since it is based on real MOD system,
called SECONDO (to be overviewed later in this section). A data generator is implemented in
order to create persons’ trip (e.g. home-work) on road network. In this setting, an extensive
set of various types of queries, non-spatial, simple spatial, sophisticated range, NN and other
trajectory-oriented queries is proposed, which evaluate the functionality of a MOD engine.
BerlinMOD queries (rephrased) with spatiotemporal characteristics are:

 Return objects that have ever been as close as 10 m or less to each other?

 Return objects that meet other objects based on spatiotemporal thresholds

 Return objects passed given points at a specific time

 Return objects travelled within a region during the time periods

BerlinMOD experimental study it is focuses on range queries execution time with different
setup.

We are going to briefly present systems with similar functionality with our proposed
framework(approach). The systems can be categorized based on three criteria architecture,
datatypes and query interface. Basically, the architecture of the system can be either
centralized or distributed. Similarly, what datatype they can handle (store, index, query)
spatial or spatiotemporal, as well as the query interface (language) can be varied in SQL or a
classic programming language (i.e. Java or Scala).

Hermes [19] is a prototype system based on a powerful query language for trajectory
databases, which enables the support of aggregative Location-Based Services (LBS).
Hermes provides an SQL interface comprised of types, functions and operators that the user
can combine in order to construct data and perform calculations on them.

(a) (b)

Figure 10: Hermes architecture and supported datatypes

SECONDO [32] is RDBMS behind BerlinMOD, especially adjusted to be extended by algebra
modules. SECONDO is one of the first database system prototypes that can handle moving
objects, that is, continuously changing time-dependent geometries. Its architecture consists

Π. Πέτρου 25

BigSQLTraj: A SQL-extended framework for storing & querying big mobility data

of (i) a kernel, which offers query processing over a set of implemented type system
algebras, (ii) an optimizer, which implements the essential part of an SQL-like language.
Parallel Secondo [31] is constructed by coupling the Hadoop framework with a set of single-
computer SECONDO distributed on the cluster. Its components work independently, nodes in
Hadoop communicate with each other through its HDFS (Hadoop Distributed File System),
whereas each SECONDO database processes database queries and exchanges
intermediate data with the others through Parallel SECONDO File System. Through various
PQC (Parallel Query Convertor) operators provided in the master database, a custom parallel
query can be converted into a sequence of Hadoop jobs, being processed with a set of
independent tasks running on all nodes simultaneously. These tasks are processed by data
servers in parallel, complying with the runtime scheduling of the Hadoop framework.

Geospark [24] is an in-memory cluster computing framework for processing large-scale
spatial data. GeoSpark is built on top of the Apache Spark and extends it with two layers: a)
Spatial RDD (Resilient Distributed Datasets, the basic data model for Spark) Layer which is
responsible for loading and supporting geospatial object, b) Spatial Query Processing Layer
efficiently execute spatial query processing algorithms (e.g. Spatial Range, Join, KNN query)
on Spatial RDDs. Geospark also allows users to create a spatial index (e.g. R-tree,
Quadtree) that boosts spatial data processing performance in each SRDD partition.
Geospark SQL [25] is the SQL extention of Geospark and is able to achieve real-time query
processing. GeoSpark SQL provides a convenient SQL interface and achieves both efficient
storage management and high-performance parallel computing through integrating Hive and
Spark. GeoSpark SQL performs better when dealing with compute-intensive spatial queries
such as the kNN query and the spatial join query

(a) GeoSpark (b) GeoSpark SQL

Figure 11: GeoSpark frameworks architecture

STARK [26] is one of the first attempts that adds, more or less, spatiotemporal support in
Spark. It offers spatio-temporal framework that aims to optimize queries for data sets with
spatial and temporal components that is built on top of SPARK. We have to emphasize the
fact that STARK supports spatio(-temporal) data modeling, but all its operators, its
partitioners and indexing mechanism work with the spatial part of the data. Moreover, the
BSP partitioner works only with the spatial length to create boxes/partitions inside the dataset
MBB and the variable “max partition per cost” is useless because in fact was needed in case
the data should be written on disk [9].

Π. Πέτρου 26

BigSQLTraj: A SQL-extended framework for storing & querying big mobility data

In [3] authors describe a spatial extension based on Exareme system [18] (master-slave
model), to support large-scale spatial SQL queries and evaluate system’s performance using
the Jackpine Benchmark [11]. System is flexible and can support all spatial operators (e.g.
intersects, contains, etc.) for all spatial data types. In order to achieve better performance,
they implement a grid partitioner in the system. Moreover, each partition has a R-Tree index
structure for achieving better performance. System’s performance is quite stable and is
comparable with STARK. On the other hand, this approach doesn’t support operators for
mobility data.

UlTraMan [27] is a flexible and scalable distributed platform for trajectory data management
and analytics. UlTraMan is a Spark extension that provides a unified engine for both efficient
data management and distributed computing and offering an enhanced computing paradigm
in a highly modular architecture to enable both pipeline customization and module extension.
UlTraMan uses Simba [23] spatial partitioner and create local indices (i.e. for each partition)
and a global index that contains partitions MBR. UlTraMan integrates Chronicle Map [22] (an
in-memory, embedded key-value store designed for low-latency) with Spark in order to
provide efficient data access. Furthermore, data is stored in off-heap memory to relieve GC
pressure, and the data is persisted at runtime through the support of simultaneous access
from multiple processes.

Figure 12: UlTraMan architecture

TrajSpark [28] offers a framework for processing moving objects data. TrajSpark introduce
IndexTRDD, an RDD of trajectory segments, to support efficient data storage and
management by incorporating a global and local indexing strategy. Two-level index layer
with a global layer consisting of a three-level index layer and lower local hash indices. The
global index is composed of a time range index where each range is indexed via a grid
index and each grid is further indexed via a B+-tree. TrajSpark monitor the change of data
distribution by importing a time decay model which alleviates the repartitioning overhead
occurred in existing Spark-based systems and gets a good partition result at the same
time.

Π. Πέτρου 27

BigSQLTraj: A SQL-extended framework for storing & querying big mobility data

Figure 13: TrajSpark architecture

Tables below (1, 2, 3) classifies the above systems based on their main characteristics.
Our implemetation will provide a big data SQL with JDBC connectivity solution for mobility
data, which is a functionality none of the above systems provide.

Table 1: Systems Architecture

Hermes Secondo TrajStore GeoSpark STARK
Exareme

Spatial
UlTraMan TrajSpark

Centralized ✓ ✓ ✓

Distributed/

Parallel
✓ ✓ ✓ ✓ ✓ ✓

Table 2: Data Types

Hermes Secondo TrajStore GeoSpark STARK
Exareme

Spatial
UlTraMan TrajSpark

Spatial ✓ ✓ ✓ ✓ ✓

Mobility ✓ ✓ ✓ ✓ ✓

Table 3: Query Language

Hermes Secondo TrajStore GeoSpark STARK
Exareme

Spatial
UlTraMan TrajSpark

SQL ✓ ✓ ✓ ✓

Other ✓ ✓ ✓ ✓ ✓

Π. Πέτρου 28

BigSQLTraj: A SQL-extended framework for storing & querying big mobility data

4. THE BIGSQLTRAJ ARCHITECTURE PRINCIPLES

In this section we describe the architecture principles for our proposed system. At first, we
introduce an end-to-end big data application architecture and then we explain how our
implementation fits these standards. Our implementation, as the most big data engines,
adopts the master-slave architecture.

A big data architecture is designed to handle the ingestion, processing, and analysis of data
that is too large or complex for traditional database systems. Big data solutions involve one
or more workload types:

 Batch processing

 Streaming processing

 Interactive exploration of big data.

 Analytics tasks

The following diagram shows the logical components that fit into a big data architecture.

Figure 14: Big Data Value Reference Model (source: www.bdva.eu)

Data Management Layer: batch processing operations is typically stored in a distributed file
store that can hold high volumes of large files in various formats. This kind of store is often
called a data lake. A typical big data environment should convert data as needed and send it
to the correct storage(partition) in the right format.

Data Processing Layer: datasets are so large, often a big data solution must process data
files using long-running batch jobs to filter, aggregate, and otherwise prepare the data for
analysis. Most of the times a MapReduce task is applied on this layer.

The features proposed by this thesis rely on these layers. The lack of mature storage data
management layer is the main drawback of the Spark-based systems that are introduced in
the previous section. UlTraMan and TrajSpark use extremely custom data loading workflows

Π. Πέτρου 29

http://www.bdva.eu/

BigSQLTraj: A SQL-extended framework for storing & querying big mobility data

for parsing input data into a useful format, but they cannot easily upload new data if there
was a streaming component. It is also important to notice that simple operators like join could
double the program’s structures and provoke memories issues. For example, a range query
pruning the useless partitions, Spark will create a new data structure with the valid data and it
will need extra resources. On the other hand, our proposed architecture is more flexible in the
previous problems. Incoming data can be processed by Spark modules and then stored in
the right format for the data processing layer. It would be easier for a streaming module to
update partition index add new data to the storage layer rather than execute the complete
workflow from the scratch. Moreover disk-based approach allowed us to retrieve and keep
into memory only data that is necessary for process. We decided to create two different
toolboxes because in this way we could select the best pipelines from each library.

We decided to create two different toolboxes because in this way we could select the best
pipelines from each library and we can support different operations and functionalities. We
used 3 Apache libraries, Hadoop, Spark and Hive. At first, Hadoop guarantees a mature
storage system with Hadoop Distributed File System Component (HDFS) and through HDFS
integration is a trivial task. Spark and Hive can read and write data on the HDFS using
existing API and common file format like ORC. Furthermore, Apache YARN which is the
Hadoop’s resource manager, is responsible for task scheduling.

Figure 15 describes the data management and storing procedure. We used Apache Spark for
this task because it is the most mature big data engine for handling batch and streaming data
and store them on HDFS. In general, we can read data from multiple sources and then we
use Spark’s MapReduce framework in order to repartition mobility data based on
spatiotemporal similarity and creating files that are accessed by Hive. Our implementation
guaranteed load balancing.

Figure 15: Spark SpatioTemporal Component

Figure 16 shows the architecture of the second toolbox that is built on-top of Hive and it is the
querying mechanism of this thesis. We used Hive because it follows the SQL-standards with
JDBC APPI and offers distributed SQL querying over HDFS by translating SQL queries into

Π. Πέτρου 30

BigSQLTraj: A SQL-extended framework for storing & querying big mobility data

MapReduce jobs. We implemented several Hive UDFS, that are described in the section 6 in
order to support advanced data processing techniques for mobility data like bucket loading,
filtering (range querying), index scan and kNN queries. Every application that supports JDBC
API can interact with our platform.

Figure 16: HiveQL SpatioTemporal Component

Π. Πέτρου 31

BigSQLTraj: A SQL-extended framework for storing & querying big mobility data

5. PREPROCESSING

Quality of data is an important aspect for evaluating the performance of spatiotemporal
algorithms and data structures. Noisy data can lead to pointless results on the quality of the
proposed techniques. One of the most recent noise elimination algorithms has been based
on the spatiotemporal attributes of the objects in order to remove outliers. We focus on these
filters and we describe our implementation in the next section

The first job of this thesis is to apply all the necessary steps in order to cleansed
spatiotemporal points and create trajectories. A common strategy used to treat raw mobility
data is described in the next figure. The first two steps are almost mutual for every
preprocessing workflow and every type of data.

Figure 17: Preprocessing & Storage Workflow

Due to network failures, deserialization of the information, station coverage overlapping or no
coverage common issues for raw mobility data include:

 more than one messages for the same vessel, time and position (duplicates)

 outlier positions (‘‘off-course position”)

 messages that received with delay (‘‘out-of-sequence”)

 gap in reporting

Definitely this a stream kind of procedure, but data cleansing is not part of this thesis. For this
reason, cleansing filters are applied in a batch manner with Spark. Getting distinct messages
is an easy task and the functionality provided by Spark. For noise elimination, adapted some
filters based on spatiotemporal criteria such as speed and heading of the moving object. For
example, positions with instantaneous velocity over 120 knots or with significant heading
changes are deleted. Also, other important attributes are the sampling rate and the distance
of the messages/positions, because based on the sampling rate we divided(reconstruct)
object’s history into trajectories.

A spatiotemporal positions sequence <p i, ti> could be divided into independent trajectories
based on spatial or temporal gaps that appear in the raw data (note that the sequence is
clean in term of noise). We use two attributes in order to identify trajectories:

 Spatial gap: the upper limit distance between two successive time−stamped
positions of the same object so that they could be treated as the same trajectory.

Π. Πέτρου 32

BigSQLTraj: A SQL-extended framework for storing & querying big mobility data

 Temporal gap: the upper limit elapsed time between two successive
time−stamped positions of the same object so that they could be treated as the same
trajectory.

Having set S gap and T gap threshold, we have to iterate over the objects history in order to
find those points <pi-1, t i-1> and <pi, ti> that they overcome the defined thresholds. Then, we
identify <pi-1, t i-1> as the ending point of the existing trajectory and <p i, ti> as the starting point
of a new trajectory of that moving object.
Obviously, setting these parameters is application-dependent and they should produce
reasonable results.
For this task, we used off-the-shelf functions that are implemented by Spark. In particular:

1) partitioning data based on the objects’ id and order messages by timestamp

2) for each message find its lead message and calculate speed, heading, sampling and
distance

3) filtering outliers and splitting trajectory if it’s necessary

Apart from the fact that these steps are executed in batch manner their migration to a
streaming engine (thus they fit in a big data architecture) is brute force because they just
need rely on the previous point, so typical windows operation can reproduce the exactly
same procedure.
The histograms below are occurred from the thesis’ dataset (IMIS dataset) and helped us
define the spatial and temporal thresholds.

(a) Time elasped (b) Points Distance

Figure 18: IMIS dataset Statistics

We set spatial threshold 2000m and elapsed time threshold 400s. The partitioning algorithms
and querying algorithms from the next section take as input trajectories that are
created/constructed based on these thresholds. 1934322863
We set spatial threshold 2000m and elapsed time threshold 400s. The partitioning algorithms
and querying algorithms from the next section take as input trajectories that are
created/constructed based on these thresholds.

We conducted experiments against a real AIS dataset containing almost 100GB of AIS
messages (i.e. 1934322863 positions) spanning from 1 March 2007 to 31 March 2010 for N =
20206 distinct vessels in the Aegean, the Ionian, and part of the Mediterranean Sea. Most
vessels were frequently sailing, e.g., passenger ships or ferries to the islands. The cleansed

Π. Πέτρου 33

BigSQLTraj: A SQL-extended framework for storing & querying big mobility data

output contains 1536743282 points. We create 5271228 trajectories based on the defined
thresholds and we remove trajectories with a single point Table 4 summarizes some basic
statistics about the input dataset.

Table 4: Dataset Description

Raw points 1934322863

Cleansed points 1536743282

Trajectories 5271228

Average Length 10821.57 meters

Average Duration 3200 seconds

Average Sampling(trajectory) 92 seconds

Average Points(trajectory) 174

Π. Πέτρου 34

BigSQLTraj: A SQL-extended framework for storing & querying big mobility data

6. IMPLEMENTATION

In this section, we represent all the steps for creating the trajectories database. It is the full
implementation of the data management layer that is the most crucial factor for querying
effectiveness and next the query processing toolbox pipelines.

6.1 Partitioning and Indexing Mechanism

The implementation workflow starts from data storage and management based on Apache
Spark library. As described in Section 4 we have created methods for spatio-temporal
partitioning and indexing mobility data. At first, we present spatiotemporal partitioner steps
and then the features of the local indices.

6.1.1 Spatio-temporal Partitioners

After creating trajectories for all the dataset, we have to store them in the proper way thus we
take advantage of the distributed storage and processing API mechanism in order to
accomplish further optimizations. Achieving this task, we should rely on mobility attributes of
the trajectories and extending current spatial partitioners into spatiotemporal ones because
all the system described in Section 2 are implement or apply indexing, and thus partitioning,
only in spatial dimension and ignoring time. Moreover, we need our local indices, index for
each partitioned data, supporting mobility data. So, we extend geospatial STRtree provided
from JTS library. To describe better the changes, we have introduced at the pure geospatial
indices, we deem it appropriate to briefly describe the default (spatial) algorithms.

As already mentioned, our proposed partitioned are based on spatiotemporal characteristics.
At first, we extended STARK spatial partitioner and create a 3D equal grid partitioner, which
takes as input the dataset’s MBR and split it into 3D cells based on user defined ranges for
each dimension. The amount of 3D cells that has to broadcast to all workers and the
execution time and the complexity O(N) for assign a trajectory into a partitioner are the main
drawback of this solution. Subsequently, we extend quad-tree algorithm in order to handle 3D
data. This is so called Octree and it’s a straight forward extension from quad tree. The main
differences can be found in node data type that is 3D minimum bounding box and in
subdividing algorithm that produces eight children, but in other ways the fundamentals of the
algorithms are the same. Octree algorithms takes as input the dataset’ss MBR and a subset
of the trajectories database. Obviously, it is important the sample dataset follow the same
statistics (e.g. length, duration) as the full dataset. Getting a representative subset of a
dataset it is not a part of this thesis, but the off-the-shelf Spark sampling algorithm returns
quite good results and as shown in figures(histograms) below we are able to partition the full
dataset with almost equally partitions (fit normal distribution - load balancing). This is a crucial
assumption that of our implementation because we need near trajectories, in spatial and
temporal dimensions, to be stored in the same partition. Systems that were presented in the
section 2 are using pure spatial partitioners. Only TrajSpark uses quadtree with trajectory id
or time as extra feature for partitioning, but also split a trajectory into its points.

More or less both partitioners have the same functionality and the main difference is detected
in sharing candidate partitioners’ MBR and searching for partitioner.

We used the mean point of each trajectory to assign it to partition, because especially in
maritime data the middle point of the trip (mean point) is the most representative of the
trajectory. Obviously, someone could use more than one point (e.g. start point, mean point
and end point) to assign a trajectory to a partition or could replicate trajectories to every

Π. Πέτρου 35

BigSQLTraj: A SQL-extended framework for storing & querying big mobility data

partition rectangle that trajectory crosses for better distribution, but this strategy could occur
an explosion for the needed resources. So, due to the hardware limitation and because our
current implementation fit to the normal distribution, we use only the mean point of
trajectories to partition the dataset.

Algorithm 1 describes the full pseudocode of our Octree partitioner implementation, including
sampling, partitioning, creating local and global indices. Moreover, figure 19 shows a working
example of the partitioning step only and figure 20 show a running example and the
difference between quadtree and the octree implementation based on three days sample of
the full dataset.

Algorithm 1 Repartition Algorithm

Input: max_level, max_item_per_node ,trajectories_sample

Output: repartitioned trajectories, local indices, global index

1: traj_dataset ← load(trajectories)

2: mbr ← trajectories_dataset.getMBR()

3: subset ← traj_dataset.getSample(sample)

4: partitions_mbr ← octree (mbr, subset, max_level, max_item_per_node) //could be 3dGrid

5: repartition ← traj_dataset.map(assign(trajectory, partitions_mbr)).repartition()

6: local_indices ← repartition.createPartitionIndex() //fit partitioner in order to contains the full

trajectories of the partition

7: global_indices ← createIndex(local_indices.getRoot()) //create index from each partition

MBR

8: store(repartition)

9: store(indices)

Algorithm 2 Octree Algorithm

Input: MBR, trajectories, max_level, max_item_per_node

Output: octree

Π. Πέτρου 36

BigSQLTraj: A SQL-extended framework for storing & querying big mobility data

1: octree.root ← MBR

2: while trajectories.hasNext() do

3: traj ← trajectories.nect()

4: traj_mbr ←traj.getMBR()

5: leafNode ←octree.insert(traj_mbr)

6: if leafNode.items > max_item_per_node & leafNode.level < max_level then

7: octree.split(leaf_node)

8: end if
9: end while
10: return octree

Figure 19: Trajectory Partition

The next figures show that our proposed implementation achieve load balancing among
partitions, even the different parameter setup. It is noteworthy that we were forced to
implement spatiotemporal partitioners due to memory failures of the spatial partitioners. Pure
repartitioning based on only spatial characteristics lead to huge volume of data for each
worker and inbalanced partitions that were over cluster resources. In better of our knowledge
our implementation is the first proposing spatiotemporal partitioners since UlTraMan used
SIMBA’s spatial partitioner and TrajSpark used two-phase pruning based on B-tree for time
dimension and a spatial tree for partitioning the data. Furthermore, our preliminaries results
showed small number of partitioners gave us better performance, but cluster resources
constraints have compelled us to run our benchmark with almost 4000 partitioners (Figure
21)

Π. Πέτρου 37

BigSQLTraj: A SQL-extended framework for storing & querying big mobility data

(a) Raw Data

(b) QuadTree Result

(c) Octree Result

Figure 20: IMIS 3 Days Spatiotemporal Partitioner Running Example

Π. Πέτρου 38

BigSQLTraj: A SQL-extended framework for storing & querying big mobility data

(a) Octree max item by node: 20 & max level: 30

(b) Octree max item by node: 40 & max level: 15

(c) Octree max item by node: 360 & max level: 30

Figure 21: IMIS Dataset Spatiotemporal Partition Results

Π. Πέτρου 39

BigSQLTraj: A SQL-extended framework for storing & querying big mobility data

6.1.2 Spatio-temporal Index

The next step after partitioning is the indexing of the data. In order to achieve local
optimization, namely speed-up query execution time when a worker processing a subset of
the data is required a local index mechanism. In our implementation we extend spatial STR-
tree from the JTS library in order to use time for sorting. Actually, we use time and spatial
characteristics when build STR-tree and create its nodes. We decided to extend this library
because we wanted to support spatial and spatiotemporal data and simultaneously be
compatible with most of the existing systems and using one implementation. JTS library and
the features we added achieve this goal. Apart from adding time-spatial sorting, we added
method in order to support mobility query processing. More specifically, we implemented
algorithms for range queries with 3D MBR intersects over tree structure and also
implemented MINDIST tree search between trajectories and 3D MBR so that we can execute
kNN queries. MINDIST is equal with zero if entities overlap else is the distance between the
closest points. These methods allowed us to search a partitioner’s data with logN complexity.
Algorithm 3 and Algorithm 4 describes in pseudocode the steps for range queries and nn
queries taking advantage of a tree structure. Both algorthims using a depth-first search
mechanism in order to explore possible candidate for the final result. Algorithm 3 use only
overlap for continuing the depth first search (non-leaf node) or adding result (entry in leaf
node) for output. On the other hand, Algorithm 4 use MINDIST measurement for continuing
the depth-search (non-leaf node) and call a different distance function (i.e. DTW or LCSS for
mobility data) for assigning result (entry in leaf node) to output. In our implementation we use
these algorithms with minimal changes.

Algorithm 3 Index Range Query Algorithm

Input: tree, query

Output: candidate_set

 1: stack.add(tree.getRoot())

 2: candidate_set ←∅

 3: while stack.nonEmpty() do

 4: node ← stack.pop()

 5: if node is not leaf node then

 6: if node overlaps q then

 7: stack.push(node)

 8: end if
 9: else
10: for each entry ∈ node do

11: if entry overlaps q then

Π. Πέτρου 40

BigSQLTraj: A SQL-extended framework for storing & querying big mobility data

12: candidate_set.add(e)

13: end if
14: end for
15: end if
16: end while

17: return candidate_set

Algorithm 4 Index NN Query Algorithm

Input: tree, query, mindist_threshold

Output: nn_result

 1: stack.add(tree.getRoot())

 2: nn_result ←∅

 3: nearest ← INFINITY

 4: while stack.nonEmpty() do

 5: node ← stack.pop()

 6: if node is not leaf node

then

 7: if node.distance(query) < mindist_thershold then

 8: stack.push(node)

 9: end if
10: else
11: for each entry ∈ node do

12: if entry.distance(query) < nearest then

13:
nearest

← entry.distance(query)

14: nn_result ← entry

15: end if
16: end for
17: end if

Π. Πέτρου 41

BigSQLTraj: A SQL-extended framework for storing & querying big mobility data

18: end while

19: return nn_result

Creating Hive tables is our final goal. Partitioning and indexing mechanism is the key factor
for having optimized tables that could be efficient processed by execution engine. After
finishing the data management workflow, we ended up with the following schema:

Table 5: Hive tables

 Name Columns Description

Global Index tree binary one row table, easily broadcast

TrajectoryIndex
partitionID int,

index[trajectories] binary

bucketed by partitionID, each row contains
trajectories for the partition in tree
encoding

Trajectories
objID bigint, trajectory array,
rowID bigint, partitionID int

cleansed and rebucketed trajectories,
bucketed by partitionID or rowID,
each row contains a trajectory,

MBRIndex
partitionID int,

index[trajectoriesMBR] binary

bucketed by partitionID, each row contains

mbrs of trajectories for the
partition in tree encoding

6.2 Mobility Queries Toolbox

The Scalable Big Data Operation Component - Big Data Processing (BDP) Toolbox provide
parallel and distributed query processing techniques for spatiotemporal query languages (i.e.
the Distributed Complex Query Toolbox). The efficient indexing techniques using
sophisticated partitioning and access algorithms enable the operators to perform complex
and demanding operations over big amount of data in spatiotemporal dimension.

In order to support access to the distributed storage layer, a set of primitive query operators
(UDF) have been implemented that operate over highly distributed data. Examples of such
operators include: scan, index-scan, filter(range-queries), distance-join, kNN queries.

BigSQLTraj operators have been designed in an abstract way, thus achieving two goals at
the same time:

1) easily executed via pure SQL commands and JDBC technologies without required any
knowledge of MapReduce programming

2) every system that read data from HDFS can reproduce the same functionality
(epsecially index scan) by only translate existing UDFs (pure Java that use custom
serializers and deserializers for indices)

The most important queries for every mobility data application are range queries and
similarity queries and its alternatives. Location-based services, map matching even predictive
analytics algorithms have steps that need a fast pruning processing or find distance between

Π. Πέτρου 42

BigSQLTraj: A SQL-extended framework for storing & querying big mobility data

trajectories, that’s why this thesis focus and optimize these types of queries. Our core
optimization relies on the index and partition that are described in the previous section.
Custom deserializers have been implemented in order to access global and local indices.
Each query (range or kNN) firstly scan the global index with the proper way and then process
the full dataset. Algorithm 3 and Algorithm 4 present the step for processing index-based
queries respectively.

6.2.1 Extension of Hive with trajectory operators

In this section we describe implemented Hive UDFs their input parameters, a briefly
description and the output result. These UDFs extend Hive with support for mobility data. It is
important to note that Hive doesn’t provide any API for creating new data types or indexing
structures. Every optimization in this thesis is achieved based on the below operators.
Especially index-based operators achieving effectively pruning for search space.

 ST_Intersects3D

 Input: trajectory and MBR or MBR and MBR, tolerance variables used to
 extent MBR

 Returns true if objects spatiotemporal intersects

 ST_IndexIntersects

 Input: STmbr, tree structure, tolerance variables used to extent MBR.

 Using Algorithm 3, scan Global Index or MBRIndex table 5

 Returns id for trajectories that intersects with STmbr

 IndexIntersectsTraj ◦ Input: STmbr, tree structure, tolerance variables used to
extent MBR.

 Using Algorithm 3, scan TrajectoryIndex table 5

 Returns id & trajectories that intersects with STmbr

MbbConstructor

 Input: trajectory or user defined mbr, tolerance variables used to extent MBR.
 Returns MBR as Hive data type

TrajBoxDist

 Input: trajectory and Stmbr
 Returns zero if trajectory overlaps STmbr else the distance between

 closest points

DTW

 Input: trajectory, trajectory, w (algorithm parameter for pruning distance
 matrix), distance function (i.e. Euclidean, Manhattan, Haversine), parameters
 for spatio-temporal tolerance

 Returns distance between the input trajectories if they temporal overlap

LCSS

Π. Πέτρου 43

BigSQLTraj: A SQL-extended framework for storing & querying big mobility data

 Input: trajectory, trajectory, distance function (i.e. Euclidean, Manhattan,
 Haversine) parameters for spatiotemporal tolerance

 Returns distance (dissimilarity) between the input trajectories

IndexTrajKNN

 Input: query_trajectory, tree, mindist therhold, temporal tolerance

 Using Algorithm 4, scan Global Index or MBRIndex table 5

 Returns id and trajectory which are candidate NN with the query_trajectory

IndexStoreTrajKNN

 Input: query_trajectory, tree, mindist therhold, temporal tolerance

 Using Algorithm 4, scan TrajectoryIndex table 5

 Returns id trajectory and distance which are candidate NN with the
 query_trajectory

ToOrderedList

 Input: idi, traji, k, distance (i.e calculated DTW or LCSS result) input based
 on IndexTrajKNN, IndexStoreTrajKNN

 Returns sorted by distance kNN trajectories

6.2.2 BigSQLTraj supported queries:

In this section we describe SQL queries of our implementation and how a user could execute
range and kNN queries with our proposed platform. Hive table are already described table 5.
There are three alternatives for each query how processing the full dataset except brute force
scan:

1) data have been bucketed by partition id, thus a simple search in the global index is
required and then a join with the trajectories table

2) data have been bucketed by trajectory id, thus a search in the global index and a
search in the local index that only contain trajectories id are required and then a join
with the trajectories table

3) data have encoding via STR-Tree, thus a simple search in the global index is
required and then a join with the local indices that have stored with the entire
trajectories (not only with their MBRs).

Figure 22 describes the pipelines for each execution plan. Each transition from one table
to another is achieved vi join operator. It is significant remarkable that our partitioning
algorithm and the management plan combined with Hive’s of the self tables and joins
optimizations gave us extra speed up for querying execution time.

Π. Πέτρου 44

BigSQLTraj: A SQL-extended framework for storing & querying big mobility data

(a)

(b)

(c)

Figure 22: BigSQLTraj Execution Plans

Methods for accessing each data structure based on the required algorithm are presented in
the previous section 6.2.1. More or less execution plans are the same for both queries (range
and kNN) because they depend in the same structures and almost same algorithms 3, 4.
Tables 6 and 7 present the queries that an end-user can execute in our proposed system. A
short description is provided in order to link queries with data management layer and
execution plans 22. In case of range queries Q is always a 3D MBR and
Intersects=[ST_Intersects3D, ST_IndexIntersects, IndexIntersectsTraj] depends on
querying table. In case of range queries Q is always a trajectory, knn=[IndexTrajKNN,
IndexStoreTrajKNN] depends on querying table, distance=[DTW, LCSS] and
knn_result=ToOrderedList.

Π. Πέτρου 45

BigSQLTraj: A SQL-extended framework for storing & querying big mobility data

Table 6: Range Queries

Query Description

SELECT * FROM trajectories WHERE

Intersects(Q, trajectory)
Brute force range query. Scan all database

SELECT * FROM trajectories INNER

JOIN (SELECT Intersects(Q, tree)

FROM global_index) AS t ON

(partitionID) WHERE

Intersects(Q, trajectory)

First query Global Index for finding

partitions that intersects with range query,

then execute the range query on

trajectories table that is bucketed by

partition id [5].

Join global index with trajectories table.

Execution plan (a).

SELECT * FROM trajectories

INNER JOIN (SELECT Intersects(Q, tree)

FROM mbrindex INNER JOIN

(SELECT Intersects(Q, tree)

FROM global_index) as p

ON (partitionID)) AS t ON (rowID)

WHERE Intersects(Q, trajectory)

First query Global Index for finding partitions

that intersects with range query, then

execute the range query on MBRIndex table

for candidate intersects with Trajectories

tables. Finally execute range query only for

candidate trajectories [5].

Join Global Index, MBRIndex, Trajectories
tables.

Execution plan (b).

SELECT Intersects(Q, tree)

FROM TrajectoriesIndex

INNER JOIN (SELECT

Intersects

(Q, trajectory) FROM global_index)

AS t ON (partitionID)

First query Global Index for finding

partitions that intersects with range query,

then execute the range query on

TrajectoriesIndex table [5].

Join Global Index with TrajectoriesIndex table.

Execution plan (c).

Π. Πέτρου 46

BigSQLTraj: A SQL-extended framework for storing & querying big mobility data

Table 7: kNN Queries

Query Description

SELECT *

FROM (SELECT rowIDi, ti, Q, distance(ti , Q)

FROM trajectories) AS temp

ORDER BY distance LIMIT k

Brute force kNN query. Scan all database.

SELECT rowIDi , knn_result FROM

(SELECT rowIDi , ti, Q, distance(ti, Q)

FROM trajectories INNER JOIN

(SELECT knn(Q , tree) FROM global_index) AS t) AS final

ON (partitionID) GROUP BY rowIDi

First query Global Index based on MINDIST

for finding partitions with candidate similar

trajectories [5], then execute similarity

function for all candidates and order the

result and return kNN.

Execution plan (a).

SELECT rowIDi , knn_result FROM

(SELECT rowIDi , ti, Q, distance(ti, Q)

FROM (SELECT knn(Q, tree) FROM index

INNER JOIN

(SELECT knn(Q, tree) FROM partition_index) AS p) AS t

ON (partitionID)) AS temp)) AS final GROUP BY rowIDi

First query Global Index based on MINDIST

for finding partitions

that has candidate kNN trajectories, then

execute the kNN search on MBRIndex table

for candidate intersects with Trajectories

tables [5]. Finally calculate distance

between query and candidate kNN

trajectories, order the result and return kNN.

Join Global Index, MBRIndex,

Trajectories tables. Execution plan (b)

SELECT rowIDi, knn_result

FROM (SELECT knn(Q, tree)

FROM indexTrajectories INNER JOIN

(SELECT knn(Q, tree) FROM partition_index) AS t

ON (partitionID)) AS final GROUP BY rowIDi

First query Global Index based on MINDIST

for finding partitions that has candidate NN

trajectories, then execute the kNN query on

TrajectoriesIndex table and order the result and

return kNN [5].

Join Global Index with TrajectoriesIndex table.

Execution plan (c).

Π. Πέτρου 47

BigSQLTraj: A SQL-extended framework for storing & querying big mobility data

7. EXPERIMENTAL EVALUATION

In this section, we present the results of our experimental study. After creating our cluster in
∼Okeanos7, we were going to test our benchmark scenario with several different
configurations. One by one we installed and ran all clustered engines. While running
benchmark used Yarn as the resource management platform. Spark, Tez and Hive have
been installed over Hadoop ecosystem. We configured hadoop so that it could used all the
available resources from the cluster. All results in the next paragraph are conducted with the
following resources:

 ∼Okeanos cluster with 15 slave nodes and one master node. Each node has

60gb disk, 8gb memory and 8 CPU

 Hive stable version 2.3

 Spark version 2.3

 Hadoop version 2.7.3

 Tez version 0.9

A real world dataset is employed to study the query performance of BigSQLTraj. Datasets

description and statistics are presented on table 4 in section 5. The main characteristics are:

 1536743282 points almost 100GB

 5271228 trajectories

7.1 Experimental Setup

Partitioned trajectories dataset and its indices are stored as ORC files and they were
bucketing into 30 buckets. The bucketing key is different per case, because as shown in the
previous section the join key is different, so sometimes the bucketing key is the trajectory id
and other the partition id. Partitioned tables can optimize filtering queries, but in our case, we
need fast joins. Hive provides join optimization for bucketing tables and especially with
bucketing and sorting by bucket key tables (sort bucket join). Moreover, it is crucial to clarify
that buckets number (i.e 30 buckets) should be some dozens for better performance. Hive
can improve its performance (faster execution) for join queries when someone increase
buckets number, but there is an upper limit. If this limit is overcome performance getting
worse. So, our empirical experiments shown that a range between 15-60 buckets achieve the
best performance.
TrajSpark evaluates performance of the system on a 12-node cluster running standalone
Spark 1.5.2, each node is equipped with 8-cores Intel E5335 2GHz processor and 16GB
memory. TrajSpark compare its performance with GeoSpark and SIMBA with two datasets
(real data 190GB and synthetic 1,4TB). Benchmarking examine data loading, single object
queries (i.e. input is object id and temporal range), spatiotemporal range quries based on
STR-Tree and kNN queries. Experiments are conducted with different input batch size.
UlTraMan conduct experiments on a 12-node cluster running Spark 2.1.1, Hadoop 2.7.1 and
Chronicle Map 3.14. Each node is equipped with 12-cores Intel Xeon E5-2620 2.4GHz and
40GB memory. Benchmarking examine query performance for id queries, range queries and

7 https://okeanos.grnet.gr/home/

Π. Πέτρου 48

https://okeanos.grnet.gr/home/

BigSQLTraj: A SQL-extended framework for storing & querying big mobility data

kNN queries with different input batch size. UlTraMan compare the performance difference
using Chronicle Map or of the self Spark/Hadoop pipelines and at the same time the benefits
of local and global indices.

Table 8: Experimental setup parameters

Parameter Values

Encoding scheme STRtree encoding, default encoding

Logical plans global index & bucketing table, global
index-local index & bucketing table,
default

Physical plans Sort Merge Bucket Join, Brute Force

Execution Engine Spark, Tez

Type of queries. We focused our experiments on range and knn queries. All of our
experiments were conducted using almost the same query parameters.
Algorithms. We have implemented logical and physical plans as described in the previous
sections for spatio-temporal queries. More specifically, we experimented with (a) global and
local index logical plans, (b) Sort Merge Bucket Join, Brute Force physical plans and (C)
default, STRtree encoding scheme. Table 8 summarizes the algorithms used during the
experimental evaluation process
Metrics. Our main evaluation metric was the total execution time of each experiment on the
cluster. The actual execution time of our algorithms is presented here. Each experiment was
run 3 times, and the average execution time is depicted in the charts.

7.2 Results

Figures 23 depicts the execution time comparing the available storage strategies with
different number of workers and both execution engines for range and knn queries. Figures
24 depicts the execution time comparing the available storage strategies with different size
dataset size for range and kNN queries. Clearly, by using partition(global) index we are able
to prune early rows which do not satisfy the query. This improves performance by at least
50% comparatively with brute force. It is also important to note index contains only
trajectories MBR and points to a bucketized by trajectory identifier table have worse
performance than table that bucketized by partition identifier. This performance difference is
quite notable especially for kNN queries which is the most challenging query. Also, STRtree
encoding outperforms all the other data management strategies.
For range queries the input was a random partitioner’s MBR. We made this decision in order
to stress the system and examine the query performance with a big number of returning
rows. Obviously, the the input for kNN query was a random trajectory from the dataset.
Range and kNN queries have quite similar executions time. This occurs because Hive as
engine has some overhead for system’s metadata, planning and execute query especially
with join operator. Moreover, the total execution time could be affected by the hardware
limitation. Our proposed system achieve is scalable, extra workers speed up systems
performance and increasing data size linearly decrease performance speed.
Both figures conclude the combination of global index with the STRtree encoding is the most
best execution plan and improves performance over 80% comparatively with brute force and
almost 50% comparatively with the other plan. This means that tree deserialization does not
charge the system performance and every delay is because of Hive’s semantics. Obviously,
Spark outperforms Tez because the execution plans does not require huge joins or a need to

Π. Πέτρου 49

BigSQLTraj: A SQL-extended framework for storing & querying big mobility data

write intermediate results on disk. Spark takes advantage of only-in-memory execution.
Especially kNN queries has almost the same execution with range queries despite the fact
that need extra calculation.

(a) Range Query

(b) Knn Query

Figure 23: BigSQLTraj Scalability Experiments

Π. Πέτρου 50

BigSQLTraj: A SQL-extended framework for storing & querying big mobility data

(a) Range Query

(b) Knn Query

Figure 24: BigSQLTraj Speed up Experiments

Π. Πέτρου 51

BigSQLTraj: A SQL-extended framework for storing & querying big mobility data

8. CONCLUSION & FUTURE WORK

In this thesis, we present the first flexible, distributed and scalable big data solution to
address the problem of big mobility data management and processing with using SQL. The
spread of the concept of big mobility data to basic users in conjunction with the lack of
software frameworks that would be able to handle spatio-temporal data and methods lead to
the development of this thesis. Our proposed BigSQLTraj system, which comprise of a
Processing and a Storage layer, is designed to benefit by the tools and best practices for
handling vast sizes of data. Our experiments demonstrate the performance of our system,
which is able to efficiently process range and kNN spatio-temporal queries, in a few seconds.
Achieving this goal, it was necessary the extension of existing tree structures that speed up
query execution. The combination of global and local indices, which is more of a matter
architecture despite implementation or technologies, is the key and the final result of this
thesis. Splitting big datasets based on similarity and create global and local metadata or
indices structures must be supported by every big data engine, so that the advantages of
space pruning lead to effective query processing
BigSQLTraj provides a clear SQL interface to its data types, functions and operators that
make it easy to learn, use and integrate with existing JDBC systems when it comes to
managing spatio-temporal data. We explained its components and demonstrated its
capabilities on a real world dataset.
There is always room for improvement on a framework like BigSQLTraj and some of the
areas this can be done are:

 evaluate the functionality of the system under real demands, such as a streaming
tool always inserts new data in order to measure resposiveness

 advanced spatio-temporal processing (e.g. computational geometry algorithms)

 semantic trajectories management and processing: integrating text and spatio-
temporal data (semantic or annotated trajectories). Also, there is a need for more
complex indices and processing workflows

 sophisticated partitioners, creating methods in order to minimize partitions overlap
and increase compactness

Π. Πέτρου 52

BigSQLTraj: A SQL-extended framework for storing & querying big mobility data

REFERENCES

[1] International Maritime Organization. International Convention for the Safety of Life at Sea [Internet]. 1974.
Available: http://www.imo.org/blast/contents.asp?topic_id=257 & doc_id=647

[2] Koubarakis, M., Sellis, T., Frank, A. U., Grumbach, S., Güting, R. H., Jensen, C. S., ... & Schek, H. J. (Eds.).
(2003). Spatio-temporal databases: The CHOROCHRONOS approach (Vol. 2520). Springer.

[3] Giannousis, K., Bereta, K., Karalis, N., & Koubarakis, M. (2018, December). Distributed Execution of Spatial
SQL Queries. In 2018 IEEE International Conference on Big Data (Big Data) (pp. 528-533). IEEE.

[4] Patroumpas, K., Alevizos, E., Artikis, A., Vodas, M., Pelekis, N., & Theodoridis, Y. (2017). Online event
recognition from moving vessel trajectories. GeoInformatica, 21(2), 389-427.

[5] Theodoridis, Y. (2003). Ten benchmark database queries for location-based services. The Computer
Journal, 46(6), 713-725.

[6] Pfoser, D., Jensen, C. S., & Theodoridis, Y. (2000, September). Novel approaches to the indexing of
moving object trajectories. In VLDB (pp. 395-406).

[7] Frentzos, E., Gratsias, K., & Theodoridis, Y. (2007, April). Index-based most similar trajectory search. In
2007 IEEE 23rd International Conference on Data Engineering (pp. 816-825). IEEE.

[8] Güting, R. H., & Schneider, M. (2005). Moving objects databases. Elsevier.

[9] He, Y., Tan, H., Luo, W., Feng, S., & Fan, J. (2014). MR-DBSCAN: a scalable MapReduce-based DBSCAN
algorithm for heavily skewed data. Frontiers of Computer Science, 8(1), 83-99.

[10] Trasarti, R., Guidotti, R., Monreale, A., & Giannotti, F. (2017). Myway: Location prediction via mobility
profiling. Information Systems, 64, 350-367.

[11] Ray, S., Simion, B., & Brown, A. D. (2011, April). Jackpine: A benchmark to evaluate spatial database
performance. In 2011 IEEE 27th International Conference on Data Engineering (pp. 1139-1150). IEEE.

[12] Pfoser, D., Jensen, C. S., & Theodoridis, Y. (2000, September). Novel approaches to the indexing of
moving object trajectories. In VLDB (pp. 395-406).

[13] Vlachos, M., Kollios, G., & Gunopulos, D. (2002). Discovering similar multidimensional trajectories. In
Proceedings 18th international conference on data engineering (pp. 673-684). IEEE.

[14] Maguerra, S., Boulmakoul, A., Karim, L., & Badir, H. A Survey on Solutions for Big Spatio-Temporal Data
Processing and Analytics.

[15] Pelekis, Nikos, and Yannis Theodoridis. “The case of big mobility data.” Mobility Data Management and
Exploration. Springer, New York, NY, 2014. 211-231.

[16] Pelekis, Nikos, and Yannis Theodoridis. “Modeling and acquiring mobility data.” Mobility data management
and exploration. Springer, New York, NY, 2014. 51-73.

[17] Pelekis, Nikos, and Yannis Theodoridis. “Mobility Database Management.” Mobility Data Management and
Exploration. Springer, New York, NY, 2014. 75-99.

[18] Chronis, Y., Foufoulas, Y., Nikolopoulos, V., Papadopoulos, A., Stamatogiannakis, L., Svingos, C., &
Ioannidis, Y. E. (2016, March). A Relational Approach to Complex Dataflows. In EDBT/ICDT Workshops.

[19] Pelekis, Nikos, and Yannis Theodoridis. “Moving Object Database Engines.” Mobility Data Management and
Exploration. Springer, New York, NY, 2014. 101-117.

[20] Frentzos, Elias, Yannis Theodoridis, and Apostolos N. Papadopoulos. “Spatio-temporal trajectories.”
Encyclopedia of Database Systems. Springer US, 2009. 2742-2746.

[21] Meagher, Donald. (1980). Octree Encoding: A New Technique for the Representation, Manipulation and
Display of Arbitrary 3-D Objects by Computer.

[22] Chronicle map. https://github.com/OpenHFT/Chronicle-Map, 2017.

[23] D. Xie, F. Li, B. Yao, G. Li, L. Zhou, and M. Guo. Simba: Efficient in-memory spatial analytics. In SIGMOD,
pages 1071–1085, 2016.

[24] Yu, Jia, Jinxuan Wu, and Mohamed Sarwat. ”Geospark: A cluster computing framework for processing
large-scale spatial data.” Proceedings of the 23rd SIGSPATIAL International Conference on Advances in
Geographic Information Systems. ACM, 2015.

Π. Πέτρου 53

BigSQLTraj: A SQL-extended framework for storing & querying big mobility data

[25] Huang, Zhou, et al. “GeoSpark SQL: An Effective Framework Enabling Spatial Queries on Spark.” ISPRS
International Journal of Geo-Information 6.9 (2017): 285.

[26] Hagedorn, Stefan, Philipp Götze, and Kai-Uwe Sattler. The STARK Framework for Spatio-Temporal Data
Analytics on Spark. Datenbanksysteme für Business, Technologie und Web (BTW 2017) (2017).

[27] Ding, X., Chen, L., Gao, Y., Jensen, C. S., & Bao, H. (2018). UlTraMan: A unified platform for big trajectory
data management and analytics. Proceedings of the VLDB Endowment, 11(7), 787-799.

[28] Zhang, Z., Jin, C., Mao, J., Yang, X., & Zhou, A. (2017, July). Trajspark: A scalable and efficient in-memory
management system for big trajectory data. In Asia-Pacific Web (APWeb) and Web-Age Information
Management (WAIM) Joint Conference on Web and Big Data (pp. 11-26). Springer, Cham.

[29] Cudre-Mauroux, P., Wu, E., & Madden, S. (2010, March). Trajstore: An adaptive storage system for very
large trajectory data sets. In 2010 IEEE 26th International Conference on Data Engineering (ICDE 2010)
(pp. 109-120). IEEE.

[30] Düntgen, C., Behr, T., & Güting, R. H. (2009). BerlinMOD: a benchmark for moving object databases. The
VLDB Journal—The International Journal on Very Large Data Bases, 18(6), 1335-1368.

[31] Lu, J., & Güting, R. H. (2012, December). Parallel secondo: boosting database engines with hadoop. In
2012 IEEE 18th International Conference on Parallel and Distributed Systems (pp. 738-743). IEEE.

[32] Güting, R. H., Behr, T., & Düntgen, C. (2010). SECONDO: A Platform for Moving Objects Database
Research and for Publishing and Integrating Research Implementations. IEEE Data Eng. Bull., 33(2), 56-63.

[33] White, T. (2012). Hadoop: The definitive guide. ” O’Reilly Media, Inc.”.

[34] Thusoo, A., Sarma, J. S., Jain, N., Shao, Z., Chakka, P., Zhang, N., ... & Murthy, R. (2010, March). Hive-a
petabyte scale data warehouse using hadoop. In 2010 IEEE 26th international conference on data
engineering (ICDE 2010) (pp. 996-1005). IEEE.

[35] Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S., & Stoica, I. (2010). Spark: Cluster computing with
working sets. HotCloud, 10(10-10), 95.

[36] Saha, B., Shah, H., Seth, S., Vijayaraghavan, G., Murthy, A., & Curino, C. (2015, May). Apache tez: A
unifying framework for modeling and building data processing applications. In Proceedings of the 2015 ACM
SIGMOD international conference on Management of Data (pp. 1357-1369). ACM.

[37] Kumar, R., & Kumar, N. (2016). Improved join operations using ORC in HIVE. CSI transactions on ICT, 4(2-
4), 209-215.

[38] Samet, H. (1984). The quadtree and related hierarchical data structures. ACM Computing Surveys (CSUR),
16(2), 187-260.

[39] Guttman, A. (1984). R-trees: a dynamic index structure for spatial searching (Vol. 14, No. 2, pp. 47-57).
ACM.

[40] Obe, R. O., & Hsu, L. S. (2011). PostGIS in action (Vol. 2). Greenwich: Manning.

[41] Frentzos, E., Gratsias, K., Pelekis, N., & Theodoridis, Y. (2007). Algorithms for nearest neighbor search on
moving object trajectories. Geoinformatica, 11(2), 159-193.

Π. Πέτρου 54

	1. INTRODUCTION
	Figure 2: Piraeus & Brest AIS station location and are coverage

	2. BACKGROUND
	2.1 Apache Hadoop
	2.1.1 Apache Hadoop Yarn
	2.1.2 Apache Hadoop HDFS
	Figure 6: HDFS Architecture

	2.2 Apache Hive
	Figure 7: Hive Architecture

	2.3 Apache Spark
	2.4 Apache Tez
	Figure 8: MR vs Tez data flow

	2.5 Apache ORC
	Figure 9: ORC file structure

	2.6 AIS Messages

	3. RELATED WORK
	Figure 11: GeoSpark frameworks architecture
	Figure 12: UlTraMan architecture
	Figure 13: TrajSpark architecture
	Table 1: Systems Architecture
	Table 2: Data Types
	Table 3: Query Language

	4. THE BIGSQLTRAJ ARCHITECTURE PRINCIPLES
	Figure 14: Big Data Value Reference Model (source: www.bdva.eu)
	Figure 15: Spark SpatioTemporal Component

	5. PREPROCESSING
	Figure 17: Preprocessing & Storage Workflow
	Figure 18: IMIS dataset Statistics

	6. IMPLEMENTATION
	6.1 Partitioning and Indexing Mechanism
	6.1.1 Spatio-temporal Partitioners
	Figure 19: Trajectory Partition

	6.1.2 Spatio-temporal Index
	Table 5: Hive tables

	6.2 Mobility Queries Toolbox
	6.2.1 Extension of Hive with trajectory operators
	6.2.2 BigSQLTraj supported queries:
	Figure 22: BigSQLTraj Execution Plans
	Table 6: Range Queries

	7. EXPERIMENTAL EVALUATION
	7.1 Experimental Setup
	Table 8: Experimental setup parameters

	7.2 Results

	8. CONCLUSION & FUTURE WORK
	REFERENCES

