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ΠΕΡΙΛΗΨΗ

Τα τελευταία  χρόνια,  λόγω της  ευρείας  χρήση αισθητήρων και  έξυπνων συσκευών,
παρατηρείται  μια  εκθετική  παραγωγή  δεδομένων  κίνησης,  που  εντάσσονται  στην
κατηγορία  δεδομένα  μεγάλης  κλίμακας  (big data).  Για  παράδειγμα  εφαρμογές
δρομολόγησης,  παρακολούθηση  κυκλοφοριακής  ροής,  έλεγχος  στόλου  ακόμη  και
προβλέψεις  ή  αποφυγή  κινδύνων  βασίζονται  στην  επεξεργασία  χωρικών  και
χωροχρονικών  δεδομένων.  Τα  δεδομένα  αυτά  πρέπει  να  αποθηκεύονται  και  να
επεξεργάζονται  κατάλληλα  ώστε  στη  συνέχεια  να  αποτελέσουν  γνώση  για  τους
οργανισμούς.  Προφανώς  η  διαδικασία  αυτή  απαιτεί  συστήματα  και  τεχνολογίες
κατάλληλες  για  τον  μεγάλο  όγκο  δεδομένων  εισόδου.  Στην  παρούσα  διπλωματική
εργασία  χρησιμοποιήσαμε  δεδομένων  από  κινήσεις  πλοίων  και  πιο  συγκεκριμένα
δεδομένα που παράγονται από το automatic identification system (AIS).

Για τους σκοπούς της συγκεκριμένης διπλωματικής εργασίας αναπτύχθηκε το σύστημα
BigSQLTraj:  Ένα  πλαίσιο  βασισμένο  σε  SQL για  την  αποθήκευση  και  επερώτηση
μεγάλων δεδομένων από κινούμενα αντικείμενα.  Οι  εφαρμογές  μεγάλων δεδομένων
περιλαμβάνουν τα επίπεδα διαχείρισης, επεξεργασίας,  αναλυτικές και οπτικοποίησης
δεδομένων από ετερογενής πηγές ή σε ιστορικά δεδομένα ή σε δεδομένα ροών. Στην
παρούσα διπλωματική εργασία εξετάζουμε τα επίπεδα διαχείρισης και  επεξεργασίας
μεγάλων  ιστορικών  δεδομένων.  Στόχος  του  συστήματος  είναι  να  παρέχει  την
δυνατότητα σε χρήστες να αποθηκεύουν και να επεξεργάζονται  με αποδοτικό τρόπο
μεγάλα γεωχωρικά και χωροχρονικά δεδομένα πάνω από ένα κατανεμημένο σύστημα
επεκτείνοντας  ή  αναπαράγοντας  μεθόδους  και  αλγορίθμους  από  ήδη  υπάρχοντα
συστήματα.  Πρώτος  στόχος  της  εργασίας  είναι  να  επιλεχθούν  εργαλεία  που  θα
μπορούν να επικοινωνούν μεταξύ τους και θα παρουσιάζουν μια ενιαία εικόνα στους
εξωτερικούς  χρήστες.  Οι  καινοτομίες  που  παρέχει  το  σύστημα  είναι  η  δημιουργία
μεθόδων για ισοκατανεμημένη, αλλά ταυτόχρονα βασισμένη στην ομοιότητα, διαμέριση
των δεδομένων στους κόμβους της συστάδας υπολογιστών, η δημιουργία μιας  SQL
διεπαφής στο κατανεμημένο σύστημα που θα παρέχει  εξελιγμένες μεθόδους για την
επεξεργασία των αποθηκευμένων δεδομένων και θα επιτρέπει σε συστήματα που ήδη
αλληλεπιδρούν  με  συστήματα  βασισμένα  σε  SQL να  μεταφερθούν  σε  τεχνολογίες
μεγάλων δεδομένων με τις ελάχιστες δυνατές αλλαγές.

Πρώτος στόχος της παρούσας διπλωματικής εργασίας είναι η ενσωμάτωση (integration)
διάφορων  τεχνολογιών.  Η  υλοποίηση  της  παρούσας  διπλωματικής  βασίζεται  σε
βιβλιοθήκες  ανοιχτού  κώδικα  για  επεξεργασία  μεγάλων  δεδομένων.  Οι  βιβλιοθήκες
αυτές  είναι:  Apache Hadoop,  Apache Spark,  Apache Hive και  Apache Tez.  Οι
βασικότερες  λειτουργίες  που  παρέχει  η  βιβλιοθήκη  Apache Hadoop είναι  το
κατανεμημένο σύστημα αρχείων (Hadoop Distributed File System) που γράφονται και
διαβάζονται τα δεδομένα. Επιπλέον ο διαχειριστής πόρων του Apache Hadoop (Yarn -
resource manager) που ελέγχει το φόρτο εργασίας των υπολογιστών της συστάδας και
αναθέτει  τις  διεργασίες  που  πρέπει  να  εκτελεστούν.  Τα  δύο  αυτά  εργαλεία  είναι
αποτελούν τον πυλώνα τις ενσωμάτωσης μεταξύ των υπολογιστών της συστάδας αλλά
και των βιβλιοθηκών που τρέχουν στη συστάδα. Η βιβλιοθήκη Apache Spark, μέσω του
προγραμματιστικού πλαισίου MapReduce, παρέχει την λειτουργία την επεξεργασίας είτε
σε  ιστορικά  δεδομένα  είτε  σε  ροές  δεδομένων  και  την  αποθήκευσή  τους  στο
κατανεμημένο σύστημα αρχείων του  Hadoop. Στη συνέχεια το  Apache Hive μας δίνει
την δυνατότητα για εκτέλεση ερωτημάτων σε αρχεία που βρίσκονται στο κατανεμημένο
σύστημα αρχείων του Hadoop μέσω της HiveQL γλώσσας που είναι ισοδύναμη με της
παραδοσιακή  SQL, ενώ οι βιβλιοθήκες  Apache Spark και  Apache Tez αποτελούν την



μηχανή εκτέλεσης (execution engine) ενός  HiveQL ερωτήματος και μεταφράζουν την
επερώτηση σε MapReduce διαδικασία.
Κανένα  από  τα  παραπάνω  συστήματα  δεν  έχει  την  δυνατότητα  επεξεργασίας
γεωχωρικών ή δεδομένων κίνησης στην βασική του εκδοχή.  Οι προθήκες που έγιναν
περιλαμβάνουν:

 Δημιουργία  συναρτήσεων  για  τον  καθαρισμό  χωροχρονικών  σημείων  και
δημιουργία  τροχιών  κινούμενων  αντικειμένων  από  τα  σημεία  αυτά  με  την
βιβλιοθήκη Apache Spark

 Χωροχρονικός καταμερισμός των τροχιών στους υπολογιστές της συστάδας,
δημιουργία ευρετηρίων.  Τα ευρετήρια περιλαμβάνουν την χωροχρονική έκταση
της  διαμοιρασμένης  πληροφορίας  και  μια  κωδικοποίηση  βασισμένη  σε
τρισδιάστατα  τοπικά  ευρετήρια  βάσει  της  πληροφορίας  που  έχει  κάθε
υπολογιστής με χρήση των βιβλιοθηκών Apache Spark και Apache Hadoop.

 Δημιουργία κατάλληλων μεθόδων, για την αξιοποίηση της αποθήκευσης τους
προηγούμενου  βήματος,  για  επερωτήσεις  διαστήματος  (range queries)  και
επερωτήσεων ομοιότητας (kNN queries).

H σύγκριση που πραγματοποιήσαμε αφορά τη χρονική απόδοση των επερωτήσεων
διαστήματος  (range queries)  και  επερωτήσεων ομοιότητας  (kNN queries),  βάσει  του
τρόπου αποθήκευσης των δεδομένων όπως αναφέρθηκε  προηγουμένως.  Σε  πρώτη
φάση συγκρίναμε την χρονική διάρκεια ολοκλήρωσης των παραπάνω ερωτημάτων για
τους  διαθέσιμους  τρόπους  αποθήκευσης  και  για  τους  διαθέσιμους  μηχανισμούς
εκτέλεσης συναρτήσει του αριθμού των υπολογιστών που τρέχουν στο κατανεμημένο
σύστημα (scalability). Στη συνέχεια συγκρίναμε την χρονική διάρκεια ολοκλήρωσης των
παραπάνω  ερωτημάτων  για  τους  διαθέσιμους  τρόπους  αποθήκευσης  και  για  τους
διαθέσιμους  μηχανισμούς  εκτέλεσης  συναρτήσει  του  όγκου  δεδομένων  (speed-up),
αυξάνοντας σε κάθε βήμα των όγκο δεδομένων. Τα αποτελέσματα μας έδειξαν ότι ο πιο
αποδοτικός τρόπος εκτέλεσης των ερωτημάτων με τη χρήση ενός ευρετηρίου για την
διαμοιρασμένη πληροφορία και στην συνέχεια η χρήση μιας κωδικοποίησης βασισμένη
σε  τοπικά  ευρετήρια  για  την  ανάκτηση  του  τελικού  αποτελέσματος  με  μηχανισμό
εκτέλεσης τη βιβλιοθήκη Apache Spark.  

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Βελτιστοποίηση Επερωτήσεων 

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Διαχείριση Δεδομένων, Χωροχρονικά Δεδομένα, Μεγάλα Δεδομένα,

Ευρετήρια, Κατανεμημένα Συστήματα



ABSTRACT

Last decades, the need for performing advanced queries over massively produced data,
such as mobility traces, in efficient and scalable ways is particularly important.  This
thesis describes BigSQLTraj a framework that supports efficient storing, partitioning,
indexing  and  querying  on  spatial  and  spatio-temporal  (i.e.  mobility)  data  over  a
distributed engine. Every big data end-to-end application consists of four layers, data
management, data processing, data analytics and data visualization for heterogeneous
data sources for batch or streaming data. This thesis focuses on data management and
data processing for historical data.
The first goal is finding systems that offers ready-to-use integration pipelines to take
advantage of the best operation of each tool. For our implementation we chose open
source big data frameworks such as Apache Hadoop, Apache Spark, Apache Hive and
Apache Tez. Apache Hadoop and especially its distributed file system (HDFS) allowed
all  the  other  libraries  to  have a  common read and write  layer.  On the  other  hand,
Hadoop’s Resource Manager (Yarn) exploits the all the available computer resource.
BigSQLTraj extending the functionality of existing spatial or spatio-temporal systems,
centralized or distributed, to create two core and independent components.  The first
component is responsible for storing, spatiotemporal partitioning and indexing the data
into  a  distributed file  system and it  is  implemented on-top  of  Apache Spark.  Many
spatio-temporal  partitioners  and  a  3D-STRtree  index  are  implemented  to  support  a
collection of operators apart from existing partitioners and indexing methods that inherit
from state-of-the-art distributed spatial and spatiotemporal systems.
The  second  component  is  a  distributed  sql  engine.  We  extend  the  functionality  of
HiveQL in  order  to  achieve  rapid  access  in  such  kind  of  data  (i.e.  geospatial  and
mobility  data)  and storing.  Our  final  goal  is  optimizing Hive’s  join  procedure that  is
required  for  both  query  types  using  the  data  structures  from the  first  toolbox.  We
demonstrate  the  functionality  of  our  approach  and  we  conduct  an  extensive
experimental  study  based  on  state-of-the-art  benchmarks  for  mobility  data.  Our
benchmark focuses on the total execution time of range queries and kNN queries based
on the data storing model. At first we compare the temporal performance of different
storing alternatives and execution engines for the entire dataset and vary the number of
workers in order to review the systems scalability. Furthermore, we vary the size of our
dataset and measure the execution time of the queries. To study the effect of dataset
size, we split the original dataset into 5 chunks (20%, 40%, 60%, 80%, 100%). Βased
on the results we come to the conclusion that the best workflow includes a global index
structure for workers metadata and a local index-based encoding for storing the entire
trajectories of a partition into a single column and the execution time seems to follow
linear behaviour.

SUBJECT AREA: Query Prcessing 

KEYWORDS:  Data  Management,  Mobility  Data,  Big  Data,  Indexing,  Distributed

Systems
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PREFACE

Nowadays data is growing with remarkable speed, and this vast amount data must be
processed properly if we want to have control over it, transform it to information and
gain knowledge. GPS-equipped devices are everywhere and tracking positions. This
leads in a imperative need for developing new techniques, technologies and services for
these kind of data and their producers. Sometimes hardware resources they are not
enough  in  itself.  Last  decades,  management  and processing  algorithms have been
proposed  in  the  literature.  Location-based  services,  object’s  future  position,  traffic
prediction, safety and privacy are only some example of mobility data applications in the
real world. All these applications are based on some primitive spatiotemporal queries.
This thesis aims to conduct an empirical evaluation and benchmarking of the state-of-
the-art techniques over big processing systems under different setups.
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1. INTRODUCTION

The continuous and significant growth of data together with improved access to data
and  the  availability  of  powerful  Information  and Communication  Technologies  (ICT)
systems  have  led  to  intensified  activities  around  Big  Data  Value.  Powerful  data
techniques and tools allow collecting, storing, analysing, processing and visualising vast
amounts of data. Open data initiatives are gaining momentum, providing broad access
to data from the public sector, business and science. The exploitation of Big Data in
various sectors has a potential socio-economic impact far beyond the specific Big Data
market. Therefore, it is essential to embrace new technology, applications, use cases
and business models within and across various sectors and domains. This will ensure
the rapid adoption of  Big Data by organisations and individuals,  and provide major
returns in terms of growth and competitiveness. In particular, the efficiency gains made
possible  by  Big  Data  will  also  have  a  profound  societal  impact.  The  issue  for
organizations is not storing or retrieving data, but finding useful pieces. Information is
power, and those who can distinguish between raw data (garbage) and knowledge can
create extra profits.

Lately, there is an explosion in the usage of smart devices (smartphones, smart stations
(weather, transportation), internet of things, etc.) in every moment in our life. Humans
are used to publishish their location (with text or images) via social media in daily base,
transportation companies (i.e. shipping companies) and generally moving entities must
publish their positions for security or other reasons. Spatial and spatiotemporal data is a
special category of data sources. Every human, car, even vessels and airplanes can
register their position in customized databases. Data types from the above use cases
are more complicated and there is a need for non-traditional database application such
as location-based services, WWW repositories. Location-based services are IT services
for providing information based on the current state of  the object (current or recent
spatial(-temporal) history) [5]. For example, by using the information about the location
it  is  possible  to  fetch  relevant  information  such  as  hot  paths,  nearby  points  of
interests(POIs)  and  available  services  (e.g.  traffic  management,  carpooling,
navigational services) [10]. At this point it is important to clarify two different, but with
common  features,  concepts.  Spatiotemporal  data  in  general  and  spatiotemporal
trajectories  (or  mobility  data)  are  two different  data  types,  which  both  combine the
space and time.

Koubarakis et al. [2] was one of the earliest efforts to study STDB, from modeling to
implementation  aspects,  as  the  final  result  of  the  pioneering  ‘‘ChoroChronos”  EU
funded research project. Partially resulted by the same project, Güting & Schneider [8]
was the first (and still remains a ‘‘must-read” ) monograph in the field of MOD. A short
introduction to the concept of spatio-temporal (trajectory) data is presented in [20].

Figure 1: A trajectory as a sequence of time-stamped locations of a moving object

Π. Πέτρου  13
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The next question is whether the mobility data and its applications in real life could be
characterized  as  big  data  and  follow the  4V.  MarineTraffic1 is  an  organization  that
collects mobility message from 3971 stations. Its station cover radius is almost 30km.
The two figures below show examples of two such stations and their input messages
rate.

(a) (b)

Figure 2: Piraeus & Brest AIS station location and are coverage

(a)

(b)

Figure 3:  Incoming messages rate

1   www.marinetraffic.com  

Π. Πέτρου  14
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Figure  3  shows that  each  station  receives  100  messages  per  minute.  This  means
397100 per minute for all station around the world and 23826000 messages per hour!
In better of our knowledge it would impossible for a system to handle and execute query
over this amount of data only with the resources of the memory. Systems that can give
rapid disk access would be necessary, in order to give the ability to end-users to handle
such data and join them with points of interest.

In  this  thesis  we  proposed  BigSQLTraj  a  framework  for  managing  querying  and
indexing spatial and spatiotemporal (mobility) data over a distributed (file) system. Our
implementation consists of two components. The first toolbox extends or reproduces
current  state  of  the  art  Spatial(-Temporal)  Big  Data  Engine  that  adds  spatial  &
spatiotemporal  support  (partitioning,  indexing  and  storing).  The  second  one  is  an
extension of HiveQL that adds spatial and spatiotemporal functions (UDFs) to the Hive
Language, thus we can take advantage of the data management pipeline from the first
toolbox.

This document contains eight chapters. At first, we begin with giving generic definitions,
such as data types, the purpose of this master thesis, and the algorithms we have
implemented  to  achieve  the  final  results.  In  the  following  section,  we  provide  the
necessary background knowledge about the technologies we have used. All of them
are big data frameworks. Later on, in the third section, a reader can find previous works
related  to  our  research area.  We have briefly  represented benchmark,  indices  and
systems that  dealing with  problems related to  modility  data.  In  Section 4,  we have
described the proposed systems architecture principles and compare it with a typical
big  data  architecture.  In  Section  5,  we  describe  the  data  managent  workflow.  We
discuss  problems  about  the  data  quality,  filters  that  cleansed  data  and  how  our
proposed partitioner framework works. In Section 6, we describe the query processing
framework. We present the implement UDFs for mobility data that improve system’s
performance and we give example with full queries examples. Finally, we conclude the
achieved results, gains and the aim of this master thesis, and add some words about
future works can be done in the related area.

Π. Πέτρου  15
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2. BACKGROUND

In this section we introduce the state-of-the-art big data engines and their components
that are used to implement this thesis. Moreover, we briefly present vessel messages’
structure because part of these messages are our data source.

2.1 Apache Hadoop

Hadoop2 [33] is an open source distributed processing framework that administers data
processing and storage for big data applications running in computer cluster. It is the
first open source framework that provides MapReduce API, with a resource manager
and a distributed storage layer. It is a unified platform that is the core element of a
growing ecosystem of massive management and processing technologies. Hadoop is
more flexible than traditional database systems and data warehouses, enabling users to
gather, process, analyze structure and (especially) unstructured data more flexibly.

Hadoop runs on clustered computers and can horizontal scale up in order to support
new nodes and massive amounts of data. It uses a distributed file system (a.k.a. HDFS)
that’s  designed  to  provide  quick  access  over  distributed  data,  plus  fault-tolerant
capabilities so applications can handle individual failures.

      Figure 4:  Hadoop Architecture

2.1.1  Apache Hadoop Yarn

YARN’s basic idea is to divide resource management and job scheduling/monitoring
functionalities into separate daemons. The idea is to have a global ApplicationMaster
(AM) and ResourceManager (RM). A submitted application is either a single job or a job
DAG.

2 http://hadoop.apache.org/
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The data-computation framework is formed by ResourceManager and NodeManager.
ResourceManager is the ultimate authority that arbitrates resources across all of the
system’s applications. NodeManager is the per-machine framework agent responsible
for containers,  supervision their  use of resources (cpu, memory, disk,  network) and
reporting to ResourceManager / Scheduler the same thing.
The per-application ApplicationMaster is, in effect, a framework specific library and is
tasked with  negotiating resources from the ResourceManager and working with  the
NodeManager(s) to execute and monitor the tasks.

     Figure 5:  Yarn Workflow

The  ResourceManager  has  two  main  components:  Scheduler  and
ApplicationsManager.

The  Scheduler  is  responsible  for  allocating  resources  to  the  different  running
applications  subject  to  familiar  capacity  constraints,  queues  etc.  Scheduler  is  pure
planner in the sense that it does not monitor or track the application status. Moreover, it
cannot  guarantee  the  restart  of  failed  tasks  either  due  to  application  or  hardware
failures. The Scheduler performs its scheduling function depend on the application’s
resource requirements; it does so based on the abstract notion of a resource container
that incorporates elements such as memory, cpu, disk, network etc. The Scheduler has
a pluggable policy that is liable for splitting the cluster computing power among the
various queues, applications etc.

The ApplicationsManager is responsible for accepting job-submissions, negotiating the
first container for executing the application specific ApplicationMaster and provides the
service for  restarting the ApplicationMaster  container  on failure.  The per-application
ApplicationMaster has the responsibility of negotiating appropriate resource containers
from the Scheduler, tracking their status and monitoring for progress.

2.1.2  Apache Hadoop HDFS

HDFS  has  a  master/slave  architecture.  An  HDFS  cluster  consists  of  a  single
NameNode, a master server that manages the file system namespace and regulates
access to files by clients. In addition, there are a number of DataNodes, usually one per
node in the cluster, which manage storage attached to the nodes that they run on.
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HDFS exposes a file system namespace and allows user data to be stored in files.
Internally, a file is split into one or more blocks and these blocks are stored in a set of
DataNodes. The NameNode executes file system namespace operations like opening,
closing, and renaming files and directories. It also determines the mapping of blocks to
DataNodes. The DataNodes are responsible for serving read and write requests from
the file  system’s  clients.  The DataNodes also perform block  creation,  deletion,  and
replication upon instruction from the NameNode.

Figure 6:  HDFS Architecture 

The NameNode and DataNode are pieces of software designed to run on commodity
machines. These machines typically run a GNU/Linux operating system (OS). HDFS is
built using the Java language; any machine that supports Java can run the NameNode
or the DataNode software. Usage of the highly portable Java language means that
HDFS can be deployed on a wide range of  machines.  A typical  deployment has a
dedicated machine that runs only the NameNode software. Each of the other machines
in the cluster runs one instance of the DataNode software. The architecture does not
preclude running multiple DataNodes on the same machine but in a real deployment
that is rarely the case.

The existence of a single NameNode in a cluster greatly simplifies the architecture of
the system. The NameNode is the arbitrator and repository for all HDFS metadata. The
system is designed in such a way that user data never flows through the NameNode.

2.2 Apache Hive

HiveQ3 [34]  provides  users  with  a  SQL-like  declarative  language  that  is  the  core
contribution of Hive system. HiveQL compiles queries into map-reduce jobs executed
on Hadoop ecosystem framework such as Spark or Tez. In addition, HiveQL supports
custom mapreduce scripts to be plugged into queries.

3   https://hive.apache.org/  
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The Hive query language (HiveQL) follows most of the SQL standard capabilities and
some extensions that we have found useful. Traditional SQL features like from clause
sub-queries,  various  types  of  joins  –  inner,  left  outer,  right  outer  and  outer  joins,
cartesian products, group bys and aggregations, union all, create table as select and
many useful functions on primitive and complex types make the language very SQL
like. In fact, for many of the constructs mentioned before it is exactly like SQL. This
enables anyone familiar with SQL to start a hive cli (command line interface) and begin
querying the system right away. Useful metadata browsing capabilities like show tables
and describe are also present and so are explain plan capabilities to inspect query
plans (though the plans look very different from what you would see in a traditional
RDBMS).

Figure 7:  Hive Architecture

2.3 Apache Spark

Spark4 [35] is one of the biggest alternatives to Hadoop. On its website [9], developers
claim  that  sometimes  it  is  100  times  faster  than  Hadoop’s  MapReduce  regarding
memory processes. This lets us say that users can use Hadoop (HDFS) as storage of
old data but processing them via Spark will be easier and faster. The key point of Spark
programming is Resilient Distributed Dataset (RDD). RDDs are lazily evaluated, and it
lets Spark to find an efficient plan for computations. Since results of RDD operations
are RDDs too, these transformations are not computed immediately. Instead, when an
action is being performed, Spark checks all the transformations introduced and creates
an optimized execution  plan  which  sometimes builds  up  better  modularity  than the
programmer thought of. The execution is performed only once for the whole graph of
transformations.  It  is  worthy  to  emphasize  that  RDDs  shares  the  data  amongst
computation nodes and they are only called when there is an action taking place. 

Spark SQL is a new module in Apache Spark that integrates relational processing with
Spark’s functional programming API. Spark SQL is compatible with Hive and lets Spark
programmers leverage the benefits of relational processing (e.g., Declarative queries,

4https://spark.apache.org/  
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optimized storage, creating UDFs), and lets SQL users execute map-reduce tasks via
SQL. Spark SQL makes two main additions.  First,  it  offers much tighter  integration
between relational and procedural processing, through a declarative DataFrame API
that  integrates  with  procedural  Spark  code.  Second,  it  includes  a  highly  extensible
optimizer, Catalyst, built using features of the Scala programming language, that makes
it easy to add composable rules, control code generation, and define extension points.
Using Catalyst, we have built a variety of features (e.g., schema inference for JSON,
machine learning types, and query federation to external databases) tailored for the
complex needs of modern data analysis. We see Spark SQL as an evolution of both
SQL-on-Spark and of Spark itself, offering richer APIs and optimizations while keeping
the benefits of the Spark programming model. 

2.4 Apache Tez

Tez5 [36] is a framework for YARN-based, Data Processing Applications in Hadoop.
Apache  Tez  is  an  extensible  framework  for  building  high  performance  batch  and
interactive data processing applications, coordinated by YARN in Apache Hadoop. Tez
improves  the  MapReduce  paradigm  by  dramatically  improving  its  speed,  while
maintaining  MapReduce’s  ability  to  scale  to  petabytes  of  data.  Important  Hadoop
ecosystem projects like Apache Hive and Apache Pig use Apache Tez, as do a growing
number  of  third  party  data  access  applications  developed  for  the  broader  Hadoop
ecosystem. 

Apache Tez provides a developer API and framework to write native YARN applications
that bridge the spectrum of interactive and batch workloads. It allows those data access
applications to work with petabytes of data over thousands nodes. The Apache Tez
component  library  allows  developers  to  create  Hadoop  applications  that  integrate
natively with Apache Hadoop YARN and perform well within mixed workload clusters.

Since  Tez  is  extensible  and  embeddable,  it  provides  the  fit-to-purpose  freedom to
express highly optimized data processing applications, giving them an advantage over
end-userfacing  engines such as  MapReduce and Apache Spark.  Tez also  offers  a
customizable execution architecture that allows users to express complex computations
as  dataflow  graphs,  permitting  dynamic  performance  optimizations  based  on  real
information about the data and the resources required to process it.

 Execution Performance

 Performance gains over Map Reduce

 Optimal resource management

 Plan reconfiguration at runtime 

 Dynamic physical data flow decisions

By allowing projects like Apache Hive and Apache Pig to run a complex DAG of tasks,
Tez can be used to process data, that earlier took multiple MR jobs, now in a single Tez
job as shown below.

5   https://tez.apache.org/  
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Figure 8:  MR vs Tez data flow

2.5 Apache ORC

The Optimized Row Columnar (ORC)6 [37] file format provides a highly efficient way to
store Hive data. It was designed to overcome limitations of the other Hive file formats.
Using ORC files improves performance when Hive is reading, writing, and processing
data.

ORC files as part of the initiative to massively speed up Apache Hive and improve the
storage efficiency of data stored in Apache Hadoop. The focus was on enabling high-
speed processing and reducing file sizes.

ORC  is  a  self-describing  type-aware  columnar  file  format  designed  for  Hadoop
workloads.  It  is  optimized for large streaming reads,  but  with  integrated support  for
finding required rows quickly. Storing data in a columnar format lets the reader read,
decompress,  and  process  only  the  values  that  are  required  for  the  current  query.
Because ORC files are type-aware, the writer chooses the most appropriate encoding
for  the  type  and  builds  an  internal  index  as  the  file  is  written.  ORC supports  the
complete set of types in Hive, including the complex types: structs, lists, maps, and
unions.

ORC files are divided into stripes that are roughly 64MB by default. The stripes in a file
are independent of each other and form the natural unit of distributed work. Within each
stripe,  the columns are separated from each other so the reader can read just  the
columns that are required. An ORC file contains groups of row data called stripes, along
with auxiliary information in a file footer.

This diagram illustrates the ORC file structure:

6   https://orc.apache.org/  
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Figure 9: ORC file structure

As shown in the diagram, each stripe in an ORC file holds index data, row data, and a
stripe footer. The stripe footer contains a directory of stream locations. Row data is used
in table scans. Index data includes min and max values for each column and the row
positions within each column. Row index entries provide offsets that enable seeking to
the right compression block and byte within a decompressed block.  Note that ORC
indexes are used only for the selection of stripes and row groups and not for answering
queries.
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2.6 AIS Messages

The  Automatic Identification system (AIS)  [1] is an automatic tracking system that uses
transponders on ships and is used by vessel traffic services (VTS). When satellites are used
to detect AIS signatures, the term Satellite-AIS (S-AIS) is used. AIS information supplements
marine radar,  which continues to be the primary method of collision avoidance for water
transport.

Information provided by AIS equipment, such as unique identification, position, course, and
speed, can be displayed on a screen or an ECDIS. AIS is intended to assist  a vessel’s
watchstanding  officers  and  allow  maritime  authorities  to  track  and  monitor  vessel
movements. AIS integrates a standardized VHF transceiver with a positioning system such
as a GPS receiver, with other electronic navigation sensors, such as a gyrocompass or rate
of turn indicator. Vessels fitted with AIS transceivers can be tracked by AIS base stations
located along coastlines or,  when out of  range of terrestrial  networks, through a growing
number  of  satellites  that  are  fitted  with  special  AIS  receivers  which  are  capable  of
deconfliction a large number of signatures.

The information contained in each AIS-data packet (or message) can be divided into the
following two main categories:

 Dynamic Information, transmitted every 2 to 10 seconds depending on the vessel’s
speed and course while underway and every 6 minutes while anchored. A dynamic AIS
messages includes:

 Maritime Mobile Service Identity number (MMSI) - a unique identification
number for each vessel station
 AIS Navigational Status (e.g. 1=at anchor, 7=engaged in fishing, etc.)
 Rate of Turn - right or left (0 to 720 degrees per minute)
  Speed over Ground - 0 to 102 knots (0.1-knot resolution)
 Position Coordinates (latitude/longitude - up to 0.0001 minutes accuracy)
 Course over Ground - up to 0.1° relative to true north
 Heading - 0 to 359 degrees
 Bearing at own position - 0 to 359 degrees
 UTC seconds - the seconds field of the UTC time when the subject data-
packet was generated.

 Static & Voyage related Information is provided by the subject vessel’s crew and is
transmitted every 6 minutes regardless of the vessel’s movement status:

 International  Maritime Organization number (IMO) -  note that  this  number
remains the same upon transfer of the subject vessel’s registration to another
country (flag)
 Call Sign - international radio call sign assigned to the vessel by her country
of registry
 Name
 Type (or cargo type) - the AIS ID of the subject vessel’s ship type
 Dimensions - approximated to the nearest metre (based on the position of
the AIS Station on the vessel)
 Location of the positioning system’s antenna on board the vessel
 Type of positioning system (e.g., GPS)
 Draught - 0.1 to 25.5 meters
 Destination
 Estimated time of arrival - UTC month/date hours:minutes
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3. RELATED WORK

In this section we are going to briefly describe other techniques or systems that are related to
our work and explain their similarities and differences. We present indices for mobility data
which is the basic structure for optimizing query performance, benchmarks that introduces
the evaluation and functionalities of mobility databases and the principles of systems in big
spatial(-temporal) era.

The quadtree [38] is a data structure appropriate for storing information to be retrieved on
composite  keys.  We discuss the  specific  case of  two-dimensional  retrieval,  although the
structure  is  easily  generalized  to  arbitrary  dimensions.  Algorithms  are  given  both  for
straightforward  insertion  and  for  a  type  of  balanced  insertion  into  quad  trees.  Empirical
analyses  show  that  the  average  time  for  insertion  is  logarithmic  with  the  tree  size.  An
algorithm for  retrieval  within  regions is  presented along with  data  from empirical  studies
which imply that searching is reasonably efficient. We define an optimized tree and present
an algorithm to accomplish optimization in n log n time. Searching is guaranteed to be fast in
optimized trees. Remaining problems include those of deletion from quad trees and merging
of quad trees, which seem to be inherently difficult operations.

R-tree [39] is the most efficient balanced index in spatial databases like PostGIS [40]. The 3D
R-tree is a straightforward extension of the R-tree, treats time as an extra “spatial” dimension
and  it  is  the  earliest  method  for  indexing  trajectories  of  moving  objects.  The  default
insertation of entire trajectories could lead to excessive dead space, most common solution
for this issue is inserting segments of a trajectory in the index.

TB-tree  [12]  (Trajectory  Bundle  tree)  maintains  the  ‘trajectory’  concept.  TB-tree  is  a
heightbalanced tree with  the index records in  its  leaf  nodes;  leaf  nodes are of  the form
( MBB , Orientation ), where MBB is the 3-dimensional bounding box of the 3-dimensional
line segment belonging to an object’s trajectory,  a leaf node contains entries of  a single
trajectory only and Orientation is a flag used to reconstruct the actual 3-dimensional  line
segment  inside  the  MBB  among  four  different  alternatives  that  could  exist.  Since,  by
definition, each leaf node contains entries of a single trajectory, the object identifier (id) needs
to be stored only once, in the leaf node header. Like R-tree, internal and leaf node MBBs
belonging to the same tree level are allowed to overlap. Each internal or leaf node in the tree
corresponds to a physical disk page (or disk block, which is the fundamental element on
which the actual disk storage is organized) and contains between m and M entries ( M is the
node capacity—fanout—and m in the case of TB-tree is set to 1). For each trajectory,  a
double linked list connects leaf nodes together to reconstruct the entire trajectory.

In  [5],  Theodoridis  proposes a  database schema and a  set  of  ten  benchmark  database
queries (current & past positions of moving objects) regarding the support of location-based
services (LBS). No benchmark data or an experimental study is presented. The focus is on
requirements of databases for location-based services and mobility data. The benchmark
includes  point  and  range  selection  queries  on  stationary  and  moving  reference  objects
distance,  k-NN,  similarity-based  queries  and  join  queries.  Benchmarks’s  queries  can  be
divided in three categories:

 Queries on stationary reference objects

 Queries on moving reference objects

 Join queries
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On the other hand, BerlinMOD [30] is more realistic since it is based on real MOD system,
called SECONDO (to be overviewed later in this section). A data generator is implemented in
order to create persons’ trip (e.g. home-work) on road network. In this setting, an extensive
set of various types of queries, non-spatial, simple spatial, sophisticated range, NN and other
trajectory-oriented queries is proposed, which evaluate the functionality of a MOD engine.
BerlinMOD queries (rephrased) with spatiotemporal characteristics are:

 Return objects that have ever been as close as 10 m or less to each other?

 Return objects that meet other objects based on spatiotemporal thresholds

 Return objects passed given points at a specific time

 Return objects travelled within a region during the time periods

BerlinMOD experimental study it is focuses on range queries execution time with different
setup.

We  are  going  to  briefly  present  systems  with  similar  functionality  with  our  proposed
framework(approach). The systems can be categorized based on three criteria architecture,
datatypes  and  query  interface.  Basically,  the  architecture  of  the  system  can  be  either
centralized  or  distributed.  Similarly,  what  datatype they can handle  (store,  index,  query)
spatial or spatiotemporal, as well as the query interface (language) can be varied in SQL or a
classic programming language (i.e. Java or Scala).

Hermes  [19]  is  a  prototype  system  based  on  a  powerful  query  language  for  trajectory
databases,  which  enables  the  support  of  aggregative  Location-Based  Services  (LBS).
Hermes provides an SQL interface comprised of types, functions and operators that the user
can combine in order to construct data and perform calculations on them.

(a) (b)

Figure 10: Hermes architecture and supported datatypes

SECONDO [32] is RDBMS behind BerlinMOD, especially adjusted to be extended by algebra
modules. SECONDO is one of the first database system prototypes that can handle moving
objects, that is, continuously changing time-dependent geometries. Its architecture consists
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of  (i)  a  kernel,  which  offers  query  processing  over  a  set  of  implemented  type  system
algebras,  (ii)  an optimizer,  which implements the essential  part  of  an SQL-like language.
Parallel Secondo [31] is constructed by coupling the Hadoop framework with a set of single-
computer SECONDO distributed on the cluster. Its components work independently, nodes in
Hadoop communicate with each other through its HDFS (Hadoop Distributed File System),
whereas  each  SECONDO  database  processes  database  queries  and  exchanges
intermediate data with the others through Parallel SECONDO File System. Through various
PQC (Parallel Query Convertor) operators provided in the master database, a custom parallel
query can be converted into a sequence of Hadoop jobs, being processed with a set of
independent tasks running on all nodes simultaneously. These tasks are processed by data
servers in parallel, complying with the runtime scheduling of the Hadoop framework.

Geospark  [24]  is  an  in-memory  cluster  computing  framework  for  processing  large-scale
spatial data. GeoSpark is built on top of the Apache Spark and extends it with two layers: a)
Spatial RDD (Resilient Distributed Datasets, the basic data model for Spark) Layer which is
responsible for loading and supporting geospatial object, b) Spatial Query Processing Layer
efficiently execute spatial query processing algorithms (e.g. Spatial Range, Join, KNN query)
on  Spatial  RDDs.  Geospark  also  allows  users  to  create  a  spatial  index  (e.g.  R-tree,
Quadtree)  that  boosts  spatial  data  processing  performance  in  each  SRDD  partition.
Geospark SQL [25] is the SQL extention of Geospark and is able to achieve real-time query
processing. GeoSpark SQL provides a convenient SQL interface and achieves both efficient
storage management and high-performance parallel computing through integrating Hive and
Spark. GeoSpark SQL performs better when dealing with compute-intensive spatial queries
such as the kNN query and the spatial join query

(a) GeoSpark (b) GeoSpark SQL

Figure 11: GeoSpark frameworks architecture

STARK [26] is one of the first attempts that adds, more or less, spatiotemporal support in
Spark. It offers spatio-temporal framework that aims to optimize queries for data sets with
spatial and temporal components that is built on top of SPARK. We have to emphasize the
fact  that  STARK  supports  spatio(-temporal)  data  modeling,  but  all  its  operators,  its
partitioners and indexing mechanism work with the spatial part of the data. Moreover, the
BSP partitioner works only with the spatial length to create boxes/partitions inside the dataset
MBB and the variable “max partition per cost” is useless because in fact was needed in case
the data should be written on disk [9]. 

Π. Πέτρου 26



BigSQLTraj: A SQL-extended framework for storing & querying big mobility data

In [3]  authors describe a spatial  extension based on Exareme system [18] (master-slave
model), to support large-scale spatial SQL queries and evaluate system’s performance using
the Jackpine Benchmark [11]. System is flexible and can support all spatial operators (e.g.
intersects, contains, etc.) for all spatial data types. In order to achieve better performance,
they implement a grid partitioner in the system. Moreover, each partition has a R-Tree index
structure  for  achieving  better  performance.  System’s  performance  is  quite  stable  and  is
comparable with STARK. On the other hand, this approach doesn’t support operators for
mobility data.

UlTraMan [27] is a flexible and scalable distributed platform for trajectory data management
and analytics. UlTraMan is a Spark extension that provides a unified engine for both efficient
data management and distributed computing and offering an enhanced computing paradigm
in a highly modular architecture to enable both pipeline customization and module extension.
UlTraMan uses Simba [23] spatial partitioner and create local indices (i.e. for each partition)
and a global index that contains partitions MBR. UlTraMan integrates Chronicle Map [22] (an
in-memory,  embedded  key-value  store  designed  for  low-latency)  with  Spark  in  order  to
provide efficient data access. Furthermore, data is stored in off-heap memory to relieve GC
pressure, and the data is persisted at runtime through the support of simultaneous access
from multiple processes.

Figure 12: UlTraMan architecture

TrajSpark [28] offers a framework for processing moving objects data. TrajSpark introduce
IndexTRDD,  an  RDD  of  trajectory  segments,  to  support  efficient  data  storage  and
management by incorporating a global and local indexing strategy. Two-level index layer
with a global layer consisting of a three-level index layer and lower local hash indices. The
global index is composed of a time range index where each range is indexed via a grid
index and each grid is further indexed via a B+-tree. TrajSpark monitor the change of data
distribution by importing a time decay model which alleviates the repartitioning overhead
occurred in existing Spark-based systems and gets a good partition result at the same
time.
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Figure 13: TrajSpark architecture

Tables below (1, 2, 3) classifies the above systems based on their main characteristics.
Our implemetation will provide a big data SQL with JDBC connectivity solution for mobility
data, which is a functionality none of the above systems provide.

Table 1: Systems Architecture

Hermes Secondo TrajStore GeoSpark STARK
Exareme

Spatial
UlTraMan TrajSpark

Centralized ✓ ✓ ✓

Distributed/

Parallel
✓ ✓ ✓ ✓ ✓ ✓

Table 2: Data Types

Hermes Secondo TrajStore GeoSpark STARK
Exareme

Spatial
UlTraMan TrajSpark

Spatial ✓ ✓ ✓ ✓ ✓

Mobility ✓ ✓ ✓ ✓ ✓

Table 3: Query Language

Hermes Secondo TrajStore GeoSpark STARK
Exareme

Spatial
UlTraMan TrajSpark

SQL ✓ ✓ ✓ ✓

Other ✓ ✓ ✓ ✓ ✓
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4. THE BIGSQLTRAJ  ARCHITECTURE PRINCIPLES

In this section we describe the architecture principles for our proposed system. At first, we
introduce  an  end-to-end  big  data  application  architecture  and  then  we  explain  how  our
implementation  fits  these  standards.  Our  implementation,  as  the  most  big  data  engines,
adopts the master-slave architecture.

A big data architecture is designed to handle the ingestion, processing, and analysis of data
that is too large or complex for traditional database systems. Big data solutions involve one
or more workload types:

 Batch processing

 Streaming processing

 Interactive exploration of big data.

 Analytics tasks

The following diagram shows the logical components that fit into a big data architecture.

Figure 14: Big Data Value Reference Model (source: www.bdva.eu)

Data Management Layer: batch processing operations is typically stored in a distributed file
store that can hold high volumes of large files in various formats. This kind of store is often
called a data lake. A typical big data environment should convert data as needed and send it
to the correct storage(partition) in the right format.

Data Processing Layer: datasets are so large, often a big data solution must process data
files using long-running batch jobs to filter, aggregate, and otherwise prepare the data for
analysis. Most of the times a MapReduce task is applied on this layer.

The features proposed by this thesis rely on these layers. The lack of mature storage data
management layer is the main drawback of the Spark-based systems that are introduced in
the previous section. UlTraMan and TrajSpark use extremely custom data loading workflows
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for parsing input data into a useful format, but they cannot easily upload new data if there
was a streaming component. It is also important to notice that simple operators like join could
double the program’s structures and provoke memories issues. For example, a range query
pruning the useless partitions, Spark will create a new data structure with the valid data and it
will need extra resources. On the other hand, our proposed architecture is more flexible in the
previous problems. Incoming data can be processed by Spark modules and then stored in
the right format for the data processing layer. It would be easier for a streaming module to
update partition index add new data to the storage layer rather than execute the complete
workflow from the scratch. Moreover disk-based approach allowed us to retrieve and keep
into memory only data that is necessary for process. We decided to create two different
toolboxes because in this way we could select the best pipelines from each library.

We decided to create two different toolboxes because in this way we could select the best
pipelines from each library and we can support different operations and functionalities. We
used 3 Apache libraries, Hadoop, Spark and Hive. At first,  Hadoop guarantees a mature
storage system with Hadoop Distributed File System Component (HDFS) and through HDFS
integration is a trivial  task.  Spark and Hive can read and write data on the HDFS using
existing API and common file format like ORC. Furthermore, Apache YARN which is the
Hadoop’s resource manager, is responsible for task scheduling.

Figure 15 describes the data management and storing procedure. We used Apache Spark for
this task because it is the most mature big data engine for handling batch and streaming data
and store them on HDFS. In general, we can read data from multiple sources and then we
use  Spark’s  MapReduce  framework  in  order  to  repartition  mobility  data  based  on
spatiotemporal similarity and creating files that are accessed by Hive. Our implementation
guaranteed load balancing.

Figure 15: Spark SpatioTemporal Component

Figure 16 shows the architecture of the second toolbox that is built on-top of Hive and it is the
querying mechanism of this thesis. We used Hive because it follows the SQL-standards with
JDBC APPI and offers distributed SQL querying over HDFS by translating SQL queries into
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MapReduce jobs. We implemented several Hive UDFS, that are described in the section 6 in
order to support advanced data processing techniques for mobility data like bucket loading,
filtering (range querying), index scan and kNN queries. Every application that supports JDBC
API can interact with our platform.

Figure 16: HiveQL SpatioTemporal Component
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5. PREPROCESSING

Quality  of  data  is  an  important  aspect  for  evaluating  the  performance  of  spatiotemporal
algorithms and data structures. Noisy data can lead to pointless results on the quality of the
proposed techniques. One of the most recent noise elimination algorithms has been based
on the spatiotemporal attributes of the objects in order to remove outliers. We focus on these
filters and we describe our implementation in the next section

The  first  job  of  this  thesis  is  to  apply  all  the  necessary  steps  in  order  to  cleansed
spatiotemporal points and create trajectories. A common strategy used to treat raw mobility
data  is  described  in  the  next  figure.  The  first  two  steps  are  almost  mutual  for  every
preprocessing workflow and every type of data.

Figure 17: Preprocessing & Storage Workflow

Due to network failures, deserialization of the information, station coverage overlapping or no
coverage common issues for raw mobility data include:

 more than one messages for the same vessel, time and position (duplicates)

 outlier positions (‘‘off-course position”)

 messages that received with delay (‘‘out-of-sequence”)

 gap in reporting

Definitely this a stream kind of procedure, but data cleansing is not part of this thesis. For this
reason, cleansing filters are applied in a batch manner with Spark. Getting distinct messages
is an easy task and the functionality provided by Spark. For noise elimination, adapted some
filters based on spatiotemporal criteria such as speed and heading of the moving object. For
example,  positions with instantaneous velocity  over 120 knots or with significant heading
changes are deleted. Also, other important attributes are the sampling rate and the distance
of  the  messages/positions,  because  based  on  the  sampling  rate  we  divided(reconstruct)
object’s history into trajectories.

A spatiotemporal positions sequence <p i, ti> could be divided into independent trajectories
based on spatial or temporal gaps that appear in the raw data (note that the sequence is
clean in term of noise). We use two attributes in order to identify trajectories:

 Spatial  gap:  the  upper  limit  distance  between  two  successive  time−stamped
positions of the same object so that they could be treated as the same trajectory.
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 Temporal  gap:  the  upper  limit  elapsed  time  between  two  successive
time−stamped positions of the same object so that they could be treated as the same
trajectory.

Having set S gap and T gap threshold, we have to iterate over the objects history in order to
find those points <pi-1, t i-1> and <pi, ti> that they overcome the defined thresholds. Then, we
identify <pi-1, t i-1> as the ending point of the existing trajectory and <p i, ti> as the starting point
of a new trajectory of that moving object.
Obviously,  setting  these  parameters  is  application-dependent  and  they  should  produce
reasonable results.
For this task, we used off-the-shelf functions that are implemented by Spark. In particular:

1) partitioning data based on the objects’ id and order messages by timestamp

2) for each message find its lead message and calculate speed, heading, sampling and
distance

3) filtering outliers and splitting trajectory if it’s necessary

Apart  from the  fact  that  these steps are  executed in  batch  manner  their  migration  to  a
streaming engine (thus they fit in a big data architecture) is brute force because they just
need rely on the previous point,  so typical  windows operation can reproduce the exactly
same procedure.
The histograms below are occurred from the thesis’ dataset (IMIS dataset) and helped us
define the spatial and temporal thresholds.

(a) Time elasped (b) Points Distance

Figure 18: IMIS dataset Statistics

We set spatial threshold 2000m and elapsed time threshold 400s. The partitioning algorithms
and  querying  algorithms  from  the  next  section  take  as  input  trajectories  that  are
created/constructed based on these thresholds. 1934322863
We set spatial threshold 2000m and elapsed time threshold 400s. The partitioning algorithms
and  querying  algorithms  from  the  next  section  take  as  input  trajectories  that  are
created/constructed based on these thresholds.

We conducted  experiments  against  a  real  AIS  dataset  containing  almost  100GB of  AIS
messages (i.e. 1934322863 positions) spanning from 1 March 2007 to 31 March 2010 for N =
20206 distinct vessels in the Aegean, the Ionian, and part of the Mediterranean Sea. Most
vessels were frequently sailing, e.g., passenger ships or ferries to the islands. The cleansed
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output contains 1536743282 points. We create 5271228 trajectories based on the defined
thresholds and we remove trajectories with a single point Table 4 summarizes some basic
statistics about the input dataset.

Table 4: Dataset Description

Raw points 1934322863

Cleansed points 1536743282

Trajectories 5271228

Average Length 10821.57 meters

Average Duration 3200 seconds

Average Sampling(trajectory) 92 seconds

Average Points(trajectory) 174
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6. IMPLEMENTATION

In this section, we represent all the steps for creating the trajectories database. It is the full
implementation of the data management layer that is the most crucial  factor for querying
effectiveness and next the query processing toolbox pipelines.

6.1 Partitioning and Indexing Mechanism

The implementation workflow starts from data storage and management based on Apache
Spark  library.  As  described  in  Section  4  we  have  created  methods  for  spatio-temporal
partitioning and indexing mobility data. At first, we present spatiotemporal partitioner steps
and then the features of the local indices.

6.1.1  Spatio-temporal Partitioners

After creating trajectories for all the dataset, we have to store them in the proper way thus we
take  advantage  of  the  distributed  storage  and  processing  API  mechanism  in  order  to
accomplish further optimizations. Achieving this task, we should rely on mobility attributes of
the trajectories and extending current spatial partitioners into spatiotemporal ones because
all the system described in Section 2 are implement or apply indexing, and thus partitioning,
only in spatial dimension and ignoring time. Moreover, we need our local indices, index for
each partitioned data, supporting mobility data. So, we extend geospatial STRtree provided
from JTS library. To describe better the changes, we have introduced at the pure geospatial
indices, we deem it appropriate to briefly describe the default (spatial) algorithms.

As already mentioned, our proposed partitioned are based on spatiotemporal characteristics.
At first, we extended STARK spatial partitioner and create a 3D equal grid partitioner, which
takes as input the dataset’s MBR and split it into 3D cells based on user defined ranges for
each  dimension.  The  amount  of  3D  cells  that  has  to  broadcast  to  all  workers  and  the
execution time and the complexity O(N) for assign a trajectory into a partitioner are the main
drawback of this solution. Subsequently, we extend quad-tree algorithm in order to handle 3D
data. This is so called Octree and it’s a straight forward extension from quad tree. The main
differences  can  be  found  in  node  data  type  that  is  3D  minimum  bounding  box  and  in
subdividing algorithm that produces eight children, but in other ways the fundamentals of the
algorithms are the same. Octree algorithms takes as input the dataset’ss MBR and a subset
of the trajectories database. Obviously, it is important the sample dataset follow the same
statistics  (e.g.  length,  duration)  as  the  full  dataset.  Getting  a  representative  subset  of  a
dataset it is not a part of this thesis, but the off-the-shelf Spark sampling algorithm returns
quite good results and as shown in figures(histograms) below we are able to partition the full
dataset with almost equally partitions (fit normal distribution - load balancing). This is a crucial
assumption that of  our implementation because we need near trajectories, in spatial  and
temporal dimensions, to be stored in the same partition. Systems that were presented in the
section 2 are using pure spatial partitioners. Only TrajSpark uses quadtree with trajectory id
or time as extra feature for partitioning, but also split a trajectory into its points.

More or less both partitioners have the same functionality and the main difference is detected
in sharing candidate partitioners’ MBR and searching for partitioner.

We used the mean point of each trajectory to assign it to partition, because especially in
maritime data the middle point  of  the trip (mean point)  is the most representative of the
trajectory. Obviously, someone could use more than one point (e.g. start point, mean point
and end point) to assign a trajectory to a partition or could replicate trajectories to every
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partition rectangle that trajectory crosses for better distribution, but this strategy could occur
an explosion for the needed resources. So, due to the hardware limitation and because our
current  implementation  fit  to  the  normal  distribution,  we  use  only  the  mean  point  of
trajectories to partition the dataset.

Algorithm 1 describes the full pseudocode of our Octree partitioner implementation, including
sampling, partitioning, creating local and global indices. Moreover, figure 19 shows a working
example  of  the  partitioning  step  only  and  figure  20  show  a  running  example  and  the
difference between quadtree and the octree implementation based on three days sample of
the full dataset.

Algorithm 1 Repartition Algorithm

Input: max_level, max_item_per_node ,trajectories_sample

Output: repartitioned trajectories, local indices, global index

1: traj_dataset ← load(trajectories)

2: mbr ← trajectories_dataset.getMBR()

3: subset ← traj_dataset.getSample(sample)

4: partitions_mbr ← octree (mbr, subset, max_level, max_item_per_node)  //could be 3dGrid

5: repartition ← traj_dataset.map(assign(trajectory, partitions_mbr)).repartition()

6: local_indices ← repartition.createPartitionIndex()  //fit partitioner in order to contains the full 

trajectories of the partition

7:  global_indices  ← createIndex(local_indices.getRoot())   //create index from each partition

MBR

8:  store(repartition)

9:  store(indices)

Algorithm 2 Octree Algorithm

Input: MBR, trajectories, max_level, max_item_per_node 

Output: octree
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1:   octree.root ← MBR

2:   while trajectories.hasNext() do

3: traj ← trajectories.nect()

4: traj_mbr ←traj.getMBR()

5: leafNode ←octree.insert(traj_mbr)

6: if leafNode.items > max_item_per_node & leafNode.level < max_level then

7: octree.split(leaf_node)

8: end if
9:   end while
10: return octree

Figure 19: Trajectory Partition

The next  figures  show that  our  proposed implementation  achieve load balancing  among
partitions,  even  the  different  parameter  setup.  It  is  noteworthy  that  we  were  forced  to
implement spatiotemporal partitioners due to memory failures of the spatial partitioners. Pure
repartitioning based on only spatial  characteristics lead to huge volume of data for each
worker and inbalanced partitions that were over cluster resources. In better of our knowledge
our implementation is the first proposing spatiotemporal partitioners since UlTraMan used
SIMBA’s spatial partitioner and TrajSpark used two-phase pruning based on B-tree for time
dimension and a spatial tree for partitioning the data. Furthermore, our preliminaries results
showed  small  number  of  partitioners  gave  us  better  performance,  but  cluster  resources
constraints have compelled us to run our benchmark with almost 4000 partitioners (Figure
21)
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(a) Raw Data

(b) QuadTree Result

(c) Octree Result

Figure 20: IMIS 3 Days Spatiotemporal Partitioner Running Example
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(a) Octree max item by node: 20 & max level: 30

(b) Octree max item by node: 40 & max level: 15

(c) Octree max item by node: 360 & max level: 30

Figure 21: IMIS Dataset Spatiotemporal Partition Results
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6.1.2  Spatio-temporal Index

The  next  step  after  partitioning  is  the  indexing  of  the  data.  In  order  to  achieve  local
optimization, namely speed-up query execution time when a worker processing a subset of
the data is required a local index mechanism. In our implementation we extend spatial STR-
tree from the JTS library in order to use time for sorting. Actually, we use time and spatial
characteristics when build STR-tree and create its nodes. We decided to extend this library
because  we  wanted  to  support  spatial  and  spatiotemporal  data  and  simultaneously  be
compatible with most of the existing systems and using one implementation. JTS library and
the features we added achieve this goal. Apart from adding time-spatial sorting, we added
method in order to support  mobility query processing. More specifically,  we implemented
algorithms  for  range  queries  with  3D  MBR  intersects  over  tree  structure  and  also
implemented MINDIST tree search between trajectories and 3D MBR so that we can execute
kNN queries. MINDIST is equal with zero if entities overlap else is the distance between the
closest points. These methods allowed us to search a partitioner’s data with logN complexity.
Algorithm 3 and Algorithm 4 describes in pseudocode the steps for range queries and nn
queries  taking  advantage  of  a  tree  structure.  Both  algorthims  using  a  depth-first  search
mechanism in order to explore possible candidate for the final result. Algorithm 3 use only
overlap for continuing the depth first search (non-leaf node) or adding result (entry in leaf
node) for output. On the other hand, Algorithm 4 use MINDIST measurement for continuing
the depth-search (non-leaf node) and call a different distance function (i.e. DTW or LCSS for
mobility data) for assigning result (entry in leaf node) to output. In our implementation we use
these algorithms with minimal changes.

Algorithm 3 Index Range Query Algorithm

Input: tree, query

Output: candidate_set

 1: stack.add(tree.getRoot()) 

 2: candidate_set ←∅

 3: while stack.nonEmpty() do

 4: node ← stack.pop() 

 5: if node is not leaf node then

 6: if node overlaps q then

 7: stack.push(node)

 8: end if
 9: else
10: for each entry ∈ node do

11: if entry overlaps q then
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12: candidate_set.add(e)

13: end if
14: end for
15: end if
16: end while

17: return candidate_set

Algorithm 4 Index NN Query Algorithm

Input: tree, query, mindist_threshold

Output: nn_result

 1: stack.add(tree.getRoot()) 

 2: nn_result ←∅

 3: nearest ← INFINITY 

 4: while stack.nonEmpty() do

 5: node ← stack.pop() 

 6: if  node is  not  leaf  node

then

 7: if node.distance(query) < mindist_thershold then

 8: stack.push(node)

 9: end if
10: else
11: for each entry ∈ node do

12: if entry.distance(query) < nearest then

13:
nearest 

← entry.distance(query)

14: nn_result ← entry

15: end if
16: end for
17: end if
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18: end while

19: return nn_result

Creating Hive tables is our final goal. Partitioning and indexing mechanism is the key factor
for  having  optimized tables  that  could  be  efficient  processed  by  execution  engine.  After
finishing the data management workflow, we ended up with the following schema:

Table 5: Hive tables

          Name Columns Description

Global Index tree binary one row table, easily broadcast

TrajectoryIndex
partitionID int,

index[trajectories] binary

bucketed by partitionID, each row contains
trajectories for the partition in tree 
encoding

Trajectories
objID bigint, trajectory array, 
rowID bigint, partitionID int

cleansed and rebucketed trajectories,
bucketed by partitionID or rowID, 
each row contains a trajectory,

MBRIndex
partitionID int,

index[trajectoriesMBR] binary

bucketed by partitionID, each row contains

mbrs of trajectories for the 
partition in tree encoding

6.2 Mobility Queries Toolbox

The Scalable Big Data Operation Component - Big Data Processing (BDP) Toolbox provide
parallel and distributed query processing techniques for spatiotemporal query languages (i.e.
the  Distributed  Complex  Query  Toolbox).  The  efficient  indexing  techniques  using
sophisticated partitioning and access algorithms enable the operators to perform complex
and demanding operations over big amount of data in spatiotemporal dimension.

In order to support access to the distributed storage layer, a set of primitive query operators
(UDF) have been implemented that operate over highly distributed data. Examples of such
operators include: scan, index-scan, filter(range-queries), distance-join, kNN queries.

BigSQLTraj operators have been designed in an abstract way, thus achieving two goals at
the same time:

1) easily executed via pure SQL commands and JDBC technologies without required any
knowledge of MapReduce programming

2) every  system  that  read  data  from  HDFS  can  reproduce  the  same  functionality
(epsecially index scan) by only translate existing UDFs (pure Java that use custom
serializers and deserializers for indices)

The  most  important  queries  for  every  mobility  data  application  are  range  queries  and
similarity queries and its alternatives. Location-based services, map matching even predictive
analytics algorithms have steps that need a fast pruning processing or find distance between
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trajectories,  that’s  why  this  thesis  focus  and  optimize  these  types  of  queries.  Our  core
optimization  relies on  the index and partition that  are described in  the  previous section.
Custom deserializers have been implemented in order to access global and local indices.
Each query (range or kNN) firstly scan the global index with the proper way and then process
the full  dataset. Algorithm 3 and Algorithm 4 present the step for processing index-based
queries respectively.

6.2.1  Extension of Hive with trajectory operators

In  this  section  we  describe  implemented  Hive  UDFs  their  input  parameters,  a  briefly
description and the output result. These UDFs extend Hive with support for mobility data. It is
important to note that Hive doesn’t provide any API for creating new data types or indexing
structures.  Every  optimization  in  this  thesis  is  achieved  based  on  the  below  operators.
Especially index-based operators achieving effectively pruning for search space.

 ST_Intersects3D 

 Input: trajectory and MBR or MBR and MBR, tolerance variables used to 
 extent MBR

 Returns true if objects spatiotemporal intersects

 ST_IndexIntersects 

 Input: STmbr, tree structure, tolerance variables used to extent MBR.

 Using Algorithm 3, scan Global Index or MBRIndex table 5

 Returns id for trajectories that intersects with STmbr

 IndexIntersectsTraj ◦ Input: STmbr, tree structure, tolerance variables used to 
extent MBR.

  Using Algorithm 3, scan TrajectoryIndex table 5

  Returns id & trajectories that intersects with STmbr

MbbConstructor

  Input: trajectory or user defined mbr, tolerance variables used to extent MBR.
  Returns MBR as Hive data type

TrajBoxDist

   Input: trajectory and Stmbr
  Returns  zero  if  trajectory  overlaps  STmbr  else  the  distance  between

  closest points

DTW

  Input:  trajectory,  trajectory,  w  (algorithm  parameter  for  pruning  distance
  matrix), distance function (i.e. Euclidean, Manhattan, Haversine), parameters
  for spatio-temporal tolerance

   Returns distance between the input trajectories if they temporal overlap

LCSS
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  Input:  trajectory,  trajectory,  distance  function  (i.e.  Euclidean,  Manhattan,
  Haversine) parameters for spatiotemporal tolerance

   Returns distance (dissimilarity) between the input trajectories

IndexTrajKNN 

  Input: query_trajectory, tree, mindist therhold, temporal tolerance

  Using Algorithm 4, scan Global Index or MBRIndex table 5

  Returns id and trajectory which are candidate NN with the query_trajectory

IndexStoreTrajKNN 

  Input: query_trajectory, tree, mindist therhold, temporal tolerance

  Using Algorithm 4, scan TrajectoryIndex table 5

  Returns id trajectory and distance which are candidate NN with the
     query_trajectory

ToOrderedList

  Input: idi, traji, k, distance (i.e calculated DTW or LCSS result) input based
     on IndexTrajKNN, IndexStoreTrajKNN

  Returns sorted by distance kNN trajectories

6.2.2  BigSQLTraj supported queries:

In this section we describe SQL queries of our implementation and how a user could execute
range and kNN queries with our proposed platform. Hive table are already described table 5.
There are three alternatives for each query how processing the full dataset except brute force
scan:

1) data have been bucketed by partition id, thus a simple search in the global index is
required and then a join with the trajectories table

2) data have been bucketed by trajectory id, thus a search in the global index and a
search in the local index that only contain trajectories id are required and then a join
with the trajectories table

3) data  have  encoding  via  STR-Tree,  thus  a  simple  search  in  the  global  index  is
required  and  then  a  join  with  the  local  indices  that  have  stored  with  the  entire
trajectories (not only with their MBRs).

Figure 22 describes the pipelines for each execution plan. Each transition from one table
to another is achieved vi  join operator. It  is significant remarkable that our partitioning
algorithm and the management plan combined with Hive’s of  the self  tables and joins
optimizations gave us extra speed up for querying execution time.
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(a)

(b)

(c)

Figure 22: BigSQLTraj Execution Plans

Methods for accessing each data structure based on the required algorithm are presented in
the previous section 6.2.1. More or less execution plans are the same for both queries (range
and kNN) because they depend in the same structures and almost same algorithms 3, 4.
Tables 6 and 7 present the queries that an end-user can execute in our proposed system. A
short  description  is  provided  in  order  to  link  queries  with  data  management  layer  and
execution  plans  22.  In  case  of  range  queries  Q  is  always  a  3D  MBR  and
Intersects=[ST_Intersects3D,  ST_IndexIntersects,  IndexIntersectsTraj]  depends  on
querying  table.  In  case of  range queries  Q is  always  a  trajectory,  knn=[IndexTrajKNN,
IndexStoreTrajKNN]  depends  on  querying  table,  distance=[DTW,  LCSS]  and
knn_result=ToOrderedList.
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Table 6: Range Queries

Query Description

SELECT * FROM trajectories WHERE

Intersects(Q, trajectory)
Brute force range query. Scan all database

SELECT * FROM trajectories INNER

JOIN (SELECT Intersects(Q, tree)

FROM global_index) AS t ON

(partitionID) WHERE

Intersects(Q, trajectory)

First query Global Index for finding 

partitions that intersects with range query, 

then execute the range query on 

trajectories table that is bucketed by 

partition id [5].

Join global index with trajectories table.

Execution plan (a).

SELECT * FROM trajectories

INNER JOIN (SELECT Intersects(Q, tree)

FROM mbrindex INNER JOIN

(SELECT Intersects(Q, tree)

FROM global_index) as p

ON (partitionID) ) AS t ON (rowID)

WHERE Intersects(Q, trajectory)

First query Global Index for finding partitions 

that intersects with range query, then 

execute the range query on MBRIndex table 

for candidate intersects with Trajectories 

tables. Finally execute range query only for 

candidate trajectories [5].

Join Global Index, MBRIndex, Trajectories 
tables.

Execution plan (b).

SELECT Intersects(Q, tree)

FROM TrajectoriesIndex

INNER JOIN (SELECT

Intersects

(Q, trajectory) FROM global_index)

AS t ON (partitionID)

First query Global Index for finding 

partitions that intersects with range query, 

then execute the range query on 

TrajectoriesIndex table [5].

Join Global Index with TrajectoriesIndex table.

Execution plan (c).
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Table 7: kNN Queries

Query Description

SELECT *

FROM ( SELECT rowIDi, ti, Q, distance(ti , Q)

FROM trajectories) AS temp

ORDER BY distance LIMIT k

Brute force kNN query. Scan all database.

SELECT rowIDi , knn_result FROM

( SELECT rowIDi , ti, Q, distance(ti, Q)

FROM trajectories INNER JOIN

( SELECT knn(Q , tree) FROM global_index) AS t ) AS final

ON (partitionID) GROUP BY rowIDi

First query Global Index based on MINDIST 

for finding partitions with candidate similar 

trajectories [5], then execute similarity 

function for all candidates and order the 

result and return kNN.

Execution plan (a).

SELECT rowIDi , knn_result FROM

( SELECT rowIDi , ti, Q, distance(ti, Q)

FROM ( SELECT knn(Q, tree) FROM index

INNER JOIN

( SELECT knn(Q, tree) FROM partition_index) AS p ) AS t

ON (partitionID) ) AS temp ) ) AS final GROUP BY rowIDi

First query Global Index based on MINDIST

for finding partitions

that has candidate kNN trajectories, then 

execute the kNN search on MBRIndex table

for candidate intersects with Trajectories 

tables [5]. Finally calculate distance 

between query and candidate kNN 

trajectories, order the result and return kNN.

Join Global Index, MBRIndex,

Trajectories tables. Execution plan (b)

SELECT rowIDi, knn_result

FROM ( SELECT knn(Q, tree)

FROM indexTrajectories INNER JOIN

( SELECT knn(Q, tree) FROM partition_index ) AS t

ON (partitionID) ) AS final GROUP BY rowIDi

First query Global Index based on MINDIST

for finding partitions that has candidate NN 

trajectories, then execute the kNN query on 

TrajectoriesIndex table and order the result and 

return kNN [5].

Join Global Index with TrajectoriesIndex table.

Execution plan (c).
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7. EXPERIMENTAL EVALUATION

In this section, we present the results of our experimental study. After creating our cluster in
∼Okeanos7,  we  were  going  to  test  our  benchmark  scenario  with  several  different
configurations.  One  by  one  we  installed  and  ran  all  clustered  engines.  While  running
benchmark used Yarn as the resource management platform. Spark, Tez and Hive have
been installed over Hadoop ecosystem. We configured hadoop so that it could used all the
available resources from the cluster. All results in the next paragraph are conducted with the
following resources:

 ∼Okeanos cluster with 15 slave nodes and one master node. Each node has

60gb disk, 8gb memory and 8 CPU

 Hive stable version 2.3

 Spark version 2.3

 Hadoop version 2.7.3

 Tez version 0.9

A real world dataset is employed to study the query performance of BigSQLTraj. Datasets

description and statistics are presented on table 4 in section 5. The main characteristics are:

 1536743282 points almost 100GB

 5271228 trajectories

7.1 Experimental Setup

Partitioned  trajectories  dataset  and  its  indices  are  stored  as  ORC  files  and  they  were
bucketing into 30 buckets. The bucketing key is different per case, because as shown in the
previous section the join key is different, so sometimes the bucketing key is the trajectory id
and other the partition id. Partitioned tables can optimize filtering queries, but in our case, we
need  fast  joins.  Hive  provides  join  optimization  for  bucketing  tables  and  especially  with
bucketing and sorting by bucket key tables (sort bucket join). Moreover, it is crucial to clarify
that buckets number (i.e 30 buckets) should be some dozens for better performance. Hive
can  improve  its  performance  (faster  execution)  for  join  queries  when  someone increase
buckets number, but there is an upper limit.  If  this limit is overcome performance getting
worse. So, our empirical experiments shown that a range between 15-60 buckets achieve the
best performance.
TrajSpark evaluates performance of the system on a 12-node cluster running standalone
Spark 1.5.2, each node is equipped with 8-cores Intel E5335 2GHz processor and 16GB
memory. TrajSpark compare its performance with GeoSpark and SIMBA with two datasets
(real data 190GB and synthetic 1,4TB). Benchmarking examine data loading, single object
queries (i.e. input is object id and temporal range), spatiotemporal range quries based on
STR-Tree and kNN queries. Experiments are conducted with different input batch size.
UlTraMan conduct experiments on a 12-node cluster running Spark 2.1.1, Hadoop 2.7.1 and
Chronicle Map 3.14. Each node is equipped with 12-cores Intel Xeon E5-2620 2.4GHz and
40GB memory. Benchmarking examine query performance for id queries, range queries and

7 https://okeanos.grnet.gr/home/
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kNN queries with different input batch size. UlTraMan compare the performance difference
using Chronicle Map or of the self Spark/Hadoop pipelines and at the same time the benefits
of local and global indices.

Table 8: Experimental setup parameters

Parameter Values

Encoding scheme STRtree encoding, default encoding

Logical plans global  index  & bucketing table,  global
index-local  index  &  bucketing  table,
default

Physical plans Sort Merge Bucket Join, Brute Force

Execution Engine Spark, Tez

Type  of  queries.  We  focused  our  experiments  on  range  and  knn  queries.  All  of  our
experiments were conducted using almost the same query parameters.
Algorithms. We have implemented logical and physical plans as described in the previous
sections for spatio-temporal queries. More specifically, we experimented with (a) global and
local index logical plans, (b) Sort Merge Bucket Join, Brute Force physical plans and (C)
default,  STRtree encoding scheme.  Table  8  summarizes  the  algorithms used during  the
experimental evaluation process
Metrics. Our main evaluation metric was the total execution time of each experiment on the
cluster. The actual execution time of our algorithms is presented here. Each experiment was
run 3 times, and the average execution time is depicted in the charts.

7.2 Results

Figures  23  depicts  the  execution  time  comparing  the  available  storage  strategies  with
different number of workers and both execution engines for range and knn queries. Figures
24 depicts the execution time comparing the available storage strategies with different size
dataset size for range and kNN queries. Clearly, by using partition(global) index we are able
to prune early rows which do not satisfy the query. This improves performance by at least
50%  comparatively  with  brute  force.  It  is  also  important  to  note  index  contains  only
trajectories  MBR  and  points  to  a  bucketized  by  trajectory  identifier  table  have  worse
performance than table that bucketized by partition identifier. This performance difference is
quite notable especially for kNN queries which is the most challenging query. Also, STRtree
encoding outperforms all the other data management strategies.
For range queries the input was a random partitioner’s MBR. We made this decision in order
to stress the system and examine the query performance with a big number of returning
rows.  Obviously,  the the input  for  kNN query was a random trajectory from the dataset.
Range and kNN queries have quite similar executions time. This occurs because Hive as
engine has some overhead for system’s metadata, planning and execute query especially
with  join  operator.  Moreover,  the total  execution time could be affected by the hardware
limitation.  Our  proposed  system  achieve  is  scalable,  extra  workers  speed  up  systems
performance and increasing data size linearly decrease performance speed.
Both figures conclude the combination of global index with the STRtree encoding is the most
best execution plan and improves performance over 80% comparatively with brute force and
almost 50% comparatively with the other plan. This means that tree deserialization does not
charge the system performance and every delay is because of Hive’s semantics. Obviously,
Spark outperforms Tez because the execution plans does not require huge joins or a need to
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write  intermediate  results  on  disk.  Spark  takes  advantage  of  only-in-memory  execution.
Especially kNN queries has almost the same execution with range queries despite the fact
that need extra calculation.

(a) Range Query

(b) Knn Query

Figure 23: BigSQLTraj Scalability Experiments
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(a) Range Query

(b) Knn Query

Figure 24: BigSQLTraj Speed up Experiments
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8. CONCLUSION & FUTURE WORK

In  this  thesis,  we  present  the  first  flexible,  distributed  and  scalable  big  data  solution  to
address the problem of big mobility data management and processing with using SQL. The
spread of  the concept  of  big mobility  data to  basic users in conjunction with the lack of
software frameworks that would be able to handle spatio-temporal data and methods lead to
the  development  of  this  thesis.  Our  proposed  BigSQLTraj  system,  which  comprise  of  a
Processing and a Storage layer, is designed to benefit by the tools and best practices for
handling vast sizes of data. Our experiments demonstrate the performance of our system,
which is able to efficiently process range and kNN spatio-temporal queries, in a few seconds.
Achieving this goal, it was necessary the extension of existing tree structures that speed up
query execution. The combination of  global  and local  indices, which is more of a matter
architecture despite implementation or technologies, is the key and the final result of this
thesis.  Splitting big datasets based on similarity and create global and local metadata or
indices structures must be supported by every big data engine, so that the advantages of
space pruning lead to effective query processing
BigSQLTraj provides a clear SQL interface to its data types, functions and operators that
make it  easy to  learn,  use and integrate with  existing JDBC systems when it  comes to
managing  spatio-temporal  data.  We  explained  its  components  and  demonstrated  its
capabilities on a real world dataset.
There is always room for improvement on a framework like BigSQLTraj and some of the
areas this can be done are:

 evaluate the functionality of the system under real demands, such as a streaming
tool always inserts new data in order to measure resposiveness

 advanced spatio-temporal processing (e.g. computational geometry algorithms)

 semantic  trajectories  management  and processing:  integrating  text  and spatio-
temporal  data  (semantic  or  annotated  trajectories).  Also,  there  is  a  need  for  more
complex indices and processing workflows

 sophisticated partitioners, creating methods in order to minimize partitions overlap
and increase compactness
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