
NATIONAL & KAPODISTRIAN

UNIVERSITY OF ATHENS

MSc in ”Control & Computing”
Departments of Physics and
Informatics & Telecommunicanions

Master Thesis

Convolutional Neural Network Accelerator
on System on a Chip: Application at the
Intel/Movidius Myriad2

Bezaitis Charalampos
2019508

Supervisor:

Dionysios Reisis, Professor

Examination Committee:

Hector E. Nistazakis, Associate Professor

Anna Tzanakaki, Associate Professor

July 2021





Περίληψη

Η παρούσα διπλωματική εργασία ασχολείται με την επιτάχνσυη Συνελε-
κτικών Νευρωρινκών Δικτύων(CNN) στην Myriad2.
Η διπλωματική αρχίζει με μία εισαγωγή στα CNN εστιάζοντας στις πρά-
ξεις των στρωμάτων από τα οποία αποτελούνται.
Η Myriad2, μία μονάδας επεξεργάσιας οράσεως, και μερικές από τις
εφαρμογές της παρουσιάζονται στο δεύτερο κεφάλαιο.
Tέλος, ένας πρωτότυπος σχεδιασμός εφαρμοσμένος στην Myriad2 επιταχύ-
νει την CNN επίλυση του προβλήματος της κατηγοριοποίησης χειρόγραφων
ψηφίων και τέλος, ο σχεδιασμός αυτός συγκρίνεται και με αλλά συστή-
ματα.

Αbstract

This thesis considers an acceleration of the inference of a Convolutional
Neural Network at Myriad 2.
CNNs are introduced with a focus on their inference calculations.
Myriad 2 Vision Processing Unit and its applications are presented
next.
A novel VPU design that accelerates a CNN solution of classifying
handwritten numbers is developed and is compared with other systems
and designs.

Subject Area: System on a chip, Machine Learning, Computer
Vision, Parallel Systems, Field Programmable Gate Array, Vision
Processing Unit

Keywords: CNN, SoC, Myriad2, Neural Networks, Accelerator, Edge
Computing, Intel/Movidius Myriad 2, FPGA, VPU, Myriad2
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Chapter 1

Introduction

During the past decades the progress of machine learning algorithmic
techniques has led to a significant improvement of different tasks.
Though,a lot of applications impose restrictions on the execution
time of the task and hardware accelerators were introduced to
improve the time efficiency of the tasks. Consequently, researchers
and engineers are involved in an ongoing effort to upgrade the
performance by proposing novel accelerator designs while paying
attention to the low energy consumption requirements of edge devices[20]
[9].

Aiming at contributing to this effort the objective of thesis
is to develop a CNN accelerator based on Myriad 2 System on a
Chip. Myriad 2 Multi-processor System has proven capable of running
machine learning tasks on previous work, thus was chosen for the
image recognition task [12]. The classifying handwritten digits
parallel software of this thesis contributed to a conference paper
[8].

The thesis is structured as follows. In the second chapter,
Convolutional Neural Networks are introduced with focus on the exact
calculations of their inference in the second chapter. In the third
chapter, Myriad 2 VPU is presented with its various applications. In
the fourth chapter, a solution to classifying handwritten numbers
is given resulting to the inference C program. In the fifth chapter,
the porting of the inference to the parallel software running in
Myriad 2 is depicted. In the sixth chapter, the results of the
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parallel VPU software are presented and compared with other systems
and implementations.
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Chapter 2

Convolutional Neural Networks

1. Introduction

Neural networks were inspired by the first attempts of scientists
to understand how the human brain works and how what we call
intelligence is formed. The most basic building element of the
brain is the neuron and a similar building block is the perceptron
in the Artificial Neural Networks [19].

A learning machine that learns from a set of training data can
be built by borrowing the brain neuron. A basic operation consist
of one single neuron that following certain rules can learn to
distinguish two linearly separable classes. This operation is called
perceptron. A perceptron has ”synaptic” weights that are updated in
order to perform different operations. The weights are updated, when
the perceptron ”learns” the output for each of the input patterns.
Memory neurons in the brain work in a similar way For example, in
Fig. 2.1 a perceptron can be used to classify black and white dots.
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Figure 2.1: Linearly separable classes (black and white) can be
separated by a single perceptron

By combing a large number of perceptrons, which are connected by
different layers, the architecture of a Artificial Neural Network(ANN)
is made. ANNs are able to classify multiple non-linear classes and
achieve high results of accuracy.

Learning is achieved by adjusting the synaptic weights to minimize
a preselected cost function. This adjusting of the weights became
possible and efficient with the use of the backpropagation algorithm.
Backpropagation train neural networks based on the set of input-
output training samples.

Figure 2.2: Simple depiction of how backpropagation updates the
synaptic weights
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Though, ANNs are very useful but in certain tasks such as image
classification lack accuracy and efficiency. For example, vectorized
image arrays result in a huge increase to the number of input
parameters but information of the position of each pixel is lost.
Also, in limited hardware like embedded/edge devices such number of
parameters can not be sustained.

Convolutional Neural Networks(CNNs) offer a solution to both of
this problems[18]. The first layers perform convolution sense the
name. After the convolution layer, pooling and activation functions
pre-processing is done before the input of the ANN and better results
are achieved.

The next sections expand on each of the blocks of the CNN some
of which were already refereed but not explained consistently. All
these blocks are used to build the inference of a CNN.

2. Simple Perceptron

In the basic perceptron architecture the input features are
applied to the input nodes and are weighted by the respective weights
that define the synapses. The bias term is then added on their linear
combination and the result is pushed through a nonlinear activation
function.
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Figure 2.3: Perceptron - Neuron

For example, a simple neuron is able to classify patterns to 2
classes. It would output a 1 for patterns of the first class or a
zero for patterns of the second class

3. Fully Connected Network

The feed-forward networks that have been introduced before as
ANN are also known as fully connected networks.

This name is to stress out that each one of the neurons/nodes
in any layer is directly connected to every node of the previous
layer. The nodes of the first hidden layer are fully connected to
those of the input layer. In other words, each neuron is associated
with a vector of parameters, whose dimension is equal to the number
of nodes of the previous (input) layer. The algebraic operations
which are performed are inner products.
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Figure 2.4: Fully Connected Network

In the Fig. 2.4 a small network is displayed consisting of two
layers. The first one has 3 neurons and the second one 2 neurons.
It is easily seen that each node is connected to every node of the
”forward” layer.
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4. Convolution

Convolution in Neural Nets resembles matrix multiplication element
by element. A kernel is multiplied element by element with the
bigger image array. The output is stored to a new array and then the
operation is repeated by ”sliding” to cover the rest of the input
matrix.

An example helps to deepen the understanding of the operations
used in convolution: We start by defining the two matrices as the
Input Matrix (Fig . 2.5) and the kernel matrix (Fig. 2.6)IM(1, 1) IM(1, 2) IM(1, 3)

IM(2, 1) IM(2, 2) IM(2, 3)
IM(3, 1) IM(3, 2) IM(3, 3)


Figure 2.5: Input Matrix

[
K(1, 1) K(1, 2)
K(2, 1) K(2, 2)

]
Figure 2.6: Kernel

We place the kernel at the top left part of the Input Matrix and
the first output is derived:

O(1, 1) = IM(1, 1)∗K(1, 1)+IM(1, 2)∗K(1, 2)+IM(2, 1)∗K(2, 1)+IM(2, 2)∗K(2, 2)

The next iteration for the second output is:

O(1, 2) = K(1, 1)∗IM(1, 2)+K(1, 2)∗IM(1, 3)+K(2, 1)∗IM(2, 2)+K(2, 2)∗IM(2, 3)

Hence by following the above pattern a 2X2 array is formed.[
O(1, 1) O(1, 2)
O(2, 1) O(2, 2)

]
Figure 2.7: Output Array

Terms used usually with CNNs:
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▶ Depth: The depth of a layer is the number of filter matrices
that are employed in this layer. This is not to be confused
with the depth of the network, which corresponds to the total
number of hidden layers used. Sometimes, we refer to the number
of filters as the number of channels.

▶ Receptive field: Each pixel in an output feature map array
results as a weighted average of the pixels within a specific
area of the input (or of the output of the previous layer)
image array. The specific area that corresponds to a pixel is
known as its receptive field.

▶ Stride: In practice, instead of sliding the filter matrix one
pixel at a time(just as the previous example), one can slide
it by, say, s pixels. This value is known as the stride. For
values of s > 1, feature map arrays that are smaller in size
result

▶ Zero padding: Sometimes, zeros are used to pad the input matrix
around the border pixels.

▶ Bias term: After each convolution operation that generates a
feature map pixel, a bias term, b, is added.

5. Activation Function

Once convolutions have been performed and the bias term has
been added to all feature map values, the next step is to apply
nonlinearity (activation function) to each one of the pixels of every
feature map array. A lot of nonlinear functions can be employed such
as tanh, sigmoid, hyperbolic tangent and . Currently, the rectified
linear activation function, ReLU, seems to be the most popular and
efficient.
In the context of artificial neural networks, ReLU is an activation
function defined as the positive part of its argument:

f(x) = max(0, x)
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Figure 2.8: ReLU activation function

6. Pooling

The purpose of this step is to reduce the dimensionality of each
feature map array. Sometimes, the step is also referred to as spatial
pooling. To this end, one defines a window and slides it over the
corresponding matrix. Sliding can be done by adopting a value for
the respective stride parameter, s. Pooling operation consists of
choosing a single value to represent all the pixels that lie within
the window. The most commonly used operation is the max pooling. Max
pooling operates as follows: among all the pixels that lie within
the window, the one with the maximum value is selected.
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2 1 5 7
3 2 1 7
1 3 2 6
9 4 1 8


Figure 2.9: Input Matrix[

3 7
9 8

]
Figure 2.10: Matrix after Max Pooling

7. Output layer

After multiple layers of convolution and padding, we would need
the output in the form of a class. Convolution and pooling layers
would only be able to extract features and reduce the number of
parameters from the original images.

However, to produce the final output we need to apply a fully
connected layer to generate an output equal to the number of classes
we need, and thus the biggest output indicates the predicted class.

8. Training and Inference of a CNN

Training refers to the process of creating the Convolution Neural
Network. Training involves the use of a deep-learning framework
(e.g., TensorFlow) and a training dataset. During training, by using
various techinques such as backpropagation, the model updates the
weights, biases and kernels to achieve the optimal results regarding
the expected output.

Inference refers to the process of using the previously calculated
variables of the CNN model to make a prediction. In this way,
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inference is used to predict the results from the previously unseen
input data. The prediction could be classification to a category.
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Chapter 3

Myriad 2

1. Myriad 2 System-on-Chip Presentation

Myriad 2 is a multicore, always-on System On Chip that supports
computational imaging and visual awareness for mobile, wearable, and
embedded applications. Myriad 2 is a vision processing unit (VPU)
solution for devices that both power and thermal dissipation are
key issues and need to be kept at a minimum [15].

Myriad 2 uses a combination of low-power very long instruction
word (VLIW) processors with vector and Single Instruction Multiple
Data (SIMD) operations capable of very high parallelism in a clock
cycle, allied with hardware acceleration for key image processing
and computer vision kernels, backed by a very high band width on-chip
multicore memory subsystem. The Myriad2 VPU aims to provide high
performance efficiency, allowing high-performance computer vision
systems with very low latency to be built while dissipating less
than 1 W[16].

More specifically, Myriad’s 2 design in process technology was
able to sustain 12 Streaming Hybrid Architecture Vector Engine
(SHAVE) vector processors with a clock rate up to 600 MHz. It also
combines two RISC processors LEON OS and LEON RT with the same clock
rate. The 2 Leon processors support real time operating systems and
various peripheral devices.
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Figure 3.1: Intel’s Myriad 2 Vision Processing Unit during radiation
testing for space at CERN [3]

Another integral part of the VPU is the shared memory. All the
processors and their instructions reside in a shared 2-MByte memory
block called Connection Matrix (CMX) memory, which can be configured
to accommodate different instruction and data mixes depending on the
workload. The CMX block comprises 16 blocks of 128 Kbytes, which in
turn comprise four 32-Kbyte RAM instances organized as 4,096 words
of 64 bits each, which are independently arbitrated, allowing each
RAM block in the memory subsystem to be accessed independently. The
12 SHAVEs acting together can move (theoretical maximum) 12 x 128
bits of code and 24 x 64 bits of data, for an aggregate CMX memory
bandwidth of 3,072 bits per cycle (1,536 bits of data).

2. Myriad 2 Architecture

The SHAVE processor is a hybrid stream processor architecture
combining the best features of GPUs, DSPs, and RISC with both 8-
bit, 16-bit, and 32-bit integer and 16- and 32-bit floating-point
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Figure 3.2: Myriad 2 Architecture

arithmetic as well as unique features such as hardware support
for sparse data structures. These configurations prove especially
useful for designing and using the fast but small CMX memory. It
also controls multiple functional units including extensive SIMD
capability for high parallelism and throughput at both a functional
unit and processor level. This architecture maximizes performance
per watt while maintaining ease of programmability, especially in
terms of support for design and porting of different software
applications.

Because power efficiency is paramount in mobile applications,
Myriad 2 provides extensive clock and functional unit gating and
support for dynamic clock and voltage scaling for dynamic power
reduction. It also contains 17 power islands:

▶ one for each of the 12 SHAVE processors;

▶ one for the CMX memory subsystem; one for the media subsystem,
including video hardware accelerators and RISC1

▶ one for RISC2 and peripherals
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▶ one for the clock and power management

▶ one always-on domain

This allows fine-grained power control in software with minimal
latency to return to normal operating mode, including maintenance
of the static RAM (SRAM) state that eliminates the need to reboot
from external storage. Myriad 2 has been designed to operate at 0.9
V for 600 MHz.

3. Myriad 2 Applications

Myriad 2 VPU has found use in various projects such as Google
Project Tango, Google Clips and DJI Drones. It is able to perform
in such projects as it runs at between 80 and 150 GFLOPS on little
more than 1W of power[22]. These results lead also to exploring the
use of Myriad 2 for space applications [11].

3..1 European Space Agency use of Myriad 2

One of the many organizations that use Myriad 2 is the European
Space Agency. After extensive testing, Myriad 2 is currently being
used on a experimental satellite[4].

One of the most important requirements to test the suitability of
a chip to fly is the radiation hardening. Damage or malfunction can
be caused by high levels of ionizing radiation (particle radiation
and high-energy electromagnetic radiation). This is especially true
for environments in outer space where the Earth atmosphere does not
exist[2].

In such manner, an ESA-led team subjected Myriad 2 chip to one of
the most energetic radiation beams available on Earth. These tests
took place at CERN, the European Organization for Nuclear Research.
ESA worked with Irish firm Ubotica Technologies to put chips in a
path of an experimental beamline fed by the Super Proton Synchrotron
(SPS) particle accelerator [21]. Located in a circular tunnel nearly
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7 km in circumference, the SPS is CERN’s second largest accelerator
after the Large Hadron Collider (LHC), which the SPS feeds into in
turn.

Myriad 2 could let us overcome the performance bottleneck faced
by imaging instruments on CubeSats and other small satellites. Low
data downlink bandwidth due to a small antenna size and limited power
levels stops us from accessing all the imagery we could acquire [1].

On some extent, this was full-filled by ESA’s Φ-sat-1 mission.
Φ-sat-1, an enhancement of the Federated Satellite Systems (FSSCat)
mission, is one of the first experiment to demonstrate how artificial
intelligence can be used for Earth observation – in this case,
filtering out less than perfect images so that only usable data are
returned to Earth.

Figure 3.3: Intel’s Myriad 2 Vision Processing Unit brings onboard
artificial intelligence to satellites on a system build by Ubotica
Technologies and paired with a hyperspectral-thermal from cosine
measurement systems[6]

On September 2, 2020 the experimental satellite Φ-sat-1 ,about
the size of a cereal box, was ejected from Vega rocket’s dispenser
along with 45 other similarly small satellites. The satellite is
now soaring at over 17,000 mph (27,500 kmh) in sun-synchronous orbit
about 329 miles (530 km) overhead.
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Φ-sat-1 contains a new hyperspectral-thermal camera and onboard
AI processing thanks to Myriad 2. For the initial verification,
the satellite saved all images and recorded its AI cloud detection
decision for each, in order for the team on the ground to be able
verify that the Deep CNNs running on Myriad 2 were behaving as
expected.

The initial data downlinked from the satellite has shown that
the AI-powered automatic cloud detection algorithm has correctly
sorted hyperspectral Earth observation imagery from the satellite’s
sensor into cloudy and non-cloudy pixels.

In conclusion, Φ-sat-1 has enabled the pre-filtering of Earth
observation data. Thus, only relevant part of the image with usable
information are downlinked to the ground, thereby improving bandwidth
utilisation and significantly reducing aggregated downlink costs.

4. Myriad 2 Interfaces

4..1 CIF

The Camera Interface of Myriad 2 is a single image input interface.
With the use of multiple GPIOs Myriad 2 receives images of various
sizes and formats accordings to its CIF standard. The frames are
transmitted and received by CIF in a bit-parallel format. The GPIOs
that implement the interface are the following: vsync, hsync, pixel
clock and pixel data. Pixel data bits depend on the CIF format that
is being used each time.

4..2 LCD

Liquid Cristal Display supports single image output. Similar to
the Camera Interface, with the use of GPIOs Myriad outputs images
of different sizes and depths.
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4..3 Accelerator

Both interfaces enable Myriad to work as an accelerator for
machine learning or to be more specific CNN implementations. Input
data in the form of image frames can be received from CIF. After the
reception, Myriad2 process the input data (classifying,convolution,
rendering etc) and output the results with the use of LCD.

These interfaces can be implemented with any other device capable
of having a sufficient number of GPIO pins (with clocks) such as an
Arduino or even a FPGA[17]. So, with an established communication
Myriad2 can work as accelerator for them[5].
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Chapter 4

MNIST CNN solution

1. Model Architecture and Training

The model was trained with the MNIST dataset containing 60K total
handwritten digit grayscale images with dimensions 28x28 pixels
[10]. Out of the 60K images, 50K where selected for the training
process and the remaining 10K were used for the model validation.

Figure 4.1: Mnist Dataset Images

The dataset images were given as input to the CNN depicted on
Fig. 4.1, which was implemented via TensorFlow [13].
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Estimator API consisting of the following operations:

1. one convolution layer containing 32 filters of 5×5 kernel size
each

2. max pooling layer dedicated to downsample the feature maps by
extracting the max value of 2 × 2 windows with stride 2

3. a 30-neuron fully connected layer

4. a 10-neuron output layer; this output result represents the
final classification task

Figure 4.2: Model Architecture

The implementation results showed that the accuracy of the model
was not affected by either using or not using padding. Consequently,
no padding was perfomed for our model in the convolution layer
and thus, the CNN design minimized the unnecessary computations
in Myriad 2. The model uses the ReLU activation function in all
the layers of the model’s architecture apart the output layer. The
latter choice was taken because ReLU provides the best performance
with respect to the computational cost ratio and it is efficiently
implemented in hardware regarding the resources’ utilization. The
output layer calculates the argmax and softmax of the output layer’s
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tensors in order to produce the classification. The model uses the
Adam Optimization Algorithm with input from the cross-entropy loss
function and it achieves 98.66% accuracy after 9 epochs.

2. Inference Software C Implementation

Α C software program was developed that calculates the Inference
of the CNN model. The C software uses the same parameters of
the TensorFlow application. Biases, weights and a random image
were extracted from the Tensorflow API and were added to the C
implementation by organizing them as header files.

The inference is calculated in the following steps:

1. It calculates the convolution of the input image with the 1st
filter’s kernel.

2. It adds the corresponding bias and applies the ReLU function.

3. To the resulting array it performs the max pooling operation.

4. It repeats the steps 1, 2, 3 until it calculates the feature
map of each filter of the Convolution Layer, by calling the
corresponding function in each iteration.

5. It calculates the matrix multiplication of the Fully Connected
Layer: one neuron at a time. It calculates the dot product of
the feature map array with the weight array of each neuron of
the Fully Connected Layer.

6. Finally, it calculates the matrix multiplication of the output
layer resulting in the classification of the network. The
results are not normalized into a probability distribution.

The code can be seen on the appendix section 1..
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Chapter 5

Myriad 2 CNN Accelerator

After the Inference C implementation, the MNIST solution was
ported to Myriad Software. The design of the Myriad2 CNN Accelerator
is revolved around the parallel architecture of the SoC. The design
utilizes all the 12 available SHAVE processors in order to reduce
the inference execution time and increase the throughput of the
accelerator.

The Myriad2 Accelerator is designed under the bare metal programming
paradigm, which allows the use of the Leon processors without any
operating system and with minimal schedulers to control the pipeline
of applications. To provide extra acceleration, the SHAVEs use Single
Instruction Multiple Data routines for the main computations.

The accelerator incorporates one Leon processor (OS) operating
as the scheduler of the 12 SHAVEs. The Myriad2 Accelerator omits the
use of Real-Time Executive for Multiprocessor Systems (RTEMS) to
eliminate the operating system overhead in the cost of integration
efforts for the developer.

The Myriad2 CNN Accelerator is efficient regarding the utilization
of the available memory resources of t the SoC. Given the fact that
the application has low memory requirements, the aim is to use of the
CMX memory for storing all the neural network parameters (weights,
biases) and the input image. The performance of the accelerator is
vastly improved without the degradation caused by the use of the
DRAM.
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Moreover, the SHAVE code can be stored either in the CMX memory or
in the DRAM. The Myriad2 Accelerator takes advantage of this feature,
by storing the SHAVE code in the DRAM memory and the application
data are stored in the CMX. This division of the memory provides
a major performance gain because the program data reside in the
fastest possible memory in the SoC. The fact that the program code
resides in the DRAM memory proves not to be a bottleneck. because
of the caching capabilities of the Myriad2 SoC. Myriad 2 caching
reduces the DRAM performance penalty when fetching instructions from
it.

The mapping of the C software implementation to the 12 SHAVE
processors, operating in parallel, is as follows:

1. The computations of the 32 filters of the Convolution Layer and
the corresponding max pooling operations are mapped onto the
available processors on a per filter basis (e.g. when the 32
filters are mapped onto 12 SHAVEs: each of the first 8 SHAVEs
performs the convolution of 3 filters and each of the last 4
SHAVEs performs the convolution of 2 filters).

2. The completion of the calculations of the Convolution and
Pooling Layers constitutes an execution barrier, reaching which,
indicates that the input of the Fully Connected Layer is
available. Each of the 30 neurons of the Fully Connected Layer
is mapped onto a SHAVE processor: each of the first 6 SHAVEs
performs 3 dot products and each of the last 6 SHAVEs performs
2.

3. Finally, when all SHAVEs finish the execution of the Fully
Connected layer, this constitutes a second barrier, then the
calculation of the values of the 10 neurons of the Output Layer
will be completed.

The organization of the SHAVE data in the CMX memory is critical
to the performance of the accelerator as well as the power
consumption of the accelerator. Targeting the reduction of the
data sharing and consequently the memory access clashes among
the SHAVEs, data redundancy was essential. For the convolution
layer data redundancy is accomplished by storing multiple
copies of the convolution parameters as many as the number of
SHAVE processors: one copy of the input image, the convolution
layer’s weights and biases is stored in each SHAVE’s CMX space.
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The weights of the Fully Connected Layer are stored in a
common access region of the CMX memory, due to their size
that restricts the data redundancy.

In the appendix section 2. the SIMD pseudo-code running on the shaves
can be seen.
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Chapter 6

Results

Table 6.1 presents the Myriad2 parallel inference implementation
results. The CNN design on the Myriad2 shows an almost linear speedup
with respect to the number of SHAVE processors employed in the
computations, which can be seen on Fig. 6.1. This proves the high
parallelization of the design and the ability of the Shaves to run
efficiently and concurrently.

Table 6.1: Myriad 2 Parallel Implementation
# of Shaves 1 2 4 8 12

Execution Time (ms) 1.82 1.04 0.54 0.39 0.35
Speedup - 1.75 3.37 4.66 5.2

Power Consumption (mW) 510 529 563 636 707

The relation of execution time of the Myriad2 parallel software
implementation with respect to the number of SHAVE processors that
are utilized in the design is presented in Fig. 6.2.

Moreover, in Fig. 6.3 it is observable that, there is a small
increase in the power consumption in relation with the number of
SHAVE processors. Each additional SHAVE processor adds 15 mW to
the total power consumption of the SoC. Therefore, the Myriad2 CNN
accelerator is advantageous because increasing the number of used
SHAVEs results in higher speedup at a small penalty in the power
consumption.
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Figure 6.1: Speed up of Myriad 2 Accelerator(without RTEMS) with
the number of Shaves

1. Comparison with Intel commercial CPU

On the Intel® Core i7-1065G7 CPU the C software executes at
1.80 ms , as it can be seen on Table 6.2. Intel’s CPU executed the
sequential implementation of the C code at 1.80 ms, when the power
consumption of the CPU is at 15 Watt[7].

Table 6.2: Intel CPU C sequential implementation
Devices Myriad 2: 12 Shaves Intel i7-1065G7

Execution time (ms) 0.35 1.80
Power Consumption(W) 0.707 15

Myriad 2, when executing the parallel software was able to
achieve performance 5x performance gain of the Intel CPU when also,
consuming 20 times less power.

It should be noted that the Intel CPU was running the inference
in only one core, but the VPU’s model is able to surpass the CPU
and proves its capabilities in such a low power environment.
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Figure 6.2: Execution time of Myriad 2 Accelerator(without RTEMS)
with the number of Shaves

2. Comparison with a FPGA implementation

To continue comparing the Myriad 2 CNN design, a FPGA implementation
is used [9]. The FPGA implementation runs the same CNN model with
the same layers and weights on a Xilinx Kintex Ultrascale board.

Table 6.3 shows a 16x performance advantage of the FPGACNN
accelerator compared to the bare metal implementation (without
RTEMS) of the CNN on the Myriad 2 SoC.

Table 6.3: FPGA implementation
Devices Myriad 2: 12 Shaves FPGA

Execution time (ms) 0.35 0.021
Power Consumption(W) 0.707 3.631

On the other hand, the Myriad 2 requires 5 times less power than
the FPGA accelerator for completing the same CNN calculations.

FPGA implementation proves to be much faster than the Myriad
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Figure 6.3: Power Consumption of Myriad 2 Accelerator(without RTEMS)
with the number of Shaves

implementation but also consuming more power. Thus, Myriad 2 is
directly comparable with the FPGA implementation and can even be
preferred for low power high performance applications.

3. Comparison with the use of RTEMS and Bare

Metal

Table 6.4: RTEMS and Bare Metal paradigm
Paradigms Execution time (ms)

RTEMS 0.35
Bare Metal 0.707

Table 6.4 shows an almost 0.1 ms performance edge of the bare
metal implementation compared to the Real-Time Executive for Multiprocessor
Systems(RTEMS) paradigm. The advantage of the bare metal implementation
is more evident in the designs utilizing more SHAVE processors, where
the execution time of the CNN accelerator is in the same order of
magnitude with the RTEMS overhead.
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However, it should be noted that in deeper/bigger CNNs the RTEMS
overhead may not be remarkably evident. In deeper CNNs, RTEMS could
be a valuable asset in optimizing the CNN solution and achieving
high performance with less development effort.
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Chapter 7

Conclusion and Future Work

The current thesis has presented a CNN accelerator design on the
Intel Myriad 2 SoC, which is optimized for low power image processing
applications. The VPU accelerator when compared with a commercial
CPU, has a significant advantage with respect to the CNN execution
time . The VPU accelerator when compared with the FPGA accelerator,
has a significant advantage with respect to performance per Watt.

Future work includes the design and implementation of more
complicated CNN based applications for the Myriad 2 SoC that gained
attention due to the power consumption efficiency.

One such example is a ship detection algorithm. Ship detection
CNN ,while it’s output is only a yes or no for the existence of a ship
in the input image , requires more computational calculation and it
uses more memory. This is because of the input RGB images (instead
of black/white MNIST images) and in order to achieve higher accuracy
more layers are needed. To deal with such a problem, the current
Myriad 2 software design should be enhanced. Effective utilization
of DRAM memory would be essential. Another important result will
be the use of DMA driver for the communication between the CMX
and DRAM. An additional considerably improvement with respect to
execution time maybe achieved by including assembly code in the
current implemented C programs.
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Chapter 9

Appendix

1. Mnist Software Inference C code

main.c
1 #include <stdio.h>
2 #include”image.h”
3 #include”biases.h”
4 #include”dense_weights_0.h”
5 #include”dense_weights_1.h”
6 #include <time.h>
7

8

9 #define N 784
10

11 void conv(const float *img , const float *kernels , float conv_bias ,
float *conv_layer_out , int count);

12 float relu(float x);
13 float max(float a, float b, float c, float d);
14 float fully_connected(const float *dense_weights , float *

conv_layer_out , const float dense_bias_0 , int count);
15 float output_layer(const float *dense_weights , float *

conv_layer_out , const float dense_bias_1);
16

17 int main() {
18

19 clock_t begin=clock();
20 int i,j;
21 float conv_layer_out [32][12*12];
22 float fully_connected_out [30];
23 float output_layer_out [30];
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24

25

26

27 for(i=0; i<32; i++) {
28 conv(img , kernels[i], conv_biases[i], conv_layer_out[i], i);
29 }
30

31 for(i=0; i<30; i++) {
32 fully_connected_out[i] = fully_connected (& dense_weights_0[i

][0], &conv_layer_out [0][0] , dense_bias_0[i], i);
33 }
34

35

36

37 for(i=0; i<10; i++) {
38 output_layer_out[i] = output_layer(dense_weights_1[i],

fully_connected_out , dense_bias_1[i]);
39 }
40

41 printf(”\nOutputLayer\n”);
42 for(i=0; i<10; i++) {
43 printf(”%f\n”, output_layer_out[i]);
44 }
45

46 clock_t end = clock();
47 double time_spent =( double)(end −begin)/CLOCKS_PER_SEC;
48

49 printf(”\n Time taken = %.10f \n”,time_spent);
50 return 0;
51 }
52

53 void conv(const float *img , const float *kernels , float conv_bias ,
float *conv_layer_out ,int count) {

54 float conv_out [24*24];
55 int i,j,k,l;
56 float acc = 0.0;
57 // convolution
58 for(i=0; i<24; i++) {
59 for(j=0; j<24; j++){
60 acc = 0.0;
61 for(k=0; k<5; k++){
62 for(l=0; l<5; l++){
63 acc += *(img + (i+k)*28+(j+l)) * *( kernels + k*5 + l);
64 }
65 }
66 *( conv_out + i*24 + j) = relu(acc + conv_bias);
67 }
68 }
69 // pooling
70 k = 0;
71 l = 0;
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72 for(i=0; i<24; i=i+2) {
73 l = 0;
74 for(j=0; j<24; j=j+2){
75 *( conv_layer_out +k*12+l) = max(*( conv_out + i*24 + j), *(

conv_out + i*24 + j+1),
76 *( conv_out + (i+1)*24 + j), *( conv_out + (i

+1)*24 + (j+1)));
77 l++;
78 }
79 k++;
80 }
81 }
82

83 float relu(float x) {
84 if(x < 0) {
85 return 0;
86 } else {
87 return x;
88 }
89 }
90

91 float max(float a, float b, float c, float d) {
92 float e = a > b ? a : b;
93 float f = c > d ? c : d;
94 return e > f ? e : f;
95 }
96

97

98 float fully_connected(const float *dense_weights , float *
conv_layer_out , const float dense_bias_0 , int count) {

99 float out = 0;
100 int i, j;
101 for(i=0; i <32*12*12; i++){
102 out += (*( dense_weights + i)) * (*( conv_layer_out + i));
103 }
104 out += dense_bias_0;
105 return relu(out);
106 }
107

108 float output_layer(const float *dense_weights , float *
fully_connected_out , const float dense_bias_1) {

109 float out = 0;
110 int i;
111 for(i=0; i<30; i++){
112 out += *( dense_weights + i) * *( fully_connected_out + i);
113 }
114 out += dense_bias_1;
115 return out;
116 }
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2. Myriad 2 Shave SIMD pseudo-code

main.c
1

2 #define N 784
3

4 // These variables are shared between all shaves
5 extern volatile u8 shared2 [12];
6 extern volatile u8 shared1 [12];
7 extern volatile float img [784];
8 extern volatile const float conv_biases [32];
9 extern volatile const float dense_bias_0 [30];

10 extern volatile const float dense_bias_1 [10];
11 extern volatile float conv_layer_out [32][12*12];
12 extern volatile const float kernels [32][25];
13 extern volatile const float dense_weights_0 [30][32*12*12];
14 extern volatile const float dense_weights_1 [10][30];
15 extern volatile float fully_connected_out [30];
16 extern volatile float output_layer_out [10];
17

18

19 // Function Declaration
20 void conv(const float *img , const float *kernels ,
21 float conv_bias , float *conv_layer_out);
22

23 float relu(float x);
24 float max(float a, float b, float c, float d);
25

26 float fully_connected(const float *dense_weights ,
27 float *conv_layer_out , const float
28 dense_bias_0 , int count);
29

30 float output_layer(const float *dense_weights ,
31 float *conv_layer_out ,
32 const float dense_bias_1);
33

34

35 void start(int* idShave , int *out)
36 {
37 int i;
38 int j=0;
39

40 conv(img ,kernels [* idShave],conv_biases [* idShave],
41 conv_layer_out [* idShave ]);
42

43 conv(img ,kernels [* idShave +12], conv_biases [* idShave +12],
44 conv_layer_out [* idShave +12]);
45
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46 if(*idShave <8)
47 conv(img ,kernels [* idShave +24], conv_biases [* idShave +24],
48 conv_layer_out [* idShave +24]);
49

50

51 shared1 [* idShave ]=1;
52

53 // Custom Barrier
54 //Only when every shave reads the shared arrray as 1
55 // when can progress
56 while (1)
57 {
58 if(( shared1 [0]==1) && (shared1 [1]==1) && (shared1 [2]==1) &&

(shared1 [3]==1) && (shared1 [4]==1)
59 && (shared1 [5]==1) && (shared1 [6]==1) && (shared1 [7]==1) && (

shared1 [8]==1) && (shared1 [9]==1) && (shared1 [10]==1) && (
shared1 [11]==1))

60 break;
61

62 }
63

64 fully_connected_out [* idShave] =
65 fully_connected (& dense_weights_0 [* idShave ][0],
66 &conv_layer_out [0][0] , dense_bias_0 [* idShave],
67 *idShave);
68

69 fully_connected_out [* idShave +12] =
70 fully_connected (& dense_weights_0 [* idShave +12][0] ,
71 &conv_layer_out [0][0] ,
72 dense_bias_0 [* idShave +12],
73 *idShave +12);
74

75 if(*idShave <6)
76 fully_connected_out [* idShave +24] =
77 fully_connected (& dense_weights_0 [* idShave +24][0] ,
78 &conv_layer_out [0][0] ,
79 dense_bias_0 [* idShave +24],
80 *idShave +24);
81

82

83 shared2 [* idShave ]=1;
84

85 // Second Custom Barrier
86 while (1)
87 {
88 if(( shared2 [0]==1) && (shared2 [1]==1 ) && (shared2 [2]==1) &&

(shared2 [3]==1) && (shared2 [4]==1) && (shared2 [5]==1) && (
shared2 [6]==1) && (shared2 [7]==1) && (shared2 [8]==1) && (
shared2 [9]==1) && (shared2 [10]==1) && (shared2 [11]==1))

89 break;
90
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91 }
92 if(*idShave <10) output_layer_out [* idShave] =
93 output_layer(dense_weights_1 [* idShave], fully_connected_out ,
94 dense_bias_1 [* idShave ]);
95

96

97 SHAVE_HALT;
98

99 return;
100 }
101 void conv(const float *img , const float *kernels , float conv_bias ,

float *conv_layer_out) {
102 float conv_out [24*24];
103 int i,j,k,l;
104 float acc = 0.0;
105 // convolution
106 for(i=0; i<24; i++) {
107 for(j=0; j<24; j++){
108 acc = 0.0;
109 for(k=0; k<5; k++){
110 for(l=0; l<5; l++){
111 acc += *(img + (i+k)*28+(j+l)) * *( kernels + k*5 + l);
112 }
113 }
114 *( conv_out + i*24 + j) = relu(acc + conv_bias);
115 }
116 }
117 // pooling
118 k = 0;
119 l = 0;
120 for(i=0; i<24; i=i+2) {
121 l = 0;
122 for(j=0; j<24; j=j+2){
123 *( conv_layer_out +k*12+l) = max(*( conv_out + i*24 + j), *(

conv_out + i*24 + j+1),
124 *( conv_out + (i+1)*24 + j), *( conv_out + (i

+1)*24 + (j+1)));
125 l++;
126 }
127 k++;
128 }
129 }
130

131

132 float fully_connected(const float *dense_weights , float *
conv_layer_out , const float dense_bias_0 , int count) {

133 float out = 0;
134 int i, j;
135 for(i=0; i <32*12*12; i++){
136

137 out += (*( dense_weights + i)) * (*( conv_layer_out + i));
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138 }
139 out += dense_bias_0;
140 return relu(out);
141 }
142

143 float output_layer(const float *dense_weights , float *
fully_connected_out , const float dense_bias_1) {

144 float out = 0;
145 int i;
146 for(i=0; i<30; i++){
147 out += *( dense_weights + i) * *( fully_connected_out + i);
148 }
149 out += dense_bias_1;
150 return out;
151 }
152

153

154 float relu(float x) {
155 if(x < 0) {
156 return 0;
157 } else {
158 return x;
159 }
160 }
161

162 float max(float a, float b, float c, float d) {
163 float e = a > b ? a : b;
164 float f = c > d ? c : d;
165 return e > f ? e : f;
166 }
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