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INEPIAHWYH

Autr) n datpiBr) ouvelopepet otn PBAloypadia e T0 va mPoteivel KAl va POVIEAOTTOl-
1)0€1 KA1votopoug adyopiBpoug kat oxnpata rnou ermrpénouv otg diepyaoieg Siddoong kat
AvVAKTNoNg MANPOPoPLRdV — KAl YeEVIKOTEPA NG Slaxeiplong mePleEXopeévou — va eKTEAEOTOUV
IO ATTOTEAEOPATIKA Ot €va ouyXpovo meplBaldov Siktuwong. Extog amo i §iadoon kat
avdkinon v rmAnpodoptav, AAAeg MTuxEég g Slaxeiplong MePlEXOPEVOU TI0U e6eTaloupe
eival n anmobrjkeuon Kat n Katnyoptlornoinor. H mo onuaviikn npokAnon mou agopd mtoAAd
and Ta oXNUata Imou Ipoteivovial oty rnapovoda epyacia eivat n avaykn va ditaxeiplotouv
NV autovopia tov Kopbev, dtatnpoviag mapdAAnAa tov Katavepnpévo, Kabwg Kat Tov avot-
K10 Xapaktrpa tou cuotrpatog. Katd 1o oxedraopd katavepnpévev pnxaviopov os diktua
P& autdévopoug KOpBoug, £va onpaviko eriong {nrovpevo eivat va dnpioupynBouv kivntpa
®ote 01 KOpBot va ouvepyaldovial Katd v eKTEAEOT TOV KAONKOVIOV erukowveviag. 'Eva kat-
VOUPY10 XAPAKINPLOTIKO TOV ITEPIO00TEPR®V ATIO Td MPOTEVOPEVA OxXHjiata eivat 1) adlomoinon
TOV KOWWROVIK®OV XAPAKINPIOTIKOV IOV KOPBwV, £0T1Ad0vViag 010 TG TAd KOwd evdlapEpovia
TV KOPBRV IItopouv va a§lornotnfouyv yia ) BEATI®OT TG ArodoTKotTag OtV EMKOVOVid.

IMa v a§loAoynor g anddoong TV MPOTEVOPEVEOV AAYopiOReV KAl OXNPATOV, KUPIOG
avantuoooupe Pabnpatikd otoXaotikd poviéda Kat AapBavoupe aplOpuntikda anoteAéoparta.
‘'Ortou eivat anapaitnto, mapEXoUpe aroteAéopatd IIPOocoRoi®ong rmou eraAnevouy v a-
kpiBela autev TV poviedwv. Ilpaypatkd ixvn diktvou xpnotponolovviatl orou Y¢Aoupie va
UMOOTNPI§OUNE TIEPATEP® T AOYIKY] yla TnV IPOtaot evog OUYKEKPIEVOU oxnpatog. 'Eva
Baowko epyaleio yia ) poviedoroinon Kat v avdaiuon tev npoBAnpdiev cuvepyaoiag oe
diktua pe autdovopoug kopBoug sival ) Yewpia matyviov, n oroia XPnolonoleital 0 PeEPIKA
TuApata avtig mg datpBng ya va Bonbrjoet onv e§akpiBwon tng duvatdtntag diatrpn-
ong g ouvepyaoiag petaiy 1wv KopBwv oto Siktuo. Me v aglomnoinon 1oV KOWOVIKGOV
XOPAKINPIOTIKOV IOV KOPB®V, UIAIVOULE £TTIONG OTOV TOPEA TG AVAAUONG TOV KOWVOVIK®OV

SIKTU®V, KAl XPNOI0TIOI0UHE OXETIKEG PETPIKEG KAl TEXVIKEG AVAAUONG.

OEMATIKH IIEPIOXH: Aiktua Emiikowveviov
AEEEIZ KAEIAIA: §1KTU®0O01), KATAVERNHPEVOL AAyop101101, autovopol KOpBol, ouvepyatikottd,

Kowovika diktua






ABSTRACT

This thesis contributes to the literature by proposing and modeling novel algorithms
and schemes that allow the tasks of information dissemination and retrieval - and more
generally of content management - to be performed more efficiently in a modern network-
ing environment. Apart from information dissemination and retrieval, other aspects of
content management we examine are content storage and classification. The most impor-
tant challenge that will preoccupy many of the proposed schemes is the need to manage
the autonomy of nodes while preserving the distributed, as well as the open nature of the
system. In designing distributed mechanisms in networks with autonomous nodes, an
important challenge is also to develop incentives for nodes to cooperate while performing
communication tasks. A novel characteristic of most of the proposed schemes is the ex-
ploitation of social characteristics of nodes, focusing on how common interests of nodes
can be used to improve communication efficiency.

In order to evaluate the performance of the proposed algorithms and schemes, we
mainly develop mathematical stochastic models and obtain numerical results. Where
it is deemed necessary, we provide simulation results that verify the accuracy of these
models. Real network traces are used where we want to further support the rationale for
proposing a certain scheme. A key tool for modeling and analyzing cooperation problems
in networks with autonomous nodes is game theory, and it is used in parts of this thesis
to help identify the feasibility of sustaining cooperation between nodes in the network.
By exploiting social characteristics of nodes, we also enter the field of social network

analysis, and use related metrics and techniques.

SUBJECT AREA: Communication Networks
KEYWORDS: networking, distributed algorithms, autonomous nodes, cooperation

social networks
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Cooperative network information dissemination and retrieval

Chapter 1

A general view of information
dissemination and retrieval in modern

networks

1.1 Introduction

In our time, the proliferation of networking technologies has had a huge impact on
the way information is disseminated and retrieved. This proliferation was largely due to
three reasons: The first is the development of the Internet, which greatly facilitated the
interworking of different communication protocols and technologies, by introducing the
common TCP/IP protocol suite [Kurose & Ross, 2004]. The second is the development
of ad-hoc wireless mobile networks, in which mobile devices can communicate without
the need for a fixed infrastructure [Sarkar et al., 2007]. The third is the evolution of the
hardware and software of user equipment, which allowed devices to communicate directly
between themselves (as in peer-to-peer networks [Liben-Nowell et al., 2002]), to be more
independent and intelligent, and to partially abandon the traditional client-server model,
where all the information is stored at a single computer with large processing capabilities

(server), and clients make requests for information at the known location of the server.

Another major development over the last two decades was the gradual movement

from the notion of information, to that of content, with reference to the data carried over
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Cooperative network information dissemination and retrieval

by a network. While the term information typically referred to a piece of knowledge,
understandable by humans, and transmitted in the form of data by a computer, the term
content refers to data organized in the form of a file, such as a document, an audio or
video file, which conveys an abundance of useful information to its reader, but requires
more management. Together with the organization of information into content, the other
characteristic was the fast multiplication of content sources; nowadays, any user device
can create and publish its own content, which can be transmitted over the Internet.
This has created opportunities for faster dissemination of knowledge, and allowed the

provision of information with a more specialized local and temporal scope.

Nevertheless, when considered together, these developments also pose many chal-
lenges. The ultimate goal of communication anytime and anywhere cannot be achieved
unless communication is meaningful and efficient. To achieve this, algorithms for infor-
mation dissemination and retrieval must be able to exploit the ability of user devices to
communicate directly, exploit the opportunity to obtain content from different sources,
and at the same time handle the problem of information explosion caused by the abun-

dance of data.

This thesis aims to provide an overview of some of the latest developments in the
field of network information dissemination and retrieval, while focusing at proposing and
modeling the performance of novel algorithms that allow these tasks to be performed
more efficiently. When speaking of network information dissemination and retrieval,
we refer to the delivery and retrieval of content to or from nodes in the network, that
respectively request or possess the content. We do not go into the details of the content
that is disseminated, or in the process of searching for information in documents or
databases, that are also parts of information dissemination and retrieval, but focus on
the networking algorithms and procedures for this task, that deal with content as an

‘object’ to be transferred at one or more destinations over the network.

In the rest of this introductory chapter we survey the developments in the field that
have led to the present stage, and present in more detail the characteristics of modern
networks and the challenges they pose for information dissemination and retrieval. Fi-
nally, we provide a more detailed outline of the chapters that follow, and what we aim to

investigate in each one.
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1.2 Classical information dissemination: routing schemes

Information dissemination is tied to the existence of a routing scheme, which handles
the task of finding the path from a source to one or more destinations in the network.
The packets are forwarded through intermediate nodes, typically hardware devices called
routers, bridges, gateways, firewalls, or switches. In modern networks, user devices can

themselves act as intermediates, albeit with limited functionality.

Standard shortest-path routing schemes (e.g., OSPF [Moy, 1998], RIP [Malkin, 2000],
BGP [Caesar & Rexford, 2005]) have long been used in fixed networks and perform re-
markably well in network environments where traffic is low and conditions (topology,
traffic, etc.) vary very slowly (in months or years). However, in more dynamic en-
vironments such as ad-hoc networks, where topology changes more quickly and traf-
fic is unpredictable, these routing schemes frequently exhibit oscillatory behaviors and
cause performance degradation [Bertsekas, 1982]. Dynamic shortest-path algorithms
alleviate this problem to some extent, by adapting to less slowly changing conditions
[Wang & Crowcroft, 1992]. Almost all of them are based on estimating link metrics based
on past measurements. The idea is that when traffic changes slowly, link metrics are
closely correlated in time, so that we may predict future conditions based on past obser-
vations. However, it was shown that in cases where traffic is heavy and changing rapidly,
the estimation error becomes large and these schemes also fail [Wang & Crowcroft, 1992].
Further, another drawback is the lack of scalability; when the network consists of hun-
dreds or thousands of nodes and conditions change quickly, the required routing updates

may overload the network resulting in congestion and loss of packets.

These observations became extremely important with the advent of mobile ad-hoc
networks (MANETS) in the 1990s. It was observed that in such networks, intelligent
routing strategies are required to efficiently use the limited wireless resources while at
the same time being adaptable to the changing network conditions such as network
size and traffic density. Additionally, these networks have to deal with the problems of
limited power supply of the mobile devices, as well as the problem of partial connectivity
(network partitioning). Routing schemes proposed for MANETS take full advantage of the

ability of devices to act as routers and communicate directly between themselves. They
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include global/proactive, ondemand/reactive and hybrid schemes [Royer & Toh, 1999,
Abolhasan, 2004]. In proactive routing protocols, the routes to all destinations (or parts
of the network) are determined at start up, and maintained by using a periodic route
update process. Generally, such schemes are also based on updating routing tables based
on shortest-path algorithms, with the addition of some information for characterizing
the freshness of a path. In reactive protocols, routes are determined when they are
required by the source using a route discovery process. Proactive schemes for MANETSs
are known to also suffer from scalability problems [Abolhasan, 2004]. Reactive schemes
were invented to combat this deficiency, however their disadvantage is increased latency
for setting up the route to the destination, as well as increased overhead, since the
packet has to carry the whole path from source to destination [Abolhasan, 2004]. Hybrid
routing protocols combine the basic properties of the first two classes of protocols into
one, and can present improved performance with respect to scalability, latency and packet

overhead.

Further advancement of routing schemes came along with a new model for MANETS,
whose main characteristic was partial connectivity and opportunistic encounters between
nodes, along with delay tolerance. The previous schemes for MANETs worked relatively
well if the network graph was connected, or if disconnections did not last very long.
However, they failed if significant portions of the network remained disconnected for large
periods. This condition created the need for simpler routing protocols, which consist of
independent and local store and forwarding decisions, based on the current connectivity
information and possible predictions of future connectivity. If different links come up
and down, over time, due to occasional partial connectivity or node mobility, and the
sequence of connectivity graphs over a time interval are overlapped, then an end-to-end

path might exist.

Such schemes usually fall into the categories of opportunistic routing, or epidemic
routing/gossiping. Opportunistic routing schemes concentrate on forwarding the packet
to the node that has the highest chance of successful delivery. This is estimated based
on previous history [Boldrini et al., 2007], or the estimated distance of the next node to
the destination [Biswas & Morris, 2004]. Epidemic or gossiping schemes use some form

of constrained flooding, where each node can forward or receive a message under some
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conditions. These conditions may relate to the characteristics of the message (e.g., size,
destination), as in [Vahdat & Becker, 2000], or not; in a popular version of a gossiping
algorithm, each node forwards each message with some probability [Haas et al., 2006].
These schemes are generally scalable and simple to implement, and under specific con-
ditions can guarantee the delivery of the message to all nodes in the network. At the
same time, the number of message copies that are spread in the network is significantly
reduced, compared to a flooding scheme.

In this thesis, we analyze and evaluate the performance of a gossiping algorithm,
with several parametrizations, for both content dissemination and search. Although
in other chapters we are not explicitly concerned with the details of routing, but with
optimizations of some parts of the content dissemination or retrieval processes, it should
be kept in mind that a fully prescribed routing algorithm should always exist in order to

accomplish the transfer of information.

1.3 Content replication techniques

Another important issue related to content dissemination and retrieval in modern
networks is that of content replication. The term replication refers to storing the same
content at multiple nodes in the network, in order to increase its availability and reduce
its access cost. Replication is nowadays a standard operation used by large content and
service providers in order to meet the increased demand for Web services and mitigate
congestion problems on fixed networks. Having realized its potential, research is also
being conducted to carry over these ideas on MANETS.

It is worth noticing the differences between replication and caching, as these terms
are often intermingled in the literature. Although they both refer to the storage of infor-
mation, in replication objects are stored at a node for a longer term by a process that is
carried out independently of object requests at this node. In caching, objects are stored
in local memory as a result of query execution, and a replacement policy must be applied
(e.g., LRU) if the memory becomes full [Reed & Long, 1996]. Furthermore, in replica-
tion the placement of objects is a global problem affecting the whole network. Although

algorithms for caching also exist in distributed environments, in caching the storage de-

Eva Jaho 31



Cooperative network information dissemination and retrieval

cisions are usually based on local parameters, such as the local request rate for objects
and the local memory space available [Gadkari, 2008]). Finally, there are also other dif-
ferent technical parameters, such as different memory access and database maintenance

algorithms.

The earliest application of replication techniques can be found in Content Delivery
Networks (CDNs). A CDN replicates content from the origin server to cache servers, scat-
tered over the globe, in order to deliver content to end-users in a reliable and timely
manner from nearby optimal surrogates. Typical customers of a CDN are media and
Internet advertisement companies, data centers, Internet Service Providers (ISPs), online
music retailers, mobile operators, and other carrier companies and content providers.
The main tasks that must be carried out by a CDN are: content delivery, request routing,
distribution, and accounting [Pathan & Buyya, 2006]. The content delivery task consists
of delivering copies of content to the end-users by servers that are strategically located at
the edges of a network. Request routing refers to directing client requests to the appro-
priate edge servers. Distribution has to do with moving content from the origin server to
the CDN edge servers and ensuring consistency of content in the caches. The distribu-
tion and request routing infrastructure interact to keep an up-to-date view of the content
stored in the CDN caches in appropriate databases. The accounting infrastructure main-
tains logs of client accesses and records the usage of the CDN servers. This information
is used for traffic reporting and usage-based billing. Finally, other tasks carried out by
a CDN are backup and disaster recovery solutions, as well as monitoring, performance

measurement and reporting.

The goal of optimal edge server placement is to reduce user perceived latency for
accessing content and to minimize the overall network bandwidth consumption for trans-
ferring replicated content from servers to clients. In this context, some theoretical ap-
proaches have been proposed which model the server placement problem as the center
placement problem defined as follows: for the placement of a given number of centers,
minimize the maximum distance between a node and the nearest center (minimum k-

center problem, k-hierarchically well separated trees [Jamin et al., 2000]).

Another way to improve content delivery is by selecting the right content to be deliv-

ered to the end-users. An appropriate content selection approach can assist in reduction
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of client download time and server load. A model that has frequently been used for

theoretical studies of content placement is graphically illustrated in Fig. 1.1:

root node

parent node

leaf nodes

Figure 1.1: Model for theoretical studies of content replication (source:

[Borst et al., 2010]).

The root node represents the origin server which is the source for content requested
by end-users at the leaf nodes. The parent node acts as a proxy between the root and
the leaf nodes, for handling content requests and delivery, or as a proxy for communica-
tion between the leaf nodes. Which content to place locally on each leaf node depends
primarily on the popularity of objects at the leaf nodes, but also on other factors such as
the local storage sizes and communication costs [Borst et al., 2010].

In early CDNs, edge servers were machines dedicated to the content replication tasks,
and almost all required operations were under a centralized control. However, as the de-
mand for replication services increased, distributed algorithms and architectures with
better scalability were proposed. In such algorithms, leaf nodes could be normal user
devices, which could decide for which content to store in a distributed manner, and main-
tain a local database of other nodes’ placements [Mulerikkal & Khalil, 2007]. Although
some centralized functions are still necessary (e.g., for updating local databases), these
algorithms can have much better scalability without the need for dedicated edge servers.
Simplified models for content placement (based on the pattern of Fig. 1.1) showed that
optimal content placement obeys rather simple rules [Borst et al., 2010], and that effi-
cient distributed algorithms can be constructed in which all leaf nodes can reduce their

access cost [Laoutaris et al., 2006].
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The design of distributed algorithms was the first step towards the application of
replication strategies in MANETSs. In such networks, replication could also assist in re-
ducing the cost of accessing content from the fixed network through congested access
points, or through multiple hops and lossy wireless links. There are however, additional
challenges that must be met in order to apply an efficient distributed algorithm in such
networks. First, the existence of network partitioning, which reduces the data availability
when the server that holds the desired data is not in the same partition as the client node.
A good algorithm that overcomes such problems should estimate possible partitions be-
forehand and replicate the same content at different partitions of the network. Secondly,
the energy consumption issue, as mobile nodes have limited energy resources. A good
algorithm should replicate data so as to balance requests at mobile nodes, in that way
that energy consumption is minimal. Further, even if distributed algorithms scale better,
problems may appear in networks with thousands of nodes or in networks with highly
mobile nodes. In such networks, the number of content queries or database updates
may be so huge that links may experience congestion. Finally, a major challenge is how
to deal with the requests for real-time applications, which also have stringent delay re-
quirements. Good reviews of replication algorithms addressing these challenges can be
found in [Padmanabhan et al., 2008, Derhab & Badache, 2009]. As these authors point

out, there are still no algorithms addressing all of the above issues successfully.

1.4 Characteristics of ‘“modern’’ networks

In classical communication networks based on the telephone network, intelligence
was in the network rather than in the devices. The core routers and switches handled all
the basic operations in the network, which was dominated by wireline transmissions and
a fixed (or very slowly varying with time) structure. In the past decade this is gradually
changing, mainly due the proliferation of wireless transmission, ad-hoc network struc-
tures, and intelligent devices with greater processing capabilities. Furthermore, we have
seen the appearance of techniques for constructing overlay networks, virtually changing
the network structure and using tunneling to facilitate peer-to-peer communication.

Two major characteristics that motivate this thesis are the evolution in device ca-
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pabilities and the changes in network structure. The evolution in device capabilities
includes advancement in many aspects, such as main processor cores, digital signal
processing techniques and communication capabilities, increased memory sizes, graphic
displays with video capabilities, more friendly user-interfaces, etc.. This has led to the
creation of ultra-portable devices, able to handle many of the tasks of a personal desktop

computer’.

The most prominent change in structure can be seen in wireless ad-hoc networks, in
which devices can move freely and are able to communicate between themselves without
having to rely on a fixed infrastructure. The lack of a fixed infrastructure and node
mobility has led to dynamic topologies, to which - as seen in Section 1.2 - routing and,

more generally, content dissemination and retrieval techniques must be adapted.

A rapidly changing network structure can however create scaling problems, which
means that the network performance may drop by increasing the number of nodes in the
network, their mobility, the amount of messages transmitted, or some other parameter.
This, together with the need to avoid central points of failure and to have terminal devices
that are easily reconfigurable and can adapt to different conditions, has created the need
to develop distributed algorithms for message dissemination and retrieval. In designing
such algorithms, the effort is to efficiently manage (retrieve, classify, store and dissemi-
nate) content without having a central coordinating entity, relying on the (often partial or
limited) information that terminal devices can acquire from other terminals or their envi-
ronment. This leads to the point that terminal devices (nodes) become autonomous, i.e.,
administered by themselves. The autonomicity of nodes implies their ability to deviate
from prescribed distributed mechanisms, and has to be considered from the very begin-
ning in the design of such mechanisms [Mitchell & Teague, 2003]. Autonomous nodes
and distributed mechanisms have also led to the notion of self-organizing networks, which
self-optimize parameters and algorithmic behaviour in response to observed network per-

formance and radio conditions?.

A key to designing efficient content dissemination and retrieval techniques is also un-

derstanding the high-level structure of such networks. Important steps in this direction

Yhttp : //en.wikipedia.org/wiki/Converged_device
2http : /| Jen.wikipedia.org/wiki/Sel f — organizing_network
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were the discovery of the small-world phenomenon and of techniques for identifying com-
munity structure. A small-world network is defined to be a sparse network where most
nodes are not neighbours of one another, but each node can be reached from every other
by a small number of hops or steps. The two distinguishing structural properties are a
small average shortest path length (growing proportionally to the logarithm of the number
of nodes N in the network), and a clustering coefficient significantly higher than expected
by random chance [Watts & Strogatz, 1998]. Several other properties are often associated
with small-world networks. Typically there is an overabundance of hubs - nodes in the
network with a high number of connections (a high degree). These hubs serve as the com-
mon connections mediating the short path lengths between other edges. Networks with
a greater than expected number of hubs will have a greater fraction of nodes with high
degree, and consequently the degree distribution will be enriched at high degree values.
If this distribution can fit a power-law distribution, the network is an ultra-small world
network, also known as a scale free network [Cohen et al., 2002, Cohen & Havlin, 2003].

Recent work has shown that the physical connectivity of the Internet exhibits small-
world behaviour [Jin & Bestavros, 2002]. Further, small-world network characteristics
were discovered in many social networks, and ad-hoc networks that resemble them
[Dousse et al., 2002]. The small world structure can have a profound effect on the design
of message dissemination algorithms; a first observation in this direction was the in-
creased speed of epidemic algorithms in such networks [Watts & Strogatz, 1998]. Similar
observations are very important in the development of secure peer-to-peer protocols, novel
routing algorithms for the Internet and ad hoc wireless networks, and search algorithms
for communication networks of all kinds.

Another important characteristic of modern networks is community structure (or
clustering). A network is said to have community structure if the nodes of the network
can be easily grouped into (potentially overlapping) sets of nodes such that each set of
nodes is densely connected internally. The importance of community structure in com-
munications networks comes mainly from their association with social networks, which
often include community groups ® based on common location, interests, occupation, etc..

Ad-hoc networks, being composed of portable devices carried by humans and having a

3The term community structure in fact originates from social networks.
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friendly user interface, often exhibit such network characteristics [Musolesi et al., 2005].
Being able to identify these substructures within a network can provide insight into how
network functions and topology affect each other, and drive the design of efficient con-
tent dissemination and retrieval algorithms. Several methods for community finding have
been developed and employed with varying levels of success. Examples are the minimum-
cut method, hierarchical clustering [Newman, 2004c], the Girvan-Newman algorithm

[Girvan & Newman, 2002], modularity maximization algorithms [Good et al., 2010], etc..

1.5 Challenges and objectives of modern information dis-
semination and retrieval schemes

The evolution of networks that we discussed in the previous sections has created new
challenges for information dissemination and retrieval schemes, and set new objectives
in the design of such schemes.

First of all, new challenges arise because of the limitations of mobile devices. Mobile
devices are energy-constrained, and have limited memory and processing capabilities.
This holds true despite technological advancements, and is aggravated by the informa-
tion explosion that we witness in modern networks, i.e., the rapid increase in the amount
and volume of published information. The effect of this information explosion is multi-
fold: it creates congestion in the network, increases interference, consumes battery power
and carries the risk of information overload. The latter is a term from cognitive psychol-
ogy [Allen & Shoard, 2005] and is related to the inability to efficiently manage and exploit
information when there is an abundance of data. In view of these, an information dissem-
ination or retrieval scheme must be fast, precise, avoid redundancy (sending duplicate
messages to nodes), and offer useful or meaningful information to final recipients. Be-
cause devices are connected to their human users, information should be related to the
interests or preferences of each user, or at least adapt to groups of users sharing common
interests, in order to be useful.

Important mechanisms that can help in mitigating information explosion and reduc-
ing the risk of information overload are information retrieval and information filtering. An

information filtering system is a system that removes redundant or unwanted information
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from an information stream using (semi)automated or computerized methods prior to pre-
sentation to a human user, based on the profile of this user and the characteristics of the
information objects. An information retrieval system refers to a search system with which
the user obtains information from the knowledge resources which best help her/him
in problem management. These mechanisms are interrelated [Belkin & Croft, 1992], as

their underlying goal (to provide the user with useful information) is essentially the same.

The most important challenge that will preoccupy many of the schemes proposed in
this thesis is the need to manage the autonomy of nodes while preserving the distributed,
as well as the open nature of the system. As described in the previous section, distributed
systems evolved mainly out of the need to deal with scaling problems in large and highly
mobile systems. An open system further helps in improving interoperability, as any
node which understands a communication protocol can communicate within a network.
This in turn helps to promote innovation and provide new mechanisms and technologies
that further improve performance. It is widely accepted, for example, that the open and

distributed nature of the Internet is one of the reasons behind its tremendous growth®.

However, the autonomy of nodes raises serious control problems. It is reasonable to
expect an end-device to be programmed (either by its manufacturer, an operator or by the
end-user controlling it) to optimize its own performance, regardless of its environment.
However, this may be at the expense of other nodes, or of the overall network operation. A
classic example is multi-hop forwarding in an ad-hoc network where, in order to increase
the overall capacity of the network and reduce the total energy consumption, nodes must
be willing to relay packets of other nodes [Gupta & Kumar, 2000, Zhao & Tong, 2005].
However, this cannot be taken for granted as relaying packets is energy consuming, and
unless all nodes contribute in relaying, it may turn out unfavorable for the relaying node.
In general, in many distributed networking problems (e.g., power-control mechanisms,
random access in wireless media [Félegyhazi & Hubaux, 2006]), nodes must be willing
to cooperate in order to incur an overall benefit for the network, i.e. a social benefit. A
node is called selfish if it tries to extract a benefit for itself at the expense of other nodes.

Furthermore, there may be malicious nodes, which attempt to undermine quality and

*http : /[ec.curopa.eu/in formation_society/policy/ecomm/doc/library /communications_reports

/netneutrality /comm — 19042011.pdf
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disrupt communications without necessarily attaining a reasonable benefit (attackers).
The existence of such nodes further raises security concerns, and creates a need to embed
security mechanisms in distributed systems.

Cooperation in message relaying is very much relevant and must be taken into ac-
count when considering information dissemination and retrieval schemes in ad-hoc net-
works. Further, node cooperation comes into play when considering content storage and
exchange [Chuah et al., 2010, Buttyan et al., 2010].

In designing distributed mechanisms in networks with autonomous nodes, the goal
is to develop incentives for nodes to cooperate. These incentives may take the form of
a charging/rewarding mechanism (e.g., [Salem et al., 20086]), of a reputation scheme for
building trust relationships between nodes (e.g., [Kamvar et al., 2003]), or the application
of reciprocal punishments between non-cooperative nodes [Marbach & Qiu, 2005]. Game
theory is a key tool for modeling and analyzing cooperation problems in networks with
autonomous nodes. It is used in several parts of this thesis to help identify the feasibility

of sustaining cooperation between nodes in the network.

1.6 Outline of the thesis

The focus of this thesis lies on the use of cooperative mechanisms for content man-
agement in networks with autonomous nodes. The aspects of content management we
examine are mainly content dissemination and retrieval, but also content storage and
classification. A novel characteristic is the exploitation of social characteristics of nodes
in such networks, in order to manage content more efficiently. In this way we also enter
the field of social network analysis, focusing on how common interests of nodes can be
exploited to improve communication, through the several aspects of content management.

Social network analysis is a key technique in modern sociology and has recently
gained a significant following in information science and computer networks, along with
many other disciplines [Wellman, 1996]. This has been aggravated by the emergence
and tremendous growth of online social networking services or platforms (e.g., Facebook,

Twitter, LinkedIn, etc.%), that allow the creation of ties among individuals that share ideas,

Shitp : / en.wikipedia.org/wiki/Social_networking_service
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interests or activities. From a research perspective, these online platforms are a source
of valuable information about how the interest profiles of users are related to ties among

them and affect information exchange.

The structure of the chapters of the thesis and the main objectives in each one are

as follows.

In Chapter 2 we study a content replication scheme in which autonomous nodes form
a group, called a distributed replication group and cooperate in order to effectively retrieve
information objects from a distant server. Each node locally replicates a subset of the
server objects and can access objects stored by other nodes in the group at a smaller cost,
compared to the cost of accessing them from the server. Given that nodes are autonomous
and independently decide which objects to replicate, the problem is to construct efficient
distributed algorithms for content replication that induce low overall average access cost.
This problem becomes even more challenging when the group has to deal with churn,
i.e., random ‘join” and “leave” events of nodes in the group; churn induces instability
and has a major impact on cooperation efficiency. Given a probability estimate of each
node being available, we propose a distributed churn-aware object placement strategy.
By considering a game-theoretic approach, we identify cases where the churn-aware
strategy is individually rational for all nodes, while the churn-unaware is not. Numerical
results further show that the algorithm outperforms, in most cases, its churn-unaware
counterpart, and allows for a more fair treatment of nodes according to their availability

frequency, thus inciting nodes to cooperate.

Based on this setting, in Chapter 3 we study the impact of the similarity in nodes’
preferences or interest profiles on content replication. Our aim is to investigate and draw
important conclusions and guidelines regarding the kind of content placement strategy a
node participating in a distributed replication group should follow in order to increase its
benefits. We define a metric that captures the similarity of nodes’ interest profiles, called
group tightness. Using this metric and testing with different interest profiles, we are able
to show the association of the degree of interest similarity within nodes in a group with

the benefits they incur by applying a cooperative or selfish replication strategy.

An important as well as anticipated conclusion from this chapter is that the higher

the interest similarity between nodes, the higher the gains by cooperation in content
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management. It is therefore reasonable to attempt to organize nodes into communities
where nodes share similar interests. However, in current “computerized” social networks
users do not necessarily create ties based on common interests, but also on many other
factors, such as friendship, kinship, professional relations, or even prestige. The result
is a relatively small tightness of such groups, and relatively poor gains from cooperation.
In Chapter 4, we propose a framework for the construction of communities based on
common interests of users, by building a virtual graph where an edge between two nodes
is weighted by the degree of similarity in their interests, and then using known community
detection algorithms to establish communities. Testing on synthetic network scenarios
shows that this framework helps to correctly identify interest communities, stressing that

care must be taken on the proper choice of the similarity metric used to represent weights.

Besides common interests, a major characteristic of communities is their locality,
i.e. the specific neighbourhood, venue, or spot where they are located. Some localities
may constitute points of attraction or hot-spots with a higher node density. Mobile
nodes also form social groups dynamically, as they move to different localities where they
can establish communication with other nodes. Social groups that are examined from
the viewpoint of the locality they are situated in, are termed locality-induced groups.
In Chapter 5, we investigate the intermingling of interest and locality-induced social
groups and propose an approach that can enhance content dissemination in the presence
of such groups. We assume a setting where nodes have different interest distribution
patterns over a set of information objects, and different frequencies of visiting a number
of localities. Considering a new metric for the valuability of content, that takes into
account both its usability and discover-ability, we explore the conditions under which a
cooperative strategy can improve the content dissemination process compared to a selfish

one.

We further investigate content dissemination under node mobility in Chapter 6, by
considering a so-called nomadic sensor network consisting of: a) sensor nodes, that are
fixed at some points and collect information about states or variables of the environ-
ment, and b) mobile nodes that collect and disseminate this information. Mobile nodes
are assumed to be interested in different subsets of sensor node information. Similarly to

custom multi-hop forwarding, dissemination of information content in such networks can
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be achieved at smaller costs if mobile nodes are cooperative and collect and carry informa-
tion not only in their own interest, but also in the interest of other mobile nodes. A specific
modeling scenario is considered where mobile nodes move randomly on a graph, collect-
ing information from mobile nodes located at the vertices. We present a game-theoretic
analysis to find conditions under which a cooperative equilibrium can be sustained.

In Chapter 7 we study gossip-based algorithms for content dissemination and search
in large-scale networks with autonomous nodes. The dissemination or search process is
carried out in rounds, where at each round multiple peers can be contacted. We develop
an analytical model that allows us to evaluate the performance of the algorithm as well
as the impact of several design parameters, such as the degree of cooperation of nodes,
the number of peers contacted in each round, or the number of nodes where a searched
content may be located. We also consider the degree of information a node has about
the evolution of the gossiping process, meaning the number of nodes contacted so far,
and study both the case where a node has complete information and the case of no
information. The results provide significant insights on the design of such schemes.

Finally, Chapter 8 presents collectively the major conclusions of the thesis and pro-
vides high-level directions for future research.
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Chapter 2

Cooperative content replication

Content or data replication in a network refers to the storage of information objects
(such as files and other software entities) in multiple interconnected local nodes, so that the
availability of the objects increases and they can be accessed by users at a smaller cost
- compared to the cost of being stored in a single source. The technique of replication is
largely applied in Content Distribution Networks (CDNs), where content from a core server
is replicated at multiple servers (usually placed at the edge of the provider’s network)
[Loukopoulos et al., 2002, Kangasharju et al., 2001]. The same principle of replication can
be used to facilitate content retrieval and exchange in other network structures, such as
peer-to-peer networks, mobile ad-hoc networks, social network, wireless mesh networks,

etc..

2.1 Introduction

In a peer-to-peer network, the cost to reach some nodes may be significantly high,
e.g., because of long distances, low-speed links or congested switches. Properly dis-
tributing replicas of content in multiple nodes in the network has shown to provide
smaller search and retrieval times for content, and to decrease the overall network load
[Cohen & Shenker, 2002]. In mobile networks, there has been in the recent years a
tremendous increase in the volume of downloaded data from the Internet, which may
result in congestion in wireless access links. Replication techniques have also been

proposed in this case to take advantage of device-to-device communication capabili-
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ties, reduce content retrieval times and mitigate congestion in Internet access links
[La et al., 2010, La et al., 2011, Derhab & Badache, 2009]. Despite the fact that in a
mobile network the topology dynamically changes over time, there has been significant
evidence that non-random clustered mobility characterizes human movements in out-
door environments [Lim et al., 2006]. That is, despite node mobility, there is a tendency
for the formation of groups composed of nodes which are in geographical proximity for a
relatively long period of time and have high connectivity. This is the key fact that allows
replication strategies to be extended to such networks, since it allows nodes to rely on

other nodes in order to retrieve content.

User nodes in the networks described above typically have very small memory ca-
pacity and experience high costs in retrieving content from distant servers at a provider’s
fixed network. Therefore, each user would potentially have significant gains by retrieving
objects from peer nodes instead of the original server. The main issue, however, is what

objects to replicate at each node so that a global benefit exists.

Further, a primary characteristic of the above network structures is that nodes are
autonomous, in that they can decide independently which information to store. A “glob-
ally beneficial placement” is much harder to achieve in a network with autonomous nodes
than in a network under a centralized control, as in the former nodes behave as rational
entities that aim at minimizing their own access cost. Such behaviour may be at the
expense of others, as the individual cost of each node depends only on its local requests
for objects; nodes do not primarily “care” for storing objects to serve requests originating
at other nodes, i.e., for the common welfare. However, despite the selfishness of nodes,
a distributed algorithm could allow for an “implicit cooperation”, simply by having each
node view objects replicated at other nearby nodes and replicate objects in an attempt to
minimize its total cost for all its requested objects. Such a cooperative replication would
lead to the creation of an “enhanced local storage space”, if different nearby nodes would

replicate different objects.

We address this problem in a game-theoretic context, where nodes are the players.
The number of objects each node requests is typically higher than its memory capacity.
Each player implements a placement strategy that consists of choosing which objects

to replicate locally in its limited storage space, at one or more occasions in the game
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(“rounds”). The goal of each player is to minimize the total access cost for all its requested

objects at the end of the game.

A node may choose not to cooperate with other nodes in deciding which objects
to replicate, in which case the optimal strategy is to replicate its most highly requested
objects. This is called the selfish or greedy local strategy. Naturally, selfish nodes who are
not interested in the social benefit would want to cooperate with others only if they could
reduce their access cost compared to their incurred cost when all nodes follow the greedy
local strategy. The latter cost is the so-called security level of a player and the above
requirement is the participation or individual rationality constraint of a player. A strategy
which satisfies the participation constraint for a player is called individually rational for
this player. Ensuring that participation constraints are satisfied for all players is key to

maintaining a cooperative scheme.

We use the model introduced in [Leff et al., 1993] where nodes are self-organized
into what we call a “replication group”, i.e., a group consisting of nodes in network
proximity, where the cost of each node to retrieve locally stored content from another
node in the group is about the same - and small compared to the cost of retrieving it
from the origin server. The low-medium cost associated with fetching an object from
within the group may reflect low actual or virtual price such as lower access delay due
to locality or high connectivity, or higher level of trust and reliability. We assume that
nodes have established trust relationships in order to belong to the same group, and
have access to each others’ caches. This may be realized through various schemes (e.g.,
see [Rahman & Hailes, 1997, Gil & Ratnakar, 2002, Shikfa et al., 2009]). Requests for
objects are handled in the following manner. First, a user’s request is received by the local
node the user is associated with. If the requested object is stored locally, it is returned
to the requesting user immediately, incurring a minimum access cost. Otherwise, the
requested object is searched for and fetched from another node in the group, at a higher
access cost. If the object can not be located anywhere else in the group, it is retrieved
from an origin server assumed to be outside the group incurring a maximum access cost.
Note that unlike caching, replication refers to storage of objects for a longer term, and no

replacement policy (e.g., LRU) is applied for each new object request.

We consider that each node knows the placements of other nodes before playing. This
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information can be provided by a central coordinating entity, or if each node announces
its local placement and broadcasts any changes in it to other nodes in the group. Another
significant aspect of groups with autonomous nodes is “churn”, i.e., random changes in
the set of participating nodes in the group, that may occur due to “join” and “leave” events.
To account for node churn, we consider a probability estimate of each node to be available.
This can be derived by monitoring the fraction of time a node is available online and allows
access to objects in its memory. This estimate is called the reliability or availability of a
node and is common knowledge to all the nodes in the group. Such probabilities can be
obtained from a reputation measure, which can itself be derived in a distributed manner,
by local interactions between nodes. (For a review of distributed algorithms for deriving
reputation measures, readers may refer to [Avrachenkov et al., 2007].) Apart from the
placements and the reliability of other nodes, each node also has to calculate its own
request frequencies for objects. Given this information is available, the algorithm runs at
a low cost compared to an optimal strategy, as is shown in Section 2.4.

We may reasonably assume that the starting placement of each node is the place-
ment resulting from the greedy local strategy. When a node joins a replication group, it
makes the number of changes of replicated objects that will result in the greatest access
cost reduction for it. We call this appropriately a greedy churn-aware object placement
strategy. The performance of the algorithm is investigated extensively and is shown to
reduce the access cost, compared to its churn-unaware counterpart (i.e., when nodes

erroneously consider other nodes to be always available) and the greedy local strategy.

2.2 Content placement strategies

Let NV = {1,2,..., N} denote the set of the nodes (or players) in a replication group
and let M = {1,2,..., M} denote the set of objects (or items) these nodes are interested
in. Let R} denote the preference probabilities of node n, for object m, and let R" =
{R}, Ry,..., R} }: R}, can be viewed as the normalized rate of requests for object m by
node n.

Let P, denote the placement at node n, defined to be the set of objects stored locally at

that node with storage capacity C,,. We assume without loss of generality that |P,| = C,
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since a node can always gain by storing objects of interest locally, rather than having
to retrieve them from an outside source. Let P = {P, P,,..., Py} denote the global
placement for the repliaction group and P_,, = P \ P, denote the set of placements for all

group nodes but node n.

Let ¢;, t, and t; denote the cost for accessing an object from the node’s local mem-
ory, from another remote node within the replication group and from nodes outside the
replication group or distant server, respectively; ¢; < ¢, < t;. These costs are assumed to
be the same for all nodes in order to simplify the analysis. If the nodes of the group are
in proximity the access cost could either represent the additional latency incurred when
fetching content or the bandwidth consumed when retrieving content, depending on the
scenario of interest. Otherwise, the low-medium cost associated with fetching an object

from within the group may reflect low price due to high level of trust for example.

Given an object placement P, the mean access cost incurred to node n per unit time

for accessing its requested objects is given by:

Co(P) = Z Ryt + Z Ryt + Z Rt . 2.2.1)

mePy, m¢ Pp, méPp,,
meEP_,, megP_,,

The first, second and third addends on the right hand side correspond to the mean cost
for accessing objects locally, from other nodes of the group and from external sites if not

found within the group, respectively.

In the game nodes play sequentially, not necessarily in a predetermined order. Such
a dynamic game in which there is an ordering of players, and each player’s moves have
an effect on the utilities of players ordered before or after, is called a Stackelberg game,
or leaders-followers game (see e.g., [Basar & Olsder, 1999]). We examine the following

replacement strategies.

Optimally altruistic strategy: The objects are stored in such a way that the total
access cost for all nodes in the social group is minimized (i.e., minimize ZnN=1 C(P)).
This problem can be transformed into a 0-1 integer programming problem.

1, ifm € P,; 1, ifm¢ P,and m € P_,;

Let X)) = and Y =
0, otherwise 0, otherwise.
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The objective is to minimize the total access cost:

N M N
SO xRt + YRt + [ [ (1= X)) Rt (2.2.2)
n=1 m=1 j=1
where
N
Yo=(1-X3)0-]]a-Xx). (2.2.3)
j=1
Jj#En

This is a special case of a quadratic programming problem, with zero diagonal ele-
ments, whose solution is very difficult [Luenberger, 2008]. Fortunately, it was shown in
[Leff et al., 1993] that this quadratic problem reduces to a 0-1 integer linear minimization

problem (ILP) with objective function

N+1 M

=) aXp, (2.2.4)

n=1 m=1

subject to SV X" > 1 1 < m < Mand Y X" < C,, 1 <n <N In

(2.2.4), the terms X' are as above, the additional virtual node N + 1 represents the

ensemble of nodes in other social groups, and the terms 27, n € N, are defined as
R (t, —t), for1 <n<N;

S Rt —t,), forn=N+1,

zZy =
In this ILP formulation, there is effectively an implicit reference placement, whereby all
nodes can access all objects from the caches of group nodes and aggregate access cost
Zivzl Z%zl R!t,.. The aim is then to derive object placements that improve over this ref-
erence placement. Hence, the terms 2", n € N, express the incremental benefit resulting

for each node when it stores the object locally instead of retrieving it from the group;

whereas, z' ™! notes the loss all nodes incur if the object is not stored anywhere in the
group.
Proposition 1. The quadratic maximization problem described in (2.2.2) is equivalent to

the minimization ILP problem in (2.2.4).

Proof. The proof is based on argument in [Leff et al., 1993]. Our starting point is the
minimization objective (2.2.2). Substituting the terms Y, from (2.2.3) and after some

algebraic manipulations, (2.2.2) becomes:

N M N
ZZ [R” (t, — t,) X" + R™ (t (1—X/)—R't, (2.2.5)

n=1 m=1 ]:1
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The minimization of (2.2.5) calls for maximization of the first negative summation term
and minimization of the second positive summation term; the third term is a constant
corresponding to the cost of the reference placement, whereby all nodes access all objects
from the caches of the group nodes. Maximization of the first term implies that all nodes
should fully occupy their caches, i.e., it is always better to store an additional object in
the local cache rather than having vacant cache space. The product in the second term

can be equivalently written as

N
Xt =TJa-x3). (2.2.6)
j=1
and is equivalent to the condition
N+1
doXp >, (2.2.7)
n=1

when equality holds. Therefore, the minimization of (2.2.5) is equivalent to the minimiza-
tion of the negative objective function, —f(X), of the ILP

N+1 M

9(X)=—f(X)==>"> =X} (2.2.8)

n=1 m=1
if we let its two constraints holds as equalities, import the terms z;, with inverse sign,
and omit the constant term Y.~ "M Rr g,
Hence, the solution that minimizes the objective function (2.2.2) also maximizes the

objective function f(X) in (2.2.4). O

Selfish strategy: Under the selfish strategy, the nodes store the objects they prefer
most. Each node n ranks the objects in a decreasing order of preference and selects
to store the first (), ones. In [Laoutaris et al., 2006], this strategy is also referred to as
greedy local.

Self-aware cooperative strategy: The strategy involves two discrete steps. First,
each node stores its (;, most preferable items (selfish placement). Then, nodes take turns
in adjusting their placements based on the placements of the other nodes in the group.
It is essentially the strategy proposed in [Laoutaris et al., 2006]. During this second
step and given the global placement P at its time of play, each node considers making
replacements so as to minimize its current access cost according to (2.2.1) (hence the

term “self-aware”).
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To describe the strategy, we need some further definitions. Let the eviction loss L.,
be the increase in the access cost that would incur if node n evicted object e, e € P, from
its memory. Let the insertion gain G, be the decrease in the access cost, that would
incur if node n inserted object 7, i ¢ P,. A node would decide to evict an object and insert
another one only as long as the resulting insertion gain exceeds the eviction loss.

Under the self-aware cooperative strategy, it turns out that: (P1) a node may evict
an object from its local memory only if it exists in one or more of the other nodes, (P2)
a node may only insert an object that does not exist in any of the other nodes in the
group. A proof of these properties is presented below along with related definitions and
discussions that will be utilized later.

If a node n evicts an object e ¢ P_,, the eviction cost would be R!(t; — t;). This
object must be replaced by an object i ¢ P, for which, in the best case that i ¢ P_,,, it
would hold that R}(t; —t;) > R”(t; — t;). Such an object i does not exist, though, since
all such objects are already in F,. Likewise, if node n inserts an object ¢ € P_,,, the
insertion gain would be equal to R} (¢, — t;). Since from the above a node only evicts an
object that exists in one or more of the other nodes, 2 would replace an object e for which
R}(t, — t;) > R(t, — t;). This also cannot hold, because if R > R object i would have
already been in F,.

With these in mind, the eviction cost for an object e replicated at node n and at one

or more of the other nodes in P_, is given by
Le, =R}t —1). (2.2.9)

For an object 7 not replicated in any of the nodes in the group, the insertion gain to node
n is equal to

Gin=R't,— 1) . (2.2.10)

An object e € P, N P_, is called an eviction candidate, whereas an object i ¢ P is
called an insertion candidate for node n. The set of eviction candidates for node n is
denoted as &,, where |£,| < C,,, and the set of insertion candidates as Z,.

Index the eviction candidates for node n as ey, €2y, . . ., €jg,|n, in order of increasing
eviction cost. That is, L¢, , < Le,p < --- < Le‘ A (the double subscript n is removed).

Accordingly, index the insertion candidates for node n as i1, 92y, - - - , i|z,|» in order of de-
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creasing insertion gain, i.e., such that G;, ,, > G, , > -+ > Gi\znm (the double subscript
n is likewise removed).

It is evident that in order to minimize its access cost node n should make changes
in the following way: evict e;,, and insert ¢, evict ey, and insert i5,, and so on, until

the maximum number m,, such that G;, , > L (m,, < min(|&,|,|Z,])). For an

CR—
arbitrary eviction candidate e and insertion candidate i, we call AG . ; ] Gin — Le,, the
replacement gain for the eviction-insertion pair (e, 7). A replacement of object e by object
1 is also denoted as e < 1.

Since each node only evicts an object that exists in one or more of the other nodes
(P1) to insert an object absent from the group (P2), each node’s moves do not increase
the total access cost of nodes previously ordered in the play. Further, in line with
(P1) and (P2), it has been shown for the self-aware cooperative placement strategy in
[Laoutaris et al., 2006] that the placements that result with the self-aware cooperative
strategy do not give rise to node mistreatment phenomena (P3), i.e., for any node n, it
holds that CS(P) < C5(P), where C¢(P) and C?(P) denote the mean access cost for node
n under the self-aware cooperative and selfish strategy, respectively.

Moreover, no node can gain by playing again at any subsequent round in the game.

Consequently, this strategy is individually rational for every player and the game ends in

one round.

2.2.1 Effect of asymmetric costs on mistreatment

The three placement strategies have been discussed so far under the assumption
that the replication group membership induces a distinct symmetrical level of access
cost hierarchy; namely, the cost ¥/ of node i to access an object from any group node
j is the same irrespective of the involved nodes, ie., t; < tfnj =t, < t,,Vi,j € N. This
assumption is rational whether the group draws on locality or other types of social context.
Due to properties (P1)-P(3), the performance of the self-aware cooperative strategy has
been shown to lie close to the optimal (social-cost minimizing) altruistic one. Before
deriving conditions under which the two schemes yield comparable performance, we
discuss the aforementioned properties (P1)-(P3) when the within-group access costs are

not symmetrical.
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Requestor node-based access cost

The access costs depend on the node that issues a request (requesting node) but
not on the node that will serve it (serving node having the content stored at its cache);
thus, t; < t9 = t! < t,,Vi,j € N. The optimal altruistic scheme is still described

by a quadratic minimization function that reduces to the ILP problem (2.2.4), only now
R (th —t), for1 <n < N;

S RL(H —t,), forn=N+1,

zZy =
Under the self-aware cooperative strategy and as with fully symmetrical intra-group
access costs, a node n may evict only objects m that are replicated elsewhere in the group

in favor of lower preference objects m’ not stored anywhere in the group, if R}, -t} < R}, -t,.

Therefore, the strategy again is node mistreatment-free.

Fully asymmetrical access costs

The access costs depend on both the requestor and the serving node, ; < tfnj <
ts,Vi,7 € N. The cost minimization function no longer reduces to an ILP, at least not
in a trivial manner. Under the self-aware cooperative strategy, nodes still may evict only
objects m that are stored elsewhere within the group, say node k; only now they may
replace them with lower preference objects already stored in the group, say node [ since
it may hold that R”, - "% < R", - t".. For the same reason, the placement decisions made

by nodes succeeding n may give rise to mistreatment of some nodes.

2.3 Cooperative placement strategy under node churn

Another significant aspect of groups with autonomous nodes is “churn”, that may
occur due to “join” and “leave” events. To account for node churn, we consider a proba-
bility estimate of each node to be available (i.e., , make its objects available to the other
members in the group). This estimate is common knowledge to all the nodes in the group,
and is also called the reliability of a node. Such probabilities can be obtained from a repu-
tation measure, which can itself be derived in a distributed manner, by local interactions

between nodes. (For a review of distributed algorithms for deriving reputation measures,

Eva Jaho 54



Cooperative network information dissemination and retrieval

readers may refer to [Avrachenkov et al., 2007].)

Under node churn, considering the reliabilities of nodes (2.2.1) becomes:

N N
P)=> R+ Y Rite+ Y |RLQ-]] Q-m)+t]] @—-m)l| . @3.1)
1€Py, i€ Pn, i€ Pp, k=1, k=1,
i¢P_, i€P_,, k#n,k:i€ Py k#n,k: zGPk

We extend the selfaware cooperative strategy (also named greedy churn-unaware
strategy here) and present a churn-aware cooperative strategy (or greedy churn-aware
strategy). Under this strategy it is assumed that each node n has information about the
reliability of all other nodes, expressed in terms of a distribution of the ON probabilities 7,
k=1,...,N, k#n. The vector T = (m, T, ..., Ty) is assumed to be common knowledge
to all nodes. This information may be derived and forwarded in a distributed manner, by
local interactions between nodes. It can also be maintained at a central database that
nodes inquire into prior to making their decision.! Each node uses this information in
making placement decisions so as to minimize its expected access cost.

By following the same arguments as in Section 2.2 under the churn-unaware case,
we can show again that a node may only evict an object that is present in other nodes in
the group. However, a node may now insert an object that also exists in one or more of
the other nodes in the group (with ON probability smaller than 1).

For an object e replicated at node n, we define the eviction loss (equal to the increase

in the expected access cost if node n evicted the object) as:

N N
Len=R{(ts—t) [ Q—m)+t—t)0— J[ 1—m) (2.3.2)
(k;énlfI:elePk) (k?fnk: eePy)

The first term is the increase in access cost if the nodes that own the evicted object are
not available and the second term is the increase if at least one of them is available.
For an object 7 not replicated at node n, we define the insertion gain (equal to the

decrease in the expected access cost if node n inserted the object) as

(R} (ts — 1), ifi ¢ P, (2.3.3a)
Gi,n = N N
R((ts —t) [T —m) + (&, —t)(1 = (1 = m))]. ifie P, (2.3.3b)
\ (k#n’szzlePk) (k;énl,ck:'}GPk)

IThe cost for such an inquiry is assumed negligible compared to the cost of accessing an object and is

not considered in the analysis that follows.
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The first term is the decrease in access cost if the inserted object does not belong to the
group and the second term is the decrease if the object exists in the group.

Notice that in case : € P_,,, although R > R}, the right-hand-side of (2.3.3b) may be
greater than the right-hand-side of (2.3.2), which substantiates our previous claim that
objects that exist in other nodes in the group may also be inserted.

Considering the eviction candidates ordered in increasing average eviction loss,
and the insertion candidates ordered in decreasing insertion gain, each node n makes
a maximum number of replacements m, with positive average replacement gain, i.e.,
AGe, i) >0, forallk =1,...,m,.

In contrast to the churn-unaware strategy, a node may benefit by playing again at a
subsequent epoch in the game, since it can insert an object that is available somewhere
in the group with low probability. We therefore also study the game in which all nodes
apply the greedy churn-aware strategy repeatedly for many rounds, until stopping. The
algorithm stops when no node can further improve their placements. As the next theorem

shows, this occurs always.

Theorem 1. The greedy churn-aware algorithm ends in a finite number of rounds, irre-

spective of the order of play in each round.

Proof. At each step of the game, each player may evict an object with a certain availability
(i.e., probability at least one of the nodes of the group that has the object is ON), to insert
another object with smaller availability. Thus, there will come a time when no further
replacements would be possible, either because nodes would not have objects in common

or because there would not be any gain by making replacements. O

In practice, the algorithm finishes very quickly. In all test cases considered here (see

later in the numerical results) the algorithm finished in 1 to 7 rounds.

2.3.1 Individual Rationality

A rational node is incited to follow a placement strategy other than the greedy local
(or selfish) one if its individual rationality constraint is met, i.e., if its incurred access

cost when all other nodes follow this strategy is smaller than its incurred cost when all
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nodes act in isolation. In this subsection, we examine in which cases this constraint can
be satisfied for all nodes.

In an environment with churn, the greedy churn-unaware strategy can easily violate
a participation constraint. We demonstrate this with the following example, which also

compares the churn-unaware to the churn-aware strategy.

Example 1. Consider two nodes, node 1 and node 2, (with capacities C7 = 4, Cy = 1)
and 5 distinct ohjects {1,2,3,4,5}. Nodes 1 and 2 have corresponding request rates* R'
= {0.5, 0.4, 0.3, 0.2, 0.1} and R?> = {0.4, 0.3, 0.5, 0.2, 0.1}. Node 1 is a relatively reliable
node with m; = 0.9 and node 2 has a variable probability between 0 and 1 for the purpose
of the example. We assume thatt; = 1,1, = 10 and t, = 100.

Suppose that node 1 plays first in the game. Under the greedy local strategy, nodes 1
and 2 will have the placements P, = {1, 2, 3, 4} and P, = {3}, respectively. Under the churn-
unaware strategy, if node 1 plays first, the resulting placements are P, = {1, 2, 4, 5} and
P, = {3}. However, if node 2 is unreliable, this may cause the violation of the participation
constraint of node 1. This is indeed shown in the results of Fig. 2.1, where for m, < 0.74
the access cost of node 1 is greater than that of the greedy local strategy. On the contrary,
in the churn-aware strategy, for mo < 0.74, P, = {1, 2, 3, 4} and P, = {5}, resulting in a
smaller cost for node 1. For my > 0.74 we have the same placements we had under the
churn-unaware strategy, and thus the two lines coincide. It is shown in Fig. 2.1 that the
greedy churn-aware strategy always performs better than the greedy local one and hence

does not violate the individual rationality constraint.

The fact - shown in the previous example - that the greedy churn-aware strategy (as
opposed to its churn-unaware counterpart) performs at least as good as the greedy local,

always holds for two nodes, as shown in the following theorem.

Theorem 2. For games with two nodes and under node churn, the greedy churn-aware

strategy is always individually rational for both nodes.

2It is noted that request rates in the examples used here are not normalized.
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3 ————

T T T
Greedy local
Greedy churn-unaware ------- )
~ Greedy churn-aware -~

Figure 2.1: Violation of the participation constraints of node 1 for 7, < 0.74 when using

the churn-unaware strategy, in the game of Example 1.

Proof. The statement of the theorem is obvious for the last node in the game. Further-
more, since the second node only evicts an object that belongs to the first node, such
action does not increase the access cost of the first node and hence the strategy is indi-

vidually rational for the first node as well. O

For more than two nodes, one can easily construct examples with nodes having
different request rates and probabilities of being available, in which the greedy churn-

aware strategy is not individually rational for one or more of the nodes.

Example 2. Consider three nodes, indexed 1, 2, 3, and five distinct objects {1,2,3,4,5}.
The request rate vectors are R* = {0.5,0.4,0.3,0.18,0.1}, R? = {0.5,0.3,0.25,0.24,0.2},
and R = {0.5,0.4,0.3,0.2,0.1}. All nodes have the same capacity, C; = Co = C3 = 3. The
single-object access costs aret; = 1,t, = 5, andts, = 10. Node 1 has the smallest reliability
m = 0.2, while Ty = w3 = 0.5. The order of play is according to each player’s index (i.e.,
first node 1, then 2, and finally 3).

When acting in isolation, the best strategy for all nodes is to locally replicate the first
three objects (greedy local strategy). The corresponding costs, which are also the security
levels for each node are: C; = 4, Co = 5.45, and C3 = 4.2.

When following the greedy churn-aware strategy, node 1 inserts object 4 in place of 3

(it does 3 < 4), which yields itself an access cost reduction of 0.045. Nevertheless at its
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turn, node 2 will also do 2 < 4, as well as 3 <— 5. Node 3 will not perform any change. The
final placements are: P, = {1,2,4}, P, = {1,4,5}, and P; = {1,2,3}.

It is anticipated that node 1 will be disadvantaged by node 2 evicting objects 2 and 3,
since it has relatively high request rates for these objects. Indeed this is the case, as shown
by the final access costs of the nodes: C; = 4.08, C;, = 4.915, and C; = 3.35. The access
costs of nodes 1 exceeds its security level, and hence the greedy churn-aware strategy is

not individually rational for this player.

¢

Nevertheless, it is possible to show that in the homogeneous case (i.e., when Rg = R{ B
for all j # j', where j,j' =1,...,N,and foralli = 1, ..., M), under additional conditions
on the order of play and the eviction policy of the players, the greedy churn-aware strategy
is individually rational for all players. The following definition embodies the additional

condition on the eviction policy of the players.

Definition 1. The cautious churn-aware strategy is defined as the greedy churn-aware
strategy, with the additional rule that a node can only evict an object if it is also evicted

either by all, or by none of the previous nodes.
The following proposition can be proved for such a strategy.

Proposition 2. In the homogeneous case, the cautious churn-aware strategy is individually

rational for all nodes, when less reliable nodes play first and the game lasts one round.

Proof. Consider the set of nodes N' = {1,2,..., N} and assume that the order of play
is as dictated by the number of each player, which also corresponds to their reliability
order; i.e., m; < my for j < j', Vj, j/ € N. Initially, all nodes have the same lists of objects
to be placed in their memory. Assume that each node starts making replacements in
its list, as dictated by the churn-aware strategy. First notice from (2.3.2) that, because
m; < 7, the cost incurred to node j by evicting an object is smaller than the cost to node
j', 7 > j, by evicting the same object. Furthermore, the gain of node j’, when inserting
the same object is obviously smaller than that of node j, when j’ > j. Suppose that node

J makes m; replacements when playing. It then follows that m; > my > --- > mny.
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Consider any subsequence of £ nodes, indexed without loss of generalityas 1,2, .../,
where m < m < ... < 7. Then each node in this subsequence makes at least my
replacements, and subsequent nodes have decreasing gains when making the kth re-
placement, £k = 1,...,m;. Denote the objects that node j removed by ey, e, ..., €m;
indexed in increasing eviction cost. For its kth replacement, the replacement gain of
node j is G;, j — L., ;. In the rest of the proof, we consider how the access cost of this
node is increased by the moves that subsequent nodes make at their kth replacement

step (if that exits), and show that the increase always remains smaller then GG L

ikvj - ekvj'

Then, since node j; makes a higher number of replacements than its subsequent nodes
(mj > mjy1 > --- > my), the total gain of node j by making its m; moves can never
become smaller than zero. Therefore node j incurs a smaller access cost under the final

placement of all nodes compared to its greedy local placement.

The access cost of node j will be increased if subsequent nodes at their kth replace-
ment remove one or more of the objects ey, e, .., €y, that node j removed. (Its access
cost is not affected if subsequent nodes insert the same objects, and is decreased if they
insert some different objects.) However, we show next that in the cautious churn-aware
strategy it always becomes lower than its cost before making this replacement.

()

We generally denote by L, ,

the average increase in access cost incurred to node j
due to node j +n evicting object e;. If node j +n is the first node that evicts object e, after

()
ek7j+n.

j and if L, ;i is the eviction cost of node j + n , it holds that L., j;, = L, ; + L

Let n; be the number of nodes that make a kth replacement after node j has played,
and consider the subsequence j+1,7+2,...,7+n; of these nodes. The object evicted by
node j+1,7+2,...,7+n, at the kth replacement is denoted by Chisp1)> Chiiaayr 0 Chiginy)?
respectively.

Without loss of generality, we assume that at their kth replacement, all nodes in
this subsequence evict objects evicted by node j (otherwise their induced cost to j is zero
and we need not include these nodes). Due to decreasing gains of subsequent nodes for
making the kth replacement, the objects evicted by a node j + ¢ are a subset of the objects
evicted by j and the index k(j; > k V/ =1,...,n;,. We now use the fact that the objects
evicted by node 7 + 2 are also evicted by node j + 1, for each pair (j + 2,7 + 1) in the

subsequence.
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The replacement gain of node j after these evictions becomes at least (since it may

be increased due to different inserted objects by other nodes)

(4) () ()
Givj— Lej — Lek(j+1),j+1 — Lesz) 2T Lek(j+nk)’j+nk (2.3.4a)
(4) (7) ()

ZGik,j - Lek(j+1)7j - Lek,(jﬂ),j-i-l B L@k(j+2) g+2 T Lek(j+nk)7j+nk (2.3.4b)

o o Ut .7
_szd Lek(]-_H) J+1 Le"’(.7'+2) J+2 Lek(j_mk) Jng (2.3.4¢)
> 2> sz i Lek, _ GAng = 0. (2.3.4d)

’ (G+ng)’
. S ‘ ()
(2.3.4c) follows from (2.3.4b) because it holds that Lek(j+1)’]+1 = Lek’(jﬂ)ﬂ + L%(HI)JJrl
(J+1) _ 7@ ; . ; ;

and Lek<j+2) 42 = Lek<j+2) j+2 (since both j, j + 1 have evicted object e, , . the same

cost is induced to both by j + 2 evicting it.) Finally, the last implication holds because

<G Lyt < Gy 4 (ikm"k) denotes the object inserted by node j +

€h(jpny) I T Ui

ng.) [l
Remark 1. The additional condition on the eviction policy - imposed by the cautious
churn-aware strategy - that an object that is allowed to be evicted by the current node is
not evicted by any of the previous nodes, is intuitively anticipated. On the other hand,
the fact that the greedy churn-aware strategy is still individually rational for all nodes
when a node evicts an object evicted by all previous nodes, is rather surprising, since we

might expect that in this case a node may incur a significant loss.

2.3.2 Potential Gain of a Node by Playing Again

A useful metric in our model is the potential gain of a node by playing again after a
number of steps in the game. This gain is defined as a node’s reduction in mean access
cost if it were to play again after a number of steps in the game. Intuitively, a strategy
that is close to being stable yields small such gains to all nodes.

A node 7, j = 1,...,N — 1 may obtain a benefit by playing again if one or more
subsequent nodes evict an object e evicted by j - in which case j may benefit by reinserting
e -, or one or more subsequent nodes insert an object owned or also inserted by 7, in
which case j may benefit by evicting it and inserting another object.

Intuitively, if more reliable nodes play first, potential gains of nodes in next rounds

are expected to be small, since the first nodes, who are more likely to be further away from
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an optimal placement, refrain from making changes when other nodes are less reliable.

In the homogeneous case, we can state the following proposition.

Proposition 3. Consider a set of N nodes {1,2,..., N}, where R' = R> = --- = R, and
more reliable nodes play first. Suppose that at a subsequent epoch after node j has played,
j =1,...,N — 1, a number of players evict an object e that was also evicted by node j
and another number of players insert an object © also inserted by j. Say the last node that
evicted object ¢ was j + n,, and the last node that inserted object © was j + ns. If ng = ny V

(e, 1), then at this epoch L; ; > G. ; and node j does not obtain a benefit by playing again.

Proof. We consider that players are numbered according to their order of play and m >
my > ... > my holds. The insertion gain of node j when reinserting object e equals the
eviction cost of the last node after j that evicted the object. So G¢; = Le jin,. If the last
node that inserted object ¢ was j + no, since m; > m;,,,, we also have that L, ; > G j1n,.

If n; = ngy, then since we necessarily have G; j1,, > Le ji,, it follows that L; ; > G.;. O

We also examine this issue in numerical examples shown in the next section.

2.4 Implementation cost of placement strategies

In the following we calculate the implementation cost for the greedy local and the
cooperative replication strategies, without including the cost for calculating reliability
estimates. The implementation cost includes two components: the cost of deciding which
ones to store locally and the cost of retrieving them and storing them in local memory.
Throughout the analysis that follows, we assume for simplicity that all nodes have the
same storage capacity C'; extending the analysis to scenarios with nodes having non-
uniform storage capacity is straightforward. Moreover, we assume that all communication
links have sufficient capacity, and that nodes’ requests for objects cannot be rejected
because of congestion in other nodes or the remote server.

Under the greedy local strategy each node locally downloads its C' most preferred
objects. For each node, the average cost of placing the M objects in decreasing order of
preference is O(MlogM ), with a comparison sort algorithm such as Heap sort or Merge

sort [Cormen et al., 2001]. Since we have /N nodes, the total cost of the sorting operation
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is NO(MlogM) = O(NMIlogM). Then each node has to retrieve the first C' objects
from the distant source. The total cost of this operation is NCt,. Therefore the total
implementation cost of the selfish strategy is O(NMlogM) + NCt; = O(NMlogM) since
C't, is constant and C' << M.

The cost of a cooperative replication strategy is the cost of the greedy local plus the
cost of object replacements the nodes make after viewing the placements of the other
group nodes. Each node will do up to C replacements. Note that the objects can already
be sorted in order of increasing eviction cost (in the local memory of each node) and
decreasing insertion gain (in the central server), as part of the previous step of ranking
objects in decreasing order of preference; hence, extra sorting costs are saved and the
total cost O(NMlogM) + NCts + O(NC) = O(NMlogM) remains comparable to the
greedy local strategy. However, we need to also consider the additional cost of the process
through which each node is informed about the placements of the other nodes. Generally,

this process could run in two ways:

e In a centralized manner: each node uploads its placement in a central database.
Then, each node downloads from the database the placements of other nodes. We
have NC' upload operations and N(N — 1)C' download operations, so assuming a
fixed cost for each operation the total cost is O(N?). Therefore, in the centralized
case the total cost is O(NMlogM + N?), if we let aside the cost of setting up and

maintaining the central database.

e In a distributed manner: each node transmits its placement information individually
to other nodes. In the worst case, each node would transmit the information to all
other nodes, which requires N(N — 1)C operations. Therefore, in the distributed
case the total cost is again O(NMlogM + N?).

We see that the cost of a cooperative strategy remains polynomial in N, M. It is
noted here that an optimal placement of objects - so that the sum of access costs of all
nodes is minimized - requires a complete knowledge of the group’s characteristics (de-
mand patterns of all nodes in the group) and a solution to the associated optimization
problem. The latter is a 0-1 programming problem, and is generally classified as NP-hard

[Schrijver, 1998]. When all nodes are available with probability 1, it can be transformed
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into a linear problem (see Proposition 1), but in the general case with arbitrary ON proba-
bilities it is a problem of degree N, which is extremely difficult to solve even with numerical

methods.

2.5 Numerical evaluation of content replication strate-
gies under node churn

Here we present some numerical examples to show how the different object replace-
ment strategies perform in a replication group under node churn. We are interested in
analyzing cases where nodes have similar preferences for objects, so that mutual benefits
emerge by cooperation. Request rates for each node are drawn from a Zipf distribution
with exponent s. The probability of the object with rank £k, k =1, ..., M, is

1/k°
En]\le 1/ms .

We first consider the simplest case where nodes have the same request rates. Fittings

f(kss, M) =

based on real traces in [Breslau et al., 1999] have shown the value of the exponent s of
the Zipf distribution to lie between 0.8 — 0.9. Here we take s = 0.9. The total number
of nodes in the replication group is varied from 10 to 100. Each of the N nodes has a
capacity to hold 10 objects in its local storage, and there exists a total of M/ = 500 objects.
The reliability of each node is chosen uniformly in [0, 1] and experiments are repeated for
100 random instances. We set t; = 1, t, = 10 and ¢, = 100 cost units.

In Fig. 2.2 we show the average access cost over all nodes and all instances. As the
number of nodes increases, more objects are available in the replication group. Thus,
the cooperative (churn-aware and churn-unaware) replication strategies produce higher
gains over the greedy local strategy. However, there is no further gain after some number
N, as anticipated. As shown in Fig. 2.2(a) (with nodes having the same Zipf distribution
with s = 0.9), this limit is close to M /C. For values of N > M /C' there is enough storage
capacity to replicate all server objects in the group, and there is almost no further gain by
adding more nodes. Furthermore, the fact that nodes rely more on other group nodes to
retrieve content implies that their reliability plays a greater role. Hence, although there is

a reduction in the access cost using both strategies, this is progressively more significant
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for the churn-aware strategy.
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Figure 2.2: Average node access cost for different total number of nodes.

We also took results where nodes have different values of s. We examined the case
where the interests in the objects are drawn from Zipf distributions with different exponent
s for each node. We let s = 0 for the first node (uniform interest distribution) and
s = p(n — 1) for node n, n € [2,N], where p = 1/(N — 1) is an increment parameter.
Results are shown in Fig. 2.2(b). Compared to the previous case of homogeneous interest
distributions, in this case most nodes have smaller s parameter values and thus their
interests are now more uniformly spread over the set of objects (the first-ranked objects).
Thus, for small values of N we observe higher access costs (smaller cooperation gains)
compared to the results in Fig. 2.2(a). Further, the churn-aware strategy does not give
significantly smaller cost compared to the churn-unaware one. Only as the number of
nodes increases, we arrive at gains that are comparable to the case of homogeneous

request rates. Indeed, when nodes in the group have more uniform preferences, high
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cooperation gains exist for large numbers of nodes as is illustrated more clearly by the

next set of experiments.

Here we examine the gains under node churn when nodes have uniformly random
preferences. For this case, request rates for each node are drawn uniformly in [0, 1], and
experiments are averaged over 100 random instances. The results shown in Fig. 2.2(c)
again attest that there are significant gains that can be achieved with the churn-aware
strategy. Under uniformly random preferences, the similarity of interests between nodes
is relatively smaller compared to the previous case of Zipf distributions. However when
there is a large number of nodes, the probability that similar content exists in some other
active node increases. This is why the gains by content retrieval from nodes in the group
increase as the total number of nodes increases, and gains may exist even when nodes
store content solely based on their own interests. The relative difference between churn-
aware and churn-unaware or greedy strategies also increases as the number of nodes
increases. Overall, we conclude that large groups favor cooperation to a larger extent,

and this is aggravated when nodes have more uniform preferences.

We next want to study the individual node access cost, setting a smaller number
N = 10 nodes and a total of M = 50 objects. We mainly examine the case where nodes
play according to a random order. To assess the impact of the order of play, we also
examine two additional orderings based on the reliability of nodes: a) Least Reliable First
(LRF) where nodes play in increasing order of their ON probabilities, b) More Reliable First
(MRF) where nodes play in decreasing order of ON probabilities.® The cost parameters are
the same, and we consider that all nodes have the same Zipf distribution with s = 0.9. The
(mean) access costs of all nodes under the different orderings are shown in Fig. 2.3. The
vector m = |7y, T, ..., x| of ON probabilities for each examined order of play is shown in
the title of each sub-figure. It turns out that both the churn-aware and unaware strategies
outperform the greedy local, producing smaller costs for all nodes (hence participation

constraints are satisfied for all nodes).

SIn practice, a central coordinating entity is required to enforce a specific ordering, that authorizes each
node to access the lists of placements of other nodes only at the specific order. Therefore, these test
cases have mostly a theoretical interest. In the examples, we also consider that the same order of play is

maintained in each round.
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Figure 2.3: Access cost for different placement strategies with different node orderings.

In assessing the impact of the order of play, we remark that the greedy churn-aware
strategy clearly outperforms the churn-unaware under the LRF ordering (Fig. 2.3(b)). The
reason is that under the LRF ordering, the churn-unaware strategy results in many high
request rate objects being stored at less reliable nodes (more reliable nodes falsely trust
high request rate objects to be accessible from the previous nodes, while it would be
better to have them stored locally). Thus, we can say that the LRF ordering is unfair
under this strategy because it leads more reliable nodes to erroneous placements. Such
placements occur less frequently when the order is MRF, in which case the churn-aware
strategy does not present a significant advantage over the churn-unaware one and their
performances are close (Fig. 2.3(c)). Finally, since the churn-aware strategy yields a
significant improvement over the churn-unaware, for both the random and LRF orders,
we remark that fairness problems are mitigated under the churn-aware strategy.

An important observation shown in both Fig. 2.2, 2.3 is that there is no significant

Eva Jaho 67



Cooperative network information dissemination and retrieval

access cost reduction by repeating the churn-aware algorithm for multiple rounds. In
Fig. 2.3, we notice that this yields extra benefit only to some nodes; depending on the
order of play, some nodes may benefit from the extra rounds, which usually occurs at
the expense of others. The potential gain of each node by playing again after one round
under the churn-aware algorithm and the various orderings is shown in Table 2.1. Under
the MRF ordering, the algorithm stops in the first round and thus all potential gains are
zero*. Under the other orderings, we remark that only the first few nodes attain a benefit
by playing again, since they are more likely to be farther from an optimal placement. In
any case, benefits are small when compared to the access cost values (see Fig. 2.3), and

hence nodes have a small incentive for playing again.

Table 2.1: Potential gains of nodes by playing again after 1 round.

Potential gain

Node 1 2 3 4 5 6 7 8 9 10
LRF 1.52 161 083 193 O O O O O O
MRF 0 0 0 0 0O 00 OO0 O

Random order 2.81 2.73 0 294 269 0 0 0 O O

We end this section by summarizing our findings. While the proposed algorithm
we presented may not arrive at an equilibrium, we have shown that it possesses good
properties: in the majority of cases, it decreases the access cost collectively for all nodes,
compared to the greedy local or the churn-unaware strategy. Although individual ratio-
nality is not guaranteed, participation constraints (i.e., not loosing by participating) are
easier met compared to the other strategies. For the case of two nodes it is shown that
the churn-aware strategy is always rational for both nodes. Furthermore, if nodes having
the same request rates for objects play according to a least-reliable-first ordering, the
modified version of the proposed strategy “cautious churn-aware strategy” is shown to be
individually rational for all nodes. Finally, the greedy churn-aware strategy provides for a
fairer treatment of nodes according to their reliability, while the churn-unaware strategy

can lead to higher access costs to more reliable nodes.

4The analysis in Section 2.3.2 justifies this result to some extent.
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Chapter 3

Impact of social similarity on content

replication

Networks today can be highly personalized, in the sense that their structure and us-
age are shaped by the personal interests, or behavior in general, of the participating nodes.
Nodes in such networks - referred to as social networks - are typically well connected,
develop reciprocal trust relations, and share some attributes, such as content interests and
locality. Groups of such nodes are called social groups [Scott, 2000]. Here the charac-
teristics of the social group are exploited to address the dilemma: which strategy a node

participating in a distributed replication group should follow.

3.1 Introduction

In the previous chapter we referred to the following three strategies (under no node

churn):

e The selfish strategy requires no interaction with and guarantees no mistreatment
by the other nodes; on the other hand, both the node itself and the group could

benefit more by following another strategy.

e The self-aware cooperative strategy outperforms the selfish strategy both at the
individual node and group levels, while it ensures no mistreatment of individual

nodes; on the other hand, it does not maximize the group benefit, while it introduces
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complexity that increases with the group size and may outweigh the benefits for

individual nodes.

e The optimally altruistic strategy yields the maximum possible benefit for the entire
group. On the other hand, it can mistreat certain nodes (with the risk of inciting
them to leave the group) and requires heavier interaction with the other nodes
of the group (increasing complexity); these interactions could be lighter under a

centralized derivation of the optimal placement.

In view of the above it is evident that a node participating in a distributed replica-
tion group can face a dilemma as to which strategy to follow. To this end, we follow an
innovative approach to the characterization of the nodes’ similarity within a social group
and introduce a group tightness metric, which explicitly accounts for the level of simi-
larity of their content preferences. Our work highlights the impact of group tightness on
the induced social and individual node benefits under the three aforementioned content
placement strategies, which reflect general patterns of social behavior. On a more prac-
tical note, it draws important conclusions/guidelines regarding the kind of placement
strategy a node should adopt for given levels of tightness in the social group.

This study has applications to social networks featuring interactions between com-
puter devices with limited memory resources. These are typically encountered in mobile
opportunistic networks that are additionally “socially aware”, meaning that either the
nodes or their human users are aware of the formation of social groups and the potential
benefits from participation in such a group. The underlying assumption is that there
are multiple groups, and we focus on the behavior regarding the exchange of information
objects between nodes inside a single group. Studying content access patterns, especially
between nodes in a social group is quite important to assess the viability of various net-

working paradigms, e.g., the opportunistic wireless networking and some P2P systems.

3.2 Group tightness metric

Each one of the three placement strategies presented in Section 2.2 resolves differ-

ently the multiple tradeoff among: a) the performance of individual nodes and of the entire
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group; b) the possibility of individual nodes being mistreated and the respective (lack of)
incentives for cooperation; c) the required communication overhead and computational
complexity for each strategy realization. The obvious question then for a node-member
of the social group is which strategy is the most "appropriate” to follow. In this section,
we introduce a metric, which we call tightness, for the similarity of interests within the
social group that can be of help in reaching a conclusion.

The definition of tightness draws on the symmetrized Kullback-Leibler (KL) divergence
[Kullback, 1959], a well-known measure of divergence between two distributions. The

Kullback-Leibler divergence of distribution () from S is defined as:

Dsq =Y S(m)log S((m)

Q(m)
and its symmetrized counterpart is D(S||Q) = Dgso + Dg.s.
The average divergence of nodes’ preferences within the group can then be written

as: o
.~ 2y DRR)
Dp =
N(N =1)/2

(3.2.1)

where the summation above is carried out over all N(N — 1)/2 ordered node pairs (3, j).
It is reminded that R’ denotes the preference distribution of node ¢ over a set of interest
classes. Finally, we define tightness 1" to be the inverse of D R:

1
T=—.
Dr

(3.2.2)

We elaborate on computational aspects of the tightness metric in the following.

3.2.1 Computation of tightness metric

Brute-force computation of the tightness metric as (3.2.1) suggests, requires W =
2MN(N — 1) multiplications and W — 1 additions, noting that alogy = aloga — alogb.
It is possible to reduce the number of elementary operations significantly if redundant
operations are avoided.

There are two kinds of sums that repeatedly emerge in (3.2.1). The first one, s, is the
sum of product terms Z Rj»logRé over all M content objects, where R; is the normalized

JEM
preference of group node i, ¢ € N, for content object j, j € M. There are N such sums,
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one for each group node. The second type of recurring terms are those summing the
(normalized) preferences of all nodes for a given content object, Z R; There are M such
JEN
sums, as many as the content objects.
The computation of tightness can proceed by successively considering each node
n, computing the respective sum s.(n) and updating the sums s(j) based on the con-

tent preference distribution R". This computation requires 2)M/ N multiplications and

approximately 3M N additions.

Algorithm 1 Iterative computation of the tightness metric
Initialization

fori=1,2 s.(i) ZRZlogRZ
JjeEM
forjeM s(j) < Rj+R;

Iterative part

for all i € 3..N do
Se(i) Z RilogR!

jeM
forall j € M dos(j) < s(j)+ R}

D+ (N—=1)) sc(i)= > > (s(j) — R})logR!

1eEN 1eN jeM
N(N-1)

T + T3]

3.2.2 Why tightness as a metric?

In principle, various measures of distributional similarity could quantify the sim-
ilarity of content preferences across the nodes of a group. For example the Spear-
man’s rank correlation coefficient [Myers & Well, 2003], the Kolmogorov-Smirnov dis-
tance [Wang et al., 2003], the proportional similarity index [Vegelius et al., 1986], and
the total variation distance [Denuit & Bellegem, 2001]. Compared to them, the proposed
tightness metric has the following advantages:

Sensitivity to rank-preserving dissimilarity: Contrary to metrics such as Spearman’s

rank correlation coefficient, tightness can capture dissimilarity of interests among nodes
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that may rank the objects similarly, yet focus with different intensity on the top-k content
objects (see rank-preserving dissimilarity case in Section 3.3).

Account of full preferences’ profiles: Contrary to the the Kolmogorov-Smirnov (K-S)
distance metric, which considers the supremum of the differences over all elements of
a distribution, the KL divergence accounts for deviations across the whole distribution.
Thus, the proposed tightness metric captures more accurately the overall distributional
(dis)similarity.

Broader range of values: In contrast with the proportional similarity and total varia-
tion distance metrics [Vegelius et al., 1986], which yield values in [0, 1], tightness values
vary in (0, +00). Therefore it can resolve easier finer levels of distributional divergence. In
the following chapter, we will show how this property of the tightness metric can benefit
a different task, that of community detection, by modulating its resolution.

Finally, we should note that when some element values of one of the distributions are
zero while the corresponding elements of the other distribution are not (i.e., the request
rate of a node for an object is zero), the KL distance value approaches infinity. In order to
avoid such problems, smoothing methods such as interpolation and backing-off schemes
can be used for providing reliable probability estimates. These methods have been studied
in statistical language modelling in order to estimate the distribution of natural language
elements as accurately as possible. In our case, non-zero request rates for objects can
be discounted with different discounting methods (see [Mori, 1997]), whereas all other
non-requested objects can be given a minimal € probability. Here, we will consider that
all nodes have probability mass (i.e., positive request rate) for all content objects, so that

we do not need to apply any smoothing method.

3.3 Dissimilarity patterns for performance evaluation

Tightness expresses the similarity of preferences among the nodes of the social group
and is always greater than or equal to zero. In fact, 7" — oo when the group nodes have
very similar preferences and 7' — 0 when they have very diverse preferences. As 7' is an
average metric over all node pairs of a social group, it is clear that any given value of T

may arise under different combinations of node level content preference distributions.
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The content preferences of nodes are modeled by Zipf distributions with variable
shape parameter s, i.e., the normalized interest of node n for its k" most interesting ob-
jectis (1/k)*/ Z%zl 1/m?. Zipf distributions combine modelling simplicity with flexibility
in that proper manipulation of their shape parameter s, gives rise to a wide set of distribu-
tions ranging from uniform (s = 0) to highly skewed ones with power-law characteristics
(s >>0).

In order to draw more insightful conclusions in the current study, we distinguish

between the following two broad patterns of dissimilarity in the preference distributions.

3.3.1 Rank-preserving dissimilarity

The rank of the objects remains the same for all group member nodes, i.e., the m'

most popular object for all nodes is the same, m € [1,M]|. However, the preference
distributions become more concentrated towards the highly-ranked objects as the shape
parameter s increases.

More specifically, the interests R’ in the object m, m € [1,M], are drawn from
Zipf distributions with different exponent s for each node. We let s = 0 for the first
node (uniform interest distribution) and s = p(n — 1) for node n, n € [2, N|, where
p € R is the increment parameter. As shown in Table 3.1(a), under the (object-)rank-
reserving dissimilarity scenario, tightness is a monotonically decreasing function of p. As
p increases, the content preference distributions of nodes diverge more strongly, resulting

in higher pairwise KL divergence values between any two node distributions.

3.3.2 Shape-preserving dissimilarity

The preference distributions are identical in shape for all nodes, yet the ranking of a
given object differs from node to node, i.e., the m'*,1 < m < M, most popular object for
each node is different. The dissimilarity of nodes can be more dramatic in this case and
lower tightness values are expected on average.

Contrary to the rank-preserving dissimilarity scenario, the request rates R are
drawn from a Zipf distribution with the same exponent s for all nodes. The object prefer-

ence rank for first node is [1,2..., M] and is shifted to the right by k(n — 1) positions for
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Table 3.1: Example tightness values when M = 50 and N = 5.

(a) rank-preserving (b) shape-preserving

p Tightness (T) || k Tightness (T)

0.0 00 0 00

0.2 2.0861 1 0.3688
0.4 0.4614 2 0.2674
0.6 0.2398 3 0.2294
0.8 0.1697 4 0.2089
1.0 0.1362 5 0.1962

node n,n =1,..., N, where k € [0, M — 1] is the shift parameter. For example, the most
preferable object for node n is the one with index u = mod(k(n — 1), M) and its object
preference rank is [u,u + 1,..., M, 1,...u — 1]. Table 3.1(b) lists the values of tightness for
various values of k. Notably, tightness is a monotonically decreasing function of the shift
parameter k for k values satisfying (N — 1)k + C' < M. As k increases in this interval,
the divergence in the content preferences between any two nodes increases. Generally,
the numerical values of tightness are smaller than in the rank-preserving dissimilarity
scenario. Even for small values of k£ (e.g., k=1), the divergence is high enough to reduce

tightness below 0.37.

These two broad dissimilarity patterns let us control systematically yet simply the
extent of similarity in the preferences of group nodes. Since Zipf distributions capture
the content preferences of a single group member, we can differentiate the distributions
(hence, the content preferences) by adjusting two properties, their ranking of objects and
skewness parameter s. In other words, the parameters s and k serve as tuning knobs
with predictable effect. The shape parameter s gives rise to a wide set of distributions
ranging from uniform (s=0) to highly skewed ones with power-law characteristics (s > 0).
The permutation (or shift) parameter k shuffles the ranking of preferences across objects.
Tuning the two parameters, we can synthesize a very broad range of possible dissimilarity
patterns across the social group. We exercise this flexibility in the analysis that follows

in Section 3.4 and the numerical evaluation in Section 3.5.
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3.4 Analytical derivation of placement cost

The expected total access cost under the altruistic strategy can be numerically com-
puted, at least for small values of M, NN, after solving the ILP problem (2.2.4) and deriving
the optimal placements that minimize this cost. The expected total costs incurring from
the altruistic and selfish strategies constitute lower and upper bounds, respectively, for
the expected total cost incurring from the self-aware cooperative strategy. Herein, we
derive analytical expressions for the expected per-node access cost under the selfish
and self-aware cooperative content placement strategies for the two content preference-

dissimilarity patterns described in Section 3.3.

In our analysis, the group nodes are indexed in order of increasing Zipf distribution
exponent s (for the rank-preserving dissimilarity) and distribution-shift & (for the shape-
preserving dissimilarity). For content items, on the other hand, two kinds of item indexing
become relevant: the “global” one, enumerating all objects in decreasing preference order
of node 1; and, the local node-specific ones, which index objects in decreasing preference
order of the respective nodes. The two types of indexing coincide under rank-preserving
dissimilarity; whereas there are /N different local indexings, one per node, under shape-

preserving dissimilarity.

3.4.1 Selfish placements

When the nodes behave selfishly, it is possible to analytically compute the amount
of content they access from the three levels of data storage, i.e., locally C}, remotely from
the caches of the group member nodes C,, and externally from server(s) or nodes in other
social groups C, as well as the resulting access costs. We treat separately the two generic
dissimilarity patterns described in Section 3.3.

Ranlc-preserving dissimilarity, p # 0: All nodes store locally the same C' content items
that commonly rank top at their preferences and access the remaining M — C' items from
external sources. What changes with p is the preference amount that is concentrated in
the C items each node stores, which is controlled by the exponent s, = p- (n — 1) in the

Zipf content preference distribution. Therefore, C; = C, C,. = 0, and C;, = M — C for all
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nodes and the overall access cost for node n, is given by

c . o
Iy Z;'VLCHJ o

Cl(P) = =—t+ =5—t, (3.4.1.1)
Do de > J
SO, gy SN e
- zwl ty + t

S e S e

Shape-preserving dissimilarity, k # 0: Now, the C' items each node stores locally are,
generally, different than those other nodes store. Assuming that the number of content
items exceeds the cumulative group storage capacity, M > N - C, we can distinguish two

possibilities:

1121314/516171819A0 .0 .. | | | | [ | || 1] .. M|
c index of objects

e T Y T N Y B I Ll ||

node 1 K

«—

L P [

node 2

access from other access from access from other
nodes’ storage local storage nodes’ storage

T T ey B Lo |

node n

access from server
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node N

(a) k < C. partial overlapping in local storage
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(b) k > C, each nodes stores different items

Figure 3.1: Objects stored at different group nodes under shape-preserving dissimilarity.

a) k < C: There is partial overlapping in the preferences of two (or more) nodes (Fig.

3.1(a)). Each node accesses C, = (N —1)k items from the storage of the other group nodes
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and Cy = M — C — (N — 1)k items from the server(s). As the shift parameter k increases,
the nodes of the social group cumulatively store and can access from each others’ storage
more content. Yet, nodes with higher index n have to access more items ranking higher
at their preferences from external sources since they are not stored by any other group
member. Worst of all, the node N has to fetch the content items ranking at positions
[(C+1),(M — (N —1)k)] in its own preference distribution at cost ts, whereas he can get
access to content objects in positions [M — (N — 1)k + 1, M] through the storage of the
other group nodes.

The content access cost for node n can be written

C g M—(n—1)k s
1] 2= (N—nyki1 )
C(P) = Ziwl — ity SRy (3.4.1.2)
> >
C+(N-n)k ._g M s
n ijc(’-i-l : J Zj:M—(n_Uk_H] ;

Zjﬂil J° Z]Ail J*

b) k > C": There is no overlapping in the items each node stores locally in its cache
(Fig. 3.1(b)) so that N - C' different content items are stored within the group. The rest
of the Cs = M — N - C objects have to be fetched from external sources. As long as
N -k + C < M, the access cost increases with higher k£ and node index n values. The

resulting content access cost for node n is given by (3.4.1.3).

ZC s N—n —i(C+Ek)+C i—s  n-1 M—i(k+C)+1 js
C+k)+1 j=M—ik—(i—1)C+1
i) =S+ | > = > t
M M M r
Zj:l.] s i=1 Zj:l] s i=1 Zj:l] 5
N i(C+k) . 1 —ik—(i—1)C M—(n—1)(C+k)  ._
. Z:n JmiC (= Dk1d +nz:zg M—(i— 1 ety d Z(N—n+1)(c+k)+13 ° y
M M M. s
i—1 Zj:l] s i—1 Zj:l.] s Z] 17°°
(3.4.1.3)

Identical uniform content preferences: This represents an extreme case of zero dis-
similarity in the preferences of group nodes. It results from the general rank-preserving
dissimilarity scenarios when p = 0, and from the shape-preserving dissimilarity scenar-
ios, when s = 0.

Contrary to the general dissimilarity scenarios, the distribution of content objects at

the three storage levels and the corresponding access cost are no longer deterministic.
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min(z,C) min(z—i2,C)
Pr(X<C+z)= Y  h(issM,C,M—C) > h(is; M,C,M — C —ip)... (3.4.1.4)
i19=0 i3=0
min(z—l—Z?:_Q1 i5,0) n—1 min(z—Zj\;—Ql i5,C) 1
h(z’n;M,C,M—C—Zij)... Z h(in; M,C, M — C — Zij).
in=0 =2 in=0 =

The C' objects stored locally at each node are randomly chosen out of the full set of M
objects so that the total number of different objects collectively stored at the caches of the
N group nodes is a random variable X, C' < X < M. As earlier, the cost for each node
consists of two components: a) the cost (X — C) - t,./M of accessing the X — C' objects
stored at the caches of the other N-1 group nodes; b) plus the cost (M — X) - t;/M of
accessing the remaining M — X content objects from the server.

The probability distribution of the random variable X is given by (3.4.1.4), where
h(z; L,r,T) is the hypergeometric probability distribution. It expresses the probability
that a hypergeometric experiment, i.e., the random selection without replacement of an
r-size sample, where the population consists of L items and 7" of them are classified as
successes, results in exactly x successes.

Assume, without breach of generality, that the N nodes choose objects to store se-
quentially. The first node may choose any C' items. Then each of the N-1 remaining nodes
carries out a hypergeometric experiment, whose sample size ' and total population of
objects M remain the same, whereas the number of items that can be considered suc-
cesses in the n'"* draw declines according to the outcome of all previous n-1 experiments.
Likewise, the selection of the first node could be viewed as a hypergeometric experiment,

where the number of success items equals the total content item population M.

The expected value of X is

E[X] = i(C+z)~[PT(X§C+2)—PT(X§C+,Z—1)],

z=0

where Pr(X < C — 1) =0, and the expected per-node content access cost becomes
1
Ci(P) = T7LCti+ (BE[X] = C) -, + (M = BX]) - ] (3.4.1.5)
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3.4.2 Self-aware cooperative placements

The selfish placements analyzed above are the starting point for the self-aware co-
operative placements. In the second step of the strategy, nodes take turn in adjusting
the selfish placements of the first step evicting objects that are replicated elsewhere in
the group and inserting new ones, not yet stored anywhere in the group, inline with the
properties (P1)-(P3) listed in Section 2.2. In general, by the end of the second step, each
node n has retained the first j,, objects of the initial selfish placement and inserted C' — j,
new ones, which are not replicated anywhere else in the group, according to property

(P2).

Rank-preserving dissimilarity

By the end of the first step, the selfish strategy gives rise to full replication of the same
C objects in the group so that candidates for insertion are objects with global indices in
[C+1, M]. Let s, be the exponent in the Zipf preference distribution for node i with, s; < s;
for © < 7, and consider the first node just before executing the second step (placement
adjustment). Depending on its distribution skewness, node 1 will retain j; objects in its
cache, 1 < j; < (C, and remove the rest, where
t, —t ts —t

e (2C—u+ll)81}’c)

20+1
1+(M)1/81J7 )

tr—t

i = min(maz{u :

= min(| (3.4.2.1)

namely, the maximum item index of those stored locally in the first step, for which the
benefit of retaining it in the local storage exceeds the insertion benefit from the next most

preferred item among those not yet stored elsewhere in the group (Fig. 3.2).

Since nodes only insert non-represented objects in this step (P2), candidates for
insertion by the second node will be the objects [2C — j; + 1,3C — j;|, and generalizing,
by the n'" node, the objects [nC' — S_7—" 5, + 1, (n + 1)C — 327~/ 5i]. The number of items
retained locally by node n is
tr — 1 ts — 1

S > n—1 .
Lon [(n+1)C =377 ji —u+ 1]
(n+1)C =575 i+ 1
1+ (La=tL)1/sn

tr—1;

1)

Jgn = min(maz{u :

= min(|

1,C) (3.4.2.2)
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Figure 3.2: Self-aware cooperative strategy, rank-preserving dissimilarity: evicted and

inserted content items per node.

Moreover, the index of the last inserted object in the group, after all N nodes have
finished with their second step, is in,,,, = NC — ZZ 1 jZ With these quantities at hand,
we can state the following result for the level of object replication at the caches of the

group nodes.

Proposition 4. Under the self-aware cooperative placement strategy and rank-preserving
dissimilarity across nodes’ preferences, the number of replicas within the group is: N for
objects with (global) indices in [1, j1] (full replication); r,1 < r < N, for objects with indices
in [j1 + 1, C]; one for objects with indices in [C' + 1, in,q.] ; and, zero for objects with indices

in [iNmae + 1, M].

Proof. We first prove that the number of evicted /inserted objects decreases with the node
index; namely

Jn S gnppforl1 <n < N -1 (3.4.2.3)

so that the items of the selfish placement retained by node n are a subset of those stored
by all nodes m with m > n. It can be easily checked that

_ (n+2)C—Z?:1jZ-+1 > (n+1)C - Zz 1 j2+1
o 1+ (@)1/3,&1 1+ (ts tl)l/sn

tr—1; tr—1

=b (3.4.2.4)
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since s,41 > s, and j, < C. Hence, it can only hold j, = j, 1, when |a| = |b]; or,
Jn < Jns1, in all other cases.

Therefore, the j; objects retained by node 1 are also retained by the remaining /N — 1
nodes, i.e., all j; objects are fully replicated. The objects [C' + 1,in,,,| are those objects
that are inserted during the second step of the strategy. As such, they cannot be inserted
more than once in the group, due to (P2). Items with intermediate indices are surely
replicated more than once but less than N times. In fact, the number of replicas is N — 1
for objects [j; + 1, jo] when j; < j» < C. Likewise, the replication count is N — n for

objects [j, + 1, j,11] whenever j, < j,.1 < C. 0

Corollary 3.4.1. The original selfish placements of all nodes remain intact during the

second step when
ts — 1

P— W <141/C (3.4.2.5)
r = U

(

Proof. The self-aware cooperative placements coincide with the selfish ones if j; > C.

Replacing j; from (3.4.2.1), the condition follows directly. O

Likewise, we can derive the condition for inserting (N — 1)C items during the second

step so that eventually NC' different items, be stored within the group.

Proposition 5. Under the self-aware cooperative placement strategy and rank-preserving
dissimilarity, NC' different content objects will be stored in the caches of the group nodes,

each represented only once, if taiy
—

log($=)
log(NC)

Sy—1 < (3.4.2.6)

Proof. To have all objects only once replicated within the group, nodes [1,N-1] should
replace all C items of their original selfish placements with non-represented ones. The last
node, node N will always retain its original selfish placement since these most preferred
objects will not be replicated anywhere else in the group, hence it cannot evict them (P1).
Therefore, objects [nC + 1, (n + 1)C|,1 < n < (N — 2) should be inserted at node n; the
ultimate requirement is that the object NC' replaces the first, most preferred object, of

node N — 1,
ts - tl tr - tl
> .
(NC)SN—l 15N=-1
Solving for sy_; yields (3.4.2.6). O

(3.4.2.7)

Eva Jaho 82



Cooperative network information dissemination and retrieval

With these results at hand, we can compute the per-node access cost as

jn M
Zi_sn § Z'—Sn
i—1 i=in
CI(P) = S—t + =t (3.4.2.8)
S S
i=1 i=1
Mmaz (n+1)cle":1jl
Sy e
i=jnt+1 i=nC—Y 17 i+l
+ =1 tr

M
>
=1

whereby the objects that a node eventually accesses from the other group nodes’ caches
are the full set of non-represented objects that are inserted at the second step of the

strategy (algorithm) minus those locally stored at that node.

Shape-preserving dissimilarity

As with selfish placements, we need to distinguish between two cases:

a) k > C: assuming that N(C' + k) < M, the selfish placements in the first step
result in the placement of NC' different objects in the caches of the group nodes, each
one represented only once. According to (P1), nodes do not evict objects from their caches;
hence, the placements under the self-aware cooperative placement coincide with those
under the selfish strategy.

b) k < C': the selfish placements give rise to overlaps in the contents of nodes’ caches.
The number of different objects that are placed in the whole group are my; = (n — 1)k +C
and their replication count varies in [1, | £]]. Moreover, for k < |C//2], the m,— 2k objects
stored by the group nodes feature at least two replicas and could be evicted by one or
more group nodes in the second step.

Whereas, the exact computation of the per-node access cost in this case is cumber-

some, it is easier to prove the following result.

Proposition 6. The placements under the self-aware cooperative strategy and shape-
preserving dissimilarity across nodes’ preferences coincide with the selfish placements

when
ts - tl

k/C > (t vy

e —(141/0) (3.4.2.9)
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Proof. The two placements will coincide as long as no object evictions/insertions are made
during the second step. Given that the local indices of objects [my + 1, M], hence their
preference rank, increases for higher node indices, two conditions should be met so that

nodes’ original placements do not change.

e the (N — 1) node should not (find it profitable to) evict its least preferable object

currently in its cache.

¢ the last node should not (find it profitable to) evict its least preferable object that is

replicated in the group.

The first condition translates to

t —1 ts — 1 C+k:+1> te — 1

1/s 4.2.1
s (Crkrlr . C SR 642,10

whereas the second condition can be expressed as

t, — 1 - ts — 1 :>C+1>(ts—tl
C—kr (Cx1F C—k ‘b1

)i/ (3.4.2.11)

since (C'+1)/(C—k) > (C+k+1)/C, Vk > 0, the first inequality is the active constraint
and (3.4.2.9) results trivially. O

Therefore, equations (3.4.2.5) and (3.4.2.9) already suggest that the placements
emerging under the self-aware cooperative and selfish strategies tend to coincide as the
exponents of the Zipf preference distributions (s; o p for rank-preserving dissimilarity)
and shift parameter k increase. In other words, since tightness decreases with s and &
(see Table 3.1), the gain under cooperation fades out as the content preferences of nodes

diverge. We elaborate on this result in the next section.

3.5 Evaluation results for different similarity patterns

The numerical examples in this section illustrate how group similarity, aka tightness,
shapes the tradeoffs induced by the three behavior-based content placement strategies.
Therefore, they help establish guidelines as to which behavior (strategy) would be ben-
eficial to individual nodes and/or the entire group, under given similarity levels in the

preferences of the nodes in the social group.
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In the numerical examples in this paper initially N = 5 nodes; a small number of
nodes helps us better illustrate and discuss the results regarding the content access cost
for each node. The default value for node storage capacity is C' = 10 objects, for object

population M = 50 objects and for the costs t; = 0, ¢, = 10 and ¢; = 20 cost units.

3.5.1 Placement strategy comparison at node level

Fig. 3.3 considers separately the two scenarios for preferences’ dissimilarity in Sec-
tion 3.3. It plots the per-node access cost under the three content placement strategies
and for different values of tightness, T'. We discuss these viewpoints for very high and

very low tightness values.

Social groups with infinite or very high tightness

The first important remark out of the two plots is that, under high tightness value
(i.e., highly similar content preferences of group nodes), the optimally altruistic strategy
outperforms the other two regarding not only the cost for the entire group (by definition),
but also the cost for individual group nodes (Fig. 3.3(a)). This relation holds irrespectively
of the dissimilarity scenario in question and suggests that the optimally altruistic behavior
is the clear winner-behavior for every node in a very tight social group.

The second noteworthy outcome when there is high similarity in the preferences
of the group nodes, relates to the performance achieved by the self-aware cooperative
strategy. More specifically, the access costs for both individual nodes and the entire
group: (a) are very close to (slightly higher than) those under the optimally altruistic
strategy; and (b) are always lower than those under the selfish strategy, as expected given
that it is mistreatment-free (see Section 2.2). Given its lower implementation complexity
compared to the optimally altruistic one, it becomes an attractive alternative for node-
members of tight social groups. Therefore, the self-aware cooperative strategy achieves a
good tradeoff between performance and complexity.

Looking closer into the rank-preserving dissimilarity plots, when tightness approaches
infinity (Fig. 3.3(a) on the left), the access cost for all group nodes under the self-aware
cooperative and the optimally altruistic strategies tend to become equal. Infinite tightness

in the general case (p = 0, s # 0 in Section 3.3) implies that a given object is requested
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Figure 3.3: Individual access cost under th(e l[hree content placement strategies for differ-
ent values of tightness I', under rank-preserving (figures on the left) and shape-preserving
(figures on the right) dissimilarity.
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with the same intensity by all nodes. Both the self-aware cooperative and the optimally
altruistic end up with the same object placement P, which spreads all objects across the
storage capacity of the group nodes. On the contrary, when nodes behave selfishly, they
choose the same C objects for storage; namely, these (' objects that attract the interest of
all group nodes are replicated /N times at group level. In the special case that individual
node preferences are uniformly distributed (s = 0, R, = 1/M, Vm € M and n € N), the
nodes may choose any random combination of C' out of M objects. The achieved diversity
regarding the objects eventually stored across the whole group can vary (see Section 3.4).
In the unfortunate worst-case scenario, where all nodes choose the same C' objects, the
access cost for each node gets its maximal value ((M — C)t; + Ct;)/M. Thus, when all
objects have the same request rate 1/M, the selfish strategy results in an increase of the
total access cost equal to N(min(NC, M) — C)(ty —t,.)/M.

Summarizing, the tighter the social group, the more incentives the nodes have to

behave in cooperative or, even, altruistic rather than selfish manner.

Social groups with low tightness

Whereas cooperation is the recommended behavior for nodes with highly similar
interests, whether in the extreme form of altruism or the more conservative self-aware
cooperative strategy, Fig. 3.3 and 3.4 suggest that it is far less attractive when the node

preferences are more diverse.
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Figure 3.4: Total access cost vs. tightness T.

The first conclusion out of Fig. 3.3 concerns the way the total access cost is spread
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across the group nodes under the two types of dissimilarity and for low 7' values. The
content access cost split under rank-preserving dissimilarity is uneven. Nodes with higher
indices “pay” much less than nodes with smaller indices, irrespective of the adopted
content placement strategy. This unfair cost distribution becomes more pronounced
as tightness decreases. The reason behind this unfairness has to do with the demand
distributions of the five nodes. Remember from Section 3.3 that the higher the node
index the more skewed the node preference distribution. Hence, the preference of nodes
is more concentrated around fewer top-ranked objects and there is less demand for the
remaining objects that have to be accessed from remote storage, whether from the N — 1

group nodes at cost ¢, or outside the group at cost ;.

On the contrary, under the shape-preserving dissimilarity scenarios, the total access
cost is more uniformly split across the group nodes and smaller in absolute values.
Moreover, the relative increase of access cost under the selfish strategy is smaller. There
is far more diversity in the content that different nodes are interested in. Therefore,
more content ends up being accessible from within the group at cost ¢, rather than from
outside the group at cost ¢,, so that the nodes experience marginal benefit by committing

to cooperation.

Turning into the pairwise comparison of the strategies with respect to the per-node

content access cost under low 7', we would note the following:

Optimal altruistic vs. selfish: Although the optimally altruistic strategy still min-
imizes the cost of content access at the group level, it cannot avoid mistreatment of
individual nodes; for example, this is the case with Node 5 in Fig. 3.3(d), for both types
of dissimilarity we consider. Two are the straightforward remarks when looking closer at
Fig. 3.3: a) the number of mistreated nodes increases as the value of 7" drops; b) it is
mainly the nodes with higher indices that are mistreated (this is more apparent for the
rank-preserving dissimilarity scenarios). Both remarks can be explained by considering
the way the two strategies actually operate. The optimally altruistic strategy shufiles the
objects in a more radical way so that all nodes may result with objects that are different

than their list of C' top-ranked preferences.

In the case of rank-preserving dissimilarity, the preference distributions of nodes

become more skewed for lower 7' values and, for given 7', the skewness increases with
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the node index. Hence, the overall cost of storing objects other than the top-value ones
is significantly less than the respective cost for higher-index nodes, whose preference
is concentrated in very few objects. For this same reason, storing locally these objects
under the selfish strategy, significantly reduces the cost for those nodes. Apparently,
as tightness drops, more nodes find the selfish strategy more self-rewarding against the
socially-optimal yet individual-node-oblivious altruistic strategy.

The explanation for the emergence of mistreatment under shape-preserving similarity
scenarios is similar. The optimally altruistic strategy places objects that the majority of
nodes want more. However, as tightness decreases some node preferences depart more
significantly from the “mean” preferences and thus they can be mistreated.

Overall, since the complexity involved in implementing the optimally altruistic strat-
egy is larger (see Section 2.4), and the mistreatment of nodes threatens the very existence
and operation of the social group as such, the selfish strategy emerges as a more attractive
and stable strategy for the group nodes.

Self~aware cooperative vs. selfish: As tightness decreases we note that the access cost
of self-aware cooperative strategy approaches that of the selfish. This happens because
each node has its strongest interest in different objects. Hence, each node stores different
objects locally, and thus the self-aware cooperative strategy achieves similar cost with
that of the selfish one. This result leads to the conclusion that under dissimilarity nodes
do not gain by cooperation or altruism (considering also the higher implementation cost

of these strategies) and it would be better for them if they acted in isolation.

3.5.2 Placement strategy comparison at group level

Fig. 3.4 plots the absolute access cost values aggregated over all group members,
whereas Fig. 3.5(a) and 3.5(b) report the access cost increase through pairwise com-
parisons of all strategies for different values of tightness. For example, the access
cost increase between selfish and optimally altruistic strategy is Cseifish — Caitruistic =
25:1 Co(P) — ZnN:1 CA(P), where C2(P) denotes the access cost of node n for all the
objects under the selfish strategy and C(P) denotes its access cost under the optimally
altruistic one.

From Fig. 3.4 it is clear that as tightness decreases the self-aware cooperative and
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optimally altruistic strategies bring negligible benefits if any (the same (Fig. 3.4(b), T ~
0) or only slightly larger (Fig. 3.4(a), 7" = 0.14)) to the social group compared to the
selfish one. Thus, in view of the fact that the complexity of the self-aware cooperative
and optimally altruistic strategies, requiring information exchange among the nodes, is
substantially larger than that under the selfish one, requiring no information exchange
and lower computational complexity, it may be concluded that the selfish strategy should

be preferred against the other strategies under low tightness.
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Figure 3.5: Pairwise access cost differences between the three strategies vs. tightness T.

From Fig. 3.5 the relative gain of the optimally altruistic strategy over the self-aware
cooperative one is smaller than the gain over the selfish one, especially for higher values of
tightness. Another interesting observation out of the results (Fig. 3.4(a) and 3.4(b)), seen
more clearly in Fig. 3.5 is that in general the improvement of the optimally altruistic and
self-aware cooperative strategies over the selfish one decreases as tightness decreases.

These confirm the deduction that, if the optimally altruistic strategy cannot be ap-
plied, then for small values of tightness it is better to use a selfish strategy, and for larger
values the self-aware cooperative one.

From these results, we can also obtain a rough idea of the application ranges of
each strategy. However the exact range of values of 7" where each strategy should be
applied depends on the underlying preference distributions, as we see that these values
are different for the two dissimilarity patters studied here. For example, under rank-
preserving dissimilarity case the relative improvement of the optimally altruistic strategy

against the other strategies is much greater, for almost all values of 7'.
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3.5.3 Sensitivity analysis

Understanding the impact of group size, N, number of items, M, and level of co-
operation would be useful in understanding how the strategies compare in a dynamic

environment, where the above parameters change.

Sensitivity to number of objects (M) and group size (N)

We now explore the impact on the total number of objects, M, and the group size
N on tightness as well as on the comparative performance of the selfish and self-aware
cooperative strategies. The relative gain when being self-aware cooperative is quantified
by the ratio of the total content access cost under the selfish strategy to that under the self-
aware cooperative strategy, Rs/c. We compute it as Rg/c = %. where CS (S)(P),
denotes the cost of accessing all objects for node n under the self-aware cooperative
(selfish) strategy.

In the set of experiments with variable M, we fix N = 50 and C' = 10, whereas we fix

M = 500 and C' = 10, when N is varied. Moreover, we consider ¢, = 100, to emphasize

more the cooperation benefits.

Table 3.2: Tightness values T for various M,N = 50, C = 10.

(a) rank-preserving (b) shape-preserving
P Tightness (T) k Tightness (T)
M=100 M=500 M=900 M=100 M=500 M=900
0.00 00 00 00 0 00 00 00

0.01 9731 7771 7392 ||1 0.172 0.162 0.161
0.02 1.831 1.251 1.125 0.163 0.135 0.133

0.03 0.722 0.457 0.400 0.155 0.123 0.121

A~ W N

0.04 0.421 0.268 0.235 0.143 0.116 0.114

Impact of number of content objects, M: For a given group of size /N, more content
means that the nodes’ preferences are spread over more items. Therefore, additional non-
zero terms are added to the pairwise D ri,p terms in (3.2.1) and 7" decreases, as Table 3.2

suggests. When content preferences are already highly dissimilar, the tightness decrease
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with content volume is smaller. Exceptions to this trend are the two extreme cases,
where the increment (shift) parameter p(k) for the rank(shape)-preserving dissimilarity
scenarios is zero: adding more items with exactly the same number of nodes does not
affect the group infinite tightness.

The relative gain Rg/c grows in both directions that increase tightness values: a)
with more similar content preferences within the group, inline with what was discussed
in Section 3.5.2 and reading Fig. 3.6 from left to right; b) with more focused content
preferences within the group over fewer content objects, inline with Table 3.2 and reading
Fig. 3.6 from top to bottom. As the node preferences concentrate on fewer objects,
chances are higher that a self-aware cooperative node will deem it self-beneficial to fetch
a new content object from the external server. Hence, this object is made available to the
other group nodes at lower cost than if they had to fetch it from external server(s) and the

aggregate content access cost under the self-aware cooperative strategy is reduced.
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Figure 3.6: Comparison of total content access cost un