

NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATION

GRADUATE PROGRAM

COMPUTING SYSTEMS: SOFTWARE AND HARDWARE

MASTER THESIS

Distributed reservoir sampling algorithms for data pre-
processing with use of Kafka Streams

Kostis I. Gerakos

Supervisor: Hadjieftymiades Stathes, Professor

ATHENS

NOVEMBER 2018

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ
ΥΠΟΛΟΓΙΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ: ΛΟΓΙΣΜΙΚΟ ΚΑΙ ΥΛΙΚΟ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Κατανεμημένοι αλγόριθμοι αποθέματος για προεπεξεργασία

δεδομένων με Kafka Streams

Κωστής Η. Γεράκος

Επιβλέπων: Ευστάθιος Χατζηευθυμιάδης, Καθηγητής

ΑΘΗΝΑ

ΝΟΕΜΒΡΙΟΣ 2018

MASTER THESIS

Distributed reservoir sampling algorithms for data pre-processing with use of Kafka
Streams

Kostis I. Gerakos

Α.Μ.: M1428

SUPERVISOR : Hadjieftymiades Stathes, Professor

EXAMINATION COMMITTEE : Nancy Alonistioti, Associate Professor

November 2018

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Κατανεμημένοι αλγόριθμοι αποθέματος για προ-επεξεργασία δεδομένων με Kafka
Streams

Κωστής Η. Γεράκος

Α.Μ.: M1428

ΕΠΙΒΛΕΠΩΝ : Ευστάθιος Χατζηευθυμιάδης, Καθηγητής

ΕΞΕΤΑΣΤΙΚΗ ΕΠΙΤΡΟΠΗ: Αθανασία Αλωνιστιώτη, Επίκουρος Καθηγητής

Νοέμβριος 2018

ABSTRACT

With the rapid growth of the Internet of Things (IoT) and with the number of devices
expected to connect to it estimated to exceed 30 billion by 2020 and the consequent
increase in data transmitted, it is necessary for big data processing systems to use
efficient algorithms in combination with programming libraries that are widely used in the
industry. This master thesis aims to analyze and present reservoir sampling algorithms
as well as to develop them using the Kafka Streams API in order to solve the problem of
their distribution. By taking advantage of the API and the algorithm specific
characteristics, we aim to implement a tool that helps analysts and experimenters on
the IoT field to preprocess data and quickly obtain results from a continuous data
stream.

SUBJECT AREA: Stream Processing

KEYWORDS: Apache Kafka, Kafka Streams, reservoir sampling, IoT

ΠΕΡΙΛΗΨΗ

Με την ανάπτυξη του IoT και με τον αριθμό των συσκευών που αναμένεται να
συνδεθούν σε αυτό να ξεπερνάει τα 30 δισεκατομμύρια μέχρι το 2020 καθώς και με την
συνεπακόλουθη αύξηση στα δεδομένα που μεταδίδονται κρίνεται αναγκαίο από τα
σύγχρονα συστήματα επεξεργασίας δεδομένων μεγάλης κλίμακας να χρησιμοποιούν
αποδοτικούς αλγορίθμους σε συνδυασμό με προγραμματιστικές βιβλιοθήκες που
χρησιμοποιούνται ευρέως στον τομέα της βιομηχανίας. Σκοπός της διπλωματικής
εργασίας είναι η ανάλυση και παρουσίαση αλγορίθμων αποθέματος καθώς και η
ανάπτυξη τους με την χρήση της βιβλιοθήκης Kafka Streams με σκοπό την επίλυση του
προβλήματος της κατανομής τους. Αξιοποιώντας τις ιδιαιτερότητες της βιβλιοθήκης και
των αλγορίθμων στοχεύουμε στην υλοποίηση ενός εργαλείου που βοηθάει αναλυτές και
πειραματιστές στο τομέα του ΙοΤ στην προεπεξεργασία των δεδομένων και την ταχεία
λήψη αποτελεσμάτων από μια συνεχόμενη ροή δεδομένων.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Επεξεργασία Δεδομένων

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Apache Kafka, Kafka Streams, reservoir sampling, IoT

CONTENTS

1. INTRODUCTION .. 10

2. DATA STREAMS AND STREAM PROCESSING ... 11

2.1 Batch Processing ...11

2.2 Stream Processing ...13

2.2.1 Event Stream Processing .. 13

2.2.2 Complex Event Processing ... 14

3. KAFKA STREAMS .. 16

3.1 Apache Kafka High Overview ..16

3.2 Topics ..16

3.3 Partitions ..17

3.4 Replication ..17

3.5 Producers ..18

3.6 Consumers ..19

3.7 Kafka Streams ...20

4. SENSOR FUSION ENGINE .. 22

4.1 Contextors and network module...22

4.2 Big data preprocessing ..24

5. RESERVOIR SAMPLING ALGORITHMS ... 26

5.1 General Reservoir Sampling Algorithm ...26

5.2 Efficient Reservoir Sampling Algorithm ...27

5.3 Weighted Reservoir Sampling Algorithm ..28

6. IMPLEMENTING DISTRIBUTED RESERVOIR SAMPLING WITH KAFKA STREAMS 29

7. EXPERIMENTAL RESULTS ... 31

8. CONCLUSIONS .. 33

ABBREVIATIONS – ACRONYMS... 34

REFERENCES ... 35

LIST OF FIGURES

Figure 1: Batch Processing Systems ... 12

Figure 2: MapReduce jobs... 12

Figure 3: Publish/Subscribe systems ... 16

Figure 4: Partitions in a topic ... 17

Figure 5: Kafka replication ... 18

Figure 6: Overview of producers .. 19

Figure 7: Consumer group ... 20

Figure 8: Kafka Streams API overview .. 21

Figure 9: Graphical depiction of a contextor .. 22

Figure 10: SFE architecture ... 23

Figure 11: Network Module of Fusion Module ... 24

Figure 12: Data acquisition .. 25

Distributed reservoir sampling algorithms for data pre-processing with use of Kafka Streams

K. Gerakos 10

1. INTRODUCTION

This master thesis provides an explanation and description of the architectural
specifications obtained during the development of a data pre-processing machine based
on the reservoir sampling family of algorithms and using the Kafka Streams library. The
structure of the work is as follows. Chapter 2 will present the general concept of data
processing as well as its sub-concepts. In Chapter 3 we will look at the Kafka Streams
library and we will talk about Kafka. Chapter 4 will present the general architecture on
which the algorithms will be integrated. Chapter 5 will describe the reservoir sampling
algorithms used. Chapter 6 will explain why the use of Kafka Stream is ideal for the
implementation of algorithms, and in Chapter 7 some experimental results will be given
of tests made on benchmarking different implementations of the algorithms.

Distributed reservoir sampling algorithms for data pre-processing with use of Kafka Streams

K. Gerakos 11

2. DATA STREAMS AND STREAM PROCESSING

In recent years, Internet of Things (IoT) has been developed and has become a field of
research, experimentation and study. Statistical studies have shown that 30 billion
devices worldwide will be connected to IoT by 2020. Scholars expect that by that date
autonomous vehicles will be on the streets with each one using dozens or maybe
hundreds of devices and sensors to transmit information in order for these vehicles for
safe transportation. [1] [2]

With this rapid expansion of IoT the amounts of information transmitted have also been
increased, making IoT an attractive field of interest for big data researchers. But with
this vast amount of, in many cases, identical data and values the question that remains
is what amount of this information is crucial and needs to be stored, processed and
further analyzed.

To answer this question, several subfields of big data technologies have been
developed. The most famous are batch processing and stream processing. The
sections below will describe what each one is and what their differences are.

2.1 Batch Processing

The term of batch processing was invented to describe jobs that can run without end
user interaction. These were called batch jobs and could be scheduled to run as
resources permit. Batch processing is for those frequently used programs that can be
executed with minimal human interaction. An example of a batch processing job could
be reading all the sale logs from an online shop for a single day and aggregating it into
statistics for that day (number of users per country, the average spent amount, etc.).
Doing this as a daily job could give insights into customer trends.

Historically the term batch job originated in the days when punched cards contained the
directions for a computer to follow when running one or more programs. Multiple card
decks representing multiple jobs would often be stacked on top of one another in the
hopper of a card reader, and be run in batches. This practice goes back to 1890 when
Herman Hollerith created punch cards to process census data. Working for the U.S.
Census Bureau, he developed a system by which a card that he punched manually was
read by an electromechanical device.

Batch jobs are typically executed at a scheduled time or on an as-needed basis.
Perhaps the closest comparison is with processes run by a CRON command in UNIX,
although the differences are significant. Modern Batch Processing uses exception-
based management alerts to create events. However the volume of data is often too big
for a single server to process. Therefore, there was a need to develop code that runs on
multiple nodes therefore batch processing was combined with MapReduce. [3]

MapReduce is a framework that allows a programmer to write code that is executed on
multiple nodes without having to worry about fault tolerance, reliability, synchronization
or availability. In order to decrease the duration of distributed computation, MapReduce
tries to reduce shuffling (moving) the data from one node to another by distributing the
computation so that it is done on the same node where the data is stored. This way, the
data stays on the same node, but the code is moved via the network. This is ideal
because the code is much smaller than the data. To run a MapReduce job, the user has
to implement two functions, map and reduce, and those implemented functions are
distributed to nodes that contain the data by the MapReduce framework. Each node

Distributed reservoir sampling algorithms for data pre-processing with use of Kafka Streams

K. Gerakos 12

runs (executes) the given functions on the data it has in order the minimize network
traffic. [4]

Figure 1: Batch Processing Systems

The most known batch processing system is Hadoop which is also the first open-source
implementation of MapReduce. It also has its own distributed file storage called HDFS.
In Hadoop, the typical input into a MapReduce job is a directory in HDFS. In order to
increase parallelization, each directory is made up of smaller units called partitions and
each partition can be processed separately by a map task. The map task is called once
for every input partition and its job is to extract key-value pairs from the input partition
and can generate any number of key-value pairs from a single input. Then the
MapReduce framework collects all the key-value pairs produced by the map tasks and
arranges them into groups with the same key and applies the reduce function. All the
grouped values entering the reducers are sorted by the framework. [5]

Figure 2: MapReduce jobs

Distributed reservoir sampling algorithms for data pre-processing with use of Kafka Streams

K. Gerakos 13

2.2 Stream Processing

While batch processing works as generally a background job in already saved data
sometimes coming from an input stream, stream processing came to provide real time
analysis. Stream processing is the processing of data in motion, or in other words,
computing on data directly as it is produced or received. The majority of data are born
as continuous streams such as sensor events, user activity on a website, financial
trades are created as a series of events over time.

Before stream processing, this data was often stored in a database, a file system, or
other forms of mass storage. Applications would query the data or compute over the
data as needed. Stream Processing turns this paradigm around. The application logic,
analytics, and queries exist continuously, and data flows through them continuously. [6]

Upon receiving an event from the stream, a stream processing application reacts to that
event: it may trigger an action, update an aggregate or other statistic, or “remember”
that event for future reference. Streaming computations can also process multiple data
streams jointly, and each computation over the event data stream may produce other
event data streams. The systems that receive and send the data streams and execute
the application or analytics logic are called stream processors. The basic responsibilities
of a stream processor are to ensure that data flows efficiently and the computation
scales and is fault tolerant. [7]

Some data naturally comes as a never-ending stream of events. To perform batch
processing, we need to store, stop data collection at some time and process the data.
Then we have to do the next batch and then worry about aggregating across multiple
batches. In contrast, streaming handles never ending data streams gracefully and
naturally. It can detect patterns, inspect results, look at multiple levels of focus, and
easily look at data from multiple streams simultaneously.

Stream processing naturally fits with time series data and detecting patterns over time.
For example, if you are trying to detect the length of a web session in a never-ending
stream (this is an example of trying to detect a sequence), it is very hard to do it with
batches as some session will fall into two batches. Stream processing can handle this
easily. If you take a step back and consider, the most continuous data series are time
series data. For example, almost all IoT data are time series data. Hence, it makes
sense to use a programming model that fits naturally. [8]

Batch lets the data build up and try to process them at once while stream processing
processes data as they come in, hence spread the processing over time. Because of
this stream processing can work with a lot less hardware than batch processing.
Furthermore, stream processing also enables approximate query processing via
systematic load shedding. So stream processing fits naturally into use cases where
approximate answers are sufficient. Sometimes the amount of data is huge and it is not
even possible to store it. Stream processing lets you handle large firehose style data
and retain only useful bits. [9]

Finally, there is a lot of streaming data available (e.g. customer transactions, activities,
website visits) that will grow faster with IoT use cases (all kind of sensors). Streaming is
a much more natural model to think about and program those use cases.

2.2.1 Event Stream Processing

In order to have solid understanding of event stream processing, we need to break it
down into its simplest terms: event, stream and processing. An event is anything that
happens at a clearly defined time and that can be specifically recorded. Not to be

Distributed reservoir sampling algorithms for data pre-processing with use of Kafka Streams

K. Gerakos 14

confused, an event object is any type of object that represents or records an event,
typically for the purpose of computer processing. Event objects usually include data
about the type of activity, when the activity occurred, as well as its location and cause.
An event stream is a constant and continuous flow of event objects that navigate into
and around companies from thousands of connected devices, IoT, and any other
sensors. An event stream is a sequence of events ordered by time. Enterprises typically
have three different kinds of event streams: business transactions like customer orders,
bank deposits, and invoices; information reports like social media updates, market data,
and weather reports; and IoT data like GPS-based location information, signals from
SCADA systems, and temperature from sensors. Processing is the final act of analyzing
all of this data. Putting all three of these together event stream processing is the
process of being able to quickly analyze data streaming from one device to another at
an almost instantaneous rate after it’s created. The ultimate goal of ESP deals with
identifying meaningful patterns or relationships within all of these streams in order to
detect things like event correlation, causality, or timing. [10] [11]

2.2.2 Complex Event Processing

Complex Event Processing (CEP) was developed to analyze event-driven simulations of
distributed system architectures. CEP is a subset of Event Stream Processing.
However, Stream processing engines and CEP engines are pretty different and they
come from different background. Also the use cases they target and issues they choose
to handle or not handle are different. Stream processing engines create a processing
graph, and inject event into this processing graph. Each operator process and send
events to next processors. In most stream processing engines an user writes code to
create the operators, wire them up in a graph and run them. Then the engine runs the
graph in parallel using many computers. In contrast, CEP engines let users write
queries using an higher level language such as an SQL like query language and has
build in operators such as time windows, temporal event sequences etc. CEP analysis
is performed by finding patterns in events to determine whether a more complex event
has occurred. A complex event is an event that summarizes or represents a set of other
events. Events may be correlated over multiple dimensions, such as causal, temporal or
spatial. CEP can take place over o longer period lime compared to the other types of
event processing. [12]

 Generally CEP has the following characteristics:

• Stream Processing Engines tend to be distributed and parallel natively as oppose
to CEP engines tends to be more centralized.

• With most Stream Processing Engines it is necessary to write code. Also it forces
the implementation of higher order operators like Windows, Temporal Patterns,
and Joins while CEP engines support them natively. CEP engines often have a
SQL like query language.

• CEP engines are tuned for low latency. Often they respond within few
milliseconds and sometimes sub milliseconds. In contrast, most Stream
processing engines takes close to a second to generate results.

• Stream processing engines focus on reliable message processing while CEP
engines have often opt to throw away some events when failure happens and
continue.

CEP is generally more suitable to handle IoT produced data due to three main reasons.

Distributed reservoir sampling algorithms for data pre-processing with use of Kafka Streams

K. Gerakos 15

1. IoT data are time series data where data is auto correlated. CEP is much better
placed to handle them.

2. Most IoT use cases deal with real life.

3. Most IoT use cases are complex, and they go beyond calculating aggregating
data. Those use cases need support for complex operators like time windows
and temporal query patterns.

Distributed reservoir sampling algorithms for data pre-processing with use of Kafka Streams

K. Gerakos 16

3. KAFKA STREAMS

Apache Kafka was originally developed by LinkedIn, and was subsequently open
sourced in early 2011. Its initial purpose was to be a fully scalable, distributed and fast
log message bus. In recent years Apache Software Foundation and Confluent, a startup
created by the original programmers of Apache Kafka in LinkedIn, transformed it to be a
fully distributed streaming platform by developing Kafka Streams and Kafka Connector
APIs. On the following section the architecture of Apache Kafka will be presented in
terms of how it can achieve high throughput and scalability.

3.1 Apache Kafka High Overview

Apache Kafka is a publish/subscribe messaging system designed to be a distributed
commit log. Publish/subscribe messaging is a pattern that is characterized by the
sender (publisher) of a piece of data (message) not specifically directing it to a receiver.
Instead, the publisher classifies the message somehow, and that receiver (subscriber)
subscribes to receive certain classes of data. Publish/subscribe systems often have a
broker, a central point where data are published.

Figure 3: Publish/Subscribe systems

The unit of data within Kafka is called a message. A message is simply an array of
bytes as far as Kafka is concerned, so the data contained within it does not have a
specific format or meaning to Kafka. A message can have an optional bit of metadata,
which is referred to as a key which is also a byte array and no specific meaning to
Kafka. Messages within Kafka are stored durably, in order, and can be read
deterministically. In addition, messages can be distributed within the system to provide
additional protections against failures, as well as significant opportunities for scaling
performance. For efficiency, messages are written into Kafka in batches. A batch is just
a collection of messages, all of which are being produced to the same topic and
partition. An individual roundtrip across the network for each message would result in
excessive over‐ head, and collecting messages together into a batch reduces this. [13]

3.2 Topics

Topics are virtual groups of one or many partitions across Kafka brokers in a Kafka
cluster. A Kafka topic is unique across a Kafka cluster and it is there that producers

Distributed reservoir sampling algorithms for data pre-processing with use of Kafka Streams

K. Gerakos 17

publish messages and consumers pull messages. Kafka brokers stores messages in a
partition in an ordered fashion by appending one message after another and creating a
log file. Producers write messages to the tail of these logs that consumers read at their
own pace. Kafka scales topic consumption by distributing partitions among a consumer
group, which is a set of consumers sharing a common group identifier.

3.3 Partitions

Kafka topics are divided into a number of partitions. Partitions allow you to parallelize a
topic by splitting the data in a particular topic across multiple brokers. Each partition can
be placed on a separate machine to allow for multiple consumers to read from a topic in
parallel. Consumers can also be parallelized so that multiple consumers can read from
multiple partitions in a topic allowing for very high message processing throughput.

Figure 4: Partitions in a topic

Going back to the “commit log” description, a partition is a single log. Messages are
written to it in an append-only fashion, and are read in order from beginning to end.
Note that as a topic typically has multiple partitions, there is no guarantee of message
time-ordering across the entire topic, just within a single partition. Partitions are also the
way that Kafka provides redundancy and scalability. Each partition can be hosted on a
different server, which means that a single topic can be scaled horizontally across
multiple servers to provide performance far beyond the ability of a single server.

Each message within a partition has an identifier called its offset. The offset is the
ordering of messages as an immutable sequence. Consumers can read messages
starting from a specific offset and are allowed to read from any offset point they choose,
allowing consumers to join the cluster at any point in time they see fit. Given these
constraints, each specific message in a Kafka cluster can be uniquely identified by a
tuple consisting of the message’s topic, partition, and offset within the partition.

3.4 Replication

Every partition in a Kafka topic has a write-ahead log where the messages are stored
and every message has a unique offset that identifies its position in the partition’s log.
A partition may be assigned to multiple brokers, which will result in the partition being
replicated. This provides redundancy of messages in the partition, such that another
broker can take over leadership if there is a broker failure. Topic partitions in Kafka are
replicated n times, where n is the replication factor of the topic. This allows Kafka to
automatically failover to these replicas when a server in the cluster fails so that
messages remain available in the presence of failures. Replication in Kafka happens at
the partition granularity where the partition’s write-ahead log is replicated in order to n

Distributed reservoir sampling algorithms for data pre-processing with use of Kafka Streams

K. Gerakos 18

servers. Out of the n replicas, one replica is designated as the leader while others are
followers. As the name suggests, the leader takes the writes from the producer and the
followers merely copy the leader’s log in order.

The fundamental guarantee a log replication algorithm must provide is that if it tells the
client a message is committed, and the leader fails, the newly elected leader must also
have that message. Kafka gives this guarantee by requiring the leader to be elected
from a subset of replicas that are “in sync” with the previous leader or, in other words,
caught up to the leader’s log. The leader for every partition tracks this in-sync replica list
by computing the lag of every replica from itself. When a producer sends a message to
the broker, it is written by the leader and replicated to all the partition’s replicas. A
message is committed only after it has been successfully copied to all the in-sync
replicas. Since the message replication latency is capped by the slowest in-sync replica,
it is important to quickly detect slow replicas and remove them from the in-sync replica
list.

Figure 5: Kafka replication

3.5 Producers

Producers create new messages. In other publish/subscribe systems, these may be
called publishers or writers. In general, a message will be produced to a specific topic.
By default, the producer does not care what partition a specific message is written to
and will balance messages over all partitions of a topic evenly. In some cases, the
producer will direct messages to specific partitions. This is typically done using the
message key and a partitioner that will generate a hash of the key and map it to a
specific partition. This assures that all messages produced with a given key will get
written to the same partition. The producer could also use a custom partitioner that
follows other business rules for mapping messages to partitions.

Distributed reservoir sampling algorithms for data pre-processing with use of Kafka Streams

K. Gerakos 19

Figure 6: Overview of producers

3.6 Consumers

Consumers read messages. In other publish/subscribe systems, these clients may be
called subscribers or readers. The consumer subscribes to one or more topics and
reads the messages in the order in which they were produced. The consumer keeps
track of which messages it has already consumed by keeping track of the offset of
messages. The offset is another bit of metadata—an integer value that continually
increases—that Kafka adds to each message as it is produced. Each message in a
given partition has a unique offset. By storing the offset of the last consumed message
for each partition, either in Zookeeper or in Kafka itself, a consumer can stop and restart
without losing its place. Consumers work as part of a consumer group, which is one or
more consumers that work together to consume a topic. The group assures that each
partition is only consumed by one member. In Figure 7, there are three consumers in a
single group consuming a topic. Two of the consumers are working from one partition
each, while the third consumer is working from two partitions. The mapping of a
consumer to a partition is often called ownership of the partition by the consumer. In this
way, consumers can horizontally scale to consume topics with a large number of
messages. Additionally, if a single consumer fails, the remaining members of the group
will rebalance the partitions being consumed to take over for the missing member.

Distributed reservoir sampling algorithms for data pre-processing with use of Kafka Streams

K. Gerakos 20

Figure 7: Consumer group

3.7 Kafka Streams

Kafka Streams is an API for building stream processing applications on top of Apache
Kafka. This is achieved by applying stream processing techniques while the data is
inside the Kafka log files and output transformed data in different Kafka topics,
specifically applications that transform input Kafka topics into output Kafka topics (or
calls to external services, or updates to databases, or whatever). It lets you do this with
concise code in a way that is distributed and fault-tolerant. Stream processing is a
computer programming paradigm, equivalent to data-flow programming, event stream
processing, and reactive programming, that allows some applications to more easily
exploit a limited form of parallel processing.

Kafka Streams has support for joining, data transform, windowing and aggregation of
streams into other streams or Kafka topics. This allows you to quickly build applications
to handle use cases such as joining two incoming data streams (e.g. data ETL),
denormalizing incoming data (e.g. CompanyID to Company Name) or creating
aggregates (e.g. Rolling average). Also Kafka Streams has the concept of viewing your
stream as a changelog (KStream) or as a snapshot (KTable). This is something that is
refered as the stream-table duality. This duality allows to easily process data in different
ways based upon its nature (static vs. dynamic) or how you need to interact with it.
Generally we can give the following analogy of stream and table in Kafka Streams:

• A stream in Kafka is the full history of events from the beginning of time to today.
It represents the past and the present. A stream is a topic with a schema. Keys
and values are no longer byte arrays but have specific types.

• A table in Kafka is the state of today. It represents the present. It is an
aggregation of the history of world events, and this aggregation is changing
constantly.

Distributed reservoir sampling algorithms for data pre-processing with use of Kafka Streams

K. Gerakos 21

Figure 8: Kafka Streams API overview

Distributed reservoir sampling algorithms for data pre-processing with use of Kafka Streams

K. Gerakos 22

4. SENSOR FUSION ENGINE

In this section a brief description and architecture of a sensor fusion engine (SFE) will
be presented. This sensor fusion engine is implemented to enable processing and
consolidating data from heterogeneous sources enabling the integration and
interpretation of different types of data, with the use of multiple algorithmic flows. In
addition to the statistical advantage gained by combining same-source data the use of
multiple types of sensors increases the accuracy with which a quantity can be observed,
interpreted and used for an event recognition. The most fundamental mechanism of the
SFE involves:

1. the detection of pre-defined events,

2. the decision or inference regarding the characteristics of an observed entity

3. the interpretation of the observed entity in the context of a surrounding
environment and relationships to other entities.

4.1 Contextors and network module

The architecture of SFE is partially based on the contextor’s theory. A typical contextor
is a software abstraction that models a relation between variables of an Observed
System Context which is the composition of situations as observed by the system. A
contextor is comprised of a functional core and of typed input and output communication
channels as depicted in the figure bellow.

Figure 9: Graphical depiction of a contextor

The functional core of a contextor implements a relation between variables of the
Observed System Context. The input channels of a typical contextor are of two types:

• Data-In corresponds to the variables of the Observed System Context that are
used as inputs by the functional core of the contextor.

• Control-In corresponds to commands received from other contextors to set the
internal parameters of the contextor. These parameters may concern the
functional behavior of the contextor as well as non-functional aspects such as the
QoS (Quality of Service) expected by other contextors.

Distributed reservoir sampling algorithms for data pre-processing with use of Kafka Streams

K. Gerakos 23

Symmetrically, a typical contextor provides two types of output (output channels):

• Data-Out corresponds to the values of some variables of the Observed System
Context returned by the contextor.

• Control-Out is used by the contextor to send control commands to other
contextors. For example deactivate another contextor, if detected that it does not
provide desired QoS. [14]

The Sensor Inbound Service(SIS) is responsible of the external data sources that have
been selected as inputs to a specific data processing workflow of. Generally speaking
SIS is a network module responsible for providing the data sources needed to the
workflows and to the contextors of the SFE.

Figure 10: SFE architecture

The SIS module is a critical component of the SFE since it is responsible for the
management of the input data streams that deployed FM’s applications depend on, and
the accurate dispatching of new values coming from the underlying network to them.
Based on the information provided by the deployed application script in the SFE, the
SIS module is responsible to recognize the input streams (i.e., streamers) on the fusion
process and to collect their values.

Distributed reservoir sampling algorithms for data pre-processing with use of Kafka Streams

K. Gerakos 24

Figure 11: Network Module of Fusion Module

4.2 Big data preprocessing

Contextors of the SFE and the SIS module have a tight relationship and the
interconnection between these two software layers should be functioning properly in
order the stream of data to be processed normally. In the scope of this thesis was
decided to implement the SIS with the Apache Kafka as an inbound service in order to
support the incoming data stream. With this technical decision ensured high throughput
of the incoming data streams. However more design decisions should be made in order
to accumulate modules capable of withstanding large capacities of data streams.

Big Data is often described as the ''4Vs'' which are Volume, Variety, Velocity and
Veracity referring of course to data. In its lifecycle, data travels through four different
phases as shows in the next figure. These are:

1. Data generation

2. Data acquisition

3. Data storage

4. Data analytics

Distributed reservoir sampling algorithms for data pre-processing with use of Kafka Streams

K. Gerakos 25

Figure 12: Data acquisition

Data generation is the phase where data creation is taking place from several different
sources. These could be IoT sensors, mobile devices or users. Data acquisition
consists of data collection, data transmission, and data pre-processing. While large
amounts of data can lead to better analysis and therefore better results a lot of the raw
data that is been collected can be useless and leads to unnecessary waste of
processing power. Therefore this raw data must be channeled through a pre-processing
in which activities such as data cleansing, de-duplication, compression, filtering, and
format conversion take place. The pre-processing step is crucial since the computations
and manipulation of data could either improve the general performance of the next two
phases or could sabotage correct analysis and decision making in the top software
levels. [15]

Distributed reservoir sampling algorithms for data pre-processing with use of Kafka Streams

K. Gerakos 26

5. RESERVOIR SAMPLING ALGORITHMS

Reservoir Sampling Algorithms are a family of algorithms widely used in data science
and statistical analysis. They are a subset of randomized algorithms because they use
randomness in selecting samples and values for replacement inside the samples. It is
precisely because of this randomness that offers equal opportunities through
probabilities throughout the sample of values to be represented in the final pool and that
it has an agnostic behavior towards the source size, that the reservoir algorithms are
suitable for big data and handling data streams.

A basic approach of taking a sample of a set of data stream elements could be that of
assigning a random number between 0 and 1 to each element that we process and then
revisit the stream in order to determine from the random that we assigned if that number
could be saved into the reservoir. Of course an algorithm like this can be translated in
the very disappointing O(𝑛2) or at best O(2𝑛). However the biggest problem of taking
samples in data streams lies on the unknown number of elements in the source.
Practically we assume that their number approaches the infinity. By requiring a sample
of finite number we requiring a single pass algorithm of O(n) complexity.

Following is a description of various implementations of reservoir algorithms and the
challenges of implementing them in a distributed environment for the new Fusion box
architecture.

5.1 General Reservoir Sampling Algorithm

One of the most known Reservoir algorithms is the algorithm R described by Jeffrey
Vitter. The algorithm is a simple but elegant solution of randomly choosing values from
an infinite stream of numbers to collect inside a predefined pool of values(reservoir)
while maintaining fair selection and removal from the reservoir possibilities with the
increased amount of incoming data. This is achieved by making use of the
mathematical induction. [16]

For our origin problem we have 𝑋 = [𝑥1, … , 𝑥𝑛] a stream of unknown size or unknown n.
We want to obtain a sample 𝑇𝑖of 𝑘 < 𝑛 items where:

∀ 1 ≤ 𝑗 ≤ 𝑖 ≤ 𝑛 ∶ 𝑃𝑟(𝑥𝑗 𝜖 𝑇𝑖) = Pr(𝑥𝑗 𝜖 𝑇𝑖)

after the 𝑖-th step. The two steps of the algorithm are the following:

1) if 𝑖 ≤ 𝑘: 𝑇𝑖 = 𝑇𝑖−1 ∪ {𝑥𝑖}

2) else: With probability
𝑘

𝑖
 replace one with equal probability chosen element in 𝑇𝑖−1

with 𝑥𝑖.

The first step of the algorithm solving the above problem is as the rest of the Reservoir
algorithms to add the first n elements of the data stream into a reservoir. This can be a
data structure, a file or a set of pointers to the memory. Then the rest of the data stream
elements are sequentially processed. For every element with position inside the data
stream 𝑘 with 𝑘 > 𝑅 where 𝑅 equals the reservoir size a random number j between 0
and 1 is being calculated. Then if 𝑗 is smaller than 𝑅 divided by 𝑘 then the element is
stored inside the reservoir replacing a randomly chosen stored element. This algorithm
can be described as follows:

Distributed reservoir sampling algorithms for data pre-processing with use of Kafka Streams

K. Gerakos 27

To prove that all the elements have equal probability to enter the reservoir we use
induction. After the (𝑖 − 1)-th round, let us assume, the probability of a number being in
the reservoir array is 𝑘 / (𝑖 − 1). Since the probability of the number being replaced in

the i-th round is 1/𝑖, the probability that it survives the i-th round is (𝑖 − 1) / 𝑖. Thus,
the probability that a given number is in the reservoir after the i ith round is the product
of these two probabilities, i.e. the probability of being in the reservoir after (i-1)th round,
and surviving replacement in the i-th round. This is (𝑘 / (𝑖 − 1)) ∗ ((𝑖 − 1) / 𝑖) =
 𝑘 / 𝑖. The result holds for 𝑖, and is therefore true by induction.

A simpler example of the equality is given bellow. Supposedly the probability of the (𝑖)th

element to be selected will be equal of
1

𝑖
 multiplied of all the next elements to not be

selected until n. That is possible to be calculated with induction with the following
mathematical operations:

1

𝑖
∗ (1 −

1

𝑖+1
) ∗ (1 −

1

𝑖+2
) ∗ … ∗ (1 −

1

𝑛
) =

1

𝑖
∗ (

𝑖

𝑖+1
) ∗ (

𝑖+1

𝑖+2
) ∗ … ∗ (

𝑛−1

𝑛
) =

1

𝑛

The average number of records in the reservoir at the end of the algorithm is:

𝑛 + ∑
𝑛

𝑡+1𝑛≤𝑡<𝑁 = 𝑛(1 + 𝐻𝑁 – 𝐻𝑛) ≈ 𝑛(1 + 𝑙𝑛
𝑁

𝑛
)

Where the average number of records chosen for the reservoir after 𝑡 records have
been processed so far is:

𝑛(𝐻𝑁 − 𝐻𝑡) ≈ 𝑛 𝑙𝑛
𝑁

𝑡

5.2 Efficient Reservoir Sampling Algorithm

As it was mentioned the traditional approach of the reservoir sampling algorithm it has a
complexixity of O(n). Each element must be traversed directly and the random number
generation must be invoked on each element. O(n) invocation of the random number
generation is a substantial cost since it can be more expensive compared to the cost of
iterating to the next element in a sequence. On this scope a different pattern was
perceived. Instead of calculating a random number for every element skipping reservoir
sampling algorithms decide whether to calculate the random number or skip to the next
one. Other implementations of this family of algorithms decide the number of elements
to skip achieving faster results. [17]

The algorithm of this can be described as follows:

(* S has items to sample, R will contain the result *)
ReservoirSample (S[1..n], R[1..k])
 // fill the reservoir array

 for i = 1 to k

 R[i] := S[i]
 // replace elements with gradually decreasing probability

 for i = k+1 to n

 j := random(1, i) // important: inclusive range

 if j <= k

 R[j] := S[i]

Distributed reservoir sampling algorithms for data pre-processing with use of Kafka Streams

K. Gerakos 28

5.3 Weighted Reservoir Sampling Algorithm

In the algorithms bellow it is assumed that the importance of data was equal and with a
weight value of 1. However that is not always the case and a weighted version of the
reservoir sampling algorithm was needed. Pavlos S. Efraimidis figured a solution in in a
paper titled Weighted Random Sampling with a Reservoir. [18]

As you process the stream, assign each item a key. For each element 𝑖 in the stream ,
we have 𝑘𝑖 the item's key, 𝑤𝑖 the weight of that item and 𝑢𝑖 a random number between
0 and 1. The key is a random number to the n'th root where n is the weight of that item
in the stream:

𝑘𝑖 = 𝑢
𝑖

1
𝑤𝑖

We keep the top elements ordered by their keys 𝑘𝑖, where n is the size of the sample.
With non-weighted elements (i.e. weight = 1) 𝑤𝑖 is always 1, so the key is simply a
random number and this algorithm degrades into the general reservoir sampling
algorithm mentioned above.

However with weights the probability of choosing 𝑖 over 𝑗 is the probability that 𝑘𝑖 >
𝑘𝑗 . 𝑘𝑖 can have any value from 0 - 1. However, it's more likely to be closer to 1 the

higher 𝑤 is. The distribution of this looks like when comparing to a weight 1 element by
integrating 𝑘 over all values of random numbers from 0 – 1 and it has the following
form:

∫ 𝑢
1
𝑤𝑑𝑢

1

0

=
𝑤

𝑤 + 1

top := N - n; Nreal := N;

while n>=2 do begin

V := UNIFORMRV(); S := 0; quot := top/Nreal;

while quot > V do begin

S := S + 1;

top := -1.0 + top;

Nreal := -1.0 + Nreal;

quot := (quot x top)/Nreal

end;

Skip over the next S records and select the following one for the sample;

Nreal := -1.0 + Nreal; n := -1 + n

end;

{ Special case n = 1)

S := TRUNC(ROUND(Nrea1) x UNIFORMRV());

Skip over the next S records and select the following one for the sample;

Distributed reservoir sampling algorithms for data pre-processing with use of Kafka Streams

K. Gerakos 29

6. IMPLEMENTING DISTRIBUTED RESERVOIR SAMPLING WITH
KAFKA STREAMS

In a distributed environment we deal with an input stream consisting of several sub-
streams and each sub-stream is feed to a single process. The problem lies with the
extension of the simple algorithm to efficiently sample all sub-streams in parallel and still
generate k uniform samples from the entire input stream in the end.

We assume that there are two sub-streams of size m and n, respectively. Both m and n
are far greater than k. In the first step of the algorithm, workers work on their own sub-
streams in parallel, using the basic algorithm. When both workers finish their sub-
stream traversal, two reservoir lists R and S are generated. In addition, both workers
also count the number of items in their own sub-streams during the traversal, and thus
m and n are known when R and S are available.

The critical step is to combine the two reservoir lists to get k items out of them. To do
this, we assign weights to items according to the sizes of the sub-stream where they
were sampled in the first step, and then do a second sampling phase. We run k
iterations for this secondary sampling. In each iteration, we flip a random coin such that,
with probability p = m/(m+n), we pick one random sample from reservoir list R, and with
probability 1-p, we pick one random sample from reservoir list S. At the end of the k-th
iteration, we will get the final reservoir list for the entire stream. This algorithm is
described as follows:

It can be shown by induction that in each iteration of the second sampling phase, any
item in the entire stream has probability of 1/(m+n) being chosen. Again, by total
probability, any item has probability of k/(m+n) being chosen during the execution of the
algorithm, and thus the algorithm generates k random samples from the entire stream.
This algorithm runs in O(max(m,n)) time and uses O(k) in space. To generalize the
algorithm to cases with more than two sub-streams, one only needs to combine
reservoirs lists in pairs, which can also be done in parallel. The proof techniques remain
the same and thus are omitted.

So in general the problems that we encounter by implementing the distributed version of
a reservoir sampling algorithm are:

for(sub-stream s: sub-streams) do in parallel {

 simple sequential reservoir sampling and count length of s;

}

double p = (double) m / (m+n);

for(int i = 0; i < k; ++i){

 j = rand.nextDouble();

 if(j <= p)

 move a random item from R to T;

 else

 move a random item from S to T;

}

return T;

Distributed reservoir sampling algorithms for data pre-processing with use of Kafka Streams

K. Gerakos 30

1. The division of the initial stream to equal size of streams

2. The simultaneously processing of the sub-streams

3. The final collection of the samples and the final merging of them

By using Kafka Streams we solved these problems easily by utilizing the characteristics
of the Kafka platform. The division of the sub-streams and the allocation of processors
can easily be determined by the number of Kafka Stream clients. The unit of
parallelization in Apache Kafka is the number of partitions. By using an equal number of
clients as the number of partitions we divide the initial stream (in Kafka is translated as
a single topic) into equal sub-streams as KStreams and the final collection is achieved
by aggregating the samples into a Ktable.

Distributed reservoir sampling algorithms for data pre-processing with use of Kafka Streams

K. Gerakos 31

7. EXPERIMENTAL RESULTS

In order to evaluate the implementation of the algorithms in Kafka Streams API 4 virtual
machines running the same instance of the algorithm were created. All the virtual
machines were in the same network consuming a stream of infinite events with the
following message avro format:

In order to collect the results of the benchmarking JMH library was utilized with
throughput mode (number of operations in a time unit) as a measurement. The results
were the following:

{

 "namespace": "eu.rawfie.uxv",

 "name": "Location",

 "type": "record",

 "doc": "Geographic location",

 "fields": [

 {

 "name": "header",

 "type": "Header"

 },

 {

 "name": "latitude",

 "type": "double",

 "unit": "rad",

 "doc": "Latitude in the WGS 84 reference coordinate system",

 "min": -1.570796326794897,

 "max": 1.570796326794897

 },

 {

 "name": "longitude",

 "type": "double",

 "doc": "Longitude in the WGS 84 reference coordinate system",

 "unit": "rad",

 "min": -3.141592653589793,

 "max": 3.141592653589793

 },

Distributed reservoir sampling algorithms for data pre-processing with use of Kafka Streams

K. Gerakos 32

Figure 13: Benchmarking results

Not surprisingly the skipping algorithm was faster than the other two implementations.
However the implementation with the reservoir sampling with weights has only a small
performance penalty over the basic reservoir sampling algorithm.

Distributed reservoir sampling algorithms for data pre-processing with use of Kafka Streams

K. Gerakos 33

8. CONCLUSIONS

Data pre-processing is a stage that can be critical to the overall process of data
processing. By using the appropriate theoretical background we can accurately predict
an event before even the initial stream of data passes through the processing step.
Reservoir sampling algorithms can provide speed and precision in the decision making
process and provide us with additional help in a more sophisticated computing resource
allocation.

Distributed reservoir sampling algorithms for data pre-processing with use of Kafka Streams

K. Gerakos 34

ABBREVIATIONS – ACRONYMS

IoT Internet of Things

HDFS Hadoop Distributed File System

GPS Global Positioning System

SCADA Supervisory Control And Data Acquisition

CEP Complex Event Processing

SFE Sensor Fusion Engine

SIS Sensor Inbound Service

Distributed reservoir sampling algorithms for data pre-processing with use of Kafka Streams

K. Gerakos 35

REFERENCES

[1] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of Things (IoT): A vision, architectural
elements, and future directions,” Future Generation Computer Systems, vol. 29, no. 7, pp. 1645–
1660, 2013.

[2] L. Kong, M. K. Khan, F. Wu, G. Chen, and P. Zeng, “Millimeter-Wave Wireless Communications for
IoT-Cloud Supported Autonomous Vehicles: Overview, Design, and Challenges,” IEEE
Communications Magazine, vol. 55, no. 1, pp. 62–68, 2017.

[3] A. H. Kashan and B. Karimi, “Scheduling a single batch-processing machine with arbitrary job sizes
and incompatible job families: An ant colony framework,” Journal of the Operational Research
Society, vol. 59, no. 9, pp. 1269–1280, 2008.

[4] J. Dean and S. Ghemawat, “MapReduce,” Communications of the ACM, vol. 51, no. 1, p. 107, Jan.
2008.

[5] A. Jlassi, P. Martineau, and V. Tkindt, “Offline Scheduling of Map and Reduce Tasks on Hadoop
Systems,” Proceedings of the 5th International Conference on Cloud Computing and Services
Science, 2015.

[6] Y. Zhou, “Scalable and Adaptable Distributed Stream Processing,” 22nd International Conference on
Data Engineering Workshops (ICDEW06), 2006.

[7] S. Takano, “Adaptive processor: a model of stream processing,” 18th International Parallel and
Distributed Processing Symposium, 2004. Proceedings.

[8] K. Patroumpas and T. Sellis, “Event Processing and Real-Time Monitoring over Streaming Traffic
Data,” Web and Wireless Geographical Information Systems Lecture Notes in Computer Science, pp.
116–133, 2012.

[9] Y. Liu, W. Chen, and Y. Guan, “Approximate membership query over time-decaying windows for
event stream processing,” Proceedings of the 6th ACM International Conference on Distributed
Event-Based Systems - DEBS 12, 2012.

[10] “The Future of Event Processing,” Event Processing for Business, pp. 195–235, Sep. 2015.
[11] B. Minaei-Bidgoli and S. B. Lajevardi, “Correlation Mining between Time Series Stream and Event

Stream,” 2008 Fourth International Conference on Networked Computing and Advanced Information
Management, 2008.

[12] M. P. R. Junior, “Dg2Cep: An On-Line Algorithm For Real-Time Detection Of Spatial Clusters From
Large Data Streams Through Complex Event Processing.”

[13] G. Wang, J. Koshy, S. Subramanian, K. Paramasivam, M. Zadeh, N. Narkhede, J. Rao, J. Kreps, and
J. Stein, “Building a replicated logging system with Apache Kafka,” Proceedings of the VLDB
Endowment, vol. 8, no. 12, pp. 1654–1655, Jan. 2015.

[14] J. Coutaz and G. Rey, “Foundations for a Theory of Contextors,” Computer-Aided Design of User
Interfaces III, pp. 13–33, 2002.

[15] I. Taleb, R. Dssouli, and M. A. Serhani, “Big Data Pre-processing: A Quality Framework,” 2015 IEEE
International Congress on Big Data, 2015.

[16] Vitter, Jeffrey S. (1 March 1985). "Random sampling with a reservoir"
[17] J. S. Vitter, “An efficient algorithm for sequential random sampling,” ACM Transactions on

Mathematical Software, vol. 13, no. 1, pp. 58–67, Jan. 1987.
[18] “Weighted Random Sampling, 2005; Efraimidis, Spirakis,” SpringerReference.

