

NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATION

BSc THESIS

Defense Extensions for Website Fingerprinting
Attacks on Nginx Web Server

Eleftherios I. Dimitras

Michail I. Xanthopoulos

Supervisor: Konstantinos Chatzikokolakis, Associate Professor

ATHENS

JUNE 2021

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Επεκτάσεις Άμυνας για Website Fingerprinting
Attacks στον Nginx Web Server

Ελευθέριος Ι. Δημητράς

Μιχαήλ Ι. Ξανθόπουλος

Επιβλέπων: Κωνσταντίνος Χατζηκοκολάκης, Αναπληρωτής Καθηγητής

ΑΘΗΝΑ

ΙΟΥΝΙΟΣ 2021

BSc THESIS

Defense Extensions for Website Fingerprinting Attacks on Nginx Web Server

Eleftherios I. Dimitras
S.N.: 1115201600042

Michail I. Xanthopoulos
S.N.: 1115201600119

Supervisor: Konstantinos Chatzikokolakis, Associate Professor

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Επεκτάσεις Άμυνας για Website Fingerprinting Attacks στον Nginx Web Server

Ελευθέριος Ι. Δημητράς
Α.Μ.: 1115201600042

Μιχαήλ Ι. Ξανθόπουλος
Α.Μ.: 1115201600119

Επιβλέπων: Κωνσταντίνος Χατζηκοκολάκης, Αναπληρωτής Καθηγητής

ABSTRACT

Website Fingerprinting is an attempt to identify a website, visited in anonymized and

encrypted network traffic. Whilst this type of attack might not be very effective on the wide

web, on the tor network, the websites can be distinguished with an accuracy of 90% more

than regular sites.

To deal with this, we have developed ALPaCA, which was originally proposed by

Giovanni Cherubin, Jamie Hayes, Marc Juarez, and stands for “Application Layer

Padding Concerns Adversaries”.

This is a server-side defense mechanism that obscures the real content size of a website

by changing the sizes of different objects sent to the client or by adding fake new ones.

The code of this thesis can be found at the following link:

NGINX Module and ALPaCA Library

SUBJECT AREA: Web Defense

KEYWORDS: website fingerprinting, privacy, anonymity, subrequests, ALPaCA

https://github.com/LefterisDs/ngx_http_alpaca_module

ΠΕΡΙΛΗΨΗ

Το Website Fingerprinting είναι μια προσπάθεια αναγνώρισης της σελίδας που

επισκέπτεται κάποιος υπό ανώνυμη και κρυπτογραφημένη δικτυακή κίνηση. Παρόλο που

αυτού του είδους η επίθεση μπορεί να μην είναι ιδιαίτερα αποτελεσματική στον παγκόσμιο

ιστό, στο δίκτυο του tor, οι ιστοσελίδες μπορούν να αναγνωριστούν με ακρίβεια 90%

περισσότερο από τις κανονικές ιστοσελίδες του παγκόσμιου ιστού.

Προκειμένου να το αντιμετωπίσουμε αυτό, έχουμε αναπτύξει το ALPaCA το οποίο αρχικά

προτάθηκε από τους Giovanni Cherubin, Jamie Hayes, Marc Juarez και σημαίνει

“Application Layer Padding Concerns Adversaries”.

Το ALPaCA είναι ένας μηχανισμός άμυνας από την πλευρά του εξυπηρετητή το οποίο

αποκρύπτει το πραγματικό μέγεθος του περιεχομένου μιας ιστοσελίδας, αλλάζοντας τα

μεγέθη των διαφορετικών στοιχείων της που αποστέλλονται στον πελάτη ή προσθέτοντας

νέα εικονικά στοιχεία.

Ο κώδικας της πτυχιακής βρίσκεται στον ακόλουθο σύνδεσμο:

NGINX Module and ALPaCA Library

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Web Defense

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: website fingerprinting, ιδιωτικότητα, ανωνυμία, subrequests, ALPaCA

https://github.com/LefterisDs/ngx_http_alpaca_module

To our families.

AKNOWLEDGMENTS

We would like to thank our supervisor, Prof. Konstantinos Chatzikokolakis, for his support,

enthusiasm and the motivation he provided us with throughout this time. We also want to

thank him for introducing and giving us the opportunity to delve into this interesting

subject.

CONTENTS

PREFACE ... 12

1. INTRODUCTION .. 13

2. NGINX .. 14

2.1 What is NGINX? ... 14

2.2 The Basics of NGNIX ... 14

2.2.1 Configuration File .. 14

2.2.2 What is a NGINX Module? .. 15

3. ALPACA ... 21

3.1 General Idea ... 21

3.2 Deterministic ALPaCA .. 22

3.3 Probabilistic ALPaCA.. 22

4. IMPLEMENTATION ... 23

4.1 Contributions ... 23

4.2 Module Implementation .. 24

4.2.1 Configuration File .. 24

4.2.2 NGINX Subrequests ... 29

4.2.3 Functionality (How it all ties together) ... 30

4.3 Rust Library Implementation .. 32

4.3.1 Inlining CSS Objects to HTML .. 32

4.3.2 Inlining Image Objects to HTML ... 33

4.4 Testing ALPaCA with Python ... 34

4.4.1 The Importance Behind the Tester ... 34

4.4.2 How the Tester Works .. 34

5. CHALLENGES ... 36

5.1 Communication Between Rust and C ... 36

5.2 Figuring NGINX Subrequests Workflow.. 37

5.3 Building a Solid Tester.. 38

6. CONCLUSION ... 39

ABBREVIATIONS - ACRONYMS ... 40

REFERENCES .. 41

LIST OF FIGURES

Figure 1: Simple Nginx Example Configuration .. 15

Figure 2: Nginx Module Configuration .. 16

Figure 3: Nginx Module Configuration Struct .. 16

Figure 4: Nginx Module Directives Declaration for C Implementation 17

Figure 5: Nginx Module Content Structure.. 17

Figure 6: Nginx Module Definition Structure ... 18

Figure 7: Nginx Module Filter Initialization Function ... 19

Figure 8: Nginx Module Header Filter Example .. 19

Figure 9: Nginx Module Body Filter Example .. 20

Figure 10: Deterministic Object Padding Example ... 22

Figure 11: Nginx Configuration Example with ALPaCA Directives 27

Figure 12: Nginx Images Path Relocation Example ... 29

Figure 13: Linking C Structures with Rust Modules .. 36

PREFACE

The work for this thesis was done between August 2020 and June 2021 in Athens. The

project was developed on Linux machines. The programming languages that were used

are Rust and C and it was tested with the Nginx web server (v1.18.0). For the

development of this project, it was of great importance to get familiar with the Nginx

modules, the Rust programming language and the of Rust and C intercommunication.

Defense Extensions for Website Fingerprinting Attacks on Nginx Web Server

E. Dimitras - M. Xanthopoulos 13

1. INTRODUCTION

Anonymization techniques are often used to bypass country-level censorship or often

avoid identification from another party. The Tor network -the most popular system

nowadays that is used by millions of daily users- promises to hide the relationship

between the sender of a message and its destination from a local observer. This is the

entity that eavesdrops on the traffic between the sender and the first anonymization node.

It can be, for example, a local system administrator, an ISP, or everyone in the sending

range of a signal if the user is connected via a wireless link. An entity with such capabilities

is one of the weakest adversaries in the attacker model of this and other anonymization

techniques.

The Website Fingerprinting (WFP) attack is a special case of traffic analysis. Performed

by a local eavesdropper, it aims to infer information about the content

(i.e., the website visited) of encrypted and anonymized connections by observing patterns

of data flows. Here, the attacker merely utilizes meta information, such as packet size

and direction of traffic, without breaking the encryption. This is accomplished by extracting

features from the collected traffic and then these features are passed in a classifier. In

the case of the Tor network, the dataset is way smaller than the general web, making

such an attack highly effective.

To this point, most of these defenses have been designed to operate on the stream of

network packets, making them extremely difficult to implement in practice.

In this thesis, we implement ALPaCA which is a server-side defense and very easily

implementable. The way ALPaCA works is by changing the size of different objects

requested by the clients which results in network data obscurity. This makes it hard for

the adversary to accurately identify and classify the collected data.

Defense Extensions for Website Fingerprinting Attacks on Nginx Web Server

E. Dimitras - M. Xanthopoulos 14

2. NGINX

2.1 What is NGINX?

• It’s a high-performance, highly scalable, highly available web server, reverse proxy
server and web accelerator.

• Offers a highly scalable architecture that is very different from that of Apache and

other products that are used for the same purposes.

• Has a modular, event-driven, asynchronous, single-threaded architecture that

scales extremely well on generic server hardware and across multi-processor
systems.

• Uses all of the underlying power of modern operating systems, like Linux, to optimize

memory, CPU, and network usage and extract the maximum performance out of a
physical or virtual server.

This means that Nginx can often serve at least 10x more (and often 100-1000x more)
requests per server compared to Apache.

In turn, that means more connected users per server, better bandwidth utilization, less
CPU and RAM consumption.

2.2 The Basics of NGNIX

2.2.1 Configuration File

There are four contexts (called main, server, upstream, and location) that can contain

directives with one or more arguments.

• Directives in the main context apply to everything

• Directives in the server context apply to a particular host/port

• Directives in the upstream context refer to a set of backend servers

• Directives in a location context apply only to matching web locations a

(i.e., "/", "/images", etc.)

A location context inherits from the surrounding server context, and a server context

inherits from the main context. The upstream context neither inherits nor imparts its

properties; it has its own special directives that don’t apply elsewhere [9].

Defense Extensions for Website Fingerprinting Attacks on Nginx Web Server

E. Dimitras - M. Xanthopoulos 15

A typical configuration file looks like this:

events {

 worker_connections 1024;

}

http {

 server {

 access_log /tmp/accessn.log;

 listen 8888;

 root /var/www;

 location / {

 alpaca_deter on;

 alpaca_obj_num 2;

 alpaca_obj_size 5000;

 alpaca_max_obj_size 10000;

 }

 }

}

Figure 1: Simple Nginx Example Configuration

2.2.2 What is a NGINX Module?

Modules are responsible for every task associated with a web server. Nginx takes care

of all the network and application protocols and sets up the eligible sequence of modules

that will process the requests.

Nginx modules have three roles:

1. Handlers process a request and produce output

2. Filters manipulate the output produced by a handler

3. Load-balancers choose a backend server to send a request to, when more than

one backend server is eligible

From serving a file to proxying a request to another server and from gzipping output to

executing server-side include, there are handler and filter modules respectively that are

doing the work.

Defense Extensions for Website Fingerprinting Attacks on Nginx Web Server

E. Dimitras - M. Xanthopoulos 16

The type of module that we are interested in in this thesis is the Filter module. Filters

manipulate responses generated by Handlers. Filters are divided into two categories,

Header filters and Body filters. Header filters manipulate the HTTP headers, while Body

filters manipulate the response content.

The way filters are called is by using a “Chain of Responsibility” meaning that one filter is

called, executes its task, then calls the next filter that executes its task respectively and

so on until the final filter is called. Afterwards, Nginx finishes up the response. Multiple

filters can hook into each location.

The filter chain works in a way that each filter doesn’t wait for the previous one to finish.

This means that a filter can process the previous one’s output as it’s being produced, kind

of like the Unix pipeline. Filters operate on buffers, which are usually the size of a page

(4K). For example, a response can begin to be compressed and be streamed to the client

before the module receives the entire response from the backend.

A filter module consists of:

• The configuration file

• Module's implementation in C

Inside the config file, we state the name of our module, the fact that it belongs to the

module group and lastly its source path. A typical config file looks like below:

ngx_addon_name = ngx_http_ModuleName_module

HTTP_MODULES = "$HTTP_MODULES ngx_http_ModuleName_module"

NGX_ADDON_SRCS = "$NGX_ADDON_SRCS $ngx_addon_dir/ngx_http_ModuleName_module.c"

Figure 2: Nginx Module Configuration

The C implementation consists of the following components:

➢ Module Configuration Structs

They are populated by module directives and are responsible for keeping the data

derived from those directives. There can be up to 3 of these structs. An example of

such a struct is as follows:

typedef struct {

 ngx_uint_t methods;

 ngx_flag_t create_full_put_path;

 ngx_uint_t access;

} ngx_http_dav_loc_conf_t;

Figure 3: Nginx Module Configuration Struct

Defense Extensions for Website Fingerprinting Attacks on Nginx Web Server

E. Dimitras - M. Xanthopoulos 17

➢ Module Directives

They are assigned values inside the nginx.conf file. Inside the C implementation

directives are declared like below:

// Here we declare a directive called SampleDirective.

// The directive type is declared in the module configuration struct

static ngx_command_t ngx_http_SampleDirective_commands[] = {

 { ngx_string("Hello World!") ,

 NGX_HTTP_LOC_CONF|NGX_CONF_NOARGS,

 ngx_http_hello_world ,

 0 ,

 0 ,

 NULL

 },

 ngx_null_command

};

Figure 4: Nginx Module Directives Declaration for C Implementation

➢ Module Content

It is a static ngx_http_module_t struct. It contains function references for creating

the three configurations and merging them together. Most modules use the last 2

references. A typical module content struct looks like this:

static ngx_http_module_t ngx_http_ModuleName_module_ctx = {

 NULL, // preconfiguration

 NULL, // postconfiguration

 NULL, // creating the main conf

 // (i.e. do a malloc and set defaults)

 NULL, // initializing the main conf

 // (i.e. override the defaults

 // with what’s in nginx.conf)

 NULL, // create server configuration

 NULL, // merge server configuration

 ngx_http_ModuleName_create_loc_conf, // create location configuration

 ngx_http_ModuleName_merge_loc_conf // merge location configuration

};

Figure 5: Nginx Module Content Structure

The ngx_http_ModuleName_create_loc_conf is responsible for allocating memory

for location-specific configuration while the ngx_http_ModuleName_merge_loc_conf

is responsible for initialization, merging the configurations as well as throwing an error

if the configuration is invalid which stops the server startup.

Defense Extensions for Website Fingerprinting Attacks on Nginx Web Server

E. Dimitras - M. Xanthopoulos 18

➢ Module Definition

It is a struct used for storing references of directives, context and the remaining

callbacks such as exit process, thread, etc. This struct can also be used to look up

data for a particular module. A typical module definition struct looks like so:

ngx_module_t ngx_http_ModuleName_module = {

 NGX_MODULE_V1 ,

 &ngx_http_ModuleName_module_ctx, // module context

 ngx_http_ModuleName_commands , // module directives

 NGX_HTTP_MODULE , // module type

 NULL , // init master

 NULL , // init module

 NULL , // init process

 NULL , // init thread

 NULL , // exit thread

 NULL , // exit process

 NULL , // exit master

 NGX_MODULE_V1_PADDING

};

Figure 6: Nginx Module Definition Structure

➢ Module Installation

The functions below apply to Filter modules only. They are executed in the post-

configuration step. Both the Header and Body filters are installed at the same place.

The Header and Body filters consist of three basic steps:

• Decide whether to operate on this response

• Operate on the response

• Call the next filter

Filters are set up with a “Chain of Responsibility”. When a response is generated, two

functions are called:

• ngx_http_output_filter, which calls the global function reference

ngx_http_top_body_filter.

• ngx_http_send_header, which calls the global function reference

ngx_http_top_header_filter.

Defense Extensions for Website Fingerprinting Attacks on Nginx Web Server

E. Dimitras - M. Xanthopoulos 19

We initialize the above references in the function ngx_http_sampled_filter_init

which is defined as follows:

static ngx_int_t ngx_http_sample_filter_init(ngx_conf_t *cf) {

 ngx_http_next_header_filter = ngx_http_top_header_filter;

 ngx_http_top_header_filter = ngx_http_checkif_header_modified_filter;

 ngx_http_next_body_filter = ngx_http_top_body_filter;

 ngx_http_top_body_filter = ngx_http_counter_body_filter;

 return NGX_OK;

}

Figure 7: Nginx Module Filter Initialization Function

A typical Header filter may look like the one below:

static ngx_int_t ngx_http_checkif_header_modified_filter(ngx_http_request_t *r) {

 time_t if_modified_since;

 if_modified_since = ngx_http_parse_time(

 r->headers_in.if_modified_since->value.data,

 r->headers_in.if_modified_since->value.len);

 // Step 1: Decide whether to operate

 if (if_modified_since != NGX_ERROR &&

 if_modified_since == r->headers_out.last_modified_time) {

 // Step 2: Operate on the header

 r->headers_out.status = NGX_HTTP_NOT_MODIFIED;

 r->headers_out.content_type.len = 0;

 ngx_http_clear_content_length(r);

 ngx_http_clear_accept_ranges(r);

 }

 // Step 3: Call the next filter

 return ngx_http_next_header_filter(r);

}

Figure 8: Nginx Module Header Filter Example

Defense Extensions for Website Fingerprinting Attacks on Nginx Web Server

E. Dimitras - M. Xanthopoulos 20

A typical Body filter may look like the one below:

static ngx_int_t ngx_http_counter_body_filter(ngx_http_request_t *r ,

 ngx_chain_t *in) {

 ngx_chain_t *cl;

 ngx_http_counter_filter_ctx_t *ctx;

 static int filter_call_counter = 0;

 // Step 1: Necessary most of the time to load module data

 ctx = ngx_http_get_module_ctx(r, ngx_http_counter_filter_module);

 if (ctx == NULL) {

 ctx = ngx_pcalloc(r->pool, sizeof(ngx_http_counter_filter_ctx_t));

 if (ctx == NULL) {

 return NGX_ERROR;

 }

 ngx_http_set_ctx(r, ctx, ngx_http_counter_filter_module);

 }

 // Step 2: Operate on the body

 filter_call_counter += 1

 // Step 3: Call the next filter

 return ngx_http_next_body_filter(r, in);

}

Figure 9: Nginx Module Body Filter Example

All in all, a typical Nginx processing cycle goes as follows:

1. Client sends HTTP request

2. Nginx chooses the appropriate handler based on the location config

3. Load-balancer picks a backend server (if applicable)

4. Handler does its job and passes each output buffer to the first filter

5. First filter passes the output to the second filter

6. Second to third

7. Third to fourth

8. ...

9. Final response is sent back to client

Defense Extensions for Website Fingerprinting Attacks on Nginx Web Server

E. Dimitras - M. Xanthopoulos 21

3. ALPaCA

3.1 General Idea

ALPaCA is a very simple yet effective server-side defense. As mentioned earlier the need

for such a tool has arisen because to this point, most of these defenses have been

designed to operate on the stream of network packets, making it extremely difficult to

implement in practice. The reason for this is that for these defenses to be implemented

we would have to make changes to the network layer protocols. Instead, ALPaCA alters

the sizes of different objects as well as adding its own fake ones within a page resulting

in the obscurity of the real traffic between the client and the server.

The way this padding is done is namely for:

• HTML/CSS

By adding random data in the form of comments.

• Images/GIFs/etc.

By adding random bytes at the end of them which

doesn't alter them in any undesirable way.

There are two versions of ALPaCA that we can use to decide the padding size. The

Probabilistic ALPaCA and the Deterministic ALPaCA.

Although the underlying idea between the two is the same, they differ in efficiency since

the Probabilistic version adds more random objects in the equation making it way harder

for the adversary to make predictions.

Despite their differences, both versions work by deciding a unique target size T for every

single object within a page (i.e. HTML, CSS, images, etc.). Then the original objects are

padded to match this target size. In case the number of desired objects is larger than the

original object count, then fake ALPaCA objects are created and added to the HTML, thus

increasing obscurity.

Defense Extensions for Website Fingerprinting Attacks on Nginx Web Server

E. Dimitras - M. Xanthopoulos 22

3.2 Deterministic ALPaCA

The way this version of ALPaCA works, is by providing 3 parameters:

• λ The number of desired objects in the page.

• σ Defines the target size of an object. If the real object size is greater than

σ then we find a multiple of σ that is greater than the real object size.

• max(s) Defines the maximum target size we can get while getting multiples of σ.

Must be a multiple of σ.

let max(s) = 3 ⋅ σ

if real_object_size > σ then

 The maximum multiple of σ we can get for a target size is 3 ⋅ σ

if real_object_size > max(s) then

 We keep the original size as target size

Figure 10: Deterministic Object Padding Example

For fake ALPaCA objects, their size is randomly in {σ, 2σ, 3σ, ... , max(s)}. The HTML is

padded at a multiple of σ as with other objects.

3.3 Probabilistic ALPaCA

The way this version of ALPaCA works is by also providing 3 parameters:

• Dn A distribution that defines the final number of objects the page is going to have

• Dh A distribution that defines the final HTML size

• Ds A distribution that defines the size for each of the objects

This version of ALPaCA operates by first sampling an HTML target size from the Dh

distribution, a number of desired objects from the Dn distribution, and a size for each of

the objects from the Ds distribution. Thereafter, it tries to morph the page to the target

size and if it fails the whole procedure is repeated. Since a distribution can produce very

large target sizes, an upper limit is provided for the target size. Setting a low bandwidth

to avoid very big pages can be detrimental since the page will not be able to be morphed

to a size that would resemble a larger page.

Defense Extensions for Website Fingerprinting Attacks on Nginx Web Server

E. Dimitras - M. Xanthopoulos 23

4. IMPLEMENTATION

ALPaCA is implemented as a Rust library along with a C module for Nginx that uses the

library to add the ALPaCA protection to the website that is running, according to the

selected ALPaCA version. Rust was selected because it works very well along with C

code. Our C module uses some implemented Rust functions that allow us to manipulate

the page and its objects. Both Rust and C share a map structure that maps the different

object names to object content. To make this possible, we use CMAKE to compile the

map.c code and also link it with Rust.

4.1 Contributions

This thesis is an extension of Panagiotis Kokkinakos thesis [1]. Here, we introduce some

new features we implemented which enhance security and provide some new useful

functionalities.

The most important among them are subrequests. Nginx subrequests are a very powerful

feature that allows us to return the result of a different URL than what was originally

requested. This gives us the ability to have multiple local redirections for each type of

object (i.e. images, CSS, JS files etc.), predetermined in the Nginx configuration file,

regardless of what URLs we seemingly use for requesting these objects. Having such an

ability to redirect root paths of the objects, strengthens the security and provides another

security level to the server as well as allowing for more flexibility for Nginx configuration.

We cover more extensively this feature in section 4.2.2.

Another addition we made is that we inserted the option to enable object inlining inside

the HTML file. We provide CSS and Image object inlining. Inlining an object means that

we replace the existing reference with its contents inside the HTML itself. We analyze this

addition further in section 4.3.

Moreover, we added three new directives for the Nginx configuration for handling the

inlining options we described above. More details can be found in section 4.2.1.

Finally, we created a python quality tester that can evaluate every possible ALPaCA

configuration along with its directives. This tester is for developing purposes and can be

used to examine if all code changes, improvements and additions work as intended. We

further elaborate on the topic in section 4.4.

Defense Extensions for Website Fingerprinting Attacks on Nginx Web Server

E. Dimitras - M. Xanthopoulos 24

4.2 Module Implementation

4.2.1 Configuration File

ALPaCA directives for the configuration file are explained below:

• alpaca_prob

ALPaCA version Probabilistic

Possible values on / off

Role
This parameter is responsible for the activation/deactivation

of the Probabilistic version of ALPaCA

• alpaca_deter

ALPaCA version Deterministic

Possible values on / off

Role
This parameter is responsible for the activation/deactivation

of the Deterministic version of ALPaCA

• alpaca_obj_num

ALPaCA version Deterministic

Possible values an integer value

Role

This parameter is responsible for the previously mentioned λ

parameter which defines the final number of objects within

the requested page

• alpaca_obj_size

ALPaCA version Deterministic

Possible values an integer value

Role

This parameter is responsible for the previously mentioned

σ parameter which defines the sizes of the padded objects

within the requested page. Each object’s size will be a

multiple of this value

Defense Extensions for Website Fingerprinting Attacks on Nginx Web Server

E. Dimitras - M. Xanthopoulos 25

• alpaca_max_obj_size

ALPaCA version Deterministic

Possible values an integer value

Role

This parameter is responsible for the previously mentioned

max(s) parameter which defines the maximum object size of

the padded objects within the requested page. It must be a

multiple of σ (alpaca_obj_size)

• alpaca_dist_html_size

ALPaCA version Probabilistic

Possible values (known distribution from the list below)

Role This parameter is responsible for sampling the HTML size

• alpaca_dist_obj_num

ALPaCA version Probabilistic

Possible values (known distribution from the list below)

Role
This parameter is responsible for sampling the number of

objects within the page

• alpaca_dist_obj_size

ALPaCA version Probabilistic

Possible values (known distribution from the list below)

Role
This parameter is responsible for sampling the size of each

object within the page

Defense Extensions for Website Fingerprinting Attacks on Nginx Web Server

E. Dimitras - M. Xanthopoulos 26

• alpaca_use_total_obj_size

ALPaCA version Probabilistic

Possible values (known distribution from the list below)

Role
This parameter is responsible for sampling the size of the

whole page HTML + objects

• alpaca_obj_inlining_enabled (NEW)

ALPaCA version Both versions

Possible values on / off

Role

This parameter is responsible for the activation/deactivation

of the object embedding. If set to off, ALPaCA will try to have

a number of final objects which is a multiple of

alpaca_obj_num or alpaca_dist_obj_size (depending on

the version) which is greater than or equal to the original

object number within the requested page

• alpaca_css_as_inline_object (NEW)

ALPaCA version Both versions

Possible values on / off

Role

This parameter is responsible for the activation/deactivation

of considering CSS files as objects that can be inlined. If

turned off, then when alpaca_obj_inlining_enabled is

enabled, the algorithm will ignore all CSS files

• alpaca_force_css_inlining (NEW)

ALPaCA version Both versions

Possible values on / off

Role

This parameter is responsible for the activation/deactivation

of the CSS embedding. If turned on, then all CSS files are

forcibly inlined. If left off then they are considered as objects

within the requested page and they are padded or inlined.

The objects within these CSS files though are not padded or

inlined (i.e. images, GIFs, etc.)

Defense Extensions for Website Fingerprinting Attacks on Nginx Web Server

E. Dimitras - M. Xanthopoulos 27

The known distributions for the above distribution parameters are the following:

• LogNormal / mean, std_dev2

• Normal / mean, std_dev2

• Exp / lambda

• Poisson / lambda

• Binomial / n, p

• Gamma / shape, scale

Instead of a distribution, a file can be provided that contains possible values and a

probability for each value in ascending probability order.

Finally, ALPaCA can be used in both server and location contexts. It can be used along

with fastcgi_pass (for dynamic content) and proxy_pass (for proxying upstream servers),

but only if the embedded images are static and accessible locally.

load_module test/build/nginx-1.18.0/objs/ngx_http_alpaca_module.so;

error_log /tmp/errorn.log;

pid /tmp/nginx.pid;

events {

 worker_connections 1024;

}

http {

 include ../build/nginx-1.18.0/conf/mime.types;

 client_body_temp_path /tmp/client_body;

 fastcgi_temp_path /tmp/fastcgi_temp;

 proxy_temp_path /tmp/proxy_temp;

 scgi_temp_path /tmp/scgi_temp;

 uwsgi_temp_path /tmp/uwsgi_temp;

 server {

 access_log /tmp/accessn.log;

 listen 8888;

 root test/html/images;

Defense Extensions for Website Fingerprinting Attacks on Nginx Web Server

E. Dimitras - M. Xanthopoulos 28

 location / {

 alpaca_obj_inlining_enabled on;

 #=============================#

 # Probabilistic Configuration #

 #=============================#

 alpaca_prob on; # Use the probabilistic method

 alpaca_dist_html_size test/html/prob.dist; # Path to the

 # distribution file,

 # relative to root

 alpaca_dist_obj_num Normal/6.0,0.0; # Known distribution

 alpaca_dist_obj_size Normal/100000.0,0.0; # Known distribution

 #=============================#

 # Deterministic Configuration #

 #=============================#

 # alpaca_deter on;

 # alpaca_obj_num 2;

 # alpaca_obj_size 5000;

 # alpaca_max_obj_size 10000;

 }

 location ~ \.(gif) {

 #=============================#

 # Probabilistic Configuration #

 #=============================#

 alpaca_prob on; # Use the probabilistic method

 alpaca_dist_html_size /prob.dist; # Path to the distribution file,

 # relative to root

 alpaca_dist_obj_num Normal/6.0,0.0; # Known distribution

 alpaca_dist_obj_size Normal/100000.0,1000.0; # Known distribution

 #=============================#

 # Deterministic Configuration #

 #=============================#

 # alpaca_deter on;

 # alpaca_obj_inlining_enabled on;

 # alpaca_obj_num 9;

 # alpaca_obj_size 5000;

 # alpaca_max_obj_size 10000;

 root test/html/images;

 }

 }

}

Figure 11: NGINX Configuration Example with ALPaCA Directives

Defense Extensions for Website Fingerprinting Attacks on Nginx Web Server

E. Dimitras - M. Xanthopoulos 29

4.2.2 NGINX Subrequests

As described before, subrequests are a great Nginx feature that enhance the security of

the server with the functionality they provide. They also allow our implementation to use

the feature of object location redirection, also known as “Internal Redirects” along with

the security improvements that ALPaCA offers. More specifically, local redirections mean

that we can change the root paths for any of the objects regardless of what the server’s

main root path is and yet serve all requests to these objects like they are located in the

root path hiding the relocation from the web.

What actually happens, is that when an HTML, CSS, etc. contains some URLs pointing

to objects in our server, doesn’t mean that they are under the path which is visible in the

web, but they can be under different paths that only Nginx can reach. These alternative

paths or redirections are defined in Nginx configuration files.

In our C module, for example, we have to obtain the contents of the objects by using

subrequests. They effectively allow Nginx to find the files and return the contents as a

request, one for each file, which in turn enables us to save said contents to a map

structure used later in Rust. We can perform multiple subrequests and combine the

outputs into a single response when needed as well. Below, we give a more detailed

example of the need and the use of subrequests in Rust modules.

In ALPaCA's previous implementation, to pad a file, ALPaCA had to obtain its content to

determine the padding size as well as adding the padding itself. This was done by

manually opening the file through Rust and reading its content. While this might work

when our files are under the root folder, it will not work when there are path redirections

for certain types of objects.

...

root /var/www/html

location ~ \.(jpg) {

 root /var/www/html/images;

}

...

Figure 12: NGINX Images Path Relocation Example

The above configuration sets the path of .jpg files to be under images folder. Rust

wouldn’t be aware of that, because it is being handled internally by Nginx. To handle

situations like this, we used Nginx subrequests to get the file contents before calling any

Rust functions for padding or calculating the size.

Defense Extensions for Website Fingerprinting Attacks on Nginx Web Server

E. Dimitras - M. Xanthopoulos 30

At first, we perform a HTML search to find all internal to-be-requested objects and then

we make a subrequest for each one of them.

Thereafter, we store their contents inside a map structure we have created that maps file

names to contents.

Finally, when we call the corresponding functions for padding and size managing, we

pass this map structure to the Rust functions instead of providing them with the file paths.

Hence, this allows Rust to get the file contents directly, without having to mess with file

opening and file management.

4.2.3 Functionality (How it all ties together)

Our C module works by mainly using a Header filter and a Body filter. The Header filter

is responsible for manipulating the header of a request while the Body filter is responsible

for manipulating the body of the request.

The Header filter’s functionality is basically to force the browser to load a file that in

actuality doesn’t exist and also accept the response we send back for this specific file.

This fake file is the __alpaca_fake_image.png and is responsible for obscuring the traffic

between the client and server.

Since this particular image is a fake ALPaCA image and is nowhere to be found in the file

system, Nginx returns a 404 status, meaning that it couldn’t be found. Although that is the

case, we know that this image was created on the fly while the module was running and

so we use the header filter to change the status to 200 which means that this image

exists.

The Body filter is responsible for all other module functionalities. Specifically, if the

response is a HTML file, we collect the whole response in a buffer and determine which

version of ALPaCA to use, according to the arguments of the directives. We also use a

struct called MorphInfo which we use to save important information, like the original

HTML response, the HTML size, parameters for the specific ALPaCA version, etc.

Afterwards, if the parameter alpaca_css_inlining_enabled is on we search for every

CSS file inside the HTML. After we find those files, we do a subrequest for each one of

them to get their contents.

Defense Extensions for Website Fingerprinting Attacks on Nginx Web Server

E. Dimitras - M. Xanthopoulos 31

Instead, if the parameter alpaca_css_inlining_enabled is off or there are no CSS files

to be found, we search the HTML for any other objects like images, GIFs, etc. After we

find them, we do a subrequest for every single one of them to get their contents.

Finally, we return an empty response because the subrequests must be completed first

so that we can pad the objects within the page.

If there are no subrequests, meaning the page has no paddable objects, then we simply

pad the HTML and return the response.

If the response comes from a subrequest, we create a new entry to the map structure.

Once we reach the last subrequest we do the following:

• If the requested file is CSS

o Firstly, we inline the contents of every CSS file we have collected into the HTML

response

o We then perform a HTML search to find all objects that will be requested

o Lastly, we make a subrequest for each one of those files

• If the requested file is any other HTML object

o We morph the HTML page by finding every object inside it, calculating its final

size after padding it and finally changing its reference to look like below using

an image reference as an example:

But by morphing it the ALPaCA GET parameter is being added and the

morphed image looks like this:

This means that the image1.png will be padded until it reaches a size of 10000

bytes.

If the response is a fake image, we set its status to 200 (which means found) and then

we get the padding for this image which is determined by the selected ALPaCA version.

Afterwards, we return this padding as a response to the requested fake image (since this

image has no original size, the padding is equal to the alpaca-padding GET parameter).

If the response is a paddable object we call the Rust function which is responsible for

padding the objects and after getting the padded response we return it. If any kind of error

occurs during the morphing, we pass the original response to the next filter.

Defense Extensions for Website Fingerprinting Attacks on Nginx Web Server

E. Dimitras - M. Xanthopoulos 32

4.3 Rust Library Implementation

4.3.1 Inlining CSS Objects to HTML

During the previous ALPaCA implementation, the CSS elements of the requested HTML

were padded. Although that was the case, the elements inside those CSS files

(i.e. images, links, etc.) were not padded and they were being sent to the client with their

original size despite ALPaCA being activated.

Another problem was that we had to pad the CSS and its elements during the handling

of the HTML request. To resolve this, we inline the requested CSS objects inside the

HTML itself.

For example, if the HTML contains a link like the one below:

<head>

 <link rel="stylesheet" href="style.css">

</head>

we replace this link with the CSS contents as follows:

<head>

 <style>

 body {

 background-image: url("image.jpg");

 background-color: lightblue;

 }

 h1 {

 color : navy;

 margin-left: 20px;

 }

 </style>

</head>

Now that the requested CSS is embedded in the HTML, we do an HTML search for every

to-be-requested element such as the "image.jpg" above and we pad it accordingly to the

original way of padding.

We have implemented this feature to be optional and can be enabled/disabled from the

Nginx configuration.

Defense Extensions for Website Fingerprinting Attacks on Nginx Web Server

E. Dimitras - M. Xanthopoulos 33

4.3.2 Inlining Image Objects to HTML

In ALPaCA's previous implementation if we were given a desirable number of final objects

smaller than the actual objects contained in the requested HTML, then ALPaCA would try

to find a final object number that is a multiple of the given desired number of objects. For

example, if the desired number of objects was 3 and the actual object number was 5 then

ALPaCA would return 6 as the final object number.

To allow for a desired object number, that is smaller than the actual object number and

also give the ability to the owner of the server to reduce the overall size of the data, we

randomly embed some of the to-be-requested images inside the HTML until the actual

object number and the desired object number become equal.

Considering the following example, we have an HTML index file:

As we can see the actual number of objects is 5. If the desired number of objects is 3, we

will embed the first 2 images to the HTML as shown below:

This effectively reduces the overall data size.

This feature is also optional and can be enabled/disabled from the Nginx configuration.

Defense Extensions for Website Fingerprinting Attacks on Nginx Web Server

E. Dimitras - M. Xanthopoulos 34

4.4 Testing ALPaCA with Python

We developed a software tester that would test every configuration directive, their

combinations and functionality of the C module as well as the Rust library. To build this

tester we used python along with the selenium package.

4.4.1 The Importance Behind the Tester

This tester is a handful tool for developers that would like to extend ALPaCA module and

add new features. They will be able to test their changes quickly yet effectively for errors

and misconfigurations.

The necessity for developing this tester occurred because of the extensive code and the

various changes we had to make in order to incorporate the new features and extend the

existing functionality of ALPaCA. Changes we made were affecting multiple directives at

once, so testing them by hand was error-prone, time consuming and not productive at all.

4.4.2 How the Tester Works

This tester is automated and examines whether the ALPaCA code follows the rules and

functions as expected. It works by running ALPaCA with many predefined configurations

that are made to test the different parameters and functionalities, based on a sample

index page we created for such purpose.

We have produced a set of 23 test cases, that combine the directives in multiple ways.

For example, having a configuration with the object inlining enabled, we separately verify

if it operates correctly when it is combined with the other directives related to it like

alpaca_css_as_inline_object and alpaca_force_css_inlining.

We have calculated the expected number of objects that should be produced and

returned by ALPaCA based on the sample website for each one of the 23 configurations

and we perform tests on the code expecting these values to remain the same, no matter

what changes we make on it.

To run a configuration for ALPaCA, we have to run a Nginx server and make requests to

it. Though to run a different configuration we have to restart the server as well as switching

the current configuration with the next one.

Defense Extensions for Website Fingerprinting Attacks on Nginx Web Server

E. Dimitras - M. Xanthopoulos 35

For every instance run we check the following conditions:

• If the website has been successfully loaded

• If the correct number of images has been inlined

• If the correct number of fake images has been created

• If the correct number of CSS files has been returned

• If the expected target size of the received objects is the same as the actual size

(If they are equal, means that the objects are padded correctly)

To retrieve the data we need from the website, we use Selenium. Selenium offers a simple

way to retrieve the whole website (the requested page as well as its dependencies),

meaning that we do not have to do it manually as we would with the python requests

package.

The way we retrieve data for the main site and its dependencies is through events

(otherwise called browser logs) that represent the packets that are received from the

server. Logs are represented in JSON format.

There are 3 types of logs we are interested in:

1. Network.responseReceived It is responsible for letting us know whether the

requested URL was successfully retrieved as well as

its status (200: Found, 404: Not Found, etc).

2. Network.dataReceived It shows us the chunk size of a received packet for a

specific file. For example, if we request a file with a

size of 1000 bytes, instead of receiving it all at once,

the browser receives a stream of data packets

meaning that the file will be split into smaller chunks

(i.e. 1st chunk → 400B, 2nd chunk → 400B, 3rd chunk → 200B).

3. Network.loadingFinished It shows us the chunk size of a received packet as

encoded data for a specific file. It works exactly as

Network.dataReceived but the size we get is the size

of the chunk before decoding objects.

Defense Extensions for Website Fingerprinting Attacks on Nginx Web Server

E. Dimitras - M. Xanthopoulos 36

5. CHALLENGES

In this section, we will describe the challenges we faced during the Nginx module and the

Rust library implementation.

5.1 Communication Between Rust and C

The main challenge we faced, involves the communication between Rust and C

languages and the way we could share objects and data between them.

At first, we had Rust modules open and get object contents directly from the root folder,

but this method is not eligible to use some Nginx features, like Location Redirection. This

means that we couldn’t have the objects in folders other than root.

Therefore, we had to implement subrequests, that allowed us to make use of this feature

and remove unnecessary file manipulation from Rust modules. But then, we faced the

problem of passing the contents of the retrieved objects by C to Rust modules for padding

them.

The solution was to create a hash table that maps the object names to their contents as

we encounter them from the subrequests.

Finally, we had to pass this hash table to the Rust module to pad the contents which was

the main challenging part.

The solution was to use CMAKE to compile the map.c code and also externally link it with

Rust as follows:

pub type Map = *mut map;

#[link(name = "map", kind = "static")]

extern "C" {

 fn map_get(m: Map, key: *const libc::c_char) -> *mut libc::c_void;

}

Figure 13: Linking C Structures with Rust Modules

Defense Extensions for Website Fingerprinting Attacks on Nginx Web Server

E. Dimitras - M. Xanthopoulos 37

5.2 Figuring NGINX Subrequests Workflow

The need to use Nginx subrequests arose because previously ALPaCA had to know the

file location within the server and couldn’t work with a configuration that redirects locations

for specific types of objects, as described in chapter 4.2.2.

That happened because only Nginx knew the relocation path for .jpg images and there

was no way for the C module to acquire this information. Subrequests allowed us to

receive the contents of these objects within the C module.

The greatest challenge by using subrequests, was to make Nginx’s unsynchronized

request processing synchronized, meaning that we had to “wait” for all subrequests to

finish in order to be able to morph the HTML. Since the subrequests were made when

the response for the HTML was being processed and had to be sent back in the Body

filter made this task quite difficult.

There is no wait function in Nginx so naturally, we couldn’t do the following:

1. Body filter is called for HTML response

2. Make the sub-requests

3. Wait for them to finish

4. Morph the HTML

5. Send the response back

So, what we finally did instead was:

1. Body filter is called for HTML response

2. Make the sub-requests

3. Send back an empty response for the HTML

4. When we reach the last sub-request then call the morph function for the HTML

5. Send back the morphed HTML response when the last sub-request returns

Defense Extensions for Website Fingerprinting Attacks on Nginx Web Server

E. Dimitras - M. Xanthopoulos 38

5.3 Building a Solid Tester

Another challenge was building the tester that would test our application from the client’s

side. To do this we had to decide what programming language to use and how to make

requests through this language. We concluded that using python would provide the

easiest way to implement such a tool.

For making requests we used Selenium and Chromium, tools that provided us with easier

ways to request the whole website, calculate page and file sizes and overall have a

cleaner interface. The tester works very simply but makes it a lot easier to test different

functionalities when making code adjustments within the module and the library.

One of the challenges with building such a tester occurred from having to run multiple

configurations without having to restart the tester each time. For these configurations to

be able to work in every Linux system as well as with non-root users, we had to make

them independent from any system path or file. To achieve this, we changed every

system path that is set by Nginx during compilation to different paths in /tmp that are not

going to mess with the system files and also are not going to be permanent. We also don’t

need root permissions to open those files. To run different configurations with the tester

we had to run multiple instances of the Nginx server sequentially. Meaning we have to kill

the current instance and re-run it with a different configuration. Configurations are chosen

from a dictionary that maps different config names to their respective paths.

The hardest part about using Selenium was to calculate the received data size and check

whether a file was successfully found or not. To do that we had to retrieve the browser

logs, then parse them as JSON and lastly search for the different parameters required to

accomplish our goals. Calculating the received data size was particularly challenging

since a file is received in chunks that we have to combine to get the final size. Firstly, we

had to find under what parameter the chunks were stored in the JSON struct we retrieved

from the browser logs. Secondly, since the chunks of the different files are received in

mixed order and at the same time, we had to categorize each chunk correctly for each

file. Finally, we combine the categorized chunks to calculate the sizes of the requested

files respectively.

Defense Extensions for Website Fingerprinting Attacks on Nginx Web Server

E. Dimitras - M. Xanthopoulos 39

6. CONCLUSION

As we know, website fingerprinting attacks on .onion websites are extremely potent and

dangerous since a .onion website can be identified with 90% accuracy more than regular

websites. Tor network was created based on the principle of anonymity and the right to

free speech. Fingerprinting attacks violate those values and so there is a dire need for

protecting the network’s users.

In that regard, we implemented ALPaCA as a Rust library along with a Nginx C module

that uses this library as a very simple and easy-to-use server-side defense mechanism.

Its simplicity comes down to the fact that the user doesn’t have to do anything to reap the

benefits of the added protection. Despite being so simple, ALPaCA offers satisfying

results approximately reducing the accuracy of WFP attacks to 1/6 of what it would be

without it.

Defense Extensions for Website Fingerprinting Attacks on Nginx Web Server

E. Dimitras - M. Xanthopoulos 40

ABBREVIATIONS - ACRONYMS

ALPaCA Application Layer Padding Concerns Adversaries

CSS Cascading Style Sheets

GIF Graphics Interchange Format

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

JSON JavaScript Object Notation

NGINX Engine-X

WFP Website Fingerprinting

Defense Extensions for Website Fingerprinting Attacks on Nginx Web Server

E. Dimitras - M. Xanthopoulos 41

REFERENCES

[1] P. Kokkinakos, “Defense Implementation for Website Fingerprinting Attacks on Nginx Web
Server”, Bachelor’s Thesis, Department of Informatics & Telecommunications, National and
Kapodistrian University of Athens, 2019.

[2] G. Cherubin, J. Hayes, and M. Juarez, “Website Fingerprinting Defenses at the Application
Layer”. In Proceedings on Privacy Enhancing Technologies 2017, doi:10.2307/j.ctt7s8xg

[3] A. Panchenko, F. Lanze, A. Zinnen, M. Henze, J. Pennekamp, K. Wehrle, and T. Engel, “Website
Fingerprinting at Internet Scale”, University of Luxembourg, RheinMain University of Applied
Sciences, RWTH Aachen University 2016, doi:10.14722/ndss.2016.23477

[4] D. DeJonghe, “NGINX Cookbook”, O’Reilly Media, Inc., 1005, US, November 2020

[5] D. Usama, “Nginx Module Extension”, Packt Publishing, December 2013

[6] P. Sirinam, M. Imani, M. Juarez and M. Wright, “Deep Fingerprinting: Undermining Website
Fingerprinting Defenses with Deep Learning”, CCS ’18, October 15–19, 2018, Toronto, ON,
Canada, doi:10.1145/3243734.3243768

[7] A. Hintz, “Fingerprinting Websites Using Traffic Analysis", The University of Texas at Austin, USA,
2003, doi:10.1007/3-540-36467-6_13

[8] A. Panchenko, L. Niessen, A. Zinnen, and T. Engel, “Website Fingerprinting in Onion Routing
Based Anonymization Networks”, In Proceedings of the 10th ACM Workshop on Privacy in the
Electronic Society, pages 103–114, 2011, doi:10.1145/2046556.2046570

[9] E. Miller, “Emiller’s Advanced Topics In Nginx Module Development”, August 2009

[10] E. Miller, “Emiller’s Guide to Nginx Module Development”, August 2017

http://dx.doi.org/10.1515/popets-2017-0023
http://dx.doi.org/10.14722/ndss.2016.23477
https://doi.org/10.1145/3243734.3243768
https://link.springer.com/chapter/10.1007/3-540-36467-6_13
https://doi.org/10.1145/2046556.2046570

